Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

Mew |ersey’s Science &
Technology University

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC
GENERATION PROGRAMS

Friday Bal?s,ey Akpan
In this master’s thesis work, a program was developed using the Perl programming
language to enable user defined attack programs to run automaticaily. A similar program
was also developed for background traffic. With this program, the different features of
the Nmap exploration and scanning tool were exploited to build scenarios of attacks.

Automated scenarios of attacks running in to the order of hundreds were
developed. Also, different sets of automated stealthy attacks scenarios running in to the
order of hundreds were developed using the timing modes, stealthy scans and scan delay
features of Nmap.

These automated attacks scenarios were employed in the evaluation of the Snort
intrusion detection system. It was discovered that 73% of all the Nmap’s scanning types
and discovery methods that were used in this work resulted in scanning activity. The
Snort intrusion detection system detected and produced alerts on every of the 73%
Nmap’s scan types and discovery method that resulted in scanning activity. Snort was
found to have a non-existent false alarm rate and a very high detection rate of 100% using
these attacks scenarios and background traffic.

The developed attacks scenarios program were found to be easy to use, efficient,
and easy to expand by setting only the type of attacks, parameters of the attack, and the

delay time between two successive attacks in a configuration file.

EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC
GENERATION PROGRAMS

by
Friday Bassey Akpan

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2003

APPROVAL PAGE
EVALUATION OF INTRUSION DETECTION
SYSTEMS WITH AUTOMATIC TRAFFIC
GENERATION PROGRAMS

Friday Bassey Akpan

Dr. Constantine Manikopoulos, Thesis Advisor * Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Bin He, Committee Member Date
System Engineer, XPRT Solutions, Inc. New Jersey

Dr. Sotirios Ziavras, Committee Member o Date
Professor and Associate Chair of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Friday Bassey Akpan
Degree: Master of Science
Date: January 2003

Undergraduate and Graduate Education:

» Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

= Bachelor of Engineering in Electrical and Electronic Engineering
(option in Communications Engineering),
Federal University of Technology, Owerri, Nigeria, 1996

Major: Computer Engineering

iv

My master’s thesis is dedicated to the memory of my beloved brother,
Joel Bassey Akpan who left this world to be with

the Lord on November 20, 2002.

ACKNOWLEDGMENT
I am greatly indebted to my thesis advisor, Dr. Constantine Manikopoulos, who not only
provided directions and supervision throughout this work, but also provided all the
support and encouragement [needed. I also want to thank Dr. Bin He for the numerous
contributions he made towards the successful completion of this work, and Dr. Sotirios
Ziavras, my graduate advisor, for his contributions and active participation in my
master’s thesis.

I will not fail to mention the contributions and support of my fellow graduate
students whose assistance in clarifying many unfamiliar concepts, cooperation and
understanding made this work possible.

I also wish to acknowledge the contributions of Ms. Clarisa Gonzalez-Lenahan
and Dr. Kane, both of the Graduate Studies Office, for the successful writing of my thesis
report. They organized a master’s thesis writing workshop during which they took the
time to explain to me and other colleagues the report writing format and review process.
Ms. Gonzalez provided guidance throughout the review process and made a number of
corrections in the initial drafts of this report.

I must also say a special thank you to Jeanette Petford of the Bursar’s department
at NJIT, and Alexia Jones, my career counselor, of the Career Development Services at
NJIT. Yolanda Agront and Mike Murphy, both of Lucent Technologies, Bell Labs
Innovations, USA were also of great help to me. George Asish, David Yu and Peter Allen
were friends indeed. These persons and many others so numerous to mention contributed
in different ways to the successful completion of my study at the New Jersey Institute of

Technology (NJIT), USA.

vi

TABLE OF CONTENTS

Chapter

1 INTRODUCTIONcociiriiiiiiiiiiiiiciniciie et

2 COMPUTER AND NETWORK ATTACKS

AND COUNTERMEASURES.......cc.cooooiiiiie e

3 THE INTRUSION DETECTION SYSTEM NETWORK

AND PROGRAMS ...ttt siresve ettt sasesaesnne s e be s
3.1 The NEtWOTK ...oooviviiirieeiieeieeniieeeeeeeeie et rae st aeenneeas
3.1.1 The Traffic NetwWorkcccccoceviiiiiiiiniiiiiiiineieies
3.1.2 The System/Victim NetWorkccccceeriiineniniiininnnenen
3.1.3 The Wireless NetWorkccccooevcciiiiiiniiniiinineniecien,
3.1.4 The Attack Network.......cccccoovrmviiiiiiiiiiiiiiee e
3.2 The PrOGramsS......ccccceviruiiriiriiiiiieiciiiie sttt
3.2.1 WINAUMD.....coveieriieieeeieereneeceee e

3.2.2 Ethereal Network Analyzer..........cccoovvieviiniiiiienniiniennne

4 SNORT INTRUSION DETECTION SYSTEM

AND PERFORMANCE MEASURES.........cccciiiiiiieceee
O T 1 1o} o OO UOU ORISR
4.2 Performance MEasUres..........cccoovevvuririiiiiiiieenie et eeeeeeeeane
4.2.1 False Alarm Rate........ccceeeiueeimieciieiiiiiiciieeccreeies
4.2.2 Detection Rate.......cccevueeeiirieniiiiiiiniiniiineie e
4.2.3 Receiver Operating Characteristic (ROC)ccceneee.

5 ATTACK PROGRAMS ...t

vii

..................

.................

.................

.................

.................

.................

.................

.................

.................

.................

.................

Page

TABLE OF CONTENTS

(Continued)
Chapter Page
5.1.1 Nmap Scan ModeSccoeueuiiiirimiiiiiieeee st 15
5.1.2 Nmap Discovery Methodsccccemririimninniiiininiees 16
5.1.3 Nmap General OPLioNsSccovereeriiireieneenneniieisntssssnes 17
5. 1.4 Nmap Timing OPtionscccoceirieirireninenneenii e 18
5.2 NEtCAt PIOZTAIML....c.eueuveveurreeiereuiriisiiesseresensssssssses st 20
5.3 Other Attack Programscccooiviimmrininiieeneiecneiecin e 21
6 ATTACK SCENARIOSoooiieieeeeeiteceterie ettt ra e s be e 22
6.1 Attack Scenarios Planmingcccccecevvieeiiniiiinieniisienieseeene s 22
6.2 Attack Scenarios DeVElOPMEnt........ccoviuiiiieiiiiiieiieneenecricn e 22
6.2.1 Information Gatheringccccoceeriviiriiriniiniieiiese e 23
6.2.2 Attack EXPIOTt..ceeiiiriiiiiiiiiiiiiieienieee s e 24
6.2.3 Stealth Attack SCENATIOScccverrueerieerrreiiiiiiieeitrenresse et 25
7 BACKGROUND TRAFFICcoeeierieieneiiniiiiitcreien ettt 27
7.1 Background Traffic Scenarios Planning ... 27
7.2 Background Traffic Scenarios Development...........ooooeiiinniiinnncnens 27
8 FUSION SYSTEM ...oooeiiiiireiteeieetesieeeetesesseeresaesssenseae s sss s s saesst s cassss s sasanas 28
9 CONDUCTING ATTACK AND COLLECTING DATA ..o 29
10 RESULTS AND FUTURE WORKccccoviiiiiiiniiieie sttt 30
10.1 Attacks Results SUMMATYccveeiiiieveniiniiiiieie et s 30
10.2 Discussion Of RESUIS......cc.eeecieriieriiieniciiie ittt 31
10.3 CONCIUSIONS......uveierrreeireeerreesireeeseesseeenressasesassneesrssessassseesssesanssaatsesss s nsesnes 36

viii

TABLE OF CONTENTS

(Continued)
Chapter Page
10.4 FUture WOTK ...c.veoieiiieieiiiieeieeteteteecte sttt b e sn e nns 36
APPENDIX A SNORT INTRUSION DETECTION SYSTEM
FALSE ALARM RATE TESTS SCHEDULEcccoooeininiinnne. 37
APPENDIX B SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING NMAP PROGRAMS
TESTS SCHEDULEcooiieeeceeeeeeeerccreiccte e 38
APPENDIX C SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING MANUAL
ATTACK PROGRAMS TESTS SCHEDULE..........cccccoviniiiininennn 39
APPENDIX D SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING THE
DIFFERENT ATTACK SCENARIOS TESTS SCHEDULE............ 40
APPENDIX E INFORMATION GATHERING SCRIPTScccoviiiiiiiiiie 41
APPENDIX F ATTACK EXPLOIT SCRIPTS.....cccceriiirreieeienieiiccecniecieene e 46
APPENDIX G BACKGROUND TRAFFIC SCRIPTScccooiiiiiiiiiieieiene 53
APPENDIX H STEALTH ATTACKS SCENARIOS
CONFIGURATION FILEScoooteirieereeceeecenicsieacsneeaeene s 62
REFERENCES ..ottt ettt sttt e st ens e eas 63

ix

LIST OF TABLES

Table Page
3.1 IP Addresses and Host Names Assignment on the Traffic Network................... 6
3.2 IP Addresses and Host Names Assignment on the System/Victim Network 7
3.3 IP Addresses and Host Names Assignment on the Wireless Network 8
3.4 TP Addresses and Host Names Assignment on the Attack Network 9
5.1 Manual Attack Application Programsc....ccceeveevernierieeneeiiiniiiininicneenneennens 21
10.1 Summary Result of Attacks Detected by Snortccoevvevviniiiiiinininiiiniein. 30
10.2 Summary Result of False Alarms Generated by Snort...........cccoeoeininiiiiinnn. 31
A.1 Snort False Alarm Rate Test Scheduleccooeeiniiiiniininnniee, 37
B.1 Snort Detection Rate Using Nmap Programs Test

Cl1

SO EAULE ...ttt s e s e s e s s s s e s ssesaeseensesssanasennnnn 38

Detection Rate Tests Schedule for Snort
Using Manual Attack Application Programs Tests Schedule............ccccoeiinnin. 39

LIST OF FIGURES

Figure Page
3.1 COE intrusion detection site build and details.........ccoovveeiiiiiiiniinin 4
4.1 An example of Snort’s alert OUtPUL...........cooviiiiiiiiiii 12
5.1 A typical Nmap program OULPULcccoevuiivirrirmiiriininiesene st 20
6.1 Content of pre_exp.data databaseccooueviiniiniiniiini 24
10.1 Result of the SYN stealth with TCP Ping Discovery option attack scenario 32
10.2 Some of Snort’s alerts for the SYN stealth with TCP Ping Discovery

OPHiON attaCK SCENATIOeoueveieiiiiiiiiiiicice e 32
10.3 Result of the SYN stealth with TCP + ICMP Ping Discovery

OPHiON AttACK SCENATIOeveuvineeiiiiiiiticciie et 33
10.4 Some of Snort’s alerts for the SYN stealth with TCP + ICMP Ping

Discovery option attack SCENATIOc.cciiiiiiiiiieeieiee e 34
10.5 Result of the SYN stealth with TCP + ICMP Ping Discovery

OPtion Attack SCENATIOcoveuveveiiiiiiiiti e 34
10.6 Result of the SYN stealth with Don’t Ping Discovery option attack scenario ... 34
10.7 Some of Snort’s alerts for the SYN stealth with TCP + ICMP Ping

Discovery option attack SCENATIOccciririiieinieieieeire et 34
10.8 Result of the LIST SCAN with TCP Ping Discovery option attack scenario...... 35
10.9 Result of the LIST SCAN with Don’t Ping Discovery option attack scenario.... 35

10.10 Result of the PING SWEEP with TCP Ping Discovery option attack scenario 35

xi

OS:

ICMP:

ACK:

RPC:

FTP:

HTTP:

TCP:

PPP:

SLIP:

CGI:

SNMP:

SSL/TLS:

SET:

S/MIME:

PGP:

LIST OF SYMBOLS
Operating System
User Datagram Protocol
Internet Protocol
Internet Control Message Protocol
Acknowledgment
Remote Procedure Calling
File Transfer Protocol
Hyper Text Transfer Protocol
Transmission Control Protocol
Point-to-Point Protocol
Serial Line Internet Protocol
Common Gateway Interface
Simple Network Management Protocol
Secure Socket Layer/Transport Layer Security
Secure Electronic Transaction
Secure Multipurpose Internet Mail Extensions

Pretty Good Privacy

Xii

CHAPTER 1
INTRODUCTION
This report is an account of a master’s thesis work aimed at evaluating the Snort intrusion
detection system with automatic traffic generation programs.

In order to have a number of attack programs, a program was developed using the
Perl programming language. This program enables user defined attack programs to run
automatically. With this program scenarios of attacks running in to the order of hundreds
were developed. Similarly, scenarios of stealthy attacks running into the order of
hundreds were also generated using the stealth scan types, timing modes, and scan delay
features of Nmap. A number of manually administered attack programs were also used in
this work.

A similar scenario program was also developed using the Perl programming
language in order to have a number of background traffic necessary for the evaluation of
the intrusion detection system.

