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ABSTRACT

IMPLEMENTATION OF A TWO — DIMENSIONAL DISCRETE ELEMENT
METHOD TO DESCRIBE GRANULAR MATERIALS COMPOSED OF

ELLIPTICAL COHESIONLESS PARTICLES

by
Juan José Martinez Alive

This work is aimed at developing a discrete element simulation that models the contact

between elliptical grains or particles in granular materials. The goal is to implement an

algorithm to carry out collision detection between ellipses as well as ellipsoidal objects.

The practical issue here is that the real shape of macroscopic grains can be approximated

better using elliptical curves than using spherical curves. In addition, the simulation

model will also be valid for spheres, since these objects are special cases of ellipsoids.

An accurate contact detection algorithm was investigated by means of two

different formulations. The first formulation determines the minimum distance of one

ellipse with respect to another ellipse and vice versa and finds the two closest points.

Then it analyzes the position of these two points. However, this formulation is not robust

enough to determine all the contact detections tested. The first formulation fails in cases

when the distance between centers is unrealistically close and the major and minor axes

are large. The second formulation determines the overlap distance. This method was

successful in each of the realistic cases tested. The second formulation, as well as the first

formulation, fails in unphysical cases, i.e., the distance between the centers of the ellipses

is much smaller than the size of the major and minor axes of the ellipses. The

implementation of a contact force formulation with minimum overlap distance will

remove any possibility that these cases occur.
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NOMENCLATURE

ail, as	 Ellipses i and j half length in the x axis

bib, bb 	Ellipses i and j half length in the y axis

c 	 Ellipses half length in the z axis

Cc, Cy Center of Curvature's position in moving coordinate axes of the x and y axes,
respectively

d 	 Distance between the centers of Ellipses i and j

GX, Gym Center of Curvature's position in fixed coordinate axes of the x and y axes,
respectively

h Penetration distance

Pi, Pi	 Pi is the elliptic curve i nearest point of the center of the local coordinate axes
of the other elliptic curve j; Pi is found in the same way but reverse i and j

C, C	 Position of an ellipse point using fixed coordinate axes

Cc, Cc  Position of the center of the elliptic curve in fixed coordinate axes

Greeks

P Radii of curvature

Angle in z-axis that defines the orientation of moving coordinate axes with
respect to fixed coordinate axes

O Variable that defines the angle of the points in the parametric curve

0.*, ise Angle that minimizes the Ellipse i in the coordinate axes of Ellipse j and vice
versa, respectively

Unit outward normal vector
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CHAPTER 1

INTRODUCTION

1.1 Objectives

In this thesis, a computer simulation model was developed to implement a contact

detection algorithm between elliptical particles for use in a Discrete Element simulation.

The computer simulation is a test of the theoretical formulation and experimental tests of

elliptical particles. The computer simulations can be implemented in special

circumstances where the experimental tests are very dangerous, expensive, and/or

difficult.

1.2 Background Information

Highly specialized automatic machinery is widely used in the industry that transports and

processes granular materials. The behaviors of these granular materials have to be

understood for the proper design of this machinery.

Granular materials or bulk solids exhibit special behaviors. They can be deformed

as solids, they can flow as liquids, and they are compressible like gasses [Peters, 2002].

Granular materials are discontinuous structures, so continuum models are not

recommended to simulate these materials. Finite Element Method, Boundary Element

Method, and Finite Difference Method are examples of continuum models. Commonly,

they do not allow for separation, rotation, large scale deformation and displacement

[Cordell, 2002]. Simulations for discontinuous structures can be broadly classified as

1
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follows: macroscopic modelling and microscopic modelling. Discrete Element Method

(DEM) method is classified as microscopic modelling. DEM keeps track of each particle

or body inside a granular material.

In the 1970's, Cundall [1979] developed a discrete model to describe the behavior

of granular materials. He is recognized as the founder of the Discrete Element Method,

although the technique has its formulation in molecular dynamics simulations commonly

used by the physics community to investigate fluid behavior. Since the complete phase

space is determined in a discrete element simulation, it is possible with the proper

averaging, to compute the bulk transport properties of the granular material. This, in turn,

is invaluable in understanding experiments.

There have been reports that have dealt with mechanical interactions in soil

machinery [H. Tanaka, 2000]. These reports mostly have been concerned with spherical

particles. Recently, some approaches have been implemented for elliptical [Peters, 2002]

and general shaped bodies. In these approaches, the particles were modeled as ellipsoidal,

sphere cluster [Vu — Quoc, 2000] or general shaped via superquadratics [Williams, 1989;

Mustoe, 1993 and 2000].

