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ABSTRACT

COMPUTER SIMULATION OF AUTOMOTIVE DISC BRAKE NOISE

by

Vadems Milovs

Disc brake dlise continues to be a major concern throughout the automotive industry

despite efforts to reduce its occurrence. Many articles are written on this subject, but

there still is no agreement on what exactly causes disc brake noise and what part of the

braking system is responsible for it

The goal of current research was to build a simplified but inclusive mathematical

model of a disc brake system and investigate it using Matlab software. The two-

dimensional model including damping, Stribeck effect and stick-slip friction was built.

The model is unique in a way that all the similar models have been built using

complicated EM software. It is also unique because it considers the stick-slip

phenomenon that has not been considered as a potential source of dlise in most models.

The simulation was run in Simulink and gave some valuable insights into the

brake noise problem. During this investigation, by changing systems parameters, such as

damping coefficients, wheel rotation velocity and pad pressure, the stable and the

unstable regions of the system were found.

Probably the main conclusion made from the simulations is that the unstable

tangential oscillations can develop in the brake system due to the Stribeck effect

(velocity-dependant friction coefficient). Another remarkable conclusion based on the

simulation results is that the pad while experiencing stick-slip transitions suppresses the

unstable disk oscillations. This seems to be an unobvious effect related to non-linear

stick-slip oscillations of the pad, which deserves an additional study.
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CHAPTER 1

INTRODUCTION

Disc brake dlise continues to be a maeor concern throughout the automotive industry

despite efforts to reduce its occurrence. Over the years, disc brake noise has been given

various names that provide some definitions of the emitted sound such as grind, grunt,

moan, groan, squeak and squeal. In order to simplify and categorize all this cases, it is

convenient to divide brake noise into three larger categories: low frequency noise, low

frequency squeal and high frequency squeal [4]. High frequency squeal is the most

problematic of all.

Many articles are written on this subeect, but there still is no agreement on what

exactly causes disc brake high frequency squeal and what part of the braking system is

responsible for it. One thing kdlwn for sure is that disc brake dlise is caused by frictional

instabilities that cause sound-emitting oscillations. All friction-excited oscillations have

one common feature — the source of oscillation is an energy-dissipating frictional event.

There is only one way to end friction-excited oscillations and that is to stabilize the

system. This can be done by reducing the frictional excitation and/or by changing the

friction material. It can also be accomplished by providing damping at the excitation site.

The goal of current research is to build a simplified but comprehensive

mathematical model of a disc brake system and investigate it using Matlab software.

During this investigation, by changing systems parameters, such as elasticity and

damping coefficients, the stable and the unstable regions of the system have to be found.

The knowledge of these stability regions can help in making the conclusions about
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certain parameter's influence on system's stability and ultimately in understanding of

how to avoid the brake squeal.

Experimental observations previously made by researchers indicate that high

frequency squeal is related to circumferential (in-plane) disc oscillations. On the other

hand, both experiment and theory suggest that the audible noise is usually emitted by

flexural (out-of-plane) oscillations.

Thus, two basic questions arise:

• What is the physical mechanism responsible for the onset of the circumferential

oscillations?

• How do the circumferential oscillations cause the flexural ones?

As to the origin of circumferential vibrations, the potential physical mechanism

responsible for this instability is the Stribeck effect (decrease of the friction coefficient

with velocity). This effect could, in principle, give rise to self-sustained circumferential

oscillations. Note that the energy of oscillations is obviously coming from the rotation of

the disc related with the circumferential DOF.

The maeor problem is the physical coupling between circumferential and flexural

modes that oscillate in mutually perpendicular directions. To obtain self-sustained

oscillations, a two-directional coupling between the involved DOFs is necessary. For this

reason, an additional feedback mechanism is needed to account for excitation of the

flexural vibrations from the circumferential ones. It seems that the best candidate for such

a feedback mechanism is the so-called follower force. The follower force hypothesis was

considered in Mottershead's recent studies [10-15].
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Follower force is a component of the disc to pad friction force acting normal to

the disc surface as a result of tangential displacement. The follower force ensures the

necessary coupling between the flexural and circumferential vibrations, because the

follower force, being proportional to the friction force that acts in the plane of disc, is

directed out of plane and thus it provides the feedback from circumferential oscillations

to the flexural ones in a straightforward way.

Unlike Mottershead's three-dimensional simulation, the current study deals with

two-dimensional problem, for this reason Mottershead's follower force formula was

adapted for the 2-D case.

Recent mathematical models used by the researchers to simulate brake noise

phenomenon are critically overviewed in current paper (see descriptions of these

simulations in Chapter 7). Some of these simulations leave a lot of questions unanswered,

some neglect important physical effects, some are using very complicated 3-D

simulations, which are beyond this thesis work's competence. The intention of this work

was to create a relatively simple mathematical model of the disc brake system that will

give a precise insight into the disc brake squeal phenomenon.

The uniqueness of the current work is that it tries to consider all the possible

forces, effects and nonlinearities (Stribeck effect, stick-slip friction, follower force) that

may occur in automotive disc brake system using a simplified two-dimensional model.

The simulation code is written using Matlab and Simulink, which make it very

interactive and easy to use. By changing the system's parameters in one easy step, the

user can run the simulation with new constants and examine system's behavior under

given conditions.
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The last step of the current research is the analytical calculation of system's

stability. Obviously, including Stribeck effect and the follower force into mathematical

model makes it strongly nonlinear, which makes it complicated to study analytically

using the S-plane techniques.

However, it is possible to linearize the system around some stable or unstable

point, found from the simulation results and execute the calculations especially for that

point using Lyapunov stability criterion.

The thesis work consisted of several stages:

• Literature overview (more then 30 papers on disc noise examined).

• Classification of all the scientific data available on disc noise and selection of the

most adequate and up-to-date material.

• Creation of a comprehensive 2-D model that will include all the physical effects

that are possibly influencing disc squeal.

• Simulation of the brake system model using Matlab, starting with the simplified

cases and gradually adding more complicated effects, such as damping, Stribeck

effect, follower force.

• Finding stable and unstable regions of the system. Changing system's parameters

and studying their influence on system's stability.



CHAPTER 2

DISC BRAKE MECHANICS OVERVIEW

An automotive brake system can be divided into three main parts:

1. The rotor, as the name is indicating, is rotating with the wheel. It is the first part in

the friction couple. Rotors made of gray cast iron have always dominated the

market. The last couple of years, other materials have been introduced.

2. The brake pad is the second, stationary, part of the friction couple. During a brake

application, the pad is pressed against the rotor with a hydraulic piston. The

friction forces between the stationary pad and the rotating disc will turn the

kinetic energy of the vehicle into heat.

3. The hydraulic system transfers and amplifies the brake force from the brake pedal

to the hydraulic piston pressing the linings against the rotor. In modern brakes the

hydraulic system also includes ABS-system.

Figure 2.1 Disc brake system.
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The disc and the pad are in the focus of the current study, for they are most

probably the components responsible for disc squeal. The rotor disc is rigidly fixed to the

wheel with bolts and is connected to the axle of a car. The pad is connected to the body of

a car. In disc brake, the pads clamp the disc from opposite sides. The brake force from the

hydraulic piston is distributed equally between the pads braking the disc. The friction

force between the pad and the disc is perpendicular to the applied normal force on the

pad. It may seem that because of this orthogonality the friction force does dlt affect the

normal force, but the latest research indicates the presence of so-called follower friction

load. The follower load hypothesis means that the tangential friction force follows the

deformed surface of the disc (as a result of material waves) and changes its direction

when the disc vibrates. As a result, the friction force has a transverse component affecting

the normal force.

As the brake pads wear, the caliper automatically adeusts itself. Brake calipers

consist of four maeor components: the dust boot, the seal, the piston, and the housing.

