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ABSTRACT

STATISTICAL IMAGE ANALYSIS

OF SPOTTED ARRAYS

by

Filippo Posta

There is a lot of systematic and specific variability in microarray experiments, this

variability affects measured gene expression levels, leading to unreliable gene profiling

or an heavy load of extra experiment to statistically confirm the data observed in one

experiment.

The aim of this work is to systematically analyze, using statistics, the image

derived from a cDNA microarray experiment to have a better understanding of this

variability and thus a better confidence over the data obtained from an experiment.

Using technologies available at the Center for Applied Genomics, Newark, New

Jersey. Selected images derived from different type of microarray experiments have been

analyzed in statistical fashion to find answers about the variability of biological data.

Statistical methods such regression have been applied to the whole image, print-tips and

single spots; leading to answers, confirmations and new ideas about issues regarding

analysis and reliability of microarrays experiments.
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CHAPTER 1

INTRODUCTION

There is a lot of systematic and specific variability in microarray * experiments. This

variability affects measured gene expression levels, leading to unreliable gene profiling

or a heavy load of replicates to statistically confirm the data observed in one experiment.

The main objective of this thesis is to analyze the variability of the data obtained

from a microarray experiment.

The use of microarray technology for gene expression profiling has become

widespread. The two most popular platforms are manufactured short-oligo arrays

(Affymetrix) and spotted arrays. The increasing popularity of spotted arrays is primarily

due to affordability and flexibility. While it is easy to obtain updated probes of sequenced

genomes and create experiment-specific slides, pre-spotted arrays and labeling kits are

readily available. Unfortunately, cDNA microarrays are not as reliable as their more

expensive alternatives. This is mainly due to the high degree of variability that is

generated during the preparation and the execution of a spotted-array experiment (i.e.

hybridization conditions, sample concentration, dye quality and chemistry, laser

alignment etc.).

Such variability has forced researchers to replicate experiments to establish

statistical significance for gene expression. Unfortunately, comparing replicates of the

same experiment is not straightforward and has raised issues, like normalization across

slides.

* In this Thesis, the terms microarray and spotted-array are used interchangeably.
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This thesis tries to assess the variability of spotted arrays by statistically analyzing

the scanned image obtained at the end of a microarray experiment. The analysis is done

systematically, pixel by pixel, unlike accepted procedures in which only a few specific

parameters are extracted from the image. The median intensity values among the

different pixels identifying a spot are commonly used for the final analysis and

interpreted by the experimenter. While there is a lot of information that might be useful,

much of data is overlooked.

Another objective of the thesis is to utilize this information for data validation.

Statistical methods are used to give a measure of the quality of the parameters that are

normally used in gene profiling. In addition, the use of an original parameter is proposed

for data analysis. This new value is directly inferred by the pixel distribution of every

single spot, providing a measure of both fold change and confidence.

Overall, the thesis is divided in four chapters and two appendices.

Chapter 1 describes the process of creating a microarray experiment to help the

reader understand the source of variability that will be studied in the following chapters.

Chapter 2 presents a global analysis of the image to identify biases that can be

imputed to the fabrication of a microarray: laser alignment, saturated pixels, and gradient

problem.

Chapter 3 presents some applications of statistical analysis to find new ways to

asses for spot quality, to correctly select a spot, and few words are spent over the issue of

normalization.

Chapter 4 is dedicated to fold change analysis, a brief review of standard fold

change analysis is proposed followed by some statistical consideration that will lead to
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the introduction of a new parameter that can be used as an alternative to the generally

used median ratio.

Appendix A describes materials and methods used for the thesis, but only in

terms of the type of machines and software used for this work.

Appendix B describes the R code that has been used for the data analysis.



CHAPTER 2

SPOTTED A l'' RAYS

A microarray is a biochemical technology based on the principle of hybridization

between complementary strands of nucleic acids, that allows gene expression to be

assessed on a genomic scale, giving researchers the opportunity to assess in parallel the

expression of hundreds of genes in a single experiment. The end product of a microarray

experiment (Figure 2.1) can be seen as a matrix of microscopic spots, with each feature

representing a gene. The intensity of the feature is a relative measure of gene expression.

Figure 2.1 Image obtained from a microarray experiment.

To reach the final result there are a series of required steps prior to analysis. It is

during the execution of each step that error can be introduced and the reliability of the

data can be altered. A schema [1] of these steps is represented in Figure 2.2.

4
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Figure 12 Schema for a typical Microarray Experiment.

The schema can be divided into three main steps:

1. Array Fabrication

2. Sample Preparation and Hybridization

3. Data Extraction

2i1 Array Fabrication

Microarrays are constructed by arraying purified PCR products or oligonucleotides at

high density, on coated" glass slides. A growing number of companies offer synthesized

oligo sets representing entire genomes. Experiment-specific oligos are also available for

custom arrays. PCR products are typically generated from cDNA clones using universal

primers, or specific primers. In addition to known gene products, expressed sequence

Coating is necessary to enhance hydrophobicity and adherence of target DNA.
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tags (ESTs) are spotted for gene discovery and gene mapping in many organisms. The

target DNA must be purified to eliminate elements (like salts, detergents, primers etc.)

that may compete during hybridization, or add to background fluorescence. A sufficient

amount of the purified DNA is then suspended in a buffer compatible with the slide

surface it is applied to.

The arrayer, is the robotic printing device that deposits a known amount of target

DNA onto the slide surface. While the architecture for arrayers may vary, the result is an

array of microscopic gene products in well-defined spots across the surface of the coated

slide. A popular printing method involves "quill" pens. Fluid is drawn into the spotting

pen via capillary action, and surface tension interactions to dispense solution into the

slide.

The arrayer proceeds in a systematic fashion, with each pen printing a well-

defined area of the slide. Each section of the entire array printed is the collective work of

one "print-tip," or the equivalent of one "block." For example in Figure 2.1, there are 32

blocks resulting from 32 different print-tip operations.

After the target DNA has been spotted, the slide is post-processed with a

compatible blocking chemistry, and ready for hybridization with fluorescently labeled

cDNA.

2.2 Sample Preparation and Hybridization

In microarray experiments, differential comparisons begin with two different samples of

mRNA, representing two distinct conditions assayed one against the other. Each RNA
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sample is reverse transcribed (RT) to incorporate fluorescent molecules that are later

visualized with a laser scanner. These representations of cellular mRNAs are obtained in

the RT reaction using an oligo-dT primer, or random primers when the transcripts lack

poly-adenylated tails. The products are labeled from the 3' end, allowing for

hybridization to any complementary sequence printed on the slide.

Cyanine-3 (Cy-3) and Cyanine-5 (Cy-5) are fluorescent molecules most

frequently used, as they are readily incorporated by the RT enzyme. The excitation and

emission spectra of the two dyes also allows for discriminating optical filtration, as they

don't overlap.