The elliptical formulation has many advantages because with the modification of

the ellipse's length in the x and y axes, it is possible to model an infinite number of

ellipses (circles included). For circular particles, the analysis is simple because one only

needs the diameters and the distance between centers to know if the particles are in

contact. For elliptical particles, the diameters and the distance between centers is not

enough to determine if there is contact. The parameters are the distance between centers,

length of the ellipse's major and minor axes, and one angle (2D) or three angles (3D).
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Circular and spherical shape analysis in many realistic cases is not as accurate as using an

elliptical shape. Superquadratics shape analysis is even more realistic. However, it can be

computationally expensive. Elliptical particles represent a good compromise between the

very precise and computationally expensive superquadratics particles and the less precise

and relatively inexpensive circular particles.

This thesis aims to explain and implement two formulations for collision

detection, needed in a discrete element simulation of elliptical particles. Chapter 2

introduces the general concepts, which are applied in the entire thesis. Chapter 3

describes the contact detection terminology. In Chapter 3, the formulation is explained in

great detail. Chapter 4 gives the results that were obtained with the implementation of the

contact detection strategy developed in Chapter 3. Chapter 5 summarizes and analyzes

the most important points of the thesis.
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1.3 Overview of Discrete Element Method

The grains inside a granular material interact and change shape near the collision point.

In the Discrete Element Method (DEM), the particle shape is not allowed to change.

Rather, the particle deformation is not necessary to obtain the mechanical behavior of a

granular material [Cundall, 1979]. The amount of interpenetration between a pair of

particles is considered as a measure of deformation. The amount of penetration is related

to the contact force.



CHAPTER 2

CHARACTERIZATION OF ELLIPTICAL PARTICLES

This chapter introduces the basic concepts used through the entire thesis. Here, the ellipse

is analytically described and parameterized. This involves a description of various

coordinate axes and transformations.

2.1 Geometry of the Ellipse

The family of surfaces described by Equation 2.1 is called "quadratics," which includes

the ellipse, parabola, and hyperbola. An elliptic curve has to meet the following

Figure 2.1 Quadratic definition of elliptic curve.

The basic equation that defines the elliptic curve is presented in Equation 2.2, in

which the major and minor axes of the elliptic curve are parallel to the coordinate axes

[Spiegel, 1995].

5
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Here Xc and Yc are the C and C positions of the centroid of the ellipse. The half length

in the x and y axes are called a and b respectively.

2.2 Parametrization of an Ellipse

In order to make the description of the elliptic curve more tractable, it is possible to

introduce a parametrization [Lee, 1999], as defined by Equation 2.3.

This parametrization can also be formulated as a column matrix, i.e.,

Here the center of the ellipse lies at the origin of the coordinate axes, while the major and

minor axes are parallel to the coordinate axis.
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In order to evaluate the contact between particles, it is possible describe the contact using

fixed coordinate axes or moving coordinate axes. Figures 2.3 and 2.4 show the fixed

coordinate axes and the moving coordinate axes, respectively.

In this thesis, fixed and moving approaches are used to determine the contact

between particles [Williams, 1989]. The fixed coordinate axes approach is related to the

fluid dynamics concept of Eulerian coordinates. The moving coordinate axes approach is

related to the fluid dynamics concept of Lagrangian coordinates.

2.3.1 Fixed Coordinate Axes

The data input or initial conditions can be described with fixed coordinate axes, which is

the natural description for physical experiments. In Figure 2.3, "i" and "j" designates the

ellipses, while C and C represent the fixed axes. The notation (•,*) is used to denote a

vector.



and this can be useful to simplify the analysis (Table 2.1). The ellipses are distinguished

by subscripts i and j.

Table 2.1 Relationships of Ellipses Intersections and Distance Between Centroids

note: a il and aj are me half or inc length or the major axes or the Ellipses 1 anti j respectively. D i anti are
the half of the length of the minor axes of the Ellipses i and j, respectively.
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2.3.2 Moving Coordinate Axes

The formulations using the moving coordinate axes approach, where the origin is fixed at

the centroid of the particle, is depicted in Figure 2.3. The moving coordinate axes

approach can reduce the size of the computational domain necessary for the contact

detection calculations.

Figure 2.4 Ellipses described with moving coordinate axes.

2.4 Transformation Matrices

Transformation matrices can be used to translate and rotate the axes of the ellipse. The

translation matrix is given by:

where a, b and c represent the translation of the coordinate axes. The rotation matrix

where z and 01) are the z-axis of rotation and the angle of rotation (positive in

counterclockwise direction), respectively is given by:



Figure 2.5 shows the translation of the elliptic curve from the origin of the fixed

coordinates axes to (Xcif, YYci). Also depicted is a rotation through angle 0 .

Figure 2.5 Elliptic Curve rotated and translated from
the origin of the fixed coordinate axes.

From Equations 2.7, 2.8, and 2.4 the formulation to obtain the equation that

defines the elliptic curve in a fixed coordinate found to be:



11

Thus, the equations that define the elliptic curve with respect to the global coordinate axis

Further details on the parametric formulations of the elliptic curve and the matrix

transformation are explained in references [Lee, 1999; Craig, 1989].