Depending on its design, the caliper may have one, two, three, or four pistons, seals and
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boots in a single housing. In either case, however, the operation is essentially the same.

Calipers ride in anchor plates, which are either mounted to the suspension or frame.

When the brakes are applied, hydraulic pressure causes the piston to move out of the

caliper bore, and the opposing reaction slides the caliper in the anchor plate pushing the

friction pads to the rotor with equal pressure

Since brake pads provide the friction necessary to stop the rotor, they must have

heat resistance and physical strength. While that is true of all brake pads, each of the

available types, semi-metallic or NAO, provides these properties in different degrees.

Many vehicles today use semi-metallic brake pads to handle the higher operating

temperatures, resulting from the changes in front brake rotors and downsized brake parts.

With these changes, disc brake operating temperatures eump from 500 F up to 700+ F.

Only the semi-metallic pads with an operating temperature range of 900+ degrees can

work properly at that heat. NAO pads are designed for operating temperatures of 350 to

500 degrees. The ceramic variation is designed to care for noise and dusting problems.



CHAPTER 3

ROTOR DISC OSCILLATION MODES

Vibrating structures cause pressure waves in the surrounding media. These waves are

known as sound and the tone a person hears depends on the frequency of the vibration.

High frequencies are heard as high pitch tones and low frequencies as low pitch tones.

Brake squeal has a main frequency between 1 and 20 kHz. Furthermore, brake squeal has .

a stable and dominating main frequency plus a number of overtones, resulting from

different vibration modes of the brake assembly.

The modes describe the ways in which the system is allowed to vibrate easily.

Frequencies corresponding to the nodes are called resonance frequencies and the

phenomenon when a structure is easily vibrating is called resonance. Theoretically, at

resonance the amplitude is only dependent on the damping of the system and the input

energy. Equilibrium is reached when the input energy equals the energy absorbed by the

damping.

According to the annular plate theory, disc rotor when being excited starts to

oscillate both in normal and tangential directions. The experiments showed that the

natural modes of the mechanically excited stationary brake system are qualitatively

similar to the vibrational pattern observed on the operating brake system. Normal

(flexural) direction resonances of the rotor disc exist throughout the disc squeal frequency

range, starting with a 2 nodal diameter mode near 1 kHz through a 12 nodal diameter

mode near 15 kHz. These resonances are known for their intensive sound propagation,

and are considered to be the main cause for brake disc noise. The natural frequencies of

8
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the rotor disc flexural resonances and their mode shapes for an arbitrary disc can be

observed on Figure 3.1.

Figure 3.1 Rotor disc modes (Taken from McDaniel, Chen, Moore and Clarke 1999 [9]).

The flexural (out-of-plane) modes have much higher modal density then the

circumferential (in-plane) modes. Usually, the first circumferential mode appears after

5 kHz. Circumferential modes can be viewed as a compression wave in the disc

circumference, similar to a longitudinal mode of a solid bar Figure 3.2. When normal and

circumferential resonances occur at the same frequency it is called modes coupling.

Experimental observations previously made by researchers indicate that high frequency

squeal is related to circumferential (in-plane) disc oscillations. On the other hand, both

experiment and theory suggest that the audible noise is usually emitted by flexural (out-



CHAPTER 4

DISC BRAKE OSCILLATION TYPES

4.1 Rigid Body Oscillations

As the name implies, rigid body oscillations are those in which the vibrating masses

move with little or no deflection. These are usually at vibrating frequencies well below

these of brake squeal, and most below 600 Hz. Rigid body oscillations can be of very low

frequency, so they can be seen or felt, but not heard. Brake roughness, eudder and

shudder are examples of these oscillations. Rigid body oscillations may have mechanical

or thermal causes. Mechanical causes include such well-kdlwn phenomenon as Disc

Thickness Variation.

DTV is caused by material transfer from the disc brake pads to the brake rotor due

to light pad/rotor rubbing during off brake driving (e.g. highway cruising). Light contact

starts at the location of maximum rotor run-out and develops slowly over thousands of

miles. If a sufficient amount of DTV is generated, eudder will be felt in the brake pedal or

steering wheel when the brakes are applied.

Mechanical causes also include machining errors such as: thickness variation,

ovality and runout. Uneven heating of brake rotors can temporarily cause or increase

thickness variation and sometimes can produce a primary thermal buckling that wraps the

rotor into a washboard with three or even five high spots per revolution.

Brake roughness is felt at wheel rotation speed, one torque pulse per revolution.

DTV and drum eccentricity induce pulses at one per wheel revolution. Disc brake runout

10
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and drum brake ovality produce two vibrations per revolution. Lug bolt and other wheel

distortion can cause 4, 5 or even 6 pulses per wheel revolution.

Hum and moan are also caused by rigid body oscillations. These often occur in

disc brake assemblies as the result of a dragging shoe that excites a caliper mount windup

resonance. Rotor thermal distortion at highway speeds can also cause hum and moan.

4.2 Continuum Oscillations

These are the oscillations that cause brake squeal. For this report, squeal is the generic

name for a friction-excited oscillation above 1000 hertz. The rigid body oscillations are

very unlikely to be responsible for disc squeal, because in order to reach a 1000-hertz

frequency at two or even six pulses per revolution, the wheel has to be rotating at a very

high rate, and as well known, the squeal noise typically occurs at low vehicle velocities.

As the name "continuum" implies, the vibrating components flex to provide both

spring and mass for the vibrations. Continuum oscillations are caused by positive

mechanical feedback excitation from brake lining. Continuum oscillations typically

happen when the system reaches the resonance frequency, corresponding to one of the

natural modes of the disc. As it was mentioned before, the studies indicate that these are

the circumferential vibrations that initiate the flexural ones to create the phenomedln of

modes coupling, which most probably causes disc brakes squeal. The mechanisms that

are responsible for this kind of oscillations are much more fugitive and complicated than

the ones responsible for rigid body oscillations and include negative slope in the friction-

velocity curve, the follower force and parametric resonance.



CHAPTER 5

BRAKE NOISE MECHANISMS

In this paragraph, various brake noise mechanisms will be discussed more closely. As it

was mentioned earlier, disk brake squeal occurs when a system experiences large

amplitude mechanical vibrations. The literature survey points on three maeor physical

mechanisms that can cause self-excited vibrations in the car disc brakes.

5.1 Stribeck Effect and Stick-Slip Friction

Stribeck effect is a decrease of the dynamic friction coefficient with velocity that can lead

to a negative damping coefficient, which provides the energy source of the break squeal.

Stribeck effect causes the instability to occur in a bounded velocity range, like it is

observed in practice. On the other hand, it is well known that the squeal is mostly

generated by the out of plane vibrations of the disc while this instability causes

oscillations in the plane of the disc. Thus, more complicated model seems to be necessary

to account for excitation of flexural vibrations by the in-plane Stribeck effect. Such

attempts have been undertaken by Pilipchuk, Ibrahim & Blaschke (2002), Quyang &

Mottershead (2001b), Quyang et al. (1999) and Aviles et al. (1995) — see Chapter 7.

The variable friction coefficient can be modeled in a number of different ways

having different degrees of complexity. For instance, Ouyang and Mottershead have

adopted a relatively simple friction model for their simulation [14]:

12
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,u = it 	 - v115) + 0.0002•v 2
[5.11

Where Ps is the static friction coefficient.

An example of stick-slip is a squeaky door hinge. Stick-slip consists of two

phases, stick and slip. During the stick phase, the brake lining and cast iron move

together, with no slippage at the interface. The stick time period is variable, depending on

speed, load, and system stiffness. When slip begins, a noise burst occurs. This involves a

half-cycle of motion at the rubbing surface. The sudden energy burst often produces a

more sustained audible oscillation.

