
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

KNOWLEDGE DISCOVERY AND MODELING
IN GENOMIC DATABASES

by
Michael M. Yin

This dissertation research is targeted toward developing effective and accurate

methods for identifying gene structures in the genomes of high eukaryotes, such

as vertebrate organisms. Several effective hidden Markov models (HMMs) are

developed to represent the consensus and degeneracy features of the functional

sites including protein-translation start sites, mRNA splicing junction donor and

acceptor sites in vertebrate genes. The HMM system based on the developed models

is fully trained using an expectation maximization (EM) algorithm and the system

performance is evaluated using a 10-way cross-validation method. Experimental

results show that the proposed HMM system achieves high sensitivity and specificity

in detecting the functional sites.

This HMM system is then incorporated into a new gene detection system,

called GeneScout. The main hypothesis is that, given a vertebrate genomic DNA

sequence 5, it is always possible to construct a directed acyclic graph G such that

the path for the actual coding region of S is in the set of all paths on G. Thus,

the gene detection problem is reduced to the analysis of paths in the graph G. A

dynamic programming algorithm is employed by GeneScout to find the optimal path

in G. Experimental results on the standard test dataset collected by Burset and

Guigo indicate that GeneScout is comparable to existing gene discovery tools and

complements the widely used GenScan system.
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CHAPTER 1

INTRODUCTION

1.1 Biological Background

A DNA (deoxyribonucleic acid) chain is a long, unbranched polymer composed of four

types of nucleotides or bases: adenine (A), cytosine (C), guanine (G) and thymine

(T). Genes, made of deoxyribonucleic acid, are the invisible information-containing

elements that are distributed to each daughter cell when a cell divides. In general,

genes are divided into two categories: eukaryotic and prokaryotic. Eukaryotic genes

are from eukaryotic cells and prokaryotic genes are from prokaryotic cells. "Eu"

means "good, well or true" . "Karyote" (or "caryote" ) means "nucleus" ( "caryon" in

Greek). Eukaryotic cells, by definition, have a nucleus that contains the cell's DNA

for all of the genes, enclosed by a double layer of membrane [1]. So, the eukaryotic

gene category includes all kinds of genes from cells with a nucleus, such as those

from any kind of animals, even yeast.

In the bioinformatics field, eukaryotic DNA (or gene) means the kind of genomic

DNA with introns, such as the DNA from high level animals and human. Prokaryotic

cells, in contrast to eukaryotic cells, have relatively simple internal structures, specif-

ically, without membrane enclosed nuclei [1]. Prokaryotic cells include the various

types of bacteria such as E. coli. E. coli has simple genomic DNA and its cells are

very easy to culture. So, E. coli is often used for research on prokaryotic DNA.

The basic gene structure for higher eukaryotes includes promoter, start codon,

introns, exons, and stop codon, etc. (see Figure 1.1). The exon sequences of a

gene are called the coding sequences of this gene, and the region covers all the

exon sequences of a gene are called the coding region of the gene (which is the

region for making protein). In contrast, prokaryotic genes have no introns, and the

gene structure includes only promoter, start codon, coding region and stop codon.

1
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Normally, if one can detect the promoter in the prokaryotic DNA sequences, one is

able to find the gene coding region. Intron sequences range in size from about 80

nucleotides to 10,000 nucleotides or more. Introns in genes are of no function at all

and are actually the genetic "junk" [1] . They differ dramatically from exons in that

their exact nucleotide sequences seem to be unimportant. The only highly conserved

sequences in introns are those required for intron removal.

The genetic information present in genes is expressed in the organisms (Gene

expression) through the processes of Transcription and Translation (see Figure 1.1).

Transcription is the process for the production of a specific molecular of messenger

RNA (mRNA) from a given sequence of DNA in a gene. In this process the genetic

information (message) carried in the DNA is transcribed to (or written into) the

mRNA. As its name implies, messenger RNA carries a message. mRNA transmits

the genetic message in the sequence of its own bases. The process by which mRNA

directs the synthesis of a specific protein is called translation. In this process, the

information (message) carried in the base sequences of the mRNA is translated into

the amino acid sequence of the protein.

In the eukaryotic gene transcription process, the intermediate product is called

pre-mRNA. Pre-mRNA is the direct copy of the DNA sequences in the eukaryotic

gene and it contains the exon and intron sequences from the gene. The intron

sequences will be removed from pre-mRNA, so a mature mRNA only consists of exon

sequences, which will be translated into protein. The process for intron removal is

called RNA splicing, and the positions for intron removal and RNA rejoining are

called splicing junction sites (see Figure 1.1). The consensus sequences at each end

of an intron are nearly the same in all known intron sequences, and these can not be

changed without affecting the splicing process. The conserved boundary sequence

at the 5' splice site is called a donor site, and the one at the 3' splice site is called

an acceptor site. The RNA breaking and rejoining (splicing) must be carried out
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Figure 1.1 Eukaryotic gene structure and gene expression processes.

The basic gene structure for higher eukaryotes includes promoter, start
codon, exons, introns and stop codon, etc. The boundaries between
the exons and the introns are called 5' donor sites, and the boundaries
between the introns and the exons are called 3' acceptor sites. During the
DNA transcription process, the gene sequences (excluding the promoter
region) are first transcribed into pre-mRNA. Then, the intron sequences
in the pre-mRNA are removed and the RNA fragments are rejoined
together by the RNA splicing process to get mRNA. The mRAN directs
protein synthesis through the gene translation process.
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precisely because an error of even one nucleotide would shift the reading frame in

the resulting mRNA molecule and make nonsense of its message [1].

Identification or prediction of coding sequences from within genomic DNA has

been a major rate-limiting step in the pursuit of genes. For eukaryotic gene detection,

researchers have to detect the start codon, exons, introns and stop codon. How to

find out exons/introns? The most important step is to detect the splicing junction

sites including donor and acceptor sites, because once the splicing junction sites are

detected, the exon/intron boundaries are found. Then the introns can be removed

from the DNA sequence to get the coding regions. Biologists study gene structures

based on lab experiments such as PCR on cDNA libraries, Northern blot, sequencing,

etc. However, characterizing the 60,000 to 100,000 genes thought to be hidden in

the human genome by means of merely experiments is not feasible. A current trend

is to complement the lab study with bioinformatics approaches. using computer

programs to elucidate a gene structure from DNA sequence signals, including start

codon, splicing junction donor sites and acceptor sites, stop codon, etc.

1.2 Current Status and Progress

Although methods to predict potential gene coding regions on genomic DNA

sequences have existed since the 1980s, the first programs to assemble potential

DAN coding sequences into translatable mRNA sequences were not available until

the early 1990s [7]. Recently there are several programs available for biologists, such

as GenelD [14], GenLang [10] and GRAIL [43], etc. GRAIL is the one now widely

used by researchers and it is available on the BLAST web site (http://www.ncbi.

nlm.nih.gov) for gene structure detection. The approaches used for the function

sites detection include:

• Consensus Search [12] This approach considers an aligned set of site

sequences. At each position with non-uniform distribution of nucleotides,
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researchers retain the preferred nucleotide and obtain the consensus word. It

is possible to account for degeneracies and to distinguish between strongly and

weakly conserved positions, dependent on the degree of the non-uniformity.

People write the consensus of mammalian gene donor sites as `maG/GTRAGu',

where the boldface denotes invariant positions, capital and lower case letters

denote, respectively, strongly and weakly conserved positions. 'IV denotes

`A or G' and 'm' denotes 'a or c'. `/' is the splice point. A formal determi-

nation of conserved positions can be made using standard statistical criteria

or computation of the information content of positional nucleotide distribution

[17, 27, 31]. The consensus methods are tools to summarize the distribution

of an aligned set of molecular sequences. Typically the methods make three

simplifying assumptions:

1. Analysis of molecular sequences is a multistage process in which sequence

alignment precedes the identification of consensus sequences.

2. An alignment of the molecular sequences has already been obtained.

3. Alignment and the identification of consensus sequences can be treated

independently.

Thus, the problem to find a consensus sequences of k aligned molecular

sequences, in which n aligned positions have been identified, can be viewed

as a set of n simpler problems, each to find a consensus of k symbols (i.e.

nucleotides) at an aligned position [9]. The comparison with the consensus is

the simplest form of the site prediction algorithm, but consensus analysis only

does a very rough functional mapping of a sequence and its results should be

interpreted with caution [12].

• Weight Matrices The next level of sophistication is provided by weight

matrices. Each nucleotide b (b = A, C, G, T) in the site position p (p = 1, 2, . ,
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L) is set in correspondence with the weight W (b, p). The score of a potential

site is defined as the sum of the position weights of the constituent nucleotides.

R. Staden applied the weight matrix method to obtain the relative importance

of each nucleotide in the consensus sequence [34]. Another approach used

for multivariate statistical analysis was to perform categorical discriminant

analysis, where nucleotide sequences were transformed into categorical data.

Categorical weights on the variables were estimated in such a way that the two

classes of the 5' splice site sequences and sequences other than the 5' splice site

might be discriminated most distinctly [22]. It has been demonstrated that

site strengths estimated by this theory to some extent agree with the experi-

mental data [12]. Like consensus search, the weight matrices can be used for

fast database searches.

• Pattern Recognition and Neural Networks [12] Algorithms of the pattern

recognition theory are based on the (implicit) assumption that in the genome

there is a tendency to avoid non-functioning signal-like sites. Thus, a learning

sample consists of two classes, sites and non-sites. The non-sites class is usually

formed by random fragments of the natural DNA. The basic steps in application

of pattern recognition techniques are as follows:

1. Creation of a learning sample.

2. Choice and encoding of signal features.

3. Iterative correction of recognition rules according to results of discrimination

between the two classes at the previous round.

4. Testing on an independent sample.

One of the diverse pattern recognition algorithms is neural networks [43]. The

neural networks consist of a layer of input neuron, several layers of hidden

neurons, and an output neuron. When the network is presented with a
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candidate site, the input neurons check whether the site possesses the corre-

sponding features and send binary signals to the neurons of the first hidden

layer. Each hidden neurons sums the weighted signals coming by connections

from the lower level, compares the result with the threshold, and sends a

binary signal to the upper level neurons. The output neuron provides the final

site/non-site detection. Programs such as GenViewer [26] and GRAIL [43]

employ a procedure that scores candidate exons using some combination of the

sites scores and the coding potential. They then perform an exhaustive search

over the set of structures generated by the remaining high-scoring exons.

Recently, Moises Burset and Roderic Guigo evaluated a number of computer

programs designed to predict the structure of gene coding regions in genomic DNA

sequences [7]. The programs analyzed were uniformly tested on a large set of

vertebrate sequences with a standard gene structure. Their carefully selected test

set included 570 sequences, totaling 2649 coding exons. All the sequences in the

test set had the start codon and stop codon. All the donor sites contain the GT

dinucleotide and all the acceptor sites contain the AG dinucleotide at the right

positions. Some of their data was shown in Table 1.1. The results indicated that the

predictive accuracy of the programs analyzed was really low. For example, for the

widely used GRAIL program, the sensitivity (Sn) and specificity (Sp) were just 36%

and 43% [7]. So they claimed that although programs currently available may still

be of great use in pinpointing the regions likely to contain exons, they are far from

being powerful enough to elucidate its genomic structure completely [7].

The vertebrate DNA sequence signals involved in gene determination are

usually ill defined, degenerate and highly unspecific. Given the current detection

methods, it is usually impossible to distinguish the signals truly processed by the

cellular machinery from those that are apparently non-functional [13]. Furthermore,

the inherent conservatism of the currently popular methods such as similarity



(1.1)
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Table 1.1 Performance of the Programs Evaluated by M. Burset and R. Guigo

Programs Sensitivity Specificity
FGENEH 0.61 0.64
GeneID+ 0.73 0.70

GeneParser3 0.56 0.58
GeneLang 0.51 0.52
GRAIL2 0.36 0.43

SORFIND 0.42 0.47
Xpound 0.15 0.18

Note: M. Burset and R. Guigo defined Sensitivity (Sn) and Specificity
(Sp) as follows:

Number of Correct Exons
Sr, = 	

Number of Actual Exons

Number of Correct Exons
S= 

P Number of Predicted Exons

search, GRAIL, etc. will greatly limit the capacity for making unexpected biological

discoveries from increasingly abundant genomic data. Except for a very limited

subset of trivial cases, the automated interpretation without experimental validation

of genomic data is still a myth [8]. Unlike the situation in bacteria and yeast

organisms, in which computer systems have substantially contributed to the

automatic analysis of genomes, automatic sequence analysis and annotomatic eluci-

dation of their structure from the genomes of high eukaryotic organisms are far from

being a reality [13].

This research is targeted toward developing effective and accurate methods

for identifying gene structures in the genomes of high eukaryotic organisms. The

first phase of the research is for splicing junction sites detection. Then, during the

second phase, the gene structure signal information will be integrated with global

gene structure information together to develop a full gene structure detection system.
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Splicing junction donor and acceptor sites are the most important functional gene

structure signals. Earlier, a donor Motif model was developed and pattern matching

techniques were used for donor classification [40, 44, 45]. The case studies and

preliminary data for splicing junction donor and acceptor site classifications were

also reported [46, 47, 48]. Here, the approaches using hidden Markov modes (HMM)

will be introduced to represent the degeneracy features of splicing junction sites.

Then the 10-way cross-validation method is used to evaluate the system for splicing

junction sites detection in unlabeled test DNA sequences.

Hidden Markov models (HMMs) have been used extensively to describe

sequential data or processes such as speech recognition. An HMM model is a

process in which some of the details are unknown, or hidden. A general description

of a Markov model is that it models a stochastic process using a number of states

and probabilistic state transitions. An HMM is defined by a set of states and

transitions, usually represented by a graph where states correspond to vertices and

transitions to edges. Each state s is associated with a discrete output probability

distribution, P(s). Similarly, each transition has a probability, which represents the

probability that a generating process makes that transition. Thus, the sum of the

probabilities of all the transitions from a given states s to all other states must be

1. Hidden Markov models have been remarkably successful in the field of speech

recognition [21], where they are used in most state-of-the-art systems. Researchers

in computational biology have recently started to use HMMs for biological sequence

analysis. Lukashin, Borodovsky [23] and their colleagues [5] successfully applied

HMMs to the detection of protein coding regions in prokaryotes. Audic and Claverie

[2] reported their using of Markov transition matrices to detect eukaryotic promoters.

Salzberg [29] has used HMM for identifying splice sites and translational start sites

in eukaryotic genes. Salzberg's group also developed an HMM system, called VEIL

(Viterbi Exon-Intron Locator), for finding eukaryotic genes [19]. The approach used
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in this study differs from Salzberg's by using a different topology of HMM and by

employing two modules in the HMM model: one for true sites, and the other for

false sites.

There are also many other pioneers in this field. Even though the current

systems are far from being powerful enough for gene structure elucidation, the

information these researchers provide is valuable, and research on automated gene

detection using HMM is of great potentiality.



CHAPTER 2

SPLICING JUNCTION SITES MODELING AND DETECTING

2.1 Using HMMs to Model Splicing Junction Sites

2.1.1 The Donor Model

Splicing junction sites in vertebrate DNA include donor and acceptor sites. Donor

sites are conserved boundary sequences at the 5' splicing sites in DNA. The conserved

sequences include nine nucleotide bases with GT (GU in mRNA) almost invariable

to all donor sites [1]. An example of a donor site is shown below:

The nucleotide G occurs at position 4 and the nucleotide T occurs at position 5 in

a donor site. Here refer to a 9-base sequence that exists as a donor in a real gene

sequence as a true donor site. Note that in all true donor sites, G and T occur

at position 4 and position 5, respectively. Similarly, refer to a 9-base non-donor

sequence in which G and T also occur at position 4 and position 5, respectively, as a

false donor site. Notice that it is not necessary to consider those sequences without

G, T being at position 4 and position 5, respectively, because they are deemed to

be non-donor sequences. Given an unlabeled 9-base sequence with G, T being at

position 4 and position 5, respectively, referred to as a candidate donor site, the

algorithm tries to determine whether the candidate sequence is a true donor site

or a false donor site. A Donor Model is designed based on HMMs to describe the

consensus and degenerate properties occurring in true donor sites.

An HMM with nine states and a set of transitions is used for modeling a true

donor site, which is represented as a digraph where states correspond to vertices and

transitions to edges. At each state, the HMM generates a base b in {A, G, C, T}

according to the state and transition probabilities, with the exception of state 4 and

state 5. At state 4, the HMM constantly generates base b G, and at state 5, the

11
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Figure 2.1 The Donor Model for splicing junction donor site detection.

HMM constantly generates base b = T. Each state s is associated with a discrete

probability distribution, P(s). For state 4 and state 5, P(s) = 1. Except at state

3 and state 4, each base b at a state has four possible transitions to the next state.

Each transition has a probability, P(t), which represents the probability that the

HMM makes that transition. Each base at state 3 has a fixed transition, namely

P(t) = 1, to the base G at state 4. Similarly, at state 4, the base G has a fixed

transition, namely P(t) = 1, to the base T at state 5. Figure 2.1 illustrates the

Donor Model.

2.1.2 The Acceptor Model

Acceptor sites are conserved boundary sequences at the 3' splicing sites in DNA.

The conserved sequences include 16 nucleotide bases with AG almost invariable to

all acceptor sites [1]. An example of an acceptor site is shown below:
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The nucleotide A occurs at position 14 and the nucleotide G occurs at position 15 in

an acceptor site. Refer to a 16-base sequence that exists as an acceptor in a real gene

sequence as a true acceptor site. Note that in all true acceptor sites, A and G occur

at position 14 and position 15, respectively. Similarly, refer to a 16-base non-acceptor

sequence in which A and G also occur at position 14 and position 15, respectively,

as a false acceptor site. Given an unlabeled 16-base sequence with A, G being at

position 14 and position 15, respectively, referred to as a candidate acceptor site, the

algorithm tries to determine whether the candidate sequence is a true acceptor site

or a false acceptor site. The Acceptor Model, defined below, is used to describe the

consensus and degenerate properties occurring in true acceptor sites.

An HMM with 16 states and a set of transitions is developed for modeling

a true acceptor site, which is represented as a digraph where states correspond to

vertices and transitions to edges. At each state, the HMM generates a base b in {A,

G, C, T} according to the state and transition probabilities, with the exception of

state 14 and state 15. At state 14, the HMM constantly generates base b = A, and at

state 15, the HMM constantly generates base b = G. Each state s is associated with

a discrete probability distribution, P(s). For state 14 and state 15, P(s) = 1. Except

at state 13 and state 14, each base b at a state has four possible transitions to the

next state. Each transition has a probability, P(t), which represents the probability

that the HMM makes that transition. Each base at state 13 has a fixed transition,

namely P(t) = 1, to the base A at state 14. Similarly, at state 14, the base A has a

fixed transition, namely P(t) = 1, to the base G at state 15. Figure 2.2 illustrates

the Acceptor Model. There are 16 states in this model. Except state 14 and state

15, there are four possible bases at each state, and a base at one state may have four

possible ways to transit to the next state. States 14 and 15 are a constant, and the

transition from state 14 to state 15 is also a constant with a probability of 1. In a
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Figure 2.2 The Acceptor Model for splicing junction acceptor site detection.

gene sequence, states 1 through 15 belong to an intron and state 16 is the first base

of an exon.

