

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC

GENERATION PROGRAMS

by
Friday Bassey Akpan

In this master's thesis work, a program was developed using the Pearl programming

language to enable user defined attack programs to run automatically. A similar program

was also developed for background traffic. With this program, the different features of

the Nmap exploration and scanning tool were exploited to build scenarios of attacks.

Automated scenarios of attacks running in to the order of hundreds were

developed. Also, different sets of automated stealthy attacks scenarios running in to the

order of hundreds were developed using the timing modes, stealthy scans and scan delay

features of Nmap.

These automated attacks scenarios were employed in the evaluation of the Snort

intrusion detection system. It was discovered that 73% of all the Nmap's scanning types

and discovery methods that were used in this work resulted in scanning activity. The

Snort intrusion detection system detected and produced alerts on every of the 73%

Nmap's scan types and discovery method that resulted in scanning activity. Snort was

found to have a non-existent false alarm rate and a very high detection rate of 100% using

these attacks scenarios and background traffic.

The developed attacks scenarios program were found to be easy to use, efficient,

and easy to expand by setting only the type of attacks, parameters of the attack, and the

delay time between two successive attacks in a configuration file.

EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC

GENERATION PROGRAMS

by
Friday Bassey Akpan

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2003

APPROVAL PAGE

EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC

GENERATION PROGRAMS

Friday Bassey Akpan

Dr. Constantine Manikopoulos, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Or. Bin He, Committee Member 	 Date
System Engineer, XPRT Solutions, Inc. New Jersey

Dr. Sotirios Ziavras, Committee Member 	 Date
Professor and Associate Chair of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Friday Bassey Akpan

Degree:	 Master of Science

Date:	 January 2003

Undergraduate and Graduate Education:

■ Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

■ Bachelor of Engineering in Electrical and Electronic Engineering
(option in Communications Engineering),
Federal University of Technology, Owerri, Nigeria, 1996

Major:	 Computer Engineering

My master's thesis is dedicated to the memory of my beloved brother,

Joel Bassey Akpan who left this world to be with

the Lord on November 20, 2002.

ACKNOWLEDGMENT

I am greatly indebted to my thesis advisor, Dr. Constantine Manikopoulos, who not only

provided directions and supervision throughout this work, but also provided all the

support and encouragement I needed. I also want to thank Dr. Bin He for the numerous

contributions he made towards the successful completion of this work, and Dr. Sotirios

Ziavras, my graduate advisor, for his contributions and active participation in my

master's thesis.

I will not fail to mention the contributions and support of my fellow graduate

students whose assistance in clarifying many unfamiliar concepts, cooperation and

understanding made this work possible.

I also wish to acknowledge the contributions of Ms. Clarisa Gonzalez-Lenahan

and Dr. Kane, both of the Graduate Studies Office, for the successful writing of my thesis

report. They organized a master's thesis writing workshop during which they took the

time to explain to me and other colleagues the report writing format and review process.

Ms. Gonzalez provided guidance throughout the review process and made a number of

corrections in the initial drafts of this report.

I must also say a special thank you to Jeanette Petford of the Bursar's department

at NJIT, and Alexia Jones, my career counselor, of the Career Development Services at

NJIT. Yolanda Agront and Mike Murphy, both of Lucent Technologies, Bell Labs

Innovations, USA were also of great help to me. George Asish, David Yu and Peter Allen

were friends indeed. These persons and many others so numerous to mention contributed

in different ways to the successful completion of my study at the New Jersey Institute of

Technology (NJIT), USA.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 COMPUTER AND NETWORK ATTACKS
AND COUNTERMEASURES 	 3

3 THE INTRUSION DETECTION SYSTEM NETWORK
AND PROGRAMS 	 4

3.1 The Network 	 4

3.1.1 The Traffic Network 	 5

3.1.2 The System/Victim Network 	 6

3.1.3 The Wireless Network 	 7

3.1.4 The Attack Network 	 8

3.2 The Programs 	 9

3.2.1 Windump 	 9

3.2.2 Ethereal Network Analyzer 	 10

4 SNORT INTRUSION DETECTION SYSTEM
AND PERFORMANCE MEASURES 	 11

4.1 Snort 	 11

4.2 Performance Measures 	 13

4.2.1 False Alarm Rate 	 13

4.2.2 Detection Rate 	 13

4.2.3 Receiver Operating Characteristic (ROC) 	 13

5 ATTACK PROGRAMS 	 14

5.1 Nmap 	 14

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.1.1 Nmap Scan Modes 	 15

5.1.2 Nmap Discovery Methods 	 16

5.1.3 Nmap General Options 	 17

5.1.4 Nmap Timing Options 	 18

5.2 Netcat program 	 20

5.3 Other Attack Programs 	 21

6 ATTACK SCENARIOS 	 22

6.1 Attack Scenarios Planning 	 22

6.2 Attack Scenarios Development 	 22

6.2.1 Information Gathering 	 23

6.2.2 Attack Exploit 	 24

6.2.3 Stealth Attack Scenarios 	 25

7 BACKGROUND TRAFFIC 	 27

7.1 Background Traffic Scenarios Planning 	 27

7.2 Background Traffic Scenarios Development 	 27

8 FUSION SYSTEM 	 28

9 CONDUCTING ATTACK AND COLLECTING DATA 	 29

10 RESULTS AND FUTURE WORK 	 30

10.1 Attacks Results Summary 	 30

10.2 Discussion of Results 	 31

10.3 Conclusions 	 36

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

10.4 Future Work 	 36

APPENDIX A SNORT INTRUSION DETECTION SYSTEM
FALSE ALARM RATE TESTS SCHEDULE 	 37

APPENDIX B SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING NMAP PROGRAMS
TESTS SCHEDULE 	 38

APPENDIX C SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING MANUAL
ATTACK PROGRAMS TESTS SCHEDULE 	 39

APPENDIX D SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING THE
DIFFERENT ATTACK SCENARIOS TESTS SCHEDULE 	 40

APPENDIX E INFORMATION GATHERING SCRIPTS 	 41

APPENDIX F ATTACK EXPLOIT SCRIPTS 	 46

APPENDIX G BACKGROUND TRAFFIC SCRIPTS 	 53

APPENDIX H STEALTH ATTACKS SCENARIOS
CONFIGURATION FILES 	 62

REFERENCES 	 63

ix

LIST OF TABLES

Table 	 Page

3.1 IP Addresses and Host Names Assignment on the Traffic Network 	 6

3.2 IP Addresses and Host Names Assignment on the System/Victim Network 	 7

3.3 IP Addresses and Host Names Assignment on the Wireless Network 	 8

3.4 IP Addresses and Host Names Assignment on the Attack Network 	 9

5.1 Manual Attack Application Programs 	 21

10.1 Summary Result of Attacks Detected by Snort 	 30

10.2 Summary Result of False Alarms Generated by Snort 	 31

A.1 Snort False Alarm Rate Test Schedule 	 37

B.1 Snort Detection Rate Using Nmap Programs Test
Schedule 	 38

C.1 Detection Rate Tests Schedule for Snort
Using Manual Attack Application Programs Tests Schedule 	 39

