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ABSTRACT

EM-BASED ITERATIVE CHANNEL ESTIMATION AND SEQUENCE
DETECTION FOR SPACE-TIME CODED MODULATION

by
Zbigniew Baranski

Reliable detection of signals transmitted over a wireless communication channel re-

quires knowledge of the channel estimate. In this work, the application of expectation-

maximization (EM) algorithm to estimation of unknown channel and detection of

space-time coded modulation (STCM) signals is investigated. An STCM communica-

tion system is presented which includes symbol interleaving at the transmitter and

iterative EM-based soft-output decoding at the receiver. The channel and signal

model are introduced with a quasi-static and time-varying Rayleigh fading channels

considered to evaluate the performance of the communication system. Performance

of the system employing Kalman filter with per-survivor processing to do the channel

estimation and Viterbi algorithm for sequence detection is used as a reference.

The first approach to apply the EM algorithm to channel estimation presents

a design of an on-line receiver with sliding data window. Next, a block-processing

EM-based iterative receiver is presented which utilizes soft values of a posteriori

probabilities (APP) with maximum a posteriori probability (MAP) as the criterion

of optimality in both: detection and channel estimation stages (APP-EM receiver).

In addition, a symbol interleaver is introduced at the transmitter which has a great

desirable impact on system performance. First, it eliminates error propagation between

the detection and channel estimation stages in the receiver EM loop. Second, the

interleaver increases the diversity advantage to combat deep fades of a fast fading

channel.

In the first basic version of the APP-EM iterative receiver, it is assumed that

noise variance at the receiver input is known. Then a modified version of the receiver



is presented where such assumption is not made. In addition to sequence detection

and channel estimation, the EM iteration loop includes the estimation of unknown

additive white Gaussian noise variance.

Finally, different properties of the APP-EM iterative receiver are investigated

including the effects of training sequence length on system performance, interleaves

and channel correlation length effects and the performance of the system at different

Rayleigh channel fading rates.
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CHAPTER 1

INTRODUCTION

It is well known that multiple time-varying propagation paths of a wireless communica-

tion channel result in signal fading and its dispersion in time. Together with interfe-

rence from other users they severely limit the performance of a wireless communication

system. Various diversity techniques can be used to mitigate these impediments and

make the reliability of such communication system acceptable in practice. These are:

time diversity in the form of coding and interleaving, frequency diversity and spatial

receive/transmit diversity where multiple receive and/or transmit antennas are used.

Implementation of any of these techniques requires sophisticated signal processing

algorithms to be employed in the receiver.

Forney had shown in [1] that maximum likelihood sequence estimation (MLSE)

based on Viterbi algorithm (VA) [2] is the optimal method for decoding data sequence

that has undergone coding and transmission over a dispersive and noisy channel,

assuming that the receiver has perfect knowledge of channel state information (CSI).

In practical mobile communication system however, the CSI is unknown and it has

to be estimated jointly with data detection. Several joint data detection and channel

estimation methods were proposed by combining Viterbi algorithm for data detection

with various CSI estimation approaches [3, 4, 5, 6].

Usually in digital communication system the data transmission is block-oriented,

that is data is transmitted in blocks or frames of known format, containing some

known sequence of data symbols (training sequence). In the simplest approach,

when the channel is assumed constant over the duration of a frame (quasi-static),

the training sequence can be used by the receiver to estimate the CSI. A simple

deterministic least squares (LS) scheme provides a minimum mean-square error, linear

estimate of CSI. The estimated CSI is then used by VA to detect the unknown
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information symbols comprising the rest of the frame. In most practical cases however,

the length of a frame and the rate of channel time variations are such that the simplest

LS estimation method with quasi-static channel model are not adequate and more

complex time-varying channel model has to be considered. In such cases, adaptive

MLSE receivers using VA for data detection combined with adaptive algorithms for

CSI estimation and tracking are appropriate. The proposed adaptive solutions are

usually developed from one of the known adaptive algorithms: least mean squares

(LMS), recursive least squares (RLS) or Kalman filter. Among these, Kalman filter

incorporating the prior statistical information about the channel is capable of delive-

ring the best performance if the autoregresive process modeling the channel's time

behavior is accurate. Kalman filter iterative receivers were proposed in [7, 4, 8].

The adaptive algorithms perform data-aided CSI estimation and consequently

the quality of CSI estimation suffers as a result of decision delay inherent in the

VA. In an attempt to eliminate the affect of VA decision delay on the quality of

CSI estimation, the per-survivor processing (PSP) techniques were introduced [9]. In

PSP, a separate CSI estimate is maintained and updated along each survivor path

in the VA trellis. Adaptive CSI estimation algorithms combined with PSP exhibit

improved performance since the CSI estimates are updated with no delay and the CSI

along the best survivor path is always based on the right tentative data estimates.

Implementation of PSP had shown improvement in channel tracking accuracy in

comparison with a single channel estimator [10, 11]. The computational complexity

of PSP techniques is considerably increased however. An alternative approach to PSP

is presented in [12] where the authors propose an adaptive block processing method

to joint data detection and channel estimation featuring less complexity than PSP

and performance better than conventional MLSE adaptive algorithm.

In addition to development of more advanced signal processing algorithms to

improve the reliability of a communication system, new modulation techniques have
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been proposed that combine coding and spatial diversity to mitigate the fading

effects of the channel: space-time coded modulation (STCM) [13, 14] and BLAST [15,

16]. This work concentrates on STCM, which combines the advantage of space-time

diversity of multiple transmit/receive antennas with spectral efficiency of trellis coded

modulation. Two different ways of performing CSI estimation and data detection

of STCM signals are investigated. First method includes recursive on-line symbol

by symbol decoding and CSI estimation incorporating adaptive sequence detection

(ASD) algorithm [17]. It resulted in acceptable performance and high computational

complexity. The search for an alternative method with lower complexity lead to the

second, block processing method which maintains only one CSI estimate and reduces

the computational complexity as compared with PSP techniques thus, allowing more

sophisticated soft decisions detection/CSI estimation algorithm with symbol interlea-

ving to be employed.

The expectation-maximization (EM) algorithm [18] is recently becoming an

attractive estimation tool in data communications. It is a general method for iterative

estimation of parameters of interest according to the selected criterion of optimality.

In most published examples of EM, the maximum likelihood (ML) is the criterion

of optimality. Its applications include joint CSI estimation and sequence detection

for various modulation schemes and channel models [19, 20, 21, 22, 23]. It also

has been applied to multiuser detection and parameter estimation problem in [24,

25]. Different types of RLS and Kalman filter algorithms are derived from EM in

[19, 20] to compute CSI estimate recursively on-line. EM-derived iterative receiver

proposed in [26] performs block oriented CSI estimation and VA detection of STCM

encoded data symbols. For a flat time-varying channel, each EM iteration produces

new CSI estimates based on the current estimate of transmitted STCM symbols.

Subsequently, a new VA sequence detection is performed using current CSI estimates.

This alternating process is continued until convergence. Over fast fading channels,
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good frame error probability (FEP) performance is obtained only when the algorithm

is initialized with pilot symbols interspersed throughout the data frame. Good bit

error probability (BEP) performance of EM-based receiver is achieved in [23] but the

known CSI is assumed as the initial condition to start the EM iterations, which makes

such receiver impractical.

Unable to find in the literature the performance characteristics of a Kalman

filter-PSP receiver for STCM signals, first such receiver has been implemented. Its

performance has been investigated to have a reference for comparing the performance

of other EM-based receivers. Next, a recursive on-line algorithm executing EM-

derived data detection/CSI estimation on a limited fixed size window of data symbols

has been developed. Assuming that data frame consisted of known training sequence

followed by data symbols, the initial window was set such that it included the training

symbols plus one data symbol to be detected. The EM iterations were run on the

channel and data samples within the window using modified VA with ASD metric

in detection stage. After convergence, the fixed length window was shifted by one

symbol forward along the received data frame and the iterations were repeated. The

performance achieved was about 5 dB worse than performance of the clairvoyant

(known channel) receiver. It was approximately 2 dB worse than Kalman filter with

PSP and the complexity of computations was quite high. In addition, it was noticed

(what is also mentioned in [26]) that the BEP (and symbol error probability - SEP)

performance of such implementation of the EM algorithm suffered from the effects of

error propagation (positive feedback) between the detection and estimation stages.