2.5 Superquadratics

Granular materials can be composed of different and complex shapes and sizes. The idea

of using superquadratics to describe these complex shapes has been implemented by

William et al. [1989] and Mustoe et al. [1993 and 2000].

Superquadratics are an analytical expression that defines the surface of an object

[William, 1989]. The superquadratics are extensions of the traditional geometric

primitives that can be represent a range of shapes, from ellipsoidal to rectangular. Eighty

percent of solids can be represented accurately by superquadratics in higher dimensions

or hyperquadratics. The general equation is given by:

where a, b, and c indicate the half length of the principal axes, and n1 , n2 and n3 are real

the function is called an

ellipsoid. Moreover, if n1 = n2 = 2 and z = 0, the curve is an ellipse.
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Just as for quadratics, superquadratics can be represented parametrically, defined

in Equation 2.12. The superquadratics have latitude (lat) and longitude (long) as the two

controlling parameters.

Here, a, b, and c are scaling factors in the C, C, and Z - coordinate directions. P and Q are

exponents that control the squareness / roundness of the shape in the latitude (or north —

south) and longitude (or east — west) directions.



CHAPTER 3

CONTACT DETECTION FOR ELLIPSES

The most time-consuming part of the Discrete Element Method (DEM) is the contact

detection. It is extensively time-consuming to check the contact of each particle with the

other neighboring particles. This chapter explains a contact detection formulation that

uses moving coordinate axes as a main methodology [Mustoe, 1993 and 2000]. A contact

detection formulation that uses fixed coordinate axes (Appendix B) was developed as part

of the research for this thesis.

This chapter aims to clarify and detail the formulations used by Mustoe et al

[1993 and 2000]. The formulation developed through this chapter is the basis for Contact

Detection with Penetration Code and Contact Detection without Penetration Code.

3.1 Minimum Overlap Distance Criterion

Mustoe et al [1993 and 2000] introduced the concept of minimum overlap distance. In

these Mustoe describes the particles as superquadratics. However, for the purpose of this

thesis, attention will be restricted to ellipses.

13
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The angles Oil and I)i represent the orientations of the elliptical axes with respect to

the global system (fixed axes), as shown in Figure 3.1. The position of Pi is the elliptic

curve j nearest to the origin of the coordinate axes of Ellipse — i. The (x, y) coordinate of

Pi is found by minimizing the function:

In order to carry out the necessary minimization, Ellipse — j must be defined with respect

to moving coordinate axes that have to be defined with respect to a local coordinate axis

of the Ellipse — i. From Figure 3.2, AX = k+ w and AY = p represent the components of

the vector between the centers of Ellipse — i and Ellipse — j with respect to the coordinate

system attached to Ellipse — i.
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The next steps are used to generalize the formula for AX and AY . Mustoe et al. [1993

and 2000] does not provide the generalization of AX and AY .

Figure 3.2 Origins' distance of the coordinate axes of Ellipse — j relative
to the coordinate axes of Ellipse — i.

of Ellipse — j relative to the coordinate axes of Ellipse — i. Here it is assumed that ci,

cj, ci, cj and (1) ; are known.



The subscripts i and j should be inverted on Equations 3.1, 3.2, and 3.3 to find Pi.

The value of 0; is found when Equation 3.1 is minimized. The value 0; is an

approximation of the values Of that minimize the function. This value defines the point
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Pi, in Figure 3.1. Brent's Method to find the minimum of a function is used through this

thesis to minimizes the function, as was done by Mustoe et al. [2000]. Brent's Method for

finding a minimum is an adaptation of the technique used in Brent's Method to find a

root of an equation. In what follows, the phrase "Brent's Method' will be understood to

represent his method to minimize a non-linear function. Further details about this method

are given in Appendix A.

Brent's Method always converges for any function to the global minimum, in a

given interval, if the function is unimodal. If a function defined in an interval is not

unimodal, then it may convergent to a local minimum. In the specific case of contact

detection between elliptical particles, convergence to a local minimum is not a problem,

because the analysis is for two convex shaped bodies.

the local coordinate system attached to the centroid of Ellipse — j. To determine if there is

contact,



18

In order to determine whether there is contact, Equation 3.5 analyze if the Ellipse — j's

analyze if the Ellipse — i's point is inside the Ellipse — j.

After obtaining the points Pi and Pi, a circle can be found at the position of the points Pi

and Pi in the Ellipse — i and Ellipse — j, respectively. The curvature method is applied to

find the radii of curvature (p) and the center of curvature (C) of Ellipse — i and Ellipse —

j at Pi and Pi, respectively, as shown in Figure 3.3. The circular curves will simplify the

problem at the interaction between two circular particles.

