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ABSTRACT

FORMATION AND CHARACTERIZATION OF n/p
SHALLOW JUNCTIONS IN SUB-MICRON MOSFETs

by
Sridhar Madishetty

Semiconductors are the burgeoning industries in today's information age. Silicon based

microelectronic devices are shrinking day-by-day in accord with the scaling dimensions

reported by the International Technology Roadmap for Semiconductors (ITRS). There

have been many semiconductor models and simulation programs constantly keeping pace

with the continuously evolving scaling dimensions, process technology, performance and

cost. Electrical characterization plays a vital role in determining the electrical properties

of materials and device structures. Silicon based Metal Oxide Semiconductor Field

Effect Transistor (MOSFET) forms the basis of Comp-entary Metal Oxide

Semiconductor (CMOS) circuits. Today's aggressive scaling approaches in silicon

Integrated Circuit (IC) technology require ultra shallow junctions in MOSFETs.

The objective of this thesis is to study the leakage current in n/p shallow junctions

and to correlate them with process steps required for the formation of shallow junctions.

The leakage current measurements were performed by utilizing three-point probe

method, which is one of the popular techniques used in the semiconductor industry. Apart

from n/p shallow junctions, experiments have been performed on p/n shallow junctions.

Finally, comparison of the leakage current measurements has been made. The

comparison takes into account the implant variables and post-implant annealing steps that

have been deployed in the fabrication of shallow junctions.
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CHAPTER 1

OVERVIEW

This thesis is divided into seven chapters prefaced by the contents. Each Chapter begins

with an introduction to the chapter prior to the detailed explanation of the sub-topics

inside the chapter and ends with a summary.

The second Chapter deals with the fundamentals of transistors. various types of

transistors and the principle of operation are explained in a lucid manner.

The third Chapter focuses on processing of formation of shallow junctions. Ion

implantation, which is one of the dominant methods of introducing dopants, is explained

in depth. The various ion implantation process parameters influencing the electronic

properties of silicon are also discussed. Different types of rapid thermal processing,

various types of annealing and thermal budget are some of the interesting topics covered.

The fourth Chapter focuses on the mathematical modeling of ion implantation.

Some of the mathematical models like Stopping Range of Ions in Matter (SRIM),

Transport of Ions in Matter (TRIM) and Rutherford Universal Manipulation Package

(RUMP) have been discussed.

The fifth Chapter describes characterization techniques. There are many

characterization techniques available to the semiconductor industry. Some of these

techniques are discussed.

The experiments performed at NJIT, for this research, are discussed in the sixth

Chapter. The electrical characterization technique using three point probe method is also

discussed.

1
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The seventh Chapter focuses on results and discussion based on our experiments.

Conclusions and recommendations based on these studies are summarized in Chapter 8.

In the appendices, figures relevant to shallow junction device data are discussed

in the thesis. Also, sample experimental data is presented in Appendix C. A simple

program written in C++ for calculation of area and leakage current is included in

Appendix D.



CHAPTER 2

TRANSISTOR FUNDAMENTALS

Transistors are the heart of the microelectronics industry. In day-to-day life, there are

many applications of microelectronics in computers, televisions, mobile phones,

automobiles, home appliances, aircrafts, medical appliances, space shuttles, et. In

Integrated Circuit (IC) technology, transistors can execute some millions (with >10 9

frequency) of instructions per second, which is called flow of binary information.

Historically, transistors replaced vacuum tubes. In its simple operation, transistor can act

as an electronic switch with ON and OFF functions.

2.1 Principle of Operation of Transistors

The following are the different types of transistors:

- Bipolar Junction Transistor (BJT).

- Junction Field Effect Transistor (JFET).

- MEtal Semiconductor Field Effect Transistor (MESFET).

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

- Metal Insulator Semiconductor Field Effect Transistor (MISFET).

Figure 2.1 shows a simple n-type (JFET) transistor with three terminals - emitter,

base and collector or source, gate and drain. In Figure 2.1, it can be seen that for an n-

type transistor, the substrate is p-type silicon and the source and drain are negatively

charged. The gate is generally doped polysilicon on an insulating layer, such as SiO2,

which is grown or deposited on the substrate. When a positive voltage is applied to the

3
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gate electrode, the electrons in the p-substrate get attracted towards the gate region

thereby, forming a certain area or a region below the gate. This area indeed serves as the

channel for the flow of electrons from the source and drain. During the on state of a

transistor, that is, when a positive voltage is applied to the drain, the electrons from the

source is pulled towards the drain and similarly, during the OFF state of a transistor, there

is no flow of electrons.

Figure 2.1 n- type JFET transistor.

2.2 Bipolar Transistors

Figure 2.2 represents an n-p-n bipolar junction transistor. The symbols IE, IB and IC

denote the emitter current, base current and collector current respectively. The direction

of electron flow and hole flow is described in Figure 2.2. In the normal mode of

operation, the emitter and base junction should be forward biased and the collector and

base region should be reverse biased. Due to forward bias, the majority carriers i.e.,

electrons, will flow into the base region and the holes flow into the collector region.

However, as the base region is very thin and due to the large positive collector - base

voltage, these electrons are collected by the collector [1].



5

Figure 2.2 Schematic line diagram of an npn BJT.

2.3 Field Effect Transistor (FET)

One of the undesirable features of a bipolar transistor is low input impedance with the

base-emitter junction that causes matching impedances between interstage amplifiers.

The Field Effect Transistor (FET) has high input impedance combined with many other

advantages. These devices are useful for controlled switching in digital circuits between

conducting states and insulating states and are widely used in the (IC) industry. Bipolar

transistors use bias current between base and emitter to control conductivity whereas,

FET uses voltage to control an electrostatic field within the transistor. FETs can also be

called as unipolar devices, as the operation of these devices depends on only one type of

carrier i.e., majority carriers. BJT operates by the injection and collection of minority

carriers (action of both electrons and holes). Hence, it is called as a bipolar device [2].

There are two basic types of FETs:

- Junction Field Effect Transistor (JFET or FET);

- Metal Insulator Semiconductor Field Effect Transistor (MISFET).
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2.3.1 junction Field Effect Transistor

In general, there are two types of JFETs: one is an n-channel JFET and the other is a p-

channel JFET. In Figure 2.3, a pair of metallic contacts can be seen at each end of the

channel. Current flows from one contact to the other when a voltage is applied. This

Figure 2.3 represents a typical n-type channel JFET where the electrons drift from left to

right, opposite to the current flow.

Figure 2.3 Typical JFET transistor.

The end of the channel from which flow of electrons takes place is called source

and these electrons reach the other end called drain. Similarly, in the case of a p-channel

JFET, there will be flow of holes from source to drain. It is to be noted that gate junction

of a JFET is always reverse biased thereby, the gate current is essentially zero. This

permits the use of JFET as a resistor in ICs at low voltages.
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2.3.2 Metal Insulator Semiconductor Field Effect Transistor

These are widely used in the IC industry. In these types of devices, the gate voltage

controls the channel current and the gate electrode is isolated from the conducting

channel by an insulator. Generally, this insulator is silicon dioxide (SiO2). Hence, these

are commonly termed as MOSFETs.

Figure 2.4 n- Channel MOSFET [3].

Figure 2.4 represents an n- Channel MOSFET [3]. It consists of a p-type

substrate (bulk) and two n-type wells that are diffused into the substrate, which form

source and drain of the device and these regions are separated by the conducting channel.

The gate acts as the control valve of this device for the flow of current and is typically

made of polycrystalline silicon (polysilicon) material. Polysilicon of the gate material

acts as one plate of a capacitor and the substrate acts as the other plate of a capacitor with

relatively low conductivity. During its operation, if a positive voltage is applied to the
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gate with respect to the substrate, then, in order to maintain equilibrium condition,

negative charges are induced in the substrate. A thin depletion region containing mobile

electrons is formed and the current flows from drain to source. As these electrons

continue to be induced electrostatically, the p-channel becomes less and less p-type. Due

to this, the valence band droops down away from the Fermi level. Consequently, there

will be no flow of current from source to drain until the electrons overcome the barrier

(which is the threshold voltage VT). The threshold voltage is defined as the minimum

voltage required to form a channel and is controlled by the gate. Hence, the positive gate

voltage must always be larger than the threshold voltage so as to form a conducting

channel. This type of transistor that requires a positive voltage to turn on is called as

enhancement mode transistor. Similarly, in some cases, a source to drain current will

flow at zero gate bias and negative potential is required to turn off. These are known as

depletion mode transistors [4].

2.4 Applications of Transistors

The applications of transistors are as follows:

1. Transistors are used in amplifiers, which amplify the ac signal.

2. Transistors are used in oscillators that convert dc into an ac signal.

3. Transistors can be used as variable resistors.

4. Transistors are non-linear devices and are used in microwave mixing, modulation

and detection.

5. 	 Transistors are used for impedance transformation for transforming the output

impedance to a much-reduced value.
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6. Transistors are used in switching.

7. Transistors are widely used in the formation of logical blocks in the

microprocessor industry.

2.5 MOS Scaling

Device scaling technologies are improving at a drastic rate from time to time. The

dimensions of the vital parts of the transistors in the chip industry are shrinking

continuously and the circuits are becoming more and more complex, accompanied by

increase in number of transistors per chip. The main objective of the scaling is to

improve the performance of transistors consistently, increase the frequency of operation

and to decrease the rate of power dissipation. The process or methods in which the

dimensional downsizing is achieved is known as scaling theory [5,6]. According to

Moore's law, the number of transistors doubles every eighteen months. This can be seen

in Figure 2.5. Also, the entire scaling laws can be summarized with a factor called 'K' as

shown in Figure 2.6.
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Figure 2.5 Moore's law projected out for 15 years a) Number of components per chip
versus year and b) Chip frequency in KHz for transistors versus year [7].