When a symbol error was made in the detection stage, it caused inaccurate CSI

estimates in the vicinity of the erroneous symbol. This in turn led to even more

symbol errors in this area at the next iteration. In effect, estimation-detection errors

accumulated.
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Continuing the work, a remedy to this problem was found by implementing

a modified block processing EM-based iterative receiver that utilizes soft decisions

with maximum a posteriori probability (MAP) as the criterion of optimality in the

detection process and incorporates a symbol interleaver in the EM loop (APP-EM

iterative receiver). It is well known that an interleaver introduces time diversity in

transmitted sequence and improves performance of the trellis modulated codes over

fading channels [27]. The role of the interleaver is to separate bursts of errors produced

by the fading in the channel. It is shown in this work that this property of the symbol

interleaver can be very useful when the interleaver is inserted in the iterations of the

EM algorithm. The sequence of STCM encoded symbols in the transmitter is passed

through an interleaver before being transmitted. At the receiver, the interleaved

sequence is used to compute the channel estimate, while detection is done on the

deinterleaved sequence. Such approach allows to decouple the time instances when

symbol errors are made in the detection stage from the time instances where channel

estimation errors occur in the estimation stage. Simulation results show that in the

presence of additive white Gaussian noise the performance of the proposed receiver

is within approximately 0.5 dB of the clairvoyant receiver for fast fading channel.

In most publications dealing with CSI estimation and sequence detection me-

thods, the assumption is made that the variance of additive white Gaussian noise is

known [19, 26, 28]. In the real communication systems, noise variance is unknown

and has to be estimated. In this work, a modified version of the iterative APP-EM

receiver is also presented in which, in addition to estimating CSI and detecting the

data sequence, the unknown white noise variance is also estimated in the EM loop.
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1.1 Outline of the Dissertation

In this work, the application of expectation-maximization algorithm to estimation

of unknown, fast fading flat channel and detection of space-time coded modulation

signals in an iterative manner is investigated.

In Chapter 2, the signal and channel models used throughout the remaining

part of this document are introduced.

To have a reference for qualifying the performance of EM-based channel estima-

tion methods, Chapter 3 presents the implementation of Kalman filter with per-

survivor processing for estimation/detection of STCM signals corrupted with additive

white Gaussian noise.

Next, in Chapter 4, an EM-derived iterative on-line receiver is presented with

sliding data window using maximum likelihood as criterion of EM optimality. Combi-

ning it with adaptive sequence detection algorithm it adds the capability to do the

detection in the presence of correlated additive Gaussian noise.

Then, in Chapter 5 a block-processing APP-EM iterative receiver is proposed

which utilizes soft values of data symbols a posteriori probabilities with maximum a

posteriori probability as the criterion of optimality in the detection stage. In addition,

employing symbol interleaving has a great desirable impact on system performance.

First, it eliminates error propagation between the detection and channel estimation

stages in the EM loop. Second, the interleaver increases the diversity advantage to

combat deep fades of a fast fading channel.

Chapter 6 present a modified version of the APP-EM iterative receiver introduced

in Chapter 5. In Chapter 5, the assumption was made that the additive noise at the

receiver antennas was white Gaussian with known variance. Here a more practical

approach is taken and the noise variance estimation is included in the EM loop.

Chapter 7 presents the results of numerical simulations investigating the perfor-

mance and properties of the APP-EM receiver.
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Finally, Chapter 8 contains the summary of this Dissertation.

1.2 Contributions

• STCM communication system employing symbol interleaver to eliminate error

propagation between sequence detection and channel estimation in the EM-

based iterative receiver.

• EM algorithm for channel estimation and detection of STCM signals with MAP

as a criterion of optimality for both.

• Noise variance estimation in the EM loop of the iterative STCM receiver in

addition to channel estimation and sequence detection.

• Investigation of performance and other properties of the iterative EM-based

STCM receiver.

• Performance evaluation of STCM receiver using Kalman filter with per-survivor

processing for channel estimation and Viterbi algorithm for sequence detection.



CHAPTER 2

SIGNAL AND CHANNEL MODELS

In this chapter, the signal and channel models used throughout the rest of this work

are introduced. Assuming that our STCM transmit/receive system has N transmit

and M receive antennas, the basic STCM transmitter consists of : 1) Space-time

encoder accepting blocks of m binary bits at time k, labeled uk , where uk E

and U = 2'. Symbols uk are encoded into N symbols cn(k), n = 1, ..., N following a

multiple STCM trellis code. 2) Symbol interleaver which operates on N symbols cn (k)

at a time, generated by the STCM encoder. 3) Memoryless modulator which generates

2m-PSK complex symbols. 4) N antennas transmitting the modulated symbols sn (k),

n = 1, . , N simultaneously. The transmitted signals pass through the multiple input-

multiple output (MIMO) channel with unknown CSI, then they are corrupted by

additive Gaussian noise and enter the M receive antennas. Data is transmitted in

frames of length L symbols and a frame consists of the sequence of known training

symbols followed by data symbols. Block diagram of the generic STCM system with

N = 2 transmit and M = 2 receive antennas used in the simulations is shown in Figure

2.1 and the 4-PSK 8-state space-time code presented in [13] in Figure 2.2. Depending

on the available channel knowledge, different channel models can be considered when

designing an STCM receiver for joint channel estimation and sequence detection.

Channel models used in the receivers investigated in our work are presented in

Sections 2.1 - 2.3. In addition, to run the simulations we had to generate the MIMO

channels. STCM modulated signals generated in the transmitter passed through the

generated simulated channel and after being distorted by additive Gaussian noise,

entered the receive antennas. The quasi-static channel was simulated as a complex

random variable with mean value 0 and variance equal to 1/M per receive antenna.

To simulate the time-varying Rayleigh fading channel with different fading rates, the

8
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Jakes channel model was used [29, 30]. Generation of Jakes channel is described in

Section 2.4.

2.1 Model A - Random Constant Channel - Quasi-static Channel Model

The measurement model representing signals received at time k at M receive antennas

can be expressed:

at M receive antennas at time k and the superscript 1 denotes transposition. a k

Tis M x NM matrix Sk = IM ¤ST, Sk = 81(k) 82 (k) . . • 8N (k) 	 is N x 1
[

vector of symbols transmitted by N transmit antennas at time k, IM is M x M

identity matrix and ¤ denotes the Kronecker product. The NM x 1 channel vector
T

h = | h11 h12 • • hNM | remains constant for the duration of 1 frame and

17,„,, is the complex scalar channel from transmit antenna n to receive antenna m.
T

Components of h are random variables. z k = z1(k) z2 (k) - - - zM(k)	 is M x 1

vector of noise samples received at M receive antennas at time k.

Description of the full frame of length L symbols is:
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2.2 Model B - Random Process Channel - Time-varying, Slow

and Fast Fading Channel Model

The signals received at M receive antennas at time k is expressed:

where xk, Sk and zk are defined the same as in (2.1). The NM x 1 channel vector

at time k is denoted hk = h11(k) h12 (k) • • • hNM(k) 	 , where hnm(k) is the

complex scalar channel from transmit antenna n to receive antenna m at time k.

Signal model in (2.3) can be extended to include a full frame of length L:

where x and z are defined the same as in (2.2), S is LM x LMN matrix with

diagonal elements S i , S2 , ..., SL. Channel vector of dimension LMN x 1 is h =

[ hT 14' • • • III ]T. Channel gains 17,,,,,(k), k	 1...L form a stationary zero-mean

complex Gaussian random process (Rayleigh fading) with autocorrelation

E[hnm(k)h*nm(k  + l)] = rlδimδjn where Sim = 1 if i = m and (Sim, = 0 otherwise. In

matrix notation, a single channel covariance matrix is:



In general, the MIMO MNL x MNL channel covariance matrix is:

Channel density function is:

2.3 Model C - Gauss-Markov Channel - Dynamic Channel Model

Dynamic channel model is given by:

With channel vector at time k defined the same as in (2.3), the process model is given

by:

11

where wk is MN x 1 process noise and F is the MN x MN matrix:
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TThe process noise vector is Wk = I w11(k) w12 (k) 	 • w N M(k) 1 - By

assumption, w k is complex-valued, Gaussian, zero-mean and

where β is the variance of the white noise process.

The STCM signal observation model at time k is:

where Xk, Sk and zk are defined the same as in (2.1).

2.4 Jakes Channel - Rayleigh Fading Channel Simulation

The Jakes fading channel model is a deterministic method introduced in [29] and

modified in [30] for simulating time correlated Rayleigh fading waveforms. The

model assumes that D equal-strength rays arrive at a moving receiver with uniformly

distributed arrival angels an such that ray n experiences a Doppler shift wn =

wd cos an , where wd = 2=711, is the maximum Doppler shift, v-vehicle speed in Ps ],

fc-carrier frequency in [Hz] and c-speed of light in [T].