In what follows, the details of finding these circles is described. The radii of

curvature at the two contact points P i and Pj are given by,



the radii of curvatures are given by,

19

The definition of radii of curvature for superquadratics is given in Appendix C. The

position of the center of curvature is the next parameter to be found. First, it is necessary

calculate the unit outward normal vector of each ellipse at Pi and p i . The unit outward

normal vector on the surface of Body "k", defined by a ellipse in the local centroidal

coordinate system for Body "k", is given by,
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The coordinate with respect to centroidal moving axes (local axes) of Ellipse — k for the

position of the center of curvature Ck, for the point Pk is given by,

Figure 3.4 Center of curvature's coordinate in the moving coordinate axes.

In Equation 3.11, the center of curvature is defined in the moving coordinate axes of the

ellipse. For an easy calculation of distances, it is preferred to have the circles defined in

fixed coordinate axes.
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Figure 3.5 Center of curvature defined in a fixed (global) coordinate axes.

The position vector (Cx , Cy ) i = (u + v, p) describes the position of the center of

curvature j in a frame with moving coordinate axes. The values X0 — Xci and X0 — Xci

describe the position of the center of curvature j with respect to the origin of the

coordinate axes in a fixed coordinate frame. The given values are Cx , Cy, and cl)i.

Step 1:
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From the above expressions, the penetration can be computed between two contacting

Ellipses "i" and "j". The normal overlap penetration distance is defined by,

where d is the distance between the center of curvatures Cif and q, that is, defined in the

fixed coordinate axes (E x , Gy). The distance between centers of curvature is defined as:

The contact between bodies "i" and "j" exists just when h > 0. However at h > 0, this

condition can be used to determine the particles' interaction force.

3.3 Code Documentation

This section discusses in detail the Contact Detection With Penetration Code, since it is

more useful than Contact Detection Without Penetration Code. Both codes use different

formulations, but they have the same givens and can detect contact between two particles.

The calculation of the penetration distance is a great advance, because the code can be

easily expanded to analyze contact force, displacement and to perform time integration.

3.3.1 Problem Description

These codes come from the necessity of an automatic detection mechanism that describes

the interacting particles. The penetration in the Contact Detection With Penetration Code
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describes and quantifies the interaction. The contact detection formulas are given in

Equations 3.6 — 3.11. These general formulas can be used for different ellipses.

3.3.2 Solution Methodology

In order to find the penetration distance, the first step is to write a program that

minimizes the elliptic curve with respect to a defined coordinate axes. These coordinate

axes represent another ellipse (particle). Equations 3.1 — 3.3 redefine the curve equations

in other coordinate axes.
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Moreover, when the minimum points for both ellipses are determined, the next

step is to implement the curvature method. The curvature method is derived in Equations

3.6 — 3.11. The curvature method is used to find penetration distance.



CHAPTER 4

VALIDATION OF CONTACT DETECTION WITH ELLIPTICAL PARTICLES

This chapter shows some representative results, which were classified into four separate

types. The classification helps to understand the codes' advantages and disadvantages.

The discussion analyzes the data.

4.1 Contact Detection Results

This section validates the Contact Detection Without Penetration Code. Each subsection

has a general type of results that can be obtained by the code. The four general types are

no contact point, one contact point, two contact points, and special cases.

4.1.1 No-Contact Cases

In these cases, the code should output "no contact points" two times. The contact

detection is defined two times because each ellipse calculates the contact. The function at

the minimum point (f(0 * )) is assumed for no-contact case's detection is higher or equal

than 0.1. Examples 4.1 and 4.2 are given at tolerance 1E-5 and 1E-7. The results are in

agreement with physical reality. The contact detection is practically not changed at all

when the tolerance is decreased from 1E-5 to 1E-7. However, at tolerance 1E-7 the

running time is higher than at tolerance 1E-5. In Example 4.1 the times for running code

[Paciorek, 2002] are 6 and 334 at tolerances 1E-5 and 1E-7, respectively. In Example 4.2

the times for running code are 6 and 305 at tolerances 1E-5 and 1E-7, respectively.

26
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Visually and analytically the simulation can recreate particles moving.

Cumerically, the particles are static and the axes that define the particles may move.

Example 4.1 is a case for two ellipses. Ellipse A has a length of 8 and 10 in C axis and C

axis respectively. The center of the ellipse is the coordinate (1, 1). The angle of rotation

of ellipse A is 45 degrees.

Ellipse B has a length of 4 and 6 in the C axis and C axis, respectively. The center

of the ellipse is at the coordinate (4, 8). The angle of rotation of ellipse B is 45 degrees.

Figure 4.1 shows the case in Example 4.1.
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Example 4.2 is a case for one ellipse and one circle at tolerances of 1E-5 and 1E-

7. Ellipse A has a length of 8 and 10 in the C axis and C axis respectively. The center of

the ellipse is the coordinate (1, 1). The angle of rotation of ellipse A is 45 degrees.

Ellipse B has a length of 6 and 6 in the X axis and C axis, respectively. Since the

lengths in the C axis and C axis are the same, ellipse B can be considered as a circle. The

diameter of this circle is equal to 6. The center of the ellipse is in the coordinate (4, 8).