2.1.3 Two Modules for Each Model

In vertebrate DNA sequences, there are much more false splicing junction sites than

true sites. The ratio between the number of false sites and the number of true

sites is about 100 to 1. In order to mine out the differences between the true sites

and false sites, two programs are implemented: True Donor Module and False Donor

Module, based on the Donor Model and another two programs, True Acceptor Module

and False Acceptor Module, based on the Acceptor Model. The True Donor Module

and True Acceptor Module are collectively referred to as true site modules. The

False Donor Module and False Acceptor Module are collectively referred to as false

site modules. The true site modules are trained using the true sites in the training

data set, and train the false site modules using the false sites in the training data

set. A given candidate site is tested by these modules. Let Sand be a candidate
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site. Let P(Y =1 I Scan(/' M()) be the probability of Sand being a donor (acceptor)

sequence given that it is processed by a true site module. Let P(Y = 0 I Scand, M (f) )

be the probability of Sand being a non-donor (non-acceptor) sequence given that it

is processed by a false site module. In the above specification, M (t) is for the true

site modules and MU ) is for the false site modules. In the splicing junction detection

phase, these true site modules and false site modules are used to classify candidate

sequences into right categories. For example, for a candidate donor site, it is first

passed through True Donor Module to get P(Y = 1I Scand, AP)), the probability of

this candidate site being a donor sequence. It is then passed through False Donor

Module to get P(Y = 0|Scand, MU) ), the probability of this candidate site being a

non-donor sequence. Comparing these two values, a score is assigned to the candidate

sequence. This candidate sequence is assigned to the true donor category or false

donor category depending on its score obtained.

2.2 Algorithms

The algorithms described in this section can be used for both the Donor Model and

the Acceptor Model. For illustration purposes, this section focus on Donor Model

and its corresponding modules, True Donor Module and False Donor Module. The

algorithms for the Acceptor Model are essentially the same.

2.2.1 Training Algorithm

A modified expectation maximization (EM) algorithm, called TEM, is developed

for training the modules. The original EM method takes, as the input, a set of

unaligned sequences and a motif length, and returns a probabilistic model for the

motif [3]. Because the data set contains splicing junction sites with the same length,

and all these sites can be aligned to each other, TEM is designed specifically for

training a hidden Markov model with fixed topology.
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Let M represent the set of sequences that are randomly picked from the positive

training data set and negative training data set. (In the study presented here, M

contains about 200 true donor sites and 14,000 false donor sites.) Each sequence in

M is labeled as positive or negative depending on whether it is from the positive

training data set or the negative training data set. Let Et be the set containing

the remaining sequences in the positive training data set, and let Ef represent the

set containing the remaining sequences in the negative training data set. There are

much more true (false, respectively) donor sites in Et (Ef , respectively) than those

in M. (In this study presented here, the total number of the sequences in Et and Ef

is about 9 times of the number of sequences in M.) Let P be a subset of M.

In the training phase, the TEM algorithm proceeds iteratively to converge. At

each iteration, the algorithm removes some sequences from E t and El and inputs

those sequences into True Donor Module and False Donor Module. The algorithm

then uses these modules to determine which sequences are placed in P as it will be

explained later. Sr is used to represent the sensitivity and Sem  is used to represent

the specificity during the TEM training. Sn^em is the ratio between the number of true

donor sites in P and the total number of true donor sites in Al; note that P C M.

Sr is the ratio between the number of true donor sites in P and the total number

of sequences in P. The goal of the TEM training is, given a fixed value of Sn^em, the

modules are trained iteratively to get a maximal value of Sir, or until E t and Ef

become empty. In this research, Sn^em = 0.90 is used for training the modules.

Specifically, let Tstates represent the total number of states in the Donor Model.

Let b i (bi E {A, G, C, T}) be the base at state i, 1<=i< i < Tstates• Let tri (bi , bi+1 ), 1 <=

< Tstates

Donor Model is fixed, and all of the transition probabilities and state probabilities

are initialized to random values. Then, one tenth of the sequences are picked from

E t and they are inputted into the True Donor Module. At the same time, one tenth

1, be the transition from state i to state i+1. The topology for the
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of the sequences from Ef are picked and they are inputted into False Donor Module.

The number of the individual bases, b i , is recorded at each state and the number

of individual transitions, tr i (bi , bi+1 ), is also recorded from one state to the next

state. Then compute the post probabilities for all the states and transitions in True

Donor Module and False Donor Module are computed. Let T(t)tri(bi,bi+1 ) be the total

number of transitions from a base b i at state i to a base b i+1 at state i +1 in True

Donor Module. Let Tin(t) be the total number of true donor sites that have been input

into True Donor Module. The state transition probabilities, ftri(t)(bi,bi+1), in True

Donor Module can be calculated as follows:

Similarly, let T (f ) tri (bi ,bi+1 ) be the total number of transitions from a base b i

at state i to a base bi +1 at state i +1 in False Donor Module. Let T in(f) be the total

number of false donor sites that have been input into False Donor Module. The state

transition probabilities, ftri( f) (bi ,bi+1), in False Donor Module can be calculated as

r 	 _

Next, all the sequences in M are treated as unlabeled sequences and input them into

True Donor Module and False Donor Module. Let P(True I S, M (t) ) denote the proba-

bility of a sequence S in set M being a donor sequence, and let P(False S, M (f ) )

denote the probability of S being a non-donor sequence. In order to calculate

P(True S, M (0 ), the probability of the sequence S must be calculated given it

is a true donor site using True Donor Module. This can be written as

The TEM algorithm uses Bayes' rule to estimate P(True S, M (0 ) from

P(S True, M (t) ). Bayes' rule states that
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P(True) is the prior probability that is assumed to be a constant, and P(S) is the

product of the individual base probabilities in the sequences. P(S) can be written

as

In the same way, equations can be written for calculating P(False I S, M (f ) ) as

follows:

Let nratio he the probability ratio of sequence S in set /VT_ and

The pratio is calculated for each sequence in set M. Then the sequences in set M is

sorted, in the descending order, according to their pratio values. Suppose the total

number of positive sequences in set M is N. Then select the pratio value for the

N x Sn^em th positive sequence and use that pratio value as the positive lower bound,

denoted Lp . (In the study presented here, there are 200 positive sequences in set M

and the sensitivity Sr is 0.9. Therefore, Lp is the pratio value of the 180th positive

sequence in set M.) The TEM algorithm assigns a sequence S E M into set P if

the pratio value for S is greater than or equal to Lp . Let T(Tp) be the number of

positive sequences in set M that are assigned into set P. Let T(p+N) be the total

number of positive sequences in M. Then, by definition,
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Let T(pp) be the total number of sequences in M that are assigned into P. Then, by

The re-estimation procedure then adjusts all of the probabilities hidden in the

Donor Model in order to increase Sr. New sequences in E t and Ef are picked

and removed from E t and E. These sequences are then run through True Donor

Module and False Donor Module again and the probabilities are further refined. This

process is iterated until the Sp^em is maximized or until E t and Ef become empty.

This algorithm is guaranteed to converge to a locally optimal estimate of all the

probabilities in the Donor Model. The positive lower bound Lp that maximizes Sp'

will be an output and used in the splicing junction sites detection phase. Figure 2.3

summarizes the TEM algorithm used in the training phase.

2.2.2 Algorithm for Detecting Splicing Junction Sites

As described in Section 2.1, a candidate donor site refers to a 9-base sequence

fragment with bases G, T being at position 4 and position 5, respectively. The

input of the site detection algorithm is a fragment, denoted Scand , of nine bases

extracted from a genomic DNA sequence S with a minimum length of nine bases. In

this research, the longest DNA sequence used is about 50,000 bases long. The Scand

has G, T at position 4 and 5, respectively, and is considered as a candidate donor

site. The nine bases in Scand are referred as b 1 , b2 , , b9 , respectively. The output of

the site detection algorithm is a flag, KIND i , indicating whether the Scand starting

at positing i of the genomic DNA sequence S is a true donor site or not.

Let ftrj(t)(bj,bj+1) be the probability of a transition from base bj to base bj+1 ,

1 < j < 8, of Scand using True Donor Module. Define a flag variable Y to be 1 if Scand

belongs to a true site category, and 0 otherwise. Let n be the length of the candidate

site Scand (n is 9 for donor sites and 16 for acceptor sites). Let P(Scand = 1, M (0 )

be the probability of the candidate site Scand given that it is a donor site processed



20

INPUT:
Untrained HMM site modules
(including a true site module and a false site module);
Positive training data set, Et ;
Negative training data set, Ef ;
TEM testing data set, M;

OUTPUT:
Fully trained HMM site modules and Lp ;

ALGORITHM:
unmaximized := true;
while unmaximized do begin

unmaximized := false;
if E t is not empty then begin

remove one tenth of the sequences from Et
and input them into the true site module;
for i = 1 to Tstates — 1

calculate ftri(t)(bi,bi+1) as in Equation (2.1);
end;
if Ef is not empty then begin

remove one tenth of the sequences from Ef
and input them into the false site module;
for i = 1 to Tstates — 1

calculate ftri(f) (bi ,bi+1 ) as in Equation (2.2);
end;
for each sequence S E M do begin

calculate P(True S, M (t) ) as in Equation (2.5);
calculate P(False I S, MU ) ) as in Equation (2.8);
calculate pratio as in Equation (2.10);

end;
select Lp ;
calculate Sr according to Lp ;
if (Sr is not maximized) and (either E t or Ef is non-empty) then

unmaximized := true;
end;

Figure 2.3 The TEM algorithm used in the training phase.
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by True Donor Module. Then

As defined before, P(Y = 1I Scand, M (t) ) is the probability of Sand being a donor

site given that it is processed by True Donor Module. According to Bayes' rule, cf.

Equation (2.4):

When examining a set of sequences to detect true donor sites, the underlying

prior P(Y = 1) can be treated as a constant [29]. P(Scand) is the product of the

individual base probabilities for b 1 , b2 , . . . , bn in Scand:

Similarly, False Donor Module is used to compute P(Y = 4C 1Scand 7 M( f ) ) , the

probability of S and  being a false donor site given that it is processed by False Donor

Module. So, the false donor site counterparts of the above equations can be written

as:

Given the candidate donor site Sand starting at position i in the genomic DNA

sequence S, the algorithm will find the two most likely sets of states through the two

HMM modules for S cand. Then the algorithm calculates P(Y = 1 |Scand ,  111(t) ) and
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INPUT:
A candidate donor site Scand starting at position i
of an unlabeled genomic DNA sequence;

OUTPUT:
I* KIND i is a flag indicating whether Sand is a true donor site or not. */KINDi;

ALGORITHM:
present Sand to True Donor Module and calculate

P(Y = 1 Scand, M (t) ) as in Equation (2.14);
present Sand to False Donor Module and calculate

P(Y = 0 I Scand, MU) ) as in Equation (2.17);
calculate sratio as in Equation (2.19);
calculate KINDi as in Formula (20);

Figure 2.4 Algorithm for classifying splicing junction donor sequences.

P(Y = 0|Scand, M U) ). A score, sratio, is assigned to the candidate site based on the

scoring function below:

Comparing sratio with the Lp obtained from the training phase, a flag, KINDi ,

is assigned to the candidate site Scand based on the following formula:

The candidate site Sand is classified as a true donor site if KINDi has a value of

1. Scand is classified as a false donor site if KINDi has a value of 0. Figure 2.4

illustrates the site detection algorithm.

2.3 Experiments and Results

2.3.1 Sequence Data and Evaluation Method

In order to evaluate the accuracy of the HMM system for splicing junction site

detection, the database of DNA sequences originally collected by Burset and Guigo [7]

is used, This database was used to compare a number of major gene-finding programs

[7]. The sequences in this database were obtained from the vertebrate divisions of
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GenBank release 85.0 (October, 1994). There are 570 vertebrate sequences in the

database, and they all have simple and standard gene structures. Each entry contains

a complete protein coding sequence with no in-frame stop codons. There are at least

one exon and one intron in all entries in the database. There are 2,079 true donor

sites and 2,079 true acceptor sites, all of which are standard splicing junction sites.

This means that all the donor sites have 'GT' and all the acceptor sites have 'AG' at

the right positions. This database now becomes the standard data set for evaluating

gene-finding programs.

The 10-way cross-validation method [46] is applied to evaluate how well the

HMM system performs when tested on data that are not in the training data set.

Cross validation is a standard experimental technique for determining how well a

classifier performs on unseen data [19]. Specifically, the 570 sequences at hand are

randomly partitioned into 10 sets. These sets have roughly the same number of true

donor sites; the sets also have roughly the same number of true acceptor sites. For

each iteration in the 10-way cross-validation experiment, nine out of the ten sets are

used as the training data set, and the remaining one set is used as the test data set.

The HMM system is trained using the training data set (i.e., all sequences excluding

those in the test data set are used as the training data). The system is then tested

on the sequences in the test data set. Thus, the training data set consists of 90%

and the test data set consists of 10% of the sequences. Each time in the 10-way

cross-validation experiment, the HMM system is trained with sequences containing

about 1,871 true sites and 135,000 false sites. The HMM system is tested on the

sequences containing about 208 true sites and 14,000 false sites.

2.3.2 Experimental Results

The state transition probabilities for the Donor Model and the Acceptor Model are

shown in Tables 2.1-2.4. Comparing the state transition probabilities of the true
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site modules with those of the false site modules, the results show that the proposed

HMM system maximizes the differences between the true sites and false sites. The

results for detecting splicing junction sites are summarized in Table 2.5 and Table

2.6. The results for each of the 10 test sets of the cross validation are shown, so

are the average results for all the 10 test sets. In Table 2.5 and Table 2.6, TP

is the number of true positives. FP is the number of false positives. TN is the

number of true negatives. FN is the number of false negatives. A true positive is

a true donor (true acceptor, respectively) site that is also classified as a true donor

(true acceptor, respectively) site. A false positive is a false donor (false acceptor,

respectively) site that is mis-classified as a true donor (true acceptor, respectively)

site. A true negative is a false donor (false acceptor, respectively) site that is also

classified as a false donor (false acceptor, respectively) site. A false negative is a

true donor (true acceptor, respectively) site that is mis-classified as a false donor

(false acceptor, respectively) site. S ntrue is the ratio between the number of correctly

classified true donor (true acceptor, respectively) sites and the total number of true

donor (true acceptor, respectively) sites in the test data set, i.e.,

The similar calculations are also used to evaluate the performance of the proposed

HMM system in predicting the false splicing junction sites. Snf alse is the ratio between

the number of correctly classified false donor (false acceptor, respectively) sites and

the total number of false donor (false acceptor, respectively) sites in the test data

set, i.e.,

Sr, is the proportion of the candidate sites in the test data set that are classified

correctly. Sn  tells how well the proposed HMM system can assign true sites and false



Table 2.1 State Transition Probabilities for True Donor Module
(t)

ftri(t) 	(b2 , b2+1)
i 1 2 3 4 5 6 7 8

A --> A 0.21 0.04 null null null 0.32 0.04 0.01
A --> G 0.05 0.51 0.08 null null 0.06 0.63 0.03
A 	 C 0.02 0.01 null null null 0.06 0.02 0.01
A 	 T 0.04 0.04 null null null 0.06 0.02 0.02
G --> A 0.13 0.02 null null null 0.37 0.01 0.12
G --> G 0.02 0.11 0.81 null null 0.04 0.10 0.13
G --> C 0.03 0.00 null null null 0.02 0.01 0.12
G --> T 0.02 0.01 null 1.00 null 0.01 0.00 0.46
C --> A 0.23 0.02 null null null 0.02 0.02 0.01
C --> G 0.02 0.07 0.02 null null 0.00 0.03 0.00
C --> C 0.04 0.01 null null null 0.00 0.02 0.02
C ---> T 0.05 0.02 null null null 0.01 0.02 0.02
T --> A 0.02 0.00 null null 0.50 0.01 0.00 0.00
T --> G 0.04 0.12 0.08 null 0.44 0.02 0.07 0.02
T --> C 0.03 0.01 null null 0.03 0.00 0.01 0.01
T --> T 0.03 0.01 null null 0.03 0.00 0.00 0.01

Note: The state transition probability values are of 'long int' type in the computer
programs. In order to save space, the values are rounded to the second position
following the decimal point to fit into this table. For example, a probability value of
0.13293 is shown in this table as 0.13, but 0.13593 is shown here as 0.14. Theoret-
ically, the sum of the transition probabilities from one state to the next state should
equal to 1.00. Because of the rounding, the sum of the values in each column in this
table may be slightly smaller or greater than 1.00. This holds in Tables 2.2 - 2.4 as
well.
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Table 2.2 State Transition Probabilities for False Donor Module
ftri(f)(bi, bi+1)

i 1 2 3 4 5 6 7 8
A ---> A 0.08 0.08 null null null 0.05 0.06 0.06
A --> G 0.07 0.08 0.28 null null 0.05 0.07 0.07
A --> C 0.05 0.02 null null null 0.04 0.05 0.04
A --> T 0.05 0.08 null null null 0.05 0.05 0.06
G --> A 0.07 0.07 null null null 0.09 0.05 0.06
G -4 G 0.07 0.08 0.27 null null 0.10 0.07 0.07
G -4 C 0.06 0.02 null null null 0.07 0.05 0.05
G -4 T 0.05 0.09 null 1.00 null 0.09 0.05 0.07
C --> A 0.08 0.08 null null null 0.06 0.07 0.07
C	 G 0.02 0.02 0.08 null null 0.01 0.02 0.02
C --> C 0.07 0.02 null null null 0.07 0.07 0.07
C	 T 0.06 0.12 null null null 0.08 0.08 0.09
T --> A 0.05 0.04 null null 0.18 0.04 0.05 0.05
T -4 G 0.09 0.09 0.37 null 0.35 0.06 0.09 0.08
T --> C 0.07 0.02 null null 0.22 0.06 0.07 0.06
T -4 T 0.07 0.09 null null 0.25 0.09 0.08 0.08

sites into the right categories; it is calculated by the following formula:

where N, is the number of the candidate sites in the test data set that are classified

correctly and Nt is the total number of the candidate sites in the test data set.

The results in Table 2.5 show that, on average, the system can correctly detect

92% of the true donor sites in the test data set, and 95% of the false donor sites in

the test data set are predicted as false sites. Overall, 95% of the candidate donor

sites are classified into the right categories. The results for acceptor classification are

shown in Table 2.6. The proposed HMM system can correctly predict 91.5% of the

true acceptor sites in the test data set and 93% of the false acceptor sites in the test

data set. In general, the system can assign 93% of the candidate acceptor sites into

the right categories.



