

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ATTACK VISUALIZATION FOR INTRUSION DETECTION SYSTEM

by

Mohammad A. Rabie

Attacks detection and visualization is the process of attempting to identify instances of

network misuse by comparing current activity against the expected actions of an intruder.

Most current approaches to attack detection involve the use of rule-based expert systems to

identify indications of known attacks. However, these techniques are less successful in

identifying attacks, which vary from expected patterns. Artificial neural networks provide the

potential to identify and classify network activity based on limited, incomplete, and nonlinear

data sources. Presenting an approach to the process of Attack visualization that utilizes the

analytical strengths of neural networks, and providing the results from a preliminary analysis

of the network parameters being watched like Internet Protocol (IP) packet length, packet

traffic, IP byte traffic, IP packet rate, IP byte rate, User Datagram Protocol (UDP) packet

length, UDP packet traffic, UDP byte traffic, UDP packet rate, UDP byte rate, Heart Beat

(HB) End-to-end delay, and HB Packet loss rate. Beside collected attack data, numerical

simulated data was generated using the neural network sigmoids with Matlab. The

characteristics of the obtained data showed lots of similarities with the actual collected

network data. Further work is continuing to obtain different attack data using the Opnet
simulating program.

ATTACK VISUALIZATION FOR INTRUSION DETECTION SYSTEM

by
Mohammad A. Rabie

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2002

APPROVAL PAGE

ATTACK VISUALIZATION FOR INTRUSION DETECTION SYSTEM

Mohammad Rabie

4 	
Dr. Constantine N. Manikopoulos, Thesis Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Yun-Qing Shi, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. George E. Antoniou, Committee Member 	 Date
Professor of Computer Science, MSU

BIOGRAPHICAL SKETCH

Author: 	 Mohammad A. Rabie

Degree: 	 Master of Science

Date: 	 January 2002

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ 2002

• Bachelor of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ 2000

• Bachelor of Science in Mathematics
Bethlehem University, Bethlehem, Israel 1988

Major:	 Computer Engineering

To my beloved family, friends and teachers

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to Doctor Constantine Manikopoulos the

chair of my committee and my advisor who not only served as my research supervisor,

providing valuable insight and intuition but also constantly gave me support,

encouragement, and reassurance. Special thanks are given to Doctor Yun-Qing Shi from

the department of electrical and computer engineering (ECE/NJIT) and Doctor George

Antoniou of Montclair State University (MSU), for actively participating in my

committee. I would like to extend my acknowledgement to Doctor Jay Jorgenson from

City College for providing software tools and for his help in the simulations.

Many of my fellow graduate students in the Computer Networking laboratory and my

friends at New Jersey Institute of Technology deserve recognition for their valuable

support.

vi

TABLE OF CONTENTS

	

Chapter 	 Page

1 INTRODUCTION 	 1

	

1.1	 Overview 	 1

	

1.2	 Network Data Parameters 	 3

	

1.3	 Neural Network 	 4

	

1.4	 Visualization Tool 	 8

2 PARALLAX 	 11

	

2.1	 Introduction 	 11

	

2.2	 Parallax Specification 	 11

	

2.2.1	 Parallax Header Code 	 11

	

2.2.2	 Parallax Data Files 	 11

	

2.3	 Network Traffic Analysis with Parallax Software 	 12

	

2.3.1	 Multiple Attack Data Files 	 15

	

2.3.2	 Parallax Scatter Plots 	 16

2.3.2.1	 Single Attack Scatter Plots 	 16

2.3.2.2 Multiple Attack Scatter Plots 	 19

	

2.4	 Further Work	 25

3 SCATTER3D 	 26

	

3.1	 Introduction 	 26

	

3.2	 Scatter3D Specification 	 26

	

3.3	 Network Traffic Analysis with Scatter3D 	 31

	

3.3.1	 One Attack Data Files 	 31

VII

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.2 	 Multiple Attack Data Files 	 35

3.4 	 Further Work 	 38

4 EXPERIMENTAL RESULTS AND DISCUSSIONS 	 39

5 CONCLUSIONS 	 43

APPENDIX SCATTER3D CODE 	 44

GLMouseRotate.cpp 	 44

GLScatterGraph.cpp 	 46

GLSelectableScatterGraph.cpp 	 60

OpenGLWnd.cpp 	 66

Scatter3D.cpp 	 84

Scatter3DDlg.cpp 	 86

REFERENCES 	 101

vi"

LIST OF TABLES

Table Page

1. Collected Network Parameters 	 4

2. Sample Opnet Data Record 	 9

3. Wavelet Output of Table 2 	 10

4. Sample Parallax Data File 	 12

5. Hex to Decimal conversion table 	 26

6. Color Coded Numbers (Red,Green, Blue) 	 27

7. Sample Scatter3D Input Data file 	 28

8. Sigle Attack Data for Scatter3D 	 31

ix

LIST OF FIGURES

Figure	 Page

1. Parallax Default Window 	 13

2. Sample One Attack Data File 	 13

3. Isolatedd One Attack Record 	 14

4. Isolated Normal Data Record 	 14

5. Attack and Normal data in same Window 	 15

6. Multiple Attack Parallax Representation 	 15

7. Single Attack scatter plot (X1 vs. X2) 	 16

8. Single Attack scatter plot (X1 vs. X3) 	 16

9. Single Attack scatter plot (X1 vs. X7) 	 17

10. Single Attack scatter plot (X1 vs. X5) 	 17

11. Single Attack scatter plot (X1 vs. X7) 	 17

12. Single Attack scatter plot (X1 vs. X8) 	 18

13. Single Attack scatter plot (X1 vs. X9) 	 18

14. Single Attack scatter plot (X1 vs. X10) 	 18

15. Single Attack sactter plot (X1 vs. X5) 	 19

16. Multiple Attack scatter plot (X1 vs. X2) 	 19

17. Multiple Attack scatter plot (X2 vs. X5) 	 20

18. Multiple Attack scatter plot (X4 vs. X10) 	 20

19. Multiple Attack scatter plot (X3 vs. X10) 	 20

20. Multiple Attack scatter plot (X5 vs. X10) 	 21

21. Multiple Attack scatter plot (X6 vs. X2) 	 21

Figure	 Page

22. Multiple Attack scatter plot (X1 vs. X2) 	 21

23. Multiple Attack scatter plot (X2 vs. X3) 	 22

24. Multiple Attack scatter plot (X3 vs. X10) 	 22

25. Multiple Attack scatter plot (X4 vs. X2) 	 22

26. Multiple Attack scatter plot (X5 vs. X10) 	 23

27. Multiple Attack scatter plot (X5 vs. X10) 	 23

28. Multiple Attack scatter plot (X1 vs. X2) 	 23

29. Multiple Attack scatter plot (X2 vs. X3) 	 24

30. Multiple Attack scatter plot (X10 vs. X5) 	 24

31. Default Scatter3D Window 	 29

32. Loading Files into Program 	 29

33. Assigning Network Parameters to Grid Axis 	 30

34. Window setup for data 	 30

35. Single Attack data scatter plot 	 32

36. Closer look at the attack records 	 32

37. Closer look at the attack records 	 33

38. Same Attack records with different background and different view 	 33

39. Parallax View in Scatter3D 	 34

40. Two Dimensional View 	 34

41. Multiple Attack Data Representation 	 35

42. Multiple Attack Data with Different view 	 35

43. Rotation Showing the gaps between data types 	 36

xi

Figure 	 Page

44. Two Dimensional Representation of the same data 	 36

45. Changing the Data background color 	 37

46. Same data with Different background 	 37

xii

CHAPTER 1

INTRODUCTION

Because of the increasing dependence, which companies and government agencies have

on their computer networks; the importance of protecting these systems from attack is

critical. A single intrusion of a computer network can result in the loss or unauthorized

utilization or modification of large amounts of data and cause users to question the

reliability of all of the information on the network. There are numerous methods of

responding to a network intrusion, but they all require the accurate and timely

identification of the attack. This paper presents an analysis of the network data that will

make it easier determine the applicability of neural networks in the identification of

instances of external attacks against a network. The results of tests conducted on a C++

programs and on another program called Parallax. Finally, the areas of future research

that are being conducted in this area are discussed.

1.1 Overview
The timely and accurate detection of computer and network system intrusions has always

been an elusive goal for system administrators and information security researchers. The

individual creativity of attackers, the wide range of computer hardware and operating

systems, and the ever- changing nature of the overall threat to target systems have

contributed to the difficulty in effectively identifying intrusions. While the complexities

of host computers already made intrusion detection a difficult endeavor, the increasing

prevalence of distributed network-based systems and insecure networks such as the

Internet has greatly increased the need for intrusion detection [20]. There are two general

categories of attacks, which intrusion detection technologies attempt to identify -

anomaly detection and misuse detection [1,13]. Anomaly detection identifies activities

that vary from established patterns for users, or groups of users. Anomaly detection

typically involves the creation of knowledge bases that contain the profiles of the

monitored activities. The second general approach to intrusion detection is misuse.

1

2

This technique involves the comparison of a user's activities with the known behaviors of

attackers attempting to penetrate a system [17,18]. While anomaly detection typically

utilizes threshold monitoring to indicate when a certain established metric has been

reached, misuse detection techniques frequently utilize a rule-based approach. When

applied to misuse detection, the rules become scenarios for network attacks. The intrusion

detection mechanism identifies a potential attack if a user's activities are found to be

consistent with the established rules. The use of comprehensive rules is critical in the

application of expert systems for intrusion detection it requires extensive analysis of

network parameters, in order to produce a distribution for that attack on those parameters.

Since another distribution may also be generated for the normal packets on those same

parameters, then it would be correct to assume that all other packets, which don't follow

the characteristics of the normal or attack traffic as an undefined region for that attack.

In this project I will consider two types of attacks, however, actual network data is only

available for one type of attack (UDP). In order to produce more variety of attacks which

carry different characteristics from the UDP attack packets. I used a data produced by
running neural network sigmoid coded in VC++ (hyperbolic functions).

3

1.2 Network Data Parameters

Developing a data collection methodology requires an evaluation of the cost and benefit of

the data in the particular domain of study. Our goal is to evaluate the effects of certain

sampling parameters on the integrity and the cost of the resulting samples. In general a

larger sample can more closely reflect the true parent population, but each instant of

sampling imposes a cost in terms of CPU time, buffer space, and sampling interval, or

amount of calendar time one can devote to deriving a particular estimate. The sampling

frequency must therefore be weighed against the accuracy requirements and complexity of

a given object.

The twelve-hour data collections for my experiment represent a brief interval, indeed itself

a sample from the ongoing population of network traffic. For the purpose of my study I

will treat the data collected as the true parent population, and the subpopulation drawn by

our various sampling techniques as the samples. Standard statistical formulas generally

rely on estimates of parameters of the parent population for the default case where the

parent population is not known. Because the actual parameters of this parent population,

we use them rather than estimate of them. Our goal is then to assess how close each sample

is to its parent population for several key measurements. For each class, one can

implement, or approximate, any particular method via timer-based. That is, one can use

timers to trigger the selection of a packet for inclusion in a sample. Implementing this

method at a variety of granularities allows a range of sampling fractions. Furthermore one

can vary the interval over which one samples: 15 minutes, an hour, a day, etc. Since the

progress are not time-homogeneous, it is not clear that spreading the same number of

samples over a longer intervals will generate the same results.

Timer-driven sampling methods use a timer rather than a packet counter to trigger the

selection of packets to include in the sample when the timer expires, we select the next

packet to arrive. This is a necessary approximation but seemingly inconsequential. For

population with a linear trend, uniform random sampling will be more efficient than

symmetric sampling.

4

With the Opnet simulating tool lots of the network parameters could be collected, but the

most significant ones that we concentrated on and will enable the neural network decide a

user behavior without changing the overall behavior are listed below in the table. UDP,

ICMP, SYN attack and other attacks shares these collected parameters which makes the

data scalable to any tools and project that might utilize it. Variables X1 through X12

represent the following network parameters:

Table 1: Collected Network Parameters

Collected Parameter List
Parameterl IP in packet length
Parameter2 IP in packet traffic
Parameter3 IP in byte traffic.
Parameter4. IP in packet rate.
Parameter5 IP in-byte rate.
Parameter6 UDP in packet length.
Parameter? UDP in packet traffic.
Parameter8 UDP in byte traffic.
Parameter9 UDP in packet rate.
Parameter10 UDP in byte rate.
Parameter 11 HB End to end delay.
Parameter12 HB Packet loss rate.

1.3 Neural Network

Most current approaches to the process of detecting intrusions utilize some form of rule-

based analysis. Rule-Based analysis relies on sets of predefined rules that are provided by

an administrator, automatically created by the system, or both. Expert systems are the

most common form of rule-based intrusion detection approaches [8, 24]. The early

intrusion detection research efforts realized the inefficiency of any approach that required a

manual review of a system audit trail. While the information necessary to identify attacks

was believed to be present within the voluminous audit data, an effective review of the

material required the use of an automated system. The use of expert system techniques in

intrusion detection mechanisms was a significant milestone in the development of effective

and practical detection-based information security systems [1, 8, 19, 21, 24, and 28]. An

expert system consists of a set of rules that encode the knowledge of a human "expert".

5

These rules are used by the system to make conclusions about the security-related data

from the intrusion detection system. Expert systems permit the incorporation of an

extensive amount of human experience into a computer application that then utilizes that

knowledge to identify activities that match the defined characteristics of attack.

Unfortunately, expert systems require frequent updates to remain current. While expert

systems offer an enhanced ability to review audit data, the required updates may be

ignored or performed infrequently by the administrator. At a minimum, this leads to an

expert system with reduced capabilities. At worst, this lack of maintenance will degrade

the security of the entire system by causing the system's users to be misled into believing

that the system is secure, even as one of the key components becomes increasingly

ineffective over time. Rule-based systems suffer from an inability to detect attacks

scenarios that may occur over an extended period of time. While the individual instances

of suspicious activity may be detected by the system, they may not be reported if they

appear to occur in isolation. Intrusion scenarios in which multiple attackers operate in

concert are also difficult for these methods to detect because they do not focus on the state

transitions in an attack, but instead concentrate on the occurrence of individual elements.

Any division of an attack either over time or among several seemingly unrelated attackers

is difficult for these methods to detect. Rule-based systems also lack flexibility in the rule-

to-audit record representation. Slight variations in an attack sequence can affect the

activity-rule comparison to a degree that the intrusion is not detected by the intrusion

detection mechanism. While increasing the level of abstraction of the rule-base does

provide a partial solution to this weakness, it also reduces the granularity of the intrusion

detection device. A number of non-expert system-based approaches to intrusion detection

have been developed in the past several years [4, 5, 6, 9, 15, 25, and 26]. While many of

these have shown substantial promise, expert systems remain the most commonly accepted

approach to the detection of attacks.