	2,r(n-i;o.5) 	Using an = 	 the fading waveform can be modeled with D o complex

equal power oscillators, where Do = 11-. This leads to the following waveform model:

where j =

If Do (and D) is large enough, we may invoke the Central Limit Theorem

to conclude that T(t) is approximately a complex Gaussian process, so that T is

Rayleigh distributed. The normalization factor 	 gives E {T (t)T* (t)} = 1. By

using βn =πnDo, the real and imaginary parts of T(t) have equal power and are
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uncorrelated. Making 0,, a uniformly distributed random number in the range 0...27r

it provides for different waveform realizations.

The time autocorrelation of T(kTs) can be closely approximated by the zeroth-

order first-kind Bessel function Rk = Jo(k2π   fdTs ) where the product fdTs is the

waveform fading rate and Ts is one symbol time.

To generate L consecutive samples of the Rayleigh fading channel with the

fading rate fdTs, the following algorithm steps have to be executed:

1. Given the carrier frequency fc , vehicle speed v and baud rate Rs = T compute

the maximum Doppler shift cod . The fading rate is fdTs =

2. Choose Do , according to [29] Do should be large, not less than 8,

3. Compute vectors α, β, θ, ω and S each of dimension D o x 1:

f or n = 1 : D o

end

4. Compute vector h of dimension L x 1 with L samples of the fading waveform:

end
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Figure 2.1 STCM system with N = 2 transmit and M = 2 receive antennas used
in computer simulations.

Figure 2.2 Trellis of 4-PSK 8-state space-time code used in computer simulations.



CHAPTER 3

KALMAN FILTER-PSP RECEIVER FOR STCM

WITH ASD MODIFIED VA METRIC

Several different implementations of CSI estimation based on Kalman filter approach

have been published in literature over the years. In general Kalman filter theory,

the estimate of the system state (in our case CSI) is computed recursively using the

previous state estimate and the new input data. The Kalman filter theory was applied

to do the estimation of time-varying MIMO channel in the receiver of STCM encoded

signals. The detection was done using the standard Viterbi algorithm.

3.1 Kalman Filter-PSP CSI Estimation

Gauss-Markov channel description presented in Section 2.3 is used to model the

channel estimated by Kalman filter. For the purpose of CSI estimation, the behavior

of the system is described by two equations given in Section 2.3 and repeated here

for convenience:

1. Process equation:

2. Measurement equation:

Following the Kalman filter theory [58] the set of equations presented below

computes the mean square estimate of the CSI hk+1 to be used by VA detection stage

15
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at time k + 1:

where

Rk is M x M correlation matrix of the innovations process at time k,

Sk and hk are the same as Sk and hk in Equation (2.13),

Kk|k-1 is MN x MN correlation matrix of the predicted state error (CSI error),

Ck is M x M correlation matrix of the Gaussian additive noise Zk,

Gk is MN x M Kalman gain matrix,

F is MN x MN channel state transition matrix,

Qk is MN x MN correlation matrix of the process noise,

hk is MN x 1 predicted system state (CSI) vector,

xk is M x 1 observation vector,

ak is M x 1 innovations process vector.

In a standard receiver implementation using VA for signal detection and Kalman

filter based CSI estimator, the order of operations is as follows: assuming that at any

time k the CSI estimate hk is already known and VA survivor paths entering each

trellis node and their metrics are already computed, the equations (3.3) through (3.8)

are executed using the data Sk associated with the survivor path having the lowest

metric. The result is hk+1 - the CSI estimate at time k + 1 which VA will use to find

the next symbol extending the survivor path from time k to k +1.
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As mentioned earlier, the quality of detection and CSI estimation can be signifi-

cantly improved at the expense of increased computational complexity by introducing

PSP technique. With PSP, a separate CSI estimate is maintained for each survivor

path entering each trellis node at all times. At any given time k, the set of equations

(3.3) through (3.8) are executed for each survivor path using the previously computed

data (S k , hk ) along that path. Consequently, the result is as many new hk+1^-s as

there are survivor paths (trellis nodes). The final decision on the most likely data

symbol and CSI vector is made with the delay D symbols (in practice D >= 5),

which means that at time k the decision is made on symbol k — D. The symbol at

time k — D is chosen which belongs to the survivor path having the lowest VA metric

at time k. Alternatively, such decision on the most likely data sequence of length L

can be made at the end of the frame.

3.2 Numerical Results

Numerical simulations of the Kalman filter-PSP algorithm were run using the 4-PSK

8-state space-time code presented in [13] and shown in Figure 2.2 with N = 2 transmit

and M = 2 receive antennas. The block diagram of the Kalman filter-PSP system is

shown in Figure 3.1. The transmitted frame consisted of LT r = 14 training symbols

followed by L D = 116 data symbols to the total frame length of L = 130 symbols.

The MIMO channel consisted of independent flat paths with Rayleigh distribution

represented by Jakes model with autocorrelation function being the zeroth-order first-

kind Bessel function rk = Jo (k2πfdTs), [29, 30] and the fading rate fdTs = 0.01. To

obtain the initial conditions for starting the Kalman filter CSI estimation algorithm,

first the Least Squares channel estimate was computed for the duration of the training

sequence. The assumption was made that during the LT,. training symbols interval the

channel was constant. The LS CSI estimate over the training sequence was computed
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from {59]:

where

rix over training sequence, dimension N x M,

matrix of known training symbols, dimension

- matrix of received data samples corresponding

to training sequence, dimension LTr X M.

The additive noise was Gaussian and white (AWGN). Subsequent CSI estimates

at times k = LTr + 1 , • 7 L were computed from Kalman equations (3.3) through (3.8)

for each node in the trellis separately. BEP and FEP performance plots are shown in

Figure 3.2 and Figure 3.3 respectively. It can be seen from BEP vs. SNR plot that

at BEP=10^-3 performance of the Kalman filter-PSP algorithm is about 3 dB worse

than the case with known channel. Similarly, the FEP vs. SNR plot shows that at

FEP=10^-2 the FEP performance of Kalman filter-PSP is about 2 dB worse than the

known channel case.



Figure 3.1 Block diagram of the system using Kalman filter with per-survivor
processing for channel estimation.

Figure 3.2 Kalman filter-PSP receiver - bit error probability vs. SNR per receive
antenna for two transmit-two receive antennas, 8-state 4-PSK STCM over Rayleigh
fading channel with fast fading rate fdTs = 0.01.
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Figure 3.3 Kalman filter-PSP receiver - frame error probability vs. SNR per receive
antenna for two transmit-two receive antennas, 8-state 4-PSK STCM over Rayleigh
fading channel with fast fading rate fdTs = 0.01.



CHAPTER 4

EM-BASED ON-LINE RECEIVER WITH SLIDING DATA WINDOW

The EM-based receiver with sliding data window incorporating adaptive sequence

detector is introduced in this chapter. It was the first attempt to do the sequence

detection of STCM signals distorted by unknown fast fading channel and additive

correlated Gaussian noise. The noise was modeled as autoregresive process of order

(Q — 1). In this approach, the CSI is estimated jointly with the data and initially the

covariance matrix of the noise is assumed known. The EM-based on-line receiver with

sliding data window can perform the same functions as Kalman filter-PSP described

in the previous chapter and in addition it has the capability to handle time correlated

noise, that is AWGN with interference.

The next two sections introduce the adaptive sequence detector for STCM,

EM algorithm with ML sequence estimation as the criteria of optimality followed by

the derivation, functional description and performance evaluation of the sliding data

window receiver with ASD.

4.1 Adaptive Sequence Detector for STCM Signals

Adaptive sequence detector is a modification of the VA for sequence detection incorpo-

rating space-time processing of the interference. The ASD was initially introduced in

[17] for known channels and Gaussian interference with known space-time covariance

matrix. We use fast fading channel model B and introduce a modified signal notation

for the purpose of presenting the ASD for STCM. The presentation is based on [17].

Rewrite (2.2) - the measurement model for a full frame of length L:

where notation x1→L denotes a sequence of received samples at times 1, ..., L.

21
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Define the following space-time quantities for later use: the MQ x 1 vector

space-time noise covariance matrix can be expressed C = cov[zk ] and it is positive

definite by assumption.

The received signals xk conditioned on the transmitted signals Sk are realizations

of a Gaussian random process. The ML detector for the full frame symbol sequence

S i ,/, can be found from:

where the maximum is taken over all possible sequences within S1→L.