LIST OF FIGURES

Figure 	 Page

3.1 COE intrusion detection site build and details 	 4

4.1 An example of Snort's alert output 	 12

5.1 A typical Nmap program output 	 20

6.1 Content of pre_exp.data database 	 24

10.1 Result of the SYN stealth with TCP Ping Discovery option attack scenario 	 32

10.2 Some of Snort's alerts for the SYN stealth with TCP Ping Discovery
option attack scenario 	 32

10.3 Result of the SYN stealth with TCP + ICMP Ping Discovery
option attack scenario 	 33

10.4 Some of Snort's alerts for the SYN stealth with TCP + ICMP Ping
Discovery option attack scenario 	 34

10.5 Result of the SYN stealth with TCP + ICMP Ping Discovery
option attack scenario 	 34

10.6 Result of the SYN stealth with Don't Ping Discovery option attack scenario 	 34

10.7 Some of Snort's alerts for the SYN stealth with TCP + ICMP Ping
Discovery option attack scenario 	 34

10.8 Result of the LIST SCAN with TCP Ping Discovery option attack scenario 	 35

10.9 Result of the LIST SCAN with Don't Ping Discovery option attack scenario.... 35

10.10 Result of the PING SWEEP with TCP Ping Discovery option attack scenario 35

xi

LIST OF SYMBOLS

OS:	 Operating System

UIDP:	 User Datagram Protocol

IP:	 Internet Protocol

ICMP:	 Internet Control Message Protocol

ACK:	 Acknowledgment

RPC:	 Remote Procedure Calling

FTP:	 File Transfer Protocol

HTTP:	 Hyper Text Transfer Protocol

TCP:	 Transmission Control Protocol

PPP:	 Point-to-Point Protocol

SLIP:	 Serial Line Internet Protocol

CGI:	 Common Gateway Interface

SNMP:	 Simple Network Management Protocol

SSL/TLS:	 Secure Socket Layer/Transport Layer Security

SET:	 Secure Electronic Transaction

S/MIME:	 Secure Multipurpose Internet Mail Extensions

PGP:	 Pretty Good Privacy

CHAPTER 1

INTRODUCTION

This report is an account of a master's thesis work aimed at evaluating the Snort intrusion

detection system with automatic traffic generation programs.

In order to have a number of attack programs, a program was developed using the

Pearl programming language. This program enables user defined attack programs to run

automatically. With this program scenarios of attacks running in to the order of hundreds

were developed. Similarly, scenarios of stealthy attacks running into the order of

hundreds were also generated using the stealth scan types, timing modes, and scan delay

features of Nmap. A number of manually administered attack programs were also used in

this work.

A similar scenario program was also developed using the Perl programming

language in order to have a number of background traffic necessary for the evaluation of

the intrusion detection system.

The Snort intrusion detection system was evaluated using the automated attack

scenarios and background traffic. The parameters that were measured are the detection

rate and false alarm rate of Snort. The automated scenarios of attacks and background

traffic, and other manually administered attack application programs were employed to

measure these parameters for the system. The receiver operating characteristic (ROC) of

Snort was also investigated.

Fusion system is discussed as an area for further work. Some approaches that

have been used in designing fusion systems are also presented. Fusion systems aim at

1

2

combining scenarios of alerts produced from different intrusion detection systems

sensors, and report these scenarios of alerts at a single easily monitored location.

The remaining part of this report is organized as follows. In Chapter 1, the scope

of this project work and the organization of this report are presented. In Chapter 2,

computer and network attacks and countermeasures are discussed. In Chapter 3, the

layout of the intrusion detection system network and the different programs that were

used in this work are presented. In Chapter 4, a concise account of Snort and some

measured quantities are given. In Chapter 5, the attack programs that were used in this

work are discussed. In Chapter 6, the attack scenarios planning and development process

is outlined. In Chapter 7, the background traffic planning and development process is

presented. In Chapter 8, approaches adopted in the design of data fusion systems are

discussed. In Chapter 9, the process of conducting the attacks, running the background

traffic and collecting all the necessary data is outlined. In Chapter 10, the attack results

are presented and discussed, conclusions are drawn, and areas where further work is

necessary are presented. Appendices and References are presented after Chapter 10.

CHAPTER 2

COMPUTER AND NETWORK ATTACKS
AND COUNTERMEASURES

The proliferation of the Internet and the application of computers and computer networks

in many and diverse sensitive transactions have resulted in great security concerns given

all the possible attacks on the security of a computer system or network. Computer

attacks and their classes are discussed in [19][2][24-25]. These attacks could result in the

interruption of services or systems, or complete denial of service, interception of data

and/or modification of data.

Devising and effecting countermeasures against attacks on computers and

networks is an ongoing task that requires a great deal of effort. Countermeasures against

attacks on computers and networks have evolved over the years to include cryptographic

algorithms and protocols underlying network security applications (like encryption, hash

functions, digital signatures, and key exchange), network security tools and applications

(like Kerberos, X.509v3 certificates, PGP, S/MIME, IP Security, SSL/TLS, SET, and

SNMPv3), and system-level security issues (like the threats of and countermeasures for

intruders and viruses, and the use of firewalls and trusted systems). Cryptography,

Network Security Applications and System Security are discussed in [14].

Intrusion detection system is at the system-level of computer and network

security. Intrusion detection systems detect intrusions into a network or system abuse

using information the intrusion detection systems gather from the computer or network.

There are quite a number of intrusion detection systems developed using different

approaches. Some of these systems are discussed in [7][20-23][26].

3

CHAPTER 3

THE INTRUSION DETECTION SYSTEM
NETWORK AND PROGRAMS

In this Chapter, the intrusion detection system network and the different programs that

were used in the course of this work are discussed.

3.1 The Network

The intrusion detection system network at the New Jersey Institute of Technology (NJIT)

is built primarily for project work on intrusion detection systems. The network is

independent of the NJIT campus network, and it is not connected to the Internet. A

detailed layout of the network is shown in Figure 3.1 below.