The final step in microarray preparation is hybridization of the labeled cDNA to

the immobilized DNA printed on the slide. Hybridization conditions must be stringent

enough to minimize cross hybridization and other undesirable effects. Slides are then

placed in a temperature-controlled environment (hybridization machine, water bath, etc.)

until hybridization reaches equilibrium. Slides are then carefully washed and spun dry, to

remove residuals from the hybridization solution that could contribute to noise. At this

point, the microarray is scanned and the image acquired for data extraction and analysis.

2.3 Data Extraction

Due to its highly regular arrangement of detector elements (the spots) and crisply

delineated signals (the labels), microarrays can be digitally processed for data extraction.

A laser scanner is used to perform this operation; it uses two lasers to excite the

fluorescent labels in the slide, then the fluorescence for each channel is converted to
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electrical signals that will create the digital image. The image will then be processed

pixel by pixel and a statistical overview of the data extracted from the image is given.

The statistical data obtained is then the value that is used to define the expression of each

specific spot for the microarray experiment. In general, the value that is used to identify

the state of a gene in one of the two conditions is the median pixel intensity (Rg and Gg

for the red and green channel of a gene g ).

The median intensity can be considered as an approximate value to assess for

gene expression. This approximation is not as reliable as the one obtained with Affy

chips. However, using spotted arrays it is possible to compare two different samples in

the same hybridization conditions, while using Affy chips two different experiments are

needed.

For this reason, the most relevant (and reliable) value that can be extracted from a

spotted array experiment is not a measure of the absolute expression of a gene in any of

two different conditions (i.e. median intensity values for red and green channels). Instead,

a measurement of relative expression (i.e. red versus green) for each spot is used.

To measure the relative level of expression between two conditions, the value that

is used is the median ratio of the intensity:

This value is also called fold change, since it asses how many times the red (or

green) channel is up-regulated (i.e. more "expressed") if compared to the green (or red)

channel.
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The median ratio obtained from the scanned image is a raw value that is rarely

used as it is. Instead, different factors are applied to it to correct for the variation that

occurs in any slide experiment. Moreover, after the median ratio has been corrected, it

goes under another transformation, it is taken to log space. In fact, by using the logarithm

of median ratio* a fold change in any of the two directions will give the same absolute

value but different sign (i.e. log(2) = 0.301 and log(0.5) = —0.301). This type of result

will be easier to be interpreted. Since it gives a straightforward comparison among fold

changes in opposite directions.

In the next chapter is presented a global study of the pixel distribution of a

microarray slide and how is it possible to infer biases from it.

From now on, the word ratio will imply ratio of medians, unless stated otherwise.



CHAPTER 3

OVERALL ANALYSIS

After a slide has been scanned, there are some steps that need to be completed before the

spotted array experiment can be used for comparison among other similar data. These

steps are named in table 3.1, together with a short description of them and the section of

the thesis where they are analyzed.

Table 3.1 Analys Steps Required to Complete a Microarray Experiment

Step Description Thesis's Section

Slide Scanning A scanning device scans the microarray.
The scanning is done channel by channel. Chapter 2

Gridding
Every spot in the scanned image is associated with
what it represents (genes,ESTs,....). Then the area

of each spot is accurately delimited.
Section 4.1

Flagging Every spot within a slide is marked with a flag if it
contains defects. Section 4.2

Noise Model

This part of the slide preparation it is not
done yet. Ideally it will allow to separate

good data (representing a spot) from bad
data (not representing the spot) within each

spot of the slide.

Under Study

Background
Correction

The software that does the analysis also
collects the background data for each spot
and channel. Background values are then
extracted for each spot and then used to

correct analogous spot's values.
For example, the median intensity of a spot is

corrected by subtracting the median background
intensity for that same spot (in either channel).

Not covered. It
will be after

the noise model
will be defined.

Normalization Normalization is applied throughout the slide to
correct different biases.

Chapter 3 and
Section 4.3

Gene Ranking Genes are ranked basedon their fold change
(within a single slide) Chapter 5

In this chapter, some of the biases that are introduced during the slide's

10
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fabrication process are analyzed. For some of the biases, a simple look at the image gives

the possibility to identify them. However, it is not straightforward how to deal with them

during the analysis step. In this thesis three particular biases are analyzed:

• Intensity Gradient

• Laser Alignment

• Saturated Pixels

3.1 Intensity Gradient

The intensity gradient problem relates to the fact that often in microarray slides one of the

two channels has a discontinuous higher intensity than the other one. For example, a slide

may be greener toward one side while red and green are more balanced toward the other

side of the slide. This effect can clearly be seen in Figure 3.1, which pictures the image of

a same on same experiment, i.e. an experiment where the same sample is labeled with

two different dyes and hybridized. In this type of experiment the image is expected to be

all yellow because the red and green dye, label the same sample in the slide and the

juxtaposition of green and red results in yellow.

There are different opinions regarding the origins of this problem and

consequently the way it should be tackled. The gradient may be due to the material that

the slide is made of, the print-tip, different dye properties (like incorporation), or the

cover slip used to cover the slide while sitting for hybridization. The last reason is

considered to be the cause as noticed by biologists in the CAG lab but a standard

procedure has not been implemented to correct the problem during the analysis step.
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However, an optimal use of the cover slip appears to prevent the intensity gradient, or at

least minimize it.

Figure 301 Same on same slide with green gradient.

In general, there are two methods that are applied to normalize the data in respect

of the gradient [5]. The first assumes that the difference between the values for the green

and red channel is constant. This constant factor is evaluated and the spot intensity values

are adjusted by multiplying them by the factor for the resulting value ** . This method is

simple but as we can see from Figure 3.1 it doesn't reflect the fact that the gradient is not

evenly distributed across the slide. This method is still useful to correct the differences in

Normalization is the term used to describe the process of removing the variation among the different
biases that are present inside a microarray experiment.

The are various ways to evaluate this constant; the most used requires creation of a set of housekeeping
genes that are used to generate the normalization factor t used to scale the two channels to match each
other.
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dye incorporation between the two channels, assuming that this bias is constant

throughout the slide.

The other method is based on a smoothing function called loess [5]. The loess is a

local smoothing function whose main feature is the ability to smooth only data that are

close to each other, minimizing the effect of outliers. The normalization method based on

loess assumes that the constant use of the same print-tips during the printing phase alters

the print-tips themselves, contributing to the gradient. During the printing phase, the

robot doesn't work row by row, but instead each print-tip identifies a single block,

confirming that the print-tip effect, if any, is not the cause of the gradient since is block

related. However, loess gives really good results since the smoothing function acts locally

and is able to compensate the gradient effect, but it is not completely clear if the

smoothing function alters the biological meaning of the data or not.

As previously stated, it has been discovered that the intensity gradient effect is

mainly due to the cover slip. The cover slip is a glass surface that is put over the slide

during hybridization. Sometime the cover slip doesn't sit properly (i.e. in parallel with the

microarray) over the slide thus creating differences in the availability of hybridization

solution to different region of the slide. An example is given in Figure 3.2.