Stick-slip in brakes generally is confined to low speed rigid body vibrations, so

have low frequencies. The noise bursts always start motion in one direction, and have

peak amplitudes then. Many frequencies are excited at one time, so the time-domain

waveform is complex. Vehicle speeds are normally less than 2 mph for brake stick-slip. It

is possible for rounded particles within brake linings (such as glass beads) to undergo

stick-slip within brake lining, when excited by rubbing surface. This stick-slip may occur

at any vehicle speed, but still has very low rubbing speeds between the rounded particle

and the brake lining matrix, where the stick-slip occurs.

Speaking of high frequency squeal, which is the most problematic of all the brake

noises, most probably the Stribeck effect plays one of the key roles in squeal generation

along with the follower force. The role of the Stribeck effect is to cause circumferential

vibrations of the rotor disc that will in turn cause the flexural vibrations when amplified

by the follower force.
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5.2 The Follower Force

The second physical mechanism considered by Mottershead as a potential cause of

unstable flexural vibrations of the disc is so called follower force. The follower force

hypothesis assumes the friction force to be always directed tangentially along the surface.

Flexural wave propagating along the surface subeect to the friction will give rise to the

component of force normal to the unperturbed surface. Obviously, follower force will

oscillate together with surface slope that is shifted in phase by a fourth of period (90

degrees) relative to the amplitude oscillations in the wave. Thus, follower force is

analogous to the viscous damping that is proportional to the velocity and so also shifted

in phase by a fourth of period relative to the amplitude oscillations. Consequently,

follower force can either damp or amplify oscillations depending on the sign of the

damping coefficient.

It turns out that the action of the follower force depends on the direction of wave

propagation relative to the direction of friction force: forward-traveling waves (against

the friction force) are destabilized whereas backward-traveling ones are suppressed.

Thus, the stronger the friction force, the stronger the destabilizing action of the

follower force. In simple models, the follower force appears as an asymmetry in the

stiffness matrix proportional to the friction force. Note that without both follower force

and viscous damping the symmetric stiffness matrix results in purely real spectrum for

squares of frequencies of natural oscillations. However, this spectrum is dl more

necessarily real when stiffness matrix is not symmetric. In both cases, symmetric and

asymmetric, the spectrum is defined as an eigenvalue problem of a real matrix that is

equivalent to finding of roots of the characteristic polynomial with real coefficients.
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As well known, polynomial with real coefficients can have complex roots only by

complex coneugate pairs. Thus, oscillation modes with complex frequencies, if any, can

appear only by pairs where one is exponentially decaying but the other exponentially

growing, i.e., unstable in time. Consequently, appearance of a complex frequency

unambiguously implies instability. On the other hand, since the number of roots of

polynomial is fixed to its degree, emergence of a pair of complex coneugated roots

implies disappearance of a pair of real roots. Since roots are expected to vary

continuously with the coefficients of the equation, a pair of real roots has first to coalesce

into duplet before it can further split up into complex coneugate pair in the course of

development of instability. Such a type of instability developing via a coalescence of two

frequencies is called flutter instability. Obviously, presence of close vibration frequencies

in the brake system under the action of follower force poses a potential risk of

development of flutter instability as it is often observed in practice. Note that in simple

follower force model there is no dependence on the velocity that apparently contradicts

practical observations of brake squeal appearance.

Follower force effect seems to be at the heart of the generalized theory of brake

noise due to Nishiwaki (1993). For three different noise mechanisms he obtains similar

simplified equations containing only inertial and stiffness effects with stiffness matrices

containing an asymmetric component proportional to the friction force that is obviously

due to the follower force effect.
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5.3 Parametric Resonance

The third mechanism is the parametric resonance caused by rotation of the disc past

sliding brake pads, that causes cyclic variation of system parameters rather than variation

of externally applied load as it is the case for the usual resonance. In this case, unstable

flexural (out of plane) vibrations of the disc can arise at some specific values of system

parameters (typically rotation speed, stiffness and damping) even when friction between

the disc and brake pads is absent. Normal reaction force alone between two components

in cyclic relative motion is sufficient for this instability to appear. There are three types of

parametric resonances possible in the rotating disc.

The first is the superharmonic resonance occurring when disc rotation rate

becomes close to the circumferential speed of some flexural mode. Note that there is

infinite number of such modes and so infinite number of critical speeds. Width of each

unstable rotation rate range increases with the stiffness of the disc. Thus, originally this

instability was referred to as the "stiffness instability."

Second type of parametric instabilities, called the "combination resonance", is

expected to occur whenever either sum or difference of natural frequencies of two

flexural modes coincides with the disc rotation speed multiplied by either sum or

difference of circumferential nodal diameters of those modes. Thus, there is even greater

number of possibilities for combination resonances than the superharmonic ones.

Third type of resonances has no simple functional relation between the speed of

rotation and the natural frequencies of the disc. Obviously, for this instability to occur the

rotation rate of the disc must be comparable to the frequency of flexural vibrations of the

disc (about several kHz) that is quite high. Therefore, relevance of this instability to the



17

brake squeal generation is questionable. Moreover, practical observations show that

squeal generation strongly depends on the friction and appears only at sufficiently low

velocities whereas this instability appears independently of friction and only at

sufficiently high speeds. Mathematically, parametric instabilities are described by quite

complicated systems of Mathieu-Hill type-linear ordinary differential equations whose

coefficients are in general periodic functions of time. Therefore, it may be quite

complicated, if necessary, to incorporate adequately this type of instability into a

simplified physical model.

As it was mentioned earlier, parametric resonance can occur when the disc

rotation rate becomes close to the circumferential speed of some flexural mode. As it was

mentioned before, the first flexural mode has around 1 kHz frequency. In a car it is very

unlikely that a wheel will rotate at such frequency, that's why parametric resonance is not

a mechanism that should be considered when simulating a realistic car brake model.



CHAPTER 6

DISC BRAKE NOISE SOLUTION TECHNIQUES

Current work focuses on high frequency squeal, because this group of dlises is the most

problematic one and no total solution has been found yet to eliminate high frequency

squeal. The two other groups of noises can be successfully eliminated as described

bellow.

6.1 Low Frequency Noise

Low frequency noise typically occurs in the frequency range between 100 and 1000 Hz.

The dlise is caused by friction material excitation at the rotor and lining interface. The

energy is transmitted as a vibrational response through the caliper (brake corner) and

couples with other chassis components. The typical failure mode occurs at deceleration of

5 to 20 ft / sec, lining temperature of 150-250 o F and vehicle speeds of 10-20 mph.

After conducting the experiment [4], a strong connection between sustained noise

event and lateral caliper acceleration was found. Attempts to modify the vehicle response

with various structural modifications were unsuccessful. The only practical solution was

to reduce the forcing function. For that purpose, a new lining material needed to be

found. A lining study was developed that pinpointed the maeor factors in the lining

composition that reduced the propensity for dlise. These factors were additional filler,

abrasive and fiber, as well as a reduction in lubricant. Correcting these factors has solved

the problem of low frequency noise.

18
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6.2 Low Frequency Squeal

Low frequency squeal is generally classified as noise having a narrow frequency

bandwidth in the frequency above 1000 Hz yet below the first circumferential mode of

the rotor. The failure mode for this category of squeal can be associated with frictional

excitation coupled with a phenomenon of "modal locking" of brake corner components.

The typical failure mode occurs during low brake deceleration 4 to 6 ft / see2 , lining

temperature of 30-40 o F and vehicle speeds up to 5-10 mph.

After conducting the experiment [4] and capturing sound pressure data during a

squeal event, it was found that the squeal was in the frequency range of 2500 to 2600 Hz.

Structural dynamic measurements taken in the rotor and caliper indicated that both had

resonances in the frequency range. The rotor resonance occurred at 2640 Hz in the 3rd

node diameter mode. The caliper mode occurs at 2546 Hz and is a 1 st bending about the

bridge. This resonance coupling between the rotor and the caliper produces the squeal.