4

5

The network layout as shown in Figure 3.1 above comprises four network

segments. The division of each of these networks terminates into a layer 2/3 switch.

These switches provide the routing functionality needed for communication from one

network segment to another. The network comprises four network segments with the

following address spaces:

(1) Traffic ULAN #1 with address space 10.10.10.0/24

(2) System/Uictim ULAN #2 with address space 172.16.2.0/24

(3) Wireless ULAN #3 with address space 20.20.20.0/24

(4) Attack ULAN with address space 30.30.30.0/24

The site built is designed to enable traffic to be generated across the

system/victim network from the traffic network, and the attack network performing

various attacks. Each of these networks is discussed in turn in the following sections.

3.1.1 The Traffic Network — VLAN #1

The traffic segment of the intrusion detection system network was set up to allow random

patterns of predetermined background traffic across the system/victim network. The

protocols used for the background traffic include Hypertext Transfer Protocol (HTTP —

Web), File Transfer Protocol (FTP — File Transfer), and Simple Mail Transfer Protocol

(SMTP — Mail). Some client — server background traffic have also been generated using

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

The network address assignment is as follows:

Table 3.1 below gives a breakdown of the assigned usable IP address range and

their corresponding host names.

3.1.2 The System/Victim Network —VLAN #2

The System/Uictim segment of the intrusion detection system network was set up to

allow receipt of random patterns of predetermined traffic from both the traffic network,

and from devices residing directly within the System/Uictim network. The same

protocols as in the Traffic network apply for the System/Victim network. They are:

Hypertext Transfer Protocol (HTTP —Web), File Transfer Protocol (FTP — File Transfer),

and Simple Mail Transfer Protocol (SMTP — Mail). Some client — server background

traffic have also been generated using Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP).

The range of IP addresses allocated to the System/Uictim network is assigned as

follows:

7

3.1.3 The Wireless Network VLAN #3

The Wireless segment of the intrusion detection system network was added to allow for

intrusion detection experiment with wireless technology. Generally, wireless

communication can be effected by either one of two modes of operation. These modes of

operation are:

(1) The infrastructure mode of operation which involves the use of an access point

connected to the wired network, and

(2) The infrastructure-less mode of operation otherwise called the ad-hoc mode of

operation because an access point is not involved. In this case, the hosts (Lap

Tops) communicate directly on a peer-to-peer basis.

The address space allocated to the Wireless network is assigned as follows:

20.20.20.0	 -	 Network Address

3.1.4 The Attack Network VLAN #4

The attack segment was designed to allow different types of attacks including random

patterns to be launched. These attacks could take a number of forms including:

- Probing

- Denial of Service (DOS)

- Local-to-Root

- Remote-to-Local

- Any combination of the above

The network address range allocated to the Attack network is assigned as follows:

8

Table 3.4 below gives a breakdown of the assigned usable IP address range and

their corresponding host names.

.....

3.2 Network Programs

A number of network utility programs were installed in the different network segment of

the intrusion detection network to allow for a number of functions including capturing of

packets, collection of tcpdump files and analysis of tcpdump files. These programs

include Windump and the Ethereal Network Analyzer. Both the Windump and Ethereal

Network Analyzer programs were installed on the Attack and System/Uictim networks.

Each of these programs is discussed in turn below.

3.2.1 Windump

Windump [11] is the tcpduinp version for the Windows operating system. It is a packet

sniffer and analyzer.

The Windump program was installed on both the attack and sniffer machines, and

was used to collect attack and victim tcpdump files on the respective machines.

10

3.2.2 Ethereal Network Analyzer

Ethereal [12} is a network protocol analyzer for both Unix and Windows operating

systems. It has the capability to analyze data from a live network or captured data on file

on a disk. With Ethereal, summary and detailed information for each packet can be

examined. The Ethereal Network Analyzer program has a number of features including a

display filter that allows users to select display preferences.

The Ethereal Network Analyzer program was installed on both the attack and

sniffer systems, and was used to examine and analyze tcpduinp files recorded both at the

attack and victim machines during the different test sessions.

CHAPTER 4

SNORT INTRUSION DETECTION SYSTEMS
AND MEASURED QUANTITIES

Intrusion detection systems have become an important part of many network security

architectures. Generally speaking, intrusion detection systems monitor the networks on

which they are deployed for suspicious activity or predetermined patterns. Most network

intrusion detection systems are equipped with the capability of alerting and logging these

information, while a very few have real-time capability of taking corrective measures.

In this work, one network intrusion detection system, Snort was considered. A

detailed discussion of this system is presented next.

4.1 Snort

Snort [7] is a packet sniffer and logger with real time alerting capability. It is rules-based,

can perform content pattern matching, and detect a variety of attacks and probes, such as

buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more, and has

been used as an intrusion detection system. Snort performs payload inspection and can

filter traffic depending on the given command line instructions.

Snort is made up of three primary subsystems. These subsystems are: the packet

decoder, the detection engine, and the logging and alerting systems. The decode engine is

built around the supported data-link and TCP/IP protocol definitions. The supported data-

link protocols are Ethernet, SLIP, and raw (PPP). The detection engine maintains Snort's

detection rules in a two dimensional linked list, termed Chain Headers and Chain Options.

11

12

Snort's logging and alerting subsystems options are selected at run time with command

line switches. Figure 4.1 below is an example of Snort's alert output.

Figure 4.1 An example of Snort's Alert output.

13

4.2 Performance Measures

In determining the performance of the intrusion detection system, two performance

measures were employed. These are the false alarm rate and detection rate. These

measures are discussed next.

4.2.1 False Alarm Rate

False alarm rate is a measure of how many alarms (false) were generated for normal

traffic monitored over a specified period of time, say a day — twenty-four hours period.

Background traffic of different types was employed in determining this performance

measure for the Snort intrusion detection system.

4.2.2 Detection Rate

Detection rate measures the percentage of all attacks detected by a particular intrusion

detection system. To determine this performance measure for Snort, a number of attacks

types were used.

4.2.3 Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) curve is a plot of the percentage correct

attacks detected by an intrusion detection system versus the number of false alarms per

day produced by the system. This performance measure provides a means of evaluating

the trade off between the detection rate and the false alarm rate. Low false alarm rates

with high detection rates means that the detection output can be relied upon. Conversely,

relatively high false alarm rate with low detection rate means that the detection output

can not be believed, and much more work will be needed as security analysts would be

spending more hours dismissing false alarms.

CHAPTER 5

ATTACK PROGRAMS

A number of attack programs were considered in the course of this work. Some of these

attack programs were automated by utilizing them in building scripts of attack scenarios

using the Pert programming language. Some other types of attack programs that could not

be automated due to their nature were administered manually. These attack programs are

discussed in the following sections.