The angle of rotation of ellipse B is 45 degrees. Figure 4.2 shows the case in Example

4.2.
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4.1.2 One-Contact Case

Contact Detection Without Penetration Code includes the option of a one contact case.

Example 4.3, in Figure 4.3, has one contact case for two circles at 1E-5 of tolerance.

These cases are very rare for the exactitude required. In an instance of zero f(9 * ), the

function at the minimum point is assumed for one contact case's detection is between ±

0.1. Figure 4.3 shows the case in Example 4.3.
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4.1.3 Two-Contact Cases

Examples 4.4 and 4.5 are two contact point cases. In the Contact Detection Without

Penetration code, two contact points are the maximum number of contact points. The

function at the minimum point (f( 8 * )) is assumed for two-contact case's detection is less

or equal than -0.1. Specifically, example 4.4 is the basic case with two circles. Both

circles have a radius of 2 and an angle of rotation of 45 degrees. The centers of the circle

A and B are in the coordinates (1, 1) and (3, 3), respectively and the tolerance is 1E-5.
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Example 4.5 provides a more "complicated" case than Example 4.4. The case is for one

ellipse and one circle at 1E-5 of tolerance.
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4.1.4 Special Cases

A special case occurs when the code output is "no contact" for one ellipse and "two

contacts" for another ellipse. The special case is caused by the short distance of the

ellipses' center relative to the major and minor axes. In these cases, it is correct to assume

that the ellipses have two contact points (as maximum points of contact). The code

displays no contact and two contacts because the points in the curves will be farther from

the centers. These cases should not happen when the code is implemented with force-

penetration simulation because they avoid the penetration conditions that generate these

cases.

Example 4.6 has a two circles case. Circles A and B have a diameter of 10 and 4

respectively. Ellipse A is a circle with an angle of rotation of 45 degrees and the position

of the center is (1, 1) defined in the fixed coordinate axes. Ellipse B is a circle with an

angle of rotation of 45 degrees and the position of the center is (3, 3) defined in the fixed

coordinate axes. The equations are defined at 1E-5 of tolerance.
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Example 4.7 displays the results for a special case with two ellipses at a tolerance

of 1E-5. In this case the overlap is big, relative with the distance between centers. Ellipse

A has a length of 6 in the C axis and 10 in the C axis. The angle of rotation is 45 degrees
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and the position of the center is (1, 1) in the fixed coordinate axes. Ellipse B has a length

of 10 in the C axis and 6 in the C axis. The angle of rotation is 45 degrees and the

position of the center is (3, 4) in the fixed coordinate axes.



37

4.2 Contact Detection with Penetration Distance Results

This section validates the Contact Detection With Penetration Code. Contact Detection

With Penetration code uses a different method for contact detection. This method has as

an advantage the easy calculation of penetration distance. Also, this method has fewer

propensities to fail in unrealistic situations and does not fail at small penetration. The

penetration distance is an important quantity that is needed to calculate the interacting

forces.

4.2.1 No-Contact Cases

Example 4.8 shows the results for a no contact case with one ellipse and one circle at a

tolerance of 1E-5. Ellipse A has a length of 8 in the C axis and 10 in the C axis. The

angle of rotation is 45 degrees and the position of the center is (1, 1) in the fixed

coordinate axes. The circle has a radius of 3. The angle of rotation is 45 degrees and the

position of the center is (20, 20) in the fixed coordinate axes. The penetration distance is

negative which means no contact exists.
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Example 4.9 gives the results for a no contact case with two ellipses at a tolerance

of 1E-5. Ellipse A has a length of 8 in the C axis and 10 in the C axis. The angle of

rotation is 45 degrees and the position of the center is (1, 1) in the fixed coordinate axes.

Ellipse B has a length of 4 in the C axis and 6 in the C axis. The angle of rotation is 45

degrees and the position of the center is (4, 8) in the fixed coordinate axes.
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4.2.2 Two Contact Cases

Example 4.10 gives the results for a two contact case with two ellipses at tolerances of

1E-5 and 1E-7. These ellipses can be classified as circles. Both circles have a radius of 2

and angle of rotation of 45 degrees. The position of the center of ellipse A and ellipse B

are (1, 1) and (3, 3) in a fixed coordinate axes, respectively. The penetration distance is

positive (1.1716) which means contact exists.



Figure 4.7 A contact case with two circles.
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Example 4.11 gives the results for a two contact case with circles at a tolerance of

1E-5. Ellipse A is circle with a radius of 5 and angle of rotation of 45 degrees. The

position of the center of ellipse A is (1, 1) in a fixed coordinate axes. Ellipse B is a circle

with a radius of 2 and an angle of rotation of 45 degrees. The position of the center of

ellipse B is (3, 3) in a fixed coordinate axes. This case is classified as special case in

section 4.1.4. In this example the code is used to compute the penetration distance. Here

one circle encloses the other. The penetration distance is positive (4.17157) which means

contact exists.
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4.2.3 Special Case

Example 4.12 gives the results for a two contact case with circles at tolerances of 1E-5

and 1E-7. Ellipse A is circle with a radius of 5 and an angle of rotation of 45 degrees. The

position of the center of ellipse A is (1, 1) in a fixed coordinate axes. Ellipse B is a circle

with a radius of 2 and an angle of rotation of 45 degrees. The position of the center of

ellipse B is (12, 12) in a fixed coordinate axes. This case is classified as special case in

section 4.1.4.
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Example 4.12.b: Two ellipses. Cote: The ellipses have the same dimensions but in this

case the distance between centers is smaller than 4.12.a. The value is not correct. It is due

to the center of curvature's position, in Ellipse — B, changes in the local coordinate axes.

