

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

VLSI DESIGN OF STABILITY ROUTING PROTOCOL FOR SENSORS IN
WIRELESS MOBILE AD-HOC NETWORKS

by
Vishnu M. Mandava

This thesis gives a detailed description of the Application specific integrated circuit

(ASIC) design of Stability routing protocol for sensors in mobile ad-hoc networks.

The Stability routing protocol is based on the signal strength and position components

during data transmission while considering sensors in an ad-hoc network. A general

ad-hoc network has unpredictable and variable mobility patterns therefore the signal

strength criteria is adopted for routing. Signal strength criteria has been proved to be

efficient for communication between the mobile nodes without any data loss. In this

thesis an architecture for a processor implementing stability routing protocol for

effective communication has been designed. The processor detects the alert signal

from the sensor network and sends an emergency signal to all the other nodes in the

network. Apart form sending the emergency signal the processor also sends the

position and velocity components of its own node to all the other nodes in the

network. The other functionality of the processor is whenever the processor receives

data from another node it updates the information and sends that information to the

destination node. A VHDL model for this architecture was developed, a selected set

of specific conditions are evaluated through simulation. VHDL simulation validates

the functionality of the architecture. This model was synthesized and the place and

route was done using cadence tools.

VLSI DESIGN OF STABILITY ROUTING PROTOCOL FOR SENSORS IN
WIRELESS MOBILE AD-HOC NETWORKS

by
Vishnu M. Mandava

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 2003

APPROVAL PAGE

VLSI DESIGN OF STABILITY ROUTING PROTOCOL FOR SENSORS IN
WIRELESS MOBILE AD-HOC NETWORKS

Vishnu.M.Mandava

Dr. Durga Misra, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Lev Zakrevski, yfommittee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. SymeTirri apavassiliou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:
	

Vishnu M.Mandava

Degree:
	

Master of Science

Education:

■ Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

■ Bachelor of Engineering in Electronics and Communication,
Sri Rama Krishna Engineering College, Coimbatore, India, 2000

Major:	 Electrical Engineering

To My Parents and the Almighty

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Durga Misra, who not only served

as my thesis advisor, providing valuable resources, but also constantly gave me support,

encouragement and reassurance. Special thanks given to Dr. Lev Zakrveski, Dr. Symeon

Papavassiliou for actively participating in my committee.

I also wish to thank my fellow graduate students in Electrical Engineering for

their support over the years and a special thanks to Kiran Gururaj for his assistance over

the years.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Introduction to AD-HOC Networks and Applications 	 1

1.2 Principles of this Thesis 	 2

1.3 Outline of the Thesis 	 3

2 STABILITY ROUTING ALGORITHM 	 4

2.1 Overview of Related Routing Algorithms 	 4

2.2 Why this Protocol? 	 5

2.3 Overview of the Algorithm 	 6

2.4 Application 	 7

3 ARCHITECTURAL DESIGN OF THE CHIP 	 8

3.1 Overview of the System 	 8

3.2 Architecture of the Chip 	 9

3.3 Design of Updation and Transmitter Module 	 12

3.4 Design of Receiver Module 	 14

3.5 Design of Packet Forwarding and Updating Module 	 16

3.6 Design of Routing Table Generation Unit. 	 18

3.6.1 Stability Calculation 	 19

3.6.2 Routing Table Generation 	 20

4 THE VHDL SIMULATION 	 26

5 SYNTHESIS OF THE MODEL 	 52

5.1 Synthesis Problems 	 52

vii

TABLE OF CONTENTS

(Continued)

Chapter	 Page

5.2 Synthesis of the Model with Cadence Ambit Build Gates 	 53

6 LAYOUTS 	 56

6.1 Place and Route with Cadence Silicon Ensemble 	 56

7 CONCLUSIONS 	 60

REFERENCES 	 62

viii

LIST OF FIGURES

Figure	 Page

2.1 Subnet of '8' nodes 	 6

3.1 Overview of the system 	 8

3.2 Architecture of the stability routing chip 	 9

3.3 Design flow of updation and transmitter module 	 12

3.4 Structure of emergency packet 	 13

3.5 Structure of data packet 	 14

3.6 Design flow of receiver module 	 15

3.7 Design flow of packet forwarding and updating module 	 17

3.8 Design flow of routing table generation unit 	 18

3.9 Stability calculation between two nodes in a network 	 19

3.10 Network of nodes with their costs with respect to its adjacent nodes 	 21

3.11 Network of nodes with source node and its adjacent nodes 	 22

3.12 Network of nodes with the node having lowest cost 	 22

3.13 Network of nodes with the updated predecessors 	 23

3.14 Network of nodes with the second node chosen 	 23

3.15 Network of nodes with all chosen nodes 	 24

3.16 Transformation of Dijkstra's algorithm to find the most stable path 	 24

4.1 High level simulations for the mentioned sequential tasks 	 28

4.2 Timing simulation continued after figure. 4.1 	 29

4.3 Timing simulation continued after figure. 4.2 	 30

4.4 Timing simulation continued after figure. 4.3 	 32

ix

LIST OF FIGURES
(Continued)

Figure	 Page

4.5 Timing simulation continued after figure. 4.4 	 34

4.6 Timing simulation continued after figure. 4.5 	 35

4.7 Timing simulation continued after figure. 4.6 	 37

4.8 Timing simulation continued after figure. 4.7 	 38

4.9 Timing simulation continued after figure. 4.8 	 41

4.10 Timing simulation continued after figure. 4.9 	 42

4.11 Timing simulation continued after figure. 4.10 	 43

4.12 Timing simulation continued after figure. 4.11 	 45

4.13Timing simulation continued after figure. 4.12 	 46

4.14 Timing simulation continued after figure. 4.13 	 47

4.15 Timing simulation continued after figure. 4.14 	 49

4.16Timing simulation continued after figure. 4.15 	 50

4.17 Timing simulation continued after figure. 4.16 	 51

5.1 Synthesis for the Processor implementing the stability routing protocol 	 54

6.1 Layout of the block with out the power rails 	 58

6.2 VDD, VSS stripes in between the layout 	 59

CHAPTER 1

INTRODUCTION

1.1 Introduction to Ad-hoc Networks and Applications

An ad-hoc network is defined as the cooperative engagement of wireless mobile hosts

forming a temporary network without any intervention of established infrastructure or

centralized administration. In such environment, it may be necessary for each of the node

to act as a router, they are free to move randomly and organize themselves arbitrarily,

forward the packets to its destination. Due to the limited range of each mobile host's

wireless transmission mobile users will want to communicate in situations in which no

fixed wired infrastructure is available, either because it may not be economically or

physically feasible to provide the necessary infrastructure or because the expediency of

the situation does not permit its installation. The links of the network are dynamic and are

based on the proximity of one node to another node. These links are likely to break and

change as the nodes move about the network. Such a network may operate in standalone

fashion, or may be connected to the large internet. An ad-hoc mobile networking is all

about providing connectivity between mobile nodes, which have no supporting

connections to the fixed networking infrastructure.

Since ad-hoc networks have no fixed infrastructure, therefore they can be deployed

rapidly with relatively low cost. For this reason, the applications of ad-hoc networks

extend from military u ses to commercial uses. H owever, a wireless ad-hoc network is

practically vulnerable because of its dynamically changing topology, and lack of

centralized monitoring.

1

2

The ad-hoc networks are used to support emergency responses to natural disasters,

surveillance and information gathering in hostile territories and rescue operations where

existing communication infrastructures are not available, rapid deployment of an

unstructured mobile network, where each unit is capable of transmitting video

information and sensor data, would be essential. The requirements may include some or

all of the following a higher bandwidth (for transmitting video data), mobility, sufficient

area coverage, communications beyond the line of sight, and low energy consumption.

Because o f t he t emporal nature o f t he network 1 inks, b ecause o f t he additional

constraints implied by mobile nodes, such as limited bandwidth and power, conventional

routing protocols are not appropriate for ad-hoc mobile networks. Therefore, new

protocols are being developed to exploit the properties of such networks in more

appropriate way, one such protocol is Stability Routing protocol [4, 7] (SRP). This

protocol adapts quickly to routing changes when host movement is frequent and it also

guarantee's that the data is received at the destination node.

1.2 Principles of this Thesis

In this thesis, architecture for a processor implementing the Stability Routing Protocol is

designed. A Subnet of 8 nodes which can be scalable to a large network is considered,

each node is considered to be in the transmittable distance of atleast one node in the

network. It is considered that each node moves in a two dimensional fashion, each node

gets its position and velocity components from the GPS. The actual coordinates from the

GPS sy stem can b e converted into p lanar c oordinates [8-10] u sing v arious c onversion

systems. The processor checks if there is a change in the position or velocity components,

3

the processor also checks for any alert signal from the sensor network. The alert signal

from the sensor network is considered as highest priority. There are total of 8 inputs and

two outputs of which 5 inputs are from the GPS unit and one from the sensor network

and the other two from the transceiver.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides an overview of

Stability R outing A lgorithm, Application o f t he algorithm for communication b etween

the sensors. Chapter 3 describes the architecture of the chip and its various components.

Chapter 4 describes the implementation of the architecture in VHDL and different

implementation issues, the test and the simulation results. Chapter 5 addresses the

synthesis issues, problems encountered during the synthesis and modifications of the

actual VHDL model to make it synthesizable. Chapter 6 describes the physical layout.

Chapter 7 concludes this thesis by summarizing the work and discussing alternative

implementations for reducing the gate count.

CHAPTER 2

STABILITY ROUTING ALGORITHM

2.1 Overview of Related Routing Algorithms

Some of the related routing algorithms for mobile ad-hoc networks are Cluster based

routing protocol [1], Ad-hoc on-demand distance vector routing protocol [2], Dynamic

source routing protocol [3], Signal stability routing protocol [4].

In the Cluster based routing protocol the nodes are divided into clusters, when a

node comes up into a cluster it enters the undecided state and it sends a hello message,

when a cluster-head receives this hello message it responds with a hello message

immediately. When the undecided node gets this message it becomes a member of the

cluster. Each node in the cluster maintains a neighbor table which contains the state of

neighbor (cluster-head or member). When a source node has to send data to destination

node it floods route request packet to cluster-heads if the destination is in this cluster then

the cluster-head sends the packet to the destination if the destination is not in this cluster

then the cluster-head sends the packet to all the other cluster-heads in the network the

cluster-head that has the information of the route sends the route.

In the Ad-hoc on-demand distance vector protocol to find a path to the destination the

source broadcasts a route request packet to its neighbor and the neighbor in turn

broadcast the packet to their neighbors this is done till the packet reaches its destination

or an intermediate node that has a recent route information about the destination.

In the Dynamic source routing each node maintains route cache and the cache

contains the source route that it is aware of, when the source node wants to send a packet

4

5

to a destination it looks up the cache if it already contains the route to the destination. If

the route is not existent in the cache then it initiates the route discovery by broadcasting

route request packet, a route reply is generated when the intermediate node with current

information about the destination receives the route request.

In the signal stability routing protocol the routes are based on the signal strength

between the nodes where signal strength is the maximum time until which the node stays

in the transmittable distance of any other node. This route selection criteria has the effect

of choosing routes that have stronger connectivity, in this protocol each node maintains

the signal stability table and the routing table which has the information of stability of

each node and the routing information to all its destinations in the network, if a source

wants to send a packet to a particular destination it looks at the routing table and sends

the packet.

