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ABSTRACT

LIQUID—LIQUID MIXING IN STIRRED TANKS
WITH VARYING LIQUID DEPTHS

by
Sunil Mehta

Considerable attention has been devoted in the past to the determination of the minimum

agitation speed, Ned, required for the complete dispersion of two immiscible liquids in

mechanically stirred tanks. When this situation is achieved the dispersed phase is no

longer present as a distinct layer, such as a light oil phase above an aqueous solution, but

becomes completely dispersed, in the form of droplets, throughout the continuous phase.

The achievement of the dispersed state is of significant importance in many industrial

operations. Nevertheless, the effect on Ned of a number of operating variables remains

poorly understood. In particular, the effect on Ned of the liquid depth, H, has not been

established, especially at different values of the impeller off-bottom clearances, C. This

situation is especially common, and potentially critical, in a number of processes in the

pharmaceutical and food industries, when the completely dispersed state must be

maintained at all times as the vessel is either charged with a liquid or emptied.

This investigation is focused on the experimental determination of the minimum

agitation speed and power dissipation required to completely disperse two immiscible

liquids at different liquid heights and impeller off—bottom clearances. Two types of

impellers were used here: a six—blade disc turbine and a six-blade (45°) pitched—blade

turbine. The minimum agitation speed was first experimentally determined using a visual

approach. In order to validate visual observation method, a previously developed

sampling method was also used (Armenante, P.M. and Huang, Y.T., Ind. Eng. Chem.



Res., 31: 1395-1406, 1992). This method is based on sampling the liquid—liquid mixture

at different agitation speeds, determining the content of the dispersed phase in each

sample, and analyzing the data so obtained using a mathematical model.

Arm and the corresponding power, P, drawn by the impeller at N cd were found to

be strongly affected by the impeller type, as expected. However, they were also

significantly affected by both the liquid height and the impeller off—bottom clearance.

Typically, both Ncd and P decreased with decreasing H. The effect of C was more

complex. Of even greater significance, it was observed that, for specific combinations of

H and C, and especially when the liquid head above the impeller was below a critical

value, the state of complete liquid-liquid dispersion was not achievable, irrespective of

the agitation speed. This implies that operating in regions where Nad cannot be achieved

should be avoided if complete liquid-liquid dispersion is to be maintained. The results of

this investigation are expected to be of significant importance in the industrial practice.
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NOMENCLATURE

A	 impeller blade angle (radian)

B baffle width (m)

b	 impeller blade height, i.e., blade width projected on vertical axis (m)

C	 impeller off-bottom clearance measured from the middle of the impeller to the
bottom of the tank for disk turbines, or measured from the top of the blade to
the bottom of the tank for pitched-blade turbines (m)

Cb	 impeller off-bottom clearance measured from the bottom of the impeller to the
bottom of the tank (m)

Co 	a constant determined for different impeller types

D impeller diameter (m)

H liquid height (m)

liquid head above the impeller (m) = H — Cb

Hump 	sampling point location measured from the bottom of the vessel (m)

h	 liquid head of a pump (m)

K constant

L impeller blade length (m)

m	 constant

mV	 signal corresponding to strain gage (mV)

N agitation speed (rpm)

nb	 number of blades of impeller (dimensionless)

NBA 	Bond number, D2gzp/a (dimensionless)

Node 	 minimum agitation speed for complete liquid-liquid dispersion (rpm)

xiv



Nod determined experimentally with sampling method (rpm)

Nod determined experimentally with the visual method (rpm)

Froude number, DN2p / An (dimensionless)mean. g-,

Ncd-smp

Ncd-visNF

N0a Galileo number, D	 PmeanopAnill, r-2mean (dimensionless)

Np 	power number, P/pmeanN3D5 (dimensionless)

P	 power (watt)

Q	 flow rate (m3/sec)

R	 volume of phase present in the sample (L)

Re	 impeller Reynolds number, PmeanND 2/iimean (dimensionless)

S 	 total sample volume (L)

T 	 tank diameter (m)

V*	 volume fraction of dispersed phase

W 	 blade thickness (m)

Greek Letters

a, a0 	constants

C lid viscosities of continuous and dispersed phase (kg-mlsec)

Po, Pa	 densities of continuous and dispersed phase (kg/m3)

a 	 surface tension (joule/rn2)

AP 	 Pc - Pd I (kg/m3)

Paean 	 density of mixture (kg/m 3)

/Liman 	 viscosity of mixture (kg/(ms))

torque (N.m)



CHAPTER 1

INTRODUCTION

Liquid-liquid mixing in a mechanically stirred vessel is a very common industrial

operation encountered in many food, pharmaceutical, petrochemical, and biochemical

industries. The main purpose of these processes is to promote good contact between the

two immiscible phases and extend the interfacial area in order to increase the mass

transfer rate. In these processes, it is important to operate at an agitation speed that

ensures that the two phases are well mixed and the dispersed phase is completely

incorporated into the continuous phase. In all above processes, involving mixing of two

immiscible liquids, very small liquid droplets of one phase are created into the second

phase. In these cases, the resulting mixture is often stable and will separate only after a

long period of time. Therefore, mixing and the operating parameters that control it play a

key role in the optimization of the overall process. As a result, multiphase mixing has

become a very active area of research and investigation.

A number of studies have been published in the literature to determine the

minimum agitation speed to completely disperse two immiscible liquids in mechanically

stirred vessels, and the corresponding power dissipation as a function of several process

variables such as tank geometry, impeller geometry, and physical properties of the fluids.

However, no information is available on how the minimum agitation speed varies with

changes in liquid heights. This situation is typically encountered during batching of

ingredients and filling or emptying operations, where the vessel content is changed. In

such situations, especially if the liquid height is dropped significantly and the liquid head

1
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above the impeller is very small, it is of the utmost importance that the liquid-liquid

dispersed product remains uniform throughout the operations.

Therefore, this study focused on the experimental determination of the agitation

requirement in a mixing vessel to achieve complete liquid-liquid dispersion as a function

of liquid level (liquid height). At or near this point, both phases are in contact with each

other, thus promoting mass transfer and interphase reactions, while minimizing power

consumption. The specific objective of this work was to experimentally investigate the

effect of liquid depth (H), impeller off—bottom clearance (C), and impeller type on the

minimum agitation speed (Ned) and power (P) dissipation to achieve complete dispersion

of two liquids. To achieve this objective a visual method for the experimental

determination of Nail was used (Ned_vis). The validity of this approach was tested using

another method based on sampling the mixture at different agitation speed and analyzing

the data to obtain Node (Ncd-smp).