An artificial neural network consists of a collection of processing elements that are highly

interconnected and transform a set of inputs to a set of desired outputs. The result of the

transformation is determined by the characteristics of the elements and the weights

associated with the interconnections among them. By modifying the connections between

the nodes the network is able to adapt to the desired outputs [9, 12]. Unlike expert systems,

6

which can provide the user with a definitive answer if the characteristics, which are
reviewed exactly, match those, which have been coded in the rule base, a neural network

conducts an analysis of the information and provides a probability estimate that the data

matches the characteristics, which it has been trained to recognize. While the probability

of a match determined by a neural network can be 100%, the accuracy of its decisions

relies totally on the experience the system gains in analyzing examples of the stated

problem. The neural network gains the experience initially by training the system to

correctly identify pre- selected examples of the problem. The response of the neural

network is reviewed and the configuration of the system is refined until the neural

network's analysis of the training data reaches a satisfactory level. In addition to the initial

training period, the neural network also gains experience over time as it conducts analyses
on data related to the problem.

A limited amount of research has been conducted on the application of neural networks to

detecting computer intrusions. Artificial neural networks offer the potential to resolve a

number of the problems encountered by the other current approaches to intrusion detection.

Artificial neural networks have been proposed as alternatives to the statistical analysis

component of anomaly detection systems, [5, 6, 10, 23, and 26]. Statistical Analysis

involves statistical comparison of current events to a predetermined set of baseline criteria.

The technique is most often employed in the detection of deviations from typical behavior

and determination of the similarly of events to those which are indicative of an attack [14].

Neural networks were specifically proposed to identify the typical characteristics of system

users and identify statistically significant variations from the user's established behavior.

Artificial neural networks have also been proposed for use in the detection of computer

viruses. In [7] and [9] neural networks were proposed as statistical analysis approaches in

the detection of viruses and malicious software in computer networks. The neural network

architecture, which was selected for [9] was a self-organizing feature map, which uses a

single layer of neurons to represent knowledge from a particular domain in the form of a

geometrically organized feature map. The proposed network was designed to learn the

characteristics of normal system activity and identify statistical variations from the norm
that may be an indication of a virus.

7

While there is an increasing need for a system capable of accurately identifying instances

of attacks on a network there is currently no applied alternative to rule-based intrusion

detection systems. This method has been demonstrated to be relatively effective if the

exact characteristics of the attack are known. However, network intrusions are constantly

changing because of individual approaches taken by the attackers and regular changes in

the software and hardware of the targeted systems. Because of the infinite variety of

attacks and attackers even a dedicated effort to constantly update the rule base of an expert

system can never hope to accurately identify the variety of intrusions. The constantly

changing nature of network attacks requires a flexible defensive system that is capable of

analyzing the enormous amount of network traffic in a manner, which is less structured

than rule-based systems. A neural network-based attack detection system could potentially

address many of the problems that are found in rule-based systems.

The first advantage in the utilization of a neural network in the detection of instances of

attack would be the flexibility that the network would provide. A neural network would be

capable of analyzing the data from the network, even if the data is incomplete or distorted.

Similarly, the network would possess the ability to conduct an analysis with data in a non-

linear fashion. Both of these characteristics are important in a networked environment

where the information, which is received, is subject to the random failings of the system.

Further, because some attacks may be conducted against the network in a coordinated

assault by multiple attackers, the ability to process data from a number of sources in a non-

linear fashion is especially important. The inherent speed of neural networks is another

benefit of this approach. Because the protection of computing resources requires the

timely identification of attacks, the processing speed of the neural network could enable

intrusion responses to be conducted before irreparable damage occurs to the system.

Because the output of a neural network is expressed in the form of a probability the neural

network provides a predictive capability to the detection of instances of attack. A neural

network-based attack detection system would identify the probability that a particular

event, or series of events, was indicative of an attack against the system. As the neural

network gains experience it will improve its ability to determine where these events are

likely to occur in the attack process. This information could then be used to generate a

8

series of events that should occur if this is in fact an intrusion attempt. By tracking the

subsequent occurrence of these events the system would be capable of improving the

analysis of the events and possibly conducting defensive measures before the attack is

successful. However, the most important advantage of neural networks in attack detection

is the ability of the neural network to "learn" the characteristics of attacks and identify

instances that are unlike any which have been observed before by the network. A neural

network might be trained to recognize known suspicious events with a high degree of

accuracy. While this would be a very valuable ability, since attackers often emulate the

"successes" of others, the network would also gain the ability to apply this knowledge to

identify instances of attacks, which did not match the exact characteristics of previous

intrusions. The probability of an attack against the system may be estimated and a

potential threat flagged whenever the probability exceeds a specified threshold.

1.4	 Visualization Tool

Each collected data record consists of four sets of 67 numbers. One collected vector is

shown in table 2 below. Checking the similarities of the vector and trying to minimize its

parameters. Using a matlab program that utilizes the wavelet compression tools and

concentrations a 13 dimensional vector (shown in table 3) was produced while keeping the

same characteristics of the original vectors with 804 dimensions shown in table2. With the

new produced vectors I was able to use a visualization tools to study further the data

behavior and contrast the normal from the attack data.

Two tools were utilized to monitor the data behavior over the network built

Parallax

Multi-dimensional graphics tool with a two-dimensional scatter plots graphics

representation tool

Scatter3D

A tool capable of producing virtual three dimensional scatter plots

These tools are discussed extensively with screen shots in chapters 2 and 3 with screen

shots.

9

Table 2: Sample Opnet Data Record

Request Incoming
0

Outgoing
Reply

64 64 8

Incoming
Request

64 64 8

Outgoing
Reply

64 640 64 64
0 0 0 0 0 0 0 0 0 0 0 0

1.5625 15.625 781.25 1.5625 15.625 781.25 1.5625 15.625 781.25 1.5625 15.625 781.25

0 1 1 0 1 1 0 0.90625 0.96875 0 0.90625 0.96875

0 0 0 0 0 0 0 0.0625 0.03125 0 0.0625 0.03125

0 0 0 0 0 0 0 0.03125 0 0 0.03125 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.125 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0.875 0 0

0 0 0 0 0 0 0 0 0 0 0 0

.

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Pa
Le

'.:Packet
-	 Rate

Byte
Rate Len th

Packet
Rate - "Rate

Paget
1.4±.R	 hRateeli''''

cket Byte* t Packet
 Rate

ByteRate

10

Table 3: Wavelet Output of Table 2

Parameter Symbol Vector Parameter Value
X1 IP Packet Length 0.0950100
X2 IP Packet Traffic 0.0959900
X3 IP Byte Traffic 0.4325300
X4 IP Packet Rate 0.5653500
X5 IP Byte Rate 0.4568760
X6 UDP Packet Length 0.5646750
X7 UDP Packet Traffic 0.3346567
X8 UDP Byte Traffic 0.3556760
X9 UDP in-Packet Rate 0.5367600
X10 UDP Byte Rate 0.4356760
X11 HB End-to-End Delay 0.5337670
X12 HB Packet Loss Rate 0.3437670

Label 1

11

CHAPTER 2

PARALLAX

2.1 	 Introduction

The software is based on Parallel Coordinates, which is a methodology for the

unambiguous (i.e. no loss of information) visualization of multivariate data. The discovery

of multivariate/multidimensional relations in a dataset is transformed into a 2-D pattern

recognition problem. The software's unique interface, queries, and boolean operators

enable the visual/interactive discovery of complex relations in multivariate datasets, and in

turn finding the effect these relations have on various objectives. Unexpected relations

have been discovered in datasets with many variables from which sensitivities, repetitive

patterns, other trends and salient properties are found. The visualization not only helps the

discovery process but also the presentation and explanation of the results.

2.2 	 Parallax Specification

2.2.1 Parallax Header Code
A header must be added to any parallax data file in order to facilitate the access. The

header consists of two lines where the specification of how many parameters is fed to

parallax. Also it has a data starting point indicator to indicate that from here on it will be

pure data for parallax to start scanning. Below is an example of parallax header.

nvars = n
xl x2 x3 x4 x5 x6 x(n- 1)ids = class
undefined_data = MISSING
data =
From the top header we could see that the data file consists of n parameters where the last

one is an integer label. The undefined_data = MISSING indicates that there is no other

data from out side should be looked at. The data = is the starting point of the data.

2.2.2 Parallax Data Files
Without the header the Parallax data files look simple and easy to follow. Each data file

consists of specific number of parameters with a label positioned at the last column. There

is no limit for the number of columns in the data file beside the computer screen.

Visualizing more than 30 parameters the user can't make up the produced graphs clearly.

12

Sample data file for our purpose with 12 parameters and four labels is shown in the next

page. The number of the different labels at the last column indicates the different types of

data to be manipulated.

Table 4: Sample Parallax Data Filo

2.3	 Network Traffic Analysis with Parallax Software

Figure 1 illustrates Parallax window where 13 axes is drawn with the maximum value to

the top and the minimum value to the bottom on each axe. Data get scanned from the data

files and axes are drawn accordingly with the maximum value for each parameter

positioned on the top of the specific axe and the minimum value positioned at the bottom

of the same axe for the same parameter as shown in figure 2. as a last step Parallax will

connect these point horizontally to create the records.

Figure 1: Parallax Default Window

13

Figure 2:Sample One Attack Data File

Figure 2 is a representation of one type of attack data file, where the normal UDP traffic is

in blue and the UDP attack traffic in pink. The data records in a specific file could be

visualized separately as shown in figure 3 and figure 4. Figure 5 illustrates one attack

record and one normal record in the same window.

Figure 3: Isolated One Attack Record

14

Figure 4: Isolated Normal Data Record

Figure 5: Attack and Normal data in same Window

15

2.3.1 	 Multiple Attack Data Files
Figure 6 is a representation of multiple type of attack data file where each color represents

a different type of network attack. Each attack type could be isolated from the rest of the

data and looked at separately.

Figure 6: Multiple Attack Parallax Representation

16

2.3.2	 Parallax Scatter Plots

2.3.2.1 Single Attack Scatter Plots

A comparison is made between two parameters like IP Packet Length with respect to IP

Packet Traffic in the data sets collected from the network traffic. In this data,

measurements were taken at the areas where the data concentrations lay most. Notice the

following 9 figures (figure 7 - figure 15) some parameters correlate with others in different

ways. While at the time other parameters could be totally separable. The study of the

parameters dependencies could be greatly reduced through out these scatter plots.

Figure 7: Single Attack scatter plot (X1 vs. X2)

Figure 8:Single Attack scatter plot (X1 vs. X3)

Figure 9: Single Attack scatter plot (X1 vs. X7)

17

Figure 10: Single Attack scatter plot (X1 vs. X5)

Figure 11: Single Attack scatter plot (X1 vs. X71

Figure 12: Single Attack scatter plot (X1 vs. X8)

18

Figure 13: Single Attack scatter plot (X1 vs. X9)

Figure 14: Single Attack scatter plot (X1 vs. X10)

Figure 15: Single Attack scatter plot (X1 vs. X5)

19

	

2.3.2.2 	 Multiple Attack Scatter Plots
The need for multiple attack visualization is crucial when one more than one attack follow

the same behaviour over the network or in the data set collected. At the same time it is very

important to observe the various parameters that are very close in behaviour. Below is a set

of scatter plots taken to represent the correlation of two parameters to the others in the

same data flow or the same data set collected the network traffic.

Figure 16: Multiple Attack scatter plot (X1 vs. X2)

	

_ 	 tr•tt 	 €

Figure 17: Multiple Attack scatter plot (X2 vs. X5)

20

Figure 1 R! Mi.1tln1P Attack cutter plot (Y4 vs. X101

Figure 19: Multiple Attack scatter plot (X3 vs. X10)

Figure 20: Multiple Attack scatter plot (X5 vs. X10)

21

Figure 21: Multiple Attack scatter plot (X6 vs. X2)

Figure 22: Multiple Attack scatter plot (X1 vs. X2)

Figure 23: Multiple Attack scatter plot (X2 vs. X3)

22

Figure 24: Multiple Attack scatter plot (X3 vs. X10)

Figure 25: Multiple Attack scatter plot (X4 vs. X2)

Figure 26: Multiple Attack scatter plot (X5 vs. X10)

23

Figure 27: Multiple Attack scatter plot (X5 vs. X10)

Figure 28: Multiple Attack scatter plot (X1 vs. X2)

24

Figure 113• Multiple A 1-1-t.iz 	 infra (V^) Are 'kill

• 1114..14-1,r0 	 A 4-11-..r. 	 11- C\

25

2.4 Further Work

The preliminary results from observations give a positive indication of the potential

offered by this approach, but a significant amount of research remains before it can

function as an effective tool that give us a good understanding of the relations between the

various network parameters. A complete system will require the ability to directly receive

inputs from a network data stream and to visualize the data a three dimensional view to

study the overlapping regions of the data types which will facilitate our judgment of the

overlapping regions. The most difficult component of the analysis of network traffic by a

neural network is the ability to effectively analyze the information in the data portion of an

IP datagram. The various commands that are included in the data often provide the most

critical element in the process of determining if an attack is occurring against a network.

The most effective neural network architecture is also an issue that must be addressed. A

feed- forward neural network that used a back propagation algorithm will be the best for its

simplicity and reliability in a variety of applications. However, alternatives such as the

self- organizing feature map also possess advantages in attack detection that may promote

their use. In addition, an effective neural network-based approach to attack detection must

be highly adaptive. Most neural network architectures must be retrained if the system is to

be capable of improving its analysis in response to changes in the input patterns. Adaptive

resonance theory ([2]) and self-organizing maps ([16]) offer an increased level of

adaptability for neural networks, and these approaches are being investigated for possible

use in an intrusion detection system. Finally, regardless of the initial implementation of a

neural network-based intrusion detection system for attack detection it will be essential for

the approach to be thoroughly tested in order to gain acceptance as a viable alternative to

expert systems. Work has been conducted on taxonomies for testing intrusion detection

systems ([3, 22]) that offer a standardized method of validating new technologies. Because

of the questions that are certain to arise from the application of neural networks to

intrusion detection, the use of these standardized methods is especially important.

26

CHAPTER 3

SCATTER3D

3.1	 Introduction

A three-dimensional scatter plot is a trivariate plot in which a comparison of 3 measures is

presented, one measure along each axis. You are then presented with a 3D cube in which

the position of the current layer is indicated and a 2D plot in which the data for that layer is

accurately represented. The 3D Scatter Plot can be animated with scatter3D giving you the

ability to compare all of the layers effectively and quickly.

3.2	 Scatter3D Specification

Equation 1: Hex to Decimal example

hex 19 = (1x16 1) + (9x16°) = 25

Table 5: Hex to Decimal conversion table

27

Table 6: Color Coded Numbers (Red, Green, Blue)

175,238,238
B7093 219,112,147

DDAODD 221 ,160,221
800080 128,0,128
FFOOOO 25
BC8F8F

0,128,128
216,191,21

255,99,71
40EODO 64,224,208
F5DEB3 245,222,179
FFFFFF 255,255,255
FFFFOO 255,255,0

Table 8: Sample Scatter3D Input Data file

28

29

Figure 31: Default Scatter3D Window

Figure 32: Loading Files into Program

30

Figure 33: Assigning Network Parameters to Grid Axis

Figure 34: Window setup for data

31

3.3	 Network Traffic Analysis with Scatter3D

3.3.1 One Attack Data Files

The single attack stream or data file will have two different integers in the last column as a

label. The Table is an integer that has a decimal value representing the color of the incident

on the scatter plot. Below ia a sample data file showing the attack and the none attack

records with a decimal coded label at the end of each record. The label is either blue for

normal data records or pink for attack data records.