2.2 Why this Protocol

The sensors main aim is to establish effective communication between the various nodes

of the network. In the case of emergency in a hazardous area communication between the

various nodes becomes critical. So the information that has to be send to various nodes

using the wireless media requires an algorithm which has the capability of transmitting

the information without any loss. When compared to the other routing algorithms the data

is not send in a particular path and the path to the destination is not known initially and is

found only when a node wants to send any information where as in the stability routing

algorithm each node has the routing table to all its destinations and the information is sent

6

in the route which has strongest connectivity which ensures that the information is sent to

its destination with out any loss.

2.3 Overview of the Algorithm

The case of mobile Ad-Hoc network is considered where each node is moving in a two

dimensional fashion where in each node is characterized by four parameters, two

parameters represent the position of the node, characterized by 'X' and 'Y' ,the other two

parameters represent the velocity with which the node is moving, characterized by 'IP

and 'V'. Where U = dx/dt, V = dy/dt. Each node in the network should be able to

communicate with one or the other nodes in the network. I communication is not possible

the n ode may not be in the network. A n ode should b e within the maximum possible

Transmission Range of at least one node when it is considered as a part of a network. The

maximum possible transmission range is 'D'.

Figure 2.1 Subnet of '8' nodes.

7

We assume that the positions and velocities of all nodes are known. If n ecessary, this

information has to be broadcasted. Flooding algorithm is used for this purpose. Each

node had information about

1. Real Position, Velocity.

2. Position and Velocity broadcasted to the whole system in the past.

If there is a difference between '1' and '2' is greater than a given threshold broadcast is

initialized and all the other nodes in the network are informed of this change.

Each node 'A ' calculates the stability of all links of the type (A, B) where 'B' is another

node in the network. The stability t (A, B) is determined as the expected time, where t (A,

B) is defined as the maximum time until which node 'A' stays within the transmittable

distance of node 'B'. We note that t (A, B) is equal to t (B, A). At time t = 0 IABI < D.

Each node in the network knows the stability of the other nodes in the network. Each

node 'A ' constructs a routing table for all destinations X, using shortest path algorithm to

find the path from 'A ' to 'X' with maximal stability. Stability of the path is determined as

the minimal stability of links.

2.4 Application

This thesis concentrates on the effective use of this algorithm in coordination with the

sensor unit output. The sensor unit output is of prime importance and should be

considered with highest priority. By the use of this algorithm it can be ensured that the

sensor information can be sent to all nodes in the network with out any loss.

CHAPTER 3

ARCHITECTURAL DESIGN OF THE CHIP

3.1 Overview of the System

The p roposed V LSI architectural d esign oft he w hole c hip i s discussed i n t his s ection

Figure.3.1 gives an overview of the whole system, which can be considered as a unit in a

single node of an Ad-hoc network.

SENSOR UNIT

L

TRANSCEIVER
TX/RX

STABILITY ROUTING
PROTOCOL CHIP

CPU
MEMORY

Figure 3.1 Overview of the system.

A transceiver is taken into consideration which is used to transmit and receive data

from all the other nodes. The central processing unit (CPU) of the work station is linked

8

BUS
ARBITRATOR

SENSOR
UNIT

1,34f..£1,CNC

PACKET
FORWARDING AND

UPDATING UNIT

RECEIVER
UNIT

t
UPDATE UNIT

TX PACKET

ROUTING A
TABLE

GENERATION

MEMORY UNIT

POSITION
TABLE

STABILITY
TABLE

ROUTING
TABLE

EMERGENCY
TABLE

9

A transceiver is taken into consideration which is used to transmit and receive data

from all the other nodes. The central processing unit (CPU) of the work station is linked

to the stability routing module which decides the route the packet should take from

source to destination. The Stability routing protocol chip module is responsible for the

protocol, when it is implemented the routing table will be stored in the memory. Then

CPU c an utilize the r outing i nformation t o receive and transmit information t o all the

other nodes in the network.

3.2 Architecture of the Chip

Figure 3.2 Architecture of stability routing chip.

1 0

The architecture of the stability routing chip [4] is divided into sub modules as Bus

Arbitrator, Memory Unit (MU), Receiver Unit (RU), Update and Transmitter Unit (UTx),

Packet Forwarding and Update Unit (PFU), Routing Table Generation Unit (RTU).

Figure. 3.2 demonstrates the architecture of the Stability routing chip. The Bus arbitrator

selects the one with the highest priority on the system bus based on the priority of the

interrupt signal from the Update and Transmitter Unit (UTx) and the Packet Forwarding

and Update Unit (PFU). The highest priority is given to the Update and Transmitter Unit

(UTx) as it handles the data coming from the Geographical Positioning Unit (GPS),

which will give the information regarding the position and velocity of the node in

consideration and the Emergency notification data coming from the Sensor unit. This unit

sends back an acknowledgement signal to the unit from which it gets the bus request

signal. This is done when the request is accepted.

The Memory Unit (MU) has three Look up Tables (LUT). They are Position

LUT, Stability LUT, Emergency LUT and the Routing table. The Position LUT has the

information of the position parameters X, Y and the velocity parameters U, V of all the

other nodes in the network and it is assumed to be constantly updated by the GPS for

every 10 seconds.

The Stability LUT has the Stability time of each node with respect to every other

node in the network. The Emergency LUT has the sensor information of each and every

node in the network.

11

The R outing T able c onsists o f m ost s table p aths from a p articular s ource n ode t o

every other node in the network (Most stable path = the communication path that lasts

long without breakup).

The Receiver Unit (RU) checks the type of the packet received. If it is a Data packet

then it is sent to the Packet Forwarding and Updating Unit. In the PFU unit the node that

receives this packet comes into play. It compares the origination id to its own node id.

Incase if its own node id it will discard the packet. If the origination id is different form

its own node then the position data is updated in the Position LUT. If the packet is an

Emergency packet then it is updated in the Emergency LUT and it is sent to the CPU for

Processing.

The Update and Transmitter Unit (UTx) receives position and velocity coordinates

from the GPS. These coordinates are compared with the existing coordinates, which are

present in the Position LUT. The new coordinates are stored if a change in position and

velocity components are detected. If the Update and Transmitter Unit (UTx) receives an

emergency indication from the Sensor Unit a packet is formed and then it is transmitted

to all the other nodes in the network and it is sent to the CPU for Processing.

When ever a data is updated in the LUD an update signal is sent to the Routing Table

Generation Unit then this unit gets the stability information from the Stability LUT and

constructs Routing table.

INTR1

Read the new X,Y,U,V
Positions From the G.P.S,
compare with the new values
in the L.U.T and calculate the
difference

NO 	 l ifference >
Threshold

YES

Update the data in
the look up table
and data packet
formation

Figure 3.3 Design flow of updation and transmitter module.

Information
sent to the

► CPU for
further
process

3.3 Design of Updation and Transmitter Module

12

13

Figure. 3.3 illustrates the design of the Updation and Transmitter Module. In this module

an interrupt from the GPS Unit is checked which is an indication of change in Position

parameters X, Y and the Velocity Parameters U, V. If there is any emergency signal from

the Sensor Unit an Emergency Packet is formed. Figure 3.4 shows the Structure of the

Emergency Packet.

TYPE OF
PACKET

ORIGINA'TK:IN SOURCE IDID
DESTINATION

ID
TII IE STAMP EMERGENCY DATA

0 	 2 	 10 	 18 	 26
	

34

Figure 3.4 Structure of emergency packet.

Where the Type of packet is '01' since it is an emergency packet, Origination ID is

same as Node ID, Source ID is same as Node ID , Destination ID = "11111111" , Time

Stamp is initiated as '00000001', and the last field Emergency Data is the data that comes

from the Sensor Unit. After the packet is formed the information from the Sensor Unit is

passed to CPU for further Process. And an interrupt (INTRO is sent to the Bus Arbitrator

for the use of the Bus whenever an interrupt acknowledge (INTRACK1) is received then

this packet is put on the Data bus. If there is no Emergency Signal from the Sensor unit

then the parameters that are received from the G.P.S Unit are compared with those in the

LUT and their difference is calculated if this difference is greater than the threshold

values (X = 10 meters, Y = 10 meters, U = 5 m/sec, V = 5 m/sec) then this information is

updated in the Position LUT and a Data Packet is formed. Figure 3.5 shows the Structure

of the Data Packet.

14

TYPE OF
PACKET

ORIGINATION
ID

SOURCE ID
DESTINATION

ID
X V'	 U V TIME STAMP

10 	 18 	 26 34 42 50 58
	

66

Figure 3.5 Structure of data packet.

Where the Type of packet is '00' since it is an Data packet, Origination ID is same as

Node ID, Source ID is same as Node ID, Destination ID = "11111111", X = X Value

from G.P.S Unit, Y= Y Value from G.P.S Unit, U = U Value from G.P.S Unit, V = V

Value from G.P.S Unit and the Time Stamp is initiated as '00000001'. After the packet

is formed then an interrupt (INTRO is sent to the Bus Arbitrator for the use of the Bus

whenever an interrupt acknowledge (INTRACK1) is received then this packet is put on

the Data bus. This process is repeated mean while if there is any Emergency Signal

detected from the output of the Sensor Unit then the Emergency Process is serviced.

3.4 Design of Receiver Module

Figure. 3.6 illustrates the design of Receiver Module. In this module it checks for the

packet type and it forwards it to the Packet Forwarding and Update Unit. When ever a

packet comes into this Receiver Unit its information is stored in the buffer and

Origination ID is checked if it is same as the Node ID then that particular packet is

discarded. If it is not same as the Node ID then the Time Stamp component in the Packet

is compared, if the time stamp component in a packet is greater than 8 it is considered

that all the nodes in the network have the information of that particular packet and the

packet is discarded. It is considered that there are 8 nodes in a network and whenever a

NO

DATA EMERGENCY
PACKET IS PACKET IS

SENT TO THE SENT TO THE
PFU PFU

YES

YES

NO YES

ZNN
RIGINATIONN,

= NODE 10/

E STAMP
> 8'`NN

NO

NO

TYPE OF `N
PACKET = 1

Ns,

DISCARD
THE PACKET

DISCARD
THE PACKET

YES

RECORD DATA
FROM THE DATA

BUS AND STORE IN
A BUFFER

15

node receives a packet from the other node it increments the time stamp component in the

packet.

Figure 3.6 Design flow of receiver module.

16

If the Time Stamp is less than '8' then it is checked for the Type of Packet if the Type

of the Packet is '01' then the packet is sent to the Packet Forwarding and Update Unit

and is notified that it is an Emergency Packet. If the Type of the Packet is '00' then the

packet is sent to the Packet Forwarding and Update Unit and is notified that it is a Data

Packet. This process continues whenever it receives an enable indicating that information

has come from the other node.

3.5 Design of Packet Forwarding and Updating Module

Figure. 3.7 illustrates the design of Packet Forwarding and Updating Module. In this

module after it receives the packet from the receiver module it updates the data in the

lookup table and it forwards the packet to other nodes in the network. When the packet

comes from the Receiver m odule i t c hecks whether it is a D ata P acket or Emergency

Packet if the packet is Emergency Packet then the Origination ID in the packet is taken

and the data in updated in the look up table at that corresponding location. Then the

information of the Source ID is updated with that of the Node ID and the Time Stamp is

incremented once. Then this information is sent to the CPU for further Process, an

interrupt (INTR2) is sent to the Bus Arbitrator for the use of the Bus whenever an

interrupt acknowledge (INTRACK2) is received then this packet is put on the Data bus.