The solution technique developed for this case was to decouple the caliper and rotor

modes. As with any structural dynamic modifications, the damping, mass and/or

stiffness of the rotor/caliper can be modified.

The simplest modification that could be made was to change the rotor material for

gray cast iron. The goal of this modification was to reduce the amplitude of the rotor

response by increasing the damping. After the "damped iron" rotor was used, the low

frequency squeal was eliminated.

Frequency response measurements comparing gray iron versus "damped iron"

rotor shows the shift down in frequency of approximately 400 Hz, therefore, the mode

coupling is eliminated.
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6.3 High Frequency Squeal

Unlike low frequency noise and low frequency squeal, high frequency squeal problem

does not have an "absolute" solution yet. High frequency squeal is typically classified as

a squeal occurring at frequencies above 5 kHz. Although there are many flexural

(bending) modes of the disc brake rotor through the frequency range of squeal, the squeal

frequencies are typically coincident with circumferential (longitudinal) modes. It is

sought that high frequency squeal occurs as the result of cross coupling of a

circumferential and flexural mode of the rotor or another mode of the brake system.

Experiments show that flexural vibrations of the rotor mostly cause the sound, but

the correlation of the squeal occurance with the circumferential modes indicates that

these are circumferential modes that trigger disc squeal. This fact supports the hypothesis

of modes cross coupling. Then the question that needs to be answered is how do the

circumferential vibrations cause the flexural ones. Despite these two vibrational modes

being orthogonal to each other, the coupling mechanism between the modes is the

follower force.

As it was mentioned earlier in the text, the follower force means that the

tangential friction force follows the deformed surface of the disc and changes its direction

when the disc vibrates. As a result, the follower force has a transverse component when

the disc deforms during vibration.

Just like in the previous two cases, for a particular brake system there exist

particular frequencies at which high frequency brake squeal will commonly occur. These

frequencies typically remain constant for a particular brake rotor independent of the rest

of the brake system. This fact supports the theory that disc rotor is a controlling element
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responsible for squeal generation. Sample brake squeal data acquired with a dragging

brake dynamometer is shown at the picture below [4]. From the Figure 6.1(a) it is

obvious that squeal occurred at three distinct frequencies.
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Frequency response function measurements of the rotor in tangential and normal

directions are displayed in Figures (b) and (c). The first three circumferential modes of

the rotor consisting of 1, 2 and 3 nodal diameters are identified by X's in Figure (b). It is

obvious from the figure that circumferential modes are coincident to the squeal

frequencies.

On the other hand, the presence of circumferential nodes does not itself guarantee

the occurrence of brake squeal. For squeal to occur, it is expected that cross coupling of a

circumferential and normal direction mode of the rotor or a circumferential mode of the

rotor and another mode of the brake system must occur. In case of high frequency squeal,

the vibration modes of the pad do not affect squeal occurrence, because the vibration

frequencies of the rotor disc are much greater then these of the pad.

The obeective of current study is to prove the above-mentioned experimental

results analytically by creating a mathematical model of the disc brake system and

simulating it in real time using Matlab software. Moreover, if the experimental study

does not give the explanation to the modes cross coupling phenomenon, the mathematical

modeling makes it possible to verify how the coupling mechanism works.

The disadvantage of the analytical modeling approach is that it does not allow

measuring the noise level of the system. The only thing that can be found from current

simulation is the unstable vibration, but it is impossible to suggest with a high degree of

accuracy that these vibrations will produce sound.



CHAPTER 7

MATHEMATICAL MODELS OVERVIEW

Before building a mathematical model for this thesis work, it would be useful to

overview the existing analytical and experimental models. For the analytical models

implementation, the mathematical software such as Matlab, Simulink or FEM packages

can be used. For the experimental models - laser Doppler velocimetry (LDV), laser

vibrometers and electronic speckle pattern interferometry (ESPI) are used.

Here is a short overview of the mathematical and experimental models, which

have been created by different researchers, placed in a chronological order:

Chan, Mottershead and Cartmell (1994) considered the parametric resonances in a

stationary classical annular disc excited by a rotating mass-spring-damper system

together with frictional follower load. Using the method of multiple scales, they find

instabilities associated with subcritical parametric resonance and other instabilities

associated with backward wave modes with nodal diameters (non-zero circumferential

wave numbers). The later are shown to be driven by friction and thus to be rotation-

speed-independent.

Aviles et al. (1995) introduced a simple model based on both velocity and

temperature dependent friction coefficient to model the eudder in disc brakes at high

speeds. The authors mostly focus on the low frequency (100-500 Hz) circumferential

caliper vibrations (so called brake groan) resulting from the velocity and temperature

dependent friction coefficient.
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Quyang et al. (1999) assumed the static friction coefficient to be higher than the

dynamic one in his study of the in-plane vibration of a slider-mass driven around the

surface of a flexible disc. The disc is considered as an elastic annular plate and the slider

has flexibility and damping in the circumferential (in-plane) and transverse directions.

Due to the friction force between the disc and the slider system, the slider oscillates in the

stick-slip mode in the plane of the disc. The transverse vibrations induced by the slider

change the normal force on the disc, which in turn changes the in-plane oscillation of the

slider. The obtained results indicate that normal pressure and rotating speed can drive the

system into instability. The rigidity and damping of the disc and transverse stiffness and

damping of the slider tend to suppress the vibrations whereas the in-plane stiffness and

damping of the slider do not always have a stabilizing effect.

El-Butch & Ibrahim (1999) consider seven-DOF (degree of freedom) multi-body

model of brake system including disc, pad, caliper and piston, where the first three

components have both translational and rotational DOF, whereas the latter only

translational DOF. Equations of motion are obtained using the Lagrangian approach with

generalized forces to include follower forces, which are the only potential source of the

instability in the model. The authors claim that according to their model the position of

the piston is of substantial importance though it is not clear how this position is taken into

account in the model.
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Mahaean, Hu & Zhang (1999) describe three CAE-based brake squeal analysis

methods implemented on disc-type brakes in a vehicle program at Ford.

The first method was the nonlinear transient analysis based on the EM modeling

of a realistic brake system comprising the rotor, the caliper, the lining with baking plates,

and the anchor bracket guiding the caliper through pins. The outputs of the model were

the time responses of different mode vibrations after the start of braking event.

Advantage of the code was the sophisticated handling of the frictional contact able to

capture accurately the rotor-pad interface geometric dlnlinearities.

The second method was normal modes analysis that was used to investigate

uncoupled free vibration modes only of the primary brake components: the rotor and the

pads. This approach relies upon the assumption of a likely coupling of close modes due to

the friction. Rotor and pad/backing plate modes that are close each to other are identified

as likely to couple.

The third method was the complex eigenvalue method using the model very

similar to the one used in the Nonlinear Transient Analysis method. The friction in this

model is introduced as coupling between the degrees of freedom along the normal and

tangential directions at each dlde in the rotor/pad contact interface. The critical part of

this method is the inclusion of coupling terms in the system stiffness matrix that leads to

the asymmetric form of the system stiffness matrix. All three methods, when applied for

optimization of brake pad design, showed a good potential for the application to the

automotive brake system development. The transient method provided good comparison

with test data while the normal modes method provided a cost-efficient way of driving

certain design changes.
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Chen et al. (2000) presents results of experimental investigation using LDV and

phase shifting pulsed ESPI to visualize vibrations of brake disc and pad/caliper assembly

during the squeal generation process. It is found, that the key to the squeal generation is

the modal coupling between the disc and pad/caliper assembly. It is shown in a case

study, that squeal generation is associated with coupling of the fifth flexural disc mode

with the pad-bending mode. The authors also demonstrate that using mass

loading/damping can decouple the modes between the disc and pad/caliper assembly

vibration by which the squeal is eliminated.