Figure 3.2 Correct (right) and incorrect (left) positioning of cover slip.
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From Figure 3.2 is possible to see that the amount of solution available in the

slide on the left, decreases while moving from right to left on the slide, and assuming that

there is no angle on the other axis of the surface, a gradient from left to right can be

expected.

This is the type of result that can be observed by calculating the pixel distribution

of every row of blocks within a slide, and then plotting them against each other. Figure

3.3 shows the distributions of every row of blocks for the red and green channel for the

slide of Figure 3.2. Each color in the two graphs represents a different row of blocks; the

slide is 8 x 4 (blocks). There are eight lines, the top row is colored in yellow, while the

bottom one is in green; as it is possible to observe, the lines smoothly move from yellow

to green, constantly raising the top of the bell-shaped curve representing the distribution,

and reducing the wideness of it. In fact at the top (yellow line) the intensities are higher

and there is a broader range of them, while at the bottom line (green line) the peak is at a

lower level, meaning that the overall intensities are smaller and the peak on the curve is

much tighter, implying that there is less variation among the data.

The reason a gradient is observed in some slides, resides in a decrease of intensity

level in the same direction as the angle formed by the cover slip used during the

hybridization step, and by the different incorporation properties among the dyes, which is

more obvious at lower intensities. How to tackle this problem using the pixel data is not

clear yet, since a proper normalization procedure has not been found. However, there are

some ideas under study that include the use of a local smoothing function (like loess) to

be applied in the direction of the gradient (in this example by row of blocks).
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Figure 3.3 Row by row (of blocks) pixel distribution.

3.2 Laser Alignment

To extract data from the arrayed samples, the fluorescent labels are excited using two

lasers (if there are two different labels), and the images created by the two lasers are

superimposed to create the final image. Sometimes the alignment between the lasers is

not correct, and as a result it is possible to observe that on the edges of the spot one color

is more present than the other color. The spots in Figure 3.4 are obtained from a scanner

robot with the lasers improperly aligned.
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Figure 3.4 Spots resulting from not properly aligned lasers.

It is possible to notice that the bottom of each spot in the figure is red, and the top

is green, while the rest of the spot is bright yellow, as it should be, since the image is

from a same on same microarray slide. In the case of the picture is clear that there is an

alignment problem, but sometimes it is not that clear and if only a broad look at the slide

is taken, the error might be completely missed as shown in Figure 3.5. In this picture, a

broad view of the same slide (and same spots) is given; a view that does not clarify if the

red edges that are observed in some of the spots are just random effects or a global bias.

Figure 3.5 Broader view of spots with wrong laser alignment.

To assess for statistical evidence of wrong laser alignment, the row distribution of
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every pixel in a given spot has been plotted, leading to the graphs depicted in Figure 3.6.

Figure 306 Row by row distribution of pixels within a spot.

This figure consists of two graphs, one for each of the two dye intensities. Withir

the graph, each line represents the pixel distribution of a particular row inside a spot. The

line colored in green represents the pixel distribution of the first row (at the top of a spot;

for all the spots in the slide, while the line colored in red represents the pixel distributior

of the bottom row for every spot on the slide.

In the graph on the left of Figure 3.6, it is possible to observe that the green line

representing the top row pixel distribution for the red channel has a different pattern, in

particular the mean (i.e. the peak of the curve) is lower and the distribution is shifted

toward the left if compared to the other distributions. This means that the pixels in the tor

row have lower intensities compared to the ones in the rest of the spot, included the

bottom row that is highlighted in red and confuses itself with the other lines. The same
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result can be observed for the green channel pixel distribution, but the lines are swapped

as expected, with the bottom row (red line) shifted more to the left than the others, green

line (top row) included.

The same result had been obtained for every microarray slide that had been

produced from that same scanner (before a technician solved the problem). Moreover, the

same analysis had been done plotting the distribution of the columns of the spot. As a

result, all the column distributions look the same in both channels. In fact, the alignment

problem was x-axis related, while the lasers were properly aligned along the y-axis.

The laser alignment problem introduces a bias that extends itself to the analysis of

the data. The standard value that is taken to represent the state of a spot is the median

pixel intensity, and as we will see later in the thesis (Figure 5.2), the median's position

density distribution is approximately uniform across the whole spot area, meaning that

the median pixel's intensity has equal probability of being in any position within a spot.

In particular, if the median lies in the top row or in the bottom one of a single spot, the

resulting value cannot be considered as a good evaluation of the median intensity for that

particular spot. For this reason, it is recommended to assay for laser alignment by

checking the pixel distribution by row and column and discard from the analysis all the

rows (or columns) that behave differently form the overall behavior of the spot.

3.3 Saturated Pixels

Another issue regarding microarray slides concerns the limited ability of scanners to

detect high intensities, leading to the phenomenon of saturation.

Under the saturation condition, the value of the intensity for one or more pixels



19

has the maximum value that the scanning hardware can detect. In this situation, it is

impossible to discriminate among saturated pixels since they all appear to have the same

value even if that is not the case. Luckily, the phenomenon of saturation is not common

since it only involves a limited number of pixels within a few spots. On the other hand,

spots are more likely to have more than one saturated pixel leading to a shift toward

higher intensities of the pixel distribution and the impossibility of using them for

analysis.

Across a single slide, the effect of saturation, though small, is still visible when

the distribution of pixels for the slide is plotted as in Figure 3.7, where a bump at the end

of the distribution's curve can be clearly seen. This bump is located at the far end of the

distribution and specifically at the value 65535 on the intensity axis. This value is the

maximum intensity recognized by the robot scanner.

Figure 33 Pixel Distribution for a single slide.

The same plot is obtained for every slide containing high-level intensities.
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Generally is rare to find a big number of isolated saturated pixels. Saturation can be

found as big clusters of pixels in spots representing genes that are usually highly

expressed (like actin), as we can see in Figure 3.8, which displays the ribosomal protein

L35 from a Hela cell same on same experiment.

Figure 3.8 Example of a saturated spot.

Unfortunately, because of the limitation of the hardware it is preferred to discard

these spots from the analysis since it is not possible to discriminate among them.



CHAPTER 4

GRIDDING, SPOT SELECTION AND NORMALIZATION

In this chapter the process of analysis and tune-up of a single microarray slide is divided

into three different steps and revisited using the same point of view that has been used

throughout the thesis: pixel analysis. The goal is to provide fast and automated statistical

analyses that will substitute the slow and manual analyses that are required to tune-up a

slide after the scanning is done. Unfortunately, due to the huge amount of data and the

proportional amount of experimentation needed, the presented ideas have not been

confirmed experimentally, even though the assumptions upon which they are based seem

to hold throughout the few slides that have been used for this thesis.