The position is not at the end as Example 4.12.b.

Example 4.13 gives the results for a two contact case with circles at a tolerance of

1E-5. Ellipse A has a radius of 5 and an angle of rotation of 45 degrees. The position of

the center of ellipse A is (1, 1) in a fixed coordinate axes. Ellipse B has a radius of 2 and

an angle of rotation of 45 degrees. The position of the center of ellipse B is (3, 3) in a

fixed coordinate axes. This case is classified as special case in section 4.1.4. The same

procedure is applied in Example 4.14 — 4.17 at different positions. In its the code is

validated at characteristic cases.
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Figure 4.10 A contact case with two ellipses at 135 degrees in which
centers are on the second quadrant.
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Figure 4.11 A contact case with two ellipses at 90 degrees.



Figure 4.12 A contact case with two ellipses at 135 degrees in
which centers are on the first quadrant.
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Figure 4.13 A two contact points case with two ellipse
at different angles (45 degrees and 135 degrees).
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Figure 4.14 A contact case with two ellipse at different
angles (45 degrees and 30 degrees).
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4.3 Discussion

Both codes, Contact Detection With and Without Penetration, identified the nearest point

of one elliptic curve to the center of another elliptic curve and vice versa. These two

points, in the Contact Detection Without Penetration Code, are used to determine the

position of the points with respect to the curves. Contact Detection With Penetration uses

these two points to calculate the penetration distance. Contact Detection With Penetration

Code is more robust and has more applications than that of Contact Detection Without

Penetration.

The results, in Contact Detection Without Penetration, classify a special case

when one ellipse is inside another ellipse. In this case, Contact Detection Without

Penetration indicates as expected for one curve no contact and for the other curve two

contacts. The special case can be eliminated if the code assumes automatically two

contact points. Both codes do not describe the cases of ellipses that contact in more than

two points. If the curves contact in more than two points, the code will indicate just two

contact points. However, more than two contact points is an unrealistic physical case.



CHAPTER 5

CONCLUSIONS

In summary, the formulations in Mustoe et al. [1993 and 2000] were successfully

implemented for contact detection and penetration distance. However, the formulations

provided by Mustoe are incomplete. Derivation of some formulations was necessary to

implement computer codes. The Contact Detection Without Penetration Code determines

the contact points for realistic cases. However, the Contact Detection Without Penetration

Code cannot be easily expanded to other applications. The algorithms are based on the

discussed mathematical analysis proof reliability for contact detection.

The Contact Detection With Penetration Code successfully calculates the

penetration distance in real cases. The penetration distance is an important value because

it can be used to determine the contact points, as well as to expand the code to include the

contact force.

The Contact Detection With Penetration Code is composed of eight functions,

which simplify the understanding, reusability, and expansion of the code. Substantial

changes in the code structure need to be performed to include many particles. Also, the

application of some optimization mechanism is of importance. The formulation and the

general concepts developed in this thesis will serve as the foundation for such an

undertaking.
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APPENDIX A

BRENT'S METHOD

This section is aimed at understanding the Brent's Method for finding a minimum. A

general problem is to determine the maximum or minimum of real — valued functions.

The objective is to minimize the function, but the same concept can be converted to

maximization because the minimum of f (x) is the maximum of —f (x).

A.1 Unimodal Function

A Unimodal Function is a function that only has one minimum or maximum on a defined

interval. The mathematical definition of unimodal [Johnson, 2002] is:

The value x * minimizes the function f(x) which is defined in the interval [a, b]. Let x 1 and

X2 E [a, b] be such that x1 < x2, then the function is unimodal when:

• if x2 < x * then f(x) < f(x1), and

• if x 1 > x * then f(xi) < f(x).

The value x * maximizes the function f(x) which is defined in the interval [a, b]. Let x1

and x2 E [a, b] be such that x1 < x2, then the function is unimodal when:

• if x2 < x * then f(x2) > f(x1), and

• if x1 > x * then f(xi) > f(x2).

The unimodal assumption provides the logic for eliminating portions of [a, b] that do not

contain the optimal solution. It is possible to have three cases:

Case 1: f(x) > f(x2). Since f(x) is unimodal, the solution cannot occur in the

interval [x2, b]. The solution must lie in the interval [a, x2).
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Case 2: f(x1) < f(x2). Since f(x) is unimodal, the solution cannot occur in the

interval [a, xi). The solution must be in the interval [x i , b].