By Bayes rule, the joint conditional probability density function (pdf) represen-

ting the likelihood function can be factored into a product of conditional pdf's:

where the notation x 1,p is for a concatenated vector of dimension pM x 1. Note that

in this expression, the current observation x k is conditioned on past observations

x1→ 3k-1 To continue, recall the assumptions made in the signal model:

• The interference is modeled by an autoregresive process of order (Q — 1). This

means that the random vector xk is independent on xk_Q . The densities on the

right hand of (4.3) can then be written:

• The channel is flat fading, implying that since xk depends on xk-Q+1-41c-1, it

also depends on the symbols Sk = Sk_Q+1_*k_1, where the notation refers to a
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MQ x MNQ matrix with diagonal blocks Sk, Sk_1,...,Sk_Q+1. This leads to the

conditional density:

Substituting (4.5) into (4.3) and applying the Bayes rule once more, the factored

form of the likelihood function is obtained:

Maximizing the likelihood function r in (4.6) is equivalent to minimizing its

negative logarithm. Thus, the maximum likelihood detector is given by:

where the notation was simplified using earlier definitions of x k and Sk, and by

observing that Xk = Xk-Q+1-yk and Sk = Sk-Q+1->k• The quantity Tk (xk , S k ) is

the branch metric used in the Viterbi algorithm. Starting with (4.6) and using the

expression for the multivariate Gaussian density:

where H denotes Hermitian operation and after some manipulations , it can be shown

that the branch metric for the Viterbi algorithm is given by:
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and C11^-1 is the inverse of C 11 - a cofactor matrix of

L
noise covariance matrix C.

The expression in (4.9) represents the branch metric of the adaptive sequence

detector. The metric amount to a space time processor embedded in the Viterbi

algorithm.

Next, two special cases are considered that simplify (4.9) and reduce it to

familiar results.

• The interference has no time correlation but is provided by distinct sources (thus

it has spatial correlation). In this case, Q = 1 and (4.8) simplifies to p(xk|Sk) =

defined in (2.1). Then (4.9) becomes:

This branch metric accounts only for spatial correlation of the interference.

• The interference is both spatially and temporally white. This is the case treated

in most of the literature on space-time coding. In this case, the branch metric

reduces to that of a multi-dimensional Viterbi algorithm in white Gaussian

noise:

4.2 Introduction to EM Algorithm with ML Sequence

Estimate as Criterion of Optimality

Expectation-Maximization algorithm first introduced in [18] found applications in the

communication systems as an iterative method for finding ML estimates of parameters
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of interest where the complexity of analytical solution makes it impractical because

the available data does not provide complete information.

In general, if the observed data vector is denoted as b and a the vector of

parameters to be estimated from b then given the conditional density p(b|a), the ML

criterion for the estimation of a from the observed data b is given by:

Defining the likelihood function of a as £'(a) = log p(b la) the equivalent expression

for ML estimate of a is:

In most of the practical cases, it happens that the expression for conditional

density p(b |a) is difficult to obtain analytically or even if such expression is found,

the complexity of maximization in (4.13) is intractable. To apply the EM algorithm,

let's assume that there is access to another data vector c in addition to observed

data vector b. The data c is chosen such that b can be obtained from it through

many-to-one mapping b = f (c) and knowledge of c makes the maximization:

easier than maximization in (4.13). The data c is referred to as complete data and

observed data b as incomplete data. The complete data set can be expressed as

c = {b, d} where d is the completing data needed for estimating a. We note that:
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Using (4.15) the likelihood of a is:

£' (a) has to be maximized with respect to a but because the completing data d is

not known, then instead of computing L' (a) its conditional expectation is computed

with respect to d given the observed data b and the last estimate -0) (or initial

estimate a(0) ) of parameter a:

If the completing data d is chosen such that it is independent on the estimated

parameter a, then the second term in (4.17) is not a function of a then from the

maximization point of view it can be dropped. The subsequent EM iterations cycle

consists of two steps:

Expectation:

The next estimate a(1+1) of parameter a is obtained from the Maximization step:

Maximization:

Taking expectation Ed [...] over the completing unknown parameterdremoves

it from (4.17). Then Q(aja (/) ) is only a function of (b, a and a(1)) and not d.

Consequently, an iterative procedure is obtained for computing a sequence of

estimates a(/), 1 = 1, 2, ... starting from a known initial estimate a(0). Following [18] it

can be shown that the sequence of likelihoods of these estimates L(a(i+i)), 1, 0, 1, ...
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is monotonically increasing with L(a(l+1)) > L(a--(1)\) when Q(áv+i) v) ) > (gam ra-(0 ).

The iterations (4.18) and (4.19) are repeated until convergence, that is until 0+ 1 ) =
au) = a. Then, if £(a) has only one maximum the ML criterion is satisfied:

However, in general, there is no guarantee that a(1) converges to the global

maximum. The convergence properties of the EM algorithm depend on the density

p(b a) and also on the choice of the complete data c and the initial estimate a (°) .

4.3 EM-based Sliding Data Window Receiver with ASD

The window of length (T + 1) symbols is defined. At time k it extends over the time

samples k — T,...,k. Applying the generic EM algorithm introduced in Section 4.2

to this case of STCM data detection/CSI estimation over time-varying fast fading

channel the following EM related definitions are introduced:

• received data Xk_T_> k - incomplete data,

• CSI vector hk_T._÷k - completing data,

• transmitted sequence S	 - parameter to be estimated.

Similarly to Section 4.1, for clarity we simplify the time indices notation:

- xk is equivalent to x k _T_,k ,

- xk - 1 is equivalent to Xk_T _1.

The same time indices notation applies to other variables: Sk , zk , yk and hk .

Signal model can then be written:
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The following derivations assume that:

• noise z k is a random AR process with covariance matrix C and correlation

length Q so that the dimension of matrix C and C -1 is M(Q + 1) x M(Q + 1),

• channel vector Ilk is a random process with covariance matrix K and correlation

length P so that the dimension of matrix K and K -1 is MN(P+1) x MN(P+1).

Matrix operations require that C -1 and K -1 represent the process of the same

correlation length. Let's make this correlation length equal to data window length T =

max (Q, P). Then the required dimensions of C and K are:

- dimension of C is M(T + 1) x M(T + 1),

- dimension of K is MN(T + 1) x MN(T + 1).

To have the required dimensions of C and K, the smaller is expanded to become

a band matrix.

Incorporating ASD into the pdf-s of EM algorithm and skipping the lengthy

derivations, the Expectation and Maximization steps are given below. Maximization

is done using VA with metric Q(S1→k|S1→k ).

Expectation:

According to (4.22), function Q(Si-+k§ (11->) k) that will be maximized in the

Maximization step can be split into two terms. The first term Q(S1_>k-T-1 Si T-1)

is a VA metric over time instances 1, ..., k-T-1 and § (17 ) 7,_ 1 is the detected sequence

that maximized this term at time k —1. It will remain constant during EM iterations

at time k. The second term Q(Sk Sk/) i) is the expression that has to be maximized

with respect to Sk at time k.

Maximization:
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The first term in (4.23) represents the part of the sequence detected from the

beginning of the frame until the beginning of the current data window at time k, that

is over time slots 1, ..., k -T - 1. The second term is the sequence inside the current

data window over time slots k - k, that is the sequence that maximizes (4.22)

at time k.

Again, skipping the detailed derivations, the sequence sought for inside the data

window of length T at time k is:

Tu is a modified VA metric including ASD:

where

C 11 is a MT x MT cofactor matrix of noise covariance matrix C,

K1 is a MNT x MNT low principle submatrix of channel covariance matrix K.

To summarize, with the definitions of EM algorithm complete/completing data

as presented in this section, the EM iterations compute the following:

- ML estimate of the data sequence using VA - Equation (4.24),
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- as a by-product in this form of EM we compute the MAP estimate of the CSI

expected value - Equations (4.26) and (4.27).

The sliding data window algorithm steps to be executed at time k are as follows:

1. Initial conditions after recursions performed up to (and including) time k - 1:

- § (11,) k-1  - sequence of detected symbols transmitted at times 1, ..., k - 1,

- - estimated CSI samples over time slots 1, ..., k - 1,x1→k

-  - sequence of received data samples over time slots 1, ..., k.

0) 
= 

S0) 
T-qc

(
2. Create the initial sequence estimate Sk 	 by appending b k  =_ 0 tok-

S(max)

3. Compute the first CSI estimate hk = 	 over time slots k - T, k using

(4.26) with u = k and 1 = 0.

4. Find the best sequence §T±TiLk using VA with metric from (4.25) - (4.29) and

the current CSI estimate Ifi() 	 -1,(max)
k-2T+1---4 

= 
lik-2T+1-4-T-1m

5. Compute the next CSI estimate f41+711,k using (4.26) and (4.27) with u = k and

Make / = / + 1.