The conventional scaling of MOS transistors includes junction depths, gate

lengths, source/drain extensions and gate oxide thickness etc. However, there are many

limitations associated with the above parameters. They are summarized in Table 2.1

along with the key scaling limits. In this chapter, some of the features are described in

detail.
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Figure 2.6 Scaling laws as a factor of 'IC.

Table 2.1 Key Scaling Limits [8]

Feature Limit Reason

Oxide Thickness 2.3 nm Leakage (IGATE)
Junction Depth 30 nm Resistance (RSDE)
Channel Doping VT = 0.25 V Leakage (IOFF)
SDE under Diffusion 15 nm Resistance (RINV)
Channel Length 0.061.1m Leakage (IOFF)
Gate Length 0.10 µm Leakage (IOFF)

2.5.1 Oxide Thickness

The gate oxide scaling plays an important role in controlling short channel effects. In

order to maintain good gate control, the gate oxide thickness should be linear with respect

to the channel length [8]. Figure 2.7 represents the plot between the channel length versus

gate oxide thickness for Intel's process technology over the past 25 years and the points

represent the technology development for every three years [8]. It is observed that the
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channel length is 45 times the gate oxide thickness. The gate oxide thickness plays a vital

role in tunneling of carriers. Direct tunneling occurs due to the decrease in the oxide

thickness.

Figure 2.7 Channel length divided by gate oxide versus channel length [8].

2.5.2 Junction Depth

The following Table 2.2 gives the shallow Source Drain Extension (SDE) junction

requirements based on the 2001 ITRS roadmap [9]. Shallow junctions are required while

at the same time, the contact resistance should be low, sheet resistance should also be low

and the junction depth should be deep enough for silicidation [10]. In Table 2.2, the

blocks in white (no blocks) indicate that solutions exist, light gray blocks indicate that

solutions are known and bold blocks indicate that solutions are not known. The sheet

resistance (Rs), vertical junction depth (X i) and lateral abruptness are given in Table 2.2

for each technology node. For the 45-65nm node, the sheet resistance is 760-830 Sri,

the junction depth is around 7-15 nm and abruptness is 2.0-2.8 nm per decade. There are

a number of results related to the junction depth and related parameters, which are

explained in the 7th Chapter.



13

Table 2.2 ITRS Roadmap 2001 for Ultra Shallow Junctions [9]

Year of production 2001 2002 2003 2004 2005 2006 2007 2010 2013 2016

DRAM 1/2 pitch (nm) 130 115 100 90 80 70 65 45 32 22

MPU/AS IC 1J2
pitch (nm)

150 130 107 90 80 70 65 50 35 25

MPU gate length (nm)

printed 90 75 65 53 45 40 35 25 18 13
physical 65 53 45 37

Equivalent physical
oxide thickness for

1,3-1,6 1,2-1,5 1,1-1,6 0,9-1,4 0.8-1.3 0.7-1.2 0.6-1.1 0.5-0.8 0.4-0.6 0.4-0.

MPU/AS IC Tox (nm)

Gate electrode
thickness (nm)

65-130 53-106 45-90 37-74 32-64 30-60 25-50 18-36 13-26 9-18

Profile control
(side w all angle)

>89 >89 >89 90 "1 - I I 90 90 90

Drain exten. X i (nm) 27-45 22-36 19-31 15-25 7-12 5-9 4-6

Max, drain extension 400 460 550 660 770 830 760 830 940 1210
Rs (PMOS) (Ω/sq)

Extension lateral
abruptness (nm/decade)

7,2 5,80 5,0 4,1 3,5 3.1 2,8 2.0 1.4 1.0

2.5.3 Threshold voltage

Threshold voltage is one of the key parameters of a MOS transistor. It is symbolically

represented as 'V T '. The measure of threshold voltage is very important, as it serves as a

valuable tool for monitoring the success of a fabrication process, due to its sensitivity to

device geometry, doping and thickness of gate oXide. During the enhancement mode of a

transistor, 'VT' is very important as this is the minimum voltage that a device should be

operated so that inversion layer is formed beneath the gate oXide [11]. Threshold voltage

is also dependent on temperature, as many device applications require the device to

operate at temperature other than the room temperature.

2.5.4 Contact Resistance

The contact resistance is given by Equation 2.1. Here, only metal-to-semiconductor

contact resistance is defined [12].
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where,

RC = Contact resistance.

pc = Contact resistivity.

Ps = Sheet resistance.

Lc = Length of metallization.

W = Width of the contact.

Summary

The Chapter above gives a basic introduction to transistors. The state of the art in

process technology and MOS device scaling is dealt in a brief manner. The fundamental

issues related to feature size, junction depth, gate oxide thickness etc., can be known for

the present as well as for the future shrinking regime. The ITRS roadmap gives the

overview of the scaling phenomena.



CHAPTER 3

SHALLOW JUNCTION PROCESS

The formation of shallow junctions has become an extremely critical step in the

fabrication of MOSFETs. For a sub-micron CMOS transistor, there are two extreme

features, one is the control of short channel effect (SCE) and the other is to have low

sheet resistance. This can only be achieved by formation of shallow junctions in the

MOSFET. Also, one of the important characteristic features of these devices is that they

reduce junction leakage across the channel.

Shallow junctions or ultra shallow junctions are fabricated by many techniques

such as, solid phase diffusion, epitaxial doping method, plasma doping method, laser

annealing, thermal annealing etc. However, in shallow junction fabrication, ion

implantation followed by rapid thermal annealing, are the conventional techniques used

for better controllability, reproducibility and dopant uniformity. During implantation

technique, the ions are bombarded onto the substrate with certain acceleration energies.

To obtain lower or reduced projected distribution range, the energies should be low. In

order to eschew thermal diffusion, sometimes, post annealing is done. High temperature

annealing at a rapid rate i.e., rapid thermal annealing is preferred to achieve low sheet

resistance [13].

3.1 Ion Implantation

This is one of the predominant methods used for introducing the dopant species into the

semiconductor substrate, to a precise depth below the surface. The basic idea of doping

15
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semiconductors by the bombardment of ions was first studied by William Shockley [14]

in 1954 at Bell Laboratories. The basic concept in ion implantation is the bombardment

of energetic species into the crystal lattice of the semiconductor surface. These energetic

species have controllable concentrations of n-type and p-type dopants [15]. These

energetic ions loose their energy by two processes, one is by undergoing elastic or

nuclear collisions and the other by undergoing inelastic collisions or electronic collision

processes [16].

Generally, semiconductors follow elastic collisions and cause lattice damage or

disorder by direct displacement of atoms inside the crystal. In other words, whenever

high energy ions enters into the crystal lattice, they knock off the target atoms located in

the lattice position and thereby create a vacancies or interstitials or a combination of these

defects also called Frenkel Pairs. These defects are mobile and are the cause for dynamic

annealing and annihilation damage [17]. The damage caused depends on many

parameters such as ion arrival rate, ion energies, target temperatures and collision details

[18]. Finally, after ion implantation there can be substantial damage to the crystallinity

due to collisions and is the cause for point defect formation. Also, the dopants introduced

need to be electrically activated and transferred to substitutional sites during annealing

treatment.

3.1.1 Merits and Demerits of Ion Implantation

Merits:

Wide choice of Masking Materials.

Doses can vary from short to long ranges ( 10 11 — 1016 /cm2 ).
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Control of doses, profile depths and area uniformity is very accurate and

precise.

Effective for controlling the threshold voltage.

Good reproducibility.

Process cleanliness.

Demerits:

Damage of crystallinity.

Annealing of the damage created during implantation leads to transient

enhanced diffusion (TED) [12]. Hence, difficulty in achieving shallow

junctions.

In some cases, the insulating layer also gets charged; in other words, this

technique is prone to junction passivation.

This technique needs very expensive and complicated equipment.

3.1.2 Typical Ion Implanter

A typical ion implanter is as shown in Figure 3.1 [19]. It consists of an ionization

chamber, which is the source of ions to be implanted, an accelerator, for accelerating the

ions electrostatically to higher energies, target compartment, where the material that

desires implantation is placed for the impingement of ions. The amount of ions to be

impinged onto the target is known as dose and is given as per the requirements. The

amount of dose is controlled by the supply of current. Generally, this current is very

small and is typically in microamperes. The depth profile of these ions relies on ion

energies, ion species and also on the amount of dose. These ion energies may be from

KeV to MeV ranges.
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Figure 3.1 Typical ion implanter [19].

3.1.3 Process Parameters

Ion implantation parameters include the following:

- Range.

- Atomic mass of the dopant species.

- Implantation energies.

- Tilt and twist angle.

3.1.3.1 Range.	 The ion beam penetrates to a certain depth, depending upon the ion

energies. Distance traveled by the ion in the solid is called range. The average

penetration of the ions below the surface is called projected range [20]. Figure 3.2 shows

the range and projected range of the ions.
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Figure 3.2 Schematic diagram of range and projected range of the ions [21].

Figure 3.3 shows the implant profiles of various dopant impurity species.

Projected range (lm) is shown on the abscissa and concentration (cm -3) is shown on the

ordinate axis. These profiles are formed when the dopant ions are accelerated at 200

KeV implant energies. out of antimony (Sb = 122amu), arsenic (As = 74amu),

phosphorus (P = 31amu) and boron (B = 11 amu), the heaviest is antimony and the

lightest is boron. The peak of heavier ions is found to be much narrower than that

compared to lighter ions. Antimony has the narrower peak and boron has the broader

peak. Hence, much shallower depths can be obtained by implanting antimony ions. In

generalized terms, it can be said that the heavier the ions, the shallower will be the depths

obtained. It is also vital to mention that these ion profiles undergo approximately

Gaussian distribution.
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Figure 3.3 Concentration (cm -3 ) vs. depth (μm) of various dopant species in Si [21].