Table 2.3 State Transition Probabilities for True Acceptor Module
(0,

ftri(t)(b i, bi+1)
i 1 2 3 4 5 6 7 8

A --> A 0.01 0.01 0.00 0.01 0.02 0.01 0.00 0.01
A --> G 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00
A -4 C 0.04 0.04 0.03 0.02 0.03 0.03 0.03 i 0.03
A 	 T 0.05 0.03 0.03 0.03 0.03 0.03 0.05 0.01
G 	 A 0.02 0.01 0.02 0.00 0.01 0.01 0.00 0.01
G --> G 0.03 0.03 0.04 0.03 0.03 0.02 0.03 0.03
G --> C 0.04 0.04 0.05 0.03 0.03 0.03 0.03 0.05
G -4 T 0.05 0.05 0.04 0.05 0.05 0.04 0.06 0.04
C --> A 0.04 0.03 0.03 0.04 0.03 0.05 0.02 0.04
C --> G 0.03 0.03 0.01 0.01 0.02 0.01 0.03 0.01
C -> C 0.14 0.14 0.14 0.14 0.14 0.16 0.17 0.18
C --> T 0.18 0.15 0.17 0.21 0.18 0.16 0.15 0.19
T -4 A 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.03
T -4 G 0.07 0.07 0.05 0.06 0.05 0.09 0.06 0.04
T --> C 0.14 0.15 0.18 0.17 0.18 0.16 0.19 0.19
T --> T 0.15 0.19 0.17 0.16 0.20 0.17 0.14 0.14

A --> A
-->G G

A -->C C
A -4 T

0.01
0.00
0.04
0.03

0.00
0.00
0.03
0.01

0.02
0.02
0.02
0.00

0.01
0.00
0.17
0.04

0.02
null
null
null

null
1.00
null
null

null
null
null
null

G --> A 0.00 0.01 0.01 0.00 0.01 null 0.30
G 	 G 0.01 0.02 0.03 0.00 null null 0.48
G --> C 0.03 0.01 0.02 0.23 null null 0.14
G --> T 0.04 0.01 0.01 0.03 null null 0.09
C -4 A 0.02 0.03 0.13 0.01 0.79 null null
C ----> G 0.01 0.01 0.06 0.00 null null null
C --> C 0.24 0.25 0.16 0.24 null null null
C	 T 0.17 0.21 0.08 0.07 null null null
T 	 A 0.01 0.02 0.06 0.00 0.18 null null
T --> G 0.03 0.04 0.15 0.00 null null null
T --> C 0.18 0.14 0.12 0.14 null null null
T 	 T 0.16 0.21 0.11 0.06 null null null

27

Note: top, probabilities for the first 8 transitions; bottom, probabilities for the
remaining 7 transitions.



Table 2.4 State Transition Probabilities for False Acceptor Module
(f)ftri(f) 1kbi,bi+1)

i 1 2 3 4 5 6 7 8
A --> A 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.08
A -4 G 0.08 0.10 0.10 0.08 0.11 0.08 0.08 0.09
A --> C 0.05 0.05 0.04 0.05 0.07 0.03 0.06 0.06
A -4 T 0.05 0.04 0.04 0.03 0.05 0.04 0.04 0.03
G --> A 0.08 0.07 0.08 0.11 0.07 0.08 0.08 0.07
G 	 G 0.10 0.10 0.13 0.11 0.11 0.13 0.12 0.12
G --> C 0.08 0.07 0.07 0.07 0.07 0.08 0.07 0.05
G --> T 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.05
C -4 A 0.08 0.07 0.07 0.07 0.06 0.07 0.07 0.07
C --> G 0.03 0.02 0.04 0.03 0.03 0.03 0.02 0.03
C --> C 0.06 0.07 0.06 0.06 0.06 0.08 0.07 0.08
C --> T 0.08 0.07 0.08 0.06 0.07 0.06 0.07 0.06
T 	 A 0.04 0.03 0.02 0.04 0.03 0.03 0.04 0.03
T --> G 0.07 0.10 0.08 0.09 0.09 0.09 0.07 0.08
T -4 C 0.04 0.06 0.05 0.04 0.04 0.05 0.05 0.06
T 	 T 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04

(ftri(f) (bi, bi+1)
i 9 10 11 12 13 14 15

A --> A 0.05 0.06 0.05 0.04 0.28 null null
A --> G 0.13 0.11 0.09 0.06 null 1.00 null
A --> C 0.04 0.04 0.05 0.04 null null null
A --> T 0.03 0.03 0.03 0.01 null null null
G -4 A 0.09 0.07 0.04 0.07 0.36 null 0.19
G --> G 0.12 0.19 0.12 0.12 null null 0.43
G --> C 0.06 0.07 0.05 0.08 null null 0.18
G --> T 0.05 0.04 0.19 0.03 null null 0.20
C --> A 0.07 0.05 0.04 0.07 0.28 null null
C --> G 0.04 0.03 0.03 0.03 null null null
C --> C 0.07 0.06 0.08 0.10 null null null
C --> T 0.06 0.06 0.06 0.02 null null null
T --> A 0.03 0.03 0.03 0.09 0.08 null null
T --> G 0.09 0.07 0.07 0.15 null null null
T ---> C 0.03 0.04 0.04 0.05 null null null
T --> T 0.04 0.03 0.03 0.01 null null null
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Note: top, probabilities for the first 8 transitions; bottom, probabilities for the rest
of the 7 transitions.
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To investigate how well the proposed HMM system can discriminate true

splicing junction sites from false splicing junction sites when a group of candidate

sequences are presented to the system, some statistic analyses are performed on

the scores the HMM system assigned to each candidate site in the 10-way cross-

validation experiment. Figure 2.5 shows the score distribution of true donor sites

and false donor sites in one test data set. Figure 2.6 shows the score distribution

of true acceptor sites and false acceptor sites in the same test data set. Striking

differences can be observed by comparing the curves in these figures. The scores for

the true donor sites can be higher than 10000, with about 85% of the true donor sites

scoring more than 10.0. For the false donor sites, only about 5% of the sequences

score more than 1.0, with the majority of the false donor sites scoring between 0.1

and 0.00001. More than 10% of the false donor sites score less than 0.00001. The

score distribution for the true acceptor scores in Figure 2.6 shares a similar pattern as

the one for the true donor sites shown in Figure 2.5. The scores for the false acceptor

sites are more scattered, but again, there are only 5% to 6% of the sequences scoring

more than 1. The results suggest that the proposed HMM system can be used to

discover the degenerate features of the splicing junction sites to a great degree.

2.4 Conclusions

In this chapter, hidden Markov models (HMMs) are developed to represent the

consensus and degenerate features of splicing junction sites in eukaryotic genes. The

proposed Donor Model and Acceptor Model have a different topology from those

previously reported for splicing junction site detection. To capture the consensus and

degenerate features of the splicing junction sites, the constant states and constant

state transitions are introduced into the models. This innovative approach concep-

tually simplifies the splicing junction site models and the computation process of

using the models. The results from the 10-way cross-validation experiment show
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Table 2.5 Performance Evaluation of the HMM System for Detecting Donor Sites

Set true sites false sites TP FP TN FN 4,7.' Snfalse Sn

1 209 16259 191 634 15625 18 0.914 0.961 0.960
2 210 13411 191 643 12768 19 0.910 0.952 0.951
3 203 12942 185 677 12265 18 0.911 0.948 0.947
4 200 15473 183 654 14819 17 0.915 0.958 0.957
5 208 17245 192 815 16430 16 0.923 0.952 0.952
6 213 15817 205 809 15008 8 0.962 0.948 0.949
7 206 15895 191 762 15133 15 0.927 0.951 0.952
8 212 13206 194 748 12458 18 0.915 0.942 0.953
9 209 14334 192 702 13632 17 0.919 0.950 0.951
10 209 14651 190 702 13949 19 0.909 0.951 0.952

Average 0.921 0.951 0.952

Table 2.6 Performance Evaluation of the HMM System for Detecting Acceptor Sites

Set true sites false sites TP FP TN FN Sntrue Snfalse Sn

1 209 21553 198 1428 20125 11 0.947 0.933 0.934
2 210 19169 197 1371 17798 13 0.938 0.928 0.929
3 203 19995 183 1404 18591 20 0.901 0.929 0.929
4 200 22683 181 1364 21319 19 0.905 0.939 0.940
5 208 24721 194 1416 23305 14 0.933 0.942 0.943
6 213 23871 194 1392 22479 19 0.911 0.941 0.941
7 206 22877 186 1388 21489 20 - 0.903 0.938 0.939
8 212 19012 192 1400 17612 20 0.906 0.925 0.926
9 209 20798 189 1398 19400 20 0.904 0.932 0.932
10 209 18221 189 1377 16844 20 0.904 0.924 0.923

Average 0.915 0.934 0.934



Figure 2.5 Score distributions for true donor sites and false donor sites.

Figure 2.6 Score distributions for true acceptor sites and false acceptor sites.
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that the proposed HMM system can correctly detect 92% of the true donor sites

and 91.5% of the true acceptor sites in the standard sequence data set composed

by Burset and Guigo. The following chapters will introduce the integration of the

HMM system with other gene structure information to develop a system for full gene

structure detection.



CHAPTER 3

TRANSLATIONAL START SITE MODELING AND DETECTING

The Start codon is always ATG and it is the start position in mRNA for protein

translation, so the start codon is the first three bases of the coding region of a gene.

ATG is also the codon for Methionine, a regular amino acid occurring at many

positions in all of the known proteins. This means one can not just detect the start

codon by simply searching for ATG in the genomic DNA. It is reported that there

are some statistic relations between the start codon and the nucleotides before (13

bases) and after (three bases) it [29]. In this study, this 19 bases with a start codon

is referred to as start site or true start site. In contrast to true start site, false start

site refers to a 19-bases sequence containing no start codon but with nucleotides 'A',

`T' and `G' at position 14, 15 and 16, respectively.

3.1 The Start Site Model

An HMM with 19 states and a set of transitions is defined for modeling a true start

site, represented as a digraph where states correspond to vertices and transitions to

edges. At each state, the HMM will generate a base b in {A, G, C, T} according to

the state and transition probabilities, with the exception of states 14, 15 and 16. The

HMM constantly generates base b = A at state 14, b = T at state 15 and b = G at

state 16. Each state s is associated with a discrete output probability distribution,

P(s). Obviously, for state 14, state 15 and state 16, P(s) = 1. Except at states 13,

14 and 15, each base b at a state has four possible transitions to the next state. Each

transition has a probability, P(t), which represents the probability that the HMM

makes that transition. Each base at state 13 has a fixed transition, namely 1 to the

base A at state 14. At state 14, the base A has a fixed transition, namely one to

base T at state 15. Similarly, at state 15, the base T has a fixed transition, namely
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Figure 3.1 The Start Site Model for translational start site detection.

one to base G at state 16. Figure 3.1 shows the graph model of the HMM Start Site

Model.

In the vertebrate DNA sequences, there are much more false Start sites than

true Start sites. The ratio between the number of false sites and the number of true

sites is about 100 to 1. In order to mine out the differences between the true sites

and false sites, as presented in Chapter 2 for the donor and acceptor models, two

programs, True Start Module and False Start Module are implemented for the Start

Site Model.
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3.2 Start Site Detecting Algorithms

The HMM algorithms described in Section 2.2 (see also the published paper [49]) are

used to train the start site modules and to detect start sites in vertebrate genomic

DNA. The final state transition probabilities for Start Site Model are shown in Table

3.1 and 3.2. Comparing the state transition probabilities from the true start site

module with those from the false start site module, this HMM system maximized

the differences between the true start sites and false sites.

3.3 Experiments and Results

The experimental sequence data and evaluation method are the same as described in

Section 2.3. Briefly, the DNA sequence database originally collected by Burset and

Guigo [7] is used to evaluate the accuracy of the HMM system for start site detection;

and the 10-way cross-validation method [46, 49] is applied to evaluate how well HMM

systems will perform when tested on data that are not in the training data set.

The start sites detection results are summarized in Table 3.3. The results for

each of the ten test sets of the cross-validation are shown, so are the average results

for all the ten test sets. The results in Table 3.3 show that, on average, this system

can correctly detect about 90% of the true start sites, and 94% of the candidate start

sites are correctly classified into the right categories.



Table 3.1 State Transition Probabilities for True Start Site Module

ftri(t)(bi,bi+1)
i 1 2 3 4 5 6 7 8 9

A --> A 0.06 0.10 0.09 0.04 0.05 0.05 0.04 0.04 0.10
A --> 0.10 0.06 0.09 0.05 0.05 0.20 0.09 0.04 0.10
A --> C 0.06 0.06 0.10 0.13 0.05 0.02 0.04 0.17 0.01
A --> T 0.01 0.02 0.05 0.01 0.02 0.02 0.02 0.01 0.01
G --> A 0.03 0.11 0.04 0.06 0.05 0.05 0.19 0.04 0.10
G --> G 0.04 0.04 0.05 0.05 0.03 0.05 0.07 0.04 0.07
G 	 C 0.11 0.05 0.06 0.10 0.06 0.05 0.13 0.11 0.01
G --> T 0.02 0.05 0.02 0.04 0.03 0.01 0.06 0.01 0.01
C --> A 0.14 0.10 0.07 0.05 0.16 0.09 0.02 0.10 0.44
C -4 G 0.04 0.03 0.06 0.03 0.04 0.07 0.01 0.11 0.09
C --> 	 C 0.11 0.10 0.07 0.16 0.14 0.09 0.10 0.15 0.02
C --> T 0.12 0.08 0.08 0.10 0.14 0.06 0.08 0.01 0.00
T --> A 0.02 0.02 0.02 0.01 0.04 0.01 0.01 0.03 0.03
T --> G 0.05 0.04 0.05 0.04 0.04 0.14 0.04 0.04 0.02
T -4 C 0.09 0.07 0.11 0.09 0.06 0.05 0.06 0.12 0.01
T --> T 0.03 0.05 0.03 0.04 0.05 0.04 0.04 0.01 0.00

(
ftri(t)

 
(b2, b2+1)

i 10 11 12 13 14 15 16 17 18
A --> A 0.18 0.07 0.15 null null null 0.10 0.03 0.04
A -4 G 0.10 0.13 null null null null 0.11 0.14 0.03
A -4 C 0.30 0.04 null null null null 0.04 0.04 0.03
A 	 T 0.08 0.01 null 1.00 null null 0.02 0.03 0.01
G --> A 0.05 0.02 0.22 null null 0.27 0.08 0.02 0.11
G --> G 0.02 0.05 null null null 0.49 0.06 0.08 0.10
G --> C 0.18 0.04 null null null 0.15 0.17 0.06 0.20
G -4 T 0.02 0.00 null null null 0.09 0.18 0.10 0.03
C --> A 0.02 0.04 0.58 null null null 0.05 0.05 0.09
C --> G 0.01 0.03 null null null null 0.00 0.05 0.03
C 	 C 0.02 0.40 null null null null 0.04 0.06 0.06
C -4 T 0.00 0.03 null null null null 0.05 0.10 0.05
T -4 A 0.01 0.01 0.05 null null null 0.00 0.01 0.03
T 	 G 0.00 0.00 null null 1.00 null 0.03 0.19 0.05
T 	 C 0.00 0.09 null null null null 0.04 0.04 0.09
T -4 T 0.01 0.00 null null null null 0.02 0.03 0.03
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Note: top, probabilities for the first 9 transitions; bottom, probabilities for the
remaining 9 transitions.



Table 3.2 State Transition Probabilities for False Start Site Module
(

ftri(t)(bi,bi+1)
i 1 2 3 4 5 6 7 8 9

A --- A 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
A --> G 0.07 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.08
A --> C 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
A --> T 0.07 0.06 0.07 0.07 0.07 0.07 0.07 0.06 0.07
G -> A 0.06 0.06 0.07 0.06 0.06 0.07 0.07 0.06 0.07
G --> G 0.07 0.07 0.02 0.06 0.07 0.07 0.06 0.07 0.08
G --> C 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.04 0.05
G -4 T 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.05 0.06
C -4 A 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.08 0.07
C	 G 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.11 0.02
C ---> C 0.05 0.06 0.06 0.05 0.05 0.05 0.05 0.06 0.05
C	 T 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.07
T -4 A 0.05 0.06 0.05 0.06 0.06 0.06 0.06 0.06 0.06
T --> G 0.08 0.09 0.07 0.08 0.09 0.08 0.08 0.09 0.08
T	 C 0.06 0.06 0.07 0.06 0.06 0.05 0.06 0.06 0.05
T -> T 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.07

(ftri(f) (bi,bi+1)
i 10 11 12 13 14 15 16 17 18

A	 A 0.09 0.10 0.28 null null null 0.08 0.08 0.07
A --> G 0.08 0.09 null null null null 0.07 0.08 0.07
A --> C 0.05 0.07 null null null null 0.05 0.05 0.09
A --> T 0.06 0.05 null 1.00 null null 0.06 0.07 0.04
G --> A 0.08 0.07 0.25 null null 0.26 0.07 0.06 0.06
G ---> G 0.07 0.07 null null null 0.27 0.08 0.07 0.07
G	 C 0.05 0.06 null null null 0.20 0.06 0.05 0.09
G --> T 0.05 0.04 null null null 0.26 0.06 0.06 0.03
C --> A 0.08 0.06 0.27 null null null 0.06 0.07 0.05
C ---> G 0.01 0.01 null null null null 0.01 0.01 0.06
C --> C 0.05 0.08 null null null null 0.06 0.06 0.07
C ----> T 0.06 0.05 null null null null 0.07 0.07 0.03
T --> A 0.06 0.05 0.20 null null null 0.06 0.05 0.07
T -4 G 0.08 0.08 null null 1.00 null 0.08 0.08 0.07
T	 C 0.05 0.06 null null null null 0.05 0.05 0.10
T --> T 0.07 0.05 null null null null 0.07 0.07 0.04
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Note: top, probabilities for the first 9 transitions; bottom, probabilities for the
remaining 9 transitions.



Table 3.3 Performance Evaluation for the HMM Start Site Model

Set True Site False Site TP FP TN FN Sntrue Snfals e Si.,

1 57 4492 53 253 4239 4 0.930 0.944 0.944
2 57 4546 52 210 4336 5 0.912 0.954 0.953
3 57 6726 51 491 6235 6 0.895 0.927 0.927
4 57 4269 50 300 3969 7 0.877 0.930 0.929
5 57 6506 51 436 6070 6 0.895 0.933 0.933
6 57 4367 51 248 4119 6 0.895 0.943 0.943
7 57 3660 53 218 3442 4 0.930 0.940 0.940
8 57 2892 50 157 2735 7 0.877 0.946 0.944
9 57 3977 51 241 3736 6 0.895 0.939 0.939
10 57 4441 53 199 4242 4 0.930 0.955 0.955

Average 0.904 0.941 0.941
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CHAPTER 4

A DATA MINING SYSTEM FOR PREDICTING VERTEBRATE
GENES

4.1 Introduction

Data mining, or knowledge discovery from data, refers to the process of extracting

interesting, non-trivial, implicit, previously unknown and potentially useful infor-

mation or patterns from data [15]. In life sciences, this process could refer to finding

clustering rules for gene expression, discovering classifications rules for proteins,

detecting associations between metabolic pathways, predicting genes in genomic

DNA sequences, etc. [39, 40, 41, 42]. This chapter presents a data mining system

for automated gene discovery.

A genomic DNA sequence is comprised of four types of nucleotides, or bases,

represented by English letters A, C, G, and T. Identification or prediction of coding

regions from within a genomic DNA sequence has been a major rate-limiting step

in the pursuit of genes. The Human Genome Project has produced millions of

nucleotides of sequences, and it becomes increasingly important to rapidly identify

genes in these sequences [30]. The basic structure for a vertebrate gene includes a

promoter, a start codon, introns, exons, donors, acceptors, and a stop codon; cf.

Figure 4.1(A). The exon sequences of a gene are also called the coding sequences

of this gene, and the whole exon sequences of a gene are called the coding region

of the gene (which is the region for making proteins); cf. Figure 4.1(B). Intron

sequences range in size from about 80 nucleotides to 10,000 nucleotides or more.

Introns in genes have no function at all and are actually the genetic "junk" [1, 4].

They differ dramatically from exons in that their exact nucleotide sequences seem to

be unimportant. The only highly conserved sequences in introns are those required

for intron removal from DNA.
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Figure 4.1 Vertebrate gene structure (A) and a sequence fragment (B).

This sequence fragment contains an exon of 296 nucleotides. The AG
bases preceding the first arrow are the conserved nucleotides in a splicing
junction acceptor site. The GT bases preceding the second arrow are the
conserved nucleotides in a splicing junction donor site. The nucleotides
between the two arrows constitute the exon.
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In this chapter, the gene structure signal information is combined with global

gene structure information and GeneScout, a full-scale gene structure detection

system is presented.