The Snort intrusion detection system was evaluated using the automated attack
scenarios and background traffic. The parameters that were measured are the detection
rate and false alarm rate of Snort. The automated scenarios of attacks and background
traffic, and other manually administered attack application programs were employed to
measure these parameters for the system. The receiver operating characteristic (ROC) of
Snort was also investigated.

Fusion system is discussed as an area for further work. Some approaches that

have been used in designing fusion systems are also presented. Fusion systems aim at

combining scenarios of alerts produced from different intrusion detection systems
sensors, and report these scenarios of alerts at a single easily monitored location.

The remaining part of this report is organized as follows. In Chapter 1, the scope
of this project work and the organization of this report are presented. In Chapter 2,
computer and network attacks and countermeasures are discussed. In Chapter 3, the
layout of the intrusion detection system network and the different programs that were
used in this work are presented. In Chapter 4, a concise account of Snort and some
measured quantities are given. In Chapter 5, the attack programs that were used in this
work are discussed. In Chapter 6, the attack scenarios planning and development process
is outlined. In Chapter 7, the background traffic planning and development process is
presented. In Chapter 8, approaches adopted in the design of data fusion systems are
discussed. In Chapter 9, the process of conducting the attacks, running the background
traffic and collecting all the necessary data is outlined. In Chapter 10, the attack results
are presented and discussed, conclusions are drawn, and areas where further work is

necessary are presented. Appendices and References are presented after Chapter 10.

CHAPTER 2

COMPUTER AND NETWORK ATTACKS
AND COUNTERMEASURES

The proliferation of the Internet and the application of computers and computer networks
in many and diverse sensitive transactions have resulted in great security concerns given
all the possible attacks on the secﬁrity of a computer system or network. Computer
attacks and their classes are discussed in [19][2][24-25]. These attacks could result in the
interruption of services or systems, or complete denial of service, interception of data
and/or modification of data.

Devising and effecting countermeasures against attacks on computers and
networks is an ongoing task that requires a great deal of effort. Countermeasures against
attacks on computers and networks have evolved over the years to include cryptographic
algorithms and protocols underlying network security applications (like encryption, hash
functions, digital signatures, and key exchange), network security tools and applications
(like Kerberos, X.509v3 certificates, PGP, S/MIME, IP Security, SSL/TLS, SET, and
SNMPv3), and system-level security issues (like the threats of and countermeasures for
intruders and viruses, and the use of firewalls and trusted systems). Cryptography,
Network Security Applications and System Security are discussed in [14].

Intrusion detection system is at the system-level of computer and network
security. Intrusion detection systems detect intrusions into a network or system abuse
using information the intrusion detection systems gather from the computer or network.
There are quite a number of intrusion detection systems developed using different

approaches. Some of these systems are discussed in [7][20-23][26].

CHAPTER 3

THE INTRUSION DETECTION SYSTEM
NETWORK AND PROGRAMS

In this Chapter, the intrusion detection system network and the different programs that

were used in the course of this work are discussed.

3.1 The Network
The intrusion detection system network at the New Jersey Institute of Technology (NJIT)
is built primarily for project work on intrusion detection systems. The network is
independent of the NJIT campus network, and it is not connected to the Internet. A

detailed layout of the network is shown in Figure 3.1 below.

COE INTRUSI ETECTION SITE BUILD AND DETAI
Completed for Dr, Manikopoulos
Traffic VLAN)
Dlink Port#2 Victom/System VLAN
Subnet: 10.10.10.0 Diink Port#24

Subnet Mask; 255.255.255.0 Subnet: 172.16.2.0
Default Gateway: 10.10,10.1 Traffic crossing subnets Subnet Mask: 255.255.255.0

- SMTP/Mail =Web/HTTP Traffic s;

- Web/HTTP - FTP/Copy - SMTP/Mail

- FTP/Copy Routing Protocol: RIP -Web/HTTP

- FTPICopy

Wireless VLAN Connections
Dlink Port#5

Subnet; 20.20.20.0
Subnet Mask;: 255.255.255.0
Default Getway: 20.20.20.1

Subnet Mask; 255,255.255.0
Defa . 30.30.30.1
Figure 3.1 COE intrusion detection site build and details.

The network layout as shown in Figure 3.1 above comprises four network
segments. The division of each of these networks terminates into a layer 2/3 switch.
These switches provide the routing functionality needed for communication from one
network segment to another. The network comprises four network segments with the
following address spaces:

(1) Traffic VLAN #1 with address space 10.10.10.0/24

(2) System/Victim VLAN #2 with address space 172.16.2.0/24

(3) Wireless VLAN #3 with address space 20.20.20.0/24

(4) Attack VLAN with address space 30.30.30.0/24

The site built is designed to enable traffic to be generated across the
system/victim network from the traffic network, and the attack network performing

various attacks. Each of these networks is discussed in turn in the following sections.

3.1.1 The Traffic Network — VLAN #1

The traffic segment of the intrusion detection system network was set up to allow random
patterns of predetermined background traffic across the system/victim network. The
protocols used for the background traffic include Hypertext Transfer Protocol (HTTP —
Web), File Transfer Protocol (FTP — File Transfer), and Simple Mail Transfer Protocol
(SMTP — Mail). Some client — server background traffic have also been generated using
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).

The network address assignment is as follows:

10.10.10.0 - Network Address

255.255.255.0 - Subnet Mask

10.10.10.1 - Default Gateway
10.10.10.1 ~ 10.10.10.254 - Usable Range
Table 3.1 below gives a breakdown of the assigned usable IP address range and

their corresponding host names.

Table 3.1 IP Addresses and Host Names Assignment on the Traffic Network

Host Name IP Address
WAN- HTTP-3 10.10.10.10
WAN-FTP-4 10.10.10.11
WAN-SMTP-5 10.10.10.12
GUI CTRL 2 10.10.10.13
WUG 1 10.10.10.14
LAN-Lin1-7 10.10.10.15
Address reserved 10.10.10.16

3.1.2 The System/Victim Network —VLAN #2
The System/Victim segment of the intrusion detection system network was set up to
allow receipt of random patterns of predetermined traffic from both the traffic network,
and from devices residing directly within the System/Victim network. The same
protocols as in the Traffic network apply for the System/Victim network. They are:
Hypertext Transfer Protocol (HTTP —Web), File Transfer Protocol (FTP — File Transfer),
and Simple Mail Transfer Protocol (SMTP — Mail). Some client — server background
traffic have also been generated using Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP).
The range of IP addresses allocated to the System/Victim network is assigned as
follows:
172.16.2.0 - Network Address

255.255.255.0 - Subnet Mask

172.16.2.1 - Default Gateway
172.16.2.1 ~172.16.2.254 - Usable Range
Table 3.2 below gives a breakdown of the assigned usable IP address range and

their corresponding host names.

Table 3.2 IP Addresses and Host Names Assignment on the System/Victim Network

Host Name IP Address

* 172.16.2.10
WAN-WIN2K 172.16.2.11
WAN-FTP-3 172.16.2.12
WAN-HTTP-4 172.16.2.13
WUG 1 172.16.2.14*
LAN-Linl-7 172.16.2.15
Windows Sniffer 172.16.2.17
Linux Sniffer 172.16.2.18
Address reserved 172.16.2.16

* Not assigned at the moment.
3.1.3 The Wireless Network VLAN #3
The Wireless segment of the intrusion detection system network was added to allow for
intrusion detection experiment with wireless technology. Generally, wireless
communication can be effected by either one of two modes of operation. These modes of
operation are:
(1) The infrastructure mode of operation which involves the use of an access point
connected to the wired network, and
(2) The infrastructure-less mode of operation otherwise called the ad-hoc mode of
operation because an access point is not involved. In this case, the hosts (Lap
Tops) communicate directly on a peer-to-peer basis.
The address space allocated to the Wireless network is assigned as follows:

20.20.20.0 - Network Address

255.255.255.0 - Subnet Mask
20.20.20.1 - Default Gateway

20.20.20.2 - Access Point

20.20.20.1 ~ 20.20.20.254 Usable Range
Table 3.3 below gives a breakdown of the assigned usable IP address range and their

corresponding host names for the Wireless network.

Table 3.3 IP Addresses and Host Names Assignment on the Wireless Network

Host Name IP Address
Laptop 1 20.20.20.4
Laptop 2 20.20.20.5

The Service Set Identifier (SSID) for the Wireless network is Coe259.

3.1.4 The Attack Network VLAN #4
The attack segment was designed to allow different types of attacks including random
patterns to be launched. These attacks could take a number of forms including:
- Probing
- Denial of Service (DOS)
- Local-to-Root
- Remote-to-Local
- Any combination of the above
The network address range allocated to the Attack network is assigned as follows:
30.30.30.0 - Network Address
255.255.255.0 - Subnet Mask

30.30.30.1 - Default Gateway

30.30.30.1 ~30.30.30.254 - Usable Range
Table 3.4 below gives a breakdown of the assigned usable IP address range and

their corresponding host names.

Table 3.4 IP Addresses and Host Names Assignment on the Attack Network

Host Name IP Address
Attack 1 30.30.30.10
Attack 2 30.30.30.11*
Attack 3 30.30.30.12*
Attack 4 30.30.30.15
Attack 5 30.30.30.14*

* Not assigned at the moment.

3.2 Network Programs
A number of network utility programs were installed in the different network segment of
the intrusion detection network to allow for a number of functions including capturing of
packets, collection of tcpdump files and analysis of tcpdump files. These programs
include Windump and the Ethereal Network Analyzer. Both the Windump and Ethereal
Network Analyzer programs were installed on the Attack and System/Victim networks.

Each of these programs is discussed in turn below.

3.2.1 Windump
Windump [11] is the tcpdump version for the Windows operating system. It is a packet
sniffer and analyzer.
The Windump program was installed on both the attack and sniffer machines, and

was used to collect attack and victim tcpdump files on the respective machines.

10

3.2.2 Ethereal Network Analyzer

Ethereal [12] is a network protocol analyzer for both Unix and Windows operating
systems. It has the capability to analyze data from a live network or captured data on file
on a disk. With FEthereal, summary and detailed information for each packet can be
examined. The Ethereal Network Analyzer program has a number of features including a
display filter that allows users to select display preferences.

The Ethereal Network Analyzer program was installed on both the attack and
sniffer systems, and was used to examine and analyze tcpdump files recorded both at the

attack and victim machines during the different test sessions.

CHAPTER 4
SNORT INTRUSION DETECTION SYSTEMS
AND MEASURED QUANTITIES

Intrusion detection systems have become an important part of many network security
architectures. Generally speaking, intrusion detection systems monitor the networks on
which they are deployed for suspicious activity or predetermined patterns. Most network
intrusion detection systems are equipped with the capability of alerting and logging these
information, while a very few have real-time capability of taking corrective measures.

In this work, one network intrusion detection system, Snort was considered. A

detailed discussion of this system is presented next.

4.1 Snort
Snort [7] is a packet sniffer and logger with real time alerting capability. It is rules-based,
can perform content pattern matching, and detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, SMB probes, and much more, and has
been used as an intrusion detection system. Snort performs payload inspection and can
filter traffic depending on the given command line instructions.

Snort is made up of three primary subsystems. These subsystems are: the packet
decoder, the detection engine, and the logging and alerting systems. The decode engine is
built around the supported data-link and TCP/IP protocol definitions. The supported data-
link protocols are Ethernet, SLIP, and raw (PPP). The detection engine maintains Snort’s

detection rules in a two dimensional linked list, termed Chain Headers and Chain Options.

11

12

Snort’s logging and alerting subsystems options are selected at run time with command

line switches. Figure 4.1 below is an example of Snort’s alert output.

[**][1:620:2] SCAN Proxy (8080) attempt [**]

[Classification: Attempted Information Leak] [Priority: 2]
12/05-09:10:19.164975 30.30.30.10:3074 -> 172.16.2.0:8080

TCP TTL:127 TOS:0x0 ID:64770 IpLen:20 DgmLen:48 DF
AxkxAS Seq: 0x33A9ESF3 Ack: 0xO Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

[**][1:620:2] SCAN Proxy (8080) attempt [**]

[Classtfication: Attempted Information Leak] [Priority: 2]
12/05-09:10:19.649275 30.30.30.10:3074 -> 172.16.2.0:8080
TCP TTL:127 TOS:0x0 ID:64776 IpLen:20 DgmLen:48 DF
krkxxS* Seq: 0x33A9ESF3 Ack: 0xO Win: 0x4000 TcpLen: 28

TCP Options (4) => MSS: 1460 NOP NOP SackOK

Figure 4.1 An example of Snort’s Alert output.

13

4.2 Performance Measures
In determining the performance of the intrusion detection system, two performance
measures were employed. These are the false alarm rate and detection rate. These

measures are discussed next.

4.2.1 False Alarm Rate

False alarm rate is a measure of how many alarms (false) were generated for normal
traffic monitored over a specified period of time, say a day — twenty-four hours period.
Background traffic of different types was employed in determining this performance

measure for the Snort intrusion detection system.

4.2.2 Detection Rate
Detection rate measures the percentage of all attacks detected by a particular intrusion
detection system. To determine this performance measure for Snort, a number of attacks

types were used.