Chung et al. (2001) analyses brake stability problem in the modal domain by

searching vibrations as superposition of free-oscillation modes of separate brake

elements. Interaction between the disc and pads is described by means of the generalized

coordinates defined as relative normal and tangential displacements at the disc/pad

interface. In accordance to the geometry (follower force) instability hypothesis, relative

tangential displacement between the rubbing surfaces gives rise to the normal force

perturbation that is source of the instability appearing as an asymmetry in the stiffness

matrix proportional to the friction force. The authors consider frictional stiffness

asymmetry as a small perturbation that allows obtaining a simple approximate expression

for the perturbed frequency spectrum of oscillations. This solution is further used to

define the coupling strength between various pairs of natural modes. The coupling

strength provides a measure of how fast two modes will approach or move apart when the

friction force increases from zero. This criterion allows identifying potentially unstable

pairs of modes.
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Shi et al. (2001) describes state-of-art complex eigenvalue analysis at GM to predict

brake rotor out-of-plane mode coupling with rotor's tangential vibrations (responsible for

high frequency squeal). In general, they find a good agreement between the theoretical

predictions and experimental findings. The maeor problems are related to insufficient

knowledge of material constants (elasticity and damping) and to complexities in modeling

contact interfaces.

Quyang & Mottershead (2001a) investigated the instability of the forward and

backward traveling waves in the transverse vibration of a stationary disc induced by the

friction in a rotating mass-spring-damper system. The authors consider combination

resonances across the whole speed range and model the friction force as a follower force.

They find regions of instability for combination resonances and the instability of the

associated traveling waves at the subcritical speeds. In addition to the already well-known

facts that the friction alone destabilizes the backward traveling waves in the speed-

independent resonances and that the damping of the rotating system is destabilizing in the

subcritical speed range, it is found that the friction modeled as a follower force is the most

destabilizing factor among the system parameters.

Quyang & Mottershead (2001b) introduced the velocity-dependent friction with the

Stribeck effect into the moving load problem for the vibration of car disc brake. The authors

claim that by solving corresponding eigenvalue problem, a bounded region of instability is

obtained for the rotating speed of the disc versus the friction coefficient at the disc/pads

interface, which is compatible with the observed squeal phenomenon of a car disc brake.
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Quyang & Mottershead (2001c) is concerned with suppression of parametric

vibrations in discs under rotating frictional loads. The authors investigate the parametric

resonances of a stationary disc excited by a rotating frictional load and influenced by series

of mass-spring-damper systems with or without friction. The genetic algorithm is used to

reduce and even eliminate the dynamic instability caused by the rotating friction as a

follower force on the disc surface. It is found that if the mass-spring-damper systems involve

no or low friction, they can reduce or suppress the dynamic instability of friction induced

parametric resonances when correctly located, but they have, at best, dl effect when the level

of friction is high.

Hendricks et al. (2002) conducted experimental investigation of low frequency squeal

(1.6 kHz) using spectral and acoustic holography techniques. It was found that the low

frequency squeal is mostly emitted by the pad to disc interface. The squeal generation

strongly correlates with pad properties whereas influence of the disc is very weak. The most

important parameter influencing squeal frequency is the braking pressure while rotating

speed has less importance.

Pilipchuk, Ibrahim & Blaschke (2002) take into account Stribeck effect by

considering velocity-dependent friction coefficient, which, however, is smoothed about zero

velocity to render this dependence artificially continuous. In addition, the authors assume the

friction force acting on the pad to be concentrated along its trailing edge due to the moment

arising from the friction force, and thus to cause redistribution of dlrmal forces that seems to

be similar to the effect of a follower force. Eventually, they consider only in-plane disc

vibrations while transverse ones are completely ignored by arguing that the contact forces

from both sides of the disc are equal.



CHAPTER 8

MATHEMATICAL MODEL

8.1 Mass-Spring-Damper System of the Disc Brake

The study and prevention of unstable vibrations is very important to the vehicle brakes

industry and there is a need for a model that will predict unstable squeal-noise dynamics

with reasonable accuracy. Dynamic measurements from systems with dry friction are

notoriously difficult to obtain, not only because the data from displacement transducers

tend to be very noisy, but also because the system can change significantly with wear on

the surface. However, the existence of the traveling waves on the surface of the disc is

thought to be relatively easy to confirm, and it is one of the motivations for the present

theoretical study.

Current study considers two degrees of freedom (circumferential and transverse)

model to describe the rotating mass-spring-damper system of the disc brake (Figure 8.1).
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Due to the symmetry, it is sufficient to study half-body diagram, consisting of the

disc and the upper pad - Figure 8.2.

During a brake application, the pad is pressed against the rotor with force N.

Material properties of the braking pad surface as well as stiffness and damping of the

rotor disc relative to the chassis are the first candidates to be studied when trying to

understand the mechanisms responsible for disc squeal. Spring and damper coefficients

of the disc and the pad for both normal and circumferential directions are included in the

system. Their approximate values are calculated in Chapter 9.

In Figure 8.3 the free body diagram of the disc is presented. The forces that act on

the disc surface are the reaction force and the friction force. The same forces but with

opposite signs are acting on the bottom surface of the pad.

As shown on the Figure 8.3, the disc, as well as the pad, have a local coordinates



31

systems attached to them. Therefore, Ad and Ap in [8.1, 8.2], as well as yd and Sp  in

[8.3, 8.4] are the deviations of the local coordinate systems of the pad and the disc

relative to the global coordinate system of the brake disc assembly. Note that the

rotational velocity of the disc V is measured relative to the global coordinate system.



System's equations for the normal direction of motion are:

and • j'a="--kd,y . Yd — Cdo  • Yd — Ay

Deviation of disk from its normal equilibrium position.

Deviation of pad from its normal equilibrium position.

Normal stiffness and damping of the disk.

Normal stiffness and damping of the pad.

Normal force acting on the pad.

Normal force acting on the disk.

—	 The velocity of the disk rotation.

Obtaining the equations for Ay and F meth.:

The normal force N acting on the pad is translated to the disk's surface.

The reaction force on the disc surface can be found from the following relation

of disklpad displacements and velocities:

Ay = k p ,),(yd — y p ) + cp ,y (pd — pp )

From the definition of the friction force:

A friction = B • Ay

In order to take the Stribeck effect into consideration, the friction coefficient has

to be velocity-dependant. In the literature different approximations of velocity-
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[8.3]

[8.4]

[8.5]

[8.6]

ma - 51P = FY — N

Where:

Yd

Y p

kdo,,cd,y

k cPO' ' PAY

N

AY

V



The graph of the velocity-dependant friction coefficient clearly shows that the

coefficient of friction changes from 0.1 (equal to Bs ) when velocity is zero, to

approximately 0.04 when velocity is equal to 16 mlsec. The simulation showed that

when the disc rotation velocity is smaller than Uc (16 mlsec) and the Stribeck curve has a

negative slope, this may cause instability in the system, while the velocities greater than

Uc will never lead to system's instability and therefore, can no be a disc noise source.

The velocity in [8.7] is the disk relative to pad sliding. It can be found from:

v=V-Ficd —i„ 	 [8.8]
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8.1 Follower Force Hypothesis

Adlther factor, apart from the Stribeck effect, that may cause the system to

become unstable is the follower force. From definition, the follower force is component

of friction force as the result of flexural displacement. The friction force follows the

deformed surface of the disc and changes its direction when disc vibrates; therefore

follower force acts in direction normal to the sliding plane, which is Y.

The follower force was discussed in at least two papers by Mottershead [10, 11].