Table 8: Single Attack Data for Scatter3D

32

Figure 35: Single Attack data scatter plot

Figure 36: Closer look at the attack records

Figure 37: Closer look at the attack records

Figure 38: Same Attack records with different background and different view

.' .
-. '.

. ~. , -...
. ., •...

.. ..

33

34

Figure 39: Parallax View in Scatter3D

Figure 40: Two Dimensional View

.. . .

35

3.3.2 Multiple Attack Data Files

In this section the data files carry more information that the previous one. The data label

has more than two values. And could grow up to the maximum colors available.

Figure 41: Multiple Attack Data Representation

Figure 42: Multiple Attack Data with Different view

, ,'. '"

,,~ ; I •

36

Figure 43: Rotation Showing the gaps between data types

Figure 44: Two Dimensional Representation of the same data

37

Figure 45: Changing the Data background color

Figure 46: Same data with Different background

>-<

38

3.4 Further Work

The preliminary results from our experimental Scatter3D visualization give a positive

indication of the potential offered by this tool, but a significant amount of research remains

before it can function as a complete visualization system. A complete system will require

the ability to directly receive inputs from a network data stream. The most difficult

component of the analysis of network traffic by a neural network is the ability to

effectively analyze the information in a live data stream. The various commands that are

included in the data often provide the most critical element in the process of determining if

an attack is occurring against a network. The most effective neural network architecture is

also an issue that must be addressed. A feed- forward neural network that used a back

propagation algorithm was chosen because of its simplicity and reliability in a variety of

applications. However, alternatives such as the self- organizing feature map also possess

advantages in attack detection that may promote their use. In addition, an effective neural

network-based approach to attack detection must be highly adaptive. Most neural network

architectures must be retrained if the system is to be capable of improving its analysis in

response to changes in the input patterns, (e.g., "new" events are recognized with a

consistent probability of being an attack until the network is retrained to improve the

recognition of these events). Adaptive resonance theory ([2]) and self-organizing maps

([16]) offer an increased level of adaptability for neural networks, and these approaches are

being investigated for possible use in an intrusion detection system. Finally, regardless of

the initial implementation of a neural network-based intrusion detection system for attack

detection it will be essential for the approach to be thoroughly tested in order to gain

acceptance as a viable alternative to expert systems. Work has been conducted on

taxonomies for testing intrusion detection systems ([3, 22]) that offer a standardized

method of validating new technologies. Because of the questions that are certain to arise

from the application of neural networks to intrusion detection, the use of these

standardized methods is especially important.

39

CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSIONS

There appear to be two primary reasons why neural networks have not been applied to the

problem of attack detection in the past. The first reason relates to the training requirements

of the neural network. Because the ability of the artificial neural network to identify

indications of an intrusion is completely dependent on the accurate training of the system,

the training data and the training methods that are used are critical. The training routine

requires a very large amount of data to ensure that the results are statistically accurate. The

training of a neural network for attack detection purposes may require thousands of

individual attacks sequences, and this quantity of sensitive information is difficult to

obtain. However, the most significant disadvantage of applying neural networks to

intrusion detection is the "black box" nature of the neural network. Unlike expert systems,

which have hard-coded rules for the analysis of events, neural networks adapt their

analysis of data in response to the training, which is conducted on the network. The

connection weights and transfer functions of the various network nodes are usually frozen

after the network has achieved an acceptable level of success in the identification of

events. While the network analysis is achieving a sufficient probability of success, the

basis for this level of accuracy is not often known. The "Black Box Problem" has plagued

neural networks in a number of applications [11]. This is an on-going area of neural
network research.

There are two general implementations of neural networks in misuse detection systems.

The first involves incorporating them into existing or modified expert systems. Unlike the

previous attempts to use neural networks in anomaly detection by using them as

replacements for existing statistical analysis components, this proposal involves using the

neural network to filter the incoming data for suspicious events which may be indicative of

misuse and forward these events to the expert system. This configuration should improve

the effectiveness of the detection system by reducing the false alarm rate of the expert

system. Because the neural network will determine a probability that a particular event is

indicative of an attack, a threshold can be established where the event is forwarded to the

expert system for additional analysis. Since the expert system is only receiving data on

40

events, which are viewed as suspicious, the sensitivity of the expert system can be

increased, (typically, the sensitivity of expert systems must be kept low to reduce the

incidence of false alarms). This configuration would be beneficial to organizations that

have invested in rule-based expert system technology by improving the effectiveness of the

system while it preserves the investment that has been made in existing intrusion detection

systems. The disadvantage of this approach would be that as the neural network improved

its ability to identify new attacks the expert system would have to be updated to also

recognize these as threats. If the expert system were not updated then the new attacks

identified by the neural network would increasingly be ignored by the expert system

because its rule-base would not be capable of recognizing the new threat. The second

approach would involve the neural network as a standalone misuse detection system. In

this configuration, the neural network would receive data from the network stream and

analyze the information for instances of misuse. Any instances, which are identified as

indicative of attack would be forwarded to a security administrator or used by an

automated intrusion response system. This approach would offer the benefit of speed over

the previous approach, since there would only be a single layer of analysis. In addition,

this configuration should improve in effectiveness over time as the network learns the

characteristics of attacks. Unlike the first approach, this concept would not be limited by

the analytical ability of the expert system, and as a result, it would be able to expand

beyond the limits of the expert system's rule-base.

In an effort to determine the applicability of neural networks to the problem of misuse

detection we conducted an analysis the approach utilizing simulated network traffic. The

experiment was designed to determine if indications of attack could be identified from

typical network traffic, but it was not intended to completely resolve the issue of applying

neural networks to misuse detection. The analysis did not address the potential benefit of

identifying a priority attacks that may be possible through the use of neural networks.

However, determining if a neural network was capable of identifying misuse incidents with

a reasonable degree of accuracy was considered to be the first step in applying the

technology to this form of intrusion detection.

The first prototype neural network was designed to determine if a neural network was

capable of identifying specific events that are indications of misuse. Neural networks had

41

been shown to be capable of identifying TCP/IP network events in [27], but our prototype

was designed to test the distinction between various network traffic which in return will

lead to facilitate the use of neural network to identify indications of attack. The prototype

utilized a server client architecture that consisted of fully connected layers with nine input

nodes. Our prototype was designed to collect various traffic parameters described in the

previous chapters. The prototype was configured to capture the data for each event, which

would be consistent with a network frame, (e.g., source address, destination address,

packet data, etc.). In addition to the "normal" network activity that was collected as events,

the host for the monitor was "attacked" using the coded programs residing at the clients

(nodes). These applications (Opnet) were used because of their ability to generate a large

number of simulated attacks against a specified network host. Opnet were configured for a

variety of attacks, ranging from denial of service attacks to port scan. Approximately

12000 individual PDF's were collected and stored in data files of which approximately in

some cases 10000 were simulated attacks.

Three levels of preprocessing of the data were conducted to prepare the data for

visualization and then for use in the training and testing of the neural network. In the first

round of preprocessing random data records were selected from the available pdf's files.

The selected records are typically present in network data packets and they provide a

complete description of the information transmitted by the packets. Since the data records

are long a compression scheme was needed to convert the records to standard numeric

presentation. The second part of the preprocessing phrase consisted of converting data

elements (Attack type, and Raw data) into a standardized numeric representation. The

process involved the creation of matlab wavelet code.

The program computes the similarity values between two PDF's. It is assumed that the

input is of the form: 8 real numbers, with numbers 5, 6, and 7 denoting either an attack or

typical behavior (with the sum being equal to zero for typical, non-zero for attack), then

followed by 12 sets of 67, with each set being a PDF. The 67 numbers are of the form:

first is the sample size, second is the minimum value, third is the bin width (for uniform

bins), followed by 64 percentile values corresponding to the probability of each bin. The

similarity measures are computed for five different levels of wavelet computations. The

output consists of 12 similarity measures and one flag indicating either typical behavior or

42

attack traffic. The output is then stored in data files for the visualization and neural

network use. The data files were used during training and testing of the neural network.

The training/testing iterations of the neural network required some time to complete. At

the conclusion of the training the following results were obtained: The figures matched

very closely with the desired. After the completion of the training and testing of the traffic

various connection weights were frozen and the network was interrogated. Three sample

patterns containing "normal" network events and a single simulated attack event were used

to test the neural network. While this prototype (visualization) was not designed to be a

complete intrusion detection system, the results clearly demonstrate the potential of a the

tools used and neural network to detect individual instances of possible attack from a
representative network data stream.

43

CHAPTER 5

CONCLUSIONS

Research and development of intrusion detection systems has been ongoing since the early

1980's and the challenges faced by designers increase as the targeted systems because

more diverse and complex. Misuse detection is a particularly difficult problem because of

the extensive number of vulnerabilities in computer systems and the creativity of the

attackers. Neural networks provide a number of advantages in the detection of these

attacks. The early results of our tests of these technologies show significant promise, and

our future work will involve the refinement of this approach and the development of a full-

scale demonstration system.

The framework presented here is for the evaluation and visualizing techniques for network

traffic characterization. I have applied my methodology to twelve target metrics: IP packet

length, IP in packet traffic, IP in byte traffic, IP in packet rate, IP in byte rate, UDP in

packet length, UDP in packet traffic, UDP in byte traffic, UDP in packet rate, UDP in byte

rate, Heart Beat End to end delay, and Heart Beat Packet loss rate. My experimental data

consisted of a packet trace obtained from Opnet simulation. Because the characteristics of

our population of network data collected some experimental parameters were controlled.

Neural network sigmoid where used to evaluate the goodness of the data and to produce

more similar data. One important result is that the data collected using the neural network

sigmoid and the simulated data are compatible with the original distribution of the real

network data with consideration to the inter-arrival time and the packet size.

My methodology can be extended to and applied to characterization of network traffic that

is based on proportions, e.g., TCP/UDP port distribution. More difficult would be to

characterize the goodness of fit of the sampled source destination traffic matrix, mainly

because of its large size and because many traffic pairs generate small amounts of traffic

typical sampling intervals.

APPENDIX SCATTER3D CODE

GLMouseRotate.cpp

#include "stdafx.h"
#include "GLMouseRotate.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_ FILE[] = _FILE_ ;
#endif

/*
This class is a simple extension that allows the mouse to rotate the
image.
*/

///
// CGLMouseRotate

CGLMouseRotate:: CGLMouseRotate()
{

m bAllowMouseRotate=TRUE;
mbInMouseRotate=FALSE;

m_xMouseRotation = 0.0f;
m_yMouseRotation = 0.0f;

}

CGLMouseRotate::- CGLMouseRotate()
{

}

BEGIN_ MESSAGE MAP(CGLMouseRotate, COpenGLWnd)
//{ {AFX MSG MAP(CGLMouseRotate)
ON WM LBUTTONDOWN()
ON WM_LBUTTONUP()
ON WM MOUSEMOVE()
//}}AFX MSG MAP

END_MESSAGI_MAP()

44

// CGLMouseRotate message handlers

45

void CGLMouseRotate::OnLButtonDown(UINT nFlags, CPoint point)
{

if (mbAllowMouseRotate)
{

m_LeftDownPos = point;
SetCapture();

::SetCursor(LoadCursor(NULL, IDC_SIZEALL));
// NOTE: we need a flag, can't just check whether got capture,
// since capture might be set in a derived class for another reason

m bInMouseRotate=TRUE;
}

COpenGLWnd::OnLButtonDown(nFlags, point);
}

void CGLMouseRotate::OnLButtonUp(UINT nFlags, CPoint point)
{

m_LeftDownPos = CPoint(0,0); 	 // forget where we clicked
SetMouseCursor(AfxGetApp()->LoadStandardCursor(IDC_ARROW));
ReleaseCapture();
mbInMouseRotate=FALSE;

COpenGLWnd::OnLButtonUp(nFlags, point);
}
void CGLMouseRotate::OnMouseMove(UINT nFlags, CPoint point)
{

II check if we are in mouse rotate
// can't just check if got capture, because might be captured in derived class for another
reason

if (m_bInMouseRotate)
{

ASSERT(GetCapture()==this);
::SetCursor(LoadCursor(NULL, IDC_SIZEALL));
m_yMouseRotation -= (float)(m_LeftDownPos.x - point.x)/3.0f;
m xMouseRotation -= (float)(m_LeftDownPos.y - point.y)/3.0f;
m_LeftDownPos = point;
InvalidateRect(NULL,FALSE);

}

COpenGLWnd::OnMouseMove(nFlags, point);
}

void CGLMouseRotate::DoMouseRotate()

glRotatef(m_xMouseRotation, 1.0, 0.0, 0.0);
glRotatef(m_yMouseRotation, 0.0, 1.0, 0.0);

}

GLScatterGraph.cpp
#include "stdafx.h"
#include "GLScatterGraph.h"

#include <float.h>
#include <math.h>

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS _ FILE[] = FILE •
#endif

// returns the next biggest number from val set to sig significant figures
// use for top label axes
// thus 250=(247,2); 300 = (247,1)
float NextAbove(float val,int sig)
{

float x=int(log10(fabs(val))+1)-sig;
float mult=pow(10,x);
return ceil(val/mult)*mult;

// floor
}

float NextBelow(float val,int sig)
{

float x=int(log10(fabs(val))+1)-sig;
float mult=pow(10,x);
return floor(val/mult)*mult;

}

///
// CGLScatterGraph

CGLScatterGraph:: CGLScatterGraph()
{

m_xMouseRotation=10.0;
m_yMouseRotation=-15.0;
m_ProjType=0;
m_SymbolSize=3;

m_MaxX=1;
m_MaxY=1;

46

47

m MaxZ=1;
m MinX=0;
m MinY=0;
m MinZ=0;
m bAutoScaleX=TRUE;
m bAutoScaleY=TRUE;
mbAutoScaleZ=TRUE;

m Colour=RGB(255,0,0);
}

CGLScatterGraph::—CGLScatterGraph()
{

}

void CGLScatterGraph::RenderData()
{

int i;
float xW=m MaxX-m_MinX;
float yW=m MaxY-m MinY;
float zW=m MaxZ-m MinZ;

// need to scale data between -0.5 and 0.5 in all dimensions
float x,y,z,r,g,b;

// NOTE: z axis goes -ve into screen, so invert z values to make
// like normal 3D graph (z gets bigger going into screen

if (mpColList==NULL) 	 // all the same colour
{

r=float(GetRValue(m_Colour))/255;
g=float(GetGValue(m Colour))/255;
b=float(GetBValue(m_Colour))/255;
glColor3f(r,g,b);
glBegin(GL JOINTS);
for (i=0; i<m_Count; i++)
{

if (PtWithinAxes(mpDat[i*3],mpDat[i*3+1],mpDat[i*3+2]))
{

x=(m_pDat[i*3]-m_MinX)/xW-0.5;
y=(mpDat[i*3+1]-m MinY)/yW-0.5;
z=(m_pDat[i*3+2]-m_MinZ)/zW-0.5;
glVertex3f(x,y,-z);