4.2.3 Receiver Operating Characteristic (ROC)

The Receiver Operating Characteristic (ROC) curve is a plot of the percentage correct
attacks detected by an intrusion detection system versus the number of false alarms per
day produced by the system. This performance measure provides a means of evaluating
the trade off between the detection rate and the false alarm rate. Low false alarm rates
with high detection rates means that the detection output can be relied upon. Conversely,
relatively high false alarm rate with low detection rate means that the detection output
can not be believed, and much more work will be needed as security analysts would be

spending more hours dismissing false alarms.

CHAPTER 5
ATTACK PROGRAMS
A number of attack programs were considered in the course of this work. Some of these
attack programs were automated by utilizing them in building scripts of attack scenarios
using the Perl programming language. Some other types of attack programs that could not
be automated due to their nature were administered manually. These attack programs are

discussed in the following sections.

5.1 Nmap

Nmap [10] (“Network Mapper”) is one of the attack programs that were utilized in
building scripts of attack scenarios using the Perl programming language. The Nmap
program is designed to scan large networks rapidly. It employs raw IP packets to
determine information on what hosts are available on the network, what services (ports)
they are offering, what type of packet filters/firewalls are in use, what operating system
(and OS version) they are running, and other characteristics.

Nmap program provides a number of scan types, discovery methods, and options.
The scan types provided by Nmap include: TCP connect() scan, TCP SYN scan, Stealth
FIN, Xmas Tree, or Null scan modes, Ping scanning, UDP scans, IP protocol scans, ACK
scan, Window Scan, RPC scan and List scan. The discovery methods provided by Nmap
include: using TCP Ping, using TCP + ICMP, using ICMP Ping, or using the Don’t Ping
method. The different options provided by the Nmap program include: Fragmentation,
Get Identification Information, Resolve All, Don’t Resolve, Fast Scan, Operating System

(OS) Detection, Random Host, and Resume. The program also provides variation in

14

15

timing. The timing modes include Paranoid, Sneaky, Polite, Normal, Aggressive, and
Insane.
Each of these scan types, discovery methods, options and variations in timing are

discussed below.

5.1.1 Nmap Scan Modes

In this section, a concise description of the different scan types is presented.

5.1.1.1 SYN. SYN scan works by sending SYN packet as though a real
connection was to be opened, and then waits for a response. A SYN/ACK is indicative
that the port is listening while a RST is indicative of a non-listener. Where a SYN/ACK
1s received, a RST is sent to tear down the connection.

5.1.1.2 FIN. This Nmap scan type uses a bare FIN packet as the probe. The idea is to
make scanning as clandestine as possible.

5.1.1.3 PING SWEEP. This Nmap scan type is useful in cases where all the
information that is needed is which hosts on a network are up. It uses ICMP echo
requests packets.

5.1.1.4 UDP SCAN. When performing UDP scans, Nmap sends 0 byte udp
packets to each port on the target machine(s) to determine which UDP ports are open on
the host(s).

5.1.1.5 NULL SCAN. Null scan has the same objective as FIN scan. It turns off
all the flags.

5.1.1.6 XMAS TREE. The Xmas Tree scan type has the same objective as FIN

scan, but it turns on the FIN, URG, and PUSH flags on.

16

5.1.1.7 IP PROTOCOL SCAN. The IP protocol scans in Nmap sends raw IP
packets without any further protocol header to each specified protocol on the target
machine in order to determine which IP protocols are supported on a host. Whether or not
a particular protocol is used is determined by the kind of message that is received. An
ICMP protocol unreachable rnessagé means the protocol is not in use.

5.1.1.8 ACK SCAN. ACK scan is usually used to map out firewall rulesets. It
works by sending an ACK packet to specified ports and waiting for RSTs. If a RST
comes back, then the port is not filtered, but if nothing comes back (or if an ICMP
unreachable is received), then the port is filtered.

5.1.1.9 WINDOW SCAN. This type of Nmap scan is similar to ACK scan, and can
detect open ports as well as filtered and non-filtered ports.

5.1.1.10 RCP SCAN. RCP scan determines which ports are RCP ports by
flooding all TCP/UDP ports that have been found open with SunRPC program null
commands.

5.1.1.11 LIST SCAN. List scan in Nmap generates and prints a list of IP
addresses and names. In doing this, Nmap does not perform any pinging or port scanning.
5.1.1.12 CONNECT. This Nmap scan type employs the connect() system call to
open a connection to interesting ports on the machine. The connection operation will

succeed if the port is listening. Otherwise it will not succeed.

5.1.2 Nmap Discovery Methods

In this section, the different Nmap discovery methods are discussed.

17

5.1.2.1 TCP Ping. In this Nmap discovery method, TCP “ping” is used to determine
what hosts are up in a network. It employs TCP ACK packets. These packets are sent into
the network or to a single host. Hosts that are up will respond with a RST.

5.1.2.2 TCP+ICMP. This discovery method combines the TCP ping and ICMP
discovery methods.

5.1.2.3 ICMP Ping. This discovery method uses ICMP echo request packets and waits
for the corresponding echo reply packets.

5.1.2.4 Don’t Ping. This discovery method allows for the scanning of networks that do
not allow ICMP echo requests (or responses), may be, through their firewall. The idea is

to attempt scanning without pinging host systems.

5.1.3 Nmap General Options

In this section, the different options provided by the Nmap program are discussed.

5.1.3.1 Fragmentation. This enable Nmap to cause the requested scan to use tiny IP
packets. The idea is to prevent network-protecting systems to detect the actions taken
against the network.

5.1.3.2 Get Identification Information. This option enables Nmap to identify the
hosts on the network.

5.1.3.3 Resolve All. This option tells Nmap to do reverse DNS resolution on the active
IP addresses it finds.

5.1.3.4 Don’t Resolve. This option tells Nmap never to do reverse DNS resolution.
The objective here may be to speed up the scanning process.

5.1.3.5 Fast Scan. This causes Nmap to scan only those ports listed in the services file

that comes with Nmap.

18

5.1.3.6 Operating System (OS) Detection. This option enables Nmap to use a
number of techniques to detect useful information about the underlying system being
scanned. This information is then used to create a ‘fingerprint’ which it compares with its
database of known OS fingerprints. With this, it proceeds to guess the operating system.
5.1.3.7 Random Host. This option tells Nmap to shuffle a group of up to 2048
hosts before it scans them.

5.1.3.8 Resume. This option enables Nmap scanning session that is cancelled due to

control-C, network outage, etc. to be resumed.

5.1.4 Nmap Timing Modes
Nmap has a number of timing modes designed to meet the objective of the user. These
timing modes are discussed below. Also, the particular timing modes that were used in

developing the stealth attacks scenarios are mentioned in the respective sections.

5.1.4.1 Paramoid. This Nmap timing mode scans very slowly in the hope of avoiding
detection by intrusion detection systems. It serializes all scans. In other words, under this
timing mode, Nmap does not perform parallel scanning. Also, in this mode, Nmap
generally waits at least five (5) minutes between sending packets.

The command option for this timing mode is “0.” This is shown in the
sce_exp.conf file in Appendix H — stealth attacks scenarios configuration files. This
timing mode was used for the first eighty five (85) attacks scenarios, with large scanning

time delay between individual attacks scenarios.

5.1.4.2 Sneaky. This Nmap timing mode is similar to Paranoid. The only difference

here is that the waiting time between sending packets is 15 seconds (not 5 minutes).

19

The command option for this timing mode is “1.” This timing mode was used for
the eighty sixth to one hundred and seventieth (86-170) attacks scenarios after the
paranoid mode, and also with somewhat large scanning delay time (lesser than for 1 - 85)
between individual attacks scenarios. The part of the configuration file, sce_exp.conf file,
corresponding to the stealth attacks scenarios developed using this timing mode cannot be

shown due to space constraint.

5.1.4.3 Polite. This Nmap timing option is designed to ease load on the network
and reduces the chances of crashing machines. It serializes the probes and waits at least
0.4 seconds between the packets being sent.

The command option for this timing mode is “2.” This timing mode was used for
the remaining attacks scenarios, and with even lesser scanning delay time between
individual attacks scenarios. The part of the configuration file, sce exp.conf file,
corresponding to the stealth attacks scenarios developed using this timing mode cannot be
shown due to space constraint.
5.1.4.4 Normal. This Nmap timing option causes the Nmap program to run as fast
as possible without overloading the network or missing hosts/ports. This is the default
Nmap behavior.

The option for this timing mode is “3.” Many of the attacks scenarios in the
normal attacks scenarios script as shown in Appendix F employed this timing mode.
5.1.4.5 Aggressive. This Nmap timing mode adds a 5 minutes timeout per host. Under
this mode, Nmap does not wait more than 1.25 seconds for probe responses. This timing
mode was used in the normal attacks scenarios script shown in Appendix F. The

command option for this timing mode is “4.”

20

5.1.4.6 Insane. This Nmap timing mode is only suitable for very fast networks or
where capturing every piece of information is really not important. This mode times out
in 75 seconds and only waits 0.3 seconds for individual probes. The command option for
this timing mode is “5.”

An example of Nmap’s output is shown in Figure 6.1 below.

Nmap (V. 3.00) scan initiated Wed Dec 04 01:10:20 2002 as: nmap —sS —P0 -O -T 3 —
oN c:\temp\Friday\synn 172.16.2.1/24

Interesting ports on (172.16.2.0):

(The 1599 ports scanned but not shown below are in state: closed)

Port State Service

23/tcp open telnet

80/tcp open http

Remote operating system guess: Cisco VPN 3000 or 3COM 4924 GigE Switch
Uptime 48.238 days (since Wed Oct 16 20:27:20 2002)

Interesting ports on (172.16.2.1):

(The 1599 ports scanned but not shown below are in state: closed)

Port State Service

23/tcp open telnet

80/tcp open http

Remote operating system guess: Cisco VPN 3000 or 3COM 4924 GigE Switch
Uptime 48.238 days (since Wed Oct 16 20:27:20 2002)

Figure 5.1 A typical Nmap program output

5.2 Netcat Program
Netcat, or “nc” [9] as the actual program is named, is another form of attack program.
However, it was not used in this work. Netcat can create almost any kind of connection
that one would need. It can be used directly or easily driven by other programs and
scripts.
In its simplest usage, Netcat creates a TCP connection to the given port on the
given target host. The standard input is then sent to the host, and anything that comes

back across the connection is sent to the standard output.

21

5.3 Other Attack Programs
Many other kinds of attack programs were also used in this work. These are presented in
Table 5.1 below.

Table 5.1 Manual Attack Application Programs

Attack Name | Attack Sub-Name | Attack Other Name
Denial of service
Battlepong
Bloodlust
RETRIBUTION FyRE
BRIMSTONE
PLAGUEZ FLOODz
LOCUSTs
Divine OMENZz HELLFyRE
DEMONz
INCANTATIONz HAILSTORM
WHyRLWIND
Elite anarchy
bomber
connections
events
finder
flood
nuke
ping
pingflood
_portscan
resolve
teardrop
whois
IP Spoof dc_is
Iping32 iping32
Packetbuild PckBuilder
Ping-G PIN-G
Remos RemOS
Rocket10 Rocketv1 0
Vai-te-ja- Vai-te Ja ICMP Bomber
icmpbomber
WinNuke WiIinNUKE
Winsmurf WinSmurf
Clientttriono
Server
FunlinApocalypse | bmb2
IPScanMaster IP Scan Master
Sscan205- Ez Converter Plus
scanner

CHAPTER 6

ATTACK SCENARIOS

A number of attack scenarios running into the order of hundreds were developed in the
course of this work for use in the evaluation of the Snort intrusion detection system. The
development of these attack scenarios represents efforts at automating many of the attack
types on the one hand, and administering these many and diverse attack types and options
in a coordinated manner and much more conveniently, on the other. In this chapter, the

attack scenarios planning and development processes are discussed.

6.1 Attack Scenarios Planning
The different attack scenarios were built from the different attack types under each kind
of attack, different discovery methods, different attack options, and different timing
options for each attack type as discussed in Chapter 5. Additionally, there were different

combinations of these attacks, and the scan interval between them.

6.2 Attack Scenarios Development
The attack scenarios were developed using the Perl programming language with the
ultimate purpose of being able to run user-defined attack programs automatically. Perl is
portable. It can be used on many platforms including Unix, Linux and Windows.
The Perl programs were developed with the intent that generating attack scenarios
be fairly easy by setting only the attack types, parameters and delay time between two

attacks in a configuration file. The program is developed in two steps characterizing

22

23

typical attacker behavior. The first step involves information gathering, and the second

step involves some specific exploits based on the information gathered in the first step.

6.2.1 Information Gathering

The information-gathering step represents the first step in simulating a sequence of
intrusion action in this work. Since an attacker often starts with discovery attacks to
obtain important information about a victim’s network, this first step of the program was
developed solely for the purpose of gathering information about the victim’s network.
Such information may include: which hosts (or IP addresses) are running, what port
numbers are open, and what services are running on these ports.

Two files were developed in this step. One is a configuration file, and the other is
a Perl script. The configuration file, pre_exp.conf and the Perl script, pre_exp.pl are given
in Appendix E.

When the Perl script is being executed, it calls the configuration file, and parse
configuration information. The configuration information includes the victim network
address (or address range) and which services to detect and other parameters. When the
Perl script finishes scanning the victim network, it saves the result in a database called

pre_exp.data. Each line of the database file contains the information of one running host.