5.1 Nmap

Nmap [10] ("Network Mapper") is one of the attack programs that were utilized in

building scripts of attack scenarios using the Pen programming language. The Nmap

program is designed to scan large networks rapidly. It employs raw IP packets to

determine information on what hosts are available on the network, what services (ports)

they are offering, what type of packet filters/firewalls are in use, what operating system

(and OS version) they are running, and other characteristics.

Nmap program provides a number of scan types, discovery methods, and options.

The scan types provided by Nmap include: TCP connect() scan, TCP SYN scan, Stealth

FIN, Xmas Tree, or Null scan modes, Ping scanning, UDP scans, IP protocol scans, ACK

scan, Window Scan, RPC scan and List scan. The discovery methods provided by Nmap

include: using TCP Ping, using TCP + ICMP, using ICMP Ping, or using the Don't Ping

method. The different options provided by the Nmap program include: Fragmentation,

Get Identification Information, Resolve All, Don't Resolve, Fast Scan, Operating System

(OS) Detection, Random Host, and Resume. The program also provides variation in

14

15

timing. The timing modes include Paranoid, Sneaky, Polite, Normal, Aggressive, and

Insane.

Each of these scan types, discovery methods, options and variations in timing are

discussed below.

5.1.1 Nmap Scan Modes

In this section, a concise description of the different scan types is presented.

5.1.1.1 SYN. 	 SYN scan works by sending SYN packet as though a real

connection was to be opened, and then waits for a response. A SYN/ACK is indicative

that the port is listening while a RST is indicative of a non-listener. Where a SYN/ACK

is received, a RST is sent to tear down the connection.

5.1.1.2 FIN. This Nmap scan type uses a bare FIN packet as the probe. The idea is to

make scanning as clandestine as possible.

5.1.1.3 PING SWEEP. 	 This Nmap scan type is useful in cases where all the

information that is needed is which hosts on a network are up. It uses ICMP echo

requests packets.

5.1.1.4 UDP SCAN. 	 When performing UDP scans, Nmap sends 0 byte udp

packets to each port on the target machine(s) to determine which UDP ports are open on

the host(s).

5.1.1.5 NULL SCAN. 	 Null scan has the same objective as FIN scan. It turns off

all the flags.

5.1.1.6 XMAS TREE. 	 The Xmas Tree scan type has the same objective as FIN

scan, but it turns on the FIN, URG, and PUSH flags on.

16

5.1.1.7 IP PROTOCOL SCAN. The IP protocol scans in Nmap sends raw IP

packets without any further protocol header to each specified protocol on the target

machine in order to determine which IP protocols are supported on a host. Whether or not

a particular protocol is used is determined by the kind of message that is received. An

ICMP protocol unreachable message means the protocol is not in use.

5.1.1.8 ACK SCAN. 	 ACK scan is usually used to map out firewall rulesets. It

works by sending an ACK packet to specified ports and waiting for RSTs. If a RST

comes back, then the port is not filtered, but if nothing comes back (or if an ICMP

unreachable is received), then the port is filtered.

5.1.1.9 WINDOW SCAN. This type of Nmap scan is similar to ACK scan, and can

detect open ports as well as filtered and non-filtered ports.

5.1.1.10 RCP SCAN.	 RCP scan determines which ports are RCP ports by

flooding all TCP/UDP ports that have been found open with SunRPC program null

commands.

5.1.1.11 LIST SCAN.	 List scan in Nmap generates and prints a list of IP

addresses and names. In doing this, Nmap does not perform any pinging or port scanning.

5.1.1.12 CONNECT. This Nmap scan type employs the connect() system call to

open a connection to interesting ports on the machine. The connection operation will

succeed if the port is listening. Otherwise it will not succeed.

5.1.2 Nmap Discovery Methods

In this section, the different Nmap discovery methods are discussed.

17

5.1.2.1 TCP Ping. In this Nmap discovery method, TCP "ping" is used to determine

what hosts are up in a network. It employs TCP ACK packets. These packets are sent into

the network or to a single host. Hosts that are up will respond with a RST.

5.1.2.2 TCP + ICMP. 	 This discovery method combines the TCP ping and ICMP

discovery methods.

5.1.2.3 ICMP Ping. This discovery method uses ICMP echo request packets and waits

for the corresponding echo reply packets.

5.1.2.4 Don't Ping. This discovery method allows for the scanning of networks that do

not allow ICMP echo requests (or responses), may be, through their firewall. The idea is

to attempt scanning without pinging host systems.

5.1.3 Nmap General Options

In this section, the different options provided by the Nmap program are discussed.

5.1.3.1 Fragmentation. 	 This enable Nmap to cause the requested scan to use tiny IP

packets. The idea is to prevent network-protecting systems to detect the actions taken

against the network.

5.1.3.2 Get Identification Information. This option enables Nmap to identify the

hosts on the network.

5.1.3.3 Resolve All. This option tells Nmap to do reverse DNS resolution on the active

IP addresses it finds.

5.1.3.4 Don't Resolve.	 This option tells Nmap never to do reverse DNS resolution.

The objective here may be to speed up the scanning process.

5.1.3.5 Fast Scan. This causes Nmap to scan only those ports listed in the services file

that comes with Nmap.

18

5.1.3.6 Operating System (OS) Detection. This option enables Nmap to use a

number of techniques to detect useful information about the underlying system being

scanned. This information is then used to create a 'fingerprint' which it compares with its

database of known OS fingerprints. With this, it proceeds to guess the operating system.

5.1.3.7 Random Host. This option tells Nmap to shuffle a group of up to 2048

hosts before it scans them.

5.1.3.8 Resume. This option enables Nmap scanning session that is cancelled due to

control-C, network outage, etc. to be resumed.

5.1.4 Nmap Timing Modes

Nmap has a number of timing modes designed to meet the objective of the user. These

timing modes are discussed below. Also, the particular timing modes that were used in

developing the stealth attacks scenarios are mentioned in the respective sections.

5.1.4.1 Paranoid. This Nmap timing mode scans very slowly in the hope of avoiding

detection by intrusion detection systems. It serializes all scans. In other words, under this

timing mode, Nmap does not perform parallel scanning. Also, in this mode, Nmap

generally waits at least five (5) minutes between sending packets.

The command option for this timing mode is "0." This is shown in the

sce_exp.conf file in Appendix H — stealth attacks scenarios configuration files. This

timing mode was used for the first eighty five (85) attacks scenarios, with large scanning

time delay between individual attacks scenarios.