Case 3: f(x1) = f(x2). The solution must lie somewhere in the interval (xi, x2).

A.2 Golden Section in One Dimension

The functions have to be bracketed for the interval (a, b). The function is evaluated at

intermediate point x, then a new smaller interval, either (a, x) or (x, b) is found. The

minimum is bracketed only when there is a triplet of points, a < b < c (or c < b < a), such

that f(b) is less than f(a) and f(c). If f(b) < f(x), then the new bracketing triplet is (b, x, c).

The process continues until the interval is small enough, with respect to the tolerance.

The way that the new point is selected is called golden mean or golden section.

The optimal bracketing interval (a, b, c) has its middle point b a fraction distance 0.38197

from a, and 0.61803 from c. A Eolden Section does not require the derivative of the

function.



A.4 Brent's Method formulation in One — Dimension

Brent's Method uses a Eolden Section search, switching when it is possible to successive

parabolic interpolation. It uses parabolic interpolation when the process is convergent and

does not leave the interval (a, b). If the function is nicely parabolic near minimum, then

the parabola fitted through any three points ought to more in a single step to the

minimum, or at least near it. Since the goal is the abscissa rather than the ordinate, the

procedure is called inverse parabolic interpolation. The abscissa x is the minimum of a

parabola through three points f(a), f(b), and f(c) as defined in Equation A.3. The formula

fails only when the three points are collinear, in which case the denominator is zero.

A Eolden Section search is designed to handle the worst possible case of the

function minimization. In the worst possible case, the parabolic steps are acceptable but

useless. The Brent's Method will alternate between parabolic steps and Eolden Section.

If the function F has a continuous second derivative that is positive at the minimum, then

the convergence is superlinear.
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A.5 Examples

Examples are provided to demonstrate the efficacy of Brent's Method at different

conditions. Example A.1 and Example A.3 demonstrate the Brent's Method in unimodal

and not unimodal sections of the function. Example A.2 demonstrates the Brent's

Method in not unimodal sections with (1) one maximum and one minimum, and (2) two

maximums and minimum.
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Example A.2: Function f(x) = sin(x). This function has more than one time the same

minimum value.



Unimodals:

Cot Unimodals:

150000 - y
130000 -

110000 --

90000 -

70000 -

50000 -

30000 -

10000 - X

Example A.3: Function f (x) =  x4 + x3 _ x2 + 5
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Function: f(x) = x^4+x^3-x^2+5
Evaluated in the interval:[-2, -0.75]
Tolerance: 1 e-005
The value of x that minimizes the function is: -1.17539
Then the f(-1.17539) = 3.90327

Function: f(x) = x^4+x^3-x^2+5
Evaluated in the interval:[0.1, 1]
Tolerance: le-005
The value of x that minimizes the function is: 0.425391
Then the f(0.425391) = 4.92877

Function: f(x) = x^4-Fx^3-x^2+5
Evaluated in the interval:[-10, 10]
Tolerance: le-005
The value of x that minimizes the function is: -1.17539
Then the f(-1.17539) = 3.90327

Function: f(x) = x^4+x^3-x^2+5
Evaluated in the interval: [-20, 20]
Tolerance: le-005
The value of x that minimizes the function is: -0.72136
Then the f(-0.72136) = 4.37505

Function: f(x) = x^4-1-x^3-x^2+5
Evaluated in the interval: [-20, 20]
Tolerance: le-020
The value of x that minimizes the function is: -0.72136
Then the f(-0.72136) = 4.37505

-20	 -10	 -10000 0	 10	 20

Figure A.3 Function: f (x) = x4 + x3 - x2 + 5 .



APPENDIX B

CONTACT DETECTION WITH FIXED COORDINATE AXES

This thesis uses moving coordinate axes to detect contact. This appendix aims to give

another option. This option is used just the fixed coordinate axes design a formulation to

detect contacts. The formulation developed has not been proved yet. First, the necessary

conditions for n — intersection in a specific positions are:

These conditions can be reformulated in the next equations (Eq. B.2).

The Equations B.3 shows a representation as a function of the conditions in Equations

B.2. In other to find the intersection, a root or zero finding can be implemented in the

Equations B.3.

59



60

These two nonlinear equations (Eq. B.4 a — b) can be solved with Cewton's Method for

non-linear equation. The initial guesses have to be in the range [0, 2n).



APPENDIX C

RADII OF CURVATURE FOR SUPERQUADRATICS

This appendix aims to formulate an algebraic expression for the superquadratic's radii of

curvature. The definition of the superquadratic's radii of curvature should help to

understand the concept and expand the program to simulate general shaped bodies. The

superquadratic curve is defined as:

61



REFERENCES

Allen M. P. and Tildesley D. J., Computer Simulation of Liquids, Oxford University
Press, 1987.