24

A typical content of the pre exp.data database for our network for the

information gathering stage is shown below.

172.16.2.0 |2380: |53: |

172.16.2.1 |2380: |53: |

172.16.2.10 |2580: |111: |

172.16.2.11 |2180: | : |

172.16.2.12 |212580: | : |

172.16.2.13 |212580: | : |

172.16.2.17 | | : |

172.16.2.18 |2122: |111: |

Test up: "nmap -g 1500 -n -sP -PS 172.16.2.1/27" on 01/06/03 18:02:25

Test TCP port: "nmap -g 1500 -n -sS -P0O <IP> -p 20-30,80,110" on 01/06/03 18:02:50
Test UDP port: "nmap -g 1500 -n -sS -P0O <IP>-p 53,111 -sU" on 01/06/03 18:02:50

Figure 6.1 Content of pre_exp.data database.

6.2.2 Attack Exploit

The attack exploit represents the second step in the simulation of intrusion action in this
work. In this step, there are two configuration files and one Perl script. The configuration
files are sce_cmd.conf and sce_exp.conf, and the Perl script is sce_exp.pl. The files in
this step, both the configuration files and the Perl script, are given in Appendix F. Each of

the configuration files and the Perl script are discussed in the following sections.

6.2.2.1 sce_cmd.conf. The configuration file, sce_cmd.conf, specifies each attack

program and its parameters. The first column in this file is the entry name. The second

column is the attack program name, and the other columns are its parameters’ format.
New attack types are added to the program by defining its format in the sce-

cmd.conf configuration file.

25

6.2.2.1 sce_exp.conf. The configuration file, sce exp.conf, is the file where
attack scenarios are specified. Each line in this file is a kind of known attack. The
sce_exp.conf and sce_cmd.conf configuration files together define a particular attack to
be carried out when the Perl script is executed.

For each attack to be carried out, and as defined in the sce_cmd. conf configuration
file, there are typically three entries that are defined in this configuration file —
sce_exp.conf. The first entry is the waiting time between two attack commands. This is
represented as < n >s, <n >m or < n >h to indicate number of seconds, minutes or hours.
The < n > represents a number. The second entry is the command to build the database.
This command is represented by newdata on a separate line. The command, newdata,
calls the configuration file pre_exp.pl each time it is executed to scan the network again
in order the build the database. The third and final entry is the attack command line. The
attack command line represents an attack command and its parameters, with the space
character separating them. The first column in the command line of the sce_exp.conf
configuration file is the same entry name of an attack specified in sce cmd.conf
configuration file. With this, the Perl script upon reaching a new (and unique) attack
name, uses the information contained in the two configuration files to construct the attack

command, and then, executes it.

6.2.3 Stealth Attacks Scenarios
Stealthiness in attacks scenarios building has to do with hiding an attack action from an
individual monitoring the system or network, or from an intrusion detection system. The

methods for making attacks stealthy depend on the type of attack.

26

The Nmap program used in this used is basically a surveillance/probing form of
attack. For this form of attack, a number of methods have been identified for either hiding
the fact that a probe is occurring, or hiding the identity of the attacker. One of the
simplest ways to hide probing actions is to make the probe to occur slowly. For the Nmap
program, the timing options — paranoid and sneaky — provide for this occurrence. These
timing options were used to build a large number of attacks scenarios for the stealthy
attacks script.

Another method to hide probing actions is to use scan delays. The scan delay
option in Nmap specifies the amount of time Nmap must wait between probes. In
addition to slowing the scan way down as to sneak under intrusion detection system’s
thresholds, scan delay can also be useful in reducing the load on the network. This
method was also used in building the stealth attacks scenarios.

Yet another method to hide probing actions is to employ scan types that are
inherently designed for this purpose. Such scan types do half-open connections or FIN
scanning of a network. The Nmap program provides two of such scan modes. These are
the SYN stealth and the FIN stealth scan attack types. The SYN stealth scan works by
sending SYN packet as though a real connection was to be opened, and then waits for a
response. A SYN/ACK is indicative that the port is listening while a RST is indicative of
a non-listener. Where a SYN/ACK is received, a RST is sent to tear down the connection.
The FIN stealth scan attack type on the other hand uses a bare FIN packet as the probe.
Relative to the SYN stealth scan type, the idea in this case is to make scanning as
clandestine as possible. The SYN stealth scan type was also used to develop some stealth

attacks scenarios.

CHAPTER 7
BACKGROUND TRAFFIC
Background traffic emanating from the traffic network of the intrusion detection system
network was used each time attacks were performed and data were being collected.
Generally speaking, four kinds of background traffic namely file transfer protocol (FTP),
telnet, hyper-text transfer protocol (HTTP), and Mail services are available for work of

this nature. These four kinds of traffic are discussed in [13].

7.1 Background Traffic Scenarios Planning
The background traffic scenarios was planned around the available background traffic
types - file transfer protocol (FTP), telnet, hyper-text transfer protocol (HTTP), and Mail

services.

7.2 Background Traffic Scenarios Development
A background traffic-generating program was developed using the Perl programming
language. This program generates user-defined background traffic automatically. The
program contains three files: bkgrd cmd.conf, bkgrd_gen.conf, and bkgrd gen.pl. The
file structure of this background traffic-generating program is similar to that of the
attacks scenarios building program. The bkgrd cmd.conf configuration file defines the
format of each background traffic type, the bkgrd gen.conf configuration file contains
various background traffics to be generated, and bkgrd gen.pl is the script reading the
configuration information in bkgrd gen.conf and generating the background traffic.

These scripts are shown in Appendix G.

27

CHAPTER 8
FUSION SYSTEM
As intrusion detection systems are becoming more and more in common use in
organizations, the trend is moving towards the use of multiple intrusion sensors. A
consequence of this practice is that the work load of security personnel may increase as
the same attacks may be detected and reported by different sensors. Additionally, while
the detection rate is improved, the false alarm rate tends to increase.

Fusion systems are designed to overcome these issues by combining the alerts
generated by the different sensors and reporting the results at a single location. This is an
ongoing area of research work, and a number of approaches have been adopted in
combining the alerts.

The algorithm described in [28] is probabilistic in nature. It determines the
scenario membership of a new alert in time proportional to the number of candidate
scenarios. In essence, it groups alerts that share a common cause.

In [29], an approach to construct attack scenarios by correlating alerts on the basis
of prerequisites and consequences of intrusions. Based on the prerequisites and
consequences of different types of attacks, the proposed approach correlates alerts by
(partially) matching the consequence of some previous alerts and the prerequisites of
some later ones.

The alerts obtained from the Snort intrusion detection system when the different
attacks scenarios in this work were executed have been made available for the next phase

of this work — building the alerts scenarios.

28

CHAPTER 9

CONDUCTING ATTACKS AND
COLLECTING DATA

All the attack programs were conducted from the attack network. The different
background traffics were sent into the network from the traffic network. The sniffer
system is installed in the system/victim network from where data on the network is
dumped. All the attacks were performed in the presence of background traffic.

In measuring the detection rate of Snort, all the automated attack scenarios and
manually administered attack programs were used in the presence of background traffic.
In determining the false alarm rate of Snort, only background traffics were used.

Appendix A shows the false alarm rate tests schedule for Snort intrusion detection
system. Appendix B shows the tests schedule for the determining the detection rate of
Snort using the Nmap programs. Appendix C shows the tests schedule for determining
the detection rate of Snort using the manual attack application programs. Appendix D
shows the tests schedule for determining the detection rate for Snort using the attack

scenarios.

29

CHAPTER 10
RESULTS AND FUTURE WORK
In this Chapter, result from the different attack performed and the different background
traffic ran independently is presented. Also, in this Chapter, a discussion of the results

obtained, conclusions drawn, and areas for future work are presented.

10.1 Attacks Results Summary
In the discussion of these results, reference is made to Appendices A — D showing the
results and the tests schedule for all the tests that were carried out.
Table 10.1 shown below summarizes the number of Nmap attack programs that
were detected by the Snort intrusion detection system. It shows similar figures for the

manually administered attack application programs.

Table 10.1 Summary Result of Attacks Detected by Snort

Attack Type # of Observable | # of Real # Detected | Snort
(And # Below) | Scan/Attacks Attacks by Snort Detection
Rate
Nmap Programs | 48 35 35 100%
2%

Nmap (73% of all Scan types and Discovery) Snort | Of the 73% of Nmap

Methods used resulted in Scan activity. Programs that resulted
23% of all Scan types and Discovery ? in scanning activity,
Methods used did not resulted in Snort detected 100%.

scanning activity.
\ J

30

31

Table 10.2 summarizes the number of false alarms generated by the Snort intrusion
detection system when the different background traffic were present on the network.

Table 10.2 Summary Result of False Alarms Generated by Snort

Type of Traffic Snort
FTP 0
HTTP

0
Fault Traffic 0
Client-Server (TCP) 0
Client-Server (UDP) 0

The result presented in Table 10.1 above indicates that 73% all Nmap’s scan types
and discovery method used in this work resulted in actual scanning of the network. Of the
73% Nmap attacks that resulted in scanning activity, the Snort intrusion detection system
detected all (100%) of them.

For the false alarm rate performance, the Snort intrusion detection system
produced no false alarms for the background traffic used.

The receiver operating characteristic curve for Snort intrusion detection system
will show a 100% detection rate for the Nmap attack programs with 0% false alarm rate.

These results are discussed below.

10.2 Discussion of Results
As seen in Appendix B, from the breakdown of all Nmap’s scanning attacks performed
with different discovery options, it was discovered that there were no alerts produced by
the Snort intrusion detection system for any of the scan types when the ICMP discovery
options is used. In the following sections, the Snort alerts collected and the scan results

for a selected number of the scenarios are presented and discussed.

32

10.2.1 SYN Stealth with TCP Ping Discovery Option
The scan result for this scanning attack scenario is shown in Figure 10.1 below.

nmap (V. 3.00) scan initiated Sun Jan 05 20:06:08 2003 as: nmap -sS -PT -O -T 3 -oN
c:\temp\friday\syntcpn --append_output 172.16.2.17

Interesting ports on LAN_SNIFF 8 (172.16.2.17):

(The 1599 ports scanned but not shown below are in state: closed)

Port State Service

135/tcp open loc-srv

139/tcp open netbios-ssn

Remote operating system guess: Windows NT4 or 95/98/98SE

Nmap run completed at Sun Jan 05 20:06:12 2003 -- 1 IP address (1 host up) scanned in
4 seconds

Figure 10.1 Result of the SYN stealth with TCP Ping Discovery option attack scenario.
Some of the Snort alert produced by this scenario is shown in Figure 10.2 below.

[**][1:615:3] SCAN SOCKS Proxy attempt [**]

[Classification: Attempted Information Leak] [Priority: 2]
01/05-20:06:10.598136 30.30.30.10:55593 -> 172.16.2.17:1080
TCP TTL:43 TOS:0x0 ID:48489 IpLen:20 DgmLen:40

*E*kxEXS* Seq: 0x5CASS5D87 Ack: 0x0 Win: 0x400 TcpLen: 20
[Xref => http://help.undernet.org/proxyscan/]

[**][1:1227:4] X11 outbound client connection detected [**]
[Classification: Misc activity] [Priority: 3]
01/05-20:06:11.066203 172.16.2.17:6004 -> 30.30.30.10:55593
TCP TTL:128 TOS:0x0 ID:52844 IpLen:20 DgmLen:40
**REA*R*™* Seq: 0x0 Ack: 0x5CAS5D88 Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS126]

Figure 10.2 Some of Snort’s alerts for the SYN stealth with TCP Ping Discovery option
attack scenario.

From the results shown in Figure 10.1 and Figure 10.2, it is evident that this
attack scenario actually scans the network and that Snort alerts on this scanning activity.
10.2.2 SYN Stealth with TCP + ICMP Ping Discovery Option
The scan result for this scanning attack scenario is shown in Figure 10.3 below.

nmap (V. 3.00) scan initiated Sun Jan 05 20:11:33 2003 as: nmap -sS -PT -PI-O -T 3 -
oN c:\temp\friday\syntcpicmpn --append_output 172.16.2.17

33

Insufficient responses for TCP sequencing (2), OS detection may be less accurate
Interesting ports on LAN_SNIFF 8 (172.16.2.17):

(The 1599 ports scanned but not shown below are in state: closed)

Port State Service

135/tcp open loc-srv

139/tcp open netbios-ssn

Remote operating system guess: Windows NT4 or 95/98/98SE

Nmap run completed at Sun Jan 05 20:11:38 2003 -- 1 IP address (1 host up) scanned in
5 seconds

Figure 10.3 Result of the SYN stealth with TCP + ICMP Ping Discovery option attack
scenario.

Some of the Snort alert produced by this scenario is shown in Figure 10.4 below.