5.1.4.2 Sneaky. This Nmap timing mode is similar to Paranoid. The only difference

here is that the waiting time between sending packets is 15 seconds (not 5 minutes).

19

The command option for this timing mode is "1." This timing mode was used for

the eighty sixth to one hundred and seventieth (86-170) attacks scenarios after the

paranoid mode, and also with somewhat large scanning delay time (lesser than for 1 - 85)

between individual attacks scenarios. The part of the configuration file, sce_exp.conf file,

corresponding to the stealth attacks scenarios developed using this timing mode cannot be

shown due to space constraint.

5.1.4.3 Polite.	 This Nmap timing option is designed to ease load on the network

and reduces the chances of crashing machines. It serializes the probes and waits at least

0.4 seconds between the packets being sent.

The command option for this timing mode is "2." This timing mode was used for

the remaining attacks scenarios, and with even lesser scanning delay time between

individual attacks scenarios. The part of the configuration file, sce_exp.conf file,

corresponding to the stealth attacks scenarios developed using this timing mode cannot be

shown due to space constraint.

5.1.4.4 Normal. 	 This Nmap timing option causes the Nmap program to run as fast

as possible without overloading the network or missing hosts/ports. This is the default

Nmap behavior.

The option for this timing mode is "3." Many of the attacks scenarios in the

normal attacks scenarios script as shown in Appendix F employed this timing mode.

5.1.4.5 Aggressive. This Nmap timing mode adds a 5 minutes timeout per host. Under

this mode, Nmap does not wait more than 1.25 seconds for probe responses. This timing

mode was used in the normal attacks scenarios script shown in Appendix F. The

command option for this timing mode is "4."

20

5.1.4.6 Insane. This Nmap timing mode is only suitable for very fast networks or

where capturing every piece of information is really not important. This mode times out

in 75 seconds and only waits 0.3 seconds for individual probes. The command option for

this timing mode is "5."

5.2 Netcat Program

Netcat, or "nc" [9] as the actual program is named, is another form of attack program.

However, it was not used in this work. Netcat can create almost any kind of connection

that one would need. It can be used directly or easily driven by other programs and

scripts.

In its simplest usage, Netcat creates a TCP connection to the given port on the

given target host. The standard input is then sent to the host, and anything that comes

back across the connection is sent to the standard output.

21

5.3 Other Attack Programs

Many other kinds of attack programs were also used in this work. These are presented in

Table 5.1 below.

CHAPTER 6

ATTACK SCENARIOS

A number of attack scenarios running into the order of hundreds were developed in the

course of this work for use in the evaluation of the Snort intrusion detection system. The

development of these attack scenarios represents efforts at automating many of the attack

types on the one hand, and administering these many and diverse attack types and options

in a coordinated manner and much more conveniently, on the other. In this chapter, the

attack scenarios planning and development processes are discussed.

6.1 Attack Scenarios Planning

The different attack scenarios were built from the different attack types under each kind

of attack, different discovery methods, different attack options, and different timing

options for each attack type as discussed in Chapter 5. Additionally, there were different

combinations of these attacks, and the scan interval between them.

6.2 Attack Scenarios Development

The attack scenarios were developed using the Pearl programming language with the

ultimate purpose of being able to run user-defined attack programs automatically. Perl is

portable. It can be used on many platforms including Unix, Linux and Windows.

The Pearl programs were developed with the intent that generating attack scenarios

be fairly easy by setting only the attack types, parameters and delay time between two

attacks in a configuration file. The program is developed in two steps characterizing

22

23

typical attacker behavior. The first step involves information gathering, and the second

step involves some specific exploits based on the information gathered in the first step.

6.2.1 Information Gathering

The information-gathering step represents the first step in simulating a sequence of

intrusion action in this work. Since an attacker often starts with discovery attacks to

obtain important information about a victim's network, this first step of the program was

developed solely for the purpose of gathering information about the victim's network.

Such information may include: which hosts (or IPA addresses) are running, what port

numbers are open, and what services are running on these ports.

Two files were developed in this step. One is a configuration file, and the other is

a Pearl script. The configuration file, pre_exp. conf and the Pearl script, pre_exp are given

in Appendix E.

When the Perl script is being executed, it calls the configuration file, and parse

configuration information. The configuration information includes the victim network

address (or address range) and which services to detect and other parameters. When the

Perl script finishes scanning the victim network, it saves the result in a database called

pre_exp.data. Each line of the database file contains the information of one running host.

24

A typical content of the pre_exp.data database for our network for the

information gathering stage is shown below.

Figure 6.1 Content of pre_exp.data database.

6.2.2 Attack Exploit

The attack exploit represents the second step in the simulation of intrusion action in this

work. In this step, there are two configuration files and one Perl script. The configuration

files are sce_cmd.conf and sce_exp.conf, and the Pearl script is sce_exp.pl. The files in

this step, both the configuration files and the Pearl script, are given in Appendix F. Each of

the configuration files and the Perl script are discussed in the following sections.

6.2.2.1 sce_cmd.conf.	 The configuration file, sce_cind.conf, specifies each attack

program and its parameters. The first column in this file is the entry name. The second

column is the attack program name, and the other columns are its parameters' format.

New attack types are added to the program by defining its format in the sce-

cmd. conf configuration file.

25

6.2.2.1 sce_exp.conf. The configuration file, sce_exp.conf, is the file where

attack scenarios are specified. Each line in this file is a kind of known attack. The

sce_cmd. conf and sce_cmd. conf configuration files together define a particular attack to

be carried out when the Pearl script is executed.

For each attack to be carried out, and as defined in the sce_cmd. conf configuration

file, there are typically three entries that are defined in this configuration file —

sce_cmd.conf The first entry is the waiting time between two attack commands. This is

represented as < n >s, < n >m or < n >h to indicate number of seconds, minutes or hours.

The < n > represents a number. The second entry is the command to build the database.

This command is represented by newdata on a separate line. The command, newdata,

calls the configuration file pre_exp.pl each time it is executed to scan the network again

in order the build the database. The third and final entry is the attack command line. The

attack command line represents an attack command and its parameters, with the space

character separating them. The first column in the command line of the sce_exp.conf

configuration file is the same entry name of an attack specified in sce_exp.conf

configuration file. With this, the Peril script upon reaching a new (and unique) attack

name, uses the information contained in the two configuration files to construct the attack

command, and then, executes it.

6.2.3 Stealth Attacks Scenarios

Stealthiness in attacks scenarios building has to do with hiding an attack action from an

individual monitoring the system or network, or from an intrusion detection system. The

methods for making attacks stealthy depend on the type of attack.