3.1.3.2 Atomic Mass of the Dopant Species. 	 In the current technology of

semiconductors, many impurities can be doped based on the needs of applications in the

industry. However, group III and group V elements are widely used, as the atomic radii

of these atoms are closer to the group IV elements. The selection of the dopant elements

also depends on the physical properties such as atomic mass and atomic number. If third

group elements are used in the doping process, they are called p-type (positive) dopants,

as there are insufficient number of electrons in the formation of bonding and thereby

create holes in the bonding process. The most common p-type dopant species that are

used are boron and indium. If the fifth group elements are introduced as dopants in

silicon, then they are called n-type (negative) dopants. In this case, there is excess

number of electrons available in the bonding process. The most common n-type dopants

are phosphorus, arsenic and antimony. Also, sometimes for other applications, nitrogen

implantation is done, as nitrogen influences the diffusion behavior of boron in polysilicon

and Sio2 [22].
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3.1.3.3 Tilt and Twist Angles. Tilt and twist angles are very important, as they

have direct effect on channeling. Channeling occurs when the ions are bombarded

parallel to the crystallographic direction of the target material during ion implantation.

Hence, in order to avoid the effect of channeling, the trajectory of the ions needs to be

considered. The ions are therefore bombarded at an optimum angle to avoid channeling

and twist of wafer is required to obtain uniform distribution of the ions. This optimum

angle is also called the critical angle [23] of dopant (boron, phosphorus, arsenic) in

silicon and is a function of energy. Typically, for large ions, the critical tilt angle is 7°

off the wafer axis and the rotation or twist of the wafer is around 30° approximately [24].

3.1.3.4 Implant Energies. The implant energies mainly depend on the atomic species,

dose and range needed to form a shallow junction. The typical energies include KeV to

MeV range and most of the ion implanters use energies ranging from 30 KeV to 200

MeV range [21]. In some cases, the ion implantation can be done at lower energies by

using doubly charged species. It is known that the higher the energies, the deeper will be

the penetration of the ions. Figure 3.4 illustrates the dependence of the ion depth or

trajectories on implantation energies. Also, lower depth profiles can be obtained with

lower energies and high concentrations. In order to obtain higher depths, higher energies

and low concentrations are required. This is illustrated in Fig 3.4. For example, for boron

implantation into silicon, a depth of 0.6μm is obtained for implantation energy of 100

KeV.
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Figure 3.4 Concentration vs. depth for various implant energies of boron in Si [25].

3.2 Implantation Damage

Ion implantation induces lattice damage, i.e., loss of crystallinity of silicon. This is due

to the collision effect of ions inside the substrate. These collisions can be of two types,

nuclear and electronic. only the nuclear collisions produce damage or disorder, as these

collisions have enough energy to displace the silicon atoms from the lattice positions and

the dopants introduced will not be present in the substitutional sites [26]. This energy is

also called as displacement energy 'Ed' which forms a stable Frenkel pair. This energy is

approximately equal to 15eV for a silicon atom [24]. Hence, in order to eliminate the

residual damage and to electrically activate the dopant atoms into the substitutional sites,

annealing is done. A typical annealing treatment, which reduces the damage and also
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electrically activates the dopant atoms, includes heating to a temperature of 900 °C and

for a time of 30 minutes. This simple method of heating to high temperature is also

called Furnace Annealing. In order to meet the challenges for the formation of shallow

junctions, diffusion of dopants should be controlled. Hence, other than the conventional

form of annealing, the silicon samples after implantation are heated to a certain anneal

temperature for a brief time period of ten seconds or may be less in some cases by a

method called Rapid Thermal Processing (RTP) [2].

There are many types of annealing techniques such as, laser annealing, photo-

assisted annealing and solid phase epitaxial annealing. It is important to note that in the

1960's, AT&T used horizontal annealing furnaces. A typical furnace of this kind

consists of a furnace box, loading deck, heating elements, thermocouples etc. Today,

these furnaces are rarely used by the silicon industry. Instead they are modified and

replaced by vertical furnaces. The vertical furnace for rapid thermal processing is as

shown in Figure 3.5 [27]. The wafer is placed inside the bell jar onto a horizontal base by

means of an elevator. Then the wafer is heated in this bell jar with a vertical temperature

gradient and the temperature is controlled by adjusting the elevator height [27]. For

measuring the wafer radiance and temperature, pyrometers are used. These furnaces have

better process control, particle performance and possess fully automated capabilities [26].
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Figure 3.5 Typical Bell Jar furnace with vertical wafer movement [27].

3.3 Rapid Thermal Processing (RTP)

As the name suggests, Rapid Thermal Processing can be defined as fast heating and

cooling of wafers. It can also be defined as cold wall and control ambient processing. An

example of this type is shown in Figure 3.6. When compared to the conventional process,

RTP is not done in thermal equilibrium with the surrounding environment [28]. Soak

annealing, spike annealing, impulse annealing, flash annealing and laser annealing are the

various types of RTP presently used in the industry. Soak annealing is the conventional

RTP process where the samples are heated to a certain temperature and soaked for a

period of time and then cooled.
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3.3.1 Spike Annealing

In this type of annealing, the wafer is heated to a sudden high temperature and then

cooled immediately. Heating of the wafers can be done by various methods i.e., by using

arc lamps or by using incandescent lamps, etc., as shown in Figures 3.5 and 3.6. In case

of heating by incandescent lamps, the lamps are arranged in the form of an array on both

sides of the oven as shown in Figure 3.6(a). Pyrometers are used for measuring the

temperature and emissivity of the wafers. As the wafer is surrounded by the heating

filaments, the wafer gets heated uniformly by radiation [29,30]. The main aim of spike

annealing is to avoid thermally activated diffusion while maintaining a certain

temperature to achieve dopant activation.

Figure 3.6 Spike annealing by (a) Incandescent lamps and (b) Arc lamp method [27].

During spike annealing, there should be minimal dwell time at peak temperature

[31]. The effective annealing time and the sharpness of spike is illustrated in Figure 3.7.

Figures 3.7(a) and (b) illustrate the actual time and the cumulative time at an activation
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energy of 5eV for different spiking methods respectively. The effective annealing time

taken by the arc lamp method is 0.27 sec, for dual incandescent method it is 0.86 sec, for

furnace bell jar method it is 1.64 seconds and for the single incandescent method, the

value is 1.75 seconds. The cumulative time for the arc lamp is very much less compared

to the other spiking methods. Also the curves for the arc lamp spike annealing are sharp

and narrow when compared with the other curves. Mathematical equations involved in

spike annealing are as follows:

Activated process variable is given by,

Normalization prefactor is given by,

Effective annealing time is given by,

where,

t' =	 Cumulative time in seconds,

EA = 	 Activation energy in electonvolts,

T =	 Temperature in °C,

TMAX = Maximum temperature in °C.
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Figure 3.7 (a) Temperature versus actual time and (b) temperature versus cumulative
time for various methods of spike annealing [32].

3.3.2 Impulse Annealing

This has been termed as a special case of conventional spike annealing using the arc lamp

method [33]. In this method, the response time for heating is faster than the wafer [34].

When a graph is plotted between temperature and time for spike annealing and impulse

annealing respectively, the peak of the impulse curve is pointed and the spike anneal

curves are rounded as illustrated in Figure 3.8. Reduction in thermal budget is possible

with this type of annealing. This process has been tested for its excellent repeatability

and controllability of temperature.
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Figure 3.8 Temperature versus time (A and C are impulse annealed at 400 °C/sec and
250 °C/sec respectively and B is spike annealed) [34].

3.3.3 Flash Annealing

This is one of the most promising techniques for the formation of ultra shallow junctions.

In this technique, the bulk of the wafer is heated to an intermediate temperature (To and

the device side of the wafer is heated to a higher temperature, by means of a flash or a

pulse of intense light for a short time [35] as illustrated in Figure 3.9. Generally, this

pulse of light will be of milliseconds duration [33]. The flash causes the thin layer to heat

up to a high temperature. However, the bulk of the wafer is not at the same (high)

temperature as that of the upper active layer. Thereby, it forms a heat sink. Thus, as soon

as the flash lamp is turned off, the device layer starts cooling rapidly. The temperature of

the bulk and the upper device layer are carefully selected so as to form a heat sink and

will cause a rapid cooling of the device layer. Due to this, there will be a very high

electrical activation with little or no dopant diffusion. The goal of the RTP is to increase

the sharpness of the peak temperature profile and to decrease the effective time, and this

can be achieved only by using lamps with low thermal mass. Thus, the technology of
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using continuous arc lamps has been developed for heating the bulk of the wafer to a

certain intermediate temperature. The radiation from the flash lamps are then incident on

the thin layer of the device as an additional energy source. This is illustrated in Figure 3.9

[35]. Generally, the values of Ti are in the range of 600 — 800 °C and TMAX are in the

range of 1100 — 1350 °C.

Figure 3.9 Illustration of the thermal profile during flash type of annealing for device
layer formation [35].

3.3.4 Laser Annealing

Laser annealing, compared to that of conventional RTA techniques, offers much steeper

profiles and high peak concentrations [36]. During this process, the surface layer of the

wafer is heated, as the response time of heat source is faster than the wafer [33].

The comparison of all types of annealing is done in Figure 3.10. In the case of

spike annealing, the thermal profile is more rounded and the wafer response is similar to

the heat source. This type of annealing is currently used for production. The thermal

profile is peaked in the case of impulse annealing and the heat source is faster than the
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wafer and the bulk is at uniform temperature. The thermal profile is sharper in laser

annealing when compared to all the other annealing techniques and the heat source has a

higher response time than the wafer. The laser annealing method is considered to be an

experimental technique for research purposes. In the case of flash assisted annealing,

initially the bulk is heated and then after certain intermediate temperature, flash lamps are

turned on so that the surface gets annealed. This technique is under development and

many experiments are being done for improving this method.

Figure 3.10 Illustration of the different temperature curves with respect to time and
wafer depth for various annealing techniques[35].