The Chapter is divided into three sections representing three different issues involved

in data analysis of a single microarray slide:

• Gridding

• Spot Quality

• Normalization

4.1 Gridding

After the image has been created from the scanner, a software program is used to

associate every spot in the image to the gene it represents and to extract information from

the image itself. During the identification process, every spot is automatically delimited

(usually by a circle) and every pixel within the delimited region belongs to the gene

21
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associated with the spot (in Figure 3.8 it is possible to see the delimiting circle for that

spot). Unfortunately, the software is not perfect, and the experimenter has to check the

gridding made by the software, and make corrections for every spot that has not been

identified in the proper way. The process of checking that all the spots are properly

delimited and identified is called gridding and is extremely time (and eye) consuming.

Moreover, it adds some degree of variability since different experimenters tend to grid in

different ways, leading to different values for evaluation of the expression of a spot.

Evidence of the variability that can be introduced by gridding spots is given in

Figure 4.1, where three different circles are used to grid the same spot. On the left, the

spot is gridded in such a way that it maximizes the amount of yellow (the image comes

from a same on same slide), the spot in the middle is gridded to maximize the amount of

information contained in the spot, while minimizing the background, and the spot on the

right is gridded so that only the core of the spot is used and the blurriness near the borders

of the spot is discarded.

Figure 4.1 Different alternatives to grid the same spot.

All of these gridding options have a logical explanation, but they all lead to a

different value of the median (or any other statistical value related to the spot). Usually,

the fluctuations introduced through gridding are minimal (and do not alter too much the

analysis), but they exist and if the gridding variability is added to the time wasted to grid
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each slide, it is easy to figure out how much there is to gain with an efficient and reliable

method that will carry out the gridding procedure automatically. To fulfill this purpose, it

has been assumed that by using the same circle for each spot, and by making  this

"universal" circle big enough to contain an approximately equal amount of pixel from the

spot and from the background around the spot, then every spot would have had a density

distribution of pixels with two main peaks, one relative to the presence of background

pixels and the other generated by the spot's pixels. If this assumption is true, then all the

pixels that are real data (i.e. belonging to a spot) would be selected just by looking at the

distribution of the pixels, and thus an algorithm can be created that will discriminate

among background and feature pixels.

The first step to be done in this direction, it is to select an appropriate size to be

used for every spot. This size has to be big enough to discriminate between feature and

background pixels, but cannot be too big since throughout the whole slide there are

sparse bright pixels (as shown in Figure 4.2) that might create a smooth density function,

that does not discriminate among different pixels.

Figure 402 In the space between features can be noticed sparse bright spots.
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A set of different spot sizes has been selected ranging from 156 pixels to 392

and the distribution of the pixels for every size has been plot. The result of this approach

is shown in figure 4.3, where only the results for the more relevant sizes are shown.

Figure 43 Spot pixel distribution for different sizes of spots.

In this picture are shown the distributions of pixel intensities of the same spot

across four different pixel sizes (156,208,256,392). The graphs above represent the

distribution for the red channel. Below, the green channel is analyzed. From the different

graphs it is possible to notice that for higher sizes the effect of noise in the data is too big

to identify pixels that belong to a spot, so the size of choice should be one in between 156

 392 is usually the biggest size a circle can have without intersecting neighbor circles.
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and 208. To choose between the two of them, a set of low intensity spots had been

selected to check if the same discrimination can be observed.

Figure 4.4 Pixel distribtuion for spots with low intensity.

The result of this analysis is represented in Figure 4.4 and shows how for a spot

size of 156 pixels. The background and feature pixels distribution for the red channel

form a unique line from which it is impossible to discriminate, but if a spot size of 208

pixels is taken then a small discrimination tends to appear. This discrimination disappears

whenever the size of the spot becomes higher.

The results obtained at lower intensities are not as neat as for the rest of the spots,

but it is encouraging that is still possible to graphically see two peaks in the distribution.
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At present, an automated method that implements this idea is still under study.

4.2 Spot Quality

Another major issue regarding microarray slides is the presence of defects that can

completely alter a feature, making it unacceptable for the analysis. An example of

defected spots is represented in Figure 4.5.

Figure 4.5 Spots presenting defects.

This kind of spot is usually flagged during the gridding step (a procedure that is

less time consuming than the gridding itself). The flag helps the software that does the

analysis to eliminate bad spots from calculation involving the whole microarray (like the

evaluation of a normalization constant to scale the two channels).

The origins of spot's defects are various: dust, scratches over the slide surface,

print-tip defects, unwanted deposits created during printing or hybridization, or a change

in spot morphology due to post-processing the slide. Depending on the various sources

that generate spot's defects, the graphical outcome of those same spots can vary: from

extremely bright and not rounded spots (like the ones on the left of Figure 4.5), to spots

presenting big clusters of black within themselves (right side of Figure 4.5).

To assess for a spot's quality, the probability distribution of single spots has been

analyzed; the idea in this case is to first verify the assumption that the frequency
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distribution for the pixels contained in a microarray feature is normal and then to

determine the quality of a spot by assessing for departure from normality of its pixel

frequency distribution.

To verify the normality hypothesis, graphical and statistical methods have been

used. The graphical method consists on plotting the cumulative frequency distribution of

randomly selected spots to visually check if the resulting graph would approximately fall

on a straight line. Some of the analyzed spots are shown on Figure 4.6. In Figure 4.6

there are two rows of different plots: on the top row, a cumulative frequency distribution

for the pixels is plotted, together with the line where the distribution should lie if it is

normal. While in the bottom row, there are represented the density distributions of the

same spots as the ones in the top row.

Figure 4.6 Cumulative and Density distribution for random spots.
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The normality hypothesis seems to be confirmed by this raw graphical analysis. In

fact, it is possible to infer from the figure that the cumulative function approximately lies

on a line, and the points that lie far away from it seem to represent noise in the data. This

explanation seems to be supported by the density function too, where bumps at the end of

the distribution can be related to the points lying far away on the corresponding

cumulative distribution plot.

To further confirm the graphical analysis, the Shapiro-Wilk test was applied to a

set of different microarray slides. The Shapiro-Wilk test is a calculation of a statistic

(called W) that will confirm (or deny) the assumption of normality; the higher the value

obtained for W, the higher the probability that the tested data have a normal density

distribution. The Shapiro-Wilk test has been chosen because it is very powerful if

compared to other available normality tests (like the D'Agostino test). The test's only

drawback is that it performs poorly for datasets containing identical data, but it is hardly

the case for the dataset that have been used.