6. Keep iterating between p.4 and p.5 until convergence, that is until § (k1+7,1),k =

z(l)
"k-T-+k•

4.4 Numerical Results

Computer simulations have been done using frames of length L = 130 symbols with

the first LTr = 14 symbols considered known training sequence followed by LD = 116

data symbols. The block diagram of the EM on-line receiver with sliding data window

is shown in Figure 4.1. The same as in the Kalman filter-PSP simulations , the 4-PSK

8-state space-time code shown in Figure 2.2 was used with N=2 transmit and M=2
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receive antennas. Also, the MIMO channel was assumed to consist of independent flat

paths with Rayleigh distribution and time variation governed by the Jakes model with

autocorrelation function represented by the zeroth-order first-kind Bessel function

rk Jo(k2π fdTs ), [29, 30]. The simulations were done for the fading rate fdTs = 0.01.

Additive noise was Gaussian and white (interference correlation length Q = 0).

After running experimental simulations with different sliding window sizes, a

satisfactory compromise between computational complexity and probability of error

performance was achieved when two sliding windows of different dimensions were

used. First, the window of dimension U = 40 symbols over which the CSI was

computed. Second, the window of length T = 5 symbols over which the Viterbi

Algorithm was run. Both windows are shown in Figure 4.2. Symbol detection starts

at time k = LTr + 1 - the first data symbol following the training sequence. The

operations performed at time k are as follows. The initial estimate of symbols sk

is assumed to be 0. Next, using the received sequence Xk-u->yk and detected data

sequence Sk-u->k the CSI estimate hk-u->k is computed over time slots k — U...k.

With the new CSI estimates, the VA is run over time slots k — T...k and a new data

sequence Sk-T->k is found. Then the iteration is repeated. It was observed that in

most cases after 2 iterations the algorithm converged. At time instances where k

was less or equal to 40, to avoid negative indices, the dimension of channel updates

window was selected as U = min(k, 40) for each time instance k.

Bit error probability and frame error probability plots of the sliding window

algorithm are shown in Figure 4.3 and Figure 4.4 respectively. The BEP performance

at BEP= 10 -3 was found to be about 2 dB worse than Kalman filter-PSP algorithm.

Also, the FEP performance at FEP=10 -2 was about 1 dB worse than Kalman

filter-PSP.

The simulation results and in-depth investigation of the EM-based sliding win-

dow algorithm operation led to the conclusion that the system performance was
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Figure 4.1 Block diagram of the EM on-line receiver with sliding data window.

diminished by the fact that the EM iterations were run on a window of limited length.

Consequently, part of the available data (some elements of the received vector and

some elements of the channel covariance matrix) were not used in each iteration. The

result was that often the EM algorithm converged to one of its local rather than the

global maximum and together with error propagation between channel estimation and

sequence detec-tion stages several data frames were observed with long burst errors.

These results motivated further research and lead to EM-based block-processing

iterative algorithm with symbol interleaving presented in Chapter 5.



Figure 4.2 EM-based algorithm with sliding channel and data windows.

Figure 4.3 EM-based sliding windows receiver (EM-SW) - bit error probability vs.
SNR per receive antenna for two transmit-two receive antennas, 8-state 4-PSK STCM
over Rayleigh fading channel with fast fading rate fdTs = 0.01.
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Figure 4.4 EM-based sliding windows receiver (EM—SW) - frame error probability
vs. SNR per receive antenna for two transmit-two receive antennas, 8-state 4-PSK
STCM over Rayleigh fading channel with fast fading rate fdTs = 0.01.



CHAPTER 5

EM-BASED BLOCK-PROCESSING ITERATIVE RECEIVER

WITH SYMBOL INTERLEAVING

As mentioned earlier, the drawbacks of the sliding data window receiver are high

computational complexity and error propagation. These problems were coped with

by implementing a modified block processing EM-based iterative receiver described

in this chapter. All data processing is done on full data frame of length L symbols

and signal models represented by (2.2) and (2.4) apply. Also, a different EM

complete/completing data definition is chosen as compared with the case of sliding

data window receiver. The parameter to estimate is not the data sequence but the

CSI with MAP as criterion of optimality. The by-product that has to be computed

when executing this form of EM algorithm is the MAP estimate of the data sequence.

Introduction of symbol interleaving serves to remove the error propagation between

data detection and CSI estimation stages in the EM iteration loop.

The following sections presents the details of EM algorithm with MAP estimate

of the CSI as criterion of optimality and the a posteriori probabilities (APP) algorithm

for STCM data detection.

5.1 EM Algorithm with MAP Channel Estimate

as Criterion of Optimality

In this version of the EM algorithm, the complete/completing data definitions are:

• received data x - incomplete data,

• transmitted sequence S - completing data,

• y {x, S} - complete data,

• CSI vector h - parameter to be estimated.

35
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Using the MAP criterion for CSI estimation, the optimal solution given the

observed data can be expressed:

However, the complexity of maximization in (5.1) is intractable. Applying the

EM algorithm, it is expected that maximizing the conditional density p(h|y) - CSI

given the complete data should be easier. That is, the optimum CSI estimate sought

for is given by:

Following the generic EM derivations presented in section 4.2, the Expectation

step can be written:

the Expectation step (5.3) becomes:

where the term p(y) is not a function of the parameter being estimated h and can be

dropped. Then the EM Expectation and Maximization steps are:

Expectation:
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Maximization:

Substituting the complete data definition into (5.6):

The transmitted data sequence S is independent on the channel vector h so the first

term in (5.8) is not a function of h and after dropping it, (5.8) becomes:

Assuming that the additive noise entering the M receive antennas is white

Gaussian with variance No , the conditional density of the received signal in (5.9)

can be expressed:

Following the Rayleigh fading assumption about the channel, its density function

is expressed by (2.8) and repeated here for convenience:

Substituting (5.11) and (5.10) into (5.9) and dropping the constants the final

version of the EM algorithm Expectation step is:
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In the EM Maximization step, (5.12) is maximized with respect to h by setting

the derivative of Q(h h (1) ) equal to 0 with h 41 (1+ 1) :

or equivalently:

Then the next CSI estimate is:

The quantity Es [S x , h( 1 )] in (5.15) represents the conditional expected value

of the detected data sequence given the observed data x and the last CSI estimate

h(l). The APP algorithm is employed in data detection stage so that its soft outputs

allow to compute the expected values Es [S ix, h( 1 )] of the detected data symbols. The

STCM implementation of the APP algorithm is presented in the next section. The EM

algorithm described here iterates between the estimation stage, where CSI estimate

is computed using (5.15) and the detection stage executing the APP algorithm until

convergence. At the end of the EM iterations the final result is a MAP estimate of

the CSI and the last sequence detected with APP algorithm which used MAP as its

criterion of optimality.

5.2 APP for STCM

Computation of the CSI estimate from (5.15) involves computation of the conditional

mean values of symbols transmitted by each transmit antenna. That means, the

computation requires knowledge of the a posteriori probabilities P(sk = 	 h(1))

where {s (i ) } = A. It is assumed that CSI estimate from the previous EM iteration (or

its initial value if 1 = 0) h(l) is available and fixed for the purpose of APP decoding
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and the notation can simplified by dropping h( l). Below a generic APP algorithm is

presented for computing the a posteriori probabilities of data symbols uk at the input

to STCM encoder P(uk = u (i) x) • The detailed derivation of the algorithm can be

found in [54]. It is based on BCJR algorithm [55] but it is different from it in two

respects: non-binary trellis and multiple input-multiple output (MIMO) channel. The

extension of the algorithm is also presented, which computes the APPs of symbols

at the N outputs of STCM encoder - that is the probabilities of STCM modulated

symbols transmitted by each transmit antenna P(sn (k) = s(i)|x).

Consider the sequence of symbols uk entering the STCM encoder. The APPs

of symbols at the input to the encoder at time k can be expressed:

where P(uk u ( i ) , a k, σk+1|X) is the joint probability that given the received data x,

the transition from state σ k  to σk+1  is associated with encoder input symbol uk = U.

The notations are illustrated in Figure 5.1. With no parallel transitions between

states, any two elements from (Uk , σk+1, uk) uniquely define a transition. Let's define

xi; as the sequence received before time k, and 4 the sequence received after time

k. Then there is x = xk, 4). Using the procedure similar to [55] the joint

probability P(uk  = u (i) , σk, σk+1|x) can expressed in a recursive form. Applying

Bayes rule to (5.16):
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where the normalizing coefficient h is chosen such that:

To compute the joint probability P(uk = u (i), k , k+1, x), we first rewrite it:

P(uk = u (i) k, k+1, X) = P(uk = u (i) k, a k+1, Xk ,Xk,Xk) 	 (5.19)

Applying the chain rule to (5.19):

From the Markov chains properties if state k +1 is known, 4 does not depend on

any of the other parameters:

Also, if state σk is known, quantities at times k and on do not depend on

Defining the following quantities:
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Next, it is shown that ak(σk) and βk+1(σ+1)  can be computed recursively. It

is also shown how to compute yk (i) (o- k , k+1, xk ) having the received sequence x and

CSI estimate h(l).