26

The Nmap program used in this used is basically a surveillance/probing form of

attack. For this form of attack, a number of methods have been identified for either hiding

the fact that a probe is occurring, or hiding the identity of the attacker. One of the

simplest ways to hide probing actions is to make the probe to occur slowly. For the Nmap

program, the timing options — paranoid and sneaky — provide for this occurrence. These

timing options were used to build a large number of attacks scenarios for the stealthy

attacks script.

Another method to hide probing actions is to use scan delays. The scan delay

option in Nmap specifies the amount of time Nmap must wait between probes. In

addition to slowing the scan way down as to sneak under intrusion detection system's

thresholds, scan delay can also be useful in reducing the load on the network. This

method was also used in building the stealth attacks scenarios.

Yet another method to hide probing actions is to employ scan types that are

inherently designed for this purpose. Such scan types do half-open connections or FIN

scanning of a network. The Nmap program provides two of such scan modes. These are

the SYN stealth and the FIN stealth scan attack types. The SYN stealth scan works by

sending SYN packet as though a real connection was to be opened, and then waits for a

response. A SYN/ACK is indicative that the port is listening while a RST is indicative of

a non-listener. Where a SYN/ACK is received, a RST is sent to tear down the connection.

The FIN stealth scan attack type on the other hand uses a bare FIN packet as the probe.

Relative to the SYN stealth scan type, the idea in this case is to make scanning as

clandestine as possible. The SYN stealth scan type was also used to develop some stealth

attacks scenarios.

CHAPTER 7

BACKGROUND TRAFFIC

Background traffic emanating from the traffic network of the intrusion detection system

network was used each time attacks were performed and data were being collected.

Generally speaking, four kinds of background traffic namely file transfer protocol (FTP),

telnet, hyper-text transfer protocol (HTTP), and Mail services are available for work of

this nature. These four kinds of traffic are discussed in [13].

7.1 Background Traffic Scenarios Planning

The background traffic scenarios was planned around the available background traffic

types - file transfer protocol (FTP), telnet, hyper-text transfer protocol (HTTP), and Mail

services.

7.2 Background Traffic Scenarios Development

A background traffic-generating program was developed using the Pearl programming

language. This program generates user-defined background traffic automatically. The

program contains three files: bkgrd_gen.conf, bkgrd gen.conf, and bkgrdgen.pl. The

file structure of this background traffic-generating program is similar to that of the

attacks scenarios building program. The bkgrd_cmd.conf configuration file defines the

format of each background traffic type, the bkgrd_cmd.conf configuration file contains

various background traffics to be generated, and bkgrdgen.pl is the script reading the

configuration information in bkgrd_cmd.conf and generating the background traffic.

These scripts are shown in Appendix G.

27

CHAPTER 8

FUSION SYSTEM

As intrusion detection systems are becoming more and more in common use in

organizations, the trend is moving towards the use of multiple intrusion sensors. A

consequence of this practice is that the work load of security personnel may increase as

the same attacks may be detected and reported by different sensors. Additionally, while

the detection rate is improved, the false alarm rate tends to increase.

Fusion systems are designed to overcome these issues by combining the alerts

generated by the different sensors and reporting the results at a single location. This is an

ongoing area of research work, and a number of approaches have been adopted in

combining the alerts.

The algorithm described in [28] is probabilistic in nature. It determines the

scenario membership of a new alert in time proportional to the number of candidate

scenarios. In essence, it groups alerts that share a common cause.

In [29], an approach to construct attack scenarios by correlating alerts on the basis

of prerequisites and consequences of intrusions. Based on the prerequisites and

consequences of different types of attacks, the proposed approach correlates alerts by

(partially) matching the consequence of some previous alerts and the prerequisites of

some later ones.

The alerts obtained from the Snort intrusion detection system when the different

attacks scenarios in this work were executed have been made available for the next phase

of this work — building the alerts scenarios.

28

CHAPTER 9

CONDUCTING ATTACKS AND
COLLECTING DATA

All the attack programs were conducted from the attack network. The different

background traffics were sent into the network from the traffic network. The sniffer

system is installed in the systemlvictim network from where data on the network is

dumped. All the attacks were performed in the presence of background traffic.

In measuring the detection rate of Snort, all the automated attack scenarios and

manually administered attack programs were used in the presence of background traffic.

In determining the false alarm rate of Snort, only background traffics were used.

Appendix A shows the false alarm rate tests schedule for Snort intrusion detection

system. Appendix B shows the tests schedule for the determining the detection rate of

Snort using the Nmap programs. Appendix C shows the tests schedule for determining

the detection rate of Snort using the manual attack application programs. Appendix D

shows the tests schedule for determining the detection rate for Snort using the attack

scenarios.

29

CHAPTER 10

RESULTS AND FUTURE WORK

In this Chapter, result from the different attack performed and the different background

traffic ran independently is presented. Also, in this Chapter, a discussion of the results

obtained, conclusions drawn, and areas for future work are presented.

10.1 Attacks Results Summary

In the discussion of these results, reference is made to Appendices A — D showing the

results and the tests schedule for all the tests that were carried out.

Table 10.1 shown below summarizes the number of Nmap attack programs that

were detected by the Snort intrusion detection system. It shows similar figures for the

manually administered attack application programs.

30

31

Table 10.2 summarizes the number of false alarms generated by the Snort intrusion

detection system when the different background traffic were present on the network.

The result presented in Table 10.1 above indicates that 73% all Nmap's scan types

and discovery method used in this work resulted in actual scanning of the network. Of the

73% Nmap attacks that resulted in scanning activity, the Snort intrusion detection system

detected all (100%) of them.

For the false alarm rate performance, the Snort intrusion detection system

produced no false alarms for the background traffic used.

The receiver operating characteristic curve for Snort intrusion detection system

will show a 100% detection rate for the Nmap attack programs with 0% false alarm rate.

These results are discussed below.

10.2 Discussion of Results

As seen in Appendix B, from the breakdown of all Nmap's scanning attacks performed

with different discovery options, it was discovered that there were no alerts produced by

the Snort intrusion detection system for any of the scan types when the ICMP discovery

options is used. In the following sections, the Snort alerts collected and the scan results

for a selected number of the scenarios are presented and discussed.

32

35

In the other cases (like all the LIST SCAN types with different discovery methods,

PING SWEEP with TCP Ping discovery method) where there were no alerts produced,

there were also no scanning activity. The scanning results for these attacks scenarios are

shown in Figure 10.8, Figure 10.9, and Figure 10.10 below.