The rest of the chapter is organized as follows. Section 4.2 surveys related work.

Section 4.3 presents the approach used in this study for gene discovery. Section 4.4

reports experimental results. Section 4.5 concludes the chapter.

4.2 Related Work

Although methods for predicting coding regions in genomic DNA sequences have

existed since the 1980s, the programs for assembling coding sequences into trans-

latable mRNA sequences were not available until the early 1990s [7]. Recently, there

have been several programs available for biologists, such as GenViewer [26], GenelD

[14], GenLang [10], GeneParser [32], FGENEH [33], SORFIND [20], Xpound [35],

GRAIL [43], VEIL [19], GenScan [6], etc. Among the tools, GRAIL and GenScan

are widely used in academia and industry. GRAIL is available on the BLAST Web

site (http://www.ncbi.nlm.nih.gov ) and GenScan is available at MIT's Web site

(http://genes.mit.edu/license.html) . Algorithms employed by these various tools

are based on consensus search [12], weight matrices [22], pattern recognition [12],

etc., though the most popular approaches are based on neural networks (NNs)

[43] and, more recently, hidden Markov models (HMMs) [23, 29, 49]. The basic

algorithms using NN techniques are described below.

4.2.1 NN-Based Techniques

A learning sample of NN-based techniques consists of two classes: sites and non-

sites. The non-sites class is usually formed by randomly choosing fragments from
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the natural DNA. The basic steps of the NN-based techniques are as follows [24, 25,

37, 38]:

1. Creation of a learning sample;

2. Choice and encoding of signal features;

3. Iterative correction of recognition rules according discrimination between the two

classes obtained in the previous round;

4. Testing on an independent sample.

Often, an NN consists of a layer of input neurons, several layers of hidden

neurons, and an output neuron. When an unlabeled candidate site is presented to

the NN, the input neurons check whether the site possesses the corresponding features

and send binary signals to the neurons of the first hidden layer. Each hidden neuron

sums the weighted signals coming, by connection, from lower-level neurons, compares

the result with some thresholds, and sends a binary signal to upper-level neurons.

The output neuron provides the user with a final site/non-site decision. Several

research groups implemented NNs for gene structure prediction, and they adopted

two different techniques in combination with NNs [12]: (i) the use of ad hoc heuristic

procedures and (ii) the use of combinatorial algorithms.

The first technique was adopted in GRAIL [36, 43]. The exon recognition

module of GRAIL employs an NN that integrates values of various coding potentials

and other statistics. The first step is to perform splicing site prediction by similar

multisensor networks. The second step is to perform exon prediction by Bayesian

analysis of frame-specific coding potentials. Finally, all legitimate combinations of

predicted exons are used for gene assembly. At this step, GRAIL employs a heuristic

procedure that scores candidate exons using some combination of the site scores

and the coding potentials obtained in the previous steps. Low-scoring exons are
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eliminated from further consideration. The software then performs an exhaustive

search over the set of structures generated by the remaining high-scoring exons.

GeneParser [32] is an example using the second technique in which dynamic

programming is applied to get rid of the exhaustive search over exon-intron

structures. GeneParser combines the classical dynamic programming with an NN,

and uses both coding potentials and weight matrix scores of splicing sites for exon

prediction. The learning stage consists of a series of iterations. At each iteration, a

dynamic programming procedure is applied to find the highest-scoring structures for

all sequences in the learning sample. Then another dynamic programming module

is used to find the optimal structures for new sequences [12].

4.3 The Approach Used in This Study

The proposed GeneScout system contains several specially designed HMM models for

predicting functional sites as well as an HMM model for calculating coding potentials.

The functional sites are some sequence signals common for all sites of a given type,

which are recognized by corresponding DNA- and RNA-binding proteins [12]. Basic

units of such functional sites in a vertebrate gene sequence include translational

start sites, splicing junction donor and acceptor sites, etc. Effectively predicting

these function sites is the first and crucial step for gene finding.

4.3.1 HMM Models for Predicting Functional Sites

Functional sites include sites used in the transcription process such as splicing

junction donor sites, acceptor sites, and sites used in the translation process such as

a start site, etc. Often, the functional sites include (almost) invariant (consensus)

nucleotides and other degenerate features. Thus, the invariant nucleotides themselves

do not completely characterize a functional site. For example, a start codon is always

a sequence of ATG and it is the start position in mRNA for protein translation, so
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the start codon is the first three bases of the coding region of a gene. ATG is also

the codon for Methionine, 1 a regular amino acid occurring at many positions in all

of the known proteins. This means one is unable to detect the start codon by simply

searching for ATG in a genomic DNA sequence.

It is reported that there are some statistic relations between a start codon ATG

and the 13 nucleotides immediately preceding it and the three bases immediately

following it [29]. As presented in Chapter 3, call these 19 bases containing a start

codon a start site. An HMM model, the Start Site Model, is built to model the start

site. As shown in Figure 3.1, there are 19 states in the Start Site Model. Except for

states 14, 15 and 16, there are four possible bases at each state, and a base at one

state may have four possible ways to transit to the next state. States 14, 15 and 16

are constant states (representing a start codon), and the transitions from state 14

to 15 and from state 15 to 16 are also constant with a probability of 1.0. With the

Start Site Model, the HMM algorithms described previously can be used to detect

a start site. The HMM models and algorithms for detecting splicing junction donor

and acceptor sites are presented in Chapter 2. The HMM model for a donor site

contains nine states whereas the HMM model for an acceptor site contains 16 states.

The algorithms used for training the HMM models for start sites, donor sites and

acceptor sites and for detecting these functional sites are similar.

4.3.2 Graph Representation of the Gene Detection Problem

The goal of GeneScout is to find coding regions as illustrated in Figure 4.1. Like all

other major gene-finding systems surveyed in Section 4.2, GeneScout does not find

the promoter at the very beginning of a gene structure as well as the beginning or

the end of transcription. A more accurate term for this process might be "coding

1 A codon is a triplet of contiguous bases in mRNA that code for specific amino acids,
which in turn are used for building proteins [41].
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region detection" , though traditionally the term "gene detection" has been used

when referring to these systems [29].

The main hypothesis used in this work is that, given a vertebrate genomic DNA

sequence S, it is always possible to construct a directed acyclic graph G such that

the path for the actual coding region of S is in the set of all paths on G. Thus, the

gene detection problem is reduced to the analysis of paths in the graph G. Dynamic

programming algorithms are used to find the optimal path in G.

Define a candidate exon to be a sequence fragment whose left boundary is

an acceptor site or a start codon, and whose right boundary is a donor site or a

stop codon. A candidate intron is a sequence fragment with a donor site at its left

boundary and an acceptor site at its right boundary. Define a candidate gene as

a chain of non-intersecting alternating exons and introns that satisfy the following

biological consistency conditions [28]:

1. the total length of exons is divisible by 3;

2. there are no in-frame stop codons in exons;

3. the first intron-exon boundary is a start codon, and the last exon-intron boundary

is a stop codon.

However, like most of the existing gene detection programs, this algorithm can be

easily generalized for incomplete genes violating condition 3 and possibly condition

1.

Referring to Figure 4.1 again, if one could detect the start codon and all

the splicing junction donor and acceptor sites correctly, the coding region would

be found immediately. Unfortunately, there is no program that can correctly and

precisely detect the start codon and all the splicing junction sites without any error.

Even for the effective hidden Markov models developed in this study for detecting

splicing junction sites, there are still false positives mistaken as donor or acceptor

sites [49]. Suppose one starts with a vertebrate genomic DNA sequence with marked
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positions for the start codons, donor sites and acceptor sites that are detected by the

HMM algorithms described previously. Then these sites generate a set of candidate

exons and candidate introns, and their combinations form a set of candidate genes.

Assuming all the true functional sites have been detected, one (and only one) subset

of the candidate exons must constitute the real coding region.

Consider a directed acyclic graph G where vertices are functional sites, and

edges are exons and introns (Figure 4.2). All the edges from the top vertices to

the bottom vertices in the graph G are candidate exons, and the edges from the

bottom vertices to the top vertices are candidate introns. There must be a path on

G representing real exons-introns as shown by the boldface edges in Figure 4.2. So,

given a vertebrate genomic DNA sequence with detected sites, it is always possible

to construct a directed acyclic graph G such that the path for real exons-introns is

in the set of all paths on G. Thus, the gene detection problem is reduced to the

analysis of paths in the graph G.

4.3.3 A Dynamic Programming Algorithm

Consider again the graph G in Figure 4.2. A candidate gene is represented by a

path in G. Let SG denote the set of all paths in G. A score is assigned to each

functional site based on the HMM models and algorithms described in Section 4.3.1

[49]. The score is used as the weight of the corresponding vertex v in SG, and denote

that weight as W(v). Each edge (v 1 , v2 ) in SG is associated with a weight W(vi, v2).

The weight W(v i , v2 ) equals the coding potential of the candidate exon or intron

corresponding to the edge (v i , v2 ) (the calculation of the coding potential will be

described in Section 4.3.4). Let p = 0 • • • 0 L i, be a path in G corresponding to a

candidate gene. The path weight can be written as:



Figure 4.2 The site graph used for vertebrate gene detection.

Note: The boldface edges represent real exons-introns.
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If S is a set of paths, the weight of the optimal path in S is:

Now, let v be a vertex in SG and let (v i , v), , (vk , v) be all edges entering v. Let

S(v) be the set of all paths entering the vertex v. Let 0 represent the concatenating

operation, and ED represent the simple addition. The weight of the optimal path in

S(v), denoted Θ(S(v)), can be calculated as follows:

This recurrence formula can be used for computing θ(S(v)) given the set of weights

θ(S(vi )), i = 1, . . . , k. Thus, a dynamic programming algorithm can be used to find

the weight of the optimal path and locate the path itself in the graph G. This path

indicates the real exons (coding region) in the given genomic DNA sequence.

4.3.4 An HMM Model for Computing Coding Potentials

Because vertebrate genes have coding regions and noncoding regions, coding potential

is used here to measure the difference in statistical characteristics between coding and

noncoding regions. The approach for computing coding potentials is based on the

analysis of codon usage, which reflects the following phenomena [12]: The universal

structure of the genetic code, the average amino acid composition of proteins, the

genome-specific patterns of the usage of synonymous codons, and genes intend to

use preferred codons in the coding regions. The Codon Model is developed as the

basic unit for calculating coding potentials.

Figure 4.3 shows an HMM with 3 states and a set of transitions used for

modeling a codon in a vertebrate gene. The HMM is represented as a digraph where
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Figure 4.3 The Codon Model.

states correspond to vertices and transitions to edges. At each state, the HMM

generates a base b in {A, C, G, T} according to the state and transition probabilities.

Notice that, if the HMM generates base b = T in the first state, and generates base

b = A or b = G in the second state, the third state can only be b = C or b = T. In

other words, if the first state is base T, the transitions (from state 2 to state 3) A ---->

A, A —* G, G --> A and G ---> G are not defined. This is becauseTAA, TAG, TGAandTGG

are stop codons.

Let ftr(bi ,bi+1 ) be the state transition probability from state i to state i + 1

(the calculation of ftr(bi ,bi+1 ) will be described in Section 4.3.5). Let U codon^j be the

codon usage probability for a codon starting at position j in a coding region. This

can be written as:
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Let Paling  be the coding potential for a sequence with m bases. Then the coding

potential for the sequence can be calculated as follows:

In this study, the Equation (4.7) is used to calculate the coding potentials for

candidate exons, which are represented by the edges starting at the top vertices and

ending at the bottom vertices in the site graph G shown in Figure 4.2. Notice that

if the transition from state i to i + 1 does not exist, ftr(bi ,bi+1 ) is not defined.

If ftr(bi ,bi+1 ) is not defined, Ucodon^j is not defined, neither is Pcoding^m. This means

that, given a candidate exon represented as an edge in the graph G shown in Figure

4.2, if there are any undefined state transitions, that candidate exon has no coding

potential and it is not a real exon. A coding potential value of 0 is assigned to all

candidate introns that are represented by the edges starting at the bottom vertices

and ending at the top vertices in the site graph G shown in Figure 4.2.

4.3.5 Training and Predicting Algorithms

Let M represent the set of sequences that are randomly picked from a training data

set and let E be the set containing the remaining sequences in the training data

set. (In the study presented here, M contains about 10% of the sequences in the

training data set.) The Codon Model described in Section 4.3.4 is trained using

an expectation maximization (EM) [3] algorithm with the exons in set E. The

topology for the Codon Model is fixed, and all the transition probabilities and state

probabilities are initialized to random values. The program first picks one tenth

of the sequences from E and inputs them into the Codon Model; then, records the

number of the individual bases at each state and the number of individual transitions
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from one state to another state; finally, calculates the post probabilities for all the

states and transitions in the Codon Model.

Let Ttr(bi ,bi+1 ) be the total number of transitions from a base bi at state i to

a base b i+1 at state i +1 in the Codon Model. Let Tin be the total number of codons

that have been input into the model. The state transition probability ftr(bi,bi+1) in

the model can be calculated as follows:

The re-estimation procedure then adjusts all of the probabilities hidden in the Codon

Model. Newly picked sequences in E are then run through the model and the proba-

bilities are further refined. This process is iterated until ftr(bi ,bi+1 ) is maximized

or until E becomes empty. This algorithm is guaranteed to converge to a locally

optimal estimate of all the probabilities in the HMM [19].

Next, treat all the sequences in set M as unlabeled sequences and input each of

the sequences into the HMMs described in Section 4.3.1 to detect start sites, donor

sites and acceptor sites. Then the training algorithm constructs the site graph G

shown in Figure 4.2 for an input sequence with the detected functional sites on it.

The coding region for the input sequence is detected by dynamic programming as

specified in Equation (4.5). Comparing the detected coding region with the known

gene structures for each of the sequences in M, the approximation correlation (AC)

value introduced by Burset and Guigo [7] can be obtained (the calculation of the AC

value will be described in detail in Section 4.4.2). In a nutshell, the AC value is the

measure that summarizes the prediction accuracy at the nucleotide level. AC ranges

from -1 to 1. A value of 1 corresponds to a perfect prediction, while -1 corresponds to

a prediction in which each coding nucleotide is predicted as a non-coding nucleotide,

and vice versa. A value of 0 is expected for a random prediction [13]. The training

process is iterated until the AC value is maximized or the training data set becomes

empty.
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In the testing (prediction, respectively) phase where an unlabeled test (new,

respectively) sequence S is given, GeneScout first detects the functional sites on S

and then builds a directed acyclic graph G using the detected functional sites as

vertices. Next, GeneScout finds the optimal path on G and outputs the vertices

(functional sites) and edges on the optimal path, which displays the coding region

on S.

4.4 Experiments and Results

4.4.1 Data

In evaluating the accuracy of the proposed GeneScout system for detecting vertebrate

genes, this study adopted the database of human DNA sequences originally collected

by Burset and Guigo [7]. The authors used this database to compare a number

of gene-finding programs. The sequences in this database were obtained from

the vertebrate divisions of GenBank release 85.0 (October, 1994). There are 570

vertebrate sequences in the database and they all have simple and standard gene

structures. Each entry contains a complete coding sequence with no in-frame stop

codons. There are 28,992,149 nucleotides in these 570 sequences, and there are 2,649

exons, corresponding to 444,498 coding nucleotides. There are at least one exon and

one intron in each entry in the database. All the functional sites mentioned in the

chapter that appear in these sequences are standard sites. This means that all the

start sites have ATG as the start codon, and all the donor sites have GT and all the

acceptor sites have AG at appropriate positions [49]. This database now becomes the

standard data set for evaluating gene-finding programs.

The 10-way cross-validation method [46, 49] is applied to evaluate how well

GeneScout performs when tested on sequences that are not in the training data set.

Cross validation is a standard experimental technique for determining how well a

classifier performs on unseen data [19]. Specifically, the program randomly partition
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the 570 sequences at hand into 10 sets. These sets have roughly the same number of

exons and introns. For each run in the 10-way cross-validation experiment, nine out

of the ten sets are used as the training data set, and the remaining one set is used as

the test data set. The GeneScout system is trained using the training data set (i.e.,

all sequences excluding those in the test data set are used as the training data) and

then is tested on the sequences in the test data set. Thus, for each run, the training

data set contains 90% of the total exons and the test data set contains 10% of the

exons. Notice that each of the 570 sequences is used exactly once in the test data

set.

4.4.2 Results

Table 4.1 shows the results obtained in each run of cross-validation, and the average

over all the ten runs. The prediction accuracy is estimated at both the nucleotide level

and the exon level. At the nucleotide level, let TPA be the number of true positives,

FP, be the number of false positives, TAT, be the number of true negatives, and

FN, be the number of false negatives. A true positive is a coding nucleotide that is

correctly predicted as a coding nucleotide. A false positive is a non-coding nucleotide

that is incorrectly predicted as a coding nucleotide. A true negative is a non-coding

nucleotide that is correctly predicted as a non-coding nucleotide. A false negative

is a coding nucleotide that is incorrectly predicted as a non-coding nucleotide. The

sensitivity (Sr) and specificity (Sr) at the nucleotide level described in Table 4.1 are

defined as follows:

As mentioned before, the approximation correlation (AC) is the measure that

summarizes the prediction accuracy at the nucleotide level. AC ranges from -1 to 1.

A value of 1 corresponds to a perfect prediction, while -1 corresponds to a prediction



54

Table 4.1 Performance Evaluation of GeneScout System for Gene Detection

Nucleotide Exon
Run S1: Sr AC Se^n Sr

1 0.86 0.78 0.77 0.51 0.49
2 0.85 0.79 0.77 0.50 0.48
3 0.86 0.80 0.78 0.52 0.50
4 0.85 0.78 0.75 0.49 0.51
5 0.87 0.78 0.78 0.53 0.48
6 0.85 0.79 0.77 0.53 0.49
7 0.84 0.80 0.77 0.52 0.49
8 0.87 0.77 0.76 0.49 0.47
9 0.86 0.78 0.77 0.51 0.48
10 0.86 0.80 0.77 0.52 0.50

Average 0.86 0.79 0.77 0.51 0.49

in which each coding nucleotide is predicted as a non-coding nucleotide, and vice

versa. Formally, AC is defined as follows [7]:

At the exon level, let TPe be the number of true positives, FPe be the number of

false positives, TN, be the number of true negatives, and FNe be the number of false

negatives. A true positive is an exon that is correctly predicted as an exon. A false

positive is a non-exon that is incorrectly predicted as an exon. A true negative is a

non-exon that is correctly predicted as a non-exon. A false negative is an exon that

is incorrectly predicted as a non-exon. The sensitivity (S e^n) and specificity (Sr) at

the exon level described in Table 4.1 are defined as follows:
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Table 4.2 Comparison Between GeneScout and Other Systems for Gene Detection

Nucleotide Exon
System S7 ST AC Se Si,'
GeneScout 0.86 0.79 0.77 0.51 0.49
VEIL 0.83 0.72 0.73 0.53 0.49
FGENEH 0.77 0.88 0.78 0.61 0.64
GenelD 0.63 0.81 0.67 0.44 0.46
GeneParser 2 0.66 0.79 0.67 0.35 0.40
GenLang 0.72 0.79 0.69 0.51 0.52
GRAIL 2 0.72 0.87 0.75 0.36 0.43
SORFIND 0.71 0.85 0.73 0.42 0.47
Xpound 0.61 0.87 0.68 0.15 0.18

The result in Table 4.1 shows that, on average, GeneScout can correctly detect

86 percent of the coding nucleotides in the test data set. Among the predicted coding

nucleotides, 79 percent are real coding nucleotides. At the exon level, GeneScout

achieved a sensitivity of 51 percent and a specificity of 49 percent. This means

GeneScout can detect 51 percent of exons in the test data set with both of their 5'

and 3' ends being exactly correct.