PACKET RECEIVED

17

/\..

i
/ 	 \ „

,•

	

\ 	 _,,,,
/ TYPE OF PACKET N. T.'< 	 7.____...,
, 	 . 1

.
N 	 /

\
N./

CHECK THE ORIGINATION
ID AND UPDATE IN THE

DATA IN THE LUT &
CHANGE THE SOURCE ID

TO THE NODE ID AND THEN
INCREMENT THE TIME

STAMP BY '1'

INFORMATION
IS SENT TO
CPU FOR
FURTHER
PROCESS

NO

CHECK THE ORIGINATION ID AND UPDATE THE
VALUES OF X,Y,LI,V OF THAT PARTICULAR NODE IN
THE LOOK UP TABLE & CHANGE THE SOURCE ID TO

THE NODE ID AND THEN INCREMENT THE TIME
STAMP BY 1'

INTR2

BUS ARBITRATOR INTR2

YES
DATA IS
PUT ON

THE DATA
BUS

Figure 3.7 Design flow of packet forwarding and updating module.

If the packet is a Data Packet then the Origination ID in the packet is taken and the X,

Y, U, V parameters are updated in the Position LUT at the corresponding location. Then

the information of the Source ID is updated with that of the Node ID and the Time Stamp

TAKE THE VALUES OF POSITION OF EACH
NODE FROM THE POSITION TABLE INTO
THE BUFFER AND CALCULATE THE
STABILITY OF EACH NODE WITH RESPECT
TO ALL THE OTHER NODES IN THE
NETWORK AND UPDATE IN THE BUFFER
AND THEN INTO THE STABILITY TABLE,
CALCULATE THE ROUTING TABLE AND
UPDATE THE ROUTING TABLE IN THE
BUFFER AND THE MEMORY.

YES7 IF UPDATE1

NO

NO

18

is incremented once. An interrupt (INTR2) is sent to the Bus Arbitrator for the use of the

Bus whenever an interrupt acknowledge (INTRACK2) is received then this packet is put

on the Data bus. This process continues whenever the Packet Forwarding and Updating

Unit gets a packet from the Receiver Unit.

3.6 Design of Routing Table Generation Module

UPDATE2
=1

YES

TAKE THE VALUES OF POSITION OF EACH
NODE FROM THE POSITION TABLE INTO
THE BUFFER AND CALCULATE THE
STABILITY OF EACH NODE WITH RESPECT
TO ALL THE OTHER NODES IN THE
NETWORK AND UPDATE IN THE BUFFER
AND THEN INTO THE STABILITY TABLE,
CALCULATE THE ROUTING TABLE AND
UPDATE THE ROUTING TABLE IN THE
BUFFER AND THE MEMORY,

Figure 3.8 Design flow of routing table generation module.

Velocity
v1)

19

Figure. 3.8 illustrates the design of Routing Table Generation Module. In this module

after it receives the updatel signal from the Updation and Packet forwarding module the

routing table module gets the position components (X, Y) and the velocity components

(U, V) of each node from the position table and calculates the stability of one node to all

the other nodes in the network.

3.6.1 Stability Calculation

Figure 3.9 Stability calculations between two nodes in a network.

20

Figure. 3.9 illustrates the calculation of Stability between Two Nodes in the Network.

Where the position components of node '0' are (x0, yO) and the velocity components of

the node '0' are (u0, v0), the position components of node '1' are (xl, yl) and their

velocity components are (ul, v1) and 'D' is the maximum possible transmission distance,

Stability (T) the time until which the node stays within the maximum transmission range

with respect to the other node. The maximum possible transmission distance 'D' is given

by the below expression where x0, yO, xl, yl, uo, vO, ul, vl are position and velocity

components. [[(x0 + u0*t)—(xl + ul*t)] 2 +[(y0 + vo * t)— (y1+ vl*t)i2 = D2 (3.1)

The above expression can be transformed into a quadratic equation a * t 2 + b* t + c = 0

from which the Stability CO is calculated. Where a = (u0 — u1) 2 + (v0 — v1) 2 ,

b = 2* [(x0 — xl) + (y0 — yl)] and c = (x0 — x1) 2 + (y0 — y1) 2 + D 2 . The roots of this

quadratic equation give the Stability (T).

3.6.2 Routing Table Generation

After the stability table is updated in the buffer and in the global memory then the

Routing Table is constructed from each node to all destinations using the shortest path

algorithms. The Dijkstra's algorithm[6] and the Bellman-Ford's algorithm[6] are some of

the shortest path algorithms, the Dijkstra's algorithm, which is used to find the shortest

path between the nodes is used, is transformed to find the path with highest stability. The

Dijkstra's algorithm solves the problem of finding the shortest path from a given source

node to all the other destinations in the network of nodes. Initially in a network nodes

each node and its cost with respect to its adjacent node is known where cost is the label

assigned between two nodes in the network. The label can be function of distance, band

21

label assigned between two nodes in the network. The label can be function of distance,

band width, time, average traffic, stability, communication cost, mean average length,

measured delay [6]. In the Figure. 3.10 to explain the working of Dijkstra's algorithm the

costs between the nodes is considered as a function of distance, the source node from

which the shortest path is to be found is labeled as '0' and the costs of all the other nodes

are labeled as '00'. Then the node with the lowest cost is chosen and the nodes adjacent to

the chosen node are relaxed where relaxation is a process of assigning cost to a node as a

function of sum of previous costs, the predecessors for all the relaxed nodes are updated.

Original Node Colour

Original Edge Colour

Node'Edge In Focus

NodeEdge Chosen

8.5.0 %2 D

32:0
7

---.01Erzr

Figure 3.10 Network of nodes with their costs with respect to its adjacent nodes.

Figure. 3.10 illustrates a network with its nodes and their costs with respect to the

other adjacent nodes where A,B,C,D,E,F,G,H,I,J are the nodes in network.

All nodes have antini.te coat except the source
)

380 v313 .0

'It,

MI Original Node Colour

Ell Original Edge Colour

MIMI NotieJlEdge In Focus

Ell Node/Edge Chosen

Figure 3.11 Network of nodes with source node and its adjacent nodes.

Figure. 3.11 illustrates a network of nodes where 'A' is the source node whose cost is

labeled as zero and all the other adjacent nodes are labeled as infinity.

22

Original Node Colour

▪ Original Edge Colour

1111 NodefEdge In Focus

▪ Nodeldge Chosen

Figure 3.12 Network of nodes with the node having lowest cost.

Figure. 3.12 illustrates a network of nodes where 'A' is chosen, the node with lowest

cost and all adjacent nodes to the source node are relaxed.

74.0	 12.02.0

76.0

Upda pre CCCSSOIS for vel d nodes..

12.0

100

4

lovest cost...Choose the node

Relax all isOacent nodes..

1111 Original Node Colour

1111 Original Edge Colour

111.1 NodelEdge In Focus

1111 Node.Edge Chosen

23

Figure 3.13 Network of nodes with the updated Predecessors.

Figure. 3.13 illustrates the updation of predecessors for all the relaxed nodes. This

procedure is repeated until all the nodes in the network are chosen. This gives the shortest

path from the source node to all the other nodes in the network.

NMI Original Node Colour

▪ Original Edge Colour

11111 NotieEdge In Focus

11111 NoileftEdge Chosen

Figure 3.14 Network of nodes with the second node chosen.

Figure. 3.14 illustrate the repeated procedure where the second node '13' is chosen.

ME Original Node Colour

NIB Original Edge Colour

OM Nod&Edge In Focus

MINI Node/Edge Chosen

24

Figure 3.15 Network of nodes with all chosen nodes.

Figure. 3.15 shows a network where all its nodes are chosen and the shortest path

from the source node to all nodes in the network. According to stability routing algorithm

the routing table is constructed using the shortest path algorithm with maximum stability

as criteria, the Dijkstra's algorithm is transformed to find the shortest path with maximum

stability.

initialization.
Source node cost - 0
All other nodes cost = mftnL

Relaxation .

Cost of node sum of previous costs

Extract-min

inittalization
Source node stab. = infinity
All other nodes stab_ -

Relaxation.:
stability of node nun of previous

stability

Extract-max

Dz:iffstra'S Algorithm Transformed Algorithm to finding the path
with max imum stability.

Figure 3.16 Transformation of Dijkstra's algorithm to find the most stable path.

Figure. 3.16 illustrates the transformation of the Dijkstra's algorithm to find the path

with maximum stability where the source node is initially labeled as infinity and all the

other nodes are zero, the relaxation as the minimum of the previous stabilities and the

25

node with the maximum stability is considered. The paths from each node to all the other

nodes in the network are calculated depending on the transformed algorithm and are

updated in Routing Table of the Memory unit.

The hardware realization of this particular algorithm is considered to be efficient and

is faster compared to the software implementation. As this particular architecture is

application specific further enhancements as regards to implementing the protocol is not

necessary, while s oftware implementation h as a n advantage o f m odifications for o ther

applications at the expense of speed. Hence hardware realization is suitable for

implementing this protocol.

CHAPTER 4

THE VHDL SIMULATION

The high level simulation for the individual blocks of the architecture as discussed in the

previous chapter is simulated and tested in VHDL. This basic architectural module

underlying the behavioral process is divided into 3 units Flooding Unit, Stability Unit and

the Routing table Generation Unit, where the Flooding Unit is integrated unit of Update

Transmitter Unit & Packet Forwarding Update Unit and Receiver Unit. Each unit output

is fed as an input to the other unit. The flooding unit is invoked by 3 different inputs

namely gps_intr, when the gps information is delivered to the node, broadcast_intr, when

the information about the other nodes is delivered to the node and sensorsignal_ready,

when the sensor information is delivered to the node. These three inputs can occur

individually or simultaneously.

A Subnet of 8 nodes in an ad-hoc network which can be scaled to a large network is

considered in which the nodes are randomly placed in an XY plane such that each node

can communicate at least with one other node. Each node has a stability routing chip and

its own GPS unit and sensor unit, each unit gets the position and velocity components

from the GPS unit. A random node is considered and the functionality of the stability

routing chip is checked for this particular node. The initial position and velocity

components for this node are assumed as (16, 20) and (4, 4) respectively, the position and

velocity components for the remaining '7' nodes in the network are assumed for

simulation.