3.3.5 Epitaxy

Epitaxy is the process of film growth over crystalline substrate in such a way that the

atomic arrangement of the film bears a crystallographic relationship to the atomic

arrangement of the substrate. Epitaxy is performed at temperatures below the melting
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point of either the substrate or the film. Generally, the film thickness is approximately

around 1-20μm thick [37]. Epitaxial growth is a successful approach for growing a wide

range of materials, provided lattice constant and atomic spacing of the epitaxial layer and

the substrate should be less than only few atomic percentage [38]. Epitaxial growth

can be achieved by three techniques- vapor phase epitaxy, liquid phase epitaxy and solid

phase epitaxy (SPE). As far as ion implantation and annealing are concerned, only SPE

is discussed in the following section.

In this technique, regrowth of amorphous layers takes place at temperatures in the

range of 500-600°C [26]. The regrowth process depends on several important parameters

such as implanted species, orientation of the crystal and the annealing temperature.

Figure 3.11 shows the regrowth processes occurring layer by layer and recrystallization

continues until it reaches the surface. Usually, the process lasts only for a few minutes.

Figure 3.11 Transmission Electron Microscopy (TEM) micrograph, illustrating the solid
phase regrowth at 525°C of a 200KeV, 6x 10 1- / cm2 antimony implantation [26].

Low temperatures are sufficient during SPE for electrical activation of amorphous

layer, as the dopant impurities lie in substitutional sites. For regions that are beyond the
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amorphous layer, they are subjected to higher temperatures for electrical activation.

Hence, the optimum temperature must be chosen to be in between those corresponding to

the formation of amorphous regions and crystalline damage region. Even though the

crystalline defects beyond the amorphous layer can be eliminated during annealing, some

of them form extended defects giving rise to defects such as dislocations and stacking

faults.

3.4 Oxidation

In this process, silicon surface is made to react with oxygen to form a continuous layer of

silicon dioxide (SiO2). This layer of thin film of oxides can be used for many

applications. These include:

(a) Isolation of devices from one another.

(b) Insulation between the metallization pattern interconnecting devices in the circuit.

(c) Use as a gate dielectric in MOS devices.

(d) Mask against implantation or diffusion.

(e) Passivation (passivation minimizes the electrical activity of the device surface and

also serves as a protective layer against environmental contamination).
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Figure 3.12 (a), (b) and (c) Indicates the step-by-step oxidation process [39].

The oxide films can be prepared at high temperatures under low or high pressures, in

boiling water or in anodic solutions or by chemical vapor deposition method. Thermal

oxides can be prepared by wet oxidation or dry oxidation method by utilizing a wide

range of temperatures and pressures. Generally, the temperature ranges from 900 -

1000°C.

Figure 3.12 illustrates the thermal oxidation process. Initially, the silicon surface

is exposed to the oxidizing atmosphere, as shown in Figure 3.12 (a). The oxidant

diffuses through the silicon dioxide film to the siliconsilicon dioxide interface as shown

in Figure 3.12 (b). Figure 3.12(c) represents the oxidant undergoing a chemical reaction

between the surface of the silicon and the oxidant itself to form a silicon dioxide. In

other words, oxidation occurs at the Si / SiO2 interface, thereby, a new interface is formed

constantly. During this step, part of the silicon substrate is consumed and hence, only

inward diffusion of oxidant takes place rather than the outward diffusion of silicon [21].
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Consequently, the oxidation part of the silicon surface is consumed. The oxidation rate

can be controlled by the chemical reaction rate between the film of silicon dioxide and

the underlying silicon substrate [39]. Sometimes, in IC manufacturing, only some part of

the silicon surface may be needed to be oxidized rather than the entire wafer surface. For

such applications, LOCOS (LOCal Oxidation of Silicon) is used.

3.5 Transient Enhanced Diffusion

During annealing, the dopants undergo enhanced diffusion because of excess silicon

interstitials that exist in the silicon crystal. These interstitials are also formed due to

residual implantation damage. This enhanced diffusion is present for a transient period

until the damage is annealed out. Hence the name of this type of diffusion is called

Transient Enhanced Diffusion (TED). This is also called as anomalous diffusion because

of the diffusion behaviour of the profiles. In Figure 3.13, it is seen that the implant

species of boron profiles that were annealed at low temperature diffuse more than the

profiles that were annealed at high temperature. TED has become one of the dominant

issues for producing shallow junctions. Essentially, reverse short channel effects can also

be reduced by avoiding TED [21].



Figure 3.13 Diffusion profile of boron implants illustrating the TED effects [21].

TED depends on various process variables such as implant parameters (implant

energies, dose, dose rate, annealing), evolution of point defects, annealing parameters

(ramp up rates / thermal budget).

TED can thus be reduced or minimized by controlling the above factors. It is not

possible here to describe in detail influence of all the process parameters on TED since it

is beyond the scope of this thesis. Hence, only a few of them are considered. The role of

annealing and implant variables is the principal consideration for reducing TED. Figure

3.14 illustrates the effect of ramp-up rates, time and temperature on the formation of

shallow junctions by spike annealing. A Secondary Ion Mass Spectroscopy (SIMS)

profile for 1 KeV boron implant spike annealed at a peak temperature of 1050°C with

different ramp up rates of 75 / 150 / 230 °C/s and at a similar cooling rate is presented in

35



36

Fig. 3.14. The samples shown are pre-amorphized with germanium at a dose of 1 x 10 15

/sq.cm and with an implant energy of 5 KeV.

From Figure 3.14, it can be inferred that the faster ramp-up rates will lead to the

formation of ultra shallow junctions. For a concentration of 1 x 10 18 cm-3 at a ramp up

rate of 230°C/s, the junction depth is 400 A. The junction depth for the same

concentration and at a ramp-up rate of 75°C/s is found to be 500A [40].

Figure 3.14 Impact of ramp-up rates on the formation of shallow junctions (PAI = pre
amorphized implants, xi = junction depth and Rs = sheet resistance) [40].
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Figure 3.15 Diffusion profiles of high energy implants [40].

Figure 3.15 shows the effect of ramp-up rate and high-energy implants on

junction depth. This is a SIMS profile of boron implants at a dose of 1 x 10 15 /cm2 at 5

KeV implant energy and annealed at two different ramp rates. These profiles were

compared with that of the lower energy boron implants. The one with the faster ramp-up

rate of 250°C/s had deeper junction depth compared to that of the 1 KeV profiles from

Figure 3.14. This difference is due to the formation of TED at higher energies. This

occurs due to the phenomena that, at higher energies, there are more interstitials and

stable secondary defects. At lower energies, there are only few interstitials wherein,

point defects suppress the occurrence of secondary defects during annealing and

therefore, there is reduction in TED at lower energies [40].
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3.6 Lattice Defects

Any deviation from an orderly array of lattice points can be termed as defect or

imperfection. If the deviation lies in the localized vicinity of only few atoms, then it is

called a point defect or point imperfection. The extension of this point defect through

microscopic regions of the crystal leads to lattice imperfection [41].

3.6.1 Point Defects

Any non-silicon atom incorporated into the lattice at either a substitutional or interstitial

site is called point defect. If only vacancies are present, then the defects are termed as

Schottky defects and if there are vacancies and interstial sites, then these defects are

called as Frenkel pairs or Frenkel defects.

Both vacancies and self-interstitials are present in crystalline silicon and these

undergo self and impurity diffusion processes. This was studied by Seeger and Chikk in

1968 [26]. Furthermore, investigating the formation of these intrinsic point defects is

done thermodynamically according to the Gibbs Free Energy (G x) of the silicon material:

where,

Dself = Diffusivity of self interstitial mechanism,
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D I = Diffusivity of interstitials,

Dv = Diffisivity of vacancies and

Ø1 and Ø v are the correlation factors of diffusion mechanisms involved in interstitial and

vacancy mechanisms.

3.6.2 Extended Lattice Defects

These are also called as lattice imperfections and can be classified as follows:

- Line defects,

- Surface defects/Planar defects,

- Volume defects.

Line defects are two dimensional lattice imperfections where, the defect

propagates in the form of lines in the crystallographic planes of a crystal. Line defects

can also be called dislocations. Dislocations play a major role in the electrical and

mechanical properties of semiconductors. The positive aspect of dislocation is that it acts

as pores, absorbing the dopant atoms and through these pores, the dopants travel into the

substrate. The disadvantage is that the dopants tend to segregate in these dislocations.

Such impurity segregation leads to the formation of dangling bonds that severely affects

the electrical activity of the devices [42]. The most common dislocations are edge

dislocations and screw dislocations.
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Figure 3.16 An example of an edge dislocation [43].

The presence of extra half plane of atoms either in the upper crystallographic

plane or lower crystallographic plane is termed as edge dislocation. Figure 3.16

represents a negative edge dislocation as the extra half plane of atoms is in the lower

plane. Similarly, if extra half planes of atoms are in the upper crystallographic plane, then

it is termed as positive edge dislocation. These extra half plane of atoms form a

dislocation line in 2-D. The movement of these dislocations takes place either by slip or

by glide. Slip occurs in the direction of the dislocation meaning that the edge dislocation

is parallel to the slip vector. In screw dislocations, the extra half plane of atoms is

twisted by atomic spacing. There can also be positive and negative type of screw

dislocations as in edge dislocations. The slip vector is perpendicular to the dislocation.
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Figure 3.17 An example of a srew dslocation [44].

Planar defects include stacking faults and grain boundaries. Figure 3.18 illustrates

the grain boundary defect and Figure 3.19 shows an example of a volume defect.

Precipitates indicate the presence of volume defects. vacancies, interstitials, stacking

faults and dislocations in a crystal are also depicted in this figure.

Figure 3.18 Illustration of grain boundary defects [44].



Figure 3.19 Various types of dislocations present in a crystal structure [21].