CHAPTER 2

LITERATURE SURVEY

2.1 Liquid—Liquid Dispersion

Liquid—liquid mixing in stirred tanks finds a wide range of application in mixer and

mixing vessel design in extraction operations. By increasing the agitation intensity, the

contact surface area is increased and the solute required for chemical reaction is

transferred. The typical objectives of liquid-liquid mixing are as follows:

1. Increase the interfacial area by dispersing one liquid into another immiscible liquid;

2. Reduce the external mass transfer resistance outside the dispersed drops;

3. Promote internal mass—transfer by inducing convection within the dispersed drops;

4. Coalesce and redisperse the drops.

Of these four objectives, the first one is by far the most important since very high

values of the interfacial area can be achieved even at moderate agitation intensities. The

overall mass transfer rate is directly proportional to the interfacial area. The mass transfer

coefficients are weak functions (through the power dispersed per unit volume) of the

impeller agitation speed. By rotating an impeller, the liquid phase with the largest

fraction typically becomes continuous, and the other liquid phase becomes dispersed. In a

normal dispersion, especially in a system of small interfacial tension, it takes a long time

to completely separate two liquid phases by settling after stopping agitator rotation,

because fine droplets are difficult to separate from the bulk liquid.

Many types of impellers are used for agitation and mixing of liquids in vessels.

The power consumption is not only dependent upon the type of impeller used and the

3
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rotational speed, but also on the physical properties of the fluid and the geometric

characteristics of the system, including the location of the impeller within the mixing

vessel. A number of factors such as the shape, size of the impeller and the vessel, extent

of baffling, impeller off—bottom clearance, and spacing between impellers typically

produce changes in the flow pattern of the fluid being mixed and influence the power

drawn. The most common configuration of mixing equipment used in industry consists

of a vessel of a height nearly equal to the tank diameter where only one impeller is

provided. However, agitated vessels having a value of the height—to—diameter ratio

greater than unity and equipped with multiple impellers are commonly used in processes

where shear—sensitive or high viscosity materials are treated, or where a high vessel

surface—to—volume ratio is required.

When the agitation speed is increased (starting with a system at rest), one liquid

phase begins to disperse into the other liquid. The progress of dispersion continues to

increase the interfacial area available for mass transfer. The agitation speed at which an

initially stratified immiscible layer disappears is called the minimum agitation speed for

complete dispersion, and is denoted by Ned. This speed is used as the main criterion of

agitation intensity necessary for liquid—liquid systems. Ned should be known to enable

efficient design of mixer. Nagata (1960) obtained the following correlation for Ned using
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In this equation, K is a proportionality constant, p o and pd are the densities of the

continuous and dispersed phases respectively in kg/m 3 , and uc is the viscosity of the

continuous phase in kg/(m•s). The value of K is taken 750 for a centrally located impeller

and 610 for the off—center location. The effect of viscosity of the dispersed phase and the

interfacial tension appeared to be negligible.

A related phenomenon was studied by Quinn and Sigloh (1963). They found that

phase inversion, in most of the water—organic systems they studied, occurred at agitation

speeds equal to two to three times Ned, for equal volume fractions of the two immiscible

liquids.

Skelland and Seksaria (1978) studied the effects of liquid properties, impeller

location, impeller type, and multiple impellers on Ned. They proposed the following

equation:

where Co and c are functions of impeller type, location, and the ratio (HIT).

Skelland and Jai Moon Lee (1978) correlated the minimum agitation speed

needed for nearly uniform liquid—liquid dispersion in baffled vessels, and described the

effects of imller type, size and location, and the effect of liquid properties on the

degree of mixing. They expressed the degree of mixing in terms of the mixing—index

concept developed by Hixon and Tinney (1935) in their work on solid-liquid systems.

They calculated the composition of each sample as "percentage mixed" by the formula:

Percentage mixed =OS/2 x 100 (2.3)
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where R is the volume of the phase present in the smaller amount in the sample and S is

the total sample volume. They defined the minimum impeller speed for nearly uniform

mixing (Nod) as the speed corresponding to the mixing index (defined as [R1(S/2)] x 100)

of 98 % at all sampled parts of the vessel.

Skelland and Ramsey (1987) obtained an empirical correlation for the minimum

agitation needed for complete liquid-liquid dispersion in baffled vessels. They correlated

their observations from 251 runs, the observations of 35 runs by van Heuven and Beek

(1971) and the observations from 195 runs by Skelland and Sakesaria (1978) with the

expression:

where C and a are functions of impeller type, location, and the ratio (HIT).

In these and the most of the other studies in the area of liquid—liquid dispersion,

Nod was determined visually. However, Armenante and Huang (1992) developed a new

method to experimentally determine Nod by taking samples from the liquid mixture at

different agitation speeds and plotting the fraction of the dispersed phase in each sample

against the corresponding agitation speed. They found that when connecting the resulting

points by straight lines, a sharp change in the slope occurred in correspondence of the

visually determined minimum agitation speed. They also found that their method was

independent of sampling point location and type of agitation. By analyzing their data with

the method they developed to determine 1\1 cd_smp, they found a good agreement between

the values so obtained and those obtained visually.
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The flow pattern generated by the impeller plays a very important role in liquid —

liquid dispersion. The experimental technique to determine the flow pattern include the

use of colored tracer liquid, neutrally buoyant particles, hydrogen bubble generation and

mean velocity measurement using Pitot probes, hot—film devices and laser-doppler

velocimeters. A qualitative picture of the flow field created by an impeller in a single—

phase liquid is useful to establish whether there are 'dead zones' in the vessel, or whether

particles are likely to be suspended in the liquid. The typical flow patterns generated by a

disc turbine and a propeller, respectively, operating with Newtonian liquids in the

turbulent region is illustrated in Figures 2.1 and 2.2.

The flat—bladed turbine produces a strong radial flow outwards from the impeller

(Figure 2.1) creating circulation zones in the top and bottom of the tank. The type of flow

can be altered by changes in the impeller geometry. For example, if the turbine blades are

angled, a stronger axial flow component is produced and this could be advantageous for

solids suspension and the liquid-liquid dispersion. The flat paddle produces a flow field

with large tangential components of the velocity.

The propeller creates a mainly axial flow through the impeller and this central

axial flow may be upwards or downwards depending upon the direction of rotation. The

predominant circulation pattern for a downward pumping propeller is shown in Figure

2.2. Of course, the velocities at any point will be three-dimensional, but circulation

patterns, such as those in Figure 2.2, are useful in the selection of appropriate impellers

for a given duty.



Figure 2.2 Axial Flow Pattern.
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2.2 Power Number Theory

A number of investigators have reported impeller power characteristic in terms of two

dimensionless groups, the Power Number, Np, and the impeller Reynolds Number, Re.

White and his coworkers (1934) were the first to point out the possibility and advantage

of correlating impeller power using dimensional analysis. A general power relationship as

a function of physical and geometrical parameters was reported as the following

(Rushton, 1950; Bates et al., 1963):

where the group on the left hand side is called the impeller power number, B p . The first

group on the right hand side is known as the impeller Reynolds Number, Re, and the

second group is known as the Froude Number, NFr. The remaining terms account for the

effects of the tank geometry and impeller configuration. The Reynolds Number describes

the hydrodynamic effect in the system. The Froude Number accounts for the effect of

vortex in swirling systems. Bates et al. (1963), also pointed out that Equation 2.5 should

be expanded to include baffle number and width, spacing between impellers, and off—

center impeller location. All of these additional geometrical parameters may be included

in a form similar to that in Equation 2.5.