[**][1:615:3] SCAN SOCKS Proxy attempt [**]

[Classification: Attempted Information Leak] [Priority: 2]
01/05-20:11:36.426470 30.30.30.10:49498 -> 172.16.2.17:1080
TCP TTL:36 TOS:0x0 ID:3161 IpLen:20 DgmLen:40

kxkkxkS* Seq: 0x4BEDG69FB Ack: 0x0 Win: 0x800 TcpLen: 20
[Xref => http://help.undernet.org/proxyscan/]

[**] [1:1227:4] X11 outbound client connection detected [**]
[Classification: Misc activity] [Priority: 3]
01/05-20:11:36.482907 172.16.2.17:6005 -> 30.30.30.10:49498
TCP TTL:128 TOS:0x0 ID:61301 IpLen:20 DgmLen:40

*xk A¥R** Seq: 0x0 Ack: 0x4BED69FC Win: 0x0 TcpLen: 20
[Xref => http://www.whitehats.com/info/IDS126]

Figure 10.4 Some of Snort’s alerts for the SYN stealth with TCP + ICMP Ping
Discovery option attack scenario.

From the results shown in Figure 10.3 and Figure 10.4, it is evident that this

attack scenario actually scans the network and that Snort alerts on this scanning activity.

10.2.3 SYN Stealth with ICMP Ping Discovery Option
The scan result for this scanning attack scenario is shown in Figure 10.5 below.

nmap (V. 3.00) scan initiated Tue Dec 24 14:49:07 2002 as: nmap -sS -PI-T 3 -oN
c:\temp\synicmpping --append_output 172.16.2.17

Nmap run completed at Tue Dec 24 14:49:37 2002 -- 1 IP address (0 hosts up) scanned
in 30 seconds

Starting nmap V. 3.00 (www.insecure.org/nmap)

34

Note: Host seems down. If it is really up, but blocking our ping probes, try -PO
Nmap run completed -- 1 IP address (0 hosts up) scanned in 30 seconds

Figure 10.5 Result of the SYN stealth with TCP + ICMP Ping Discovery option attack
scenario.
No Snort alert is produced in this case.

10.2.4 SYN Stealth with Don’t Ping Discovery Option
The scan result for this scanning attack scenario is shown in Figure 10.6 below.

nmap (V. 3.00) scan initiated Sun Jan 05 20:21:36 2003 as: nmap -sS -PO -O -T 3 -oN
c:\temp\friday\syndontn --append_output 172.16.2.17

Interesting ports on LAN_SNIFF 8 (172.16.2.17):

(The 1599 ports scanned but not shown below are in state: closed)

Port State Service

135/tcp open loc-srv

139/tcp open netbios-ssn

Remote operating system guess: Windows NT4 or 95/98/98SE

Nmap run completed at Sun Jan 05 20:21:40 2003 -- 1 IP address (1 host up) scanned in
4 seconds

Figure 10.6 Result of the SYN stealth with Don’t Ping Discovery option attack scenario.
Some of the Snort alert produced by this scenario is shown in Figure 10.7 below.

[**][1:615:3] SCAN SOCKS Proxy attempt [**]

[Classification: Attempted Information Leak] [Priority: 2]
01/05-20:21:39.774229 30.30.30.10:45315 -> 172.16.2.17:1080
TCP TTL:46 TOS:0x0 ID:24625 IpLen:20 DgmLen:40

x4kkkQ Seq: 0x304154CB Ack: 0x0 Win: 0x1000 TcpLen: 20
[Xref => http://help.undernet.org/proxyscan/]

[**] [111:12:1] spp_stream4: NMAP FINGERPRINT (stateful) detection [**]
01/05-20:21:40.565593 30.30.30.10:45325 -> 172.16.2.17:135

TCP TTL:46 TOS:0x0 ID:41568 IpLen:20 DgmLen:60

dokk Akddk Seq: 0x26DAT072 Ack: 0xO Win: 0x1000 TcpLen: 40

TCP Options (5) => WS: 10 NOP MSS: 265 TS: 1061109567 0 EOL

Figure 10.7 Some of Snort’s alerts for the SYN stealth with TCP + ICMP Ping
Discovery option attack scenario.

From the results shown in Figure 10.6 and Figure 10.7, it is evident that this

attack scenario actually scans the network and that Snort alerts on this scanning activity.

35

In the other cases (like all the LIST SCAN types with different discovery methods,
PING SWEEP with TCP Ping discovery method) where there were no alerts produced,
there were also no scanning activity. The scanning results for these attacks scenarios are
shown in Figure 10.8, Figure 10.9, and Figure 10.10 below.

nmap (V. 3.00) scan initiated Sun Jan 05 22:22:46 2003 as: nmap -sL -PT -O -T 3 -oN
c:\temp\friday\listtcp 172.16.2.17

Host LAN_SNIFF 8 (172.16.2.17) not scanned

Nmap run completed at Sun Jan 05 22:22:47 2003 -- 1 IP address (0 hosts up) scanned
in 1 second.

Figure 10.8 Result of the LIST SCAN with TCP Ping Discovery option attack scenario.

nmap (V. 3.00) scan initiated Sun Jan 05 22:23:12 2003 as: nmap -sL -P0 -O -T 3 -oN
c:\temp\friday\listdont 172.16.2.17

Host LAN SNIFF 8 (172.16.2.17) not scanned

Nmap run completed at Sun Jan 05 22:23:13 2003 -- 1 IP address (0 hosts up) scanned
in 1 second

Figure 10.9 Result of the LIST SCAN with Don’t Ping Discovery option attack scenario.

nmap (V. 3.00) scan initiated Sun Jan 05 22:27:46 2003 as: nmap -sP -PT -T 3 -oN
c:\temp\friday\pswtcp 172.16.2.17

Host LAN_SNIFF 8 (172.16.2.17) appears to be up.

Nmap run completed at Sun Jan 05 22:27:46 2003 -- 1 IP address (1 host up) scanned in
0 seconds

Figure 10.10 Result of the PING SWEEP with TCP Ping Discovery option attack
scenario.

36

10.3 Conclusions
It is evident from the above results that the Snort intrusion detection system is capable of
detecting/alerting on all Nmap scanning types and discovery option where scanning
activity is actually carried out for a 100% detection rate. Also, Snort does not produce
any false alarms for the backgrouﬁd traffic we used.

It is also evident from the results that Nmap under the Windows operating system
does not scan the network for all of Nmap scan types when the ICMP Ping discovery
method is used. One explanation for this is the fact that the network under the Windows
operating system does not allow ICMP echo requests (or responses) packets. This is
evident in the blocking of probes when this command option is used.

Also, Nmap under List Scan does not perform scanning activity. This is evident
from the results obtained. Nmap documentation explains that the List Scan simply list the
IP addresses/Names on hosts on the network without actually scanning them.

About 73% of all the Nmap scan types and discovery methods investigated in this
work resulted in scanning activity.

The Perl script developed in this work is easy to expand, portable and efficient.

10.4 Future Work
The next step planned for this work is fusion system. As discussed in Chapter 8, fusion
systems build scenarios of alerts into groups, and determine the scenario membership of a
new alert given the alerts and the groups already present, based on probability
calculations or correlation techniques. The different Snort alerts collected in the process
of running the many different attacks scenarios in the course of this work have been made

available for this purpose.

APPENDIX A

SNORT INTRUSION DETECTION SYSTEM

FALSE ALARM RATE TESTS SCHEDULE

In this Appendix, false alarm rate tests schedule is presented.

Table A.1 Snort False Alarm Rate Tests Schedule

System Background Traffic Used | Traffic Duration # of False Alarms
Snort Client-Server TCP 24 hours 0
Snort Client-Server UDP 24 hours 0
Snort Fault Traffic 24 hours 0
Snort FTP Traffic 24 hour 0
Snort HTTP Traffic 24 hours 0

37

APPENDIX B

SNORT INTRUSION DETECTION SYSTEM DETECTION
RATE USING NMAP PROGRAMS TESTS SCHEDULE

In this Appendix, detection rate tests schedule is presented.

Table B.1 Snort Detection Rate Using Nmap Programs Tests Schedule

Scan Type and Discovery Option Attack Duration Snort Alerts

SYN — TCP Ping 5 mins 25
SYN-TCP + ICMP 5 mins 18
SYN - ICMP Ping 5 mins 0
SYN — Don'’t Ping 5 mins 10
FIN-TCP Ping 5 mins 4177
FIN-TCP + ICMP 5 mins 1254
FIN — ICMP Ping 5 mins 0
FIN — Don't Ping 5 mins 1611
PING SWEEP — TCP Ping 5 mins 0
PING SWEEP - TCP + ICMP 5 mins 56
PING SWEEP — ICMP Ping 5 mins 72
PING SWEEP - Don’t Ping 5 mins 0
UDP SCAN — TCP Ping 5 mins 13
UDP SCAN-TCP + ICMP 5 mins 21
UDP SCAN — ICMP Ping 5 mins 0
UDP SCAN — Don't Ping 5 mins 11
NULL SCAN — TCP Ping 5 mins 5934
NULL SCAN - TCP + ICMP 5 mins 2503
NULL SCAN — ICMP Ping 5 mins 0
NULLSCAN-Don't Ping 5 mins 1610
XMAS TREE - TCP Ping 5 mins 5913
XMAS TREE - TCP + ICMP 5 mins 2794
XMAS TREE - ICMP Ping 5 mins 0
XMAS TREE - Don't Ping 5 mins 1611
IPPROTOCOLSCAN-TCP Ping 15 mins 38
IPPROTOCOLSCAN-TCP+ICMP 15 mins 45
IP PROTOCOLSCAN — ICMP Ping 15 mins 0
IP PROTOCOL SCAN — Don'’t Ping 15 mins 6
ACK SCAN —TCP Ping 15 mins 47
ACKSCAN-TCP + ICMP 15 mins 340
ACK SCAN — ICMP Ping 15 mins 0
ACK SCAN — Don’t Ping 15 mins 9
WINDOW SCAN — TCP Ping 15 mins 26
WINDOW SCAN — TCP + ICMP 15 mins 21
WINDOW SCAN — ICMP Ping 15 mins 0
WINDOW SCAN — Don't Ping 15 mins 9
RCP SCAN - TCP Ping 15 mins 113
RCPSCAN — TCP + ICMP 15 mins 168
RCP SCAN - ICMP Ping 15 mins 0
RCP SCAN —Don’t Ping 15 mins 10
LIST SCAN — TCP Ping 15 mins 0
LIST SCAN — TCP + ICMP 15 mins 0
LIST SCAN — ICMP Ping 15 mins 0
LIST SCAN — Don’t Ping 15 mins 0
CONNECT - TCP Ping 15 mins 30
CONNECT - TCP + ICMP 15 mins 45
CONNECT - ICMP Ping 15 mins 0
CONNECT - Don't Ping 15 mins 22

o Y43

APPENDIX C
SNORT INTRUSION DETECTION SYSTEM
DETECTION RATE USING MANUAL ATTACK
PROGRAMS TESTS SCHEDULE
In this Appendix, the tests schedule for determining the detection rate of Snort using the

Manual Application Programs is presented.

Table C.1 Detection Rate Tests Schedule for Snort Using Manual Attack Application

Programs
Attack Attac | Attack Other | Duration | Snort
Name k Sub- | Name
Name
dddsping Smins 30
Battlepong Smins 2728
Bloodlust Smins 63
RETR | FyRE Smins 175
iBUTI | BRIMSTONE | 5mins 0
ON
PLAG | FLOODz Smins 59
Divine UEz | LOCUSTs Smins 0
OME | HELLFyRE Smins 0
Nz DEMONz 5mins 0
INCA | HAILSTORM | 5Smins 0
NTA | WHyRLWIND | 5mins 0
TION
z
Elite anarchy Smins 430
connections Smins 0
flood Smins 0
nuke Smins 931
ping Smins 0
pingflood Smins 0
teardrop Smins 188
Iping32 iping32 Smins 485
Packetbuild | PckBuilder Smins 0
Ping-G PIN-G 5mins 0
Rocket10 Rocketvl 0 Smins 5546
Vai-te-ja- Vai-te Ja ICMP Bomber | Smins 0
icmpbomber
WinNuke WinNUKE 5mins 1135

39

APPENDIX D

INTRUSION DETECTION SYSTEM
DETECTION RATE USING THE DIFFERENT
ATTACK SCENARIOS TESTS SCHEDULE

In this Appendix, the tests schedule that was followed in determining the detection rate of
the Snort intrusion detection system using the attack scenarios is presented.

Week 1

Day 1 — Original attack script

Day 2 — Original attack script continues

Day 3 — Stealth attacks scenarios based on timing modes

Day 4 — Stealth attacks scenarios based on timing modes continues
Day 5 — Stealth attacks scenarios based on scan delay

Day 6 — Stealth attacks scenarios based on scan delay continues
Day 7 — Stealth attacks scenarios based on scan delay continues

40

APPENDIX E
INFORMATION GATHERING SCRIPTS
In this Appendix, the Perl configuration files and Perl script used in this phase of the
program are presented.
(1) pre_exp.conf

In this Appendix, the Perl configuration files are presented.
#!/usr/bin/perl

This is the configuration file of pre_exp.pl. It is a Perl script indeed

so it is called by "do 'pre_exp.conf" in pre_exp.pl. It defines

parameters for pre_exp.pl to run to exploit which machines are up and

what services are open. Some of the parameters may be defined in scenario.pl
as well.