Table 4.2 compares GeneScout with other gene finding tools on the same 570

vertebrate genomic DNA sequences. The performance data for the other tools shown

in the table are taken from the paper authored by Burset and Guigo [7] except for

the VEIL system, whose data is taken from the paper authored by Henderson et

al. [19] It can be seen from Table 4.2 that GeneScout is comparable to these other

programs: It is worth pointing out that, GeneScout beats the widely used neural

network based system, GRAIL 2 (the successor of GRAIL). GRAIL 2 detects 36

percent of the 2,649 exons in the 570 vertebrate sequences with a specificity of 43

percent, while GeneScout can detect 51 percent of these exons with a specificity of

49 percent.
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Table 4.3 Comparison Between GeneScout and GenScan Systems

Nucleotide Exon
System S7: Sp AC ST,' Sig
GenScan 0.93 0.90 0.91 0.78 0.81
GeneScout 0.86 0.79 0.77 0.51 0.49

GeneScout is also compared with another widely used gene-finding program,

GenScan, on the same 570 vertebrate genomic DNA sequences. A licensed copy of

GenScan was obtained from MIT's Web site (http://genes.mit.edu/  license.html),

and then ran the tool on the 570 sequences used in the experiments. Table 4.3

shows the result. It can be seen from the table that GenScan is more accurate than

GeneScout at both the nucleotide level and the exon level. However, as indicated

by GenScan's inventors Burge and Karlin [6], many of the 570 sequences collected

by Burset and Guigo [7] were used to train the GenScan system. This means that a

portion of the test sequences were used in GenScan's training process. In contrast,

GeneScout is tested on the sequences that are completely unseen in the training

phase. Table 4.4 shows the complementarity between GenScan and GeneScout.

For the 570 sequences that contained 444,498 coding nucleotides totally, GenScan

correctly predicted 93.2 percent of the coding nucleotides, while GeneScout correctly

predicted 86.1 percent of the coding nucleotides. If both systems are used together,

one can correctly predict (81.4% + 4.7% + 11.7%) = 97.8% of the total coding

nucleotides. This is higher than the sensitivity of each individual system.

4.5 Conclusions

In this chapter, the GeneScout data mining system is presented for detecting gene

structures in vertebrate genomic DNA. GeneScout uses hidden Markov models to

detect functional sites, including start codon sites, splicing junction donor sites

and acceptor sites. The main hypothesis is that, given a vertebrate genomic DNA
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Table 4.4 Complementarity Between GenScan and GeneScout Systems

Prediction
Results

Number of
coding nucleotides

Percentage of
coding nucleotides

GenScan
predicted correctly 414,049 93.2%

GeneScout
predicted correctly 382,712 86.1%

GeneScout and GenScan
both predicted correctly 361,821 81.4%

GeneScout predicted correctly
and GenScan missed 20,891 4.7%

GenScan predicted correctly
and GeneScout missed 52,228 11.7%

GenScan and GeneScout
both missed 9,558 2.2%

sequence S, it is always possible to construct a directed acyclic graph G such that the

path for the actual coding region of S is in the set of all paths on G. Thus, the gene

detection problem is reduced to the analysis of paths in the graph G. A dynamic

programming algorithm is employed by GeneScout to find the optimal path in G. The

system is trained using an expectation maximization algorithm, and its performance

on vertebrate gene detection is evaluated using the 10-way cross-validation method

on the data set collected by Burset and Guigo [7].

The experiment results show that, GeneScout can correctly detect 86% of the

coding nucleotides in the data set with 79% of detected coding nucleotides being

correct. The approximation correlation value is 0.77 in predicting coding nucleotides.

At the exon level, GeneScout achieves 51% sensitivity and 49% specificity. This

means that GeneScout can detect 51% of exons in the data set with both 5' and

3' ends being exactly correct. It was also shown experimentally that GeneScout

is comparable to existing gene discovery tools and complements the widely used

GenScan system.



CHAPTER 5

SUMMARY OF THE RESEARCH AND FUTURE STUDIES

5.1 Summary

The basic gene structure for higher eukaryotes includes promoter, start codon,

introns, exons and stop codon, etc. The boundaries between exons and introns are

called splicing junction sites. The exon sequences of a gene are called the coding

region of the gene. Identification or prediction of coding sequences from within

genomic DNA has been a major rate-limiting step in the pursuit of genes. Biologists

study gene structures based on lab experiments such as PCR on cDNA libraries,

Northern blot, sequencing, etc. However, characterizing the 60,000 to 100,000 genes

thought to be hidden in the human genome by means of merely lab experiments is

not feasible. A current trend is to complement the lab study with a bioinformatics

approach.

The bioinformatics approach for gene detection means using computer programs

to elucidate a gene structure from DNA sequence signals, including start codon,

splicing junction donor sites and acceptor sites, stop codon, etc. Since the 1990s, a

number of programs have been developed for locating gene coding regions. However,

the higher eukaryotic DNA sequence signals involved in gene determination are

usually ill defined, degenerate and highly unspecific. Given the current detection

methods it is usually impossible to distinguish the signals truly processed by the

cellular machinery from those that are apparently non-functional. So, as R. Guigo

indicated, automatic sequence analysis and structure elucidation for the genomes of

high eukaryotic organisms are far from being a reality.

This dissertation research is targeted toward developing effective and accurate

methods for identifying gene structures in the genomes of high eukaryotic organisms.

The first phase of this research is for functional sites modeling and detection as

presented in Chapters 2 and 3. The second phase, as presented in Chapter 4, is to
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combine the gene structure signal information with global gene structure information

to develop a full gene structure detection system.

Three effective hidden Markov models, the Donor Model, the Acceptor Model

and the Start Site Model, have been developed to represent the consensus and

degeneracy features of the functional sites in eukaryotic genes. In higher eukaryotic

DNA sequences, there are much more false functional sites than true sties. In order

to mine out the differences between the true sites and false sites, two programs have

been implemented for each model: True Donor Module and False Donor Module based

on the Donor Model, True Acceptor Module and False Acceptor Module based on the

Acceptor Model, True Start Site Module and False Start Site Module based on the Start

Site Model. To capture the consensus and degenerate features of the functional sites,

constant states and constant state transitions are introduced into the hidden Markov

models. This approach conceptually simplifies the functional site models and the

computation process of using the models. The HMM system based on the developed

models is fully trained using an expectation maximization (EM) algorithm and the

system performance is evaluated using a 10-way cross-validation method. Experi-

mental results show that the proposed HMM system can correctly detect 92% of the

true donor sites, 91.5% of the true acceptor sites and 90% of the true start sites in

the standard test data set containing real vertebrate gene sequences. The sensitivity

and specificity obtained in detecting functional sites are higher than those previously

reported. These results suggest that the proposed approach provides a useful tool in

discovering the splicing junction sites and start sites in eukaryotic genes.

The GeneScout data mining system is developed in this study for detecting gene

structures in vertebrate genomic DNA. GeneScout uses the lahidden Markov models

to detect functional sites, including start codon sites, splicing junction donor sites

and acceptor sites. The main hypothesis is that, given a vertebrate genomic DNA

sequence S, it is always possible to construct a directed acyclic graph G such that the
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path for the actual coding region of S is in the set of all paths on G. Thus, the gene

detection problem is reduced to the analysis of paths in the graph G. A dynamic

programming algorithm is employed by GeneScout to find the optimal path in G. The

system is trained using an expectation maximization algorithm, and its performance

on vertebrate gene detection is evaluated using the 10-way cross-validation method

on the data set collected by Burset and Guigo [7]. The experiment results show that,

GeneScout can correctly detect 86% of the coding nucleotides in the data set with

79% of detected coding nucleotides being correct. The approximation correlation

value is 0.77 in predicting coding nucleotides. At the exon level, GeneScout achieves

51% sensitivity and 49% specificity. This means that GeneScout can detect 51% of

exons in the data set with both 5' and 3' ends being exactly correct. It was also

shown experimentally that GeneScout is comparable to existing gene discovery tools

and complements the widely used GenScan system.

5.2 Future Studies

Future work includes the incorporation of more parameters or criteria into GeneScout.

One source of possible new parameters could be obtained from the analysis of

potential coding regions, such as preferred exon and intron lengths [18], and positions

of exon-intron junctions relative to the reading frame [11]. More functional sites such

as those in the upstream or downstream of a coding region may be also modeled.

These efforts will further improve GeneScout's performance to make it more accurate

for vertebrate gene detection.



APPENDIX A

GENESCOUT TOOLKIT

A.1 Overview of GeneScout

GeneScout is a general-purpose vertebrate gene structure prediction / detection

program. For each input genomic DNA sequence, GeneScout determines the most

optimal "path" (gene structure) according to probabilistic functional site models

and the global vertebrate gene properties. The goal of GeneScout is to find coding

regions in the genomic DNA sequences. Like all other major gene-finding systems,

GeneScout does not find the promoter at the very beginning of a gene structure as

well as the beginning or the end of transcription. A more accurate term for this

process might be "coding region detection", though traditionally the term "gene

detection" has been used when referring to these systems [29].

For each input DNA sequence, GeneScout will predict the most possible gene

structure. Then, the detected gene structure data will be output to a text file.

A.2 GeneScout Installation

GeneScout programs can be obtained in one of the format below:

1. GeneScout.tar:

Files included: GeneScout.exe (executable), sample.seq (the sample sequence

file).

2. GeneScoutsrc.tar:

Files included: GeneScout.c (source code), genescout.h (the head file used by

GeneScout.c), Makefile (make file for compiling GeneScout programs).

GeneScout installation should be very easy. Below are the suggested procedures

for installation on a Linux system. The "hiland> " symbol shown below refers to

the shell prompt.
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1. Create a directory for installing GeneScout, and copy the tar file to the newly

created directory. Extract the tar file:

hiland> mkdir GeneScout

hiland> cd GeneScout

hiland> cp <ORIDIR>/GeneScout*.tar

(Note: <ORIDIR> refers to the original directory in which the GeneScout tar

file is stored.)

hiland> tar -xvf GeneScout*.tar

If the tar file name is GeneScoutsrc.tar, compile the source code:

hiland> make

The make process will print the message below to the stdout if everything is OK:

gcc -c -o GeneScout.o GeneScout.c

rm -f GeneScout.exe

gcc -o GeneScout.exe GeneScout.o -1m

2. Set up the running environment:

hiland> chmod a+x GeneScout.exe

hiland> export PATH=$PWD:$PATH

3. The synopsis to run GeneScout is as follows:

GeneScout { -cds -exon } -seq <INPUT FILE> -out [<RESULT FILE>]

• -cds: GeneScout output option (see below).

• -exon: GeneScout output option (see below).

• -seq: flag indicating the next parameter will be the sequence file.

• <INPUT FILE>: name of the input file where the DNA sequences are stored.

• -out: flag indicating the next parameter will be the output file name.
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• [< OUTPUT FILE>]: name of the output file where the gene detection

results will be stored. If this parameter is not provided, the output will print

to the screen.

A.3 GeneScout Input Sequence File

The command line arguments for GeneScout programs are described above. The

sequence file used by GeneScout must have the format as shown in Figure A.1.

The sequence file should begin with a single-line for the sequence name and a brief

description followed by lines of sequence data. The sequence name line always starts

with a greater-then(" >") symbol in the first column. The sequence data can be

upper or lower case.

A.4 GeneScout Output

Depending on the first argument, GeneScout will print different content to the

sequence output file. For example, if running GeneScout programs by entering the

command below:

hiland> GeneScout.exe -cds -seq sample.seq -out testout

the output will be like the text shown in Figure A.2. And, if running GeneScout

programs by entering the command below:

hiland> GeneScout.exe -exon -seq sample.seq -out testout

the output will be like the text shown in Figure A.3.



Figure A.1 Sample GeneScout input sequence file.
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GeneScout output:
Format: Simple

65

Predicted Gene Structure:
(The numbers below are the positions on the input
sequence for start, donor, acceptor, donor...)

ALOEGLOBIM 145 236 360 598 1070 1169 1329 1398

Figure A.2 Simple GeneScout output format.



GeneScout output:
Format: Exon

66

Input sequence length: 1691.

Predicted Gene Structure:

Sequence Name: ALOEGLOBIM
Number of exons detected: 4

Exon Number Begin At End At Length
1 145 236 92
2 360 598 239
3 1070 1169 100
4 1329 1398 67

Lenth of Coding Region: 501 by

Figure A.3 GeneScout output: Exon format.



* *
* **** ***************** **** **************** ***** **************** **/

*
*
*
*
*
*
*
*
*
* *

This is the main part of GeneScout program source code, 	 *
and it may not be the up-to-date version. 	 *
Programmer(s) makes no representations about the 	 *
suitability of this software for any purpose. 	 *
It is provided "as is" without express or implied 	 *
warranty. 	 *

(c) Copyright 2002 *
All rights reserved *

*
Program written by Michael M. Yin, Ph. D student *
in the group of Professor Jason T.L. Wang *
Department of Computer Science *
College of Computing Sciences *
New Jersey Institute of Technology *
University Heights, Newark, NJ 07102, USA *

APPENDIX B

GENESCOUT PROGRAMS SOURCE CODE

B.1 GeneScout.c

/*****************************************************************
* *

/*
* GeneScout.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "splicehmm.h"

#define START 	 1
#define DONOR 	 2
#define ACCEPTOR 3
#define STOP 	 4
typedef struct Trans
{

long tcnt; //num of trans--edges
/*
tfreq: trans frequency.
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A->T, G->T, C->T, T->T
tfreq of A->T = (tcnt of A->T)/#.of motif
*/

double tfreq; //frequence of this trans
} trans;

typedef struct Base
{

long bolt; 	 //base count
double bfreq; 	 //freq for this base
trans toA, toG, toC, toT; //edges out from this base

} base;

typedef struct State //HMM state
{

base A, G, C, T;
} state;

typedef struct SiteData
{

int seqNum;
int siteNum;
double P_t;
double P_f;
double score;

} siteData;
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state
state
state
state
state
state

aHMM_T[amotifLen];
aHMM_F[amotifLen];
dHMM_T[dmotifLen];
dHMM_F[dmotifLen];
sHMM_T[smotifLen];
sHMM_F[smotifLen];

//true acceptor HMM
//false acceptor HMM

int TotalSeq;
/*total number of false donor sites extracted*/
int totalF = 0;
int totalT = 0;
char seq[MAXLENGTH];
int totalTP = 0;
int totalFP = 0;
/******** In head file *****
double apA, apG, apC, apT,



afpA, afpG, afpC, afpT,
dpA, dpG, dpC, dpT,
dfpA, dfpG, dfpC, dfpT,
sfpA, sfpG, sfpC, sfpT,
spA, spG, spC, spT;

*********************/

double p_t, p_f;

typedef struct spsite
{

int bp; 	 //base position
int kind; //SART, DONOR ....
int TP; 	 //True Positive Known
struct spsite *pred;
struct spsite *next;
struct spsite *next_site;
long HiScore; //coding base pares
double score; //score for this site only
int index; //index in the linked list
int startFound;
int nextStop; //only for Acceptor for next STOP codon

spSite;

spSite *acc, *don, *sta, *tmp;

main(int argc, char** argv)
{

char seq_file[50];
char cds_out[50];
FILE * CDS_Out;
FILE * F_In;
int type; //1 for simple output, 2 for exon output
if (argc < 5)

printf("\n USAGE: GeneScout { -cds I -exon }

-seq <INPUT FILE> -out [RESULT FILE]\n");
printf("\n\n\tWelcome to use Gene Structure

Detecting Program!\n");
if(strcmp(argv[1], "-cds") == 0)

type = 1;
else if(strcmp(argv[2], "-exon") == 0)

type = 2;
strcpy(seq_file, argv[3]);
HmmGetFreq();
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if ((F_In = f open (seq_file, "r")) == NULL)
{

printf("ERROR: %s file open.\n", seq_file);
exit(0);

}
if(argc > 5)
{

strcpy(cds_out, argv[5]);
if ((CDS_Out = fopen (cds_out, "w")) == NULL)
{

printf("ERROR: %s file open.\n", cds_out);
exit(0);

}
}

else
{

strcpy(cds_out, "sddout");
CDS_Out = stdout;

}
printf("\n\n\tThe input sequence file is: %s", seq_file);
printf("\n\tThe out put results will be in: %s\n", cds_out);
printf("\n\n\tExecuting 	 u);

SiteDetect(F_In, CDS_Out, type);
printf("\n\n\tGeneScout finished gene structure

detection successfully.");
fclose(F_In);
fclose(CDS_Out);
return 0;

}

/*
* int HmmGetFreq() to initialize all the HMMs by
* the data in the header file
* This means no training but use the training
* data before
*/
int _HmmGetFreq(state *HMM, int motifLen, double *arry)
{

int arrylen = motifLen * 16;
int i, j;
j = -1;
for (i = 0; i < motifLen; i++)
{

HMM[i].A.toA.tfreq = arry[++j];
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HMMM.A.toG.tfreq = arry[++j];
HMM[i].A.toC.tfreq = arry[++j];
HMM[i].A.toT.tfreq=arry[++j];

HMM[i] .G.toA.tfreq
HMM[i] .G.toG.tfreq
HMM[i] .G.toC.tfreq
HMM[i] .G.toT.tfreq

HMM[i] .C.toA.tfreq
HMM[i] .C.toG.tfreq
HMM[i] .C.toC.tfreq
HMM[i] .C.toT.tfreq

HMM[i] .T.toA.tfreq
HMM[i] .T.toG.tfreq
HMM[i] .T.toC.tfreq
HMM[i] .T.toT.tfreq

arry[-F+j] ;
arry[++j] ;
arry[++j] ;
arry[++j] ;

= arry[++j];
= arry[++j];
= arryl++j];
= arry[++j];

= arry[++j];
= arry[++j];
= arry[++j];
= arry[++j];

int HmmGetFreq()
{

_HmmGetFreq(aHMM_T, amotifLen, t_acept);
_HmmGetFreq(aHMM_F, amotifLen, f_acept);
_HmmGetFreq(dHMM_T, dmotifLen, t_donor);
_HmmGetFreq(dHMM_F, dmotifLen, f_donor);
_HmmGetFreq(sHMM_T, smotifLen, t_start);
_HmmGetFreq(sHMM_F, smotifLen, f_start);

void SiteClassif(char *d, int motifLen, state *HMM_T,
state *HMM_F, int kind)

int i;
int j = 0;
char chl, ch2;
double pA, pG, pC, pT, fpA, fpG, fpC, fpT;
if (kind == DONOR)

pA = dpA; pG = dpG; pC = dpC; pT = dpT;
fpA = dfpA; fpG = dfpG; fpC = dfpC; fpT = dfpT;



}
else if (kind == ACCEPTOR)
{

pA = apA; pG = apG; pC = apC; pT = apT;
fpA = afpA; fpG = afpG; fpC = afpC; fpT = afpT;

}
else if (kind == START)
{

pA = spA; pG = spG; pC = spC; pT = spT;
fpA = sfpA; fpG = sfpG; fpC = sfpC; fpT = sfpT;

}

if (j < 1)
{

j++;