Chudacek (1985) proposed that the effect of vessel bottom shapes should be

included in the above analysis, because the vessel bottom shape represents a significant

geometrical factor with respect to the recirculation pattern and is also likely to influence

the impeller power consumption.
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However, the full form in Equation 2.5 is seldom used in practical power

calculation. If geometrical similarity is assumed and if no vortex is present, Equation 2.5

reduces to

Furthermore, if the mixing process is carried out in a baffled tank in the turbulent

regime (McCabe & Smith) and for a given geometry of configuration, Equation 2.6

reduces to

Therefore, the dimensionless power number, B p , represents an important

parameter, since its knowledge enables the designer to predict the impeller power

requirement for a given mixing condition.

2.3 Power Dissipation and Power Relationships

2.3.1 Power Dissipation in Liquid Dispersions

The power consumed in mixing processes is the energy per unit time, which is transferred

from the impeller to the fluid. Power is one of the most important fundamental

parameters associated with the intensity of mixing and completeness of dispersion. The

power consumption in agitated vessels is a function of impeller type, agitation speed, the

physical properties of the fluid being mixed, and the geometric characteristics of the

impeller and the system. Several investigators studied the power required to attain certain

mixing conditions.
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The action of a turbine or propeller in a Newtonian liquid of low viscosity can be

likened to that of the impeller in a radial or axial flow pump, respectively. The use of

flow rate (or discharge), Q, from a pump and the fluid head, h, is well known. Thus for a

pump of unit efficiency these variables can be related to the power input:

For a mixing vessel, a given input of power, P, to the impeller creates a 'flow rate' Q

(and thus a circulation throughout the vessel) and a 'head h' which is dissipated on

circulation through the vessel. For low—viscosity liquids the head can be thought of in

terms of the turbulence, which is generated. This is most intense in the region of the

impeller and decays in regions away from impeller.

These regions of high intensity of turbulence are suitable for 'dispersive'

processes such as liquid—liquid, gas—liquid contacting and for promoting mass transfer. It

is desirable to 'circulate' the liquid through the regions of high intensity of turbulence as

frequently as possible. Thus mixing in low-viscosity systems is seen to be influenced by:

1. intensity of turbulence

2. rate of circulation

Good impeller selection will ensure that the power input to the agitator provides the

correct balance between flow and head.

2.3.2 Power Dissipation in Single—Impeller Systems

Agitation systems consisting of a single impeller and a mixing vessel with various

impeller—tank geometries have been studied extensively, especially disc turbines (DTs) in

vessels of standard geometry and in low viscosity fluid (Hudcova et al., 1989). Many
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investigators have experimentally determined the power characteristics and behavior of

single impeller systems. All the results so obtained indicate that the impeller power

number, A, , reaches a constant value, for a given geometry (McCabe & Smith), if the

agitation intensity is high enough to produce turbulent flow (associated with Re >

10,000).

White and Brenner (1934) were the first to determine the various power law

exponents by dimensional analysis. They found the drag coefficient group (Pg c/pN3D5),

called the power number, Np , and proposed that this dependent variable characterizes the

flow pattern. Their final power correlation was given as:

This equation fitted the data for Reynolds numbers from 10 4 to 105 but diverged from the

data for Reynolds numbers below 10. They showed that viscosity has a minor effect on

the power consumed in turbulent regimes.

Rushton, Costich and Everett (1950) studied the power characteristic of mixing

impellers using five impeller types of diameters from 0.06 m to 1.2 m. They used baffled

and unbaffled configurations, vessels of diameters from 0.2 m to 2.5 m, and fluids of

viscosity from 0.001 kg/m-sec to 40 kg/m-sec. They obtained a correlation, using

dimensional analysis, for the power number, Np , in terms of the impeller Reynolds

number, Re. Their correlation is:

O'Connell and Mack (1950) investigated the power relationship for flat—blade

turbines by varying the number of blades and impeller width—length ratios in both the
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laminar and turbulent regions under fully baffled conditions. In the laminar region, they

found that:

and in the turbulent regime (Re > 10,000):

Nagata et al. (1957) [from Tatterson, 1991] obtained an equation for Np in the

turbulent region for fully baffled tanks:

Bates et al. (1963) reported a conventional log—log plot of the simplified power

equation for some impeller types under the "standard conditions", D/T=1/3, C/T1/3,

H/T=l. The value of Nib that they reported for DTs was 4.8 for four T/12 baffles and 5.0

for four T/10 baffles. Flat-blade turbines (FBTs) and curved—blade turbines (CBTs) were

shown, from the plot, to have similar power numbers in the turbulent region, while PBTs
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consumed the least power. Their measurements showed that the impeller off—bottom

clearance has a definite effect on power consumption.

O'Kane (1974) investigated the effect of blade width and number of blades on

power consumption. He demonstrated that it was not possible to find a value of

exponents in the generalized power relationship, which could be applied to all types of

impellers. The power number obtained at standard conditions for a DT and a 45 ° PBT

with six blades was 5.05 and 1.52, respectively.

Gray et al. (1982), proposed a power correlation for DTs with six flat blades. The

result was a constant power number of 5.17 representing the data for C/D > 1.l. For C/D

<l.1, p varied with (C/D) 0.29 . The baffling effect was found to be negligible over the

range of standard size baffling, 1112 _.W/T 5_l/10. The effect of D/T was small under

these conditions.

Chudacek (1985) conducted a power study in profiled bottom vessels. For the

standard flat bottom vessel, the 45 ° PBT exhibited a power number of l.63.

Rao and Joshi (1988) studied the flow pattern and power consumption in liquid

phase mixing with DTs, PBTs (down flow and up flow). For the case of DT, the

measured power numbers were 5.18 and 4.40 for clearances equal to T/3 and T/6,

respectively. At lower clearance, the impeller pumping action was greater, thereby

increasing the power consumption. For the case of PBT (down flow), when the clearance

was decreased from T/3 to T/4 and further to T/6, an increase in the value of p equal to

l.29, 1.35, and l.61, respectively, was observed. Their reports also pointed out that the

PBT (down flow) with D/T=l/3 was found to be most energy efficient out of all PBT

impellers.



15

Rewatkar et al. (1990), conducted a series of measurements using PBT impellers

and compared them to DT impellers. A number of geometrical factors, D, W, H, C, blade

angle, and blade thickness, were studied in detail. The power number of the standard DTs

(D/T=113, C=D) and PBTs was found to be 5.18 and 1.67, respectively. The power

number was observed to have a strong dependence on the flow pattern generated by the

impeller. In general, p decreased when the clearance was more than T/4 because of

surface tension. Without the effect of surface tension, the liquid height was found to have

little effect on power consumption. Rewatkar et al. (1990), obtained an overall correlation

for the impeller power number for PBT:



CHAPTER 3

EXPERIMENTAL APPARATUS AND PROCEDURE

3.1 Apparatus and Material

A schematic of the basic experimental set—up is shown in Figure 3.l. The work was

carried out in an open, flat-bottomed, cylindrical, Plexiglas vessel with different liquid

height to tank diameter ratios (HIT) and impeller off—bottom clearances (C). Table 3.l

gives the vessel dimensions.