26

27

As can be seen from Figure. 4.1, gps_intr is '1' at Ons, the other two inputs

broadcast_intr is '0' and the sensorsignal_ready is '0' which means that there is only

change in the position components X,Y or the velocity components U,V. The new

position components are x _position i s 00010000' (16) , y_position i s 00010100'(20)

and the velocity components are u_velocity is '00000100'(4) and the v_velocity is

`00000100'(4) are obtained from the gps unit at Ons.This position and velocity

components are stored in the gpsin_input_buff 1 and gpsin_input_buff 2 and then these

position and velocity components are broadcasted to all the other nodes in the network. A

packet 'broadcast_outpue is formed it has various fields along with the x_position,

y_position, u_velocity, v_velocity parameters, type_packet is '00' which indicates that is

not an emergency packet, original_id is '00000001' which indicates that origination of

the packet is nodel and source_id is '00000001' which indicates that source of the packet

is nodel and desitation_id is '11111111' which indicates that packet has to be sent to all

the other nodes in the network, timestamp is '00000000' whenever a new packet is

formed the timestamp is made zero and whenever the packet is received by another node

and the sent to the next node the timestamp is incremented by '1'. When the time stamp

is greater than '8' it is considered that all the information is received by all the nodes in

the network. At lOns it can be seen that the packet is formed, the

rfinput_outputbuffer_data(1) is

00000000 	 1000001 00 00000100 000101 00 00010000 11111111 00000001 00000001 00

Time stamp 	 I V_veloelty U_velocity Y_poslOon X_position Destination _Id Source _Id Original _Id
Type_
packet

GPS Buffer-1

60000000'
1.1 	 'at

28

this is the information that is to be sent to the other nodes in the network. The gps_intr is

zero at 2Onsec which indicates that the change in the position and velocity components

are acknowledged.

flloodelLundiclk
ftwanginutigps int
/11DoduLunithinsursignaLrealy
tflookLuniftruicastint
filcietimunitikpostlion
efloaarionitkposten
tfinimunttiu_velatily
410oevigordtkvelaelty
10001nLunitiftlikeriable
111001Munitaloolln
AlweitiLtatigpsiti_Input buff 1

xjostort-
y_mition
u viloctty
.vyalocity

Mao* . unfti sin_inputpuff_Z

to

0
0
00(30000

0010100
OC(100100
OIND0100
0
btu OXIULPAI inuuttu uuuuuuuu uuumuu.
(00010000 01010100 00000100 000001
00010000

1013010100
00000100

10%1001110
110001000

C101000

00100111111•111111111111111111111111011111111111111111111
MIMES

101$10.10MINKIIIIII1412101011•11111111N11111111•1
EFURE111MIIIIII
571010100• 1•11111111111111111111•11111111
0004010 t NMI 11111111111•1111111111111111111111111

I I I
	

01 101 1000010 . 01	 1(
00110000 Jill' 1

,u_velotity

9. almuinLunitilminsl
type jacket
oval id
sauce id
,ciestimatierui
yjkrAon

u_Yelocitv
"v velocity.

Ina0PVILtiftIt/lhre5r1IA
11100emonlYmergen

1 - "tloocing_uniVem
rilaoarig_un .

(1)
(U)

GPS Buffer-2

Packet

JIM)
000010000 	 00001

00000000100000001000001 i 	 100001
111.1101111111JUU111.1X1111111UULIIIIUU11.11JUUL11011)

cop

EF1 111Wiraimm=====1111

•• 111111111111
	 111111111111111111111111 111•••ammilimmaiminie

	ow! I II 	
IPA I 	!i `1111t111t1
ogiiiiivowapjummimminimi
1[1111.11111111•1•1111111=111111111111111111•1
gliE111 11117
VIIIIEMPIIIIMEMIIIMIME1111111111N11111

11101111111111111111•1111111111111111
111111111111111111111111MINUMEIMIIINIMI1111111111111=1111111111111111111M

Information tin he cent to all the other nocle , 	F- 10 ns

■•■■■■■■■••■■■■•■■■•111•1•11,

00000001
030000011

0000 - 000 C0 0000
CG91.1 00

Figure 4.1 High-level timing simulations for the mentioned sequential tasks.

At 3Ons gps_intr is '1 indicating that there is a change in the position or velocity

components now the new positions that are obtained form the GPS are stored in the

gpsin_input_buff 1 and the old positions are stored in gpsin_input_buff 2. It can be seen

at 3Ons in Figure. 4.2.

iffooding_uniticik
ooding_unit/gps_intr

if a pain g_un rtisensorsIgnaLre ady
Moo d ing_unitt roadcasürOr,

ca- ifloofiThg_unittx_position
1E- illooding_unitiy_p °snip n
131- /floc) cling_unitiu velocity

illooding_unitfy_velocity
Alooding_uniVst3bility_enable

a- iffoodinumittgpf 	 ut_buttl
111- 11100tling_urtiVilo044,

xo-sitio
y_pos 	 New position and
LI_ elocit, velocity components

©- 	 o oding_unagpsin_Input_b uff.2
.x_positior
.y_positioi Old position and

velocity components
,v yetoctt'r

iflooding_unItibroadc ast
pe_packet

source jd
destnation_id
x_posilion
y_posilion

v_volocny
time_starap

/Hood olg_u n &threshold
EF Alp od ing_un Verne rgoncyjnput
ID— Illooding_unand rne ig enc.' y_outp ut

ood in 9_un rtinInput_ouipult uttr_ciata
(1)

111111111111111■1111

	Imola
'I'IIIlI!I'Itlr1I!III1IIIo Ft

11111111111111111■111111111111111.1

11111111111M111
11111111111111111111111111111111111111 	

11 	 II 	 i	 i 	 nut 1t I 1! 1 tt
	 NM=

RE)11111111•1111111■111101111111111111111111MUODIR
00010

111111111111111111111.111111111111UNIM
1111111111111111111=11111111111111111111101111111

111111111111111111111111111111111.111110111111111111MI
111111MIN111111•11111111111■MMII
11111111111110111111111111111111111111=111111MM

 11111111111111111111111M
all11111111111111111111111111111111111

1111111111111MIIMINIZIONSIO .alliM111
1111111111111111111111111111111111111114[011
11111111=1111111111110111111111111111111111111

00060 100
00000000
10
(Uu UUUULIUUU, al I PIMP III
(uu LtUUULluthi,
000000000000 	
0000000000c001

0
0
00110100
00110100 	 00010100
00000100 	 00000100
00000100 	 noon -ma
0
(UU UUUUUULIU 11
(00110100 0011
00110100
00110100
If.`,0013100
00000100
(00010000
00010000
00010100

e'.'01;51-Jui 00
00000100 u0000100
{00 00000001 001 	
00	 10.0
00000001
00000001
11111111
00010000
00010100

100000001
q0000001

1'1111111
1:163, 1
i 1
rii1000100

II
)

)(1111

1011111111

u 0001 00

1111111111IMMINMENIMMI
11101111111•111111111=1111•1111
ENEEMBEMEE

1111111111111
Min

11111.111■0
1111111111111111111111111191

111)	 14,,,

30 ns

x 01 0000 1001 1 01 001 `

till 1
n

29

Figure 4.2 Timing simulation continued after figure. 4.1.

The position and velocity components in the both buffers are compared and if the

change in any of these components is greater than threshold if the node has moved from

the transmittable region of one particular node to another node it is considered that it has

exceeded the threshold level. Then the new position parameters are updated in the

position table and then broadcasted to all the other nodes in the network. As difference in

the x_position and y_position components are greater than the threshold it can be seen in

111=111r11111111111L
Information to/be sent to all the other nodes

30

the Figure. 4.3 At 5Ons the broadcast_output packet is formed with the updated

parameters and the rfinput_outputbuffer_data(1) is

0011010000000000 00000100 00000100 00110100 11111111 00000001 00000001 00

Time_stamp 	 V_velocity U_velocity Y_position X_position Destination_id Source_id Original_id
Type_
packet

this is the information that is to be sent to all the other nodes in the network..

/SoodinLunitick 	 0
ticoelinonlYgpiAtt 	 0
Atocling_unthosorsignalseatty 	 0
thading.unitibroadrastint 	 1
MoodingjoiWAsito 	 00110100

	

jognon 	 001101110
Phoding_untVivelooly 	 00000100

	

L9 itoodlnLunilk_stletAy 	 00000100

13- toodin0_untt,ginkinpikbuff.1
puitiori

ALvelocity
N:yelocily

/ o0diriguriltig isyunrittbulT Z
x_pasitior
.y_posilon
.u_ve1001ty
.v velocity:

gloodln9 	 (UU UUIJUULIU4 LCUULIUUU IJIJULIULIUU UtIUUUUUU UtIUULWUU

Moding_unitIbma 	 coi1pvt 	 (00 00000001 00110001 11111
npe jacket 	 OD
oriiai id 	 00000001

00000001
MestInalforijd 	 11111111.

{00110100 00110100 00000100 001001001
00110100
00110100
00000100
00000100
(00110100 00110100 80000100 00000100)
00110100
08110100
00000180
08000100

00110100 00110100 00000100 0 0100 00

DIDEMI11111•1
RIM 	

	r'.0100 Immuni 	

111111111111111•1111111.11111.11
	illffurimmous 	

I NDIE•11111111111111111111•111•11111111
111111111•111111•1111111.111011111

00 10 00 11111111111111111111111111111.
1•535111111111111111111111111111•111

WiiNFM111111M1111111011M1111111111

1.1•1111111111•1111

00810000

	11111111111MIN
itiliiii1M11111111111111111111111111111 11111

	MIME

'00

00000101)

0010001

+001 0100

00100

• „,,,poston
.y.,„ptatOn

• ,u_velocity
.v_velocity

• Arte_damp
0704Ing ur►iteashold

E- Plinadinunittetnergency _Input
ignding_urilVettigerty.output

—
th-

ttoodIrtunttIO

(uu UUU
unIVIfinoutsutpulbunr. data 	 (00800000

00110100'
00110108:
00000100
00000100
00000000
14

000000000 oalotioa000100001
011

U t1UUUUU41014140

Packet

su

urnTdrirmmimmmraEmm

miwzmismwansmi

11111111111111111=111111111111111•111111111

111111111111111•1110

aiiimmummimm

IMEETIEMBEEN
UMIIIIMINikuaututtlia

00010000
	

00110100'

10

0100 11•111111•111

UU UUW.11JUU1

Information from the other nodes in the network

Figure 4.3 Timing simulation continued after figure. 4.2.

0001001000010010 00011110 00011100 11111111 00001000 00'00000110 00000100

X_posItIon 	 DestInatIon_ld Source_id 	 OrIgpnal_idTime_stamp 	 V_velocIty Y_positIonU_velocIty
Type_
packet

31

At 5Ons the gps_intr is '0', sensor ready is '0' and the broadcast_intr is '1' which

indicates that it is a broadcast packet, a packet containing the information of the other

nodes, rfinput_outputbuffer_data(0) contains the received information from the other

nodes.

The first two bits are type_packet '00' which indicate that the packet is not an

emergency packet and the last eight bits are time_stamp '00000110"6' is checked if the

time stamp is greater than '8' then the information is discarded. The next 8 bits next to

the type_packet are the original_id '00001000' which indicates that the position and the

velocity components are corresponding to node '8', the next 8 bits '00000100' source_id

which indicates that the packet has come from node '4' and the next '8' bits '11111111'

destination id indicates that the information has to be sent to all the nodes of the network,

the next 8 bits '00011100' is x_position component, the next 8 bits '00010010' is

y_position component, the next 8 bits '00011110' is u_velocity component and the next

`8' bits are v_velocity component of the node '8'. As the time_stamp is less than '8' and

the original_id is not same as this nodeid this information should be updated in the

position table and source_id is updated as '00000001' and the time_stamp is incremented

by one '00000111'and broadcasted again, and the stability_enable is made '1' indicating

the stability unit that the positions have been changed. The information that should be

sent to other nodes in the network can be seen in rfinput_outputbuffer_data(1) at 8Ons in

Figure. 4.4.