The original expression of the follower force given by Mottershead is:

Figure 8.5 Follower force acting on deformed disc surface (Taken from Mottershead

and Quyang 1999 [12]).
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Our model is too simple to include the follower force representation

given in Mottershead's paper in its exact form. It would require considering a system with

spatial dependence, namely, force distribution over the disk and pad surfaces. This would

result in partial differential equations. The only thing that can be done to consider the

follower force in current model is to take an approximate integral version of the follower

force, which involves the basic features of the local follower force.

There are two such basic features, which appear from the definition of the

follower force. Namely, follower force is the normal component of the friction force

appearing in the result of bending (inclination) of the contact surface. Thus, the two basic

conclusions following from this definition are:

• The follower force is proportional to the friction force.

• The follower force is proportional to the inclination angle of the bent surface.

Since we consider the normal oscillations as amplitude of a flexural wave, the

inclination angle in flexural wave is proportional to the amplitude of the wave yd .

Therefore, in the most general form, follower force may be written as:

Where a is some proportionality coefficient that relates the product of friction

force and normal displacement to the follower force. This may be regarded as a

phenomenological definition of the follower force similar to the definition of the friction

force via product of normal pressure and friction coefficient.

The follower force causes asymmetry in the stiffness of the brake system and

therefore it represents a potential destabilizing effect. However, this asymmetry turns out
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to be too weak to cause a real instability in the system. According to the definition of the

follower force [8.11], the constant alpha has a dimension of inverse distance (1lm).

Therefore, this constant can be expected to have a typical size of —0.1 (m) and to

be equal to —10 (1lm). The effective stiffness coefficient (proportionality constant to the

deformation) related with the follower force is a•F•f cx•N•p... ,' 10 3 while the real disk

and pad stiffness coefficients are much larger (-4.e7-1.e9). Therefore, unrealistically

large values of alpha are necessary to get a noticeable effect of the follower force on the

oscillations.

Consequently, it seems unrealistic to include the follower force effect in a two-

dimensional model like the one presented in the paper.

Chapter 11 contains the Simulation Variables Table, which shows all the

parameters that were used during simulations. Note that only the last three simulations

(38, 39, and 40) have Alpha not equal to zero, meaning that these simulations included

follower force effect. It can be also seen from the Figures 16 and 17 in Appendix A that

the follower force effect did not cause instability in the system as it could be expected.



CHAPTER 9

PHYSICAL PARAMETERS

According to SAE paper 1191 the masses of the disk and the pad are:

To evaluate disk stiffness an inverse approach can be adopted. Namely, it is

possible to take the experimentally observed natural frequencies of disk vibrations and

use the chosen mass and to evaluate the corresponding stiffness. As known, linear

We know that frequency of flexural oscillations is about several kHz, while

frequency of circumferential oscillations is typically above 5 kHz.

As to the damping constant c, then according to the above-mentioned paper, it can

be obtained from the real part of the oscillation growth rate, gamma. If oscillation

amplitude is written in complex form: A == e where A, is complex growth rate and t

is time, the angular frequency of oscillations is given by the imaginary part of the growth

rate, and the real part characterizes the damping or amplification of oscillations gamma:

Re[A] . Gamma is the inverse of the characteristic time of oscillation damping (the

time over which amplitude reduceslgrows by e=2.73). The range of gamma is 1-3[1ls].
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Since the damping constant c is multiplied by velocity to obtain force, its

dimension is [kgls]. Thus, using simple dimensional arguments it is possible to evaluate

the damping coefficient as:

Therefore, for the disk it is possible take c in a range of 1 to 5 [kg/s

For the pad things are a bit different, because natural frequencies are not well

known. However, in this case the approach of the above-mentioned paper [19] can be

adopted for direct evaluation of pad stiffness from its Young's modulus E— 0.8 GPa

(according to Mottershead's data) using following formula:

Where S is pad contact area and h is its thickness. Taking thickness 1cm and contact

For tangential direction taking into account that the shear modulus

is by a factor of 2(1+ v) = 2.5 ( v = 0.25 Poisson ration for pad) smaller than Young's

modulus, the pad shearing stiffness can be evaluated as k pax k y / 2.5 = 1.7 .109 [Nl m] .

The real part of pad normal frequency seems to be absolutely unknown. However, it is

possible to take it in the range of Sp = 1-10[1/ s] and to evaluate the damping coefficient



CHAPTER 10

MATLAB AND SIMULINK PROGRAM CODE

For the purpose of current research work, the Matlab and Simulink software seems to be

the most appropriate and convenient one. The printout of the program code can be found

in Appendix B.

The program code represents an open-loop system describing disc brake system's

basic equations and principles [8.1-8.9]. Open-loop system is a system that does dlt have

any feedback or controller responsible for error correction. In the real disc brake system,

the only feedback is the pressure on braking pedal: when the driver hears disturbing noise

he may reduce the pressure on the pedal. There is no other control system preventing disc

squeal in a car yet. In modern cars, the ABS system is often installed. In prevents disc

brakes from locking, by reducing the pressure on the pad N, but not from squeal noise.

Program's main page consists of a 'Subsystem' block, the integrator and the

measuring tools — scopes and spectral density analyzer (specially made for this purpose).

The scopes provide the time-scale measurements of displacements, velocities and other

signals. Spectral density analyzer contains a Matlab program inside (see Appendix B).

The spectral analyzer plots the frequency spectrum graph from which it can be

seen at what frequencies the high-amplitude dlise occurs. Actually, it plots two graphs.

The first graph shows the part of the time signal that is being analyzed. The second graph

is the frequency spectrum, where the frequency is measured in Hz and amplitude in

meters per second square units, or Joule per kilogram units. There are two parameters to

define the sample signal in the first window. The first parameter is the sample time,
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which is the step by which signal is sampled. It must be short enough to capture the

highest relevant frequency in the signal.

The second relevant parameter is the number of point for FFT, which together

with the time step defines the length of the time signal to be analyzed.

This sample time must be long enough to contain at least several periods of the relevant

lower frequency oscillations. Additional parameter is the number of points after which

FFT is repeated. The last parameter is 'Length of Buffer'. Buffer is eust as intermediate

storage that has to be large enough.

Double-clicking the 'Subsystem' block shows a table with system's parameters,

such as stiffness, damping, masses and other coefficients, that can be changed by the user

before running the simulation.

Looking under 'Subsystem' mask shows the subsystem block diagram. It consists

of two main blocks — 'Tangential' and 'Normal'. The 'Tangential' block is responsible

for calculating tangential acceleration, friction force and the flag state. The 'Normal'

block calculates flexural acceleration and the normal force Ay acting on the disc. Note

that Ay  is then transmitted to 'Tangential' block's input, while 'Normal' block uses the

friction force output from the 'Tangential' block for the follower force calculation. In this

way a real time continuous interaction between this two blocks is achieved.

The system has eight inputs and nine outputs. The ninth output is the flag. The

flag indicates the state of the system, whether it is in slip mode, when the disc slides past

the pad, or in stick mode, when the pad and the disc move together as a single body.

To define flag's state, there are two test blocks in 'tangential' block— 'slip test' and 'stick

test'. The stick test is using a relatively simple criterion: when disc to pad velocity
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v = V +.zd -
P becomes zero, the flag state changes to 1' symbolizing stick mode of the

system. The stick test is located in the 'Friction' block, where the friction coefficient is

calculated. This block has the disc and the pad velocities on its input and calculates the

relative velocity V using the above-mentioned formula. This velocity is used in

evaluating the velocity-dependant friction coefficient. Stick test is executed by using a

single Hit Crossing block, which registers input signal's passing through zero, which

changes the output and consequently the flag to "1" value.