Define exploit technique. Change it in Windows.
$PRE_EXP_CMD = "nmap";

Define destination network range.

#$PRE _EXP DIP ="172.16.2.1/24",

$PRE_EXP DIP ="172.16.2.1/24"; # ?? with /27 and delay 2000, sendconnecttcpquery:
Could not scavenge a free socket! ??

Service scan range.
$PRE_EXP DPORT TCP = "20-30,80,110";
SPRE_EXP DPORT UDP ="53,111";

If you want to add a scan delay to make the scan more stealth.
The unit is millisecond. Set it to 0 or comment it if you don't want delay.
$PRE EXP SCAN DELAY =0;

If you want to spoof source IP address.

Note in Linux you have to have the spoofed IP address bound in your network
interface. Don't set it if IP address is not spoofed.

#$PRE_EXP_SIP ="10.1.2.3";

If you want to set source port.
Comment it if you don't want set it.
$PRE_EXP_SPORT = 1500;

A1

42

(2) The Perl Script
#!/usr/bin/perl -w

This file is ran first because it tries to exploit which

machines are up and what services are open in a destination network range.
After that, we have some understandings of the destination network so that
further attacks will be exploited. Of course, pre_exp.pl can be run at

any stage a scenario.

The technique to do this is using Nmap.

H

T

read configuration file.

(-r "pre_exp.conf") || die "Cannot open pre_exp.conf: $!";
BEGIN { do "pre_exp.conf"; }

"

check which hosts are up in the destination addresses.
print only the IP address of the hosts which are up in a temporary file.
using: nmap ... -n -sP -PS <target IP address range>

| | +use SYN (not ACK scan) for root
| + ping sweep
+ numeric address is used only

@cmd = ($PRE_EXP_CMD);

if(defined($PRE_EXP_SPORT) && $PRE_EXP_SPORT !=0) {
push(@cmd, "-g SPRE_EXP_SPORT");

}

if(defined(SPRE_EXP_SCAN_DELAY) && $PRE_EXP_SCAN_DELAY !=0) {
push(@cmd, "--scan_delay $PRE_EXP_SCAN_DELAY"),

}

push(@cmd, "-n", "-sP -PS $PRE_EXP_DIP"); # "-sP -PS SPRE_EXP_ DIP" is one field.

push(@cmd, ">pre_exp.data.tmp"),

system generally return non-zero if the command went wrong.
system("@cmd") && die "$PRE_EXP_CMD running error: $?\n";

open(FP_TMP,"<pre_exp.data.tmp") or die "<1> Cannot open pre_exp.data.tmp: $!";
open(FP_OUT,">pre_exp.data") or die "<1> Cannot open pre_exp.data: $!";
while(defined($line=<FP_TMP>)) {

chomp($line);

if($line =~ s/ Host. *\(([\d\.]+H)\).*$/81/) {

print FP_OUT "$line\n";

}

}

43

pop(@cmd);

my ($sec,$min,$hour,$mday,$mon,$year) = (localtime)[0,1,2,3,4,5]; # use ()
#print FP_OUT "\nTest up: \"@cmd\" on ", “date +\"%a %D %T\"";

printf FP_OUT ("\nTest up: \"@cmd\" on %02d/%02d/%02d %02d:%02d:%02d\n",
$mon+1, $mday, $year%100, $hour, $min, $sec);

close(FP_TMP);

close(FP_OUT);

H

7

for each IP address, test what possible services are running on it.

save those services with IP address to the database.

using: nmap ... -n -sS -P0 <target [P address> -p <listed-service-ports>
using: nmap ... -n -sT -PO <target [P address> -p <listed-service-ports>

| | + don't try to ping first
| + non-superuser can only use -sT.
+ numeric address is used only

run above command with -sU to test UDP port.

L5}

pop(@cmd); # command becomes like: nmap -g 1500 --scan_delay 1 -n
push(@cmd, "-sS -P0");

rename("pre_exp.data","pre_exp.data.tmp") || die "<1> Cannot rename: $!";
open(FP_TMP,"<pre_exp.data.tmp") or die "<2> Cannot open pre_exp.data.tmp: $!";
open(FP_OUT,">pre_exp.data") or die "<2> Cannot open pre_exp.data: $!";

while(defined($addr_tmp=<FP_TMP>)) {
chomp($addr_tmp);
if($addr_tmp =~ s/*([\d\.]+)$/$1/) {
push(@cmd,"$addr_tmp");

S +
test TCP port|
S +

if(defined($PRE_EXP DPORT _TCP)) {
push(@cmd, "-p SPRE_EXP_DPORT_TCP");
}

@result = "@cmd’; # run the scan program

chomp(@result);
@open_list=@filtered list=(); # @closed_list=(); don't print the closed
foreach $line (@result) {
if($line =~ /~(\d+)Vtcp.*open.*$/) {
push(@open_list,$1);
}

44

elsif($line =~ /~(\d+)Vtcp.*filtered.*$/) {
push(@filtered _list,$1);

}
}
pop(@cmd);
S +
test UDP port]|
e S +

if(defined($PRE_EXP DPORT UDP)) {
push(@cmd, "-p SPRE_EXP DPORT_UDP");

}

push(@cmd, "-sU");

@result = "@cmd’; # run the scan program

chomp(@result);

@udp_open_list=@udp _filtered_list=(); # @udp_closed_list=();
foreach $line (@result) {
if($line =~ /A(\d+)Vudp.*open.*$/) {
push(@udp_open_list,$1);
}
elsif($line =~ /A (\d+)Vudp.*filtered.*$/) {
push(@udp_filtered list,$1);

}
}
pop(@cmd); pop(@cmd); pop(@cmd);
S +
print result |
S +

printf FP_OUT ("%-16s",$addr_tmp);
print FP_OUT "| @open_list : @filtered_list | @udp_open_list : @udp_filtered_list
\n";
}
else { # if-else, why cannot use elsif here ?
print FP_OUT "$addr_tmp\n";
}
}

($sec,$min,$hour,$mday,$mon,$year) = (localtime)[0,1,2,3,4,5]; # use ()

printf FP_OUT ("Test TCP port: \"@cmd <IP> -p $SPRE_EXP_DPORT_TCP\" on
%02d/%02d/%02d %02d:%02d:%02d\n", $mon+1, $mday, $year%100, $hour, $min,
$sec);

($sec,$min,$hour,$mday,$mon,$year) = (localtime)[0,1,2,3,4,5]; # use ()

45

printf FP_OUT ("Test UDP port: \"@cmd <IP> -p $PRE_EXP_DPORT UDP -sU\" on
%02d/%02d/%02d %02d:%02d:%02d\n", $mon+1, $mday, $year%100, $hour, $min,
$sec);

#print FP_OUT "Test TCP port: \"@cmd <IP> -p $SPRE_EXP_DPORT TCP\"on",
‘date +H\"%a %D %T\"";

#print FP_OUT "Test UDP port: \"@cmd <IP> -p $PRE_EXP_DPORT UDP -sU\" on ",
“date +\"%a %D %T\"";

close(FP_TMP);
close(FP_OUT);

unlink("pre_exp.data.tmp") || warn "warning on deleting file: $!";

APPENDIX F

ATTACK EXPLOIT SCRIPTS

In this Appendix, the Perl script and the configuration files in this phase of the program
are presented.

(1) The Perl script
#!/usr/bin/perl

This is the scenario building batch program. It reads configuration

information of each attack scenario from sce_exp.conf and run the scenario.
Using fork() to dispatch each scenario so that they can run simultaneously.
There is may be some waiting time between scenarios, as indicated in the

configuration file.

#

1L

open sce_cmd.conf and sce_exp.conf to read configuration information

open (FP_CMDC,"sce_cmd.conf") or die "Cannot open configuration file: $!";
while (defined($line=<FP_CMDC>)) {

next if ($line =~ /"#/); # skip comments
next if ($line =~ /M\s*$/); # skip blank lines
chomp($line);

my @tmp_1lv = split(/\s+/,$line);
my ($tmp_key, @tmp_value) = @tmp_lv;
$cmd _hv{$tmp key} =join ("', @tmp_value); # better use []?

}
close(FP_CMDC);
open (FP_CONF,"sce_exp.conf") or die "Cannot open configuration file: $!";

LOOP: while (defined($line=<FP_CONF>)) {

next LOOP if ($line =~ /"#/); # skip comments
next LOOP if ($line =~ /"\s*$/); # skip blank lines
chomp($line);

if ($line =~ /Ms*([\d\.]+)\s*([smh])\s*$/) {
if ($2eq's) {sleep int($1); } # use eq, not the =
elsif ($2 eq 'm') { sleep int($1*60); } # use eq, not the ==
elsif (32 eq 'h") { sleep int($1*60*60); } # use eq, not the ==
print "waiting for $1$2\n";
}

46

elsif ($line =~ /Ms*newdata*$/) {
print "updating database.\n";
do "pre_exp.pl";

3

else { # it's a attack command
@cmd=""; Srepetition = 1;
process_parameter();

shift(@cmd); # remove the first "".
#print "cmd: @cmd\n";
#print "repetition: $repetition\n";

L}

fork...

T

if(!defined($child_pid=fork())) {
die "Cannot fork another process to run the scenarios: $!";
3
elsif ($child pid ==0) { # this is child process
print "command: @cmd\n";
#system("@cmd");
$tmp_repetition = $repetition;
while (--$tmp_repetition > 0) {
@cmd="";
process_parameter();
shift(@cmd); # remove the first "".
print "command: @cmd\n";
#system("@cmd");

}
exit;
}
else { # this is parent process.
#wait;
}
}
)
close(FP_CONF);
+
construct a hash from the database: key IP, value port |
+
sub read_database {
my ($line, @tmp_1v); # need parentheses.

open (FP_PRE,"pre_exp.data") or die "Cannot open pre-scann data file: $!";

47

while(defined($line=<FP_PRE>)) {
@tmp_lv=""; #"" or even undef is an element, so use pop later.
chomp($line);
last unless ($line =~ /M\d/); # break if not beginning with a digit
$line =~ /(AT H\SH () - ()N CF) (F)N*S/
push(@tmp_1v,$2,$3,$4,$5);

$tmp_hv{$1} = [@tmp_Iv]; # must use []. %tmp_hv is global then.

pop(@tmp_lv); pop(@tmp_lv); pop(@tmp_1v); pop(@tmp_lv);
}
close (FP_PRE);

}

sub process_parameter {
my @tmp_line = split(/\s+/, $line);
my @cmd_format = split(/\s+/, $cmd_hv {$tmp_line[0]});
unless (@cmd_format) {
warn "Wrong entry word: $tmp_line[0]. Ignored.";
next LOOP;

}
push (@cmd, shift((@cmd _format)); # command name

shift((@tmp_line);
$d_ip_or pt=0;
foreach my $parameter (@tmp_line) {
if ($parameter =~ /~D/) {
if (8d_ip_or pt=0) { # parameter is ip
unless (defined %tmp_hv) { read_database(); }
$tgt para = $tgt_ip = ip_from_database($parameter);

$d_ip or pt=1,
}
else { # parameter is ip

$tgt para=$tgt pt=pt from_ database($parameter);
}

}

elsif ($parameter =~ /*R/) {
$ = S$parameter;
my $func =/A(R+)/ ? $1 : undef;
my $low =/A((\d+)-/ ? $1 : undef;
my $high =/-(\d+)\)/ ? $1 : undef;

$tgt_para =

$func =~ /*R$/ ? (defined $low && defined $high) ? func_r($low, $high) :

func r() :

48

$func =~ /"RR$/ ? (defined $low && defined $high) ? func_rr(Slow, $high) :

func_rr() : warn "wrong R field: $!";

}

else {
$tgt para = $parameter;

}

if ($tgt_para =~ /MN\[\[(*)\]\]$/) { # [[other parameter field]]
push(@cmd, join(" ", split(\.\./,$1)));
}
elsif ($tgt_para =~ /M {{(:*)}}$/) { # {{repetition field}}
$repetition = $1 =~ /A (\d+)$/ ? §1 : # must use ()
$1 =~ /~(\d+)-(\d+)/ ? func_r($1, $2) : $repetition;
}
else { # filed corresponding to command conf
$ = shift(@cmd_format);
if (8) {
if ("-$/) { push(@cmd,$tgt_para); }
else {
if (/NS$/) {
s/NS$//;
push(@cmd, $_.$tgt para);
}
else { push(@cmd, $_." ".$tgt para); }
}
}
else { warn "nonmatched field: $!"; }
}
}

}

H
set target IP address (range) and port number(s) from pre_exp.data.

m

sub ip_from_database {
$_=3$_[0];
return (/*"DR$/ ? func_dr(keys %tmp_hv) : #1ip DR
/"DRRY$/ ? func_drr(keys %tmp hv) : # 1p DRR
/"DA$/ ? func_da(keys %tmp_hv) :$_); #ip DA
}

sub pt_from_database {
my $tmp_ip = (split(\s+/,$tgt_ip))[0]; # get the 1st ip no matter DR/DRR/DA

$ =8 [0];

my $tmp_pt =

49

50

/~"DR$/ ? $tmp_ hv{S$tmp ip}[0] ? func_dr(split(A\s+/,$tmp_hv{$tmp ip}[0])) : 80:
/"DRRS$/ ? $tmp_hv{S$tmp ip}[0] ? func_drr(split(\s+/,$tmp_hv {$tmp_ip}[0])) :
80 :
/"DAS$/ ? $tmp_hv{$tmp ip}[0] ? func_da($tmp_hv{$tmp _ip}[0]) :80:
80;
$tmp pt=tr///;
return $tmp_pt;
}

H

m

functions.

sub func_r {
my ($low,$high);
$low =defined $ [0]?$ _[0] : 20;
$high = defined $§_[1]? $_[1] : 29;
return int(rand($high-$low+1)) + $low;
}

sub func rr {

my ($low,$high);

$low =defined $ [0]?$ _[0] : 20;

$high = defined § [1]?$_[1]:99;

my $temp1 = int(rand($high-$low+1)) + $low;

my $temp?2 = int(rand($high-$low+1)) + $low;

return ($templ < $temp2 ? "$temp1-$temp2" : $templ > $temp2 ? "$temp2-$temp1" :
$temp1);
}

sub func_dr {

my @temp = @_;

return $temp[int(rand(@temp))];
}

sub func_drr {
my $ratio = 0.5; # default, 50% will be selected.
my $templ ="";
foreach my $temp2 (@) {
if((rand) < $ratio) { $temp1 .= ($temp2. " "); }

}

(Stempl) ? chop($templ) : Stemp1=$ [$#]; # why doesn't it work?
if($temp1) { chop($templ); } # remove the last ,
else { $temp1=$ _[$#]; } # at least should get one.

return $temp1;

51

sub func da {
return "@_"; # any other good method ?