• γk(i) (σk, σk+1 ,xk) is the joint probability of the transition from state σk to σk+1

with the observation xk. Using the definition in (5.23) it can be expressed:

where the conditional pdf p(xk|σk, k+1, uk = u (i) ) 	 p(xk k, u(i)) can be

computed from:
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Sk is a matrix of STCM modulated symbols defined in (2.1). The term P(u k =

u (i) σkk, k+1) =1 if there is a transitionσk->σk+1due to input u(i)and it is zero

otherwise. If there is such transition, we can also write P(σk+1|σk) = P(uk = 0 ) )

where P(uk = u(i)) is the a priori probability of input symbol u('). Now (5.25) can be

written:

for existing transitions σk->σk+1 associated with input u(i).

• ak(σk) P(k,xkl are the joint probabilities of the trellis states at time k and

the data received until time k — 1, xi . These probabilities are obtained from

the forward recursion:

where P(k+1,xk|σk,x) = P(k+i,xklk) was used, which says that events

after k —1 are not influenced by xk- if k is known. Also, the following definition

was used:
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From (5.23) and (5.29) it can be seen that:

• 13k4-1(k+1) = p(x 1,4,- k+1) are the densities of the observations after time k

conditioned on the states at time k. The recursive expression for 3 (a 1\-- k+1,

can be obtained as follows:

where the Markov property was used p(x -kE k, k+1, Xk) P(Xj4c- lk+i) and defini-

tion (5.29).

By combining (5.28), (5.31) and (5.27) and substituting into (5.24) and then

into (5.16), the APPS of the symbols uk at the input to the STCM encoder can be

expressed:



The APPs of STCM modulated symbols transmitted by antenna n at time k are:

where P (sn(k) = s (i) , σk , σk+1|x) is the joint probability that given the received data

x, the transition from state σk  to k+1 is associated with symbol s (i) emitted from

transmit antenna n, n = 1, N. Recalling that one encoder input symbol u (i)

generates a vector of STCM modulated transmitted symbols

APPs of the encoder input symbols uk, the probability in (5.33) can be expressed

similarly to that in (5.24):

where ryl k(i) (n,k , k+i , xk) is the joint probability of the transition from state σk

to k+1 with observation x k associated with symbol sn (k) = s(i) transmitted from

antenna n and q is a normalizing coefficient. By analogy to (5.25):
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The first term p(xk k, k+ 1,Uk = 71 (i) ) is given by (5.26). The term P(sn (k) =

s ( i ) k, k+1) = 1 if transition σk  ->σk+1 is associated with symbol s (i) being tran-
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smitted from antenna n and it is zero otherwise. If there is such transition, there

is also P(σk+1|σk ) = P(sn(k) = s (i) ) which is the a priori probability of symbol s (i)

being transmitted from antenna n. Now (5.35) can be written:

Combining (5.28), (5.31), (5.36) and substituting into (5.34) and then into (5.33)

the APPs of STCM modulated symbols transmitted by antenna n at time k can be

expressed:

Computation of the APPs from (5.37) for all transmit antennas n = 1, N

and full length data frame k = 1, L results in soft-output values of sequences

transmitted by all N STCM antennas. Those are the quantities needed to determine

the conditional expectations of the N transmitted sequences which are required for

computing the CSI estimate from (5.15) in the next EM iteration.

5.3 Description of the Iterative Receiver with Symbol Interleaving

The block diagram of the receiver is shown in the bottom part of Figure 5.2. Receiver

operates on data frames of length L symbols at a time. In the transmitter, a frame

of length L symbols consisting of a preamble of Lt known training symbols had

been STCM encoded and interleaved before being transmitted. The length of the

interleaver is chosen such that the training symbols are spread evenly across the
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Figure 5.1 APP algorithm notation describing the STCM trellis states and
transitions.

full frame. The observation sequence received at the receiver is made up of the

interleaved transmitted data distorted by the fading MIMO channel and additive

noise. After reception, the observation data of length L is fed into EM derived

CSI estimator represented by (5.15). The estimator also utilizes the APPS of the

transmitted data. The first EM iteration is carried out assuming probabilities of 1 for

the known training symbols and 2 -m for the unknown data symbols. Equivalently, for

the 2m-PSK modulated symbols considered in this paper the unknown symbols are

assumed to be equal to zero. In case of time-varying channel model, the CSI estimate

obtained from (5.15) is associated with the transmitted interleaved data. Before the

observation sequence and CSI estimate are fed into the APP data decoder, both

have to be deinterleaved. Only then the data sequence being decoded will match the

trellis code used to encode it in the transmitter. APP decoder soft outputs computed

according to (5.37) are interleaved again and together with the original sequence of

observations they are fed to CSI estimator to carry out the next EM iteration.

It can be seen that the EM iteration steps, namely CSI estimation and data

detection are executed in a closed loop. Much of the published EM joint estimation-
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Figure 5.2 Block diagram of EM-APP block-processing iterative receiver with
symbol interleaving.

detection methods (such as [26]) suffer from the effects of error propagation between

the detection and estimation stages. When estimating the time-varying channel

Model B and a symbol error is made in the detection stage, it causes inaccurate

CSI estimates in the vicinity of the erroneous symbol. This in turn leads to even

more symbol errors in this area in the next iteration. In effect, estimation/detection

errors accumulate. The result is that several frames contain long bursts of errors.

Implementing a symbol interleaver after the information symbols are STCM encoded

in the transmitter solves the described above error propagation problem. With symbol

interleaving, the interleaved sequence is used at the receiver to compute the CSI

estimate while detection is done on the deinterleaved sequence. Such approach allows

to decouple the time instances when symbol errors are made in the detection process

from the time instances where CSI estimation errors occur. The interleaver also has

the added benefit of increasing the diversity advantage to combat deep fades over a

fast fading channel [27].
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5.4 Numerical Results

Numerical results were obtained for the 4-PSK 8-state space-time code presented in

[13] and shown in Figure 2.2, with N = 2 transmit and M = 2 receive antennas.

The transmitted symbols were assembled in frames of length L = 130. Each frame

consisted of 14 training symbols followed by 116 data symbols. The additive noise

used in the simulations was white, Gaussian with known variance and the effective

SNR has been obtained by incorporating into its computation the transmitted power

lost for transmission of training symbols:

The interleaver used was a simple deterministic 14 x 10 matrix interleaver.

The MIMO channel was assumed to consist of independent flat paths with Rayleigh

distribution and time variation governed by the Jakes model with autocorrelation

function modeled by the zeroth-order first-kind Bessel function rk = Jo (k27 - fdTs ),

[29, 30]. The fading rate was fdTs = 0.01, which corresponds to a vehicle moving at

approximately 90 mph for a carrier at 2 GHz and a symbol rate of 24.3 ksymbols/sec

(current TDMA IS-136 standard).

To evaluate the effect of the interleaver on the performance of the receiver, first

the simulation of the system described above was ran with interleaving/deinterleaving

operations removed. The bit-error probability (BEP) vs. SNR for such configuration

is shown in Figure 5.3 for CSI assumed known and for CSI estimated using four EM

iterations. The case of unknown estimated CSI can be considered an alternative

implementation of the system in [26]. The main difference between the system

considered and [26] is the format of the data block used in EM iterations: a frame

of 130 symbols with 14 training symbols instead of 3 consecutive 25-symbol frames

with 2-symbol pilot blocks interspersed between them. It can be seen from Figure

5.3 that with the frame 130 symbols and no interleaving, the algorithm fails to



Figure 5.3 EM-APP block-processing iterative receiver - bit error probability vs.
SNR per receive antenna over Rayleigh fading channel with fast fading rate fdTs =
0.01 - no interleaving, 4 EM iterations.

produce a satisfactory CSI estimate and consequently fails to deliver a reasonable BEP

performance even at high SNR values. Introducing symbol interleaving/deinterleaving

has a huge impact on system performance. With interleaver/deinterleaver in place,

Figures 5.4 through 5.7 show the BEP and frame error probability (FEP), respectively,

versus signal-to-noise ratio per receive antenna for 1-4 iterations for slow and fast

fading Rayleigh channels. The performance of the receiver with known CSI and with

symbol interleaving was used for reference. From Figure 5.4 and 5.6, it is observed that

at BEP = 10 -3 and after four iterations, the performance of the proposed EM-APP

receiver is within 0.5 dB of the performance of the system with known CSI. Similarly,

from Figure 5.5 and 5.7, it is seen that at FEP = 10 -2 and after four iterations, the

performance has only a 0.5 dB gap to the case of known CSI. Note by comparing

Figure 5.3 with 5.4 and 5.6 that for BEP=10^-3 about 0.5 dB advantage is evident

even after two iterations over the performance with known channel but no interleaver.