All the experiments were performed at room temperature (23-25 °C). The fluids

used in this work were mineral oil (Sigma-Aldrich, Inc.) and distilled water. The ratio of

mineral oil to distilled water was always 10 % (vlv). The physical properties of the fluids

at 25 °C are given in Table 3.2. The mean density and a mean viscosity used in

correlating the power consumption were calculated from (Laity and Treybal, 1957):

16
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The values of surface tension for oil and water, as well as the oil-water interfacial

tension were obtained using a Cenco-DuNouy tensiometer (Table 3.2). Two types of

impellers, i.e. disc turbine (DT) and 45° pitched—blade turbine (PBT, pumping

downward) were used in the experiments. Their shapes and dimensions are listed in Table

3.3. A schematic of impellers used is shown in Figure 3.2.

All impellers had six blades and a bore diameter of 0.0127 m. The off—bottom

clearance (C), liquid height (H) and type of impeller were varied with each experiment.

The impeller off-bottom clearance (C) was measured from the vessel bottom to the

middle of the impeller. A schematic of the stirred vessel (DT) is shown in Figure 3.3.
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The experimental system consisted of a variable speed reversible motor (G.K.

Heller Corp., Floral Park, NY) with a maximum speed of 2,000 rpm. The rotational speed

was measured independently using a digital tachometer with a photoelectric sensor (Cole-

Parmer, Chicago, IL) and was accurate within ± 1 rpm. Three strain gages

(Measurements Group Co., Raleigh, NC, Part No.CEA-06-18UV-350) were mounted on

an aluminum hollow shaft having an 0.D of 0.0095 m and a wall thickness of 0.00165 m.

Before attaching the strain gages to the shaft, metal collars having an internal diameter

equal to the 0.D of the shaft and an external diameter equal to the bore diameter of the

impellers were slid onto the shaft between the points where the strain gages were to be

inserted. After attaching the strain gages, these collars, having a length of 0.0254 m,

could be moved along the shaft between the two strain gages. This arrangement was

designed so that the impellers could be mounted on the shaft without touching the

protruding strain gages. In addition, this arrangement enabled the impeller—collar

assemblies to be moved along the shaft thus permitting to vary the distance between

impellers. The experiments were carried out using a 0.838 m long shaft. The locations of

top, middle and bottom strain gage were 0.49 m, 0.34 m and 0.03 m from the open end of

the shaft, respectively.

The strain gages were connected with insulated lead wires passing through the

hollow core of the shaft to a signal conditioner and an amplifier system (2120A system,

Measurement Group Co., Raleigh, NC). A data acquisition system (Labtech Notebook)

connected to a computer was used to analyze the gage signal (mV) from the strain gage

conditioner, receive the signal from the tachometer, and calculate the power drawn by

each impeller. Each strain gage measured the cumulative torque produced by all
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impellers below it. The power drawn by the impeller was determined using the following

equation:

where:

P is the power drawn by the impeller in watt;

w is the angular velocity rad/s;

T is the actual torque produced by the impeller N—m;

N is the agitation speed in rps;

mV is the signal corresponding to Strain Gages #1 in millivolts;

K is the proportionality factor for Strain Gages #1;

The sampling frequency of the data acquisition system was 1 Hz, and the representative

power drawn was determined by calculating average of 60 readings. The corresponding

Power Number_ N.._ was calculated with the following eauation (Rushton et al.. 1950):
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3.2 Experimental Procedure

The tank was filled with distilled water at the desired liquid height-to-tank diameter ratio

(HIT) ranging from 0.088 to 1. The impeller off—bottom clearance was varied from

C=0.0254 m to C=0.1016 m (corresponding to C b/T=0.055 and Cb/T=0.322 for DT and

Cb/T=0.037 and Cb/T=0.304 for PBT, respectively) for all HIT ratio from 0.088 to l. The

tank was located on a platform that could be translated vertically so that the distance

between the (fixed) shaft with the impeller mounted on it and the tank bottom could be

varied. Then, the tank was placed in its final position. The shaft was centrally located in

the tank and was connected to the motor. The strain gages were connected with wires

through the hollow core of the shaft to a slip ring. The slip ring, which was also mounted

on the shaft, was connected to the external gage conditioner and amplifier. An optical

sensor with a tachometer was used to measure the agitation speed. All experiments were

carried out using a single impeller only.

The data acquisition system was used to collect data on line and to analyze all the

signals from the strain gages and the optical sensor. The sampling frequency was 1 Hz for

the duration of 60 seconds. The representative power drawn was determined by the

average of 60 readings. The power consumed by impeller was determined using equation

3.3. The power consumption was measured at the minimum agitation speed, Ncd.

The sampling apparatus, shown in Figure 3.4, consisted of a glass tube, having an

internal diameter of 0.004 m. The inlet point of the sampling tube was placed in the

middle position between two baffles at a radial distance from the tank wall equal to 0.05

m and 0.08m from the tank bottom. The sampling point location was varied only in the

cases where liquid depth was too low. The sampling tube was connected to series of
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flasks and hooked to a vacuum system. Several valves were used to divert the flow from

the vessel to either a reservoir or a graduated cylinder. In all experiments, the continuous

phase was always water. The dispersed phase was always mineral oil.

3.3 Sampling Procedure and Visual Observation Method

The sampling procedure was as follows. The tank was charged with distilled water

followed by mineral oil. The dispersed phase was always 10 % by the volume of the total

liquid mixture. The combined height of the liquid phases was varied after each single run.

After setting up the apparatus, the motor was started at a fairly low agitation speed. After

an equilibrium period varying between 10 and 15 minutes, the vacuum system was

activated by opening Valve C (Figure 3.4). Then, Valve A was opened so that the liquid

would flow from the tank into the reservoir. This was done to ensure that the liquid

initially contained in the sampling tube would not be included in the sample. When 30-50

ml of dispersion had accumulated in the reservoir, Valve A was closed and Valve B was

opened, allowing the flow to be diverted to the graduated cylinder until some 100 ml

were collected. The operation typically lasted only about ten seconds. The last bottle in

the line was added only to protect the vacuum system from receiving any liquid. The

sample so taken was allowed to separate into two phases, and the fraction of the dispersed

phase was determined. Then, all liquid samples were returned to the tank. The same

procedure was repeated until no dispersed phase was observed at the top of the

continuous phase. In addition, the minimum agitation speed in correspondence of the

complete dispersion state was determined in each experiment by visual inspection of the

tank. The visually determined value for Ned, Ned_vis, was defined as the minimum agitation
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visually determined value for Ned, Ncd-vis, was defined as the minimum agitation speed at

which no dispersed phase was observed at rest at the top of the continuous liquid phase.

In most of experiments, small pockets of fluid were observed near the baffle

corners and around the impeller shaft. However, the presence of these pockets was

neglected when Ncd-vis was determined, since they were observed even at agitation speed

much higher than Ncd-vis.

The same procedure was repeated at various liquid height-to-tank diameter ratios

(HILT) and different impeller off—bottom clearances (C).