//	 TRACE("real world coords in RenderData = %f, %f, %f\n",x,y,z);
}

}
glEnd();

}

48

else // got separate colours for each point
{

COLORREF currentCol;
i=0;
currentCol=m_pColList[i];
while (i<m_Count)
{

r=float(GetRValue(currentCol))/255;
g=float(GetGValue(currentCol))/255;
b=float(GetBValue(currentCol))/255;
glColor3f(r,g,b);
glBegin(GL POINTS);
while (i<m -63.unt)
{

if (mpColList[i]!=currentCol)
{

currentCol=mpColList[i];
glEnd();
break;

}
if

(PtWithinAxes(mpDat[i*3],mpDat[i*3+1],m_pDat[i*3+2]))
{

x=(m_pDat[i*3]-m_MinX)/xW-0.5;
y=(mpDat[i*3+1]-m MinY)/yW-0.5;
z=(mpDat[i*3+2]-m_MinZ)/zW-0.5;
glVertex3f(x,y,-z);

}
i++;

//TRACE("real world coords in RenderData %f, %f, %fin",x,y,z);
}

}
glEnd();

}
Invalidate();

}

BEGIN_ MESSAGE MAP(CGLScatterGraph, CGLMouseRotate)
// {AFX MSG MAP(CGLScatterGraph)

// NOTE - the ClassWizard will add and remove mapping macros here.
//} IAFX MSG MAP

END_MESSAGE_MAP()

///8//////////////////

49

// CGLScatterGraph message handlers
void CGLScatterGraph::OnDrawGL()
{

#ifdef DEBUG
int rv;
glGetIntegerv(GL_RENDER_MODE,&rv);
CString mode;
if (rv—GL_RENDER)

mode="Render";
else if (rv==GL_FEEDBACK)

mode="Feedback";
else

mode="Unknown";
TRACE("In CGLScatterGraph::OnDrawGL, mode = %s\n",mode);
#endif

glPushMatrix();	 // this saves the modelmatrix settings

DoMouseRotate();
m_GraphBox.Draw(); // draw box from display list constructed in OnCreate
glPointSize(m_SymbolSize);
RenderData();

glPopMatrix();// this restores the modelmatrix settings to before translation etc
}

void CGLScatterGraph::OnDrawGDI(CPaintDC *pDC)
{

TRACE("In CGLScatterGraph::OnDrawGDI\n");
CRect r;
GetClientRect(&r);
CPen pen(PS_SOLID,O,RGB(255,255,255));
CPen *oP=pDC->SelectObject(&pen);
pDC->MoveTo(r.TopLeft());
pDC->LineTo(r.BottomRight());
pDC->SelectObject(oP);

}
void CGLScatterGraph::OnSizeGL(int cx, int cy)
{

// set correspondence between window and OGL viewport
glViewport(0,0,cx,cy);

SetProjection(m_ProjType);
#if 0
// update the camera

50

glPushMatrix();
glMatrixMode(GL_PROJECTION);

glLoadIdentity();
if (m_ProjType==0) // ortho

glOrtho(-1,1,-1,1,2.0,10.); 	 // need BIGGER
Frustum for ortho

else
gluPerspective(25,GetAspectRatio(),1,15.0);

//	 glFrustum(-0.5,0.5,-0.5,0.5,2.0,10.);
glTranslatef(0.0f,0.0f,-4.f);

glMatrixMode(GL_MODELVIEW);
glPopMatrix();

#endif
}

void CGLScatterGraph::OnCreateGL()
{
// following could also be set by calling COpenGLWnd::OnCreateGL();
// perform hidden line/surface removal (enabling Z-Buffer)

glEnable(GL DEPTH TEST);
// set background color to black

glClearColor(0.f,0.f,0.f,1.0f);
// set clear Z-Buffer value

glClearDepth(1.00;

// specific to scattergraph
MakeFont();

//	 RasterFont(); // call to instantiate font bitmaps (maybe should be in base class?)
// make a graph box, since we will need one for all time

m_GraphBox.StartDef();// <- do not execute list immediately
glColor3f(0.7f, 0.7f, 0.70;
CPoint3D pt;
//CPoint3D orgPt(-0.5,-0.5,0.5);

CPoint3D orgPt(-0,-0,0); // point of the origin
glBegin(GL_LINES);

//////////////////////////////////
// main X

pt=orgPt;
//pt.Translate(-1.0,0,0);

pt.Translate(-0.75,0,0);//0.1
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(1.5,0,0);//1.2
glVertex3f(pt.x,pt.y,pt.z);

11111111111/11111111111111111111I
main Y

pt=orgPt;

pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,1.5,0);
glVertex3f(pt.x,pt.y,pt.z);

/////////////////////////////////
// main Z

pt=orgPt;
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-1.5);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

/////////////////////////////////
// first Quadrant +X, +Y, +Z. first Cube in 3D

glLineStipple(2,0xAAAA);
glEnable(GL_LINE_STIPPLE);

///////////////////////////
glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

///////////////////////////
glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

///////////////////////////
glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

51

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,0.75,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,0.75,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,0.75,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,0.75,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,-0.75,-0.75);

52

glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,-0.75,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,-0.75,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINES);
pt=orgPt;
pt.Translate(0,-0.75,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(-0.75,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
g1Vertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);

53

glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(-0.75,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(-0.75,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0.75,0,0);

54

glVertex3f(pt.x,pt.y,pt.z);
pt. Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-6.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(-0.75.0,0);
glVertex3f(pt.x,pt.y,pt.z);
pt. Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0. 75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL LINE STRIP);
pt=orgPt;
pt.Translate(-0.75,0,0);
glVertex3f(pt x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt. Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL LINE STRIP);
pt=orgPt;
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
gIVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(-0.75,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt. Translate(0,-0.75,0);
giVertex3f(pt.x,pt.y,pt.z);
glEnd();

55

/////////////////////////I///////
//////////////// Cube -X, -Y, +Z.

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(-0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL LINE STRIP);
pt=orgPt;
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0,-0.75);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

glBegin(GL_LINE_STRIP);
pt=orgPt;
pt.Translate(0,-0.75,0);
glVertex3f(pt.x,pt.y,pt.z);

56

pt.Translate(0.75,0,0);
glVertex3f(pt.x,pt.y,pt.z);
pt.Translate(0,0.75,0);
glVertex3f(pt.x,pt.y,pt.z);
glEnd();

/////////////////////////////////
// Labeling the Axis
//

glEnd();
glDisable(GL_LINE_STIPPLE);

pt=orgPt;
float endAx = 0.85;
float startAx = -0.85;

pt.Translate(startAx,0,0);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("-X");
pt=orgPt;
pt.Translate(0,startAx,O);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("-Y");
pt=orgPt;
pt.Translate(0,0,-startAx);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("-Z");

pt=orgPt;
pt.Translate(endAx,0,0);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("X");
pt=orgPt;
pt.Translate(0,endAx,0);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("Y");
pt=orgPt;
pt.Translate(0,0,-endAx);
glRasterPos3f(pt.x,pt.y,pt.z);
PrintString("Z");

m_GraphBox.EndDef();

glEnable(GL_POINT_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

//	 glHint(GL_POINT_SMOOTH_HINT,GL_NICEST);

57

}

58

void CGLScatterGraph::SetProjection(int type)
{

m_ProjType=type;
BeginGLCommandsO;
glPushMatrix();

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (m_ProjType==0) // ortho

glOrtho(-1,1,-1,1,2.0,10.); 	 // need BIGGER Frustum for
ortho

else
gluPerspective(25,GetAspectRatio(),1,15.0);

//	 glFrustum(-0.5,0.5,-0.5,0.5,2.0,10.);
glTranslatef(0.0f,0.0f,-4.0;

glMatrixMode(GL_MODELVIEW);
glPopMatrix();
EndGLCommands();

}

void CGLScatterGraph::SetData(int count,COLORREF col,float *pCoords, COLORREF
*pColList)
{

m Count=count;
m Colour—col;
mpDat=pCoords;
mpColList=pColList;
AutoScaleO;

}

void CGLScatterGraph::AutoScale(int *pDoList)
{

int i;
// find max & min

float xMax=-FLT MAX;
float xMin=FLT MAX;
float yMax=-FLT MAX;
float yMin=FLT MAX;
float zMax=-FLT MAX;
float zMin=FLT_MAX,

if (mbAutoScaleX mbAutoScaleY mbAutoScaleZ)
{

for (i=0; i<m_Count, i++)
{

if (pDoList!=NULL && pDoList[i]==0)

continue;
xMax=max(mpDat[i*3],xMax);
xMin=min(mpDat[i*3],xMin);
yMax=max(mpDat[i*3+1],yMax);
yMin=min(mpDat[i*3+1],yMin);
zMax=max(mpDat[i*3+2],zMax);
zMin=min(mpDat[i*3+2],zMin);

}
if (m_bAutoScaleX)
{

m_MaxX=NextAbove(xMax,5);
m_MinX=NextBelow(xMin,5);

}
if (m_bAutoScaleY)
{

m_MaxY=NextAbove(yMax,5);
m MinY=NextBelow(yMin,5);

}
if (mbAutoScaleZ)
{

m_MaxZ=NextAbove(zMax,5);
m_MinZ=NextBelow(zMin,5);

}
}
Invalidate();

}

BOOL CGLScatterGraph::PtWithinAxes(float x,float y,float z)
{

if (x >= m MinX &&
x <= m_MaxX &&
y >= m_MinY &&
y <= m_MaxY &&
z >= m MinZ &&
z <= m MaxZ

return TRUE;
return FALSE;

59

)

}

GLSelectableScatterGraph.cpp
#include "stdafx.h"
#include "GLSelectableScatterGraph.h"
#include <float.h>

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_ FILE[] = _FILE' ;
#endif

CGLSelectableScatterGraph::CGLSelectableScatterGraph()
{

mbMakeSe1=FALSE;
m_SelPts.SetSize(0,100);

//	 test_num=0;
}

CGLSelectableScatterGraph::- CGLSelectableScatterGraph()
{

m_SelPts.RemoveAll();
}

BEGIN_MESSAGE_MAP(CGLSelectableScatterGraph, CGLScatterGraph)
//{ {AFX_MSG_MAP(CGLSelectableScatterGraph)
ON_WM_LBUTTONDOWNO
ON_WM_LBUTTONUPO

ON_WM_MOUSEMOVE()
//}}AFX_MSG_MAP

END_ MESSAGE MAP()

///
// CGLSelectableScatterGraph message handlers
void CGLSelectableScatterGraph::StartMakeSel()
{

m bMakeSe1=TRUE;
mbOldAllowRotate=mbAllowMouseRotate;
mbAllowMouseRotate=FALSE;

}

void CGLSelectableScatterGraph::CancelSel()
{

mbMakeSe1=FALSE;

60

61

m SelPts.RemoveAll();
mbAllowMouseRotate=mbOldAllowRotate;
Invalidate();

}

void CGLSelectableScatterGraph::OnLButtonDown(UINT nFlags, CPoint point)
{

if (mbMakeSel)
{

if (m_SelPts.GetSize()!=o)
{

m_SelPts.RemoveAll();
//	 m_SelList.RemoveAll();

InvalidateRect(NULL);
}

m_SelPts.Add(point);
m_PrevPt=point;

}

CGLScatterGraph::OnLButtonDown(nFlags, point);
}

void CGLSelectableScatterGraph::OnLButtonUp(UINT nFlags, CPoint point)
{

if (mbMakeSel—TRUE && m_SelPts.GetSize()>0)
{

CClientDC dc(this);
dc.SelectStockObject(WHITE_PEN);
dc.MoveTo(m_PrevPt);
dc.LineTo(point);
dc.LineTo(m SelPts.GetAt(0));
m_SelPts.Add(point);

mbMakeSe1=FALSE;

//	 MakeSelList();
//	 GetParent()->SendMessage(DONE_SELECTING);

}

CGLScatterGraph::OnLButtonUp(nFlags, point);
}

void CGLSelectableScatterGraph::OnMouseMove(UINT nFlags, CPoint point)
{

// m bMakeSel is set true by button click, and Capture is set
// in OnLButtonDown, which starts the drawing of the selection circle

62

if (m bMakeSel && m_SelPts.GetSize()>0)// check whether had a mouse down
{

CClientDC dc(this);

dc.SelectStockObject(WHITE_PEN);
m_SelPts.Add(point);
// Draw a line from the previous detected point in the mouse
// drag to the current point.
dc.MoveTo(m_PrevPt);
dc.LineTo(point);
m_PrevPt = point;

}
CGLScatterGraph::OnMouseMove(nFlags, point);

}

void CGLSelectableScatterGraph::OnDrawGDI(CPaintDC *pDC)
{
TRACE("In CGLSelectableScatterGraph::OnDrawGDI\n");

int i;
// draw the selection circle

pDC->SelectStockObject(WHITE_PEN);
int count=m_ SelPts.GetSize();
if (count>2)
{

pDC->MoveTo(m_SelPts.GetAt(0));
for (i=1;i<count; i++)

pDC->LineTo(m_SelPts.GetAt(i));
pDC->LineTo(m_SelPts.GetAt(0));

}

for (i=0; i<test_num; i++)
{

pDC->SetPixelV(test_coords[i][0],test_coords[i][1],RGB(255,255,255));
}

#endif
}

BOOL CGLSelectableScatterGraph::ZoomSel()
{

TRACE("entering ZoomSel\n");
#ifdef DEBUG

int errNum;
#endif

int i,j,count;
int id=0;

#if 0

63

GLint rv;
GLfloat token;
GLfloat *pBuf;

#ifdef DEBUG
int hitCount=0;

#endif
if (m_SelPts.GetSize()>2)
{

// make a region from selPts
CPoint *pt=new CPoint[m_SelPts.GetSize()];
for (i=0; i<m_SelPts.GetSize(); i++)

pt[i]=m_SelPts.GetAt(i);
CRgn rgn;
VERIFY(rgn.CreatePolygonRgn(pt,m_SelPts.GetSize(),ALTERNATE));
delete [] pt;

// get a list of coordinate using feedback mode
// don't know how to calculate how much memory needed for buffer, but
// experiment shows the drawing has 96 floats overhead, + 4 per point
// give some spare, in case miscalculated !!

pBuf=new GLfloat[200+m_Count*4];

BeginGLCommands();
glFeedbackBuffer(200+m_Count*4,GL_3D,pBuf);
glRenderMode(GL_FEEDBACK);

#ifdef DEBUG
errNum=glGetErrorO;
TRACE("error on setting render mode = %s\n",gluErrorString(errNum));
{

int rvRenderMode;
glGetIntegerv(GL_RENDER_MODE,&rvRenderMode);
CString mode;
if (rvRenderMode—GL_RENDER)

mode="Render";
else if (rvRenderMode—GL_FEEDBACK)

mode="Feedback";
else

mode="Unknown";
TRACE("Render mode = (%s\n",mode);
}

#endif
EndGLCommandsO;