}
p_t = p_f = 1.0;
for (i = 0; i < motifLen; i++)
{

chl = d[i];
ch2 = d[i+1];

switch (chi)
{

case 'A':
if (i == motifLen-1)
{

p_t = p_t/pA;
p_f = p_f/fpA;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].A.toA.tfreq/pA;
p_f *=HMM_F[i].A.toA.tfreq/fpA;
break;
case 'G':
p_t *=HMM_T[i].A.toG.tfreq/pA;
p_f *=HMM_F[i].A.toG.tfreq/fpA;
break;
case 'C':
p_t *=HMM_T[i].A.toC.tfreq/pA;
p_f *=HMM_F[i].A.toC.tfreq/fpA;
break;
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case 'T':
p_t *=HMM_T[i].A.toT.tfreq/pA;
p_f *=HMM_F[i].A.toT.tfreq/fpA;
break;

}

break;
case 'G':
if (i == motifLen-1)
{

p_t = p_t/pG;
p_f = p_f/fpG;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].G.toA.tfreq/pG;
p_f *=HMM_F[i].G.toA.tfreq/fpG;
break;
case 'G':
p_t *=HMM_T[i].G.toG.tfreq/pG;
p_f *=HMM_F[i].G.toG.tfreq/fpG;
break;
case 'C':
p_t *=HMM_T[i].G.toC.tfreq/pG;
p_f *=HMM_F[i].G.toC.tfreq/fpG;
break;
case 'T':
p_t *=HMM_T[i].G.toT.tfreq/pG;
p_f *=HMM_F[i].G.toT.tfreq/fpG;
break;

}

break;
case 'C':
if (i == motifLen-1)
{

p_t = p_t/pC;
p_f = p_f/fpC;
break;
}

switch (ch2)
{
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case 'A':
p_t *=HMM_T[i].C.toA.tfreq/pC;
p_f *=HMM_F[i].C.toA.tfreq/fpC;
break;
case 'G':
p_t *=HMM_T[i].C.toG.tfreq/pC;
p_f *=HMM_F[i].C.toG.tfreq/fpC;
break;
case 'C':
p_t *=HMM_T[i].C.toC.tfreq/pC;
p_f *=HMM_F[i].C.toC.tfreq/fpC;
break;
case 'T':
p_t *=HMM_T[i].C.toT.tfreq/pC;
p_f *=HMM_F[i].C.toT.tfreq/fpC;
break;

}

break;
case 'T':
if (i == motifLen-1)
{
p_t = p_t/pT;
p_f = p_f/fpT;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].T.toA.tfreq/pT;
p_f *=HMM_F[i].T.toA.tfreq/fpT;
break;
case 'G':
p_t *=HMM_T[i].T.toG.tfreq/pT;
p_f *=HMM_F[i].T.toG.tfreq/fpT;
break;
case 'C':
p_t *=HMM_T[i].T.toC.tfreq/pT;
p_f *=HMM_F[i].T.toC.tfreq/fpT;
break;
case 'T':
p_t *=HMM_T[i].T.toT.tfreq/pT;
p_f *=HMM_F[i].T.toT.tfreq/fpT;
break;
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}
break;

}

}

void SiteDetect(FILE *F_In, FILE *CdsOut, int type)
{

int i,j,k,n,p,m,q,kd, at, ft, seqlen, exonlen;

int thisSeqTotal;
int thisSeqTotalD;
int thisSeqTotalS;
char accept[amotifLen + 1];
char donor[dmotifLen + 1];
char start[smotifLen + 1];
char seq[MAXLENGTH], T[100];
char ch;
int TotalD = 0;
int TotalDD = 0;
int totalDTP = 0;
int totalDFP = 0;
int TotalS = 0;
int flag = 0;
int stop1 = 0;
int stop2 = 0;
int stop3 = 0;
int frame;
int f;
int no_acc; 	 //number of acceptor and start sites
int no_don; 	 //number of donor sites
int no_sta;
int stats[14];
int statsT[14];
double s;
double ss;
double score;
char CDS_arry[5000];
int site_arry[100];
char *temp;
char seqName[100];
int site = 0;
int siteD = 0;
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int siteS = 0;

double SnSum = 0.0;
double SpSum = 0.0;

int *mycdsarry, mycdstotal;
/*2-dimantional array fo holding the frame length**/
/* Frame[no_acc][no_doc]; */
int **Frame;
spSite *aCurrent, *dCurrent, *sCurrent, *pred;
spSite **a_d_arry;
int currentHiScore;
acc = (spSite*)malloc(sizeof(spSite));
don = (spSite*)malloc(sizeof(spSite));
if (don == NULL)

printf("Donor structure maloc error\n");
aCurrent = acc;
dCurrent = don;
dCurrent->next = NULL;
aCurrent->next = NULL;
seq[0] = '\0';
T[0] = '\0';
p_t = 1.0;
p_f = 1.0;

at = 0;
ft = 0;
rewind(F_In);
fprintf(CdsOut, "\nGeneScout output:");
if (type == 1)
{

fprintf(CdsOut, "\nFormat: Simple\n\n");
}

else
fprintf(CdsOut, "\nFormat: Exon\n\n");

fprintf(CdsOut, "\nInput sequence:");
TotalSeq = 1;
for (n = 0; n < TotalSeq; n++)

flag = 0;
no_acc = 0;
no_don = 0;
no_sta = 0;
memset(seq, '\0', 50000);
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memset(seqName, '\0', 100);
if (fgets(T, MAXLENGTH, F_In) != NULL)

{

printf(CdsOut, "\n%s",T);
if (T[0] == '>')
{

for(i = 0; i < strlen(T) - 2; i++)
segName[i] = T[i+1];

fgets(T, MAXLENGTH, F_In);
fprintf(CdsOut, "%s",T);

}
if (T[strlen(T) -1] == '\n')

T[strlen(T) - 1] = '\0';
strcat(seq, T);
while (flag == 0)
{

if ((fgets(T, MAXLENGTH, F_In) == NULL)
(T[0] == '>'))
flag = 1;

else
{

fprintf(CdsOut, "%s",T);
if (T[strlen(T) -1] == '\n')

T[strlen(T) - 1] = '\0';
strcat(seq, T);

}
}
seqlen = strlen(seq);
fprintf(CdsOut,

"\n\nInput sequence length: %i.", seqlen);
fprintf(CdsOut, "\n\nPredicted Gene Structure:\n");
thisSeqTotalD = 0;
thisSeqTotalS = 0;
k = 1;
kd = 0;
for (i=3; i < seqlen - 7; i++)
{

/****ACCEPTOR DETECT****************/
if((i>=15)&&(seq[i] == 'A') && (seq[i+1] == 'G'))
{

TotalD++;
p = i-13;
for (m = 0; m < amotifLen; m++)
{
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accept [m] = seq[p++];
}

accept[amotifLen] = '\0';

SiteClassif(accept, amotifLen, aHMM_T, aHMM_F,
ACCEPTOR);
score = p_t/p_f;
if (score >= 0.1)
{

tmp = (spSite*)malloc(sizeof(spSite));
if (tmp == NULL)

printf ("tmp1 memory allocate error\n");
tmp->kind = ACCEPTOR;
tmp->bp = i + 3;
tmp->score = score;
tmp->nextStop = 0;
tmp->next = NULL;
tmp->next_site = NULL;
aCurrent->next = tmp;
aCurrent = aCurrent->next;
tmp = NULL;
no_acc++;
thisSeqTotal++;

}
//printf("Still in the aceptor\n");

}
// 	 printf("\nGot in here now");

/********** START DETECT***********/

else if ((i >= 17)
&& (seq[i] == 'A') && (seq[i+1] == 'T')
&& (seq[i+2] == 'G'))

{

// 	 printf("\nGot in here now");
TotalS++;
p = i - 12;
for (m = 0; m < smotifLen; m++)
{

start[m] = seq[p++];
}

start[smotifLen] = '\0';
SiteClassif(start, smotifLen, sHMM_T, sHMM_F, START);
if (p_f <= 0)



{

score = -1;
printf("\n ERROR, p_f: %f", p_f);

}

score = p_t/p_f;
if (score >= 0.01)
{

tmp = (spSite*)malloc(sizeof(spSite));
if (tmp == NULL)

printf ("tmp2 memory allocate error\n");
tmp->kind = START;
tmp->bp = i + 1;
tmp->score = score;
tmp->nextStop = 0;
tmp->next_site = NULL;
aCurrent->next = tmp;
aCurrent = aCurrent->next;
aCurrent->next = NULL;
tmp = NULL;
no_acc++;

thisSeqTotalS++;
}

}

/****END FOR START DETECT*****/
/********** DONOR DETECT ***********/

else if ((seq[i] == 'G') && (seq[i+1] == 'T'))
{

TotalDD++;
p = i-3;
for (m = 0; m < 9; m++)
{

donor[m] = seq[p++];
}
donor[9] = '\0';
SiteClassif (donor, dmotifLen, dHMM_T,

dHMM_F, DONOR);
score = p_t/p_f;
if (score >= 0.1)
{

tmp = (spSite*)malloc(sizeof(spSite));
if (tmp == NULL)

printf ("tmp1 memory allocate error\n");
tmp->kind = DONOR;
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tmp->bp = i;
tmp->score = score;
tmp->next = NULL;
tmp->nextStop = 0;
tmp->next_site = NULL;
dCurrent->next = tmp;
dCurrent = dCurrent->next;
tmp = NULL;

no_don++;
thisSeqTotalD++;

}

/***populate the index field in the linked lists****/
aCurrent = acc->next;
for (i = 0; i < no_acc; i++)
{

aCurrent->index = i;
aCurrent->HiScore = 0;
aCurrent->pred = NULL;
aCurrent->startFound = 0;
aCurrent = aCurrent->next;

}

dCurrent = don->next;
for (i = 0; i < no_don; i++)
{

dCurrent->index = i;
dCurrent->HiScore = 0;
dCurrent->pred = NULL;
dCurrent->startFound = 0;
dCurrent = dCurrent->next;

}

a_d_arry = malloc((no_acc+no_don)*sizeof(spSite*));
aCurrent = acc->next;
dCurrent = don->next;
for (i = 0; i < no_acc + no_don; i++)
{

if (dCurrent == NULL)

{
a_d_arry[i] = aCurrent;
aCurrent = aCurrent->next;

}

else if (aCurrent == NULL)
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a_d_arry[i] = dCurrent;
dCurrent = dCurrent->next;

}
else if (aCurrent->bp <= dCurrent->bp)
{

a_d_arry[i] = aCurrent;
aCurrent = aCurrent->next;

}
else if (dCurrent->bp < aCurrent->bp)
{

a_d_arry[i] = dCurrent;
dCurrent = dCurrent->next;

}

}
/********PLACE FOR EXON DETECT********/
Frame = malloc(no_acc*sizeof(int*));
for (i = 0; i< no_acc; i++)

Frame[i] = malloc(no_don*sizeof(int));
if (Frame == NULL)

printf("Seq %d, Mem problem\n", n+1);
for (i=0; i<no_acc; i++)

for (j=0; j<no_don; j++)
Frame[i][j] = 0;

aCurrent = acc->next;
for (i = 0; i< no_acc; i++)
{

dCurrent = don->next;
for (j = 0; j < no_don; j++)
{

if (aCurrent->bp < dCurrent->bp)

frame = 1;
if (aCurrent->kind == START)
{

for (m = aCurrent->bp-1;
m+3 <= dCurrent->bp - 1; m=m+3)

{

if (((seq[m] == 'T') && (seq[m+1] == 'A') &&
(seq[m+2] == 'A')) I I ((seq[m] == 'T') &&
(seq[m+1] == 'A') && (seq[m+2] == 'G')) II
((seq[m] == 'T') && (seq[m+1] == 'G') &&

(seq[m+2] == 'A')))
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frame = 0;
break;

}

}

if (frame == 1)
Frame[i][j] = dCurrent->bp - aCurrent->bp;

}

else if (aCurrent->kind == ACCEPTOR)/*acceptor*/
{ frame = 1;

for(m = aCurrent->bp; m+3 <= dCurrent->bp - 1; m=m+3)
{
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frame = 1;

if (((seq[m] == 'T') &&
(seq[m+2] == 'A')) II

(seq[m+1] == 'A') &&
((seq[m] == 'T') &&

(seq[m+1] == 'A') 	 &&
((seq[m] == 'T') 	 &&
(seq[m+2] == 'G'))

(seq[m+1] == 'G') 	 &&
(seq[m+2] == 'A')))

{

frame = 0;
break;

}
}

if (frame != 1)
{

frame = 1;
for(m = aCurrent->bp+1;

m+3 <= dCurrent->bp - 1; m=m+3)

&& (seq[m+1] == 'A') &&
II ((seq[m] == 'T') &&

&& (seq[m+2] == 'G')) II
((seq[m] == 'T') && (seq[m+1] == 'G') &&

(seq[m+2] == 'A')))
{

frame = 0;
break;

}
}

}

if (frame != 1)
{

frame = 1;
for (m = aCurrent->bp+2;

m+3 <= dCurrent->bp - 1; m=m+3)

{

if(((seq[m] == 'T')
(seq[m+2] == 'A'))
(seq[m+1] == 'A')



{

if(((seq[m] == 'T')
(seq[m+2] == 'A'))
(seq[m+1] == 'A')

&& (seq[m+1] == 'A') &&
II ((seq[m] == 'T') &&

&& (seq[m+2] == 'G')) II
((sec[m] == 'T') && (seq[m+1] == 'G') &&

(seq[m+2] == 'A')))

frame = 0;
break;

}
}

}

if (frame == 1)
{

stop1 = stop2 = stop3 = 0;
Frame[i][j] = dCurrent->bp - aCurrent->bp;
/* Add STOP codon (nextStop) inf or here */
for(m = aCurrent->bp; m+3 <= seqlen; m = m+3)
{

if(((seq[m] == 'T') && (seq[m+1] == 'A') &&
(seq[m+2] == 'A')) II ((seq[m] == 'T') &&
(seq[m+1] == 'A') && (seq[m+2] == 'G')) II
((seq[m] == 'T') && (seq[m+1] == 'G') &&

(seq[m+2] == 'A')))
{

aCurrent->nextStop = m+3;
break;

}

}

for(m = aCurrent->bp; m+3 <= seqlen; m = m+3)
{

if(((seq[m+1] == 'T') && (seq[m+2] == 'A') &&
(seq[m+3] == 'A')) II ((seq[m+1] == 'T') &&
(seq[m+2] == 'A') && (seq[m+3] == 'G')) II
((seq[m+1] == 'T') && (seq[m+2] == 'G') &&

(seq[m+3] == 'A')))
{

if (m+1 > aCurrent->nextStop)
aCurrent->nextStop = m + 4;

break;
}

}

for (m = aCurrent->bp; m+3 <= seqlen; m = m+3)
{
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if 	 (((seq[m+2] == 	 'T') 	 && (seq[m+3] == 'A')
(seq[m+4] == 'A')) 	 II ((seq[m+2] == 'T')
(seq[m+3] 	 == 	 'A') && (seq[m+4] == 'G'))
((seq[m+2] == 	 'T') 	 && (seq[m+3] == 'G')

(seq[m+4] == 	 'A')))

if (m+2 > aCurrent->nextStop)
aCurrent->nextStop = m + 5;

break;
}

}
}

}/*else acceptor*/

}/*if(acc[i].bp < ..)*/
if (dCurrent->next != NULL)

dCurrent = dCurrent->next;
}/*for(j = 0; )*/
if (aCurrent != NULL)

aCurrent = aCurrent->next;
}/*for(i=0;..*/

/******** REAL GENE STRUCTURE SITES *******************/
/* Here asume that a gene always start at START codon */
dCurrent = don->next;
for (i = 0; i < no_don; i++)
{

aCurrent = acc->next;
for (q = 0; q < no_acc; q++)
{

if (aCurrent->bp >= dCurrent->bp)
break;

if (aCurrent->kind == START &&
(Frame[aCurrent->index][dCurrent->index]
> dCurrent->HiScore))

{

dCurrent->HiScore
= Frame[aCurrent->index][dCurrent->index];
dCurrent->startFound = 1;
dCurrent->pred = aCurrent;

}
aCurrent = aCurrent->next;



dCurrent = dCurrent->next;
}
for (i = 0; i < no_acc + no_don; i++)
{

if(a_d_arry[i] != NULL)
{

if ( a_d_arry[i]->kind == START)
{

//Already did as below bef or
//a_d_arry[i]->pred = NULL;
//a_d_arry[i]->HiScore = 0;

1
else if (a_d_arry[i]->kind == DONOR

&& a_d_arry[i]->score > 0.5)
{

aCurrent = acc->next;
currentHiScore = 0;
pred = NULL;
for (q = 0; q < no_acc; q++)
{

if((aCurrent->bp < a_d_arry [i] ->bp)
&& (aCurrent->startFound == 1))

{
if(Frame[aCurrent->index][a_d_arry[i]->index] > 60 &&

a_d_arry[i]->HiScore < aCurrent->HiScore +
Frame[aCurrent->index][a_d_arry[i]->index])

{

a_d_arry[i]->HiScore = aCurrent->HiScore +
Frame[aCurrent->index][a_d_arry[i]->index];
a_d_arry[i]->pred = aCurrent;
a_d_arry[i]->startFound = 1;

}
}
aCurrent = aCurrent->next;

}
}
else if ( a_d_arry[i]->kind == ACCEPTOR)
{

dCurrent = don->next;
currentHiScore = 0;
pred = NULL;
for (q = 0; q < no_don; q++)
{

if((dCurrent->bp < a_d_arry [i] ->bp)
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&& (dCurrent->startFound == 1))
{

if (a_d_arry[i]->HiScore < dCurrent->HiScore)
{

a_d_arry[i]->HiScore = dCurrent->HiScore;
a_d_arry[i]->pred = dCurrent;
a_d_arry[i]->startFound = 1;

}
}

dCurrent = dCurrent->next;
}

}
}
else

break;
}

rrent = acc->next;
currentHiScore = aCurrent->HiScore;
dCurrent = aCurrent;
while (aCurrent != NULL)
{

if (aCurrent->kind == ACCEPTOR && aCurrent->nextStop <= 0)
aCurrent->nextStop = aCurrent->bp;

if (aCurrent->HiScore > currentHiScore)
{

currentHiScore = aCurrent->HiScore ;
dCurrent = aCurrent;

}
aCurrent = aCurrent->next;

}
if(dCurrent->pred != NULL)
{

mycdstotal = 0;
while(dCurrent->pred != NULL)
{

mycdstotal++;
dCurrent->pred->next_site = dCurrent;
//finally aCurrent will be the first for START
aCurrent = dCurrent->pred;
dCurrent = dCurrent->pred;

}
mycdstotal = mycdstotal + 2;
mycdsarry = malloc(mycdstotal*sizeof(int));
i = 0;
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while (aCurrent != NULL)
{

mycdsarry[i++] = aCurrent->bp;
//fprintf(CdsOut, "%d ",aCurrent->bp);
dCurrent = aCurrent;
aCurrent = aCurrent->next_site;