Motor
Valve A • 	 Valve B •	1

Valve C •Tachometer

• • •
To Vacuum

0il +
Water

Cylindrical Tank

i 	 I

Graduated
Cylinder

Strain
Gage

411-- Sampling
Tube

Reservoir Bottle

Controller

Figure 3.4 Sampling Procedure.



CHAPTER 4

SAMPLING METHOD FOR DETERMINATION OF Nod

4.1 Determination of Nod — smp

A survey of the literature shows that the visual method has been the most commonly used

technique to determine the minimum agitation speed, Ned, to completely disperse two

immiscible liquids. According to the visual observation method, the minimum agitation

speed is defined as the agitation speed at which no dispersed phase (the lighter phase) is

observed at the top of the tank. At Bed, the dispersed phase becomes completely

incorporated into the continuous phase. However, an alternative method has been

developed for the determination of the minimum agitation speed for complete liquid—

liquid dispersion in mechanically agitated vessels (Annenante and Huang, 1992). The

results that these authors obtained indicate that this method for determining Bed has some

significant advantages over the commonly used visual method, such as the reproducibility

of the results obtained independently of the observer, and the applicability of the method

to situations where visual inspection is impossible.

The method is based on the collection of samples from the bulk of the mixture at

different agitation speeds. The volume fraction of the dispersed phase in the sample, V*,

is then determined by allowing the sample to settle in a graduated cylinder. Then V*

(expressed in %) can be calculated as the ratio of the volume of the dispersed phase to

total liquid volume of the sample.

It was observed that when, in a given experiment, V* was plotted against the

agitation speed, N, a sharp change in the slope of the resulting plot occurred just before

27
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observing the visually determined minimum agitation speed, Ned-vis. This can be seen in

Figures 4.l and 4.2. Figure 4.1 shows the case in which a sharp change in slope was

observed, but in which V* never had a maximum value (No-Max Case). 0n the other

hand, Figure 4.2 shows the case in which V* increases until a certain point and then starts

to decrease. (Yes-Max Case). In order to distinguish the value of Need so obtained from

that obtained using the visual method, the corresponding variables are labeled Necl—smp (for

sampling) and Ned vies (for visual).

Need  Determination: Bo-Max Case

For the case of no maximum point, the following function was derived from V*=f (N):

where f(N) and f'(N) represent the first and second derivatives of f(N), respectively. The

ratio cI)(N) is the rate of change of the slope (f' (N)) with respect to the slope itself. The

rate of change of slope will be maximum (in absolute value) when:

(I)'(N)=0

The value of N in correspondence of which (I)'(N)=0 is taken to be the value of Ncd.

Additional details of this rationale are given elsewhere (Arrnenante and Huang, 1992).

Since V* increases with N at a declining rate in the neighborhood of Need the function

c1(N) must be negative in correspondence of this point. The numerical approach applied

here is further illustrated in following example for Figure 4.l and calculations are

summarized in Table 4.1.

The variables were numerically calculated as follows:
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Ncd  Determination: Yes-Max Case

In the case of V* having a maximum point, Ncd-smp was determined by imposing that the

derivative of the resulting interpolation function, f(N) is equal to zero. Additional details

of this rationale for this method are given elsewhere (Armenante and Huang, 1992). The

method for the case of maximum is illustrated in Figure 4.2 and calculations are

summarized in Table 4.2.
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Figure 4.1 Nad Determination: No - Max Case.
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4.2 Validation of Visual Observation Method

In order to validate the method to obtain Ncd-vis, the values of Ncd_snip  obtained in each

experiment were plotted against the corresponding values of Ncd-vis  Each value of Ncd_sm

was obtained by generating a plot, as described above, containing 5-6 experimental

points. A parity plot of Necl—smp (with or without maximum) against the corresponding

Ncd_vis values is shown in Figure 4.3. From this figure, one can see that a good agreement

between Ncd-vis and Ncd_smp  exist. The results are given in Table B.17.

4.3 Reproducibility

A number of identical experiments were repeated at different times in order to determine

the reproducibility of the results for Ncd-vis. The results are reported in Table B.18, and

are expressed as the ratio of the standard deviation and the mean (for each set of data).

The reproducibility was obtained for each type of impeller at various off-bottom

clearances. The results are summarized in Table 4.3.
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CHAPTER 5

RESULTS AND DISCUSSION

A total of 76 experiments were conducted using the disc turbine (DT) and the 45 °

pitched-blade turbine (PBT). Both Ncd_vis and NCd-snip were determined for each

experiment. The power consumption was measured, as described in section 3.l. The DIT

ratio was constant and equal to 0.352 in all experiments. The liquid depth (H) was varied

from 0.0254 m to 0.286 m in 0.0254 m increments. The impeller off—bottom clearance

(Cb) was varied from 0.0159 m to 0.092 m for DT and 0.011 m to 0.087 m for PBT in

0.0254 m increments. The results were interpreted by plotting the minimum agitation

speed (Nod), power (P), powerIvolume (PN), and power number (p ) . Each of these

variables was plotted against the liquid depth-to-tank diameter ratio (HIT), the impeller

off—bottom clearance-to-tank diameter ratio (Cb/T) and the liquid head-to-tank diameter

ratio (iHIT). The liquid head is defined as the height of the liquid above the impeller.

(H=H - CO.

5.1 Results for Disk Turbine (DT)

5.1.1 Effect of Liquid Depth (H) on Minimum Agitation Speed (N ed)

The results obtained in this study for DT are shown in Figures A.1 and A.2 in Appendix

A. They are presented in detail in Table B.l and Table B.2 in Appendix B. At constant

impeller off—bottom clearance (Cb), the minimum agitation speed (Node) required to

achieve uniform dispersion increased with increasing liquid height (HILT). For

CbIT=0.322, the minimum agitation speed (Ned) decreased, when HILT went from 0.799 to

34
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1.0. At constant liquid depths (H/T), the minimum agitation speed (N od) required to

achieve uniform dispersion generally decreased with increasing impeller off—bottom

clearance (Cb/T). Deviations were observed from the normal behavior at HIT=1, where

CHIT was increased from 0.055 to 0.144. At constant impeller off—bottom clearance

(Cb/T), Nod increased with increasing liquid head (CHIT). The value of Nod was fairly

constant for different off—bottom clearance at low liquid head. At high liquid head, a

significant difference was observed. When the liquid level reached the middle of the

impeller (C/H=1), no mixing was observed even at very high agitation speeds.