TRACE("ZoomSel just about to update window to store coords\n");
Invalidate();
UpdateWindowO;

BeginGLCommandsO;

64

rv=glRenderMode(GL RENDER);
TRACE("return val from setting RenderMode = %d\n",rv);

//////////
// now find which data points have which screen coords

int *pInSel=new int[m_Count]; 	 // for each pt, will be 1 if in, 0 if out

GLint viewport[4];
//	 GLdouble mvmatrix[16],projmatrix[16];
//	 GLdouble wx,wy,wz;

glGetIntegerv(GL VIEWPORT,viewport);
//	 glGetDoublev(GL_MODELVIEW MATRIX,mvmatrix);
//	 glGetDoublev(GL_PROJECTION_MATRIX,projmatrix);

EndGLCommands();
count=rv;
while (count)
{

token=pBuf[rv-count];
count--;
if (token—GL_POINT_TOKEN)
{

II	 TRACE("Point token\n");
GLdouble coords[3];
for (j=0; j<3; j++)
{

//	 TRACE("%4.2f ",pBuf[rv-count]);
coords[j]=pBuf[rv-count];
count--;

}
//	 TRACE("\n");
//	 gluUnProject(coords[0],coords[l],coords[2],
//	 mvmatrix,projmatrix,viewport,
//	 &wx,&wy,&wz);
//	 TRACE("render coords = %lf, %lf, %lf; realworld coords =
%lf, %lf, %ffin",coords[0],coords[1],coords[2],wx,wy,wz);

CPoint pt;
pt.x=int(coords[0]);
pt.y=int(viewport[3]-coords[1]-1);
pInSel[id++]=rgn.PtInRegion(pt);

#ifdef _DEBUG
TRACE("pt %d has hit=%d\n",id-l,pInSel[id-1]);
if (rgn.PtlnRegion(pt))

hitCount++;
#endif

65

m bAutoScaleX=m bAutoScaleY=m bAutoScaleZ=FALSE;
// find max & min

float xMax,yMax,zMax,xMin,yMin,zMin;
xMax=yMax=zMax=-FLT_MAX;
xMin=yMin=zMin=FLT_MAX;

// drawCount is index of points which are drawn within old axes,
// and therefore appear in pSelList

int drawCount=-l;
for (i=0; i<m_Count; i++)
{

if OPtWithinAxes(m_pDat[i*3],mpDat[i*3+1],mpDat[i*3+2]))
continue;

drawCount++;
if (pInSel[drawCount]==0)

continue;
xMax=max(mpDat[i*3],xMax);
xMin=min(mpDat[i*3],xMin);
yMax=max(mpDat[i*3+ 1],yMax);
yMin=min(m_pDat[i*3+ 1],yMin);
zMax=max(m_pDat[i*3+2],zMax);
zMin=min(m_pDat[i*3+2],zMin);

}
m MaxX=NextAbove(xMax,5);
m MinX=NextBelow(xMin,5);
m MaxY=NextAbove(yMax,5);
m MinY=NextBelow(yMin,5);
m MaxZ=NextAbove(zMax,5);
m MinZ=NextBelow(zMin,5);
Invalidate();
delete [] pBuf;
delete [] pInSel;
rgn.DeleteObject();

}
mbAllowMouseRotate=mbOldAllowRotate;
CancelSel();

#ifdef _DEBUG
TRACE("leaving ZoomSel, %d points on screen, %d in selection\n",id,hitCount);
#endif

return TRUE;
}

OpenGLWnd.cpp

// OpenGLWnd.cpp : implementation file
//
/* SGI openGL libraries (link with OPENGL.LIB and GLU.LIB)
#include "[path-of-SGI-sdk]\include\gl\gl.h"
#include "[path-of-SGI-sdk]\include\gl\glu.h"
//*/
//#include "afxtempl.h"
#include "stdafx.h"
#include "OpenGLWnd.h"

#ifdef DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_ FILE[] = FILE •
#endif

#define MAX_LISTS 20
// used to identify a MCD video driver (partial OGL acceleration)
#define INSTALLABLE_ DRIVER TYPE MASK
(PFD_GENERIC_ACCELERATEDIPFD_GENERIC_FORMAT)

///
// COpenGLWnd

COpenGLWnd::COpenGLWnd() :
m dAspectRatio(l.0),
m bInsideDispList(FALSE), mbExternDispListCall(FALSE),
mbExternGLCall(FALSE)

{

// define a default cursor
m hMouseCursor---AfxGetApp()->LoadStandardCursor(IDC_ARROW);

// set the disp list vector to all zeros
for (int c=0;c<MAX_LISTS;c++) m_DispListVector[c]=0;

m FontListBase=1000;	 // initial guess for font display list
m_bGotFont=FALSE,

}

COpenGLWnd::—COpenGLWnd()
{

66

}

BEGIN_ MESSAGE MAP(COpenGLWnd, CWnd)
//{{AFX MSG MAP(COpenGLWnd)
ON WM_CREATE()
ON WM DESTROY()
ON WMIERASEBKGNDO
ON WM SIZE()
ONWM SETCURSOR()
ON WM PAINT()
//}}AFX MSG MAP

END_ MESSAGE MAP()

II COpenGLWnd Constants

// these are used to construct an equilibrated 256 color palette
static unsigned char _threeto8[8] =
{

0, 0111»l, 0222»1, 0333»1, 0444»1, 0555»1, 0666>>l, 0377
};

static unsigned char _twoto8[4] =
{

0, 0x55, 0xaa, 0xff
};

static unsigned char _oneto8[2] =
{

0, 255
1;

static int defaultOverride[13] =
{

0, 3, 24, 27, 64, 67, 88, 173, 181, 236, 247, 164, 91
1;

// Windows Default Palette
static PALETTEENTRY defaultPalEntry[20] =
{

{ 0,	 0,	 0,	 0 },
{ 0x80,0, 	 0, 0 },
{ 0, 	 0x80,0, 0 },
{ 0x80,0x80,0, 0 },
{ 0, 	 0, 	 0x80, 0 },

67

{ 0x80,0, 0x80, 0 },
{ 0, 0x80,0x80, 0 },
{ OxCO 3 0xCO 3 0xCO, 0 },

{ 192, 220, 192, 0 },
{ 166, 202, 240, 0 },
{ 255, 251, 240, 0 },
{ 160, 160, 164, 0 },

{ 0x80,0x80,0x80, 0 },
{ OxFF,O, 0, 0 },
{ 0, 0xFF,0, 0 },
{ 0xFF,0xFF,0, 0 },
{ 0, 0, OxFF, 0 },
{ 0xFF,0, 0xFF, 0 },
{ 0, 0xFF,0xFF, 0 },
{ 0xFF,0xFF,0xFF, 0 }

};

///
// COpenGLWnd message handlers

int COpenGLWnd::OnCreate(LPCREATESTRUCTlpCreateStruct)
{

if (CWnd::OnCreate(lpCreateStruct) == -l)
return -l;

// OpenGL rendering context creation
PIXELFORMATDESCRIPTOR pfd;

int	 n;

// initialize the private member
mpCDC= new CClientDC(this);

// choose the requested video mode
if (!bSetupPixelFormat()) return 0;

// ask the system if the video mode is supported
n=::GetPixelFormat(m_pCDC->GetSafeHdc());
::DescribePixelFormat(mpCDC->GetSafeHdc(),n,sizeof(pfd),&pfd);

// create a palette if the requested video mode has 256 colors (indexed mode)
CreateRGBPaletteO;

// link the Win Device Context with the OGL Rendering Context

68

m_hRC = wglCreateContext(m_pCDC->GetSafeHdcO);

// specify the target DeviceContext (window) of the subsequent OGL calls
wglMakeCurrent(m_pCDC->GetSafeHdc(), m_hRC);

// performs default setting of rendering mode,etc..
OnCreateGLO;

// free the target DeviceContext (window)
wglMakeCurrent(NULL,NULL);

return 0;
}

void COpenGLWnd::OnDestroy()
{

// specify the target DeviceContext (window) of the subsequent OGL calls
wglMakeCurrent(mpCDC->GetSafeHdc(), mhRC);

// remove all display lists
for (int c=0;c<MAX_LISTS;c++) if(m_DispListVector[c])

glDeleteLists(m_DispListVector[c],l);

// release definitely OGL Rendering Context
if (m_hRC!=NULL) ::wglDeleteContext(m_hRC);

// Select our palette out of the dc
CPalette palDefault;
palDefault.CreateStockObject(DEFAULT PALETTE);
mpCDC->SelectPalette(&palDefault, FALSE);

// destroy Win Device Context
if(m_pCDC) delete mpCDC;

// finally call the base function
CWnd::OnDestroy();

}

BOOL COpenGLWnd::OnEraseBkgnd(CDC* pDC)
{

// OGL has his own background erasing so tell Windows to skip
return TRUE;

}

void COpenGLWnd::OnSize(UINT nType, int cx, int cy)
{

69

70

CWnd::OnSize(nType. ex, cy);

// when called with a nonzero window:
if(0< cx &&0<cy)
{

1/ update the rect and the aspect ratio
m_ClientRectsight = cx;
m_ClientRect.bottom = cy;
m dAspectRatio=double(cx)/double(cy);

// specify the target DeviceContext of the subsequent OGL calls
wglMakeCurrent(m_pCDC->GetSafeHdc(), mhRC);

// call the virtual sizing procedure (to be overridden by user)
OnSizeGL(cx,cy);

// free the target DeviceContext (window)
wglMakeCurrent(NULL,NULL);

II force redraw
Invalidate(TRUE);

};

// NOTE this does not work if a derived class captures the mouse.
// The cursor must then be set explicitly with each Mouse call.
BOOL COpenGLWnd::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)

ASSERT(mhMouseCursor!=NULL);
::SetCursor(mhMouseCursor);

return TRUE;
}

// pass in origin (bottom,left,near), width, height, depth
// NOTE, to make box go into screen from org, z must be negative
void COpenGLWnd::DrawBox(CPoint3D org, float x, float y, float z)
{

glBegin(GL_LINE_LOOP);
glVertex3f(org.x, org.y, org.z);
glVertex3f(org.x, org.y+y, org.z);
glVertex3f(org.x+x, org.y+y, org.z);
glVertex3f(org.x+x, org.y, org.z);
glVertex3f(org.x+x, org.y, org.z+z);
glVertex3f(org.x+x, org.y+y, org.z+z);
glVertex3f(org.x, org.y+y, org.z+z);

glVertex3f(org.x, org.y, org.z+z);
glEnd();
glBegin(GL_LINES);

glVertex3f(org.x, org.y, org.z);
glVertex3f(org.x+x, org.y, org.z);
glVertex3f(org.x, org.y, org.z+z);
glVertex3f(org.x+x, org.y, org.z+z);

glVertex3f(org.x, org.y+y, org.z);
glVertex3f(org.x, org.y+y, org.z+z);
glVertex3f(org.x+x, org.y+y, org.z);
glVertex3f(org.x+x, org.y+y, org.z+z);

glEnd();
}

void COpenGLWnd::OnPaint()
{

TRACE("In COpenGLWnd::OnPaint\n");
// prepare a semaphore

static BOOL bBusy = FALSE;
// use the semaphore to enter this critic section

if(bBusy) return;
bBusy = TRUE;

// specify the target DeviceContext of the subsequent OGL calls
// wglMakeCurrent(dc.mps.hdc, m hRC);

wglMakeCurrent(mpCDC->OetSafeHdc(), m_hRC);

// clear background
glClear(GL_COLOR_BUFFER_BIT I GL_DEPTH_BUFFER_BIT);

#ifdef DEBUG
int rvRenderMode;
glGetIntegerv(GL_RENDER_MODE,&rvRenderMode);
CString mode;
if (rvRenderMode—GL_RENDER)

mode="Render";
else if (rvRenderMode—GL_FEEDBACK)

mode="Feedback";
else

mode="Unknown";
TRACE("In COpenGLWnd::OnPaint, mode = %s\n",mode);
#endif

71

72

// call the virtual drawing procedure (to be overridden by user)
OnDrawGLO;

// execute OGL commands (flush the OGL graphical pipeline)
glFinish();

// if double buffering is used it's time to swap the buffers
//	 SwapBuffers(dc.mps.hdc);

SwapBuffers(mpCDC->GetSafeHdc());

// turn the semaphore "green"
bBusy = FALSE;

// free the target DeviceContext (window)
wglMakeCurrent(NULL,NULL);

// do any GDI drawing
CPaintDC dc(this); // device context for painting
OnDrawGDI(&dc);

}

///
1/ COpenGLWnd public members

void COpenGLWnd::VideoMode(ColorsNumber &c, ZAccuracy &z, BOOL &dbuf)
{

II set default videomode
c=MILLIONS;
z=NORMAL;
dbuf=TRUE;

}

void COpenGLWnd::SetMouseCursor(HCURSOR mcursor)
{

// set the specified cursor (only if it is a valid one)
if(mcursor!=NULL) mhMouseCursor=mcursor;

}

const CString COpenGLWnd::GetInformation(InfoField type)
{

PIXELFORMATDESCRIPTOR pfd;
CString str("Not Available");

// Get information about the DC's current pixel format
::DescribePixelFormat(mpCDC->GetSafeHdc(), ::GetPixelFormat(mpCDC-

>GetSafeHdc()),sizeof(PIXELFORMATDESCRIPTOR), &pfd);

73

I/ specify the target D2viceContcxt of the subsequent OGL calls
wglMakeCurrent(m_pCDC->GetSafeHdc(). m hRC);

switch(type)
{

// Derive driver information
case ACCELERATION: if(0—(INSTALLABLE_DRIVER_TYPE_MASK &
pfd.dwFlags)) str --='Fully Accelerated (ICD)"; // fully in hardware (fastest)
else if

(INSTALLABLE DRIVER TYPENIASK—(INSTALLABLE_DRIVER_TYPE_MASK
& pfd.dwFlags)) str="Partially Accelerated (MCD)"; 1/ partially in hardware (pretty fast,
maybe..)

else str=" Not Accelerated (Software)"; 	 // software
break;

// get the company name responsible for this implementation
case VENDOR:str=(char*)::glGetString(GL_VENDOR);

if (::glGetError()!=GL__NO_ERROR) str.Format("Not Available");// failed!
break;

I/ get the renderer name; this is specific of an hardware configuration
case RENDERER:str–(char*)::g1GetString(GL3ENDERER);

if (::glGetError()!=GL_NO_ERROR) str.Format("Not Available");// failed!
break;

I/ get the version
case VERSION:str–(char*)::glGetString(GL__ VERSION);

if (::glGetError()!=GL_NO_ERROR) str.Format("Not Available"):// failed!
break;

// return a space separated list of extensions
case EXTENSIONS: str--(char'')::gIGetString(GL_EXTENSIONS);

if (::glGetError()!–GLNO_ERROR) str.Format("Not Available");// failed!
break:

};