Figure 5.4 EM-APP block-processing iterative receiver - bit error probability vs.
SNR per receive antenna with known AWGN variance over Rayleigh fading channel
with fast fading rate fdTs = 0.01 - with symbol interleaving - 1, 2 and 4 EM iterations.

Figure 5.5 EM-APP block-processing iterative receiver - frame error probability vs.
SNR per receive antenna with known AWGN variance over Rayleigh fading channel
with fast fading rate fdTs = 0.01 - with symbol interleaving - 1, 2 and 4 EM iterations.
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Figure 5.6 EM-APP block-processing iterative receiver, AWGN variance known -
bit error probability vs. SNR per receive antenna over Rayleigh fading channel, slow
fading rate fdTs = 0.001 - with symbol interleaving - 1, 2 and 4 EM iterations.

Figure 5.7 EM-APP block-processing iterative receiver, AWGN variance known -
frame error probability vs. SNR per receive antenna over Rayleigh fading channel,
slow fading rate fdTs = 0.001 - with symbol interleaving - 1, 2 and 4 EM iterations.



CHAPTER 6

ITERATIVE APP-EM STCM RECEIVER WITH

WHITE NOISE VARIANCE ESTIMATION

The iterative APP-EM receiver presented in Chapter 5 computes the CSI estimate

using (5.15). In derivations leading to (5.15), the assumption was made that the

additive noise was Gaussian, white in time and space and its variance No was known.

In this chapter, a more practical approach is taken to do sequence detection and

compute CSI estimate assuming that the noise variance is unknown and has to be

estimated. We would like to incorporate the noise variance estimation into the EM

iterations loop, which suggests that signal processing in our modified receiver should

be performed in three rather than two stages:

1. CSI estimation,

2. APP signal detection,

3. Noise variance estimation.

The generic EM algorithm introduced in Section 3.1 should be modified. If

instead of estimating a single parameter a, we need to estimate a set of different

parameters A = (al, a2, ak), following [20] we can partition the set of parameters

into smaller subsets and find the estimates of the subsets separately. Then a single

EM iteration can be split into several steps in which only one parameter/subset is

estimated at a time while the remaining parameters are assumed available and kept

fixed:
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(.4+1) , 4+1) ,where 	 ) = -Ä.( 1 + 1 ) is a new estimate of the full parameters set A.

Applying the approach of parameters set estimation (6.1)-(6.3) to modify our

APP-EM iterative receiver, instead of estimating a single parameter h, we need to

estimate a set of parameters P = (h, z) where z is noise vector defined in (2.2). Then

the three stages of signal processing in our modified receiver are:

1. CSI estimation from:

using Equation (5.15).

2. APP signal computation Es [S x, ii( 1+ 1), -41 using the density of received data

given by (5.26).

3. Noise estimation:

(a) Noise samples vector computation:

(b) Noise variance g+1) computation:

The modified APP-EM receiver including the noise variance estimation is shown

in Figure 6.1. The channel estimator takes at its input the received observations

sequence, the last estimate of noise variance and the last estimate of data symbols

APPS computed from (5.37) and produces the sequence of new CSI estimates. The
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Figure 6.1 Block diagram of the APP-EM iterative receiver with estimation of
unknown white noise variance.

new CSI estimates sequence after deinterleaving is fed to the APP decoder together

with the deinterleaved sequence of observations and last estimate of noise variance.

The output of the APP decoder is a sequence of new APPs of data symbols transmitted

by all N transmit antennas. Having the new estimates of CSI and data symbols

APPs, a new estimate of noise variance is computed which will be used in the next

EM iteration. At the end of EM iterations, (5.32) is used for making the final hard

decision on the most likely data uk , k = 1, L at the input to STCM encoder.

6.1 Initial Value of Noise Variance

To start the EM iterations, initial value of noise variance is needed. Simulations

were run with different initial noise variance values in the range 0.1 through 30 for
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SNR = 8 dB and 12 dB to determine the range of these values resulting in the

best performance. With SNR 8 dB and 12 dB and signal power Ps = 1, the noise

TT., variance 	 PN are:

Figure 6.2 shows the BEP vs. initial noise variance plots. It can be observed

from the figure that the best BEP performance is obtained when initial noise variance

is greater than the true noise variance. That is, it is better to overestimate the initial

noise variance rather than underestimate it. To justify this conclusion, let's express

the equation for computing CSI estimate (5.15) in a slightly different form:

In the first EM iteration, S represents the initial data sequence estimate made up of

only the training symbols. All the remaining yet unknown data symbols are set equal

to 0. K is the known correlation matrix of Rayleigh fading channel. The noise variance

No can be looked at as a weight factor which balances the contributions of two terms:

Es [SHS x , h( 1 )] and K-1 to the final result in (6.7). We will get more accurate initial

channel estimate result h(l+1) when we give more weight to the known term

rather than relying on inaccurate initial data sequence estimate S. Consequently, as

the initial noise estimate we decided to use the power of the received sequence divided

by 2. Below we justify this choice.

Designate Px = Ps + PN to be the power of the received signal, where Ps is

power of data symbols and PN is power of noise. Then SNR is SNR. Ps—. We
PN

consider the range of SNR > 1 (0 dB) then with the assumption of Ps = 1 there
Px

is PN < 1. It can be observed that when PN < 1 and PNinit = -
2 

there is always



Figure 6.2 Bit error probability vs. initial value of white noise variance for SNR=8
dB and 12 dB.

PNinit initial noise variance greater than true noise variance PN:

when PN < 1.

6.2 Performance of the Iterative APP-EM Receiver with Noise

Variance Estimation - Numerical Results

The same as in Chapter 5, numerical results were obtained for the 4-PSK 8-state

space time code presented in [13] and shown in Figure 2.2 with N = 2 transmit and

M = 2 receive antennas. Each frame consisted of 14 training symbols followed by

116 data symbols to the total of L = 130 symbols per frame. Deterministic 14 x 10

symbol interleaver was used. We considered performance of the system over the

quasi-static channel (Model A) introduced in Section 2.1 and over the time-varying

Rayleigh fading channel (Model B) introduced in Section 2.2. The simulations were
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run at two fading rates of the Rayleigh channel: slow fading fdTs = 0.001 and fast

fading fdTs = 0.01.

The BEP and FEP vs. SNR performance plots were obtained for the iterative

APP-EM receiver with CSI and noise variance being estimated. For reference, we also

included in the figures two other performance plots: for the receiver with known CSI

and known noise variance and for the receiver with CSI estimated and noise variance

known.

Figures 6.3 and 6.4 show BEP and FEP vs. SNR performance of our receiver

over a quasi-static channel. It can be observed that in both cases BEP and FEP, the

performance of our receiver with unknown noise variance and CSI estimation is only

a fraction of a dB worse than the performance of the system with known CSI and

known noise variance.

Figures 6.5 and 6.6 show the BEP and FEP vs. SNR performance over the

Rayleigh fading channel with slow fading rate fdTs = 0.001. In this case, the BEP

performance of our receiver is within 0.2 dB and FEP performance is within 0.1 dB

of the system with known CSI and known noise variance.

Figures 6.7 and 6.8 present the BEP and FEP vs. SNR performance over the

Rayleigh fading channel with fast fading rate fdTs = 0.01. It can be observed that

at BEP= 10 -3 the performance of our receiver with CSI and noise estimation is only

0.5 dB worse than performance of the reference system with known CSI and known

noise variance. At FEP= 10 -2 the gap between our receiver and the reference system

is 0.2 dB.

A flowchart of the simulation program used to obtain the performance plots is

presented in the Appendix A.



Figure 6.3 APP-EM iterative receiver - bit error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over quasi-static channel.

Figure 6.4 APP-EM iterative receiver - frame error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over quasi-static channel.



Figure 6.5 APP-EM iterative receiver - bit error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over Rayleigh fading channel
with slow fading rate fdTs = 0.001.