3.7 Diffusion

Diffusion is the oldest known method of introducing impurities in silicon. Basically,

diffusion is the transport mechanism where the transport of mass or material takes place

from one level to the next level because of the physical or chemical gradient existing

between them. Alternately, diffusion is defined as the movement of dopant atoms in a

semiconductor material because of the dopant gradient existing between the dopants and

the semiconductor material [22]. There are mainly two kinds of defects that are

associated with the diffusion mechanism. one is the native point defect and the other is

the impurity related defect. Native point defects are present initially in pure silicon

whereas, impurity related defects are created due to the introduction of third and fifth

group elements into the crystal lattice of silicon [45].

42
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Dopant diffusion may occur through a myriad number of mechanisms depending

upon the atomic interactions between the dopant atoms and the silicon lattice. Among

these mechanisms, the most important are interstitial mechanism and vacancy

mechanism. Generally, diffusion takes place by interstitial mechanism for boron and

phosphorous. For antimony, diffusion occurs by a vacancy mechanism and arsenic

diffuses via both vacancy and interstitial mechanisms. These mechanisms are very much

influenced by point defects.

Diffusivity of dopants is given by the following basic equation that is also known

as Fick's Law:

where,

D0 = Diffusion Constant,

Ea = Activation Energy,

k = Boltzmann Constant and

T = Temperature.

The activation energy is the energy in electron volts required to displace a

crystalline atom by the impurity atom [46].

3.8 Thermal Budget

The amount of time, the wafer has been exposed to a particular temperature during the

entire process is called as thermal budget. It can also be defined as the area under the

time-temperature dependent curves or the time-diffusivity curves [47]. In order to meet

the challenges of junction scaling, most of the silicon related industries are concentrating
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on reduced thermal budget. For this, RTP of single wafers has taken over the lead from

conventional batch type furnaces. The thermal budget processing is schematically shown

in Figure 3.19. In this Figure, a comparison is made between the stateof-the-art RTP

single wafer processing and conventional batch type furnace processing. In batch type

furnaces, the wafers are exposed to high temperature for hours, while in single wafer

processing, these wafers are subjected to very high temperatures only for seconds. It is

very crucial to gain control of temperature across the wafers in the case of batch type

furnaces, as subsequent thermal processing steps are required. Hence, for the formation

of ultra shallow junctions, batch type furnaces do not match the thermal budget

requirements and lead to poor device performance [48]. Thus, only using RTP, it has

been possible to meet the challenges of forming ultra shallow junctions, with low leakage

current, low power requirements and greater switching speeds [48].

Figure 3.19 Thermal budget processing [48].

Mathematically, thermal budget can be expressed by referring to the following

formula, where, the product 'DC is called the thermal budget [2]:
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D = diffusivity in the solid,

T = processing time and

L = diffusion length.

Summary

This chapter deals with processes for the formation of shallow junctions. Ion

implantation, annealing, rapid thermal processing, transient enhanced diffusion, defects,

diffusion and the reduction in thermal budget have been discussed. Thermal budget is one

of the critical technical drivers for shallow junction performance.



CHAPTER 4

MATHEMATICAL MODELS OF ION IMPLANTATION

Implantation has become the primary process for introducing dopant atoms for formation

of shallow junctions. Low implantation energies and low doses have been found to be

practical for forming very shallow layers [49]. However, parameters such as

implantation damage, annealing conditions or rapid thermal annealing and thermal

budget need to be investigated. Process -itations and optimizations can be evaluated,

for making the shallow junction fabrication more economical and viable. This will also

lead to breakthroughs in models and simulation for shallow junction formation. The

main objective of these models is to reduce the thermal budgets, the number of materials

processing steps for process development and to bring down the manufacturing costs.

Basically, models can be classified as low energy models, two and three-dimensional

models and physically based models. Some of the current models include, Stopping

Range of Ions in Matter (SRIM), Transport of Ions in Matter (TRIM) and Monte Carlo

Simulation Models. These models are essentially function of implant parameters such as

dose, energy, tilt and rotation angles. In this chapter, SRIM and TRIM has been

discussed. These two models depend on the energy loss mechanisms [50] such as

electronic and nuclear stopping powers.

4.1 Stopping Range of Ions in Matter (SRIM)

Basically, SRIM works on the principle of the theory of ion stopping using a quantum

mechanical treatment of ion-atom collisions [51]. According to this theory, whenever an

46
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ion collides with a solid target, it transfers its energy by two types of collisions. One is

known as electronic collision and the other is known as nuclear collision. This also

depends on the type of energetic ions used for implantation. If the mass of the ions are

light (for example, 11+ and He and B + ) and when they are impinged on to the substrate

with high energy ( KeV range ), then these ions will be stopped by means of electronic

stopping. If the mass of the ions are heavier (for example, As +) and are bombarded on to

the target material at low energy KeV range), then they undergo nuclear collisions or

nuclear stopping. This is illustrated in the Figure 4.1 [21].

Figure 4.1 Implantation of ions into the semiconductor surface [21].

In the case of nuclear stopping, the ions collide with the lattice ions, thereby

displacing the lattice ion and create either a vacancy or an interstitial. This is

characterized by an energy loss per unit length and is mathematically represented as

`Sn(E)' [21]. Similarly, the implanted ion also looses its energy due to the excitation

(emission of electrons to a higher state) and this energy loss per unit length due to

electronic stopping is mathematically represented as `Se(E)' . These mechanisms of
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collisions are as shown in Figure 4.2. As a matter of fact, only nuclear collisions tend to

damage the crystallinity. The total energy loss per unit length, dE / dx, is given by the

sum of the nuclear and electronic losses:

where,

E = Energy of the ion at any point along the trajectory,

x = Length,

N = Density of the target atoms per unit volume,

Sn = Energy loss due to nuclear collision and

Se = Energy loss due to electronic collision.

Range `R' of the projectile is given by:

The coulomb scattering potential 'VW' is given by the following formula for the nuclear

stopping power [21]:



Figure 4.2 (a) Nuclear collisions of ions and (b) Electronic collision of ions [21].

From equation 4.2, the term Sn(E) can be approximated as:

where,

Z 1 , m l = atomic number and mass of the ion,

Z2, m2 = atomic number and mass of the substrate.

Similarly, the electronic stopping power is considered to be analogous to that of

stopping a projectile in a viscous medium [27] and is directly proportional to the square

root of energy.

where,

k = proportionality constant and depends weakly on the atomic masses, number of ions

and target atoms and is approximately equal to 0.2 x 10 -15 eV 1/2 cm2 .

49
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Table 4.1 Critical Energy Corresponding to Stopping Power of various Ions [21]

Impurity atom E1 keV E2 keV

B into Si 3 17

P into Si 17 140

As into Si 73 800

Figure 4.3 Rate of energy loss dE/dx Vs. (Energy) 1/2 [21].

The total stopping power of the various ions are given in the form of a graph in

Figure 4.4. The critical energy where the nuclear and electronic stopping powers are

equal is approximately known. For (a) boron, it is equal to 3 KeV, (b) phosphorus, it is

equal to 140 KeV and (c) both arsenic and antimony, the critical energy should be more

than 500 KeV approximately [21]. This is shown in Figure 4.3 and is summarized in

Table 4.1.
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Figure 4.4 Total stopping powers of various ions vs. energy [21].

4.2 Transport of Ions in Matter (TRIM)

TRIM is an ion implant simulator and is also a part of the SRIM program software. This

simulator can be used for any complex targets and is limited only for amorphous

materials, as there is difficulty in predicting the channeling effects. The dose and angles

for the implant profiles cannot be predicted accurately by this method [52]. An early

version of TRIM used an interpolation approach by means of universal potential model.

Currently, the latest version, SRIM 2000 and TRIM 2000, uses the pair-specific universal

potential model [53]. With the advent of this approach, even though species change, the

change in the interpolation process can be calculated progressively for that species [52].
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4.3 Rutherford Universal Manipulation Package (RUMP)

This software is used for the analysis of Rutherford Back Scattering (RBS) and Electron

Recoil Detection (ERD). Historically, RUMP was converted from FORTRAN into a 'C'

language and thus, this package became one of the most powerful simulation packages

[53] for calculating the stopping powers for all elements in a given energy range. The

calculations used for the stopping powers are based on the polynomial representation and

the principle of Bragg's Law. These polynomial fits are compared with those of the

analytical models to get a fair optimization of the energy ranges. As these computation

tools are expensive, the optimization is performed only once for each ion-target pair.

Recently, Chu, Mayer and Nicolet implemented a sixth-order polynomial fit for

representing the stopping power [53]. These calculations were simple and yet improved

the fit precision by extending the energy range. For example, in the case of silicon, the

tables for stopping power extended from 0.18MeV to 3.45MeV range and the maximum

deviation decreased to a value of 0.24 percent [52]. It is an interesting phenomena that

both RBS and ERD data analyses are to be performed separately with specific stopping

power tables for each. The tables are automatically loaded during the simulation runs.

The following Figure 4.5 shows a measured RBS spectrum (thick line) and the RUMP

simulations are indicated by the dashed line. The sample is a silicon wafer which was

first deposited with diamond like carbon (DLC) by using a CVD technique and then a

thin amorphous silicon film was deposited by Molecular Beam Epitaxy (MBE) at room

temperature [54]. The thickness of the DLC is 310A or 1.55 x 10 17 Si atoms/sq.cm. [54].
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Figure 4.5 RUMP Simulation and the RBS spectra for Si/DLC/Si sample [54].

Summary

This chapter presents the current status of simulations used in the IC industry for range

and stopping power of the ions during ion implantation. SRIM and TRIM have been

discussed in detail and RUMP has been mentioned with a brief overview. It is also

compared with RBS data for a typical sample that has been prepared with diamond and

silicon layers.



CHAPTER 5

CHARACTERIZATION TECHNIQUES

Semiconductors form the backbone of today's microelectronic devices. Characterization

is one of the key issues to be considered for the advancement of this technology. From

the material characterization techniques, topographical properties, defects, structural

properties, compOsitional properties and luminescent properties of the material can be

known. There are several characterization techniques that are available depending upon

the applications in manufacturing and process development. The detailed list of material

and device characterization techniques can be mainly classified into three types namely,

optical characterization, electrical characterization and physical/chemical

characterization. These techniques have been summarized in Table 5.1.