The results obtained by applying the Shapiro-Wilk test were extremely good. In

all the analyzed slides an extremely high percentage of genes had a W value of .7 or

higher thus confirming the normality assumption to be correct. The overall results are

shown in Table 4.1 for seven of the used slides. Each value in a cell represents the least

Shapiro-Wilk test value that a gene in the corresponding slide (and channel) has to have

to be contained in the corresponding percentage, i.e. the cell on the top corner states that

in Slidell ** , 90% of the genes in the red channel have a Shapiro-Wilk test value of at least

0.65.

t* The full name and specification of the slides is not relevant and is omitted.
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Table 4.1 Shapiro-Wilk values by slide and percentile

Percentages Slide 1 Slide 2 Slide 3 Slide 4 Slide 5 Slide 6 Slide 7

Red 90% 0.65 0.77 0.7 0.78 0.77 0.79 0.8

Green 90% 0.75 0.81 0.8 0.8 0.75 0.75 0.78

Red 99% 0.28 0.37 0.44 0.57 0.63 0.63 0.5

Green 99% 0.35 0.63 0.67 0.64 0.51 0.51 0.41

From Table 4.1, it is also possible to notice the large variance from the smallest

value having a 99 percentile of genes compared to the 90 percentile. This big difference,

suggests that perhaps the spots that are more distant from normality are spots with defects

or spots with a high level of background noise.

Unfortunately, this has been shown not to be the case, because it is not possible to

determine the quality of a spot by simply analyzing its departure from normality. This

result is shown in Figure 4.7, where the cumulative frequency distributions for eight spots

from the same slide are plotted. The spots have been arranged in such a way that the first

two graphs (moving from left to right) on the top row (of graphs) represent spots with the

lowest Shapiro-Wilk test result, and have not been flagged. The last two spots on the first

row have the lowest two Shapiro-Wilk test scores and had been flagged by the

experimenter. The second row of graphs contains plots of the distribution of the two spots

with highest test score and no flag (on the bottom left of Figure 4.7), and the distribution

of the two features with highest Shapiro-Wilk test that had been flagged (on the bottom

right of Figure 4.7).
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Figure 4.7 Good and Flagged Spots cumulative frequency distributions.

It is impossible to visually discriminate among the flagged and not flagged spots

(the same result is obtained using density distributions instead of cumulative).

Another attempt has been made in this direction (departure form normality of

spots with defects) by using as discriminating parameter, the kurtosis value of the

distribution. The kurtosis of a distribution is a measure of how much the shape of the

distribution reflects normality. If the kurtosis value of a distribution is zero, or close to

zero, then the distribution has a normal shape. If the value is less than zero, then the

distribution is said to be platykurtic meaning that it can be the composite of one or more

populations with the same variance and different means. Finally, if the kurtosis of the

distribution is greater than zero, then the distribution is said to be mesokurtic, meaning



3 1

that the distribution can be the composite of two distributions with same mean but

different variances.

The idea in this case is to be able to assess for normality and also have a guess at

the reason for departure from normality, but unfortunately the separation of good and bad

spots, though better than the one obtained using the Shapiro-Wilk test, it is still not

discriminative enough, resulting in a high percentage of false positives (i.e. good spots

with kurtosis different from zero) and false negatives (i.e. bad spots with kurtosis close to

zero).

Overall, the result is that it is not possible to discriminate between good and bad

spots solely by looking at departure from normality. The reasons are mainly two: every

spot, good or bad, has a normal-like distribution (at least in one channel), and the

presence of noise through the data makes it impossible for the available techniques to

clearly evaluate the normality of a spot's pixel distribution (top row of graphs in Figure

4.7).

At the time of writing this thesis, the efforts to solve the problem of spot selection

are directed toward the definition of a set of spots that well describe a slide. This set will

then be used to determine a "general" spot characteristic of the slide; this spot will have a

specific normal distribution, and will be compared to every other spot within the slide.

The spots with distributions similar to the one of the "general" spot will be used for

analysis and the remaining ones will be discarded. This idea seems very promising, but it

is strictly related to the creation of a good set of training data, and the need for the

"general" spots for different slides to look the same.
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4.3 Normalization

In microarrays studies, normalization is the term used to describe the process of removing

the variation among the different biases that are present inside a microarray experiment.

At the present time, there are two main techniques used for normalization (as

described in Chapter 3). One evaluates a constant factor that is globally (sometimes

locally) applied to the microarray slide, while the other makes use of a local smoothing

function called loess. Both methods are not applied straightforwardly and require a lot of

thinking to decide whether to apply them locally (print-tip, rows of block, cluster of

spots) or globally. The choice of the genes to include in the normalization is a topic for

discussion, together with the issue of utilizing values with or without subtraction of the

local (or global) background.

This thesis takes an inside look at these biases and then removes them from the

source as noise, whenever possible. Thus, the problem of normalization at this stage of

the work is not a major issue. In fact, whenever the proposed ideas will be fully

implemented, the final result will be a microarray consisting only of good features, and

each feature will consist only of those pixels that specifically represent the spot (i.e. the

noise will be filtered out) and thus, no normalization will be needed within the spot.

However, across the slide some scaling will still be needed to compensate for green or

red or print-tip biases.

At this time, it is not realistic to infer a proper method for normalization, but the

overall idea is that the techniques that have been applied so far to evaluate scaling factors

would work fine, whenever the source of variation is statistically assessed (i.e. laser

alignment section Chapter 3).



CHAPTER 5

FOLD CHANGE ANALYSIS

In this chapter the pixel prospective that characterize the thesis, will be used to get a

better understanding of what happens at the analysis step of a microarray experiment.

The chapter is divided in two sections: the first one is about the standard fold

change analysis that is applied to assay for gene expression, and the reliability of this

kind of analysis. The second section introduces a new idea to assess gene expression, an

idea that does not change what has been used so far in microarray gene profiling, but

extends it in a natural way so that the amount of information obtained from the image is

maximized.

5.1 Fold Change Analysis

The median ratio is the traditional value used to assess for gene expression between the

two samples of a microarray experiment. The software used to scan the slide

automatically obtains the median ratio, which is calculated by taking the ratio between

the median of the intensities of a spot in red channel, and the median of the intensities of

the same spot, but in the green channel. The use of the median instead of the mean is due

to the fact that the median is not as much influenced by outliers as the mean.

In Figure 5.1, is given a graphical explanation of the better approximation

obtained by using the median instead of the mean. In this figure the pixel distribution of a

spot is plotted, and two points on the graph are highlighted, the one represented with a

diamond indicates the location of the median, while the one represented by a filled circle
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indicates the location of the mean. Clearly, the median represents the population better

than the mean§§. .

Figure 5.1 Graphical explanation for the choice of median over mean.

After a raw value of median ratio had been evaluated, different factors are applied

to it, to correct the biases that had been studied in the previous chapters, like print-tip

effect, and different dyes incorporation.

The final tune up of the median ratio is given by moving it to log space, i.e. by

using the logarithm of the ratio instead of its plain value. In fact, whenever an

The same result had been obtained by randomly select genes in different slides and different channels
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experimenter wants to profile a gene expression, he (she) does so in terms of fold of

change. Unfortunately, if the plain value is used, a three fold change up (red channel

three times bigger than green channel) will give a result of 3, while a three fold change

down (green channel three times bigger than red) will result in a value of 0.333. This

disparity among the values does not help when the genes need to be ranked based on their

fold change. In fact, while it is easy to assess for up regulation, the same cannot be said

for down regulation. It will be much easier if the median ratio is expressed in such a way

that a two-fold change has the same absolute value, but it is positive in case of up

regulation and negative otherwise.