When the flag is '0' and the system is in slip mode, the friction coefficient is

calculated using Stribeck effect simplified formula, for instance Mottershead's

approximation. The Mottershead's formula B = ffs(1— vl15) + 0.002v 2 was rewritten in a

more convenient form:

Where fo = Bs , u-v, Bib is the friction velocity coefficient found to be equal to 1/15 and

Hueis equal to 16.7(m/s) when comparing [10.1] equation's coefficients to Mottershead's

formula. It is also possible to neglect Stribeck effect, substituting zero B1 coefficient in

`Subsystem' mask.

The slip test criterion is based on the following principle: total force action on the

pad is compared with maximum friction force, as the slip velocity tends to zero. The stick

persists as long as the total force on the pad (inertia + elasticity + damping) is smaller

then the friction force. During the stick phase, the pad and the disc move together in

tangential direction as a solid body. The friction force is equal to the sum of all other
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forces acting on the pad, as long as this total does not exceed Bs • Fy  , which is the criterion

for transition to the slip state. Without this, equilibrium stick state would be impossible.

In another word, the friction force serves two purposes. First, during the slip

phase, when slip velocity V is dlnzero and, consequently Iv' > 0 , the friction force is

directed against the slip velocity and therefore, it is multiplied by sign (v) (see the

`friction coefficient' block). In the stick phase defined by V =0, the maximal friction

force corresponding to V =0 is needed to detect transition from stick to slip.

The 'normal' block is a relatively straightforward one. It does dlt contain any sub

..	 .
blocks and it only serves the purpose of calculating y and y from y, y and F1 .

From formulas [8.3] and [8.4] after dividing both sides of the equation by m, it is possible

O.

to obtain y for both the disc and the pad.

The 'Tangential' block, calculating the tangential acceleration of the disc and the

pad using formulas [8.1, 8.2], the friction force and the flag state, is more complicated

then the 'normal' block. It contains several sub blocks discussed earlier (` Slip Test',

`Friction & Stick Test', 'Friction Coefficient' and ' Stribeck Effect'). It also contains three

switches separating slip and stick modes. The threshold on every switch is 0.5 (1'

represents stick mode and '0' is for slip mode).



CHAPTER 11

SIMULATING WITH DIFFERENT PARAMETERS

As it was stated before, the purpose of this work is to study the influence of system's

parameters on disc squeal development. The simulation variables such as wheel velocity,

pad pressure force, damping, friction coefficients and alpha (follower force constant)

were changed from one simulation to adlther in order to learn about system's behavior.

In course of simulations, it is logical to start with the simplest case and then to

advance to more complicated ones. At the last stages all the physical effects such as

Stribeck effect, the follower force and the stick-slip friction were included in the

simulation.

Simulation results are illustrated with two types of graphs: time-scale and

frequency power spectrum. Each set of variables from Table 11.1 is represented by three

graphs. The first graph is the time scale representation of disc's normal and tangential

velocities. The second graph is the power spectrum of the normal disc oscillations. The

third graph is the power spectrum of the tangential disc oscillations.

The reason the velocities graph is used is that from the spectral point of view it is

dlt important whether to plot displacements or velocities, but velocities contain no

permanent signal, which is not the case for displacements. Namely, for displacements

there will be also signal at zero velocity. For example, friction force causes some mean

tangential deformation of the disk. Thus, displacement oscillations will dlt occur about

zero level, which is the initial undeformed state, but rather about some permanent

nonzero deformed state. After decay of initial oscillations, which is the case when the
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system has enough damping, the application of braking force results in some steady non-

zero deformations (offset of the equilibrium state). Conversely, velocity oscillations

always occur around zero level, because in all cases equilibrium state, regardless

whether it is undeformed or deformed, corresponds to the zero equilibrium velocity. As

to the squeal, it is caused by vibrations rather than by the steady part of the deformation.

Therefore, this steady part of the displacement is not important.

Below is the computer simulation variables table. The Table 11.1 contains 40 sets

of variables describing mathematical model's behavior. Of course, many other variable

values were tried while running the computer simulation, but these 40 sets are chosen to

be the characterizing ones.

Among those 40 sets adlther 16 sets were picked to be included in the thesis

print-up. The 'Figure' column contains the numbers of these figures, which can also be

found in Appendix A. The values of variables are also printed on each figure for

convenience.

Simulations 1-5 are representing the case when a static disc is being excited by

the pad force application. Simulations 6-14 neglect velocity dependent friction and the

follower force and concentrate on disclpad damping values. Simulations 15-20 study the

influence of the variable force and wheel rotation velocity on systems stability, read

conclusions to find out how exactly this parameters affect the system. Simulations 21-37

are the most essential ones, most of the conclusions made about the model are based on

these simulations and have to do with the damping values and the Stribeck effect

influence.
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CHAPTER 12

SIMULATION RESULTS

In order to study system's behavior, it is more convenient to start with the most

simplified cases and gradually increase the level of complexity. The first simulation

(Appendix A, Figure 1) considers a static system V=0 that is being activated by normal

force application N=500. The Stribeck effect, follower force and system's damping are

neglected: Alpha=0, f1-0, Cdx=Cpx=Cdy=Cpy=0. Looking at time-scale disc velocity

plot (Figure la), there are harmonic oscillations in normal direction and no oscillations in

tangential direction, as it should be expected. The frequency spectrum for the normal

oscillations shows a peak amplitude signal of 0.7 [.I I kg] at around 450 Hz frequency.

Therefore, in this case pad hits the disk and excites purely normal oscillations

(there are no tangential oscillations excited because there is no friction force when disk is

not rotating). Normal oscillations contain two frequencies that are eust the natural

frequencies of the disk and pad where the latter is considerably higher. In addition, it is

visible that the amplitude of pad is much smaller than that of the disk. It means that the

pad being much stiffer with respect to normal compressionlextension than the disk with

respect to the normal bending effectively oscillates together with disk as a solid body

exercising only small-amplitude and high frequency oscillations with its natural

frequency.

The next step is to add normal damping (Cdy and Cpy). The damping does not

change the natural frequency of oscillations, but reduces their amplitude. The Figure 2c
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represents the case when Cdy=10 is added, here the peak amplitude is 0.4[Jlkg]. In

contrast to the previous case, oscillations now become decaying, though the effect of disk

damping is much stronger than that of the pad because the later is effectively oscillating

as solid body without significant deformations and therefore it does not experience

damping which is proportional to the deformation speed.

The next step is to add some rotational velocity to the system V=1[mlsec].

Note that tangential oscillations are exited only when the disk is rotating and there is

nonzero friction acting. In this case the oscillations with at least two natural frequencies

can be observed. In addition to the natural tangential frequencies, there also appear

normal oscillations frequencies, because of the friction force, which is varied by the

oscillations of the normal pressure N. Thus, normal oscillations induce additional

tangential ones by modifying the friction force through the normal pressure variations.

All these oscillations are decaying sooner or later depending on the damping

coefficients. Thus there is dl squeal.

The third step of experiment is to activate the Stribeck effect. In order to take

Stribeck effect into consideration, fl has to be changed to 0.06 value as it was calculated

earlier. In this case, growing tangential oscillations can appear. First of all, this requires

rotation speed to be low enough (smaller than Uc) see Figure 8.

For rotation speeds larger than Uc, tangential oscillations are always decaying

(Figure 9). When tangential oscillations are unstable, they grow until stick-slip effect sets

in that limits further increase of oscillations. It means that in the velocity of unstable

tangential oscillations attain the speed disk rotation where they become limited by

sticklslip. Instability can be suppressed by increasing tangential damping coefficients.
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Depending on the magnitude of damping coefficients, it can happen that unstable

tangential oscillations develop for both the disk and pad or only one of them, if one

coefficient is larger ant other is smaller than the critical, or none of them, if both damping

coefficients are large enough.

Increasing normal brake pressure also enhances the instability. Comparing

Figure 10 where N=2000 with the analogous simulation (same velocity and damping

coefficients) with N=500, both the time-scale graph and the power spectrum plot point at

significant instability increase for the first case.