00000111

Tirnet_stamp

0001001 0 00011110 00010010 00011100 11111111

DestinatIon_hl

00000001

Source_id

00001000 00

Type-packet
V_velocIty U_velocIty Y_positIon X_position

00 1 10100'
1.111 1 01 00 1

0010 h
ii):00ao1

1111111
irll moo 	tool co
011103 00'! 	 X11010010

32

00000111 00010010 00011110 00010010 00011100 11111111 00000001 00001000 00

Time_stamp V_velocity U_velocity 1Y_position X_position Destination_id Source_id Original_id
Type_
packet

it can be seen that the time stamp is incremented by ' 1 ' and the source_id is updated.

floodinaj
100111tuniVgps _int!
10Dodingitatroadtatinis

jamb '
• frloodirtundrityelpeily
• illooduionittoelocily
gr 	 dritvinditootin
0- illoodIngistigskinputbutt_1

iclsiliorl
vposiNciri

V8i0Citv
Y_VZIOrity

ondinviwilqpin

moat Mon
ity

v_veluuty
giuuthrtunitilludfic dtuutllit,

n 	 .onqinal jd
2

-
source

y pan

oe.10(
linteit3Top

1001iiivai111tnethol41
.001ing_pniVeriergency input

• lipOing_uniNvergency:output
• illoodinotainputoutpultoireOla

t (1)
(0)

m.

0
0
00110100
00110100
110000100
00000100
[00 00001000 00000100 11111111 00011100 00010010 00011110 011010010 0001 1
;0011 am 00110100 00600100 00000100}
001101013
00110100
011000100
mom in
innu ni 40110100 Ammon ufinni 00)
00110100
001101w
pi:106010o
Immo°
[00 00001000 0i 11 i00L10111111111 00011100 0810010 10011 10 	 10010 0001 	
00
uutiti1000
u011.10001
11111111
C10011100
wow

000100111
000110111
10

OUIJIA111111i uuuutit1U111111111Uulll IJIA1111111.111)
11U k11110.1R11.1UULIULIUD 411JUL11.1111J1.11J1.11.10111111

	(000001110001001000011110000100100001 1100111111110001.1000100001100 	

	

000001110001001 0iuU0111100001001 [1000111001111111 tuonowitompuoo 	
	o00l11i1M001001001.1011 , 1100001001000011100111111110000010000000i000oa 	

Packet

_enable

Updated information to be sent to all the er nodes

'61.1 lis

Information from the other nodes in the network

Figure 4.4 Timing simulation continued after figure. 4.3.

33

At 9Ons when both the gps_intr and broadcast_intr are '1' which indicates a change in

either the position and velocity components of this particular node and a broadcast packet

which has the information of the other nodes have occurred simultaneously in this case

the broadcast_intr has a higher priority than the gps_intr so the data from

rfinput_outputbuffer_data(0) is processed first.

The rfinput_outputbuffer_data(0) has the received information of the other nodes,

0000011100000100

Sensor Information 	 Time_stamp

00000000000000000000000000000000 11111111 	 00000110

Destination_id 	 Source_id

01

Type_
packetOriginal_id

the first two bits are type_packet '01' which indicate that the packet is an emergency

packet and the next 8 bits are the original_id '00000111' which indicates that the

emergency information corresponds to node '7', the next 8 bits '00000110' source_id

which indicates that the packet has come from node '6' and the next '8' bits '11111111'

destination id indicates that the information has to be sent to all the nodes of the network,

the next eight bits are time_stamp '00000100"4' is checked if the time stamp is greater

than '8' then the information is discarded, the last 32 bits are left free which can be used

for sending the sensor information. As the time_stamp is less than '8' and the original_id

is not same as this nodeid the source_id is updated as '00000001' and the time_stamp is

incremented by one '00000101'and broadcasted again, The information to broadcasted

can be seen in rfinput_outputbuffer_data(1) at 12Ons in Figure. 4.5. Then after the

broadcast_intr is processed the gps_intr is processed. The new positions are stored in the

gpsin_input _ buff 1 and the old positions are stored in gpsin_input_buff 2, The position_

and velocity components in the both buffers are compared and if the change in any of

these components is greater than threshold then the new position parameters are updated

0c 111
0.11111►g

row 	
bloom mom
klimaimi Nam	

34

these components is greater than threshold then the new position parameters are updated

in the position table and then broadcasted to all the other nodes in the network. As

difference in the x_position and y_position components are greater than the threshold the

broadcast_output packet is formed with the updated parameters and the

rfinput_outputbufferdata(1) has the information which can be seen at 130ns in Figure.

4.6. The stability_enable is made ' 1' indicating the stability unit that the positions have

been changed.

illaoding_unittclk
IfiaodIng_unrYgps_Int
itloodiraLundtroadcasLintr
illoodtrILunatsensorsigne1 ready

Cif- t Oadtrta_unitex_position
• AlpodintLunittyjas than
9- 	 oadina_untna velocity
5 Mooding_unitfvveior.ity

i

•

lloodmLuntolotIa
• IFOOdinunieltgpsirunpuLtrA 1

aosttion
vpastti an
u_velocitv

olling_un?dgps•in_mpu1b411 2
1sosmon
y Jo :41ton
uvelocitv
.v velar:1:v

oodinon:ttbra d ast cuip€r1
.typejeaket
arlgina1jd
,,ottrtejd
.destriation_d
&position
yjosiban
uvedocity
v.yelocily
time slatnp

/110odIng_tm1V1hreshald
tooding_undlentergency_inpul

• albodittg_ungreinergency _output
9- Mooding_unilltInpul_autpulbuffer to

t 11)
(0)

^ 00010 Ii

0 001

1 11 0
601 1 1

,000001 1 1
ff,01 1 0100 001101

00 00 111110311 0U00

00000100
C0000106' 	 components from GPS

Old position and velocity

x111111111 000001000
00
00001'300

;00000001
11‘111111
•00011100
100010010
00011110
00010010
00000111

'14
(01 00000111 00000110 11111111 00660100)
(01 000001;1 00000001 11111111 0000 1a1 }
p000mkoom0000p0000000m00000moom 	 m loop000m woo
00000000000000000

0001)00M060000000000010010000010011111111op000l10o00o01 t 101

0011111 0
11

,E101)11111111)

•■•■••■■■

00000100

0000 000
MIME
muisrimunninamimaismarg.
0001 '110

0000 =IN

New position and velocity
components from GPS

irim■
11111111111111
MUM,

000000000000000101 	 111100000Ni wont loi
1111W11111111

Emergency informar to be sent t all the other nodes

Emergency information from the other nodes in the network

Figure 4.5 Timing simulation continued after figure. 4.4.

iloacing" miticlk
dingjzdtgp In

fflooting,ptibiaaficastalr
1090dInvinitisensonignaLmaly
toodinonitkposition

ff iloodingAjOitoil
• 116thrigjmiti)/„velociti
Es- Moodinonkvelocitf
a). loodingjelltlileolin

flio9dinviiitigpsinliftbui.,1
kposlan
yj0811100

.yvelo
alootimettgpsin, plbut!

;4josilign
_position

4201:Ay
vwvelocily

B- forifitrlytbroadvast
lype juke
Qrigirr.11
source_ifi
lestnatonjd

1.;_Yeto.:11y

looding_tithelhoid
illootilng_tritierr,ergency_ fvut

• flooding.tintierergency.Alpul
• llooditionttdrot *Mesita

t (1)
11111111111111111111111

illoodin41011ablItly_enable

00111 1 00
1 00 1 111 1 0
10000111
100000111
(00 1'1401000 00000100 11111111 00011100 00010010 00011110 00010010
(0011110000111110 00000111 00000111)
00111100
001111,10
00000m
00111
i(00111100 00111110 0000111 00 0011
, 7,111100

. 1173
L` :00:

0000011
.

(,131 0a.000001 MOON', 1111111 "00001111000 00;11110 00000111 :0300'11 13

1[101)0 1
KHI0001
111111:1

T.41111)
1 001111:0
DV 11

1000001 1 1
!00000000

030 01
000031 1

1 1 00
03111113

j100 	11000:1111
1 r 001 1 	 00000300

Packet

J1114110111 0000011 0 1
(131 ri100111 0000000
11000000000011100
00000000000001.11000

1w1llime1100111101011111111 gyBii

000::130000001010)
0 1 ' 	 00000100

11 1 1 1 1 1 III1 i1J 	 11 r1

35

Position and velocity Information to be sent to all the other nodes

111MIMIONOMINNIMSINVINIMIONOMMINUMEMINOINIIMIN■IMMIIMINIMVIWOMMIMINNIMIN11■01.10.0.1

Figure 4.6 Timing simulation continued after figure. 4.5.

36

At 180ns when both the gps_intr and sensorsignal_ready goes high from a low which

indicates a change in either the position and velocity components of this particular node

and a emergency signal from the sensor of this node have occurred simultaneously in this

case the sensorsignal_ready has a higher priority than the gps_intr. When the

sensorsignal_ready occurs an emergency packet has to be formed where type_packet is

`01'idicating an emergency packet, original_id is '00000001', source_id is '00000001'

and desitination_id is '11111111' which indicates that the information has to be sent to

all the nodes in the network, the remaining bits are left which can be used for sending

some sensor information. The information that should be sent to all the nodes in the

network can be seen in rfinput_outputbuffer_data(1)

00000000000000000000000000000000 00000000 11111111 00000001 00000001

Originalfd

at 180ns in Figure. 4.7.

Then after the sensorsignal_ready is processed the gps_intr is processed. The new

positions are stored in the gpsininput_buff 1 and the old positions are stored in

gpsin_input_buff 2, The position and velocity components in the both buffers are

compared and if the change in any of these components is greater than threshold then the

new position parameters are updated in the position table and then broadcasted to all the

other nodes in the network. As difference in the x_position and y_position components

are greater than the threshold the broadcast_output packet is formed with the updated

parameters and the rfinput_outputbuffer_data(1) has the information which can be seen at

210ns in Figure. 4.8. The stability_enable is made '1' indicating the stability unit that the

positions have been changed. The gps_intr and sensorsignal_ready becomes '0' at 210ns

Sensor information Time_stamp Destination_id 	 Source_ld

i01

Type_
packet

0000000ooi0o00000n00000O000a00000000000111111110000000100000 01 01 .111111111111111111111111111.11111111
000444	 00000000000000000000000100m111110o0o011000000111 0t

--7 Emergency information of this node to be sent to all the
 other nodes in the network.

11111111111111101101111

11111 1 1,0110001 1

{00 00001000 ON00100 11111111 000111000001000 witio oval
{01 1 1 1111 9111111191111111 trim)
'01111111
01111111
[11111111

101111111
k59111100 Nino mom :war
Himou

00000001 3130(.100 11111111 00'111D 10 	 0 :133111 1 000 111 0001

	fl•MI1■11

41■1.1••■••iIMMINIMMIIINNIMI■1110111,
'00111100 00111 0 130000111 3. 0001111

arm

000001 1 11 11111

00
01R 000 1

0111110

PI 1 001
001/t0001
11111111
00111103
00111110
00V3111
01 ,11 011 1

00000000

31111111111111111111111111
11

1,01111 0

37

which indicates that the sensor information and the change in the position or velocity

components are acknowledged.

Iloolittunittlk
lloodinLunittgpsirdr
Mooding_unitt`roalcagjit
floodinvollfsensmIgnalieady

.114, Illoodin„unItkposIten

• aloodingunithoelocly
• Auodirunitivielocily
• Aloodinunitlootin
• iloOding.unitigpskinputiull

Ajosikm
y piton
uyelontv
Y_yelpuly

Alooding_unitigprUnpul buff 2

1)30i, rbon

c_i-, Ei0C1111
Aloodltiqunalbrn, as?, :4J;

originaLid
ra sourced

desbnabli

tpbsibon
u jeloc
v_velocity

	a 	 lir E.ilarop
IloodIng.ureveshold

• looding_unitteinetgencym 	 {01 00000111 0000110 11111111 00000100}
• 1looditi9_un0,emergency _output 	 {01 00000001 0000000 11111111 00000000}
• 11oodInLurgtInpul_oulputhuffer_da1a 	 100000000000=0000000000090000000000011111111000000010

000001 1 	 11111111

11 100

Figure 4.7 Timing simulation continued after figure. 4.6.