5.1.2 Effect of Liquid Depth (H) on Power (P) at Node

The results obtained in this study for DT are shown in Figures A.3 and A.4 in Appendix

A. They are presented in detail in Table B.3 and Table B.4 in Appendix B. At constant

impeller off-bottom clearance (CHIT), the power (P) required to achieve uniform

dispersion at Nad increased with increasing liquid depth (HIT). For CH/T=0.055 and

CHIT=0.144, power dropped from HIT=0.88 to HIT=1.0. For CHIT=0.144 and C HAT=

0.233, power required was almost similar for small liquid depths. At constant liquid

depths (HILT), the power (P) dissipated decreased with increasing impeller off—bottom

clearances (CHIT). Deviations in this behavior were observed at off—bottom clearance

(CHIT) of 0.233 for lower liquid depths. From H/T0.88 to HIT=1, the power increased

by almost 100% from that of observed at HIT=0.88. With increasing liquid head (CHIT),

the power required to achieve uniform dispersion increased. The behavior was similar to

that of liquid depths. The power requirement approached infinity for Cb--0 0.
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5.1.3 Effect of Liquid Depth (H) on Power/Colume (P/C) at Ned

The results obtained in this study for DT are shown in Figures A.5 and A.6 in Appendix

A. They are presented in detail in Table B.5 and Table B.6 in Appendix B. Power/volume

curves were plotted to verify that the difference in power observed was not attributed to

the change in volume. The power per volume increased with increasing liquid height at

constant off-bottom clearance. For Cb/T=0.055 and CHIT=0.233, power per volume

dropped from H/T=0.88 to H/T=1.0. For CHIT=0.233 and CHIT=0.233, power per volume

required was almost similar for small liquid depths. At constant liquid depths, power per

volume decreased with increase in impeller off—bottom clearance. Deviations in this

behavior were observed at off—bottom clearance of 0.0762m for HIT=0.71 and H/T=0.62.

At low liquid head (CHAT), power per volume for all off—bottom clearance was almost

similar. Significant difference in the value of power per volume observed at high value of

liquid head.

5.1.4 Effect of Liquid Depth (H) on Power Number (N o) at Nat

The results obtained in this study for DT are shown in Figures A.7 and A.8 in Appendix

A. They are presented in detail in Table B.7 and Table B.8 in Appendix B. The power

number varied from a minimum of 3.18 to a maximum of 5.91. For C HIT=0.322 and

CHIT=0.233, the power number dropped with decreasing liquid heights from H/T=0.62 to

HIC=1. For HIT=0.88 and above, power number did not vary significantly at C HIT=0.322

m and CHIT=0.233. The power number remained almost constant for C HIT=0.233 and

CHIT=0.322. At all values of the off—bottom clearance examined here, the power number

remained almost constant for HIT=O.88 to H/T=1. At constant liquid depth, the power
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number increased with increasing off— bottom clearance. The increase in power number

was not significant. With increasing liquid head, the power number increased up to a

certain value. After that, it remained nearly constant for constant off—bottom clearance.

5.2 Results for 45° Pitched Blade Turbine (PBT)

5.2.1 Effect of Liquid Depth (H) on Minimum Agitation Speed (Node)

The results obtained in this study for PBT are shown in Figures A.9 and A.10 in

Appendix A. They are presented in detail in Table B.9 and Table B.10 in Appendix B.

The minimum agitation speed (N cd) required to achieve uniform dispersion increased

with increasing liquid depth at constant impeller off—bottom clearances. At higher liquid

depth, Ncd increased significantly compared to that of low liquid depth. From HIT=0.621

to H/T=1, Ncd increased with increasing impeller off—bottom clearances (Cb/T).

Deviations from this behavior were observed for C b/T=0.126 from HIT=0.79 to

HIT=0.79. For HIT=0.712 to HIT=0.532, the minimum agitation speed decreased with

increasing impeller off-bottom clearances. The minimum agitation speed increased with

increasing liquid head (AHIT). For all the off—bottom clearances examined here, the

values of minimum agitation speed at low liquid head were fairly close to one another.

The differences increased at higher liquid head. At constant liquid head (CHAT), the

minimum agitation speed increased with increasing off—bottom clearances for HIT=0.621

to HIT=1. Deviations were observed for the remaining values of liquid head. When the

liquid level reached the middle of the impeller (CIH=1), no mixing was observed even at

very high agitation speeds. Although the interface appeared to be disrupted by the

agitation produced by the impeller, the oil droplets did not reach to the bottom of the
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tank. When the agitation speed was increased beyond this point, the shaft started

vibrating around its axis and the liquid was splashed in the tank. However, no air

entrainment was observed under this condition.

5.2.2 Effect of Liquid Depth (H) on Power (P) at Node

The results obtained in this study for PBT are shown in Figures A.11 and A.12 in

Appendix A. They are presented in detail in Table B.11 and Table B.12 in Appendix B.

The power dissipated increased with increasing liquid height for H=C to HIT=0.79 for all

off—bottom clearance examined. The differences in the value of power for all off—bottom

clearances was similar for H=C to HIT=0.79. From HIT=0.88 to H/T=1, the power

increased by almost 100% from that of observed at HIT=0.88. From H/T=0.177 to

H=0.62, the power decreased with increase in impeller off—bottom clearance. From

H/T=0.62 to HIT=1, the power decreased with increasing off—bottom clearances. The

power increased with increasing liquid head (CHAT) for all values of the off-bottom

clearance (CHITS) examined. The differences in the value of power for low liquid head

were smaller compared to high liquid head for impeller off-bottom clearance from

CHIT=0.037 to Cb/T=0.215. The difference in the value of power became significant for

CHIT=0.037, when compared to the values obtained at CHIT=0.126, CHIT=0.215, and

CHIT=0.126. The power requirement was infinitely large at H=C. No mixing was

observed, even when agitating at very high speeds.
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5.2.3 Effect of Liquid Depth (H) on Power/Colume (P/C) at islod

The results obtained in this study for PBT are shown in Figures A.13 and A.14 in

Appendix A. They are presented in detail in Table B.13 and Table B.14 in Appendix B.

Power/volume increased with increase in liquid height for all impeller off—bottom

clearance. It increased significantly from HIT=0.88 to HIT=1. At HIT=0.88 and HJT=1,

the value of power/volume obtained for CHIT=0.215, CHIT=0.126, and CHIT=0.126, did

not vary significantly from one another. From H/T=0.177 to HIT=0.88, the power/volume

decreased with increasing impeller off—bottom clearances. From HIT=0.88 to HIT1, the

power/volume increased with increasing impeller off—bottom clearances. Deviations in

this behavior were observed at particular combination of the impeller off—bottom

clearance and liquid depth. The power/volume increased with increasing liquid head for

all off—bottom clearances. For H/T=0.53, the power/volume decreased with increasing

off—bottom clearances. From H/T=0.62 to HIT=1, the power/volume decreased with

increasing impeller off-bottom clearances at C HIT=0.304, CHIT=0.215 and CHIT=0.126.

From CHIT=0.126 to CHIT=0.215, the power/volume increased at all liquid heights

examined.

5.2.4 Effect of Liquid Depth (H) on Power Number (N o) at 'sio('

The results obtained in this study for PBT are shown in Figures A.15 and A.16 in

Appendix A. They are presented in detail in Table B.15 and Table B.16 in Appendix B.

The power number obtained at different combinations of liquid depth and impeller off—

bottom clearance varied from 0.97 to 2.02. Fluctuations were observed at small liquid

height (HIT) up to 0.355 for CHIT=0.215. The power number did not vary significantly
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with increasing liquid height at constant impeller off—bottom clearance. For all the cases

examined, the power number decreased with increasing impeller off-bottom clearances.