}
//fprintf(CdsOut, " %d\n",dCurrent->nextStop);
mycdsarry[i] = dCurrent->nextStop;
if(mycdsarry[i] < mycdsarry[i-1] + 30)

i = i - 2;
if (type == 1)
{

fprintf(CdsOut,
"(The numbers below are the site positions on the sequence");

fprintf(CdsOut,
"\n for start, donor, acceptor, donor...)\n\n");

fprintf(CdsOut," %s: ", seqName);
for(j = 0; j <= i; j++)
{

fprintf(CdsOut, "%d ", mycdsarry[j]);
}

fprintf(CdsOut, "\n");
}
else
{

seqien = 0;	 // reuse this var for coding regin length
fprintf(CdsOut,

"\nSequnce Name: %s", seqName);
fprintf(CdsOut,

"\nNumber of exons detected: %i\n", (i+1)/2);
fprintf(CdsOut,

"\n\tExon Number Start At End At Length");
fprintf(CdsOut,

"\n\t 	 u);

m = 1;
for(j = 0; j <= i-1; j=j+2 )
{

exonlen = mycdsarry[j+1] - mycdsarry[j] + 1;
seqlen = seqlen + exonlen;
fprintf(CdsOut, "\n\t 	 %i\t\t%i\t%i\t%i" ,

m++, mycdsarry[j], mycdsarry[j+1], exonlen);
}

fprintf(CdsOut,



"\n\nLenth of Coding Region: %i bp\n\n", seqlen);
}
free (mycdsarry);

}

else // (dCurrent->pred == NULL)
{

printf("\nHere is a NULL, Seq #%d\n", n+1);
//continue,

}

/******** FREE THE LIST MEMORY *******/
for (i =0; i < no_acc; i++)

free(Frame[i]),
free(Frame);

//free acc and don linked list for this seq
Current = acc->next;
while (aCurrent != NULL)
{

tmp = aCurrent->next;
aCurrent->next = NULL;
free(aCurrent),
aCurrent = tmp;

}

aCurrent = don->next;
while (aCurrent != NULL)
{

tmp = aCurrent->next;
aCurrent->next = NULL;
free(aCurrent);
aCurrent = tmp;

}

free(a_d_arry);
//free(mycdsarry);
aCurrent = acc;
dCurrent = don;

}/* if (fgets(T, ....)*/
}/*for (n = 0,, n < TotalSeq,..)*/
}/*end of func*/

void HmmInitialize (state *HMM, int motifLen)
{

int i;

88



for ( i = 0; i < motifLen; i++ )
{

HMM[i].A.bcnt = 0;
HMM[i].A.toA.tcnt = 0;
HMM[i].A.toA.tfreq = 0.0;
HMM[i].A.toG.tcnt = 0;
HMM[i].A.toG.tfreq = 0.0;
HMM[i].A.toC.tcnt = 0;
HMM[i].A.toC.tfreq = 0.0;
HMM[i].A.toT.tcnt = 0;
HMM[i].A.toT.tfreq = 0.0;

HMM[i].G.bcnt = 0;
HMM[i].G.toA.tcnt = 0;
HMM[i].G.toA.tfreq = 0.0;
HMM[i].G.toG.tcnt = 0;
HMM[i].G.toG.tfreq = 0.0;
HMM[i].G.toC.tcnt = 0;
HMM[i].G.toC.tfreq = 0.0;
HMM[i].G.toT.tcnt = 0;
HMM[i].G.toT.tfreq = 0.0;

HMM[i].C.bcnt = 0;
HMM[i].C.toA.tcnt = 0;
HMM[i].C.toA.tfreq = 0.0;
HMM[i].C.toG.tcnt = 0;
HMM[i].C.toG.tfreq = 0.0;
HMM[i].C.toC.tcnt = 0;
HMM[i].C.toC.tfreq = 0.0;
HMM[i].C.toT.tcnt = 0;
HMM[i].C.toT.tfreq = 0.0;

HMM[i].T.bcnt = 0;
HMM[i].T.toA.tcnt = 0;
HMM[i].T.toA.tfreq = 0.0;
HMM[i].T.toG.tcnt = 0;
HMM[i].T.toC.tcnt = 0;
HMM[i].T.toC.tfreq = 0.0;
HMM[i].T.toT.tcnt = 0;
HMM[i].T.toT.tfreq = 0.0;
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B.2 Sample Program For Functional Site Detection

/*****************************************************************
* *

(c) Copyright 2002 	 *
All rights reserved 	 *

* *
Program written by Michael M. Yin, Ph. D student 	 *
in the group of Professor Jason T.L. Wang 	 *
Department of Computer Science 	 *
College of Computing Sciences 	 *
New Jersey Institute of Technology 	 *
University Heights, Newark, NJ 07102, USA 	 *

* *
This is a code example for functional site detection 	 *
and it may not be the up-to-date version. 	 *
Programmer(s) makes no representations about the 	 *
suitability of this software for any purpose. 	 *
It is provided "as is" without express or implied 	 *
warranty. 	 *

* *
*****************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

typedef struct Trans
{
long tcnt; //num of trans--edges
double tfreq; //frequence of this trans
} trans;

typedef struct Base
{

long bcnt; 	 //base count
double bfreq; 	 //freq for this base
trans toA, toG, toC, toT; //edges out from this base
} base;

typedef struct State //HMM state
{

base A, G, C, T;
} state;
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typedef struct SiteData
{

int seqNum;
int siteNum;
double P_t;
double P_f;
double score;

siteData;
siteData seqData[2500];
state HMM_T[9];
state HMM_F[9];
#define motifLen 9
#define MAXLENGTH 50000
#define MaxSeq 2000

int TotalSeq;
/*total number of false donor sites extracted*/
int totalF = 0;
int totalT = 0;
char seq[MAXLENGTH];

double pA, pG, pC, pT,
fpA, fpG, fpC, fpT;

//double p_t = 0.0;
//double p_f = 0.0;
//double pcp_t = 0.0;
//double pcp_f = 0.0;

double p_t, p_f;

FILE *F_In, *F_Out, *CDS_In;

void Hmmlnitialize (state *HMM)
{

int i;
for ( i = 0; i < motifLen; i++ )
{

HMM[i].A.bcnt = 0;
HMM[i].A.toA.tcnt = 0;
HMM[i].A.toA.tfreq = 0.0;
HMM[i].A.toG.tcnt = 0;
HMM[i].A.toG.tfreq = 0.0;
HMM[i].A.toC.tcnt = 0;

91



HMM[i].A.toC.tfreq= 0.0;
HMM[i].A.toT.tcnt = 0;
HMM[i].A.toT.tfreq = 0.0;

HMM[i].G.bcnt = 0;
HMM[i].G.toA.tcnt = 0;
HMM[i].G.toA.tfreq = 0.0;
HMM[i].G.toG.tcnt = 0;
HMM[i].G.toG.tfreq = 0.0;
HMM[i].G.toC.tcnt = 0;
HMM[i].G.toC.tfreq = 0.0;
HMM[i].G.toT.tcnt = 0;
HMM[i].G.toT.tfreq= 0.0;

HMM[i].C.bcnt = 0;
HMM[i].C.toA.tcnt = 0;
HMM[i].C.toA.tfreq = 0.0;
HMM[i].C.toG.tcnt = 0;
HMM[i].C.toG.tfreq = 0.0;
HMM[i].C.toC.tcnt = 0;
HMM[i].C.toC.tfreq = 0.0;
HMM[i].C.toT.tcnt = 0;
HMM[i].C.toT.tfreq = 0.0;

HMM[i].T.bcnt = 0;
HMM[i].T.toA.tcnt = 0;
HMM[i].T.toA.tfreq = 0.0;
HMM[i].T.toG.tcnt = 0;
HMM[i].T.toC.tcnt = 0;
HMM[i].T.toC.tfreq = 0.0;
HMM[i].T.toT.tcnt = 0;
HMM[i].T.toT.tfreq = 0.0;
}

}

int HmmTrainBase(char *seq, state *HMM)
{

int len;
int i;
char b, nextb;
len = strlen(seq);
/*printf("donor Len : Yoi\n", len);*/
if (len != motifLen)
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printf("donor lenth is wrong: %i\n", len);
/*return 1;*/

for (i = 0; i < len; i++)
{

b = seq[i];
switch (b)
{

case 'A':
HMM[i].A.bcnt++;
if (i < 8)
{

nextb = seq[i+1];
switch (nextb)
{

case 'A':
HMM[i].A.toA.tcnt++;
break;
case 'G':
HMM[i].A.toG.tcnt++;
break;
case 'C':
HMM[i].A.toC.tcnt++;
break;
case 'T':
HMM[i].A.toT.tcnt++;
break;

default:
printf("Train error: %s\n", seq);
}

}

break;

case 'G':
HMM[i].G.bcnt++;
if (i < 8)
{

nextb = seq[i+1];
switch (nextb)
{

case 'A':
HMM[i].G.toA.tcnt++;
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break;
case 'G':
HMM[i].G.toG.tcnt++;
break;
case 'C':
HMM[i].G.toC.tcnt++;
break;
case 'T':
HMM[i].G.toT.tcnt++;
break;

default:
printf ("Train error %s\n", seq);
}

}

break;

case 'C':
HMM[i].C.bcnt++;
if (i < 8)
{

nextb = seq[i+1];
switch (nextb)
{

case 'A':
HMM[i].C.toA.tcnt++;
break;
case 'G':
HMM[i].C.toG.tcnt++;
break;
case 'C':
HMM[i].C.toC.tcnt++;
break;
case 'T':
HMM[i].C.toT.tcnt++;
break;

default:
printf("Train error %s\n", seq);
}

}

break;
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HMM[i].T.bcnt++;
if (i < 8)
{

nextb = seq[i+1];
switch (nextb)
{

case 'A':
HMM[i].T.toA.tcnt++;
break;
case 'G':
HMM[i].T.toG.tcnt++;
break;
case 'C':
HMM[i].T.toC.tcnt++;
break;
case 'T':
HMM[i].T.toT.tcnt++;
break;

default:
printf ("Train error %s\n", seq);

}

break;
}

}

return 0;
}

int HmmTrainFreq(int totalSeq, state *HMM)
{

int num = totalSeq;
int i;

for (i = 0; i < motifLen; i++)
{

HMM[i].A.bfreq = (double)HMM[i].A.bcnt/num;
HMM[i].A.toA.tfreq = (double)HMM[i].A.toA.tcnt / num;

printf ("\n%i:\t%d\t%d\t%f",
HMM[i].A.toA.tcnt,num,HMM[i].A.toA.tfreq);

HMM[i].A.toG.tfreq = (double)HMM[i].A.toG.tcnt / num;
HMM[i].A.toC.tfreq = (double)HMM[i].A.toC.tcnt / num;
HMM[i].A.toT.tfreq = (double)HMM[i].A.toT.tcnt / num;
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HMM[i].G.bfreq = (double)HMM[i].G.bcnt/num;
HMM[i].G.toA.tfreq = (double)HMM[i].G.toA.tcnt / num;
HMM[i].G.toG.tfreq = (double)HMM[i].G.toG.tcnt / num;
HMM[i].G.toC.tfreq = (double)HMM[i].G.toC.tcnt / num;
HMM[i].G.toT.tfreq = (double)HMM[i].G.toT.tcnt / num;

HMM[i].C.bfreq = (double)HMM[i].C.bcnt/num;
HMM[i].C.toA.tfreq = (double)HMM[i].C.toA.tcnt / num;
HMM[i].C.toG.tfreq = (double)HMM[i].C.toG.tcnt / num;
HMM[i].C.toC.tfreq = (double)HMM[i].C.toC.tcnt / num;
HMM[i].C.toT.tfreq = (double)HMM[i].C.toT.tcnt / num;

HMM[i].T.bfreq = (double)HMM[i].T.bcnt/num;
HMM[i].T.toA.tfreq = (double)HMM[i].T.toA.tcnt / num;
HMM[i].T.toG.tfreq = (double)HMM[i].T.toG.tcnt / num;
HMM[i].T.toC.tfreq = (double)HMM[i].T.toC.tcnt / num;
HMM[i].T.toT.tfreq = (double)HMM[i].T.toT.tcnt / num;

}

return 0;
}

void BaseFreq_T(int totalSeq)
{

int i;
long Anum, Gnum, Cnum, Tnum;

long totalB = totalSeq * motifLen;

Anum = Gnum = Cnum = Tnum = 0;

for (i = 0; i < motifLen; i++)
{

Anum += HMM_T[i].A.bcnt;
Gnum += HMM_T[i].G.bcnt;
Cnum += HMM_T[i].C.bcnt;
Tnum += HMM_T[i].T.bcnt;

/*
Anum += HMM_F[i].A.bcnt;
Gnum += HMM_F[i].G.bcnt;
Cnum += HMM_F[i].C.bcnt;



Tnum += HMM_F[i].T.bcnt;
*/

}

pA = (double)Anum/totalB;
pG = (double)Gnum/totalB;
pC = (double)Cnum/totalB;
pT = (double)Tnum/totalB;

}

void BaseFreq_F(int totalSeq)
{

int i;
int Anum, Gnum, Cnum, Tnum;

int totalB = totalSeq * motifLen;

Anum = Gnum = Cnum = Tnum = 0;

for (i = 0; i < motifLen; i++)
{

Anum += HMM_F[i].A.bcnt;
Gnum += HMM_F[i].G.bcnt;
Cnum += HMM_F[i].C.bcnt;
Tnum += HMM_F[i].T.bcnt;
}

fpA = (double)Anum/totalB;
fpG = (double)Gnum/totalB;
fpC = (double)Cnum/totalB;
fpT = (double)Tnum/totalB;

}

/*Input sequences from a file*/
void HMM_T_Train(FILE *F_In, FILE *CDS_In)
{

int i, j , n, p, m,
seqlen; /*length of input seq*/
int flag = 0;
int mostSite = 0;
int numSite = 0;
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int totalDonor = 0;
int site = 0;

char donor[10];
char *temp;
int Nbase;

char seq[MAXLENGTH], T[100], ch;
char CDS_arry[5000];
int site_arry[100];
seq[0] = '\0';
T[0] = '\0';

for (TotalSeq =0; ;)
{

if ((fgets(T, MAXLENGTH, F_In)) == NULL)
break;
if (T [O] == '>')
TotalSeq++;
}

/****/
printf("\nTotalSeq: %i\n", TotalSeq);
if (TotalSeq > MaxSeq)
{

printf("\n%s\n", "Error: Too many sequences.");
exit(0);
}

rewind(F_In);
for (n = 0; n < TotalSeq; n++)

{

/*This is for the test*/
//if (n < 57)
// 	 continue;
memset(seq, '\0', 50000);
flag = 0;
if (fgets(T, MAXLENGTH, F_In) != NULL)

{

if (T[0] == '>') /*for the first gene in the file*/
{

/*skip the name line and get the next line*/
fgets(T, MAXLENGTH, F_In);

}
/*fgets put '\n' at the end of T */
if (T[strlen(T) - 1] == '\n')

T[strlen(T)
strcat(seq, 	 T);

- 1] = '\0';
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while(flag == 0)
{

if ((fgets(T, MAXLENGTH, F_In) == NULL) II
(T[0] == '>'))
flag = 1;

else
{

if (T[strlen(T) - 1] == '\n')
T[strlen(T) - 1] = '\0';
strcat(seq, T);

}
}

/*if (fgets...)*/
/*we got the sequence */
/*get the CDS data from CDS.tbl file*/
for (i = 0; i < 100; i++)
{

site_arry[i] = 0;
}
i = 0;
fgets(CDS_arry, 5000, CDS_In);
if ((n >= 508) && (n <= 569))

continue;
temp = strtok(CDS_arry, " An");
/*skip the gene name and get the site num*/
temp = strtok(NULL, " ,");
while (temp != NULL)
{

site_arry[i++] = atoi(temp);
temp = strtok(NULL, " ,\n");

}

i = 0;
site = 0;

/*the last one in the site_arry is the STOP codon*/
while ( ((site = site_arry[++i]) != 0)

&& (site_arry[i+1] != 0))
{

i = i + 1; /*skip the acceptor site*/

p = site - 3;
for (m = 0; m < motifLen; m++)
{

donor[m] = seq[p++];
if ((m == 4) && donor[m] != 'T')
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printf ("sequenc # %i error\n", n);
}
donor[9] = '\0';
HmmTrainBase(donor, HMM_T);
totalDonor++;

1/*while ((site...*/

/*for training the HMM_F**/
seqlen = strlen(seq);
i = 1;
flag = site_arry[i] - 1;
numSite = 0; //number of sites in this seq
for (j = 3; j < seqlen - 6; j++)
{

if (j == flag)
{

i = i + 2;
numSite++;
//printf("\nflag= %d", flag+1);
flag = site_arry[i] - 1;
continue;

}
if ((seq[j] == 'G') && (seq[j+1] == 'T'))
{

P ' j - 3 ;
Nbase = 0;
for (m = 0; m < 9; m++)
{

if (seq[p] == 'N')
Nbase = 1; //base is 'N'

donor [m] = seq[p++];
}

donor[9] = '\0';
if (Nbase == 0)
{

HmmTrainBase(donor, HMM_F);
numSite++;
totalF++;

}
}

}
if (numSite > mostSite)

mostSite = numSite;
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1/*for...*/

/*Has to be Total Donor for the first argument)*/
HmmTrainFreq(totalDonor, HMM_T);
BaseFreq_T(totalDonor);

HmmTrainFreq(totalF, HMM_F);
BaseFreq_F(totalF);
printf("\nTrain total f: %d, T: %d, mostSite: %d", totalF,

totalDonor, mostSite);

}

/*
* Train the false donor module
*/
int WriteDataToFile(char *filename, state *HMM, int flag)
{

int i;
if ((F_Out = fopen(filename, "w")) == NULL)
{

printf("\nError: open %s file", filename);
return 1;
}

for (i = 0; i < motifLen; i++)
{

fprintf(F_Out, "\n\nState %i", i+1);
fprintf(F_Out, "\nA Count:\t%l", HMM[i].A.bcnt);
fprintf(F_Out, "\nA Freq:\t%f", HMM[i].A.bfreq);
fprintf(F_Out,"\n\tA->A:\t%f", HMM[i].A.toA.tfreq);
fprintf(F_Out,"\n\tA->G:\t%f", HMM[i].A.toG.tfreq);
fprintf(F_Out,"\n\tA->C:\t%f", HMM[i].A.toC.tfreq);
fprintf(F_Out,"\n\tA->T:\t%f", HMM[i].A.toT.tfreq);

fprintf(F_Out,"\nG Freq:\t%f", HMM[i].G.bfreq);
fprintf(F_Out,"\n\tG->A:\t%f", HMM[i].G.toA.tfreq);
fprintf(F_Out,"\n\tG->G:\t%f", HMM[i].G.toG.tfreq);
fprintf(F_Out,"\n\tG->C:\t%f", HMM[i].G.toC.tfreq);
fprintf(F_Out,"\n\tG->T:\t%f", HMM[i].G.toT.tfreq);

fprintf(F_Out,"\nC Freq:\t%f", HMM[i].C.bfreq);
fprintf(F_Out, "\n\tC->A:\t%f", HMM[i].C.toA.tfreq);
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fprintf(F_Out, "\n\tC->G:\e/of", HMM[i].C.toG.tfreq);
fprintf(F_Out, "\n\tC->C:\e/of", HMIII[i].C.toC.tfreq);
fprintf(F_Out, "\n\tC->T:\t%f ", HMM[i].C.toT.tfreq);

fprintf(F_Out,"\nT Freq:\t%f", HMM[i].T.bfreq);
fprintf(F_Out,"\n\tT->A:\t%f", HMM[i].T.toA.tfreq);
fprintf(F_Out,"\n\tT->G:\t%f", HMM[i].T.toG.tfreq);
fprintf(F_Out,"\n\tT->C:\t%f", HMM[i].T.toC.tfreq);
fprintf(F_Out,"\n\tT->T:\t% f ", HMM[i].T.toT.tfreq);
}

fprintf(F_Out, "\n\nBase frequency:\n");
if (flag == 1)
{

fprintf(F_Out, "\np(A):\t%f", pA);
fprintf(F_Out, "\np(G):\t%f", pG);
fprintf(F_Out, "\np(C):\t%f", pC);
fprintf(F_Out, "\np(T):\t%f", pT);
}

else
{

fprintf(F_Out, "\np(A):\t%f", fpA);
fprintf(F_Out, "\np(G) :\t%f", fpG);
fprintf(F_Out, "\np(C):\t%f", fpC);
fprintf(F_Out, "\np(T):\t%f", fpT);
}

fclose(F_Out);
}

/**********************/
void DonorClassif(char *d)
{

int i;
char chi, ch2;
// double p_up;
p_t = p_f = 1.0;
for (i = 0; i < motifLen; i++)
{

ch1 = d[i];
ch2 = d[i+1];
switch (chi)
{
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case 'A':
if (i == motifLen-1)
{

p_t = p_t/pA;
p_f = p_f/fpA;
break;
}

switch (ch2)
{

case 'A':
//printf("A.toA freq: %f \n" HMM_T[i].A.toA.tfreq);
//printf("A.toA freq F: %f\n", HMM_F[i].A.toA.tfreq);
p_t *=HMM_T[i].A.toA.tfreq/pA;
p_f *=HMM_F[i].A.toA.tfreq/fpA;
//printf("p_t: Yof\tp_f: Yef\n", p_t, p_f);
break;
case 'G':
p_t *=HMM_T[i].A.toG.tfreq/pA;
p_f *=HMM_F[i].A.toG.tfreq/fpA;
break;
case 'C':
p_t *=HMM_T[i].A.toC.tfreq/pA;
p_f *=HMM_F[i].A.toC.tfreq/fpA;
break;
case 'T':
p_t *=HMM_T[i].A.toT.tfreq/pA;
p_f *=HMM_F[i].A.toT.tfreq/fpA;
break;