36

10.3 Conclusions

It is evident from the above results that the Snort intrusion detection system is capable of

detectinglalerting on all Nmap scanning types and discovery option where scanning

activity is actually carried out for a 100% detection rate. Also, Snort does not produce

any false alarms for the background traffic we used.

It is also evident from the results that Nmap under the Windows operating system

does not scan the network for all of Nmap scan types when the ICMP Ping discovery

method is used. One explanation for this is the fact that the network under the Windows

operating system does not allow ICMP echo requests (or responses) packets. This is

evident in the blocking of probes when this command option is used.

Also, Nmap under List Scan does not perform scanning activity. This is evident

from the results obtained. Nmap documentation explains that the List Scan simply list the

IP addresseslNames on hosts on the network without actually scanning them.

About 73% of all the Nmap scan types and discovery methods investigated in this

work resulted in scanning activity.

The Pearl script developed in this work is easy to expand, portable and efficient.

10.4 Future Work

The next step planned for this work is fusion system. As discussed in Chapter 8, fusion

systems build scenarios of alerts into groups, and determine the scenario membership of a

new alert given the alerts and the groups already present, based on probability

calculations or correlation techniques. The different Snort alerts collected in the process

of running the many different attacks scenarios in the course of this work have been made

available for this purpose.

APPENDIX A

SNORT INTRUSION DETECTION SYSTEM
FALSE ALARM RATE TESTS SCHEDULE

In this Appendix, false alarm rate tests schedule is presented.

37

APPENDIX B

SNORT INTRUSION DETECTION SYSTEM DETECTION
RATE USING NMAP PROGRAMS TESTS SCHEDULE

In this Appendix, detection rate tests schedule is presented.

APPENDIX C

SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING MANUAL ATTACK

PROGRAMS TESTS SCHEDULE

In this Appendix, the tests schedule for determining the detection rate of Snort using the

Manual Application Programs is presented.

39

APPENDIX D

INTRUSION DETECTION SYSTEM
DETECTION RATE USING THE DIFFERENT

ATTACK SCENARIOS TESTS SCHEDULE

In this Appendix, the tests schedule that was followed in determining the detection rate of

the Snort intrusion detection system using the attack scenarios is presented.

40

41

42

43

44

45

printf FP_OUT ("Test UDP port: \"@cmd <IP> -p $PRE_EXP_DPORT_UDP -sUV\" on
%02d1%02d1%02c1 %02d:%02d:%02d\n", $mon+1, $mday, $year%100, $hour, $min,
$sec);

#print FP_OUT "Test TCP port: \"@cmd <IP> -p $PRE_EXP_DPORT_TCP\" on ",
'date +\"%a %D %T\"';
#print FP_OUT "Test UDP port: \"@cmd <IP> -p $PRE_EXP_DPORT_UDP -nth" on ",
'date +\"%a %D %T\"';

close(FP_OUT);
close(FP_OUT);

unlink("pre_exp.data.tmp") 11 warn "warning on deleting file: $!";

46

47

elsif ($line — lA\s*newdata*$l) {
print "updating database";

do "pre_exp.p1";
}
else {
	

it's a attack command
@cmd=""; $repetition = 1;

process_parameter;

shift(@cmd);	 # remove the first "".
#print "cad: @cmd\n";
#print "repetition: $repetition\n";

if(!defined($child_pid=fork())) {
die "Cannot fork another process to run the scenarios: $ r ;

}
elsif ($child_pid = 0) {	 # this is child process

print "command: @cmd\n";
#system("cmd");

$tmp_repetition = $repetition;
while (--$repetition\n > 0) {

@cmd=""•
process_parameter;

shift(@cmd); # remove the first "".
print "command: @cmd\n";
#system(" @cmd");

}

exit;
}
else {

#wait;
}

}
}

close(FPCONF);

#	

this is parent process.

+
construct a hash from the database: key IP, value port I
#	
sub read_database {

my ($line, @tmp_lv);	 # need parentheses.
open (FP_PRE,"pre_exp.data") or die "Cannot open pre-scann data file: $!";

+

48

49

50

llADR$/ ? $tmp_hv $tmpip1 [0] ? func_dr(split(As+l,$tmp_hv {$tmpip}[0])) : 80 :
/ADRR$/ ? $tmp_hv $tmpip1 [0] ? func_drr(split(As+l,$tmp_hv {$tmp_ip}[0])) :

80
/ADA ? $tmp_hv {$tmpip1} [0] ? func_da(Stmp_hv $tmpip}[0])

	
: 80 :

80;
$tmp_pt	 try/ /,/;
return $tmp_pt;

}

functions.

sub func_r {
my ($low,$high);
$low = defined $10] ? $10] : 20;
$high = defined $_[1] ? $_[1] : 29;
return int(rand($high-$low+1)) + $low;

}

sub func_r {
my ($low,$high);
$low = defined $_[0] ? $10] : 20;
$high = defined $_[1] ? $_[1] : 99;
my $temple = int(rand($high-$low+1)) + $ low;
my $templ = int(rand($high-$low+1)) + $low;
return ($temple < $templ ? "$temp2-$templ" : $temple > $templ ? "$temp2-$templ" :

$temple);
}

sub func dr {
my @temp = @_;
return $temp[int(rand(@temp))];

}

sub func_drr {
my $ratio = 0.5;	 # default, 50% will be selected.
my $temple = "";
foreach my $templ (@_) {

if((rand) < $ratio) $temple .= ($templ. " "); }
}

($temple) ? chop($templ) : $temple=$_[$#_]; # why doesn't it work?
if($templ) chop($templ); }	 # remove the last ,
else { $templ=$_[$#_]; } 	 # at least should get one.
return $temple;

}

51

sub func_da {
return "@_";
	

any other good method ?
}

(2) sce_cmd.conf

This file specifies each attack program and its parameter format. The first
column is the entry name. The second is the attack program name and the
rest columns are its parameters. The sce_exp.p1 script reads an entry from
the sce_exp.conf and will query this file to construct the command by
finding the entries having same command name in two files.

nmap port scan format:
# entry cmd ip port delay	 source_port type
nmap_scan nmap - -p --scan_delay -g 	 -sNS

#1
syntcpn nmap - -sNS
#2
syntcpicmpn nmap - -sNS
#3
synicmpn nmap - -sNS
#4
syndontn nmap - -sNS
#5
syntcpi nmap - -sNS
#6
syntcpicmpi nmap - -sNS
#7
synicmpi nmap - -sNS

(3) sce_exp.conf

This is the configuration file of scenario running program, sce_exp.pl.
Each line stands for an attack with parameters except for the line beginning
with # (it is a comment).