38

Illoothoonitigiyota
itloodinordbrokeaitit
1100(inunitiiensorsignalreatty
loodkunikposiion

• illoorkuruliy
a Ali-Jotting unitiu velocity
• Alooding unitA, jelocity

illoodittaloodin
looditiLuniligpsitunput baff

luostlion
D 	 _uvelocity

.t velocity
• ifloodukuniV900 Jnr00411.2

position
41_1)0911m

14) , 	velootv

• 11-1001,11C:_utebtOat ca. 	 ilt:aut
 IA, kt

.1910.31_1d
soured

pv1pin
mioner
0:yelocity

velof.Aty
rte ,.tamp

uothoLungiettie_f Ilencyjnilli1
flootling_unitiemergency _output
iloodkunitillittputApollokoatI

Lr

(11111111
01111111
01111111
01111111
{00 00001000 00000100 11111111 0001110000010010 00011110 00010010 0001
[01111111 01111111 01111111 01111111)
01111111
01111111
01111111
01111111
01111111 01111111 01111111 01111111)
01111111
01111111
111111111
01,111111
f00 x1000000100000001 11111111 0 11111 0 11111 01111111 01111111 0001

o00[;noi
1001-21:;c301
T1111111

ILU111111

101111111
i(011111
t11111111
oo 0[L

mow :Am Ir. 11'11111 00.0014
1{01 or oougorm m11111 ogoougo,
10011000000111111101111111011111110111111111111111004 0004100ofiatio00
0000 00 1 111101 1111 111111101111 11111111 00 	 001000 0

Packet with
updated position
and velocity
components

01111111

00000 001

00111:100 	nmi
00111110 	chum!
'mono	
huaom
►1101,111:"

t o

U, LdjiLk, 	 , .I ;U 	00 001
-01 B0000001 [1000001 1' 11; -.11 0000000(0

oo0[1 1'00000000)0000000000000000020001001111111190E01100000011101
11,11 -1!

Position and velocity Information to be sent to all the other nodes

Figure 4.8 Timing simulation continued after figure. 4.7.

At 220ns when the gps_intr and sensorsignalready and broadcast_intr are ' 1 ' which

indicates a change in either the position and velocity components of this particular node,

emergency signal from the sensor of this node and a broadcast packet which has the

39

information of the other nodes have occurred simultaneously. sensorsignal_ready has a

higher priority than broadcast_intr, broadcast_intr has a higher priority than the gps_intr.

When the sensorsignal_ready occurs an emergency packet has to be formed where

type_packet is '01'idicating an emergency packet, original_id is '00000001', source_id is

`00000001' and desitination_id is '11111111' which indicates that the information has to

be sent to all the nodes in the network, the remaining bits are left which can be used for

sending some sensor information. The information that should be sent to all the nodes in

the network can be seen in rfinput_outputbuffer_data(1)

00000000000000000000000000000000 00000000 11111111 100000001 00000001 i01

;Sensor information 	 Time_stamp 	 Destinationicl 	 Source_Id 	 Original_id 	 Type_
packet

at 220ns in Figure. 4.9.then after the sensorsignal_ready is processed the broadcast_intr is

processed so the data from rfinput_outputbuffer_data(0) is processed.

The rfinput_outputbuffer_data(0) contains the received information from the other

nodes.

00000001 00000001
1

00000001 	 00000001 	 00000100

,

11111111 00000110 00000111 00

Time_stamp V_velocity U_velocity 	 Y_position X_position Destination_id Source_id Original_id
Type_

i

the first two bits are type_packet '00' which indicate that the packet is not an emergency

packet and the last eight bits are time_stamp '00000001"1' is checked if the time stamp

is greater than '8' then the information is discarded. The next 8 bits next to the

type_packet are the original_id '00000111' which indicates that the position and the

velocity components are corresponding to node '7', the next 8 bits '00000110' source_id

which indicates that the packet has come from node '6' and the next '8' bits '11111111'

destination_id indicates that the information has to be sent to all the nodes of the network,

40

the next 8 bits '00000100' is x_position component, the next 8 bits '00000001' is

y_position component, the next 8 bits '00000001' is u_velocity component and the next 8

bits '00000001' are v_velocity component of the node '8'. As the time_stamp is less than

`8' and the original_id is not same as this nodeid this information should be updated in

the position table and sourceid is updated as '00000001' and the time_stamp is

incremented by one 00000010 ' and broadcasted again, and the

rfinput_outputbuffer_data(1)

00000010 00000001 00000001 00000001 00000100 11111111 	 00
L

00000001 100000111

Y_position 	 X_posltionTime_stamp 	 V_velocity U_velocity Destination_id 	 Source_id Type_
packet

this is the information that should be sent to all other nodes in the network which can be

seen at 240ns in Figure. 4.10. Then after the broadcast_intr is processed the gps_intr is

processed. The new positions are stored in the gpsin_input_buff 1 and the old positions

are stored in gpsin_input_buff 2, The position and velocity components in the both

buffers are compared and if the change in any of these components is greater than

threshold then the new position parameters are updated in the position table and then

broadcasted to all the other nodes in the network. As difference in the x _position and

y_position components are greater than the threshold '10' the broadcast_output packet is

formed with the updated parameters and the rfinput_outputbuffer_data(1)

00000000 	 00000111
I

0000011 1 00111110 00111110 11111111 00000001 00000001 00

I

I Time_stamp V_velocity U_velocity Y_position &position Destination_id Source_id Original_id Type_
packet

this is the information that should be sent to all the other nodes in the network which can

be seen at 250ns in Figure. 4.11. The stability_enable is made '1' indicating the stability

unit that the positions have been changed.

' 1 0 1 1

0 1111 1 11 430000111'

10 MEM 	
MINI

Dimil.11005111111BIMITIMI
1111•111111111111111111MMINIMMII

1111111111111M1111111

0111100;

000 I II '

111 11111

00 .00

11111111 00000101 000001110 000001

Emergency information of this nod
other nodes in the network.

to be sent to all the

Position and velocity Information from the other nodes in the network

ifloalnpfitin,
jaiIligs.0

fflooclinLarrinroalicaq irk
tilbotling joilfunsoisional _ready

0• Aloochrsoatx jeston -
E- /floodoiLiviVyjotion
0- tfoolinvatk rvelooty

noodulLuttiliv_veloilty

lfloochrtOgtisiripiel buf 1
)position

1- y _position
:u_velody
.v velocity ' -

El- Moaclinon#spojaptil buff 2
. Y (anion
y joton
uveldoty
v_velopty

• 101111irluellbsoadotol
_ivrejalle1
rr

1■' 	 ource
eesiindlturuil
r_pGsrtilin

loillton

tonp
41ocililrvoitItifes414
AlutorT,vidieriogericyinput

• Ilnotitrq Jalitaergary itraft
looilin0_nrtitliqut_ou4u0iut0,1

1
1
00111100
00111110
00000111
00000111
1:0010000111 00000110 11111111 00000100 0

	
001 000m 00006901

(00111100 00111110 11100111 00800111j
00111100
00111110
00000111
00000111
{01111111 01111111 01111111 011111111
01111411
01111111
01111111
01111111
100 00010001 00000001 11 11111 01111111 01111111 01111111 01111114 0001

00000001
rinronnoi

iron n
im 11 11

in1111111
111 f

iunnln
11000000u

110
itui 00000111 00000110 1 	 11111 0U01.10;01.11
dm 000001 nrinuni 1111.1111 ,0000000trj
00000006000000000000011000000000000400000111111110000000100000001 A1
0000000000000000 mi 0n0000000 000000011111 11000000010000000101

001,400000moomnitniilio00001100000011.100;

41

01111111
tillininEmitagn

0000 1 11 '
EMBH1111111 000011 1

Figure 4.9 Timing simulation continued after figure. 4.8.

1) 	I	 I 	 I l	 I 	 1 I 	I I

flooding_ungiclk 	 1
1

Alealirig.unittliroaanstint 	 1
really 	 1

• frimilitg_unitt4osion 	 00111101)
• 419144 uniVyjosition 	 00111110

iliOng_unttiu_yelocity 	 90900111
olloodinvirdtPd_velocity 	 91)9)30111

• i0oilitg_unk11oodin 	 [00 0011911111 001)00110 11111111 000011100 00000001 00000001 00000001
illooding_unttigpAinput buff 1 	 r(011111100 00111110 00000111 00000111] 	110

jtsilian 	 00111100
tijosition 	 00111110

BH;10111ueloc i ty
Jelly rtv 	 00000111

ftin9Jimlitsurped 	 10i1111li 1111111 0111 111 911111111
x 91111111 	 F:111111
ypoloc; 	 91111111 il;,:,."14111111111111
uyIng1,4, 	191111111

fty 	 11111111
a 1 jtkip1 	 {0) 00000111 00000001 1111111" 1:19C1 1,3100 0000CEE 00000091 h1)09001 CC)

pi Jor.u:1 ;et 	 00
00000111
01M01:101

*I:119:1C11:1 	 11111111 	 11111
:(2,1'3 ,11or; 	 09`,19:,1100

t3 ,1 	 Iii)ji1I

,11,111":1011101101 u	 1:5._ 33)001
ueloLity 	 IL IAA ; 	 1;-11111
t loyt-imp 	 II N311110

Tudi 19,unt1itp ,;hol
11 ..u,kil 	 utollememertiv 	 131 00(00111 00000f 10 11111111 00E91100

C+0 	 11331 11_allemt..,nlencLEut0} .1 	 [91 00000001 00900001 1111111' 009E33091
unitArvili4piritiopf ciala 	 1000u11111 09 	

01)

42

nI

011

001i 1110
00 00111
pro 0 1

00000010000000010000000100 1 r 9001000 1001111111 1 00 000 1 	 0011100
099i1000100000 	 001 000991101000001001111111100000114900001 1100

0 WOG'

09901'
1,00009' 1;
;, 0009010

11111 11100000 1 (..'
11111111;0000000001 1111000001 0000 01

Position and velocity Information of the other node that should
be sent to all the other nodes

Figure 4.10 Timing simulation continued after figure. 4.9.

LuoitIclk
;flooding joi(gps_intr
Illoodeig_uokbroadcast int
111o0liing_imilkeoznipalter:fily
(4.
• loorilng_unity josition
• Alooiling_urOitivelocitti

e- illogthrig_to14110d_iti
illriodinLuoilfgplikinput tot 1

u_velocity
.v_velocity

• t►1+:^0dinr^rgp;i^ inputbutt

vposilion
.1LvelocIty
.vveloCky

ilinnitirttionroaticaltoloput
:iype packet_
.ortOrtal_iti

o 	 post on

tivelocity
VelociN

ltme_•,18rop

• illoAng_itoilleoletgenry_iriptil
iiloorlinfLmiliergagencv_of.put
illoodoiLuodibnput 01,rinithigerilata

10)

00m111 00000110 11111111 00000100 00000001 00000001 000E03001 0111
1::00111190 00111110.00000111 000001111
'00finao
00111110
00000111
00000111
(00111188 00111110 00000111 00000111}
00111100

00111110

1
00000111
00000111

11.00 0011119001 f 00010011111111111111111110 010 111101101E111 nn r',111000
100
10010:11133ilioiriliiiiiiiiil

;11111111
100111100
100111110
10000:011
1000 01
1000000000

(01 00IX10111 01,r0;11111 11111111 nRminfil
01 00E1001 00183001 11111111 000030001
[00000001100000111999ao1 1 am nuumoorp 1118

1 000111;100111gt00000Q08011010000000100110010011111111 0
1

0000000 00 10000

Packet with
updated position
and velocity
components

111 1 1 11000 110

1111111113
11111111111111111111111111111

1100000000000100 -
011011008011100

111M11111111111111111111111

EIR1111011171111111111111 3

0111111111E11031111111

Wigan

01100111

0 111100
01 11 0 000 111

01111001
0111110

1 11
1

0000000

43

311111111111
MEM

0111111111111111111111011111111.11111Emma

1,01

)01 1 11 00
30111110
.J0000111
11000111

11111111111011
MI!

Position and velocity Information of this node to be sent to all the
other nodes 	RIM

Figure 4.11 Timing simulation continued after figure. 4.10.