Physical/chemical characterization techniques provide visual and structural data,

compositional and defect parameters etc. Some of these techniques also provide

information in two as well as in three-dimension [55]. The main asset of this technique is

that the impurities can be clearly discerned by the characteristic energies and wavelengths

[55]. optical characterization techniques are used for measuring layer thickness, physical

dimensions, impurity concentrations, optical properties, defect identification etc. For

device diagnostics, electrical characterization is the most widely used method. This

method is used for measuring the resistivity, mobility, contact resistance, channel length,

carrier concentration, barrier height, junction depth, leakage current, lifetime etc. only a

few of the techniques have been discussed in this chapter.
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Table 5.1 Different Types of Characterization Techniques

Physical, Chemical and
Compositional technique

Optical
Characterization

Electrical
Characterization

Scanning Tunneling Microscopy
(STM).

Optical Microscopy. Current- Voltage
Technique.

Atomic Force Microscopy (AFM). Ellipsometry. Capacitance-Voltage
Technique.

Ballistic Electron Emission
Microscopy (BEEM).

Near Field Scanning
Optical
Microscopy (NSOM).

Spectral Responsivity.

Chemical Force Microscopy (CFM). Optical Microsco .3/. Hall Effect.
Scanning Chemical Potential
Microscopy (SCPM).

Raman Spectroscopy. Deep Level Transient
Spectroscopy.

Interfacial force Microscopy (IFM). Van der Pauw's
Method

Magnetic Resonance Force
Microscopy (MRFM).

Scanning Tunneling.
Optical Microscopy.

Scanning Resistance
Profilometry (SRP).

Nano Nuclear Magnetic Resonance
(Nano-NMR).

Raman Spectroscopy. Four-Point Probe
Method.

Scanning Capacitance Microscopy
(SCM).

Scanning Resistance
Technique (SRT).

Scanning Ion Conductance
Microscopy (SICM).

Fourier Transform
Infrared (FTIR).

Reverse Bias Diode
Leakage.

Scanning Thermal Microscopy
(SThM).

Carrier Lifetime.

STOM: Scanning Tunneling Optical
Microscopy
Nano- Spreading Resistance
Profilomety (Nano-SRP).
Acoustic Microscopy.
X-ray Photoelectric Spectroscopy
(XPS).
X-ray Diffractometry.

Scanning Chemical Potential
Microscopy (SCPM).

Secondary Ion Mass Spectroscopy
(SIMS).
Rutherford Back Scattering (RBS).
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Some of the characterization techniques described are as follows:

Four Point Probe Method.

Van der Pauw Method.

Hall Effect Measurements.

Deep Level Transient Spectroscopy (DLTS).

Secondary Ion Mass Spectroscopy (SIMS).

Rutherford Back Scattering (RBS).

Scanning Electron Microscopy (SEM).

Spreading Resistance Profilometry.

Capacitance — Voltage (C-V) Measurements.

Reverse Bias Diode Leakage Measurements.

Before describing the above characterization techniques, it is necessary to show

the device parameters that can be obtained to examine by these measurement techniques.

Figure 5.1 shows a MOSFET with some of the important device parameters.

Figure 5.1 MOSFET with various device parameters [55].
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5.1 Four-Point Probe Method

This is one of the most dominant methods for measuring the reisistivity of a

semiconductor. A simple two-point probe method can be used for measuring the

resistivity, where one probe acts as a current probe and the other acts as a voltage probe.

Mathematically, the total resistance is given by:

where,

RC = Contact Resistance,

RSP = Spreading Resistance,

And Rs = Semiconductor Sheet Resistance.

The main drawback of this method is that the 'RC and `RSP' cannot be measured

accurately, hence Rs is also not accurate. Therefore, a four-point probe method is best

suited for measuring the sheet resistance. Figure 5.2 shows the alignment of probes in a

four-point probe method.

Figure 5.2 Arrangement of probes in a four-point probe method [56].
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In the four-point probe method, the outermost electrodes are used for current

injection and current collection. The innermost electrodes are used for measuring the

voltage drop. one of the important aspects of four-point probe method is that

measurement errors due to contact resistance between the electrodes and the surface can

be eliminated [57]. Resistivity of any semiconductor material can be measured by this

method. This method is also used for measuring the conductivity of the wafer by using

the rectification principle. The mathematical expression for the resistivity is shown

below.

For a bulk sample, (t >> s), the resitivity is given by the following formula:

For a thin sheet, (t<<s), the resistivity is given by:

where,

t = sample thickness and s = probe spacing.

5.2 Van der Pauw Method

This method measures the sheet resistance (Rs) for the sheets of actual boundary shapes.

As the samples may not always be square or rectangular, the probe arrangement, in Fig.

5.3, is the good option for measurements. The most common geometry is of the square
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pattern and is illustrated in Figure 5.3 (a). Other patterns such as Greek Cross and

Cloverleaf are illustrated in Figures 5.3 (b) and (c) respectively. One of the advantages

of this technique is that the arbitrary shaped samples can be used and the contact of the

probes should be present at the perimeter of the sample [58].

Figure 5.3 Van der Pauw's patterns (a)Square Pattern (b)Greek Cross (c)Cloverleaf [56].

According to van der Pauw, the following relation exists between the resistivity,

voltage and thickness:

where,

RAB,CD = potential difference VD — VC / Current from A to B,

RBC,DA = potential difference VA — VD / Current from B to C,

d = thickness of the sample and p = resistivity.

(Rs = p / d), is obtained by solving the transcendental Equation 5.6.
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5.3 Hall Effect Measurements

Hall Effect is the technique for deriving useful semiconductor properties like carrier type

in p or n-type materials, majority carrier concentration, majority carrier mobility, Hall

voltage and Hall coefficient. Hall effect works on the principle of Lorentz force. "When

an electron moves in the direction perpendicular to the applied magnetic field, it

experiences a force acting normal to both the directions and moves in the direction of the

force."[59]. Figure 5.4 represents an n-type semiconductor with majority carriers,

electrons, of bulk density 'n' and constant current 'I flowing from left to right and

excess charge is created on the side of the sample thereby resulting in Hall voltage (VH).

where,

I = Current,

B = Magnetic Field,

d = Sample thickness and

q = Free carrier charge

The sheet density is given by:

The Hall mobility is given by:
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Figure 5.4 Schematic diagram of the Hall effect and Lorentz force [59].

5.4 Deep Level Transient Spectroscopy (DLTS)

This method is used for detecting electrically active defects in semiconductors. It serves

as an important tool in the characterization of defects at deep levels. Impurities and

defects of concentrations up to 10 11 cm-3 [60] can be detected utilizing this technique. The

principle of this method is that deep levels emit charge carriers during the forward bias

pulse and the capacitance change is observed on reverse biasing. The emitted carriers are

truly related to temperature and thus the activation energy of a deep level can be

observed. Figure 5.5 represents the DLTS pulse scheme and voltage signal. DLTS is a

non-destructive technique unlike SIMS and Auger Electron Spectroscopy. It is used in

determining the energy levels, capture/emission rates and concentration of deep

states [60].
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Figure 5.5 Standard DLTS (a) Pulse (b) voltage signal [61].

5.5 Secondary Ion Mass Spectroscopy (SIMS)

SIMS is widely used in detecting dopants and impurities within a junction. This

technique is used by ion implanters for determining the dose and shape of the dopant

profile [57]. This technique is dependent on the application of sputtering phenomena.

The incident ions with high energies are bombarded onto the surface, and thereby,

transfer some of the energies into the lattice atoms. These incident ions are also called as

primary ions and they interact with the sample or surface that is to be measured. Initially,

the upper layer of the sample gets amorphized and some of the ions get implanted due to

atomic collisions within the solid, thus releasing some of the secondary ions which can be

analyzed mass spectrometrically. Figure 5.6 represents the basic principle of this
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technique [62]. The secondary ions are characteristic functions of the composition of the

surface. This method is a high sensitivity surface analytical technique and the typical

detection limits range from 10 14 to 10 15 cm-3 . The lateral resolution range limits are from

1 μm  to 100 μm and depth resolution ranges from 50 Å to 100 A [57]. Figure 5.7 gives

the detailed flowchart of SIMS operation.

Figure 5.6 Principle of operation of SIMS [62].

SIMS can be used for almost any element in the periodic table except for noble

gases because of the difficulty in ionization. one of the main advantages of SIMS is that

it has high spatial resolution and can be used for all semiconductors. Also, as it measures

the dopant profiles and not the carrier profile, it can be used for the implanted samples

prior to activation anneals [57].
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Figure 5.7 Flowchart explaining the SIMS technique [62].

5.5.1 Merits and Demerits of SIMS

Merits
- This can be used for wide range of materials including organic, inorganic

compounds, ceramics, polymers, biological samples, solid state materials etc.

- The sensitivity of this analysis is very high and range from ppm to ppb.

- SIMS has the ability to distinguish isotopes.

- High spatial resolution.

Demerits

- This is a destructive technique.

- The equipment is highly complex.

- The sensitivity is more for boron in silicon than for the rest of the impurities.
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5.6 Rutherford Back Scattering (RBS)

Lord Ernest Rutherford first introduced this technique in 1911. This is the most widely

used technique in the semiconductor industry for surface analysis. This is because the

scattered ions come out from the surface as well as from the inner or sub regions. This

technique works on the simple principle of backscattering of ions from a solid surface.

Beams of high energetic ions are incident on the solid surface and these energetic ions

elastically collide with the lattice atoms. Some ions are absorbed and some of them are

back scattered into a suitable detector, which measures the number of back-scattered

particles and their energy [63]. Typically He+ or He++ monoenergetic ions is used as the

incident beam (1-3MeV) as this passes very close to the nucleus of an atom in the solid

and they are back-scattered through a large angle and leave the target [57].