Deviation from this behavior was observed at CHIT=0.215 and HIT=0.88, which yielded

higher power number than at CHIT=0.215 and HIT=0.88. The power number remained

almost constant with increasing liquid head (CHITS) at constant impeller off—bottom

clearances. At constant liquid head, the power number decreased with increasing impeller

off—bottom clearances. At higher liquid heads, the power number followed the same

behavior at all impeller off—bottom clearance examined here.

5.3 Comparison of Results for DT vs. PBT

5.3.1 Minimum Agitation Speed (Ned)

A comparison between the results for Nail obtained for DT and PBT is shown in Figures

A.17, A.18, A.19, A.20, A.21, A.22, A.23, and A.24 in Appendix A. At constant off—

bottom clearance (C), Node was plotted versus liquid depth (HILT) for DT and PBT to

compare the results. The Nod value required to achieve uniform dispersion at C=0.0254 m

is higher for PBT than DT from HIT=0.177 to HIT=0.621. From HIT=O.621 to HIT=0.88,

DT requires more agitation than PBT. At HIT=1, PBT yields higher value of Node than that

of DT. At C=0.0508 m, C=0.0762 m, and C=0.1016 m, the value of Node obtained is more

for PBT than that for DT for all liquid heights examined. Node followed the same behavior

with variable liquid head (CHITS), when compared to liquid depth (HIT). For both

impeller types, Nod approached an infinite value when C=H.
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5.3.2 Power (P)

A comparison between the results for A obtained for DT and ABT is shown in Figures

A.25, A.26, A.27, A.28, A.29, A.30, A.31, and A.32 in Appendix A. The power

requirement to achieve uniform mixing is greater for DT than ABT in all cases examined

at C=0.0254 m. The difference in the value of power between DT and ABT was small up

to HIT=0.799. At HAT more than 0.532, this difference became significant. From

HIT=0.88 to HIT=1, the power required for DT dropped, while it increased by almost 100

% in case of ABT. At C=0.0508 m, C=0.0762 m, and C=0.1016 m, DT required more

power than ABT in all cases examined. The power requirement increased by almost 100%

for both impellers from HIT=0.79 to H/T=l. At C=0.1016 m, the power required for DT

dropped from HIT=0.79 to HAT=1, while it increased by almost 50 % in the case of the

ABT.

5.3.3 Power/Volume (P/V)

A comparison between the results for AN obtained for DT and ABT is shown in Figures

A.33, A.34, A.35, A.36, A.37, A.38, A.39, and A.40 in Appendix A. At C=0.0254 m, the

power per unit volume for DT is more than that of ABT. It kept increasing for ABT with

increasing liquid height (HILT), while it dropped for DT in the range H/T=0.88 to HAT=1.

At C=0.0508 m and C=0.0762 m, the power per volume increased with increasing liquid

depth (HIT) for both types of impeller. It increased by almost 100% from H/T=0.88 to

H/T=1. At C=0.1016 m, AN increased with increase in liquid depth (HIT) up to 0.799.

From H/T=0.799 to H/T=1, AN dropped by almost 100% for DT. For ABT, it kept

increasing up to H=T. At C=0.1016 m and HIT=1, ABT attained a higher value of P/V
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than that of DT. Aower per volume requirement for both types of impellers followed the

same behavior with liquid head (ALIT) when compared to the behavior with liquid depth

(LIFT).

5.3.4 Power Number (No)

A comparison between the results for p obtained for DT and ABT is shown in Figures

A.41, A.42, A.43, A.44, A.45, A.46, A.47, and A.48 in Appendix A. Aower Number

remains in the range of 3 to 4 for DT, and 1 to 2 for ABT, at C=0.0254 m and C=0.0508

m. It remained unchanged with increase in liquid height (HILT). At C=0.0762 m, No kept

increasing for DT up to LAT=0.88. From LAT=0.88 to H/T=1, No remained almost

constant in the vicinity of 5. For ABT, No remained in the range 1.3-1.67, without

significant deviation with L/T. At C=0.1016 m, No increased with increasing HIT up to

0.62 for DT. From HIT=0.62 to HIT=1, it remained almost constant for DT. For ABT, No

remained constant with increasing liquid depth (HIT). The liquid head (AH/T) has the

same effect as the liquid depth (L) on power number.



CHAPTER 6

CONCLUSIONS

1. Disk turbines required lower agitation speeds than 45° pitched-blade turbine to

achieve the uniform liquid-liquid dispersion state under all conditions examined in

this work. A radial flow pattern was found to achieve the uniform dispersion state at

lower values of Node than an axial flow pattern.

2. In all agitation systems, the power drawn was found to drop with decreasing liquid

height.

3. In general, the power required by the disk turbine increased as the impeller off-

bottom clearance decreased.

4. Unlike the case of disk turbine, the power required by the pitched-blade turbine

decreased as the impeller off-bottom clearance decreased.

5. The disk turbine required more power than the 45 ° pitched-blade turbine in all cases

examined.

6. When the Node results for the disk turbine were plotted against the liquid head (OH),

the data obtained at different impeller clearances collapsed together. This was not true

for the pitched-blade turbine.

7. At low off-bottom clearance (Cb/T=0.055 corresponding to Cb/D=0.16), the power

consumption of the disk turbine was also low. A small increase in Cb/T from 0.055 to

0.233 (corresponding to C1JD=0.432) produced a small increase in power number.

For Cb/T=0.233 and C1JD=0.432 (corresponding to C b/D=0.699 and Cb/D=0.966

respectively), a moderate increase in power number was observed, possibly caused by

43
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the establishment of a transition flow pattern around the impeller, which stabilized

with increasing liquid depths (H). This is in agreement with the conclusion drawn by

Arrnenante and Huang (1992).

8. When the liquid height was dropped to eventually reach the same level as the middle

of the impeller (i.e., as H-. C), the state of complete liquid-liquid dispersion was not

achievable, irrespective of the agitation speed. Although the interface appeared to be

disrupted by the agitation produced by the impeller, the droplets of the dispersed

phase did not reach to the bottom of the tank. When the agitation speed was increased

beyond this point, the shaft started vibrating around its axis and the liquid was

splashed in the tank. However, no air entrainment took place.
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APPENDIX A

FIGURES FOR CHAPTER 5

This appendix includes figures showing effect of liquid depth on minimum agitation

speed (Ncd), Aower (A), power/volume (A/V) and power number (Np) for DT (Figures

A.1-A.8) and ABT (Figures A.9-A.16). It also includes the comparison of all examined

variables between DT and ABT (Figures A.17-A.48).



Figure A.1 Effect of H on Nod (DT).
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.2 Effect of CHI on Ncd (DT).



Figure A.3 Effect of H on A (DT).
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.4 Effect of CH on A (DT).



Figure A.5 Effect of H on A/V (DT).
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.6 Effect of OH on A/V (DT).



Figure A.7 Effect of H on p (DT)



Figure A.8 Effect of OH on p (DT)



Figure A.9 Effect of H on Ncd (ABT).
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.10 Effect of CHI on Ncd (ABT).



Figure A.11 Effect of H on A (ABT).
The vertical lines were drawn in correspondence of H=Cb for each curve.