The stability unit is invoked by the stability_enable signal this is the output signal of the

flooding unit and this is connected to data_update which is the input of stability unit.

when the data_update is '1' which means that the position components and velocity

44

components are updated in the memory. The stability unit checks for this data_update

when the data_update becomes '1' the position and velocity components of each node are

read from the memory and stored in positiontable for calculation of stability, the stability

of each node with respect to all the nodes in the network is calculated and stored in

stabilitytable these values stored in the stabilitytable are written back into the memory.

As can be seen from the Figure. 4.12 the data_update becomes '1' at 8Ons then read

becomes 1' a t 9Ons indicating to read the position and velocity c omponents from the

memory. At 110ns it can be seen that the data is being read from that particular address

`addr' in the memory. In the Figure. 4.13 at 770ns read is '0' and the write is 1 'which

shows that the read operation is complete and the stability of each node with respect to all

the other nodes in the network are calculated and , ready to write back to memory. After

the stability of all the nodes are written back into the memory and table_update is made

`1' this can be seen at 2110ns in the Figure. 4.14.

The starting
address from
where the
position, velocity
components are
read.

(i- 12
{.127 -127
4-127 -127 -12? -127)
4-127 -127 -12? -12?)
1-127 -12? -12? -12?)
4-12.7 -127 -127 -127)
(-127 -12? -12? -127}
1-127 -127 -127 -127}
(-127 -12? -127 -1271 3-127 -127 -127 -127'

X000 0='0 00

stabi 1 ttabl 	 {{g 0 	 g g 	 g
001)O

12U .136 qs

a a ,

cl k
fiete_updato
eddr

lout
reed

to
tebleMate
1)usi ti orltabl
(1)
(2)
(3)
(4)

(6)
(7)
(8)

45

Figure 4.12 Timing simulation continued after figure. 4.11.

000111110001001 00100001

;I) 00 	 0 0

000000 1i 255095330 3

M111111111111111111■1111111111111=111111111•111111111•1111111111

11111111•1111111•1=11111=1111111111MININIIIIIII

wri t8
t3b1e_tot111:8
positiort.., fi52 52 4 41(5 25 0 0}

E a 1 	 4}
Position and
velocity
components of
all nodes are
stored in
positiontable
for stability
calculation.

11
31

[25 15 2 11
[5 5 10 133
{28 1flO 181
{i)55 0 9. 5 '3 3 0 31 10
(25509533031
fj) 255 9 3 13 13 5 31
(9 9 255 21 29 21
(5 3 21 255 25 253 13 3
((3:13 29 "25.255 29 9 31
[3 13 21 253 29 255 9 3}
{0 5 	 13 9 9 255 31
{3 3 3 3 3 3 3 2551

ERNI
is
BIDE

MENU
INAM

11111101111
1E13311

152

00000

81111.111111E
'1059 13

199 255 '21

IEEE

255 1S "3 3
25 25313 3

23 255 9 3

1111 .11111 	111111111111111111111111111111111111

800
?90

00000
111
1111

0000000
001)1)0

■11111111111111

52

46

Siartinp- Address from where the stahilites are stored

Figure 4.13 Timing simulation continued after figure. 4.12.

01011111 0110000010

255

tabl e_update
posi ti ontabl

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

i tytabi e
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

([52
452 52 4 41
[5 25 0 0)
430 19 3 31
45015 21)
[40 5 1 31
i25 15 2 11
(5 5 10 01
(28 18 30 18)
fj.255 0 9 5 3 3 0
(255 0 9 5 3 3 0 31

25,' 9 3 13 13 5 3)
49 9 255 21 29 21 9 3}
(5 3 21 255 25 253 13
43 13 29 25 255 29 9 31
43 13 21 253 29 255 9 :
(0 5 9 13 9 9 255 31
{3 3 3 3 3 3 3 2551

End of
stability
values being
written into
memory.

00

55 21 29 21

21 253 29 2
29 25 255 2.

13 9 9 255

9 "

11 	 I1 	 1 	 1 	 1 	 1 	 I 	 1 	 1 	 I 	 I 	 I 	 1 	 1 	 I 	 i1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1 	 1	 ii 	 tl 	 11 	 11 	 1 	 III IIIIII
-1.4.11.1515

Stability of each with respect to all the other nodes in a
network.	 2110 ns

9 5 3 3 0
9 3 13 13

47

Figure 4.14 Timing simulation continued after figure. 4.13.

48

The routing table generation unit is invoked by the table_update signal this is the

output of the stability unit this is connected to st_update which is the input of routing

table generation unit. when the st_update is '1' which means that the stability of each

node with respect to all the other nodes in the network are updated in the memory. The

routing table generation unit checks for this st_update when the st_update becomes 'then

the stability i nformation i s read from the m emory into a buffer s tabilitybuffer and the

routing table is generated and stored in a buffer routingtable and is written back into the

memory.

As can be seen from the Figure. 4.15 the st_update becomes '1' at 211Ons At 2130

the 'read' becomes '1' indicating to read the stability information of the nodes from the

memory and the data is being read from that particular address 'adde in the memory into

the buffer stabilitybuffer. In the Figure. 4.16 at 3430ns 'read' is '0' indicating that the

data from the memory is written into the stabilitybuffer for calculating the routing table

and at 3470ns 'write' is '1' the routing table from the node '1'to all the other nodes in the

network are calculated and ready to write back to memory. After the routing table form

this node to all the other nodes in the network are written back into the memory the

route_update is made this can be seen at 4770ns in the Figure. 4.17.

00100001
255

10 0 	 0 	 0 0 0

0000.
10 0 6 0 6 6 0'
10 0 0 	
1)01) 10000
100010000
0 00 1 0000'
MIME

(0 00 1	0
X000100 00
10 0 0 	 0 0 I) 11111
1111111

0 0 0 0 0 0 0111
10001 	 I0000

0000

1 	 1 	 11 	 111111 	 11111 	 III 	 Ill 	 1 	 111

2100
	

2120

0 000

111111111 	 11111

2140
2130 ns

49
Starting address where the stability of each node with respect to all the other nodes in the network are stored.

rout6update 	 lJ
stabili tybuffer

(1)
(2)
(3)
(4)
(5)
(6)

(8)
mud ngtabl e

(1)
(2)
(3)
(4)
(5)
(6)
(7)

{{06000000)
{00000001)1
{00000000)
{00000000)
{0 00000001
(0 0000000)
{0 01) 0 0000)
100 00 0000)
(0 00 HE 0)
{4(00060060}
(00000000)
[00000000)
160-000 000)
(00000000)
[00000000:i
(0000000 .0100001
(00000000)
(000000001

4780 ns

2130 ris

Figure 4.15 Timing simulation continued after figure. 4.14.

su OSK

0 0 E. C CI 0 0 0 El0

000000!00 0 00 004

? 6 6 CI 6?C S

00000 	 1.1

0 0
MINEMBIEHUM

'00,00010 h1111111111111111111M1
0 HI 0 0 10 C

	41111111111111111■

11111littill

C 6 SS? 6? ES?
,C 6 6?

1■1=1111111111111111111MINME

1•111111111i 1M1111111111.111111111111■11111,1111111111■11111■111•11111•1•11111111

ICS 	 40406SS,'01.

-am21} nue partupuoo uogeintuIs .11Iium, 	 anitu

11	 111111111 	 111111111 ►►1111111 	 111111111 	 111►11111 	 11

00S 60

ül
	

{000000811
f00000LEA
fG00009Erl
f00000SCI3
{0 A0000111
f0 0 0 0 0 0 C 11

00 0 0?f,
L00000001,3

t0000000I,n
[SST, E CI: CC C£3
CSS?6604'BS U3
SS? 6? 65? I? El 63

SSZ S? 6? El £1
CS? SZ SS? 	 C

S 4 67., 	 SS? 6 63
SEIC4C6SSZ01
tcac ES60SZ

0 0 0 0 8
	

0 0 0 0 0

u►).no.1 Jo
uo!Trinoreo

.10j palois
NU sawn

4111:Ms
aql 3.134m

Jojjng

111111111111111111111
1.1

alEpdreqnui
qnol
urp
ipre

8;pli
pea

8.ppdn'Is
11)

OS

10011110

route_updato
{{255 9 5 3 3 3
1255 -0 9 5 3 3 31
{0 255 g 3 1] 13 5
{9 9 255 21 29 21 9
15

.

3 21 255 25 253
131 :3 29 25 255 29
13 13 21 253 29 255
19 5 13 9 9 255 3
13 3 3 3 3 3 3 255}
11100009001

,

10.909000}
1132 a 0001
113 HOU 00
X134000001 :

11 3 5 0 	 al) 0)
3600ü0

11 3 7 	 0 13 0 (1)
119000999:

stabi l i tybuffer
(1)
(2)
(3)
(4)
(5)
(8)
(7)
(8)

routi ogtaol e
(1)
()
(3)
(4)

Ir

1

255 29 9 3),

0 0

000
00

(1 3160 [10ü
8000000

51

Buffer where the routing table is stored before it is being written back into
the memory.

irm H5

Figure 4.17 Timing simulation continued after figure. 4.16.

CHAPTER 5

SYNTHESIS OF THE MODEL

5.1 Synthesis Problems

The VHDL model is synthesized with Cadence Ambit Bulidgates. However, it was not

synthesizable first up as the build gates didn't support multiple wait statements in a

process and also the event scheduling on signals. Therefore the model had to be modified

keeping these in mind. Only clock'event was synthesizable and this event could be used

once in a process. Checking the condition for every rising or falling edge of a clock was a

difficult task. The model was changed accordingly so that at the beginning of every

process the rising edge of the clock is checked and whenever there is an event desired

either the rising edge or the falling edge, a flag is made high and this flag was being

checked periodically when there was a necessity for a condition to be checked at the

rising or falling edge of the clock. Also mathematical functions like square root were not

supported by the build gates, so whenever square root was necessary, the squares of the

signal had to be taken and calculated for results. There was also problem due to

insufficient memory, which resulted in disintegrating the blocks into smaller sizes. Power

optimization is not supported by the Build gates. Only the blocks could be optimized for

Area and Timing.

In Build Gates, first build the generic and then optimize the generic for Area and

Time. When the generic is built, the verilog netlist is created which will have the cell

structures of ATL and XATL formats. These formats are further disintegrated to the

Nand, Nor And, Or, Mux, Latch, Flip Flop and other basic components during

53

Optimization. The problem was that during disintegration, some of the cells in the

generic like ATL TRI ,ATL DC couldn't be disintegrated further down into one of the

basic components. This created a problem in Silicon Ensemble as these ATL cells were

not recognized. Therefore back tracking had to be done to see which process had created

the ATL cells and the process had to be modified keeping the functionality in picture.