The back scattering of the ions mainly depends on the mass of the target element.

If the target atoms are heavy, then the back-scattering energy will be high almost close to

the incident energy [64]. If the target atoms are light, then the energy back scattered is

very low. Hence they need to be scattered in the forward direction. Typical examples

include hydrogen. The thickness of RBS in terms of density is given by the following

formula:

where,

TRBs = thickness obtained by RBS,

DRBS = Density assumed during the calculation of RBS thickness,

TReal = actual film thickness and DReal = actual density.
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This is useful when the density assumed is different from the actual density of the

film [65]. The RBS spectrum for the Si/ DLC / Si is given in Figure 4.5 in chapter four.

5.6.1 Merits and Demerits of RBS

Merits

This technique is widely used for measuring the thickness, nature, amount and

distribution of impurities in thin films [57].

RBS associated with channeling is used for locating the impurity atom

position in a single crystal [63].

The primary use of this technique is in the quantitative depth profiling of

semiconductors, polymers, catalysts, superconductors etc.

Good reproducibility.

Demerits

It has -ited sensitivity.

Cost of equipment is high.

5.7 Scanning Electron Microscopy (SEM)

This is the primary tool used as an analytical technique. With the demand for increasing

performance and for practical applications in the VLSI era, SEM has become the standard

instrument because of its high resolution. In principle, a high-energy electron beam is

focused on to the surface of a sample. This electron beam interacts with the surface of

the sample and creates a variety of signals (secondary electrons, X-rays, photons, back-

scattered electrons, internal currents, etc.). These signals are scanned so as to form an

image on the screen. The image formed is highly magnified. The present state of the art
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SEM has a magnification in the range of 20x — 650000x [66] and the resolution of the

image is found to be in the order of 1-3nm [67]. Figure 5.8 represents a schematic

drawing of a SEM. An electron gun is used for producing electrons, which pass through

several lenses. The electrons are then accelerated so as to optimize the electro-optical

performance of the lens and also to enhance the brightness of the electron source.

Generally, the accelerating voltages are in the range of 15-30kV [68]. When the electron

passes through the electrostatic lenses, it is focused like a spot on the surface of the

specimen. As the electron strikes the sample, it undergoes multiple collisions and

produces images from the signals such as cathode-luminescence, electron beam induced

conductivity, specimen current, auger electrons, fluorescent X-rays, backscattered

electrons, etc. [68].

Most of the SEM tools produce images based on the back-scattered electrons.

These signals are detected by means of detectors and the characteristic of these detectors

play a vital role in the contrast of the image. The distance traversed by some of the

incident electrons that do not backscatter and come to rest is called Range (R). The

electron range is a factor of the atomic number and incident beam energy. The range

increases with decrease in atomic number and increase in the incident beam energy [69].



Figure 5.8 Schematic diagram of a SEM [70].
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5.8 Spreading Resistance Profilometry (SRP)

This technique is used for measuring the dopant concentration and depth profiles of

silicon. Figure 5.9 shows the schematic representation of the measurement setup of the

alignment of probes used in SRP. The two probes are placed at a step along the

semiconductor surface. Care is to be taken during the placement of probes. The probes

are placed in such a way that it should make an electrical contact, while at the same time,

the probes should not penetrate too much into the surface [21].

Figure 5.9 Schematic diagram of the alignment of probes using SRP [21].
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The probes are generally made of osmium or tungsten alloy. The samples are

beveled at a shallow angle (0) and this angle is approximately 1° for shallow layers [55].

When the probes are made to come in contact with the silicon, it appears that the probes

tend to fracture whereas the probe / silicon interface deforms elastically. on supplying

the voltage between the two probes the resistance can be measured and plotted [55].

Mathematically, the spreading resistance — resistivity relationship can be expressed as:

where,

p = Resistivity

and r = Probe radius.

SRP cannot be performed with accuracy as it is dependent on the probe and the

sample preparation. Hence it is necessary to use calibration procedures [71]. SRP is used

for the study of epitaxial autodoping effects because of its wide carrier concentration

sensitivity range [72]. It also finds application in verifying the models for arsenic dopant

activation and autodoping phenomena [73].

5.9 Capacitance — Voltage (C -V) Measurements

This technique is the most dominant and widely used method as it provides detailed

information about dielectrics and interfaces used in the semiconductor industry [21]. In

this technique, the capacitance of a semiconductor device as a function of voltage is

studied. C-V techniques are used in determining the semiconductor parameters such as

dopant profiles, threshold voltage, density of interface states, carrier lifetime and oxide
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charge. In the doping profiling method, a reverse biased space charge region is required

to create a junction [55]. C-V profiling is used in the characterization of MoS capacitors,

p-n junctions and Schottky barrier junctions, MOSFETs and junctions formed by

electrochemical methods [55]. C-V measurements for a reverse bias capacitance of an

n+/p or p+/n junction is given by the following formula:

where,

C ( V ) = Capacitance of a junction,

q	 = Free carrier Charge,

εSi	 = Permitivity of silicon,

CA	 = Substrate doping concentration,

Vbi 	 = Built in potential of the junction and

VR	 = Applied reverse bias voltage.

The concentration of majority carriers can be determined by this technique by

using a time varying voltage of variable frequency. Measurement of threshold voltage

(VT) plays a major role in characterizing the sub-micron MOSFETs. The measurement

of ultra thin film oxides and VT is done by using hard probe and also by using a high

repeatability mercury probe.
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5.10 Reverse Bias Diode Leakage Measurements

Reverse bias diode leakage is a diagnostic tool for the study of n/p junctions. Electron

and hole recombination at defects in n/p junctions increases the reverse bias current.

Theoretically, high quality n/p junctions should show leakage currents as low as 10 -1° to

10-8 amp/cm-2 [74]. Increased leakage indicates the presence of defects. The typical

defects produced by ion implantation and RTA are dislocations or dislocation loops,

small clusters of silicon interstitials and vacancies, and impurity-defect clusters. Low

leakage is required for ultra shallow junctions in MOSFET fabrication. In this thesis, a

study of the leakage currents in n/p junctions, produced by ion implantation of

phosphorus and arsenic into silicon, and diffusion by RTA, is presented. The

experimental procedures are summarized in Chapter 6.

Summary

As characterization plays a vital role in determining the device parameters and also in

failure analysis, it is critical to discuss them. In this chapter, various characterization

techniques have been described. To name a few, the four-point probe method, DLTS,

SIMS, RBS, SRP, SEM have been discussed in detail. Table 5.1, presented in this

chapter, provides information on techniques that are being utilized in the semiconductor

industry.
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EXPERIMENTAL TECHNIQUES DEPLOYED IN THIS STUDY

In this chapter, the experiments performed in this research are explained. Many

experiments were carried during the study. Shallow junction samples were prepared by

ion implantation followed by rapid thermal annealing. The wafers were 200 mm in

diameter. In the first experiment, p-type silicon substrates were ion-implanted with

phosphorus and arsenic. The wafers were then cut to a specific dimension of 1 cm 2 .

Then they are subjected to spike annealing. In the second experiment, the large wafers,

after ion implantation, are subjected to rapid thermal annealing step. In this experiment,

arsenic monomer and dimer were implanted at a constant dose with varying energies and

the samples are cut to specific dimension of 1 cm 2 . Major companies like Sematech

International, Vortek Industries, Agere Systems and Axcelis Technologies provided the

samples, which forms the building block of this research.

This research focuses on experimental study of the leakage currents in shallow

junctions. This begins with the sample preparation at the laboratory at NJIT. Processing

steps (RTP) were done at the collaborating companies and then finally, testing and

measurements were done at NJIT. The results of leakage currents were analyzed using

semiconductor theory. From the analyses of the experimental data, conclusions were

drawn which are explained in the next chapter. The flowchart given in Figure 1.1

explains the formation of shallow junctions.
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Figure 6.1 Flowchart describing the process carried out in this research.
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6.1 Sample Preparation

The silicon wafers of 200 mm diameter were to be cut to a proper size for carrying out

the experiments. The typical size of the cut sample (wafer) was 1cm x 1cm. The cutting

of the large wafer was done in a special compartment with a hood and proper cutting

tools. The samples from the collaborating industry were shipped in a special packing

case, in order to avoid contamination and damage to the wafers. Then, they were cut to a

shape of 1cm x 1cm with the help of cutting tools. Initially, a notch or groove was made

in such a position that the wafer could be cut into two halves. The groove was made by

means of a diamond indenter. As silicon is a very brittle material, the cleavage takes

place in <110> direction, that is, a typical orientation followed during the single crystal

growth of silicon. The notched wafer is first placed on the anvil, which is a raised flat

board. The wafer is placed laterally in such a way that only the notched portion rests on

the anvil. Slight pressure is applied on either side of the notch for the cleavage. This is

as shown in Figure 6.2.

Figure 6.2 Schematic representation of the wafer before cutting.
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Figure 6.3 Schematic representation of cutting of wafers to a desired size.

The cutting of the samples is shown in Figure 6.2. After cutting, the final

dimensions of the samples should be 1 cm x 1 cm and generally four samples were taken

from each big wafer. The cut samples were marked with the help of a diamond indenter

on the back for identification purposes. In the second step, the samples were again sent

for processing, which is done by the collaborators. The four chips (5, 6, 10 and 11) from

Figure 6.3 were annealed at different temperatures, which is the case for the first

experiment.



77

6.2 Wax Patterning and Chemical Etching

The processed chips were patterned with the help of a wax (polymer) and 1 mm diameter

dots were created on the chips. Mesa diodes were formed as shown in Figure 6.4. This

step is known as Wax Patterning.

Figure 6.5 Chemical station for etching.
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After wax patterning, the chips were etched by using CP4 etchant (fast, polishing

or slow polishing) under a chemical station, which is shown in Figure 6.5. The etching

time typically ranged from 20 — 30 seconds. The wax was removed after this step by

dissolving it in solvents. Generally, first the chips were dipped in toluene, acetone, and

propanol. Then they were immersed in distilled water and dried under nitrogen gas.