Figure A.12 Effect of MI on A (ABT).



Figure A.13 Effect of H on A/V (ABT).
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.14 Effect of an on F/ V (arts 1).



Figure A.15 Effect of H on p (ABT).



Figure A.16 Effect of CH on p (ABT).
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Figure A.17 Comparison of Ncd vs. H at C=0.0254m.
The vertical lines were drawn in correspondence of H=CH for each curve.
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Figure A.18 Comparison of Ncd vs. CHI at C=O.0254m.



Figure A.19 Comparison of Nod vs. H at C=O.0508m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.20 Comparison of Ned vs. CH at C=0.0508m.



Figure A.21 Comparison of Ncd vs. H at C=O.0762m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.22 Comparison of Nod vs. OH at C=0.0762m.



Figure A.23 Comparison of Nu' vs. H at C=O.1016m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.24 Comparison of Nad vs. OH at C=0.1 016m.



Figure A.25 Comparison of A vs. H at C=O.0254m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.26 Comparison of A vs. OH at C=O.0254m.



Figure A.27 Comparison of A vs. H at C=O.0508m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.28 Comparison of A vs. CHI at C=O.0508m.



Figure A.29 Comparison of A vs. H at C=O.0762m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.30 Comparison of A vs. OH at C=O.0762m.



Figure A.31 Comparison of A vs. H at C=O.1016m.
The vertical lines were drawn in correspondence of H=CH for each curve.



Figure A.32 Comparison of A vs. 6,1-1 at C=O.1016m.



Figure A.33 Comparison of A/C vs. H at C=0.0254m.
The vertical lines were drawn in correspondence of H=CH for each curve.
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Figure A.34 Comparison of A/C vs. Cll at C=O.0254m.



Figure A.35 Comparison of A/V vs. H at C=O.0508m.
The vertical lines were drawn in correspondence of H=Cb for each curve.
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Figure A.37 Comparison of A/V vs. H at C=O.0762m.
The vertical lines were drawn in correspondence off1=Cb for each curve.



Figure A.38 Comparison of A/V vs. OH at C=O.0762m.



Figure A.39 Comparison of A/C vs. H at C=0.1016m.
The vertical lines were drawn in correspondence of H=Cb for each curve.



Figure A.40 Comparison of A/V vs. MI at C=0.1016m.



Figure A.41 Comparison of Np  vs. H at C=O.0254m.



Figure A.42 Comparison of Np  vs. MI at C=0.0254m.



Figure A.43 Comparison of N ib vs. H at C=O.0508m.



Figure A.44 Comparison of p vs. OH at C=0.0508m.



Figure A.45 Comparison of p vs. H at C=O.0762m.



Figure A.46 Comparison of p vs. .6E at C=O.0762m.



Figure A.47 Comparison of p vs. H at C=O.1016m.



Figure A.48 Companion of B p  vi. AR at C=0.1U16m.



94

APPENDIX B

TABLES FOR CHAPTER 5

This Appendix includes tables showing the effect of liquid height on the minimum

agitation speed for complete liquid-liquid dispersion Node (in rpm), power A (in watts),

power/volume ANA, (in watts/m3) and power number (p ) for DT (Tables B.1-B.8) and

ABT (Tables B.9-B.16).
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Table B.3 Effect of H on A/V (DT)

HIT
CHIT=
0.233 H/T

CHIT=
0.233 HILT

C1JT=
0.233 HAFT

C1JT=
O.144

0.15 00 0.21 - 0.27 - O.33 -
0.18 213.59 O.24 00 O.3 - 0.36 -

0.26 175.24 0.26 132.11 0.33 00 0.39 -

0.35 166.88 0.35 166.88 0.35 54.93 0.42 00

O.44 161.04 0.44 150.95 0.44 66.65 0.44 95.62

O.71 195.16 0.53 150.34 0.71 241.15 0.71 145.55

0.62 360.37 0.62 255.52 0.62 257.55 0.62 174.34

0.7 455.32 O.7 301.96 0.7 253.09 0.7 233.55

0.79 573.56 0.79 343.2 0.79 275.59 0.79 422.55

0.79 655.5 0.79 459.23 O.88 369.9 0.79 357.95

1 542.15 1 525.24 1 732.02 1 245.2

Table B.4 Effect of H on p (DT)

HIT
C1JT=
0.233 HILT

CHITS=
0.233 HAFT

CJT=
0.233 HILT

CJT=

O.144

0.15 0.21 0.27 0.33 -
0.15 3.18 0.24 0.3 - 0.36 -

0.26 3.35 0.26 3.53 O.33 O.39 -

0.35 4 O.35 3.74 0.35 3.55 0.42 -
0.42 4.16 0.44 3.73 O.44 4.25 0.44 3.24

0.71 3.71 0.71 4.23 0.71 5.15 0.53 4.74

0.62 3.53 0.62 4.25 O.62 5.16 0.62  5.54

0.7 4.01 0.7 4.19 O.7 5.56 0.7 5.77

0.79 4.34 0.79 4.47 0.79 5.76 0.79 5.91

0.55 4.27 O.88 4.41 0.88 5.64 0.58 5.53

1 3.66 1 4.17 1 5.63 1 5.76
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Table B.7 Effect of AI-1 on A/C (DT)

C1JT

0.233
CHITS Cb/T=

0.233
CHAT CST

0.233
CHITS

0.144

O.09 00 - - - - - -

O.12 213.59 0.09 0o - - - -
0.21 175.24 0.12 132.11 0.09 ooh - -
0.30 166.88 0.21 166.88 0.12 54.93 0.09 Poo

0.39 161.04 0.30 150.95 0.21 66.65 O.12 95.62

O.45 195.16 O.39 180.34 0.30 241.15 0.21 145.88

0.57 360.37 0.45 255.52 O.39 257.55 0.30 174.34

0.66 455.32 0.57 301.96 0.45 253.09 0.39 233.55

0.74 573.56 0.66 343.20 0.57 275.59 0.45 422.88

0.53 655.50 0.74 459.23 0.66 369.90 0.57 357.95

0.94 542.15 0.56 525.24 0.77 732.02 0.65 245.20

Table B.8 Effect of MI on p (DT)

iH/T
Cb/T=
0.233

AI-1 C1JT=
0.233

CHITS Cb/T=
0.233

Calla Cb/T=
0.322

0.09 00 - - - - - -

0.12 3.15 0.09 co - - - -
0.12 3.35 0.12 3.71 0.09 ooh - -
0.30 4 0.21 3.74 0.12 3.55 O.09 co

0.39 4.16 0.30 3.73 0.21 4.25 0.12 3.24

0.45 3.71 0.39 4.23 0.30 5.15 0.21 4.74

0.57 3.53 0.45 4.25 0.39 5.16 0.30 5.54

0.66 4.01 0.57 4.19 0.45 5.56 0.39 5.77

0.74 4.34 0.66 4.47 0.57 5.76 0.45 5.91

0.53 4.27 0.74 4.41 0.66 5.64 0.57 5.53

O.94 3.66 0.56 4.17 0.77 5.63 0.65 5.76
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