In the synthesis, the design was mapped to TSMC 0.351A technology standard cells

generated by CMC. A total of 1 million gates resulted after optimizing it with strict area

and time constraints.

5.2 Synthesis of the Model with Cadence Ambit BuildGates

In this section, synthesis of the VHDL model with Cadence Ambit Buildgates is

described. Following are the steps that were followed for synthesis.

1. Ambit BuildGates is started by entering a command called "cadence" at the

console and choosing the 6th option.

2. The 'File -> Open' menu is brought up and the timing library option is selected to

read the `timing.ctlf file provided by standard cell library vendor. This file has

capacitance, timing and functionality of the cells and wire load models for calculating the

delay due to routing parasitics.

3. The VHDL file is read by selecting the VHDL option in the File -> open window.

4. The VHDL model is then mapped to generic gates with 'Commands -> Build

Generic ...' and selecting the first 3 options in the build generic window.

5.	 The constraints are set by typing the following commands in the command

window. The clock is necessary for timing optimization. The second command tells the

54

tool that the input arrival time is 0; third one tells the tools that data required time is 10

ns. These two commands are the constraints to optimizer. The fourth command tells the

tools to use the wire load model enclosed.

set clock clock -period 2.0 -waveform {0.0 1.0}

set_input_delay 0.0 -clock clock [find -input *]

set_data_required_time 10 -clock clock [find -output *]

set_wire_load_mode enclosed

6. Optimization window is brought up by 'Command -> Optimize' menu. The

`Effort level' is set to high, 'Flatten mode' is set to off, 'Priority' is set to Area/Time and

in 'Options' minimize area/Timing budget is selected accordingly. The optimization is

shown in Figure. 5.1.

	0 tbr Dad castin tr
	Otgpsintr
	0 tse nso rsig nal _ready

tdout
	Dtta ble_upd ate

clk

din 	 brcadcwt_ink

u_velocky 	 gpc_intr

v_velocky 	 Amor igneUready

AdAlity_enable

y_po ition

	tdi n ED	
	tu_velocit y ED 	
	tv_velocit y ED	
	tx_position D	
	ty_positio n 0 	

flo odin g_u nit

u3
u2 bu,hold2 	 'mime*

clk	 cLout

,Lupdate takie_update

i_3431 37
19 	 00 buLholdl buri_reql -

clk sUpdte

AdDility enable
TLINV

ro ut_const

u4

buiLrecti 	 bueLhoictl

buLrerg buiLhold2

bu s_a rb

stab_calc

Figure 5.1 Synthesis for the processor implementing the stability routing protocol.

55

In the Figure. 5.1 it can be seen that synthesis for the processor implementing the

Stability Routing Protocol, it has 4 units Ul, U2, U3, U4 where Ul is the flooding unit

which is a combination of Update and Transmitter Unit (UTx) and the Packet Forwarding

and Update Unit (PFU), U2 is the stability calculation unit, U3 is the routing table

generation unit and U4 is the bus arbitrator. It can be seen in unit Ul that all the inputs

are connected to this unit, where gps_intr is the input from the GPS unit and x_position,

y_position are the position components and u_velocity, v_velocity are the velocity

components, sensorsignal_ready is the signal from the sensor network, broadcast_intr and

d_in are the inputs from the transceiver and stability_enable is the signal which is the

output of the unit Ul which is a indication to the stability calculation unit that there is a

change in the position or velocity components and the new position and velocity

components are updated and the stability unit can start the stability calculations. This

stability_enable is connected to the input of the unit U2, the unit U2 starts after it receives

this stability_enable signal. The output of unit U2 st_update is connected to input of U3

which is a indication to the routing table generation unit that the stability unit has

calculated the stabilities with respect to all the other nodes in the network. This st_update

is connected to the input of unit U3, the unit U 3 starts after it receives this st_update

signal the output of unit U3 is d_out which is the output that is sent to the transceiver.

7. The synthesis is complete and the design is saved as gate level verilog netlist

using 'save' window. If timing driven placement and routing is to be done a GCF file

should also be produced which has the timing constraints and the path of `ctlf file.

CHAPTER 6

LAYOUTS

6.1 Place and Route with Silicon Ensemble

The placement and routing using Cadence Silicon Ensemble is discussed in this section.

This performs the timing and power driven placement. The layouts of the individual

blocks are put together using the top-level verilog module with the help of the same tool.

Only regular placement and routing is done to save time and computer memory. The total

die size without pads came upto 4.74 mm x 4.74 mm. This could not be imported into the

Cadence IC tools for DRC and Extraction due to insufficient computer memory. In this

tool the synthesized design is imported in block level verilog format .The standard cell

library is imported into tool in LEF format which is the "cmosp35_4m.lef'. The output to

this tool is the layout which is stored in the form of LEF block and DEF form which is

then imported to the Cadence Virtuso Layouts for Design Rule check and the Extraction.

Following steps are followed to get the layouts using the Silicon Ensemble.

1) Silicon Ensemble is started by entering a command called "cadence" at the

console and choosing the 4 th option.

2) The "cmosp35_4m.lef' file is imported by using the 'File 4 Import -› LEF'

menu. After this step a database is created for storing the created design and

viewing it when needed.

3) The verilog netlist which has a `.v ' extension ,which was generated in the Ambit

Build Gates is imported by using 'File ---> Import 4 Verilog' menu. The top

module should be identified correctly. Also the power (VDD!), and ground

56

57

(VSS!) nets should be entered as show .Make sure the VDD and VSS are in upper

case. The reference libraries and the compiled verilog output libraries are

"cds_vbin" by default . Also a verilog module called "cells.v" is also imported

along with the main verilog module, which has the information about the basic

gates and their specifications, which are helpful for generation fo the layouts.

4) After the compiling is done successfully the floorplan has to be initialized by

using 'Floor plan 4 Initialize' menu. The TO to core distances in the dialog are

initialized to 40 microns. Space utilizations is kept for about 70-75 %. This

creates the rows for standard cell placement and 40 micron empty space around

them. This space is used for VDD and VSS rings and IO connectivity. Figure. 6.1

shows the layout without the power and ground stripes.

5) IOs are placed with 'Place --> IO' menu. In the displayed dialog, 10 constraint file

option is selected and the name of the file is entered. This is a DEF file, which has

JO pads' placement information. This is developed manually as per our

requirements.

6) Power plan dialog is brought up with 'Route -> Plan Power' menu. VDD and

VSS rings and stripes are added. Rings are the power paths that surround the core

area and stripes are the power paths that pass over the core area.

7) Standard cells are placed with 'Place -> Cells' menu with 'Generate Congestion

Map option.

58

BLOCK-1

Figure 6.1 Layout of a block without the power rails.

8) The connection to the rails is done by using 'Route ---> Connect Ring' menu.

Routing is done with 'Route -> Wroute' menu here global and the final routing is

done together.

9) The design is saved as DEF, LEF BLOCK formats with 'File -> Export' menu.

Also the database is saved with 'File -> Save' menu. This is useful for viewing or

modifying the layout at any time.

59

Figure 6.2 VDD, VSS stripes in between the layout.

Figure. 6.2 shows the power paths that pass over the core area in between the layout these

power paths are used to reduce the voltage drop. This concludes the layout process

through Silicon Ensemble tool. The DEF and the LEF block format is then exported to

the Cadence IC tools for DRC and Extraction.

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

This thesis gives the architectural details and the on—chip implementation procedure for

the Stability Routing Protocol for Mobile Ad-Hoc Networks. The proposed approach

provides a way for sending the sensor information to all the other nodes with out any data

loss. A VHDL model for the proposed architecture was developed and the high level

simulations confirm the performance of this architecture. The VHDL model is

synthesized and implemented on silicon with some exceptions. The total number of gates

produced was around 1 million. The numeric_std is not supported by the ambit buildgates

synthesis tool so a own package was developed for the arithmetic operations of the type

std_logic_vector, the function square root which is necessary for the stability calculation

module is also not supported by std_logic_1164.all library so successive approximation

method is used for calculating the square root which uses more for loops and repetitive

procedures which resulted in large gate count of which most of the gates were due to the

use of 'for' loops and also due to the lack of complex gates in the standard library. The

finite state m achine model i s u sed i n d eveloping u pdate and transmitted unit and the

packet forwarding unit this resulted in large area and hence the gates. The gate level

verilog simulation of the design could not be carried out and so was the DRC and

extraction because of large gate count and insufficient computing power. It is therefore

required to reduce the gate count.

60

61

7.2 Future work

The gate count could be considerably decreased by doing one or more of the following.

1. Use of Karnaugh—maps for breaking down the modules and getting it to a basic

Boolean expressions and then performing the manual synthesis.

2. Use o f shift operations for addition and multiplication o f S td_logic_vectors, a s

there is no direct syntesis for operations on Std_logic_vector

3. Reducing the type conversion, like integer to std_logic_vector and back, can

reduce the gate counts drastically.

4. Including libraries in the Ambit Buildgates which support numric_std and

unsigned libraries for optimization during the synthesis.

5. Using the pipelined architecture for square root calculation increases its

performance.

6. Using standard cell libraries which have complex gates, for optimization in area

and timing. The library used here was very well optimized for only for timing and

area.

7. The device level simulations can be carried out by using Star-Sim and Start-time

which are high capacity simulators.

With implementation of the above steps the design could be more efficient.

REFERENCES

1. Mingliang Jiang, Jinyang Li, Y.C. Tay, "Cluster based routing protocol" August
1999 IETF Draft, 27 pages.

2. Charles E. Perkins, Elizabeth M. Royer, Samir R. Das, "Ad-hoc on-demand
distance vector routing", October 99 IETF Draft, 33 pages.

3. David B. Johnson, Davis A. Maltz, "The Dynamic source routing protocol for
mobile ad-hoc networks" October 1999 IETF Draft, 49 pages.

4. R . D ube, C ynthia D . R ais, K unag-Yeh W ang, "S ignal stability b ased adaptive
routing for ad-Hoc mobile networks",IEEE Personal Communications, Feb.
1997, pp. 36-45.

5. Elizabeth M. Royer, Chai-Keong Toh, "A Review of current routing protocols for
ad-hoc mobile wireless networks", IEEE Personal Communications, Vol. 6,
No. 2, pp. 46-55, April 1999.

6. Andrew S. Tanenbaum, "Computer Networks", Third Edition, Prentice Hall,
March 1996.

7. S.Xu, S.Papavassiliou and Amouris, "On the optimal multizone configuration for
the position-guided sliding-window routing (PSR) protocol for mobile ad-
hoc networks", IEEE Military Communications Conference, October 2000.

8. J. Ackeret and D .Specht, "Handbook for datum transformations and coordinate
conversions and GEOTR software", IEEE Conference and Exhibition, 2000.

9. D.K.Olson "Converting earth-centered, earth-fixed coordinates to geodetic
coordinates", IEEE Transactions on Aerospace and Electronic Systems,
January 1996.

10. J.Zhu "Conversion of earth-centered, earth-fixed coordinates to geodetic
coordinates", IEEE Transactions on Electronic Systems, July 1994.

62

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Stability Routing Algorithm
	Chapter 3: Architectural Design of the Chip
	Chapter 4: The VHDL Simulation
	Chapter 5: Synthesis of the Model
	Chapter 6: Layouts
	Chapter 7: Conclusions and Future Work
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