Figure 6.6 APP-EM iterative receiver - frame error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over Rayleigh fading channel
with slow fading rate fdTs = 0.001.
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Figure 6.7 APP-EM iterative receiver - bit error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over Rayleigh fading channel
with slow fading rate fdTs = 0.01.

Figure 6.8 APP-EM iterative receiver - frame error probability vs. SNR per receive
antenna with estimation of unknown AWGN variance over Rayleigh fading channel
with slow fading rate fdTs = 0.01.



CHAPTER 7

INVESTIGATION OF THE APP-EM RECEIVER PROPERTIES

In this chapter, different properties of the APP-EM receiver are investigated. These

include how the system performance depends on the training sequence length and

the length of interleaver. In addition, the system performance with deterministic

and random interleavers are compared and the effects of channel fading rate on the

performance are investigated.

7.1 Effects of Training Sequence Length on System Performance

The trade-off between the quality of CSI/noise estimation and the SNR loss resulting

from different number of training symbols used was evaluated. Figure 7.1 presents

the plots BEP vs. number of training symbols expressed as a percentage of total

frame length L with L kept constant at 130 symbols and number of training symbols

set to 6, 10, 14, 18, 22, 30 and 38. For each training sequence length, the interleaver

matrix dimension used is given in the table below.

Training Sequence Length Interleaver Matrix Dimension

6 6 x 22

10 10x 13

14 14x 10

18 18x 8

22 22x 6

30 30x 5

38 38x 4

Three plots are shown for SNRs: 8, 10 and 12 dB over fast fading (fdTs = 0.01)

channel. It can be seen from Figure 7.1 that the optimum number of training symbols

resulting in the most efficient channel usage is when the training symbols make up
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Figure 7.1 Bit error probability vs. training sequence length - effect of training
sequence length on system performance, Rayleigh fading channel fdTs = 0.01.

about 10 — 11% of frame length. At L = 130 symbols it is equivalent to the number

of training symbols Lt = 14 which agrees with TDMA IS-136 standard.

7.2 Study of the Interleaver and Channel Correlation Length Effects

The effect of interleaver length and channel correlation length considered in the

computations was investigated by running the simulations with different lengths of

training sequence Lt and the frame length L keeping the ratio it  constant. The

dimension of the interleaver matrix was Lt x [int(L/Lt) + 1]. Simulations were run for

training sequence length Lt and frame length L given in the table below with the

interleaver matrix dimensions adjusted appropriately.
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Training Sequence Length Frame Length Interleaver Matrix Dimension

6 56 6 x 10

10 93 10 x 10

14 130 14x 10

18 168 18x 10

22 204 22x 10

26 241 26x 10

30 279 30x 10

BEP vs. frame length L is shown in Figure 7.2 for fast fading Rayleigh channel

(fdTs = 0.01). It can be seen from the figure that using frame lengths smaller

than L = 130 symbols becomes inefficient because the short interleaver length and

truncation of channel correlation function causes the increase of BEP. On the other

hand, increasing the frame length beyond L = 170 symbols does not result in

significant gain in performance but increases the decoding delay and complexity of

computations (dimensions of matrices become greater). The optimum frame lengths

are in the range L = 130-170 symbols which also agrees with TDMA IS-136 standard

where L = 130.

7.3 Evaluation of the Deterministic Interleaver Gain

To evaluate the quality of the deterministic matrix interleaver used in most of the

simulations, the case of random interleaver was considered. With the frame length

L = 130 and training sequence L t = 14, a random interleaver was generated different

for each frame. Then, after averaging the BEP over all transmitted frames, the

resulting performance was not a function of the interleaver. The BEP vs. SNR

performance of the system with deterministic and random interleavers is shown in

Figure 7.3. It can be observed that at BEP= 10 -3 the gain of about 0.5 dB is



Figure 7.2 Bit error probability vs. frame length with fixed percentage of training
symbols - fast fading Rayleigh channel fdTs = 0.01.

achieved for both cases of known and estimated CSI that can be attributed to the

deterministic matrix interleaver over the random interleaver.

7.4 Effect of Channel Fading Rate on System Performance

The BEP performance of the receiver as a function of the channel fading rate has

been investigated. Using frame length L = 130 symbols and training sequence length

Lt = 14 symbols, the simulations were run with both the CSI and white noise variance

being estimated at different channel fading rates. Figure 7.4 shows the BEP vs. SNR

plots for channel fading rates fdTs = 0.001, 0.01, 0.03, 0.05 and 0.1. It can be observed

from the figure that at channel fading rates fdTs greater than 0.03 the performance

of the estimation algorithm becomes unacceptable. At lower fading rates in the range

0.001 to 0.01, the performance is established by two main factors: diversity advantage

and the quality of initial CSI estimate. Diversity advantage results from the use of

the interleaver. It increases with the increase of the channel fading rate, which drives



Figure 7.3 Bit error probability vs. SNR performance of the system with
deterministic and random interleavers, Rayleigh fading channel f dTs = 0.01, channel
and noise variance estimated.

the BEP down. At the same time, as the number of training symbols is kept fixed,

the quality of initial CSI estimate gets worse with the increasing channel fading rate.

It can be observed from Figure 7.4 that the diversity gain at fdTs = 0.01 is greater

and the performance is slightly better than at fdTs = 0.001 for SNR greater than 5

dB. The iterative APP-EM receiver using frame length L = 130 symbols and L t = 14

training symbols achieves the best performance when the channel fading rate fdTs is

in the range 0.001 to 0.03 with 0.01 being the optimum. In particular, the proposed

receiver is not suitable to maintain reliable communications in the environment where

the channel fading rates are greater than 0.03-0.05.



Figure 7.4 Bit error probability vs. SNR for different Rayleigh channel fading rates
fdTs, channel and noise variance estimated.



CHAPTER 8

SUMMARY AND CONCLUSIONS

In this dissertation, the communication systems for space-time coded signals have

been presented. The BEP versus SNR and FEP versus SNR performance plots of the

different systems are shown in Figure 8.1 and 8.2 respectively. The best performance

is achieved from the communication system employing symbol interleaving at the

transmitter and the APP-EM receiver utilizing EM algorithm to do soft outputs

sequence detection and channel estimation iteratively. The results of the simulations

are presented showing the performance of the system over unknown quasi-static and

Rayleigh fading channels. The operation of the proposed APP-EM receiver is based

on EM iterations that produce channel and noise variance estimates utilizing symbol

APPs. Noise covariance and channel estimates are subsequently used to get more

accurate APPs. It is shown that for the channel models considered, the algorithm

converges to within 0.2-0.5 dB of the BEP performance with known channel and

known noise variance. Some of the system properties were also investigated, including

how its performance depends on the number of training symbols and on the interleaver

length. The performance as a function of Rayleigh channel fading rate suggests

that the proposed system can serve as a powerful method for communications over

unknown quasi-static and fading channels in the environments where the channel

fading rates do not exceed fdTs = 0.03.

The following is the summary of contributions presented in this dissertation:

1. Employing symbol interleaver to eliminate error propagation between sequence

detection and channel estimation in the EM-based iterative STCM receiver.

2. Implementation of the EM algorithm for channel estimation and data detection

for STCM encoded signals with MAP as a criterion of optimality in both:

estimation and detection.
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Figure 8.1 Comparison of bit error probability vs. SNR performance over Rayleigh
channel with fdTs = 0.01 for different communication systems considered.

Figure 8.2 Comparison of frame error probability vs. SNR performance over
Rayleigh channel with fdTs = 0.01 for different communication systems considered.
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3. Estimation of noise variance in the EM loop of the STCM iterative receiver in

addition to channel estimation and data detection.

4. Investigation of performance and other properties of the STCM communication

system with symbol interleaver and EM-based iterative APP-EM receiver.

5. Evaluation of performance of the STCM receiver using Kalman filter with per-

survivor processing for channel estimation and Viterbi algorithm for sequence

detection.



APPENDIX

FLOWCHART OF THE SIMULATION PROGRAM

A flowchart of the Matlab simulation program is shown in Figures A.1, A.2 and A.3.

The main program in Figure A.1 makes calls to several functions to generate the data

to be transmitted within each frame, MIMO channels and noise. Then a function

fStcmAPPEMInt() is called which contains all the signal processing at the receiver.

After the received data has been decoded, the number of errors is counted and the

control is transferred back to the beginning of the program to generate and transmit

the next data frame. Figures A.2 and A.3 show the details of data processing in the

receiver function fStcmAPPEMInt().
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Figure A.1 Simulation program flowchart - main program.
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Figure A.2 Simulation program flowchart - receiver (1).
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Figure A.3 Simulation program flowchart - receiver (2).
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