The last step is to include the follower force, in other words to define Alpha

(Figures 15, 16). Here it is necessary to use some guesswork, because the only thing

known about Alpha is that it has to be negative value. After running the simulation with

different values of Alpha, it became clear that follower force is too weak to influence the

oscillations. Actually, the system is very stiff and the unrealistically large values of the

follower force constant is needed in order the follower force to become comparable to the

dominating elastic forces. See Conclusions for the complete simulation results analysis.



CHAPTER 13

CONCLUSIONS

Probably the main result is that unstable tangential oscillations can develop in the brake

system due to the unstable Stribeck effect. Critical parameter for this instability is the

wheel rotation speed V. This instability can develop only when the rotation speed

becomes smaller than some critical threshold velocity Uc, in current case it was equal to

16.7 [mls].

When the rotation speed is lower than critical threshold, tangential vibrations can

develop depending on tangential damping and on the normal pressure N. Increased

damping has a stabilizing effect, whereas increased friction destabilizes tangential

oscillations. Note that this instability never develops when the rotation speed is higher

than the critical threshold Uc.

This conclusion can be explained by the following argument. Friction force acting

between the disk and pad oscillations. In the equilibrium state, when there are no

without changes). On the other hand, in the equilibrium dA =0, because both Add =0 and
.	 .

Bp ---0. Further let's consider a small deviation from this equilibrium, when dA is

nonzero but still small compared to the rotation speed. Using Taylor series expansion:

friction coefficient at the sliding velocity V, and f(V) is the derivative of the friction
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coefficient with respect to the velocity at the sliding velocity V. 0(d A) 2 are second

order terms, which are much smaller than the first two terms when the velocity difference

is small, which is the case under consideration here. Thus, for small perturbations of the

sliding velocity the Stribeck effect results in the additional friction force which

proportional to the perturbation of the sliding velocity.

On the other hand, there already is such a force in the equations, which is

proportional to the velocity through the damping coefficients C. From current

simulations, application of damping results in decay of oscillations. Thus, Stribeck effect

is expected to have a similar influence on the oscillations. We can call this damping

coming from Stribeck effect "effective damping". However, Stribeck effect is different

from the normal damping in one important way, namely, the sign of the effective

damping coefficient depends on the sign of the derivative f ' (V). Thus, if the sliding

velocity is sufficiently slow, and the friction coefficient decreases with increasing

velocity (in other words the fiction coefficient graph Figure 8.4 has a negative slope) then

f ' (V) is negative, which means that the sign of damping associated with Stribeck effect

is opposite to the normal damping Cx. Consequently, in this case Stribeck effect will

cause oscillation amplification, namely, instability, rather than damping of the

oscillations.

Only for sufficiently large velocities, where the effective friction coefficient

increases with velocity and the f (V) graph is having a positive slope (f ' (V) > 0), the

Stribeck effect damping force will act like a normal damping with positive coefficient

suppressing the oscillations. Actually, system stability will depend on the total damping

coefficient, which is the sum of the physical damping and the damping due to the
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Stribect effect with effective damping coefficient N*f ' (V) (proportionality coefficient at

the velocity). Of course, all these assumptions refer only to system's stability in

tangential direction, the fact that tangential oscillations can cause flexural ones will be

discussed later in the text.

For a system to be stable the resulting damping coefficient must be positive:

Cx + N*f ' (V) > 0	 [12.1]

Thus, at low velocities with f ' (V) < 0, increase of brake pressure N always reduces the

effective damping and can drive system to instability, provided that physical damping is

not large enough. On the other hand, the increase of physical damping always increases

stability. At large velocities with f ' (V) > 0, damping is always positive and there is no

instability, no matter how large is the pad normal force N.

Note that at small sliding velocities f ' (0) = -fl = -1 /15 according to

Motteshead's formula. The application of a typical normal brake force that is equal to

N=500-2000 (N) would result in destabilizing damping coefficient of N*f ' (0) 30-100,

that considerably exceeds previously made estimates of physical damping coefficients for

the disk and the pad. Thus, a considerable addition may be required to suppress the

instability related with Stribeck effect.

In the case of the instability, tangential oscillations increase until sticklslip effect

sets in. This happens when velocity of tangential oscillations reaches the velocity of

disk's rotation. In this way the sticklslip effect actually limits the amplitude of unstable

oscillations which otherwise would grow unbounded in current model. Note that for

velocity of V=1 [mls] and at high frequency of oscillations (about 5 kHz) the amplitude

of harmonic oscillations is still relatively small: a = V / 27ifp:', 0.003(mm)
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It is interesting to note that in case of absent or small physical damping of the disk

and the pad the unstable oscillations start to develop for both friction couple elements,

but despite of the identical negative damping acting on the disk and the pad as a result of

Stribeck effect, pad oscillations develop faster, because the pad has smaller inertia than

the disk. Thus, the velocity of the pad oscillations reaches the velocity of disk rotation

first and the sliplstick oscillations set in so limiting further increase of pad oscillations.

An interesting effect takes place at this point. Namely, the disk oscillations start to

decay rather than increase. Therefore, the pad oscillating with much higher natural

frequency while experiencing sticklslip transitions suppresses unstable disk oscillations.

This seems to be an unobvious effect related to non-linear sticklslip oscillations of

the pad, which deserve an additional study.

Even more interesting things happen when trying to stabilize tangential

pad oscillations by adding more damping to the pad. It is indeed possible to suppress pad

oscillations in this way, however at the price of destabilizing disk oscillations. Thus,

increased pad damping can have an adverse of effect on the disk stability. In order to

stabilize the disk itself, much more additional damping is necessary. Therefore, allowing

unstable pad oscillations may be a way to avoid the development of disk oscillations.

If the follower force mechanism is not included, then the tangential oscillations do

not influence normal ones. Thus, without the follower force, normal oscillations always

decay according to their damping coefficients, regardless of the development of

tangential oscillations. Note that dlrmal oscillations do influence the tangential ones

through the variation of dlrmal force Fy. As a result, it is possible to observe frequencies

of dlrmal oscillations in the spectra of tangential ones, but not the other way.
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The most valuable conclusions obtained from current simulation are:

• Unstable tangential oscillations can develop in the brake system due to the

unstable Stribeck effect.

• Normal oscillations do influence the tangential ones through the variation of

normal force Fy.

• Tangential instability never develops in the system when the rotation speed is

higher than the critical threshold Uc.

• When the rotation speed is below the critical level the unstable tangential

oscillations may arise, especially when braking pad pressure N is high.

• Sticklslip effect actually limits the amplitude of unstable oscillations.

• Decreasing pad's damping may stabilize disc's unbounded vibrations.

• The follower force effect is dlt sufficient to enable the coupling mechanism

between tangential and normal oscillations.

• Tangential oscillations do not influence normal ones.



APPENDIX A

SIMULATION FIGURES

Appendix A contains the simulation figures referring to the parameter sets from Table

11.1. Each parameter set is represented by three figures: the time-scale graph of

tangential and normal vibrations (Figures la-16a), the tangential frequency power

spectrum (Figures la-16a) and the normal frequency power spectrum (Figures 1c-16c).

On top of each graph the values of simulation parameters are shown.
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APPENDIX B

SINIULINK PROGRAM CODE

Appendix B contains the printout of the Simulink program code. The description of

program's blocks can be found in Chapter 10.



B1. Program's Interface (main page)
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Subsystem Block

102
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Normal Block



Tangential Block
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Friction and Stick Test Block

Stick
Velocity

INTO 

Stick test

	10,4C.L

xdotp
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Wheel Velocity

xdot_d

Xdoi

Switch
Friction

Coefficient



Slip Test Block
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Friction Coefficient Block
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