// free the target DeviceContext (window) and return the result
wglMakeCurrent(NtiLL,NULL);
return str;

void COpenGLWnd::DrawStockDispLists()
{

check if we are already inside a drawing session
if(m hRC—wg-IGetCurrentContext() && m_pCDC-

>GetSafelit.ic()==wgiGetCurrentDCO)
{

// draw directly all display lists

for (int c=0;c<MAX_LISTS;c++) if(m_DispListVector[c])
glCallList(m_DispListVector[c]);

}

else
{

I/ specify the target DeviceContext of the subsequent OGL calls
wglMakeCurrent(mpCDC->GetSafeHdc(), m_hRC);

// draw all display lists
for (int c=0;c<MAX_LISTS;c++) if(m_DispListVector[c])

glCallList(m_DispListVector[c]);
// free the target DeviceContext (window)

wglMakeCurrent(NULL,NULL);
1;

}

void COpenGLWnd::StartStockDListDef()
{

// check if we aren't inside another couple begin/end
if(!m_bInsideDispList)
{

/I search a free slot
for (int c=0,m_DispListVector[c]!=0;c++);

// check if we are inside a drawing session or not....
if(!(m_hRC==wglGetCurrentContext() && m_pCDC-

>GetSafeHdc()==wglGetCurrentDCO))
{

...if not specify the target DeviceContext of the subsequent OGL calls
wglMakeCurrent(mpCDC->GetSafeHdc(), m_hRC);

// set a warning for EndDispList
m bExternDispListCall=TRUE;

1;
// create a handle to the disp list (actually an integer)

m_DispListVector[c]=glGenLists(l);
// set a semaphore

m bInsideDispList=TRUE;
1/ start the disp list: all subsequent OGL calls will be redirected to the list

glNewList(m_DispListVector[c],GL_COMPILE);
};

}

void COpenGLWnd::EndStockListDef()
{

I/ close the disp list
glEndListO;

// unset the semaphore
m_bInsideDispList=FALSE;

74

// if beginDispList set the warn free the target DeviceContext
if(mbExternDispListCall) wglMakeCurrent(NULL,NULL);

}

void COpenGLWnd::ClearStockDispLists()
{

I/ check if we are referring to the right Rendering Context
if(m hRC—wglGetCurrentContext() && mpCDC-

>GetSafeHdc()==wglGetCurrentDCO)
{

// delete active display lists
for (int c=0;c<MAX LISTS;c++) if(m_DispListVector[c])

4lDeleteLists(m_DispListVector[c],l);
}
else
{

// specify the target Rendering Context of the subsequent OGL calls
wglMakeCurrent(mpCDC->GetSafeHdc(), m_hRC);

// delete active display lists
for (int c=0;c<MAX LISTS;c++) if(m_DispListVector[c])

glDeleteLists(m DispListVector[c],l);
// free the target Rendering Context (window)

wglMakeCurrent(NULL,NULL);
};

}

void COpenGLWnd::BeginGLCommands()
{

// check if we are inside a drawing session or not....
if(!(m_hRC==wglGetCurrentContext() && mpCDC-

>GetSafeHdc()==wglGetCurrentDCO))
{

// ...if not specify the target DeviceContext of the subsequent OGL calls
wglMakeCurrent(m_pCDC->GetSafeHdc(), m_hRC);

// set a warning for EndGLCommands
m_bExternGLCall=TRUE;

};
}

void COpenGLWnd::EndGLCommands()
{

// if BeginGLCommands set the warn free the target DeviceContext
if(m_bExternGLCall) wglMakeCurrent(NULL,NULL);

}

//////////////////////////////////// //////////8//////////////////////

75

//
// Implementation of COpenGLWnd::CGLDispList class.
//
//
// Construction/Destruction

COpenGLWnd::CGLDispList::CGLDispList():
m_glListId(0), mbIsolated(FALSE)

{

}

COpenGLWnd::CGLDispList::—CGLDispList()
{

// remove display list
glDeleteLists(m_glListid,1);

}

//
// Member functions

void COpenGLWnd::CGLDispList::Draw()
{

// if the list is not empty...
if(m_glListld)
{

if(mbIsolated)
{

// save current transformation matrix
glPushMatrix();

// save current OGL internal state (lighting, shading, and such)
glPushAttrib(GL_ALL_ATTRIB_BITS);

};
// draw the list

glCallList(m_glListld);
if(mbIsolated)
{

// restore transformation matrix
glPopMatrix();

// restore OGL internal state
glPopAttribO;

};
1;

}

void COpenGLWnd::CGLDispList::StartDef(BOOL bImmediateExec)
{

76

77

// set the context for GL calls (if needed)
//	 BeginGLCommands();
// check if another list is under construction

int cur;
glGetIntegerv(GL LISTINDEX,&cur);
if(cur != 0) {TRACE("Error: Nested display list definition!");ASSERT(FALSE);};

// if the list is empty firstly allocate one
if(!m_glListId) m_glListId=glGenLists(l);

// start or replace a list definition
if (bImmediateExec) glNewList(m_glListId,GL_COMPILE_AND_EXECUTE);
else glNewList(m_glListId,GL_COMPILE);

}

void COpenGLWnd::CGLDispList::EndDef()
{

II check the coupling with a preceding call to StartDef()
int cur;
glGetIntegerv(GL LIST rNDEX,&cur);
if(cur != m_glListId) {TkACE("CGLDispList:Missing StartDef() before

EndDefO\n");return;1;
// close list definition

glEndListO;
// free the context (if needed)
//	 EndGLCommandsO;
}

void COpenGLWnd::CreateRGBPalette()
{

PIXELFORMATDESCRIPTOR pfd;
LOGPALETTE *pPal;
int n, i;

// get the initially choosen video mode
n = ::GetPixelFormat(m_pCDC->GetSafeHdc());

::DescribePixelFormat(mpCDC->GetSafeHdc(), n, sizeof(pfd), &pfd);

// if is an indexed one...
if (pfd.dwFlags & PFD_NEED_PALETTE)
{

// ... construct an equilibrated palette (3 red bits, 3 green bits, 2 blue bits)
// NOTE: this code is integrally taken from MFC example Cube

n = 1 << pfd.cColorBits;
pPal = (PLOGPALETTE) new char[sizeof(LOGPALETTE) + n *

sizeof(PALETTEENTRY)];

ASSERT(pPal != NULL);

pPal->palVersion = 0x300;
pPal->palNumEntries = n;
for (i=0; i<n; i++)
{

pPal->palPalEntry[i].peRed=ComponentFromlndex(i, pfd.cRedBits,
pfd.cRedShift);

pPal->palPalEntry[i].peGreen=ComponentFromIndex(i, pfd.cGreenBits,
pfd.cGreenShift);

pPal->palPalEntry[i].peBlue=ComponentFromlndex(i, pfd.cBlueBits,
pfd.cBlueShift);

pPal->palPalEntry[i].peFlags=0;
}

/1 fix up the palette to include the default Windows palette
if ((pfd.cColorBits == 8) 	 &&

(pfd.cRedBits == 3) && (pfd.cRedShift == 0) &&
(pfd.cGreenBits == 3) && (pfd.cGreenShift == 3) &&
(pfd.cBlueBits == 2) && (pfd.cBlueShift == 6)

{

for (i = 1 ; i <= 12 ; i++)
pPal->palPalEntry[defaultOverride[i]] = defaultPalEntry[i];

}

m CurrentPalette.CreatePalette(pPal);
delete pPal;

// set the palette
m_pOldPalette=m_pCDC->SelectPalette(&m_CurrentPalette, FALSE);
mpCDC->RealizePalette();

}

}

unsigned char COpenGLWnd::ComponentFromIndex(int i , UINT nbits, UINT shift)

unsigned char val;

val = (unsigned char) (i >> shift);
switch (nbits)

{

case l:
val &= 0x 1;
return _oneto8[val];

78

case 2:
val &= 0x3;
return twoto8[val];

case 3:
val &= 0x7;
return _threeto8[val];

default:
return 0;

}

}

BOOL COpenGLWnd::bSetupPixelFormat()
{

// define default desired video mode (pixel format)
static PIXELFORMATDESCRIPTOR pfd =
{

sizeof(PIXELFORMATDESCRIPTOR),	 // size of this pfd
1	 // version number

79

// support window
// support OpenGL

// double buffered

PFD_DRAW_TO_WINDOW
PFD_SUPPORT_OPENGL
PFD_DOUBLEBUFFER,
PFD_TYPE_RGB A,	 // RGBA type
24,	 // 24-bit color depth
0, 0, 0, 0, 0, 0,	 /1 color bits ignored
0,	 // no alpha buffer
0,	 1/ shift bit ignored
0,	 // no accumulation buffer
0, 0, 0, 0,	 // accum bits ignored
16,	 // 32-bit z-buffer
0,	 // no stencil buffer
0,	 // no auxiliary buffer
PFD_ 	 PLANE_	 _ PLANE,	 // main layer
0,	 // reserved
0, 0, 0	 // layer masks ignored

;
// let the user change some parameters if he wants

BOOL bDoublBuf;
ColorsNumber cnum;
ZAccuracy zdepth;
VideoMode(cnum,zdepth,bDoublBuf);

//set the changes
if(bDoublBuf) pfd.dwFlags=PFD DRAW TO WINDOW

PFD_ SUPPORT OPENGL IPFD DOUBLEBUFFER;
else pfd.dwFlags=PFD_DRAW_TO_WINDOW PFD_SUPPORT_OPENGL;
switch(cnum)

80

{

case INDEXED: pfd.cColarBits=8;
case THOUSANDS: pfd.cColorBits=16;
case MILLIONS: pfd.a.olorBits=24;
case MILLIONS_ WITH TRANSPARENCY: pfd.cColorBits=32;
I;
switch(zdepth)
{

case NORMAL: pfd.eDepthBits=16;
case ACCURATE: pfd.cDepthBits=32;

1/ ask the system for such video mode
ASSERT(m_pCDC != NULL);
int pixelformat;

if ((pixelformat = ChoosePixelFon -nat(m_pCDC->GetSafeHdc(), &pfd)) == 0)
{

AfxMessageBox("ChoosePixelFormat failed");
return FALSE:

}

// try to set this video mode
if (SetPixelFormat(m_pCDC->GetSafeHdc(), pixelformat, &pfd) — FALSE)

{

// the requested video mode is not available so get a default one
pixelformat = l;

if (DescribePixelFormat(m_pCDC->GetSafeHdc(), pixelformat,
sizeof(PIXELFORMATDESCRIPTOR), &pfd)==0)

{

// neither the requested nor the default are available: fail
AfxMessageBox("SetPixelFormat failed (no OpenGL compatible

video mode)");
return FALSE;

}

}

return TRUE;
}

void COpenGLWnd::OnCreateGLO
{

8 perform hidden line/surface removal (enabling Z-Buffer)
glEnable(GL_DEPTH_TEST);

/I set background color to black

glClearColor(0.f,01,0.f,l.0f);

// set clear Z-Buffer value
glClearDepth(l.00;

}

void COpenGLWnd::OnDrawGLO
{

TRACE("In COpenGLWnd::OnDrawGL\n");
// draw carthesian axes

glBegin(GL LINES);
// red axis
glColor3f(l.f,0.f,01);
glVertex3f(0.0f,0.0f,0.00 ;
glVertex3f(1.0f,0.0f,0.00 ;
glVertex3f(1.0f,0.0f,0.00;
glVertex3f(0.9f,0.lf,0.00;
glVertex3f(l.0f,0.0f,0.00 ;
glVertex3f(0.9f,-0.lf,0.0f);
// green y axis
glColor3f(0.f,l.f,0.0;
glVertex3f(0.0f,0.0f,0.00;
glVertex3f(0.0f,l.0f,0.00;
glVertex3f(0.0f,l.0f,0.00 ;
glVertex3f(0.1f,0.9f,0.00;
glVertex3f(0.0f,l.0f,0.00;
glVertex3f(-0.1f,0.9f,0.00;
// blue z axis
glColor3f(0. f,0. f,l. 0 ;
glVertex3f(0.0f,0.0f,0.00;
glVertex3f(0.0f,0.0f,l.00;
glVertex3f(0.0f,0.0f,1 .00;
glVertex3f(0.0f,0.1f,0.90;
glVertex3f(0.0f,0.0f,1 .00;
glVertex3f(0.0f,-0.lf,0.9f);

glEndO;
}
void COpenGLWnd::OnDrawGDI(CPaintDC *pDC)
{

TRACE("In COpenGLWnd::OnDrawGDI\n");
}

void COpenGLWnd::OnSizeGL(int cx, int cy)
{

1/ set correspondence between window and OGL viewport

81

82

glViewport(0,0,cx,cy);

// update the camera
glPushMatrix();

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(40.0,m dAspectRatio,0.1f, 10.00;

glTranslatef(0.0f,0.0f,- 4.0;
glMatrixMode(GL_MODELVIEW);

glPopMatrix();
}

void COpenGLWnd::SetClearCol(COLORREF rgb)
{

float r=float(GetRValue(rgb))/255;
float g=float(GetGValue(rgb))/255;
float b=float(GetBValue(rgb))/255;
BeginGLCommands();
glClearColor(r,g,b,1.00;
EndGLCommands();
Invalidate(); // force redraw

}

void COpenGLWnd::MakeFont()
{

int i;
BeginGLCommands();

// check m_FontListBase not in use
BOOL bUsed=FALSE;
do
{

for (i=0; i<255; i++)
{

if (glIsList(m_FontListBase+i))
{

m FontListBase+=256;
bUsed=TRUE;
break;

}
}

} while (bUsed==TRUE);

SelectObject (m_pCDC->GetSafeHdc(), GetStockObject (SYSTEM_FONT));
/I create the bitmap display lists
// we're making images of glyphs 0 thru 255
// the display list numbering starts at m_FontListBase, an arbitrary choice

m_bGotFont=wglUseFontBitmaps (mpCDC->GetSafeHdc(), 0, 255,
m_FontListBase);

EndGLCommands();
}

void COpenGLWnd::PrintString(const char* str)
{

if (!mbGotFont)
return;

glPushAttrib(GL_LIST BIT);
glListBase(m FontListBase);
glCallLists(strlen(str), GL_UNSIGNED_BYTE, (GLubyte*)str);
glPopAttribO;

}

void COpenGLWnd::CopyToClipboard()
{

CRect R;
GetWindowRect(&R);
if (!OpenClipboard())
{

#ifdef _DEBUG
TRACE("Cannot open clipboard.\n");

#endif
return;
}
CWindowDC dc(this);
CBitmap* pbmOld = NULL;
CDC dcMem;
VERIFY(dcMem.CreateCompatibleDC(&dc));

CBitmap bm;
VERIFY(bm.CreateCompatibleBitmap(&dc,R.Width(),R.Height()));
ASSERT(bm.m_hObject != NULL);
pbmOld = dcMem.SelectObject(&bm);

dcMem.PatBlt(0,0,R.Width(),R.Height(),WHITENESS);
VERIFY(dcMem.BitBlt(0,0,R.Width(),R.Height(),

&dc,0,0,SRCCOPY));
HGDIOBJ hBM=bm.DetachO;
VERIFY(::EmptyClipboard());
VERIFY(::SetClipboardData(CF_BITMAP, hBM));
VERIFY(::CloseClipboard());

dcMem.SelectObject(pbmOld);
dcMem.DeleteDCO; }

83

84

Scatter3D.cpp
#include "stdafx.h"
#include "Scatter3D.h"
#include "Scatter3DDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS _ FILE[] = _FILE_ ;
#endif
// CScatter3DApp

BEGIN_ MESSAGE MAP(CScatter3DApp, CWinApp)
//1 {AFX MSG MAP(CScatter3DApp)

// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!