}

(2) sce_cmd.conf

This file specifies each attack program and its parameter format. The first
column is the entry name. The second is the attack program name and the
rest columns are its parameters. The sce_exp.pl script reads an entry from
the sce_exp.conf and will query this file to construct the command by

finding the entries having same command name in two files.

nmap port scan format:
#entry cmd ip port delay source_port type
nmap_scan nmap - -p --scan_delay -g -sNS

#1

syntcpn nmap - -sNS

#2

syntcpicmpn nmap - -sNS
#3

synicmpn nmap - -sNS
#4

syndontn nmap - -sNS
#5

syntcpi nmap - -sNS

#6

syntcpicmpi nmap - -sNS
#7

synicmpi nmap - -sNS

(3) sce_exp.conf

This is the configuration file of scenario running program, sce_exp.pl.
Each line stands for an attack with parameters except for the line beginning
with # (it is a comment).

There are three types of statement: attacks, waiting time between attack scenarios and
#running pre-scanning program to generate new pre_exp.data.

The format of attacks is: program_name <parameters>

The format of time waiting is: <n>s, <n>m, or <n>h

The format of updating new database file is: newdata

Example: format of port scan using nmap.

program target addr services delay source port type
#nmap DR/DRR/DA/value R/RR/DR/DRR/value R/value R/value
#nmap_scan DA R(3-5) 2000 1500 S [[-n..-P0]] {{6-9}}
#nmap ping_sweep DR R(1500-1600) P [[-n..-PS]] {{4}}
#nmap_scan DRR R(1-5) 2000 1500 S [["aa"..bb]] {{2}}
#3.2s

#nmap_scan DR DR R(1000-2000) 1500 S {{4}}

#1.2m

#newdata

1 added the stuff below

#1.0m

#netcat_port DR DR

2s

#1

syntcpn 172.16.2.11 S [[-PT..-O..-T..0]] {{1}}

50s

#2

syntcpicmpn 172.16.2.12 S [[-PT..-PL.-O..-T..0]] {{2}}
55s

#3

synicmpn 172.16.2.13 S [[-PL..-O..-T..0]] {{5}}

100s

#4

syndontn 172.16.2.17 S [[-P0..-O..-T..0]] {{7}}

80s

#5

syntcpi 172.16.2.12 S [[-PT..-O..-T..0]] {{5}}

51s

#6

syntcpicmpi 172.16.2.13 S [[-PT..-P1..-O..-T..0]] {{2}}
55s

#7

synicmpi 172.16.2.17 S [[-PL.-O..-T..0]] {{5}}

S/T/X/N

52

APPENDIX G
BACKGROUND TRAFFIC SCRIPTS
In this Appendix, the background traffic scripts are presented.
(1) bkgrd cmd.conf

This is the configuration file of background traffic types. There are currently four types
of background traffic. They are FTP, Telnet, Http and Mail services and these cover
most of the common traffic in practice.

[FTP 1]

command = ftp

host =172.16.2.13

account = anonymous

passwd =come

[[local files]]
c:\cygwin\home\administrator\p13.jpg
c:\cygwin\home\administrator\p130.jpg
c:\cygwin\home\administrator\p131.jpg
c:\cygwin\home\administrator\p132.jpg
[[remote files]]
c:\inetpub\ftproot\p1.jpg
c:\inetpub\ftproot\p10.jpg
c:\inetpub\ftproot\p100.jpg
c:\inetpub\ftproot\p101.jpg
c:\inetpub\ftproot\p102.jpg
c:\inetpub\ftproot\p103.jpg
c:\inetpub\ftproot\p104.jpg
c:\inetpub\ftproot\p105.jpg
c:\inetpub\ftproot\p106.jpg
c:\inetpub\ftproot\p107.jpg
HHHHHHHRHE T

[Telnet 1]

command = telnet

host =172.16.2.18

account = sniffer

passwd = sniffer

delay =2

[[commands]]

Is

cd:ls -1

HIHHHHHH TS

#[Http_1]

#command = lynx

53

#[[sites]]
#www.njit.edu
#www.yahoo.com
HUHHHHTHHEHHE
#[Mail_1]
#command = mail
#[[address]]
#a@b.com
#c@d.net
#[[messages]]
#msgl
#msg2:msg3

HHHHHHHHHHHHAA

[End]

(2) bkgrd gen
This is the configuration file of bkgrd gend.pl, the script to generate
background traffic. There are two types of statement in this file, one

is the background traffic entry and the other is time between two
background traffic entries.

waiting line: <n><s/m/h>

fip_entry local(-/R/RR/All/value) remote(-/R/RR/All/value) repetition

FIP 1 - R ({1n
Ss

telnet_entry command list repetition

Telnet_1 A {{1}}

http_entry site_list repetition
#Http 1 R {{2}}
#Http 1 A {{2}}

mail_entry address_list message list repetition
#Mail 1 R R {{1}}

54

55

(3) The script

This script generates background traffic according to its configuration file,
#1i.e., bkgrd gen.conf and bkgrd cmd.conf.

$cmd_conf fn = "bkgrd cmd.conf";
$conf fn = "bkgrd gen.conf";

open (FP_CMDC, $cmd_conf fn) or die "Cannot open cmd configuration file :$!";
while (defined($line=<FP_CMDC>)) {

next if ($line =~ /"'#/); # skip comments
next if ($line =~ /"N\s*§/); # skip blank lines
chomp($line);

if ($line =~ /M\[(["\[\]]H\IS/) {
$key = $1; $field = 0;

if(defined $key pre) {
$cmd hv{$key pre} =
$key pre =~ /"FTP/i ?[$command, $host, $account, $Spasswd, [@ftp_local],
[@ftp_remote]] :
$key pre =~ /~Telnet/i ? [Scommand, $host, $account, $passwd, $delay,
[@telnet_cmd]]
$key pre =~ /"Http/i ? [Scommand, [@http_site]]
$key pre =~ /*Mail/i ? [Scommand, [@mail_ addr],
[@mail_msg]] : undef;
}
@ftp_local = @ftp_remote = @telnet_cmd = @http_site = @mail_addr =
@mail msg="";
shift(@ftp_local); shift(@ftp_remote); shift(@telnet_cmd); shift(@http_site);
shift(@mail_addr); shift(@mail_msg);

$key pre = Skey;

next;

}

if ($key =~ /AFTP/) {
$ = Sline;

if (/*command\s*=\s*(["\s]+)/) { $command = $1; }

elsif (/*host\s*=\s*(["\s]+)/) { Shost =$§1;}

elsif (/~account\s*=\s*(["\s]+)/) { $account = $1; }

elsif (/passwd\s*=\s*([M\s]+)/) { $passwd =$1; }

elsif (/"\[\[.*\]\]/) { $field++; } # comm/local/remote

else { $field == 1 ? push(@ftp_local, $line) : push(@ftp_remote, $line); }

56

}

elsif ($key =~ /~Telnet/i) {
$ = S$line;
if (/"command\s*=\s*(["\s}+)/) { $command = $1; }
elsif (/host\s*=\s*(["\s]+)/) { $host =$1;}
elsif (/~account\s*=\s*(["\s]+)/) { $account = §$1; }
elsif (/"passwd\s*=\s*(["\s]+)/) { $passwd = $1; }
elsif (/"delay\s*=\s*([\s]+)/) { $delay =$1;}

elsif (/N\[\[-*\\]/) { $field++; } # comm/cmd
else { $field == 1 and push(@telnet_cmd, $line) }

}

elsif (Skey =~ /"Http/i) {
$ = S$line;
if (/*command\s*=\s*(["\s]+)/) { $command = $1; }
elsif (/N\\[.¥\]\)) { $field++; } # comm/sites
else { $field == 1 and push(@http_site, $line) }

)

elsif ($key =~ /"Mail/i) {
$ =Sline;
if (/"command\s*=\s*(["\s]+)/) { $command = $1; }
elsif (/\[\[.X\|\}/) { $field++; } # comm/message

else { $field == 1 ? push(@mail _addr, $line) : push(@mail_msg, $line); }

}
elsif ($key =~ /~End/i) { last; }
}
$key = $field = undef;
$command = $host = $account = $passwd = $delay = undef;
@ftp_local = @ftp_remote = @telnet cmd = @http_site = @mail_addr = @mail_msg =
undef;
close(FP_CMDC);

open (FP_CONF,$conf fn) or die "Cannot open configuration file: $!";

while (defined($line=<FP_CONF>)) {

next if ($line =~ /" #/); # skip comments
next if ($line =~ /Ms*$/); # skip blank lines
chomp($line);

if ($line =~ /M\s*([\d\.]+)\s*([smh])\s*$/) {
print "waiting for $1$2\n";

if ($2eq's') {sleep int($1); } # use eq, not the ==
elsif (32 eq 'm') { sleep int($1*60); } # use eq, not the ==
elsif (32 eq 'h') { sleep int($1*60*60); } # use eq, not the =

}

else {
@ftp_list = @telnet _list = @http list = @mail list="";

57

shift(@ftp_list); shift(@telnet_list); shift(@http_list); shifi(@mail_list);
$ = S$line;
if (/"FTP/1) {
($entry, my ($ftp_local, $ftp_remote), $repetition) = split;
$repetition = defined $repetition ? process_repetition($repetition) : 1;

for (my $i=0; $i<Srepetition; $i++) {
$ = $ftp_local; my @ftp local =""; shift @ftp_local,
unless (/*-$/) { # must use () here.
push (@ftp_local, /*R$/ ? func r($cmd_hv{$entry}[4]) :
/*RR$/ ? func_rr(Secmd_hv{S$entry}[4]) :
/"A$/ ? func_a($cmd_hv{Sentry}[4]) : $);

}

$ =S$ftp _remote; my @ftp_remote =""; shift @ftp _remote;
unless (/*-$/) { # must use () here.
push (@ftp_remote, /"R$/ ? func r($cmd_hv{$entry}[5]) :
/"RRS/ ? func_rr($cmd_hv {Sentry}[5]) :
/~A$/ ? func_a($cmd hv{Sentry}[5]) : $);
}
push (@ftp_list, [[@ftp_local], [@ftp_remote]]);
#print "+++ @ftp_local, @ftp_remote +++\n";
then $ftp_list[$repetition][local/remote][index]. $tmp = $ftp 1ist[0][0]; scalar(@$tmp)
is the size.