}

break;
case 'G':
if (i == motifLen-1)
{

p_t = p_t/pG;
p_f = p_f/fpG;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].G.toA.tfreq/pG;
p_f *=HMM_F[i].G.toA.tfreq/fpG;
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break;
case 'G':
p_t *=HMM_T[i].G.toG.tfreq/pG;
p_f *=HMM_F[i].G.toG.tfreq/fpG;
break;
case 'C':
p_t *=HMM_T[i].G.toC.tfreq/pG;
p_f *=HMM_F[i].G.toC.tfreq/fpG;
break;
case 'T':
p_t *=HMM_T[i].G.toT.tfreq/pG;
p_f *=HMM_F[i].G.toT.tfreq/fpG;
break;

}

break;
case 'C':
if (i == motifLen-1)
{

p_t = p_t/pC;
p_f = p_f/fpC;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].C.toA.tfreq/pC;
p_f *=HMM_F[i].C.toA.tfreq/fpC;
break;
case 'G':
p_t *=HMM_T[i].C.toG.tfreq/pC;
p_f *=HMM_F[i].C.toG.tfreq/fpC;
break;
case 'C':
p_t *=HMM_T[i].C.toC.tfreq/pC;
p_f *=HMM_F[i].C.toC.tfreq/fpC;
break;
case 'T':
p_t *=HMM_T[i].C.toT.tfreq/pC;
p_f *=HMM_F[i].C.toT.tfreq/fpC;
break;
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case 'T':
if (i == motifLen-1)
{
p_t = p_t/pT;
p_f = p_f/fpT;
break;
}

switch (ch2)
{

case 'A':
p_t *=HMM_T[i].T.toA.tfreq/pT;
p_f *=HMM_F[i].T.toA.tfreq/fpT;
break;
case 'G':
p_t *=HMM_T[i].T.toG.tfreq/pT;
p_f *=HMM_F[i].T.toG.tfreq/fpT;
break;
case 'C':
p_t *=HMM_T[i].T.toC.tfreq/pT;
p_f *=HMM_F[i].T.toC.tfreq/fpT;
break;
case 'T':
p_t *=HMM_T[i].T.toT.tfreq/pT;
p_f *=HMM_F[i].T.toT.tfreq/fpT;
break;

}

break;
}

}

}

/********************/
void SiteSort(int);
void DonorDetect(FILE *F_In, FILE* F_Out, FILE *CDS_Out, FILE *CDS_In)
{

int i,j,k,n,p,m,
seqlen; /*length of input seq*/
int thisSeqTotal;
char donor[10];
char seq[MAXLENGTH],

T[100];
char ch;
int TotalD = 0;



int flag = 0;
int frame;
int f;
char CDS_arry[5000];
int site_arry[100];
char *temp;
char seqName[100];
int site = 0;
seq[0] = '\0';
T[0] = '\0';
seqName[0] = '\0';
p_t = 1.0;
p_f = 1.0;
rewind(F_In);
rewind(CDS_In);
for (n = 0; n < TotalSeq; n++)
{

flag = 0;
memset(seq, '\0', 50000);
if (fgets(T, MAXLENGTH, F_In) != NULL)
{

if (T[0] == '> 1 )
{

/*skip the name line and get the next line*/
fgets(T, MAXLENGTH, F_In);

}
if (T[strlen(T) -1] == '\n')

T[strlen(T) - 1] = '\0';
strcat(seq, T);
while (flag == 0)
{

if ((fgets(T, MAXLENGTH, F_In) == NULL) II
(T[0] == '>'))

flag = 1;
else
{

if (T[strlen(T) -1] == '\n')
T[strlen(T) - 1] = '\0';
strcat(seq, T);

}

}

/*we got the sequence*/
seqlen = strlen(seq);
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tor (i = 0; i <100; i++)
{

site_arry[i] = 0;
}

fgets(CDS_arry, 5000, CDS_In);

it(n < 508)
continue;

it(n > 569)
break;

temp = strtok(CDS_arry, " ,\n");
strcpy(seqName, temp);
temp = strtok(NULL, " ,\n");
i = 0;

while (temp != NULL)
{

site_arry[i++] = atoi(temp);
temp = strtok(NULL, " An");

}
thisSeqTotal = 0;
site = 0;
k = 0;
site = site_arry[++k];
tor (i=3; i < seqlen - 6; i++)
{

it ((seq [i] == 'G') && (seq [i+1] == 'T'))
{

TotalD++;
p = i-3;
tor (m = 0; m < 9; m++)
{

donor[m] = seq[p++];
}

donor[9] = '\0';
DonorClassif(donor);

seqDatalthisSeqTotal]seqNum = n + 1;
seqData[thisSeqTotal].siteNum = i;
seqData[thisSeqTotal].P_t = p_t;

seqData[thisSeqTotal].P_f = p_t;
seqData[thisSeqTotal]score = p_t/p_t;
thisSeqTotal++;

I
//Sort the seq scores
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site = site_arry[++m];

SiteSort(thisSeqTotal);
tor (j = 0; j < thisSeqTotal; j++)
{

tprintt(F_Out, "\n%d\tSeq #%d\tSite
#%d\t%t\t%t\t%t", j+1, seqData[j].seqNum,
seqData[j].siteNum, seqData[j].P_t, seqData[j].PJ,
seqData[j].score);

}

}

}
tprintt(F_Out, "\n\nTotal Donor detected: %d", TotalD);

printt("Total donor detected: %i\n", TotalD);
}

main()
{

char *donor_t = "DNASequences.tasta";
char *donor_t = "donotals.acp";
char *dataT_tile = "datatru9.508_569.txt";
char *dataF_tile = "datatal9.508_569.txt";
char *donordet = "DNASequences.tasta";
char *detedata = "detedat9.508_569";

char *cds_tbl = "CDS.tbl";
char *cds_out = "cdsOut9.508_569";
FILE * CDS_Out;

HmmInitialize(HMM_T);
HmmInitialize(HMM_F);

it ((F_In = topen (donor_t, "r")) == NULL)
{

printt("ERROR: %s tile open tor DNA Sequences.tasta.\n", donor_t);
exit(0);

}
it ((CDS_In = topen (cds_tbl, "r")) == NULL)
{

printt("ERROR: %s tile open tor CDS_In.\n", cds_tbl) ;
exit(0);

}
HMM_T_Train(F_In, CDS_In);

WriteDataToFile(dataT_tile, HMM_T, 1);



tclose(F_In);
WriteDataToFile(dataF_tile, HMM_F, 0);

it ((F_In = topen (donordet, "r")) == NULL)
{

printt("ERROR: %s tile open.\n", donordet);
exit(0);

}

it ((F_Out = t open (detedata, "w")) == NULL)
{

printt("ERROR: %s tile open.\n", detedata);
exit(0);

}
it ((CDS_Out = t open (cds_out, "w")) == NULL)
{

printt("ERROR: %s tile open.\n", cds_out);
exit(0);

}

DonorDetect(F_In, F_Out, CDS_Out, CDS_In);

tclose(F_In);
tclose(F_Out);

tclose(CDS_In);
return 0;

}

//Selection Sort
void SiteSort(int totalSite)
{

int i, j, hiIndex;
double hiScore;
siteData sd;
tor (i = 0; i < totalSite - 2; i++)
{

hiIndex = i;
hiScore = seqData[i].score;
tor (j = i + 1; j <totalSite - 1; j++)
{

it (seqDatalliscore > hiScore)
{

hiScore = seqData[j].score;
hiIndex = j;
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}

//swap
sd.seqNum = seqData[i].seqNum;
sd.siteNum = seqData[i].siteNum;
sd.P_t = seqData[i].P_t;
sd.P_t = seqData[i].P_t;
sd.score = seqData[i].score;

seqData[i].seqNum = seqData[hiIndex].seqNum;
seqData[i].siteNum = seqData[hiIndex].siteNum;
seqData[i].P_t = seqData[hiIndex].P_t;
seqData[i].P_t = seqData[hiIndex].P_t;
seqData[i].score = seqData[hiIndex].score;

seqData[hiIndex].seqNum = sd.seqNum;
seqData[hiIndex] .siteNum = sd.siteNum;
seqData[hiIndex].P_t = sd.P_t;
seqData[hiIndex].P_t = sd.P_t;
seqData[hiIndex].score = sd.score;

110



REFERENCES

1. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular
Biology of the Cell, 3rd ed. Garland Publishing, Inc., New York and
London, 1989.

2. S. Audic and J. Claverie, "Detection of eukaryotic promoters using Markov
transition matrices," Computers and Chemistry, 21:223-227, 1997.

3. T. L. Bailey, M. E. Baker, and C. Elkan, "An artificial intelligence approach
to motif discovery in protein sequences: Application to steroid dehydro-
genates," J. Steroid Biochemistry, 62(1):29-44, 1997.

4. J. J. W. Baker and G. E. Allen, The Study of Biology, 4th ed. Addison-Wesley
Publishing Company, Inc., 1982.

5. M. Borodovsky and J. Mclninch, "GENMARK: Parallel gene recognition for
both DNA strands," Computers and Chemistry, 17:123-133, 1993.

6. C. Burge and S. Karlin, "Prediction of complete gene structures in human
genomic DNA," J. Mol. Biol., 268:78-94, 1997.

7. M. Burset and R. Guigo, "Evaluation of gene structure prediction programs,"
Genomics, 34(3):353-367, 1996.

8. J. Claverie, 0. Poirot, and F. Lopez, "The difficulty of identifying genes in
anonymous vertebrate sequences," Computers and Chemistry, 21(4)

 1997.

9. W. H. E. Day and F. R. McMorris, "Critical compatrison of consensus methods
for molecular sequences," Nucleic Acides Research, 20, 1093-1099, 1992.

10. S. Dong and G. D. Stormo, "Gene structure prediction by linguistic methods,"
Genomics, 23:540-551, 1994.

11. A. Fedorov, G. Suboch, and L. Fedorova, "Analysis of nonuniformity in intron
phase distribution," Nucleic Acids Research, 20:2553-2557, 1992.

12. M. S. Gelfand, "Prediction of function in DNA sequence analysis," Journal of
Computational Biology, 2(1):87-115, 1995.

13. R. Guigo, "Computational gene identification: An open problem," Computers
and Chemistry, 21(4):215-222, 1997.

14. R. Guigo, S. Knudsen, N. Drake, and T. F. Smith, "Prediction of gene structure,"
Journal of Molecular Biology, 226:141-157, 1995.

15. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, San Francisco, California, 2000.

111



112

16. J. Henderson, S. Salzberg, and K. H. Fasman, "Finding genes in DNA with a
hidden Markov model," Journal of Computational Biology, 4(2):127-141,
1997.

17. N. D. Herman and T. D. Schneider, "High information conservation implies that
at least three proteins bind independently to F Plasmid incD repeats,"
Journal of Bacteriology, 174, 3558-3560, 1992.

18. J. D. Hawkins, "A survey on intron and exon lengths," Nucleic Acids Research,
11:9893-9905, 1988.

19. J. Henderson, S. Salzberg, and K. H. Fasman, "Finding genes in DNA with a
hidden Markov model," Journal of Computational Biology, 4(2):127-141,
1997.

20. G. B. Hutchinson and M. R. Hayden, "The prediction of exons through an
analysis of spliceable open reading frames," Nucleic Acids Research,
20:3453-3462, 1992.

21. K. F. Lee, Automatic Speech Recognition: The Development of the SPHINX
System. Kluwer Academic, Boston, Massachusetts, 1989.

22. Y. Lida, "DNA sequences and multivariate statistical analysis . Categorical
discrimination approach to 5' splice site signals of mmRNA precursors in
higher eukaryotes' genes," Comput. Appl. Biosci, 3:93-98, 1987.

23. A. V. Lukashin and M. Borodovsky, "GeneMark.hmm: New solutions for gene
finding," Nucleic Acids Research, 26(4):1107-1115, 1998.

24. Q. Ma and J. T. L. Wang, "Biological data mining using Bayesian neural
networks: A case study," International Journal on Artificial Intelligence
Tools, 8(4):433-451, 1999.

25. Q. Ma, J. T. L. Wang, D. Shasha, and C. H. Wu, "DNA sequence classification
via an expectation maximization algorithm and neural networks: A case
study," IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, 31(0468-475, 2001.

26. L. Milanesi, N. A. Kolchanov, I. B. Rogozin, I. V. Ischenlo, A. E. Kel, Y. L. Orlov,
M. P. Ponomarenko, and P. Vezzoni, "GenViewer: A computing tool for
protein coding regions prediction in nucleotide sequences," Proceedings
of the 2nd International Congress on Bioinformatics, Supercomputing and
Complex Genome Analysis, World Scientific, Singapore, pages 573-587,
1993.

27. P. P. Papp, D. K. Chattoraj and T. D. Schneider, "Information analysis of
sequences that bind the replication initiator repA," Jounal of Molecular
Biology, 233, 219-230, 1993.



113

28. M. A. Roytberg, T. V. Astakhova, and M. S. Gelfand, 	 "Combinatorial
approaches to gene recognition," Computers Chem., 21(4):229-235, 1997.

29. S. L. Salzberg, "A method for identifying splice sites and translational start
sites in eukaryotic mRNA," Computer Applications in the Biosciences,
13(4):365-376, 1997.

30. S. L. Salzberg, M. Pertea, A. Delcher, M. J. Gardner, and H. Tetterlin, "Inter-
polated Markov models for eukaryotic gene finding," Genomics, 59:24-31,
1999.

31. T. D. Schneider and R. M. Stephens, "Sequence logos: a new way to display
consensus structures," Nucleic Acids Research, 18, 6097-6100, 1990.

32. E. E. Snyder and G. D. Stormo, "Identification of coding regions in genomic DNA
sequences: An application of dynamic programming and neural networks,"
Nucleic Acids Research, 21:607-613, 1993.

33. V. V. Solovyev, A. A. Salamov, and C. B. Lawrence, "Prediction of internal exons
by oligonucleotide composition and discriminant analysis of spliceable open
reading frames," Nucleic Acids Research, 22:5156-5163, 1994.

34. R. Staden, "Computer methods to locate singals in nucleic acid sequences,"
Nucleic Acids Research, 12, 505-519, 1984.

35. A. Thomas and M. H. Skolnick, "A probabilistic model for detecting coding
regions in DNA sequences," IMA J. Math. Appl. Med. Biol., 11:149-160,
1992.

36. E. C. Uberbacher, J. R. Einstein, X. Fuan, and R. J. Mural, "Gene recognition
and assembly in the GRAIL system: Progress and challenges," Proceedings
of the 2nd International Congress on Bioinformatics, Supercomputing and
Complex Genome Analysis, pages 465-476, World Scientific, Singapore,
1993.

37. J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu, "Application of neural
networks to biological data mining: A case study in protein sequence classi-
fication," Proceedings of the 6th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 305-309, Boston,
Massachusetts, August 2000.

38. J. T. L. Wang, Q. Ma, D. Shasha, and C. H. Wu, "New techniques for extracting
features from protein sequences," IBM Systems Journal, 40(2):426-441,
2001.

39. J. T. L. Wang, T. G. Marr, D. Shasha, B. A. Shapiro, G. W. Chirn, and T. Y. Lee,
"Complementary classification approaches for protein sequences," Protein
Engineering, 9(5):381-386, 1996.



114

40. J. T. L. Wang, S. Rozen, B. A. Shapiro, D. Shasha, Z. Wang, and M. Yin,
"New techniques for DNA sequence classification," Journal of Computa-
tional Biology, 6(2):209-218, 1999.

41. J. T. L. Wang, B. A. Shapiro, and D. Shasha, editors, Pattern Discovery in
Biomolecular Data: Tools, Techniques and Applications. Oxford University
Press, New York, New York, 1999.

42. J. T. L. Wang, C. H. Wu, and P. P. Wang, editors, Computational Biology and
Genome Informatics. World Scientific Publishers, Singapore, 2002.

43. Y. Xu, R. J. Mural, and E. C. Uberbacher, "Constructing gene models from
accurately predicted exons: An application of dynamic programming,"
Comput. Appl. Biosci., 10:613-623, 1994.

44. M. M. Yin, "Algorithms and tools for splicing junction donor recognition in
genomic DNA sequences," M.S. Thesis, Department of Computer Science,
New Jersey Institute of Technology, 1997.

45. M. Yin and J. T. L. Wang, "Algorithms for splicing junction donor recog-
nition in genomic DNA sequences," Proceedings of the IEEE International
Joint Symposia on Intelligence and Systems, pages 169-176, Rockville,
Maryland, May 1998.

46. M. M. Yin and J. T. L. Wang, "Application of hidden Markov models to gene
prediction in DNA," Proceedings of the IEEE International Conference on
Information, Intelligence and Systems, pages 40-47, Bethesda, Maryland,
November 1999.

47. M. M. Yin and J. T. L. Wang, "Recognizing splicing junction acceptors
in eukaryotic genes using hidden Markov models and machine learning
methods," Proceedings of the 5th Joint Conference on Information
Sciences, pages 786-789, Atlantic City, New Jersey, February 2000.

48. M. M. Yin and J. T. L. Wang, "Application of hidden Markov models to
biological data mining: A case study," Data Mining and Knowledge
Discovery: Theory, Tools, and Technology II. Proceedings of SPIE,
B. V. Dasarathy (ed.), Vol. 4057, pages 352-358, SPIE-The International
Society for Optical Engineering, USA, 2000.

49. M. M. Yin and J. T. L. Wang, "Effective hidden Markov models for detecting
splicing junction sites in DNA sequences," Information Sciences, 139(1-
2):139-163, 2001.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract 
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Splicing Junction Sites Modeling and Detecting
	Chapter 3: Translational Start Site Modeling and Detecting
	Chapter 4: A Data Mining System for Predicting Vertebrate Genes
	Chapter 5: Summary of the Research and Future Studies
	Appendix A: Genescout Toolkit
	Appendix B: Genescout Programs Source Code
	References

	List of Tables
	List of Figures