This result can be achieved by using the logarithm of median ratio; in fact the

logarithm of 3 is 0.5849, while the logarithm of 0.333 equals —0.5849. The only problem

that can be encountered with the use of the logarithm is the base of choice, since by

changing the base the value is changed too; for this reason, the standard convention is to

use a base of two whenever the use of the logarithm is used.

Once the median log ratio has been evaluated for every spot in the slide, the spots

are ranked by fold change. The ones with a fold change higher than a certain threshold

(usually no less than two-fold change) are then further investigated.

How reliable is this fold change? Is it truly the most representative value for the

whole spot? To try to answer these questions, different analyses had been done over the

distribution of pixels among a single spot.

In Chapter three, it has been seen that if the lasers are not properly aligned, then

the pixels at the edges of the spot should not be used for the analysis. For this reason, it

makes sense to check the position of the median for each spot, in different slides and for
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both channels, to see if the median's position can be characterized in some way. A

median's position analysis is shown in Figure 5.2, where the three graphs represent the

median density distribution (by position) for three different microarray experiment,

which are different in time, typology, and scanner used to obtain the image. All the six

curves (three for the red channel and three for the green one) are almost uniform between

1 and 80 (for uniformity reasons, only spot with pixel size 80 had been used, since more

than 90% of the spots have a pixel size of 80), meaning that the median can randomly fall

in any position within a spot. The peaks and drops that can be seen on the graphs are not

as statistically significant as they look, even though it is still possible to see the lasers

misalignment for the graph on the left. Overall, it is possible to assume that the median

uniformly appears in any pixel position of a spot.

Figure 5.2 Median position distribution.
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Another question that can be raised about the median ratio is, how representative

of the whole spot distribution it is, i.e. is there enough correlation among the pixels, such

like the calculated fold change can be observed among the majority of the pixels?

To answer this question, randomly selected spots from different slides where

visually analyzed by plotting the pixel of the green channel versus the pixel of red

channel, ordered by position. The same analysis was done for the whole slides by

creating spreadsheets containing the correlation among red and green channel for each

spot. As a result, no correlation whatsoever was found, and a lot of spots are actually

anti-correlated (of course with small absolute values).

Figure 5.3 Cy5 and Cy3 correlation by position.
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Figure 5.3 gives a visual representation of the results. The plotted pixel values

spread all over the graph without any specific correlation, the green dot that can be

noticed in the graph is the position of the median for the two channels.

The cause of these extremely discouraging results, resides in two implicit

assumptions: that the arrayer will print each pixel's area uniformly, and that hybridization

will happen proportionally in each channel, pixel area by pixel area. This is not true,

mainly because of the extremely small dimensions of a microarray and the composition

of the hybridization solution.

However, it is fair to assume high correlation if, instead of ordering the pixel by

position within the spot, we rank the pixels by their intensity's values. This idea is

implicitly assumed whenever the median is used. In fact, the median of a set of numbers

is evaluated by first ranking the numbers in order of magnitude, and then the value that is

in the middle position of this ranking is taken as the median value.

The same analysis as the one in Figure 5.3 (and for the same spots) is executed

after ordering the spots by pixel intensity. The results (Figure 5.4) validate the use of the

median and the previous assumption. High and positive correlation can be observed for

every spot, with the median (represented by the green dot in Figure 5.4) that seems to

capture the overall behavior of the feature.

The use of the verb seem is not casual. While the great majority of the points

approximately lie on a line, this line is not always the main diagonal or a parallel to it as

it possible to notice in Figure 5.5.
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Figure SA Cy5 and Cy3 correlation after being ranked by intensity.

In Figure 5.5 the same data as Figure 5.4 are represented. However, together with

the pixels scatter plot, two lines are plotted: the black one is the main diagonal, where all

the points should lie if there is no fold change; while the green line *** is the parallel to the

main diagonal that intersects the distribution in the median. The reason the correlation

line should be the main diagonal, or one of its parallel, it is based on the fact that the

median fold change should extend to as many pixels within a spot as possible. In this

ideal condition, if there is no fold change the plot will give a green line that matches the

main diagonal (black line). If there is fold change, the green line will be a parallel to the

*** This line will sometimes be referred to as median line.
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main diagonal which intersects the y-axis at the value given by the difference among the

median pixel intensity of the red and the green channel.

Figure 5.5 Cy5 and Cy3 plotted against main diagonal (black) and a line through the

median but parallel to main diagonal (green).

Giving a close look at Figure 5.5, it is possible to note that while the first six spots

(from left to right) seem to behave ideally, the pixel distribution for the last three spots is

really far away from the main diagonal or a parallel to it. Another observation is the last

spot has a big difference among the green and red channel intensities. While the

penultimate two have low intensities in both channels.

These results suggest that this type of analysis could be used to check for the

quality of a spot and for spot selection.

 The analytical proof of this fact is not relevant for the thesis and then it is not included in the work.
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The idea of using a graphical analysis like the one showed before to assess for

quality has been implemented in this thesis only to give a confidence measurement of the

evaluated median ratio. In this thesis we estimate the confidence on the ratio of median

for a spot, by first ordering by intensity the pixels in the green and red channels (as in

Figures 5.4 and 5.5). In this case, the line that is parallel to the main diagonal and that

passes through the median of both the red and green channels (green line in Figure 5.5) is

estimated. Finally the obtained line is fitted to the green and red data. To assess for

confidence the sum of the residuals obtained from the fitting process is taken as

parameter. The smaller this sum is, the closer the pixels of the red and green channel are

to the median line (green line in Figure 5.5).

By ranking the spots by the sum of residuals, it is possible to have a measure of

how good the median ratio represents the fold change across a whole spot. The obtained

result gives a good discrimination among spots. It is possible to note this discrimination

in Figure 5.6, where on the right are plotted spots with low sum of residuals and on the

left are plotted spots with high sum or residuals. Clearly, the median ratios evaluated for

the spots on the right can be trusted more than the ones on the left.

A drawback for this method is that it works fine only for spots with similar pixel

intensities. Spots with high intensities have usually higher residuals than the ones with

low intensities. This is an expected obstacle, and to go past it, all the sum of residuals for

a single spot had been divided by the median intensity for that same spot. This form of

normalization is not sufficient and currently a better way to normalize the data is under

study.



Figure 5.6 Sum of residuals analysis.

5.2 A New Parameter for Analysis

In this section, an idea for a new parameter to be used to analyze the data is given. This

idea is based on what have been discovered so far, especially regarding the results of the

previous section. In that section it has been shown how the median fold of change might

not be representative of the whole chip. To assess the goodness of the median ratio a

confidence measure based on a fit of the data has been evaluated. The new parameter that

is going to be introduced is an extension of the work of the previous section.