}

3
elsif (/"Telnet/1) {

($entry, my $telnet_cmd, $repetition) = split;
$repetition = defined $repetition ? process_repetition($repetition) : 1;

for (my $i=0; $i<$repetition; $i++) {
$ = $telnet_cmd; my @telnet_cmd = ""; shift @telnet_cmd;
unless (/*-$/) {
push (@telnet_cmd, /*R$/ ? func r($Scmd_hv{$entry}[5]) :
/"RRY/ ? func_rr($cmd_hv {Sentry}[5]) :
/"A$/ ? func_a($cmd_hv{Sentry}[5]) : $);
}
push (@telnet_list, [[@telnet_cmd]]);
#print "+++ $telnet list[$1][0][0] +++\n";
}
}
elsif (/*Http/1) {
($entry, my $http_site, Srepetition) = split;
$repetition = defined $repetition ? process_repetition($repetition) : 1;

for (my $i=0; $i<Srepetition; $i++) {

$ = S$http_site; my @http_site = ""; shift(@http_site);
unless (/*-$/) {
push (@http_site, /*R$/ ? func_r($cmd_hv{Sentry}[1]) :
/"RRS$/ ? func_rr($cmd_hv{Sentry}[1]) :
/"A$/ ? func_a($cmd _hv{Sentry}[1]) : $);
}
push (@http_list, [[@http_site]]);
#print "+++ Shttp_list[$i][0][0] +++\n";
}
}
elsif (/*Mail/1) {
($entry, my ($mail_addr, $mail_msg), Srepetition) = split;
$repetition = defined $repetition ? process_repetition($repetition) : 1;

for (my $i=0; $i<Srepetition; $i++) {
$ =9%mail addr; my @mail addr =""; shift(@mail_addr);
unless (/*-$/) {
push (@mail_addr, /*R$/ ? func_r($cmd_hv{S$entry}[1]) :
/"RR$/ ? func_rr($cmd_hv{S$entry}[1]) :
/~A$/ ? func_a($cmd_hv{Sentry}[1]) : $);
}

$ =9%mail msg; my @mail msg =""; shift(@mail _msg);
unless (/*-$/) {
push (@mail_msg, /*R$/ ? func r(Scmd_hv {$entry}[2]) :

/"RR$/ ? func_rr($cmd_hv {$entry}[2]) :
/"A$/ ? func_a($cmd hv{Sentry}[2]) : $);

¥

push (@mail_list, [[@mail addr], [@mail msg]]);

#print "+++ $mail_list[$1][0][0] +++\n";
}
}

else { warn "wrong or empty field: $!" }

if(defined($child_pid=fork())) {
die "Cannot fork another process to run the scenarios: $!";

3

elsif ($child_pid == 0) { # this is child process
$entry =~ /*FTP/i ? process_ftp($entry, $repetition)
$entry =~ /"Telnet/i ? process_telnet($Sentry, $repetition) :

58

$entry =~ /~Http/i ? process_http($entry, $repetition) :
$entry =~ /"Mail/i ? process_mail($entry, $repetition) : warn "wrong or empty
field: $!";

exit;
}
else { # this is parent process.
#wait;
}

}
close(FP_CONF);

sub process_fip {
my ($entry, $repetition) = @_;
my $tmp_fn ="ftp.tmp.$$"; # $$ is the process id.

for my $i (0..$repetition-1) { # same as for (..;..;) { } ?

open (FP_TMP, ">$tmp_fn") or die "Cannot open $tmp_fn: $!";

print FP_TMP "$cmd_hv{$entry}[0] -ni $cmd_hv {$entry}[1] <<EOF\n";

print FP_TMP "user $cmd_hv{$entry}[2] $cmd_hv{Sentry}[3]\n";

print FP_TMP "binary\n";

my $temp = $ftp_list[$1][0]; # local file list

if (my $temp1 ="@$S$temp") { # better way to convert list to scalar?
$templ =~ tr/:/ /;
print FP_TMP "mput $temp1\n";

¥

$temp = $fip_list[$i][1]; # remote file list

if (my $temp1 = "@S$temp") { # better way to convert list to scalar?
$templ =~ tr/:/ /;
print FP_ TMP "mget $temp1\n";

}

print FP_TMP "quitmEOF\n";

close (FP_TMP);

chmod 0744, $tmp_fn;
system ("cat $tmp_fn");
system ("./$tmp_fn");
}
unlink $tmp_fn;
}

sub process_telnet {
my ($entry, $repetition) = @_;

my $tmp_fn = "telnet.tmp.$$";

for my $i (0..$repetition-1) {
open (FP_TMP, ">$tmp_fn") or die "Cannot open $tmp fn: $!";
print FP_TMP "(echo $cmd_hv{$entry}[2]\nsleep $cmd_hv{$entry} [4]\n";
print FP_TMP "echo $cmd_hv{$entry}[3]\nsleep $cmd_hv{S$entry}[4]\n";

my $comm = Stelnet_list[$i][0]; # telnet command list

my @comm_clear; - # extended from ":"
for § (@$comm) { push (@comm_clear, split /:/); }

for my $temp (@comm_clear) {
print FP_ TMP "echo $temp\nsleep $Scmd_hv {$entry}[4]\n";

}

print FP_TMP "exit) | $cmd_hv{$entry}[0] $cmd_hv{$entry}[1]\n";
close (FP_TMP);

chmod 0744, $tmp_fhn;
system ("cat ./$tmp_fn");
system ("./$tmp_fn"); # or system ("./$tmp_fn > tmpfile"),
}
unlink $tmp_fn;
}

sub process_http {
my (Sentry, $repetition) = @_;

for my $i (0..$repetition-1) {
my $site = $http list[$i][0]; # http site list

my @site_clear; # extended from ":"
for §_(@$site) { push (@site_clear, split /:/); }

for my $temp (@site clear) {
my @cmd = ($cmd_hv {$entry}[0], "-source", $temp);
print "@cmd\n";
system "@cmd"; # or system ("@cmd > tmpfile");
}
}
}

sub process_mail {
my ($entry, Srepetition) = @_;

61

for my $i (0..$repetition-1) {
my $addr = $mail _list[$i][0]; # mail address list
my $msg = $mail list[$i]{1]; # mail message list

my (@addr_clear, @msg_clear); # extended from ":"
for $ (@$addr) { push (@addr_clear, split /:/); }
for$ (@$msg) { push (@msg_clear, split /:/); }

for my $temp1 (@addr_clear) {
for my $temp2 (@msg_clear) {
print "$cmd_hv {$entry}[0] $temp1l < Stemp2\n";
system "$cmd_hv {$entry}[0] $Stempl < $temp2";
}
}
}
}

LS

functions.

7

sub process_repetition {
return ($_[0] =~/ {{(.*)}}$/) ? $1 = /~(\d+)$/ ? 81 :
$1 =~ /~(\d+)-(\d+)/ ? int(rand($2-$1+1)) + $1 : 1
01
}

sub func r {
my $temp =$ _[0]; # note this is the reference of an array. @$temp is like a list.
return $temp->[int(rand(@3$temp))]; # scalar(@S$temp) or (@$temp+0) is the size.
}
sub func_rr {
my ($temp, $ratio) = ($_[0], 0.5); # select 50% range
my @temp2 =""; shift @temp2;

foreach my $temp1 (@$temp) {
if (rand() < $ratio) { push (@temp2, $temp1) }
}
unless (@temp2) { push (@temp2, $temp->[0]) } # at least should get one. use the
first one.
return @temp?2;
}
sub func a {
my $temp =$_[0];
return @S$temp;
}

APPENDIX H

In this Appendix, a part of the stealth attacks configuration file is given.
Sce_exp.conf

This is the configuration file of scenario running program, sce_exp.pl.
Each line stands for an attack with parameters except for the line beginning
with # (it 1s a comment).

#1

syntcpn 172.16.2.11 S [[-PT..-O..-T..0]] {{1}}

50s

#2

syntcpicmpn 172.16.2.12 S [[-PT..-PL.-O..-T..0]] {{2}}
55s

#3

synicmpn 172.16.2.13 S [[-PL.-O..-T..0]] {{5}}

100s

#4

syndontn 172.16.2.17 S [[-P0..-O..-T..0]] {{7}}

80s

#5

syntcpi 172.16.2.12 S [[-PT..-O..-T..0]] {{5}}

51s

#6

syntcpicmpi 172.16.2.13 S [[-PT..-PL..-O..-T..0]] {{2}}
55s

#7

synicmpi 172.16.2.17 S [[-P1..-O..-T..0]] {{5}}

100s

#8

syndonti 172.16.2.18 S [[-P0..-O..-T..0]] {{7}}

130s

#9

syntcpid 172.16.2.13 S [[-PT..-n..-T..0]] {{3}}

71s

#10

syntcpicmpid 172.16.2.17 S [[-PT..-Pn..-0..-T..0]] {{2}}
65s

#11

synicmpid 172.16.2.18 S [[-PL..-n..-T..0]] {{5}}

110s

#12

syndontid 172.16.2.11 S [[-P0..-n..-T..0]] {{7}}

etc.

KD

REFERENCES

1. R. P. Lippman, D. J. Fried, I. Graf, J. W. Haines, K. R. Kendall, D. McClung, D.

Weber, S. E. Webster, D. Wyschogrod, R. K. Cunningham, and M. A. Zissman,
“Evaluating Intrusion Detection Systems: The 1998 DARPA Off-line Intrusion
Detection Evaluation,” in Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition, Vol. 2, 2000.

K. Kendall, "4 Database of Computer Attacks for the Evaluation of Intrusion
Detection Systems", Master's Thesis, Massachusetts Institute of Technology, 1998.

3. N. Desai, “Optimizing NIDS Performance,” SecurityFocus HOME Infocus:

ESN

Optimizing NIDS Performance, http://online.securityfocus.com/infocus/1589,
June 6, 2002.

. A.Lizard, “Using SNORT for Intrusion Detection,” SNORT Review,

http://web.njit.edu/~manikopo/SNORT/snort_review1.html, Wednesday, January
23, 2002.

5. G. Saoutine et al, “Barbarians at the Gate,” Microsoft Certified Professional

A

10.

11.

12.

13.

14.

15.

Magazine Online | Barbarians at the Gate,
http://www.mcpmag.com/Features/print.asp?EditorialsID=294 .

O. M. Dain and R. K. Cunningham, “Building Scenarios from a Heterogenous Alert
System,” in Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY, 5-6 June 2001.

Snort Website: http://www.snort.org.

ZoneAlarm Website: http://www.zonelabs.com/store/content/home.jsp.

Netcat : http://www.atstake.com/research/tools.

Nmap: http://download.insecure.org/nmap.

WinDump: http://windump.polito.it/.

Ethereal Website: http://www.ethereal.com/.

W. R. Stevens, TCP/IP Illustrated Volume 1: The Protocols, Addison-Wesley,
January 1999.

W. Stallings, Network Security Essential: Applications and Standards, Prentice Hall,
Upper Saddle River, New Jersey, 1999.

S. Northcutt, Network Intrusion Detection: An Analyst’s Handbook, New Riders,
Indiana, 1999.

63

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

64

S. Nothcutt, M. Cooper, M. Fearnow and K. Frederick, Intrusion Signatures and
Analysis, New Riders, Indiana, 2001.

K. M. Walker and L. C. Cavanaugh, Computer Security Policies and SunScreen
Firewalls, Sun Microsystems Press, California, 1998.

A. D. Rubin, D. Geer and M. J. Ranum, Web Security, Wiley Computer Publishing,
USA, 1997.

“Computer Attacks: What They Are And How To Defend Against Them,”
http://csrc.nist.gov/SBC/PDF/NIST _ITL Bulletin 05-99 Comp_Attacks.pdf.

Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE: A
Hierarchical Network Intrusion Detection System Using Statistical Preprocessing
and Neural Network Classification,” http://web.njit.edu/~manikopo/papers.

Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “HIDE: An
Anomaly Network Intrusion Detection System Utilizing Wavelet Compression, ”
http://web.njit.edu/~manikopo/papers.

Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “Neural Networks
in Statistical Anomaly Intrusion Detection,”
http://web.njit.edu/~manikopo/papers.

Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “A Hierarchical
Anomaly Network Intrusion Detection System Using Neural Network
Classification,” http://web.njit.edu/~manikopo/papers.

E. Skoudis, Counter Hack: A Step-by-Step Guide to Computer Attacks and
Effective Defenses, Prentice Hall PTR, 2002.

P. Mell, Computer Attacks: What They Are and How to Defend Against Them,
NIST, Computer Security Division,
http://www.itl.nist.gov/div893/staff/mell/pmhome.html.

eTrust Intrusion Detection, http://www3.ca.com/Solutions/Product.asp?ID=163.

The Recorder Program Website: http://www.kratronic.com/recorder, version 4.3.

O. M. Dain and R. K. Cunningham, “Building Scenarios from a Heterogenous Alert
Stream,” Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, United States Military Academy, West Point, NY, 5-6 June 2001.

P. Ning, Y.Cui and D.S. Reeves, “Constructing Attack Scenarios through
Correlation of Intrusion Alerts,” ACM, USA, November 18-22, 2002.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract Page
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgement
	Table of Contents (1 of 3)

	Table of Contents (2 of 3)

	Table of Contents (3 of 3)

	Chapter 1: Introduction
	Chapter 2: Computer and Networks Attacks and Countermeasures
	Chapter 3: The Intrusion Detection System Network and Programs
	Chapter 4: Snort Intrusion Detection Systems and Measured Quatities
	Chapter 5: Attack Programs
	Chapter 6: Attack Scenarios
	Chapter 7: Background Traffic
	Chapter 8: Fusion System
	Chapter 9: Conducting Attacks and Collecting Data
	Chapter 10: Results and Future Work
	Appendix A: Snort Intrusion Dectection System False Alarm Rate Tests Schedule
	Appendix B: Snort Intrusion Dectection System Rate Using Nmap Programs Tests Schedule
	Appendix C: Snort Intrusion Dectection System Rate Using Manual Attack Programs Tests Schedule
	Appendix D: Intrusion Dectection System Detection Rate Using the Different Attack Scenarios Tests Schedule
	Appendix E: Information Gathering Scripts
	Appendix F: Attack Exploit Scripts
	Appendix G: Background Traffic Scipts
	Appendix H
	References

	List of Tables

	List of Figures
	List of Symbols