There are three types of statement: attacks, waiting time between attack scenarios and
#running pre-scanning program to generate new pre_exp.data.
# The format of attacks is: 	 program_name <parameters>
# The format of time waiting is:	 <n>s, <n>m, or <n>h
The format of updating new database file is: newdata

Example: format of port scan using nmap.

52

# program target_addr services 	 delay source port type
nmap DRIDRRIDAIva1ue RIRR/DRIDRRIva1ue R/value R/va1ue S/TIX/N
#nmap_scan DA R(3-5) 2000 1500 S [[-n..-P0]] {6-9} }
#nmapping_sweep DR R(1500-1600) P [[-n..-PS]] {4} }
#nmap_scan DRR R(1-5) 2000 1500 S [["aa"..bb]] {{2}}
#3.2s
#nmap_scan DR DR R(1000-2000) 1500 S {4} }
#1.2m
#newdata
I added the stuff below
#1.0m
#netcatport DR DR
2s
#1
syntcpn 172.16.2.11 S [[-PT..-0..-T..0]] { {1} }
50s
#2
syntcpicmpn 172.16.2.12 S [[-PT..-PI..-O..-T..0]] { {2} }
55s
#3
synicmpn 172.16.2.13 S [[-PI..-O..-T..0]] { {5} }
100s
#4
syndontn 172.16.2.17 S 	 { {7} }
80s
#5
syntcpi 172.16.2.12 S [[-PT..-0..-T..0]] { {5} }
51s
#6
syntcpicmpi 172.16.2.13 S [[-PT..-PI..-O..-T..0]] { {2} }
55s
#7
synicmpi 172.16.2.17 S [[-PI..-0..-T..0]] {5}}

53

54

55

57

58

59

60

61

APPENDIX H

In this Appendix, a part of the stealth attacks configuration file is given.

Sce_exp.conf

This is the configuration file of scenario running program, sce_exp.pl.
Each line stands for an attack with parameters except for the line beginning
with # (it is a comment).
#1
syntcpn 172.16.2.11 S [[-PT..-O..-T..0]] { {1} }
50s
#2
syntcpicmpn 172.16.2.12 S [[-PT..-PI..-0..-T..0]] { {2} }
55s
#3
synicmpn 172.16.2.13 S [[-PI..-0..-T..0]] { {5} }
100s
#4
syndontn 172.16.2.17 S [[-P0..-0..-T..0]] { {7} }
80s
#5
syntcpi 172.16.2.12 S [[-PT..-O..-T..0]] {{A})
51s
#6
syntcpicmpi 172.16.2.13 S [[-PT..-PI..-0..-T..0]] { {2} }
55s
#7
synicmpi 172.16.2.17 S [[-PI..-0..-T..0]] { {5} }
100s
#8
syndonti 172.16.2.18 S [[-P0..-0..-T..0]] { {7} }
130s
#9
syntcpid 172.16.2.13 S [[-PT..-n..-T..0]] { {3} }
71s
#10
syntcpicmpid 172.16.2.17 S [[-PT..-Pn..-O..-T..O]] { {2} }
65s
#11
synicmpid 172.16.2.18 S [[-PI..-n..-T..0]] { {5} }
110s
#12
syndontid 172.16.2.11 S [[-P0..-n..-T..0]] {{7})
etc.

63

64

16. S. Nothcutt, M. Cooper, M. Fearnow and K. Frederick, Intrusion Signatures and
Analysis, New Riders, Indiana, 2001.

17. K. M. Walker and L. C. Cavanaugh, Computer Security Policies and SunScreen
Firewalls, Sun Microsystems Press, California, 1998.

18. A. D. Rubin, D. Geer and M. J. Ranum, Web Security, Wiley Computer Publishing,
USA, 1997.

19. "Computer Attacks: What They Are And How To Defend Against Them,"
http://csrc.nist.gov/SBC/PDF/NISTITL_Bulletin_05-99_Comp_Attacks.pdf.

20. Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, "HIDE: A
Hierarchical Network Intrusion Detection System Using Statistical Preprocessing
and Neural Network Classification," http:/ Aveb.njitedu —manikopo/papers.

21. Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, "HIDE: An
Anomaly Network Intrusion Detection System Utilizing Wavelet Compression,"
http://web.njit.edu/—manikopo/papers.

22. Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, "Neural Networks
in Statistical Anomaly Intrusion Detection,"
http://web.njitedu/—manikopo/papers.

23. Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, "A Hierarchical
Anomaly Network Intrusion Detection System Using Neural Network
Classification," http://web.njit.edu/—manikopo/papers.

24. E. Skoudis, Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses, Prentice Hall PTR, 2002.

25. P. Mell, Computer Attacks: What They Are and How to Defend Against Them,
NISI, Computer Security Division,
http://www.itl.nist.gov/div893/staff/mell/pmhome.html.

26. eTrust Intrusion Detection, http://www3.ca.com/Solutions/Product.asp?ID=163.

27. The Recorder Program Website: http://www.kratronic.com/recorder, version 4.3.

28. 0. M. Bain and R. K. Cunningham, "Building Scenarios from a Heterogenous Alert
Stream," Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY, 5-6 June 2001.

29. P. Ning, Y.Cui and D.S. Reeves, "Constructing Attack Scenarios through
Correlation of Intrusion Alerts," ACM, USA, November 18-22, 2002.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract Page
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgement
	Table of Contents (1 of 3)

	Table of Contents (2 of 3)

	Table of Contents (3 of 3)

	Chapter 1: Introduction
	Chapter 2: Computer and Networks Attacks and Countermeasures
	Chapter 3: The Intrusion Detection System Network and Programs
	Chapter 4: Snort Intrusion Detection Systems and Measured Quatities
	Chapter 5: Attack Programs
	Chapter 6: Attack Scenarios
	Chapter 7: Background Traffic
	Chapter 8: Fusion System
	Chapter 9: Conducting Attacks and Collecting Data
	Chapter 10: Results and Future Work
	Appendix A: Snort Intrusion Dectection System False Alarm Rate Tests Schedule
	Appendix B: Snort Intrusion Dectection System Rate Using Nmap Programs Tests Schedule
	Appendix C: Snort Intrusion Dectection System Rate Using Manual Attack Programs Tests Schedule
	Appendix D: Intrusion Dectection System Detection Rate Using the Different Attack Scenarios Tests Schedule
	Appendix E: Information Gathering Scripts
	Appendix F: Attack Exploit Scripts
	Appendix G: Background Traffic Scipts
	Appendix H
	References

	List of Tables

	List of Figures
	List of Symbols