The objective is to find a parameter that is as representative of the whole pixel

spot distribution as possible, and relate it to the concept of fold of change. To achieve this

goal, the data for every single spot are transformed as in the previous section. The pixels
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for the green and red channel are ordered by intensity and then plotted against each other.

Then, for each spot, the best line that is parallel to the main diagonal and minimizes the

sum of residuals is chosen to be the median line for its spot. How far away this line is

from the main diagonal will determine the absolute value of fold of change. While the

position of the line above or below the main diagonal will determine if the spot is down

(above the main diagonal) or up (below the main diagonal) regulated.

By using this parameter, researchers will be assured that the observed fold change

reflects the distribution of every pixel within a spot. Unfortunately, from its definition,

this parameter will be heavily altered by the presence of outliers. To expect better results

form this type of parameter, a noise model should be introduced first, so that all the bad

data are thrown away.



CHAPTER 6

CONCLUSIONS

The statistical analysis of the scanned image from a microarray experiment has revealed

the existence of a big amount of information that has never been used before. This new

information can be used in various stages of a microarray experiment, from quality

control, to spot selection, to the final analysis.

This study has led to good results toward the identification of different biases by

analyzing the pixel distribution for different slide's regions (print-tips, row of print-tips,

spots). However, it has failed to identify the best way to tackle the problem. The same

results have been obtained for other issues related to microarray experiments, like spot

finding, spot quality, confidence on median ratio analysis. New ideas had been

introduced to solve these issues, together with a theoretical validation of the assumptions

behind them, through the pixel analysis of the image. Unfortunately, these ideas have not

been tested accurately enough to become facts.

The main reason of this lack of practical application is due to the absence of a

well-defined set of training data, which can lead to a proper definition of noise model for

microarray experiments. The noise model can then be used to separate between good and

bad data, thus allowing to accurately testing the ideas proposed in this thesis.

Another issue that is related to the validity of the results of this thesis concerns

normalization. For many of the ideas of the thesis (i.e. sum of residuals to determine the

confidence on the median ratio of a spot) the results obtained where not globally

applicable to the slide. Instead, similar data (meaning data with similar intensity) confirm
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the validity of the presented ideas.

Overall, the thesis fulfills the objective of extracting new meaningful information

from the amount of data created by a scanned microarray slide. These data are never

completely used for analysis, but only to extract statistical values (like the median) from

the image. However, it seems that an accurate statistical (and biological) analysis of the

image can lead to a better validation of the data contained in a single spotted arrays

experiment and thus a better confidence on the biological information that can be inferred

from the data.
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APPENDIX A

MATERIALS AND METHODS

This Appendix contains the detailed specifications of the technologies used to create,

scan and extract data from the image. The nine slides used for the analysis are described

too, but not in detail since sample preparation and hybridization (among other steps) are

not relevant for the material of this thesis.

Microarray Printing -

Microarrays were printed on aged poly-L-lysine slides, using the OmniGrid microarrayer

(GeneMachines) and quill type printing pins (Majer Precision). Relative humidity in the

arrayer was held between 40% to 50%, with the room temperature at 24 °C.

Hybridization

Hybridization buffer was heated for 2 minutes at 100 °C then centrifuged at room

temperature and 14,000 Xg for 2 minutes to pellet any particulate matter and facilitate

cooling. After blocking, lifter slips (Erie Scientific) were placed over arrays and all but

2111 of the hybridization solution loaded, to avoid any precipitant carryover. Arrays were

placed in hybridization chambers (GeneMachines) with 30111 of dH2O pipetted at far ends

to maintain humidity. Slides were incubated for 12 to 16 hours at 65 °C.
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Scanning

For excitation of Cy3 and Cy5, both wavelengths, 532nm and 650nm were scanned

simultaneously using the GenePix 4000 Microarray Scanner from Axon Instruments. The

Center for Applied Genomics owns two of them and only one had the laser alignment

problem described in chapter 2 of this thesis.

Data Extraction

The software used to extract the pixel data from the scanned image is GenePix Pro 3.0

from Axon Instruments. This software creates .txt file that consist of seven tab-delimited

columns. The first three of them are used to identify the spot (block, row and column

positions). Each of the last four columns consists of a vector of pixel intensities (each

intensity is separated from the other by a comma) obtained from the image. There are

four columns because there are four main pixel types: pixel obtained from red or green

channels of a spot; and pixel obtained from red or green channels of a spot's background.



APPENDIX B

R CODE

This Appendix contains the R code used to do the analysis and create the figures of the

thesis. Not all the programs used in the thesis are reported, but only the ones related with

a specific figure and that require some programming challenge. Each program is

presented through the referenced figure in order of appearance within the thesis.

Figure 3.3

This figure had been generated using the following two R functions, the first one is called

blockIndex, takes as input the block position of a gene and returns the row of block to

which it belongs, assuming that the microarray slide is 8 x 4 (blocks).

blockIndex <- function(x){
x <- x/4
if ( x <= 1) return(1)
else if ( x <= 2) return(2)
else if ( x <= 3) return(3)
else if ( x <= 4) return(4)
else if ( x <= 5) return(5)
else if ( x <= 6) return(6)
else if ( x <= 7) return(7)
else if ( x <= 8) return(8)

}

The second function, called printTipDis, takes as input a list of files containing

the pixel data, and evaluates the pixel density distribution of each row of block within the

slide. Then the function plots each distribution with a different color. The same run is

done for both the green and the red channel.
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printtipDis<- function(x){
par(mfrow=c(1,2))
for( w in 1:(length(x))){

dati <- read.table(x[w], header=TRUE, sep="\t")
rowWlLs <-list(row1W1=c(),row2W1=c(),row3W1=c(),

row4W1=c(),row5W1=c(),row6W1=c(),row7W1=c(),
row8W1=c())

rowW2Ls <-list(row1W2=c(),row2W2=c(),row3W2=c(),
row4W2=c(),row5W2=c(),row6W2=c(),row7W2=c(),
row8W2=c())

j <- 1
while ( j<= length(dati[[1]])) {

gene <- dati[[4]][j]
g <- unlist(strsplit(gene, ","))
g <- as.numeric(g)
g <- blocklndex(g)
gene <- dati[[5]][j]
g2 <- unlist(strsplit(gene, ","))
g2 <- as.numeric(g2)
g2 <- nD(g2)
index <- blockIndex(dati[[1]][j])
rowW1Ls[[index]] <- c(rowW1Ls[[index]],g)
rowW2Ls[[index]] <- c(rowW2Ls[[index]],g2)
j <- j+1

}

yax <- paste("Density")
xax <- paste("Intensity")
print(paste(w," file Done!!!"))
plot(density(rowW1Ls[[8]]),main=paste("Pixel