Craig J. J., Introduction to Robotics, Second Ed., Addison—Wesley Publishing, 1989.

Cundall P. A. and Strack 0. D. L., "A discrete numerical model for granular assemblies,"
Geotechnique vol. 29, no. 1, pp. 47 — 65, 1979.

Forsythe G. E., Malcolm M. A., and Moler C. B., Computer Methods for Mathematical
Computations, Prentice — Hall Series in Automatic Computation, Englewood
Cliffs, CJ, pp. 182 — 187, 1987.

Johnson A. W., Math 381 Conlinear Programming, course homepage, US Military
Academy, West Point, Cew Cork, October 16, 2002.
<http://wvvw.dean.usma.edu/math/courses/ma381/MA381/1sn6-search.doc>

Lee K., Principles of CAD/CAM/CAE System, Addison — Wesley, 1999.

Liu C. L. and Lemos J. V., "Procedure for contact detection in discrete element analysis,"
Elsevier Science, Advances in Engineering Software vol. 32, issue 5, pp. 409 —
415, 2001.

Miyata M., Cakagawa M., and Mustoe G. G. W., "Design Considerations of Rubble
Rock Foundations Based on a Discrete Superquadratic Particle Simulation
Method," pp. 213 — 218, Finite Elements: Techniques and Developments 2000,
Edinburgh, Scotland, Civil-Comp Press, 2000.

Mustoe G. G. W. and DePoorter G., "A numerical model for the mechanical behavior of
particulate mediacontaining non — circular shaped particles," in Proc. of 2nd. Into.
Conf. On Micromechanics of Granular Media, Powders and Grains 93, Balkema
Publishers, 1993.

Mustoe G. G. W., Miyata M., and Cazeri H., "Discrete Element Method for mechanical
analysis of systems of general shaped bodies," in Proc. CST 2000 Conference,
Civil-Comp Publishers, Leuven, Belgium, pp. 219 — 224, Sept. 2000.

Cordell L. K., Particle Flow Modeling, Conveyor Dynamics, Inc., June 18, 2002.
<http://www.ckit.co.za/Conveyor/Papers/Dem/particle/particle.htm >

Ouadfel H. and Rothenburg L., "An algorithm for detection inter-ellipsoid contacts,"
Elsevier Science, Computer and Geotechniques vol. 24, issue 4, pp. 245 — 263,
1999.

62



63

Paciorek, C., PhD student in statistic, Carnegie Mellon University, December 6, 2002.
<http://www.stat.cmu.edut-paciorek/computing/node31.html >

Peters B. and D iugys A., "Cumerical simulation of the motion of granular material
using object - oriented techniques," Elsevier Science, Comput. Methods Appal.
Mech. Engrg. vol. 191, issues 17 - 18, pp. 1983 - 2007, 15 Feb. 2002.

Press W. H., Flannery B.P., Teukoisky S.A., and Vetterling W.T., "Minimization and
Maximization of Functions" chapter 10, Numerical Recipes in C: the art of
scientific computing, 2nd ed. Cambridge, England: Cambridge University Press,
pp. 359 - 362, 1992.

Spiegel M. R., Manual de Formulas y Tablas Matematicas, McGraw - Hill, pp 38, 1995.

Tanaka H., Momozu M., Oida A., and Camazaki M., "Simulation of soil deformation and
resistance at bar penetrating by the Distinct Element Method," Elsevier Science,
Journal of Terramechanics vol. 37, issue 1, pp. 41 - 56, Jan. 2000.

Tanaka K., Cishida M., Kunimochi T., and Takagi T., "Discrete element simulation and
experiment for dynamic response of two - dimensional granular matter to the
impact of a spherical projectile," Elsevier Science, Powder Technology vol.124,
issues 1 - 2, pp. 160 - 173, 8 April 2002.

Taylor L. M. and Preece D. S., "Simulation of blasting induced rock motion using
spherical element models," CSM Press, Proceedings of the 1 St U.S. Conference on
Discrete Element Methods, Session 4B, Golden, USA, 1989.

Vu - Quoc L., Zhang C., and Walton O.R., "A 3 - D discrete element method for dry
granular flows of ellipsoidal particles," Comput. Methods Appl. Mech. Engrg.
vol. 187, pp. 483 - 528, Jul. 2000.

Williams J. R. and Pentland A. P., "Superquadratics and modal dynamics for Discrete
Element Methods in concurrent design," CSM Press, Proceedings of the 1 st U.S.
Conference on Discrete Element Methods, Session 1 and 3 Invited Papers,
Golden, USA, 1989.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Characterization of Elliptical Particles
	Chapter 3: Contact Detection for Ellipses
	Chapter 4: Validation of Contact Detection with Elliptical Particles
	Chapter 5: Conclusions
	Appendix A: Brent's Method
	Appendix B: Contact Detection with Fixed Coordinate Axes
	Appendix C: Radii of Curvature for Superquadratics
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

	Nomenclature