//} }AFX MSG
ON COMMAND(ID_HELP, CWinApp::OnHelp)

END_ MESSAGE MAP()
// CScatter3DApp construction

CScatter3DApp::CScatter3DApp()
{

// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

// The one and only CScatter3DApp object
CScatter3DApp theApp;
// CScatter3DApp initialization

BOOL CScatter3DApp::InitInstance()
{

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef AFXDLL
Enable3dControlsO;	 // Call this when using MFC in a shared DLL

#else
Enable3dControlsStatic();	 // Call this when linking to MFC statically

#endif
CScatter3DDlg dlg;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal();
if (nResponse == IDOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

else if (nResponse == IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;

85

}

Scatter3DDlg.cpp
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "stdafx.h"
#include "Scatter3D.h"
#include "Scatter3DDlg.h"
#include "GLSelectableScatterGraph.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS FILE
static char THIS_ FILE[] = FILE •
#endif
#define STRLEN 1000

CString file;

CScatter3DDlg::CScatter3DDlg(CWnd* pParent /*=NULL*/)
: CDialog(CScatter3DDlg::IDD, pParent)

{

//{{AFX DATAINIT(CScatter3DDlg)
m_ProjType = 0;
m SymbolSize = 5;
mbMouseRotate = TRUE;
m_MaxX = l.0f,
m_MaxY = 1.0f;
m_MaxZ = l.0f;
m MinX = 0.0f;
m MinY = 0.0f;
m MinZ = 0.0f;
m bAutoX = TRUE;
m bAutoY = TRUE;
m_bAutoZ = TRUE;
m_DatCount = 4;
/i} IAFX DATA INIT
// Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR MAINFRAME);
m_pDisplay = new CGLSelectableScatterGraph;
m_ClearCol=RGB(0,0,0);
m PtCol=RGB(255,0,0);

m_pData=NULL;
m_pColList=NULL;

86

}

void CScatter3DDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{ {AFX_DATA MAP(CScatter3DDlg)
DDX_Control(pDX, IDC_COMB01, m_combox);
DDX Control(pDX, IDC COMB02, m comboy);

DDX Control(pDX, IDC COMB03, m comboz);
DDX Radio(pDX, IDC PROJ TYPE, m_ProjType);
DDX Text(pDX, IDC SYMBOL_SIZE, m SymbolSize);
DDV_MinMaxlnt(pDX, m SymbolSize, l, 20);
DDX Check(pDX, IDC MOUSEROTATE, m_bMouseRotate);
DDX Text(pDX, IDC_MAX X, m_MaxX);
DDX Text(pDX, IDC_MAX Y, m MaxY);
DDX_Text(pDX, IDC_MAX Z, m MaxZ);
DDX_Text(pDX, IDC_MIN_X, m_MinX);
DDX_Text(pDX, IDC_MIN_Y, m MinY);
DDX_Text(pDX, IDC MIN Z, m MinZ);
DDX Check(pDX, IDC AUTO_X, m bAutoX);
DDX Check(pDX, IDC AUTO_Y, m bAutoY);
DDX Check(pDX, IDC AUTO Z, mbAutoZ);
DDX Text(pDX, IDC DAT_COUNT, m_DatCount);
//I AFX_DATA_MAP

}

BEGIN_ MESSAGE MAP(CScatter3DDlg, CDialog)
//{{AFX MSG MAP(CScatter3DDlg)
ON WM PAINT()
ON_ WM QUERYDRAGICON()
ON WM SIZE()
ON BN CLICKED(IDC PROJ TYPE, OnProjType)
ON_BN_CLICKED(IDC_PROJ TYPE2, OnProjType2)
ON BN CLICKED(IDC_BACK_COLOUR, OnBackColour)
ON_WM DRAWITEMO
ON_ EN KILLFOCUS(IDC SYMBOL SIZE, OnKilifocusSymbolSize)
ON BN CLICKED(IDC MOUSE ROTATE, OnMouseRotate)
ON BN_CLICKED(IDC_AUTO X, OnAutoX)
ON BN_CLICKED(IDC_AUTO_Y, OnAutoY)
ON_BN CLICKED(IDC AUTO Z, OnAutoZ)
ON_ EN KILLFOCUS(IDC MAX X, OnKillfocusMaxX)
ON_ EN KILLFOCUS(IDC MAX Y, OnKillfocusMaxY)
ON_ EN KILLFOCUS(IDC MAX Z, OnKillfocusMaxZ)
ON EN KILLFOCUS(IDC_MIN X, OnKillfocusMinX)
ON EN KILLFOCUS(IDC_MIN_Y, OnKillfocusMinY)
ON_EN_KILLFOCUS(IDC_MIN_Z, OnKillfocusMinZ)

87

ON BN CLICKED(IDC MAKE SEL, OnMakeSel)
ON BN CLICKED(IDC CANCEL SEL, OnCancelSel)
ON BN CLICKED(IDC ZOOM SEL, OnZoomSel)
ON BN_CLICKED(IDC_COPY, OnCopy)
ON BN CLICKED(IDC LOAD, OnLoad)
ONIWN7I-DROPFILESO
ON BN CLICKED(IDC_PT COLOUR, OnPtColour)
ON BN CLICKED(IDCBUTTON1, OnButton l)
//}}AFX MSG MAP

END_MESSAGE_MAPO

///
// CScatter3DDlg message handlers

BOOL CScatter3DDlg::OnInitDialog()
{

CDialog::OnInitDialog();

II Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m hIcon, TRUE); 	 // Set big icon
SetIcon(m_hIcon, FALSE);	 // Set small icon

// Enable drag/drop open
DragAcceptFiles();

CRect rect(10,10,10,10);

// TODO: Add extra initialization here
mpDisplay->Create(NULL, //CWnd default

NULL, //has no name

WS CHILDIWS CLIPSIBLINGSIWS CLIPCHILDRENIWS_VISIBLE,
rect,
this, //this is the parent
0); //this should really be a different

number... check resource.h

// generate OnSize to get Graph window positioned right
CRect r;
GetWindowRect(&r);
r.InflateRect(1,1):

MoveWindow(r);

mpDisplay->SetProjection(m_ProjType);
mpDisplay->SetSymbolSize(m_SymbolSize);

88

89

m_pDisplay->SetClearCol(m_ClearCol);
m_pDisplay->AllowMouseRotate(m_bMouseRotate);//0.5, 1., 	 0.,

static float fake_ data[]= {
0.5, 0.5, 0.5,
0.5, -0.5, 0.5,
-0.5, -0.5, 0.5,

-0.5, 0.5, 	 0.5,
-0.5, -0.5,-0.5,
0.5, -0.5, -0.5,
-0.5, 0.5, -0.5,
0.5, 0.5, -0.5

1;

static COLORREF fake colList[] =
RGB(255,255,255),
RGB(255,255,255),
RGB(255,255,255),
RGB(255,255,255),
RGB(155,155,155),
RGB(155,155,155),
RGB(155,155,155),
RGB(155,155,155)

};

mpDisplay->SetData(8,RGB(255,0,0),fake_data,fake_colList);
OnAutoX(); // scale data and fill edit boxes
OnAutoYO;
OnAutoZO;

return TRUE; // return TRUE unless you set the focus to a control
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CScatter3DDlg::OnPaint()
{

if (IsIconic())
{

CPaintDC dc(this); // device context for painting

SendMessage(WMICONERASEBKGND, (WPARAM) dc.GetSafeHdcO,
0);

// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + l) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, mhIcon);

CDialog::OnPaint();

}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CScatter3DDlg::OnQueryDragIcon()
{

return (HCURSOR) mhIcon;
}

CScatter3DDlg::—CScatter3DDlg()
{

if(mpDisplay)
{

delete m pDisplay;

if (mpData!=NULL)
delete [] mpData;

if (mpColList!=NULL)
delete [] mpColList;

}

void CScatter3DDlg::OnSize(UINT nType, int cx, int cy)
{

90

}

else
{

CDialog::OnSize(nType, cx, cy);

if (m_pDisplay->GetSafeHwnd()=—NULL)
Buttons created??

return;

CRect R;

// OnSize is first called before

91

GetDlgItem(IDC__GRAPH_ TOPLEFT)-GetWindowRect(R); 	 // get
dimensions of Button

ScreenToClient(R);
// R.left=R.right-f- 1 0;
1/ R.top= 1 0;

R.right=cx-10:
R.bottom=cy- 10;
m_pDisplay->MoveWindow(R);

}

void CScatter3DDlg::OnProjType()
1

UpdateData();
m_pDisplay->SetProjection(m_ Proj Type);
m_pDisplay->Invalidate(FALSE);

}

void CScatter3DDlg::OnProjType20
{

UpdateDataO;
m_pDisplay->SetProjection(m__ProjType);
mpDisplay->Invalidate(FALSE);

}

I/ Changing the background color
void CScatter3DDlg::OnBackColour()
{

CColorDialog dig;
if (dlg.DoModal()!---IDOK)

return;

m_ClearCol=dlg.GetColor(); // for drawing button
GetDlgItem(IDC__BACK_COLOUR)->Invalidate();
mpDisplay->SetClearCol(tn_ClearCol);

}

void CScatter3DDlg::OnDrawltem(int nIDCtl, LPDRAWITEMSTRUCT
lpDrawItemStruct)
{

if (nIDCtl —IDCBACK_COLOUR II tiIDCtl —IDC__PT__COLOUR)

if (lpDrawItemStruct->itemAction & ODA DRAWENTIRE)
{

HBRUSH hBrush;
if (nIDC'd ==IDC_BACKCOLOUR)

hBrush=::CreateSolidBrush(m_ClearCol);

92

else
hBrush=::CreateSolidBrush(m_PtCol);

::FillRect(lpDrawItemStruct->hDC,&(lpDrawItemStruct->rcItem),
hBrush);

::DeleteObject(hBrush);
}
else if (lpDrawItemStruct->itemAction & ODA_FOCUS)
{

RECT focusR=lpDrawItemStruct->rcItem;
focusR.top+=2;
focusR.bottom-=2;
focusR.left+=2;
focusR.right-=2;
::DrawFocusRect(lpDrawItemStruct->hDC,&focusR);

}
return;	 I/ eat it
}

CDialog::OnDrawItem(nIDCtl, lpDrawIternStruct);
}

void CScatter3DDlg::OnKillfocusSymbolSize()
{

if (!UpdateData())
return;

m_pDisplay->SetSymbolSize(m_SymbolSize);
}

void CScatter3DDlg::OnMouseRotate()
{

UpdateData();
m_pDisplay->AllowMouseRotate(mbMouseRotate);

}

void CScatter3DDlg::OnAutoX()
{

UpdateDataO;
m_pDisplay->SetAutoScaleX(m bAutoX);
m MaxX=m_pDisplay->GetMaxX();
m MinX=m_pDisplay->GetMinX();
UpdateData(FALSE);
((CEdit *)GetDlgItem(IDC_MIN X))->SetReadOnly(mbAutoX);
((CEdit *)GetDlgItem(IDC_MAX_X))->SetReadOnly(m_bAutoX);

}

void CScatter3DDlg::OnAutoY()
{

UpdateData();
mpDisplay->SetAutoScaleY(m bAutoY);
m_MaxY=mpDisplay->GetMaxY();
m MinY=mpDisplay->GetMinY();
UpdateData(FALSE);
((CEdit *)GetDlgItem(IDC_MIN Y))->SetReadOnly(mbAutoY);
((CEdit *)GetDlgItem(IDC_MAXY))->SetReadOnly(mbAutoY);

}
void CScatter3DDlg::OnAutoZO
{

UpdateData();
mpDisplay->SetAutoScaleZ(m bAutoZ);
m_MaxZ=m_pDisplay->GetMaxZ();
m MinZ=mpDisplay->GetMinZ();
UpdateData(FALSE);
((CEdit *)GetDlgItem(IDC_MIN Z))->SetReadOnly(mbAutoZ);
((CEdit *)GetDlgItem(IDC_MAX_Z))->SetReadOnly(mbAutoZ);

}
void CScatter3DDlg::OnKillfocusMaxX()
{

UpdateData();
mpDisplay->SetMaxX(m_MaxX);

}
void CScatter3DDlg::OnKillfocusMaxY()
{

UpdateData();
mpDisplay->SetMaxY(m_MaxY);

}

void CScatter3DDlg::OnKillfocusMaxA)
{

UpdateData();
m_pDisplay->SetMaxZ(m_MaxZ);

}
void CScatter3DDlg::OnKillfocusMinX()
{

UpdateData();
m_pDisplay->SetMinX(m_MinX);

}
void CScatter3DDlFOnKillfocusMinY()
{

UpdateData();
m_pDisplay->SetMinY(m_MinY);

}
void CScatter3DDlg::OnKillfocusMinZ()

93

UpdateData();
m_pDisplay->SetMin -Z(m_MinZ);

}
void CSeatter3DDlg::OnMakeSel()
{

lm b0 dAllowkotate-m bMouseRotate;
m bMouseRotatc---FALSE,
UpdateData(FALSE);
GetDlgItem(IDC_MOU SE_ RO TATE)->EnableWindow(FALSE);
m_pDisplay->StartMakeSel();

}
void CScatter3DDig::OnCancelSel()

mpDisplay->CancelSel();
m_bMouseRotate=m bOldAllowRotate;
GetD1gItem(IDC MOUSE_ROTATE)->EnableWindow();

UpdateData(FALSE,);
}
void CScatter3DDIg::OnZoomSel()
{

m_pDisplay->ZoomSel();
m bAutoX=m_bAutoY=m bAutoZ=FALSE;

mbMouseRotate=m bOldAllowRotate;
GetDlgItem(IDC MOUSE _ROTATE)->EnableWindow();

m_MaxX=m_pDisplay->GetMaxX();
m MinX=mpDisplay->GetMinX();
m MaxY=mpDisplay->GetMaxY();

m_MmY=m_pDisplay->GetMinY();
m_MaxZ=mpDisplay->GetMaxZ();m_MinZ=m_pDisplay->GetMinZ();

UpdateData(FALSE);
((CEdit *)GetDIgltem(IDC_MIN X))->SetReadOnly(mbAutoX);
((CEdit *)GetDlgIte,m(IDC_MAX X.))->SetReadOnly(m bAutoX);
((CEdit *)GetDlg,Item(IDC_MIN Y))->SetReadOnly(m bAutoY);
((CEdit *)GetDlgItem(IDC_MAX Y))->SetReadOnly(m bAutoY);
((CEdit *)GetDlgitent(IDC MIN Z))->SetReadOnly(mbAutoZ);
((CEdit *)GetDlgItem(IDC_MAX_Z))->SetReadOnly(m_bAutoZ);