Distribution by row \n Red Channel"),
xlab="Intensity",col="green")

lines(density(rowW1Ls[[7]]),col="red")
lines(density(rowW1Ls[[6]]),col="black")
lines(density(rowW1Ls[[5]]),col="orange")
lines(density(rowW1Ls[[4]]),col="blue")
lines(density(rowW1Ls[[3]]),col="pink")
lines(density(rowW1Ls[[2]]),col="yellow")
lines(density(rowW1Ls[[1]]),col="brown")
plot(density(rowW2Ls[[8]]),main=paste("Pixel

Distribution by row \n Green Channel"),
xlab="Intensity",col="green")

lines(density(rowW2Ls[[7]]),col="red")
lines(density(rowW2Ls[[6]]),col="black")
lines(density(rowW2Ls[[5]]),col="orange")
lines(density(rowW2Ls[[4]]),col="blue")
lines(density(rowW2Ls[[3]]),col="pink")
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lines(density(rowW2Ls[[2]]),col="yellow")
lines(density(rowW2Ls[[1]]),col="brown")
}

Figure 4.6

Figure 4.6 has been generated by the R function cumAndDenPlot, this function takes as

input a list of spots indexes and the name of the file containing a scanned image from a

microarray experiment, and outputs two plot for each spot, one representing the

cumulative density function for the spot (together with a normality line) and the other

representing the density distribution for the pixels within the spot.

cumAndDenPlot <- function(listOfspots,imageFile){
par(mfrow=c(2,length(listOfspots))
dati <- read. table(imageFile, header=TRUE, sep="\t")
for( i in 1:length(listOfspots)){

spot <-as.numeric(unlist(strsplit
(dati[[4]][listOfspots[i]],",")))

qqnorm(spot)
qqline(spot)

}

for( i in 1:length(listOfspots)){
spot <- as.numeric(unlist(strsplit

(dati[[4]][listOfspots[i]],",")))
plot(density(spot),main=paste("Density

Distribution"), xlab="Intensity")
}

}

Figure 5.1

Figure 5.1 has been generated by using two R functions: findY and

spotMedianMeanPlot. The first one takes as input a number (that in this case will be
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either the median or the mean) and a vector. Then retrieves the subscript of the element

of the vector that is the closest (by value) to the input number.

findY <- function(e1,vect){
y1 <- f[1]
y2 <- f[1]
k <- 2
ind <- 1
while (y1 < x){

y1 <- f[k]
y2 <- f[k-1]
ind <- k
k <- k+1

}
y1 <- (y1-x)
y2 <- (x-y2)
if (y1 < y2) y <- ind
else y <- (ind-1)
return(y)

}

The function spotMedianMeanPlot, takes as input a spot index and a file image.

Then it calculates the density distribution for the spot identified by the input index and it

plots the distribution, together with the position within the distribution curve of the

median (represented with a diamond) and the mean (represented with a full circle).

spotMedianMeanPlot <- function(spotIndex,imageFile){
dati <- read.table(imageFile, header=TRUE, sep="\t")
spot <- as.numeric(unlist(strsplit(dati[[4]][x],",")))
d <- density(spot)
plot(d,main=paste("Median Vs Mean"),xlab="Intensity")
yMedian <- findY(median(g),d$x)
yMedian <- d$y[yMedian]
points(median(spot),yMedian,pch=23)
yMean <- findY(mean(g),d$x)
yMean <- d$y[yMean]
points(mean(spot),yMean,pch=19)

}
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Figure 5.2
•

This Figure 5.2 has been generated using the R function medianPosition. This function

takes as input a spot size and a vector of string, with each string representing an image

file name. The output of the function is a graph representing the distribution of the

median by position within the pixel. This type of graph is plotted for every image

contained in the list.

medianPosition <- function(spotSize,imageList){
par(mfrow=c(1,length(imageList)))
for( w in 1:(length(imageList))){

medianCy5 <- c()
medianCy3 <- c()
dati <-read.table(imageList[w],header=TRUE, sep="\t")
for(j in 1:length(dati[[1]])){

spot <- dati[[4]][j]
spot <- as.numeric(unlist(strsplit(spot, ",")))
o <- order(spot)
if(length(spot)==spotSize){

medianCy5 <- c(medianCy5,o[(spotSize/2)])
}

spot <- dati[[5]][j]
spot <- as.numeric(unlist(strsplit(spot, ",")))
o <- order(spot)
if(length(g)==s){

medianCy3 <- c(medianCy3,o[(spotSize/2)])
}

}

plot(density(medianCy5),main="Median Physical
Distribution\n for spot with ",spotSize,"
pixels size", xlab="Pixel Position", col="red")

lines(density(medianCy3),col="green")
}

Figures 5.3, 5.4, 5.5

These figures have been generated with the same three functions: createMedianLine,
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orderSpot, redVsGreenPlot. Only few changes, due for display reasons, had been made

to the redVsGreen function to create the four different figures.

The first function, createLine, takes as input two vectors of number and creates a

parallel to the main diagonal the passes through the point with x-axis coordinate equal to

the median of the first input vector and y-axis coordinate equal to the median of the

second input vector.

createLine <- function(x,y){
k <- (median(x)-median(y))

1 <- c()
for(i in 1:length(x)){

1 <- c(l,x[i]-k)
}

return (l)
}

The function orderSpot takes a vector of pixel values from a spot and orders it in

ascending order.

orderspot <- function(x){
o <- order(x)
1 <- length(x)
spot <- c()
for(i in 1:l){

spot <- c(spot,x[o[i]])
i <- i+1

}

return(spot)
}

The function redVsGreenPlot takes as input a list of spots indexes and a string

referring to a scanned image from a microarray experiment. For each spot in the list, the

green and red channel pixels are ordered by intensity in ascending fashion and then

plotted against each other. After, the line through the median pixel intensities and parallel
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to the main diagonal is computed and plotted. Finally the residual errors from using the

median line to fit the spot's pixels are evaluated, and the sum of residuals is computed

and printed.

redVsGreenPlot <- function(spotList,imageFile){
par(mfrow=c(2,(length(spotList)/2)))
dati <- read. table(imageFile, header=TRUE, sep="\t")
for(j in l:length(spotList)){

Cy5 <- c()
Cy3 <- c()
resid <- c()
spot <- dati[[4]][spotList[j]]
spot <- unlist(strsplit(spot, ","))
Cy5 <- as.numeric(spot)
Cy5 <- orderspot(Cy5)
spot <- dati[[5]][spotList[j]]
spot <- unlist(strsplit(spot, ","))
Cy3 <- as.numeric(spot)
Cy3 <- orderspot(Cy3)
line <- createLine(Cy5,Cy3)
for(i in 1:length(line)){

tamp <- (Cy3[i]-line[i])*(Cy3[i]-line[i])
resid <- c(resid,tmp)

}

sumOfResid <-sum(resid)/((median(Cy3))*(median(Cy3)))
plot(Cy5,Cy3, main=paste("Sum of Residuals=\n

\n",sumOfResid), xlab="Cy5",ylab="Cy3")
points(median(Cy5),median(Cy3), pch=19, col="green")
lines(Cy5,line, col="green")

}
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