}
void CSeatter3DDlg;:OnCopy()
{

mpDisplay->CopyToClipboard();
}
// Opening folders to brows for input tile
void CSeatter3DDlg::OnLoadfs)
{

94

// Deleting the temp. file that the programe creates
m_combox.ResetContent();
m comboy.ResetContent();
m_comboz.ResetContent();
TRY
{

char *name = "C:\Documents and
Settings\default\Desktop\ward\C++\scatter3\test\data.dat";

CFile::Remove(name);
}

CATCH(CFileException, e)
{

#ifdef _DEBUG
afxDump << "File cannot be removed\n";

#endif
}

END CATCH
CFileDialog dlg(TRUE,NULL,NULL);
if (dlg.DoModalO!=IDOK)

return;
FILE *fp;
char line[STRLEN];
int i = 0;
CString fName = dlg.GetFileNameO;//"demo.dat";
fp = fopen(fName, "r");
file = fName;
while (fgets(line, STRLEN, fp))

i++;
fseek(fp, 0, SEEK_SET);

// fcolse(fp);
int Inputfilecolumns = 0;
for (i = 0; i<=1000; i++)
if(line[i] —
{

Inputfilecolumns++;
}

CString columnelement;
for(i = 0; i<Inputfilecolumns-l; i++)
{

switch(i)
{

case 0:
m_combox.InsertString(i,"IP packet length");
m comboy.InsertString(i,"IP packet length");
m comboz.InsertString(i,"IP packet length");
break;

95

case l:
m_combox.InsertString(i,"IP packet traffic");
m_comboy.InsertString(i,"IP packet traffic");
m_comboz.InsertString(i,"IP packet traffic");
break;
case 2:
m_combox.InsertString(i,"IP byte traffic");
m_comboy.InsertString(i,"IP byte traffic");
m_comboz.InsertString(i,"IP byte traffic");
break;
case 3:
m_combox.InsertString(i,"IP packet rate");
m_comboy.InsertString(i,"IP packet rate");
m_comboz.InsertString(i,"IP packet rate");
break;
case 4:
m_combox.InsertString(i,"IP byte rate");
m_comboy.InsertString(i,"IP byte rate");
m comboz.InsertString(i,"IP byte rate");
break;
case 5:
m combox.InsertString(i,"UDP packet length");
m_comboy.InsertString(i,"UDP packet length");
m_comboz.InsertString(i,"UDP packet length");
break;
case 6:
m combox.InsertString(i,"UDP packet traffic");
m_comboy.InsertString(i,"UDP packet traffic");
m comboz.InsertString(i,"UDP packet traffic");
break;
case 7:
m_combox.InsertString(i,"UDP byte traffic");
m_comboy.InsertString(i,"UDP byte traffic");
m comboz.InsertString(i,"UDP byte traffic");
break;
case 8:
m_combox.InsertString(i,"UDP packet rate");
m_comboy.InsertString(i,"UDP packet rate");
m_comboz.InsertString(i,"UDP packet rate");
break;
case 9:
m_combox.InsertString(i,"UDP byte rate");
m_comboy.InsertString(i,"UDP byte rate");
m_comboz.InsertString(i,"UDP byte rate");
break;
case 10:

96

nr_combox.InsertString(i,"1-IB gnd-to-end delay");
m_comboy.InsertStringiti,"iN E -ad-to-ert41 delay");
m_comboz InsertString(i."1- 1B End-to-end delay");
break;
case 11:

comboxinsertString(i,"HB Packet loss rate"):
m_comboy.lnsertString(i,"HB Packet loss rate");
m_comboz.InsertString(i,11-1B Packet loss rate');
break;

}

}

}

void CScatter3DDlg::OnDropFiles(HDROP hDropinfo)

char fName[1000];
::DragQueryFile(hDropInfo,0,fName,1000):

TRACE("File %s got dropped here\n",fName);

CDialog::OnDropFiles(hDropInth);

DoOpen(fName);
1

#define STRLEN 1000
BOOL CScatter3DDlg::DoOpen(CString fName)
{

CString errStr;
int i,j,rv;
char line[STRLEN]; //array of chars 1000 elements
FILE *fp;
fp — fopen(fName, "r");
if (!fp)
{

AfxMessageBox("Couldn't open input fiie",MB_ICONWARNING);
return FALSE;

}

//OnZoomSet()::mparal;

fgets(line,STRLEN,fp);
m DatCount-l;

// count dimensions (number of floats in line)
int dimCount=0;
BOOL bInFlt=FALSE;
for 0-0; i-int(strlen(line)); i++)

97

98

if (isspace(linetip)
{if (bInFlt) {bInFlt=FALSE;dimCount++;}
else bInFlt=TRUE;

}

if (dimCount!=3 && dimCount!=4 && dimCount!=6)
{

errStr.Format("file has %d columns, but should have 3, 4 or 6",dimCount);
AfxMessageBox(errStr,MB _ICONWARNING);
fclose(fp);
return FALSE;

}

// find number of lines
while (fgets(line, STRLEN, fp))

m_DatCount++;

if (m_pData!=NULL)
delete [] m_pData;

if (m_pColList!=NULL)
{

delete [] m_pColList;
m_pColList=NULL;

}

m_pData=new float[m_DatCount*3];
if (dimCount!=3)

m_pColList=new COLORREF[m_DatCount];

// rewind file
fseek(fp, 0, SEEK_SET);

// load data
int readCount=0;
int col[3];
for (i=0; i<m_DatCount; i++)
{

for (j=0; j<3; j++)
{

if ((rv=fscanf(fp, "%f', &(m___pData[i*3+j])))!=l)
goto error;

}

if (dimCount==4)	 // COLORREF as last item
{

if ((rv=fscanf(fp, "%u", &(m_pColList[i])))!=l)
goto error;

}
else if (dimCount==6) // r,g,b given separately
{

for (j=0; j<3; j++)
{

if ((rv=fscanf(fp, "%u", &(col[j])))!=l)
goto error;

}
mpColList[i]=RGB(col[0],col[1],col[2]);

}
else
{

ASSERT(dimCount==3);

}

}

fclose(fp);
mpDisplay->SetData(m_DatCount,RGB(255,0,0),m_pData,m_pColList);
UpdateData(FALSE); I/ update count

if (dimCount==3)
{

GetDlgItem(IDC_PT_COL TXT)->EnableWindow();
GetDlgItem(IDC_PT_COLOUR)->ShowWindow(SW_SHOWNA);

}
else
{

GetDlgItem(IDC_PT_COL TXT)->EnableWindow(FALSE);
GetDlgItem(IDC_PT_COLOUR)->ShowWindow(SWHIDE);

return TRUE;

error:
AfxMessageBox("Error reading data file");
fclose(fp);
return FALSE;

}
// changing the point color
void CScatter3DDlg::OnPtColour()
{

CColorDialog dig;
if (dlg.DoModal()!=-IDOK)

return;

m_PtCol=dlg.GetColor(); 	 // for drawing button

99

1 00

GetDlgItem(IDC_PT_ COLOUR)->Invalidate();
m_pDisplay->SetPtCol(m_PtCol);

}

void CScatter3DDlg::OnButtonl()
{

// TODO: Add your control notification handler code here
FILE *input;
FILE *output;
float coordaxis[12];
int pointcolor = 0;
// initializing the carrier array
for(int i = 0; i <=12 ; i++)

coordaxis[i] = 0.0;
CString in, out;
out = "data.dat";
input = fopen(file,"r"); // file - is a global variable gets assigned in onload method
output = fopen(out,"w");

int xx = m_combox.GetCurSelO; int yy = m_comboy.GetCurSel();
int zz = m_comboz.GetCurSel();
// start reading from the assigned file in the OnLoad

fscanf (input,"%f%ffor/of%P/oft'AP/oWor/ofb/of%Wod", &coordaxis[0], &coordaxis[l],
&coordaxis[2], &coordaxis[3], &coordaxis[4], &coordaxis[5], &coordaxis[6],
&coordaxis[7], &coordaxis[8], &coordaxis[9], &coordaxis[1 0], &coordaxis[1 l],
&pointcolor

);

while(! feof(input))
{

// Output only the fields in the selected combo boxs
fprintf(output, "%ft%f\t%f\t%d\n", 	 coordaxis[xx] , coordaxis[yy] , coordaxis[zz] ,

pointcolor) ;

// read the next line up in the data file
fscanf (input,"%ffor/of%r/oP/or/offor/ofb/or/d/or/od", &coordaxis[0], &coordaxis[l],

&coordaxis[2], &coordaxis[3], &coordaxis[4], &coordaxis[5], &coordaxis[6],
&coordaxis[7], &coordaxis[8], &coordaxis[9], &coordaxis[l 0], &coordaxis[1 1],
&pointcolor

);
}

fclose(input);
fclose(output);
//m_combox
DoOpen("data.dat");

101

REFERENCES

[1] Anderson, D., Frivold, T. & Valdes, A (May, 1995). Next-generation Intrusion
Detection Expert System (NIDES): A Summary. SRI International Technical Report SRI-
CSL-95-07.

[2] Carpenter, G.A. & Grossberg, S. (1987). A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics and Image
Processing 37, 54-115.

[3] Chung, M., Puketza, N., Olsson, R.A., & Mukherjee, B. (1995) Simulating
Concurrent Intrusions for Testing Intrusion Detection Systems:Parallelizing. In NISSC.
pp. 173-183.

[4] Cramer, M., et. al. (1995). New Methods of Intrusion Detection using Control-Loop
Measurement. In Proceedings of the Technology in Information Security Conference
(TISC) '95. pp. 1-10.

[5] Debar, H., Becke, M., & Siboni, D. (1992). A Neural Network Component for an
Intrusion Detection System. In Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy.

[6] Debar, H. & Dorizzi, B. (1992). An Application of a Recurrent Network to an
Intrusion Detection System. In Proceedings of the International Joint Conference on
Neural Networks. pp. (11)478-483.

[7] Denault, M., Gritzalis, D., Karagiannis, D., and Spirakis, P. (1994). Intrusion
Detection: Approach and Performance Issues of the SECURENET System. In Computers
and Security Vol. 13, No. 6, pp. 495-507

[8] Denning, Dorothy. (February, 1987). An Intrusion-Detection Model. IEEE
Transactions on Software Engineering, Vol. SE-13, No. 2.

[9] Fox, Kevin L., Henning, Rhonda R., and Reed, Jonathan H. (1990). A Neural
Network Approach Towards Intrusion Detection. In Proceedings of the 13th National
Computer Security Conference.

[10] Frank, Jeremy. (1994). Artificial Intelligence and Intrusion Detection: Current and
Future Directions. In Proceedings of the 17th National Computer Security Conference.

[11] Fu, L. (1992). A Neural Network Model for Learning Rule-Based Systems. In
Proceedings of the International Joint Conference on Neural Networks. pp. (I) 343-348.

[12] Hammerstrom, Dan. (June, 1993). Neural Networks At Work. IEEE Spectrum. pp.
26- 53.

102

[13] Helman, P., Liepins, G., and Richards, W. (1992). Foundations of Intrusion
Detection. In Proceedings of the Fifth Computer Security Foundations Workshop pp. 114-
120.

[14] Helman, P. and Liepins, G., (1993). Statistical foundations of audit trail analysis for
the detection of computer misuse, IEEE Trans. on Software Engineering, 19(9):886-901.

[15] Ilgun, K. (1993). USTAT: A Real-time Intrusion Detection System for UNIX. In
Proceedings of the IEEE Symposium on Research in Security and Privacy. pp. 16-28.

[16] Kohonen, T. (1995) Self-Organizing Maps. Berlin: Springer.

[17] Kumar, S. & Spafford, E. (1994) A Pattern Matching Model for Misuse Intrusion
Detection. In Proceedings of the 17th National Computer Security Conference, pages 11-
21.

[18] Kumar, S. & Spafford, E. (1995) A Software Architecture to Support Misuse
Intrusion Detection. Department of Computer Sciences, Purdue University; CSD-TR-95-
009

[19] Lunt, T.F. (1989). Real-Time Intrusion Detection. Computer Security Journal Vol.
VI, Number l. pp. 9-14.

[20] Mukherjee, B., Heberlein, L.T., Levitt, K.N. (May/June, 1994). Network Intrusion
Detection. IEEE Network. pp. 28-42.

[21] Porras, P. & Neumann, P. (1997). EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances. In Proceedings of the 20 th NISSC.

[22] Puketza, N., Chung, M., Olsson, R.A. & Mukherjee, B. (September/October, 1997). A
Software Platform for Testing Intrusion Detection Systems. IEEE Software, Vol. 14, No. 5

[23] Ryan, J., Lin, M., and Miikkulainen, R. (1997). Intrusion Detection with Neural
Networks. AI Approaches to Fraud Detection and Risk Management: Papers from the 1997
AAAI Workshop (Providence, Rhode Island), pp. 72-79. Menlo Park, CA: AAAI.

[24] Sebring, M., Shellhouse, E., Hanna, M. & Whitehurst, R. (1988) Expert Systems in
Intrusion Detection: A Case Study. In Proceedings of the 1lth National Computer
Security Conference.

[25] Staniford-Chen, S. (1995, May 7). Using Thumbprints to Trace Intruders. UC Davis.

[26] Tan, K. (1995). The Application of Neural Networks to UNIX Computer Security. In
Proceedings of the IEEE International Conference on Neural Networks, Vol.l pp. 476-481.

103

[27] Tan, K.M.0 & Collie, B.S. (1997). Detection and Classification of TCP/IP Network
Services. In Proceedings of the Computer Security Applications Conference. pp. 99-107.

[28] White, G.B., Fisch, E.A., and Pooch, U.W. (January/February 1996). Cooperating
Security Managers : A Peer-Based Intrusion Detection System. IEEE Network. pp. 20-23.

[29] ANS. ARTs: ANSnet Router Statistics Software, 1992

[30] J. Fleiss. Statistical Methods for Rates and Proportion. John Wiley & Sons, 1981.

[31] W. Cochran. Sampling Techniques. John Wiley & Sons, 1987.

[32] Grimes, Stockton, Reilly and Templeman. Beginning ATL COM Programming.
Wrox Press, 1998.

[33] Michael J. Young. Mastering Visual C++ 6. SYBEX Inc, 1998.

[34] Johannes Gehrke. Database Management Systems. McGraw-Hill Higher Education,
2000.

[35] ComponentOne LLC. True DBGrid Pro 7.0. ComponentOne TM LLC, 2000.

[36] David J. Kruglinski, George Shepherd. Programming Microsoft Visual C++ Fifth
Edition. Microsoft Press, 1998.

[37] Microsoft Corporation. Visual C++ 6.0 MFC Library Reference, Microsoft Press,
998.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Parallax
	Chapter 3: Scatter3D
	Chapter 4: Experimental Results and Discussions
	Chapter 5: Conclusions
	Appendix: Scatter3D Code
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