Finally, the chips were dipped in hydrofluoric acid (HF) and then into acetic acid

(CH3CoOH). The wax removal led to the creation of diodes in the form of circular dots.

In reality, these dots were elliptical. During patterning of the dots, some space was left

for scratching which formed the base of the sample and one of the probes was placed on

this spot. The circular dots and the scratch on the base are illustrated in Figure 6.4.

6.3 Measurements

The sample after finishing the chemical step was ready for the measurement. A

semiconductor probe station, shown in Figure 6.6, was used for the measurements. The

probe station consists of a base platform or probe anvil. It has a chuck or a slot for

mounting the sample. When the vacuum is turned on, the chuck secures the sample

firmly. The sample can be moved longitudinally as well as laterally with the help of the

knobs on the either side of the probe station. For making a good contact, indium was

used. Indium is a very soft, adhesive and conductive material. The probe tips of the

needles were also coated with indium by soldering.

The microscopic eye lens of the probe can be adjusted horizontally and vertically

with the knobs. One of the knobs is shown in Figure 6.6. Out of the two eye-pieces, the

left eye is used for making contacts and the right eye consists of a micrometer scale that
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is used for measuring the diameter of the dots. The maXimum number of divisions in the

micrometer scale is 200 divisions. It is important that the number of divisions in the

micrometer scale should be converted into the normal scale reading. For this, vernier

scale is used which converts number of divisions into inches. This is a multi-point probe

station. In the present study, only three probes are used for the measurements. These

probes typically have needles, which are attached to the micromanipulators. These

micromanipulators are also associated with vacuum, in order to have a firm grip as well

as to prevent the probe from moving. These manipulators can be moved up and down as

well as forward and backward with the help of knobs.

Figure 6.6 Detailed view of probe station with labeled parts.
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One of the important steps is the circuit connection. Current amplifiers, digital

multimeter, banana cables and connectors are required to complete the circuit. This is

shown in the simple line diagram in Figure 6.7. The circuit connections should be

checked before starting the experiments. There may be damage of the cables, improper

functioning due to leakage or improper connections. Hence, it is always good to rectify

them by double-checking and replacing the same.

There are a large number of mesa dots on the chip. For experimental purposes,

the measurements were made only on four dots. The main aim of performing this

experiment was to measure the +1V reverse biased leakage current of the diodes.

Initially, a current reading is obtained. However, as time passes, there are fluctuations in

the current readings and the value drops. These fluctuations cannot be completely

eschewed. Consequently, the fluctuation in readings decreases as time passes. Hence, the

readings are noted with increment of one minute for three minutes. The third reading of

current after three minutes is the final value, as this is constant and there will be little or

no fluctuations. In order to minimize fluctuations, the probe station enclosure, after

making the electrical contacts is closed. The lamp of the microscope must also be turned

off and the circuit should be properly grounded.
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Figure 6.7 Schematic representation of the circuit diagram.

Before calculating the current density of the chip, the device area is to be determined by

the following calculations. one of the important points to be noted, in this connection, is

that the mesa dots formed by wax patterning are elliptical and not circular in geometry.
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Figure 6.8 Representation of Mesa dot in elliptical form.

where,

D I = Diameter in vertical direction in divisions,

D2 = Diameter in horizontal direction in divisions,

137 ( 1mm of vernier scale = 137 divisions of probe scale ),

0.01 ( Conversion factor from mm 4 cm ),

The average of the two least current densities is taken and is formatted in

Microsoft Excel for plotting graphs. From the interpretation of the data, conclusions have

been made that are discussed in the next chapter.
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Summary

This chapter explains the experimental procedures used in this research. Details of

sample preparation and leakage current measurements have been presented. A simple

program written in C++ (Appendix D) has been utilized for data formatting and

calculations of area and current densities.



CHAPTER 7

DISCUSSION AND COMPARISON WITH RESULTS AND LITERATURE

The experiments that were carried out are listed here. The data sheets for each

experiment are in the Microsoft Excel format. The summary sheet for each set of

experiments is also presented.

In the first experiment, two different methods of spike annealing were done at

Vortek Industries and Agere Systems. Vortek Industries performed the spike annealing

(arc lamp) by heating the samples at a ramp-up rate of 400 °C / sec. Agere Systems

utilized the other method of spike annealing (incandescent lamp), where the samples

were heated at a ramp-up rate of 200 °C / sec. The results of the measured diode leakage

current were plotted as function of annealing. These graphs also show the variation of

diode leakage current with implant dose for the two types of annealing methods. The

implant doses included 2 x 1014, 4 x 10 14 , 7 x 10 14 and 1 x 10 15 cm-2 of boron and

phosphorus, and 1 x 10 15 cm-2 of arsenic. The conclusions drawn from these plots are

explained below. For the other device parameters such as junction depth, Hall carrier

density, sheet resistance, etc., the graphs are presented in Appendix A.

In the second experiment, leakage current measurements for arsenic monomer

and dimer implants were studied. These samples were rapid thermal annealed by

Heatpulse method at two different temperatures: 850 °C, 900 °C, for 30 seconds. The

dimer arsenic (As 2) species was implanted at double the energy (6 KeV) than the

monomer (As), which is implanted at 3 KeV. Graphs were plotted for the variation of the

leakage current with the implant dose for these samples. Results were also compared

84
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with those obtained in the first experiment. RBS channeling spectra provided useful

information about the implantation damage that occurred during the monomer and dimer

arsenic implants.

7.1 Experiment 1

An example of an experimental data sheet is attached in Appendix C. Table 7.1 gives the

summary of the samples studied in this experiment. It includes some of the ion implant

parameters such as energy, dose, maximum temperature (Tmax), sheet resistance (RS),

Hall coefficient (RH), Hall carrier density (NH), junction leakage current (I leakage), etc.

The first group of samples were prepared by boron ion implantation into n-type

silicon wafers at an energy of 0.5 KeV and doses of 2 x 10 14 , 4 x 1014, 7 x 10 14 and 1 x

10 15 cm-2 . The first eight samples in this group were spike annealed at Agere Systems by

the incandescent lamp method using a Heatpulse rapid thermal annealing system. The

rest of the samples in this group were annealed at Vortek Industries using an arc lamp

system.

The second group of samples were prepared by phosphorus ion implantation into

p-type silicon wafer, at energy of 1.5 keV, and the same range of doses as for the boron

group. In this group, the first 12 samples were spike annealed by incandescent lamp and

the next set of samples in this group were spike annealed by arc lamp method.
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shallow extension junctions
HP8108: 12mm sq chips on 8" aperture wafer.Ar +0,1% 02 spike anneals, ramp="200C/s"
Vortek: 25mm sq chips, Ar+0.1%02 spike anneals,ramp 400C/s
Incandescent (Incand) and Arc Lamp Method (Arc Lamp.)
B implant, n-type wafer

recipe 	 Method Tmax 	 As 	 RH 	 NH 	 NH/Dose 	 Xj 	 Jleakage, (A/cm 2)
as1108,v00 Incand.
as1125.v00 Incand.
as1062.v00 Incand.
as1067.v00 Incand.
as1027.v00 Incand.
as1033,v00 Incand.
as1008,v00 Incand.
as1012.v00 Incand.

1085 	 Arc Lamp.
1105 	 Arc Lamp.
1125 	 Arc Lamp.
1145 	 Arc Lamp,
1065 	 Arc Lamp.
1085 	 Arc Lamp,
1105 	 Arc Lamp.
1125 	 Arc Lamp.
1035 	 Arc Lamp.
1055 	 Arc Lamp.
1075 	 Arc Lamp.
1095 	 Arc Lamp.
1005 	 Arc Lamp.
1025 	 Arc Lamp.
1045 	 Arc Lamp.
1065 	 Arc Lamp.

Phos implant, p-type wafer

Incand.
Incand.
Incand,
Incand.
Incand.
Incand,
Incand.
Incand.
Incand,
Incand.
Incand.
Incand.

Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp,
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp,
Arc Lamp.
Arc Lamp.
Arc Lamp,
Arc Lamp.
Arc Lamp,
Arc Lamp.

Arsenic implant, p-type wafer
as950.v00 Arc Lamp.
as980.v00 Arc Lamp,
as1010.v00 Arc Lamp.
as1040.v00 Arc Lamp.

985 	 Arc Lamp,
1005	 Arc Lamp.
1025	 Arc Lamp,
1045	 Arc Lamp.

CHIP ID Energy dose
D3-2 0.5 2.E+14
D3-3 0.5 2.E+14
F5-3 0.5 4,E+14
F5-2 0.5 4.E+14
A5-3 0.5 7.E+14
A5-1 0.5 7.E+14
D0-3 0.5 1.E+15
DO-1 0.5 1,E+15
D3A 0.5 2.E+14
D3B 0.5 2,E+14
D3C 0.5 2.E+14
D3D 0.5 2.E+14
F5A 0.5 4,E+14
F5B 0.5 4.E+14
F5C 0.5 4.E+14
F5D 0.5 4.E+14
A5A 0.5 7.E+14
A5B 0.5 7.E+14
A5C 0.5 7.E+14
A5D 0.5 7.E+14
DOA 0.5 1.E+15
DOB 0.5 1.E+15
DOC 0.5 1.E+15
DOD 0,5 1,E+15

CHIP ID Energy dose recipe
A6-1 1,5 2.E+14 as1079.v00
A6-3 1.5 2.E+14 as1100.v00
A6-2 1.5 2.E+14 as1108.v00
D1-3 1.5 4.E+14 as1000.v00
D1-2 1.5 4.E+14 as1028.v00
D1-1 1.5 4,E+14 as1060.v00
F4-3 1.5 7.E+14 as970.v00
F4-2 1.5 7.E+14 as1000,v00
F4-1 1,5 7.E+14 as1028.v00
A4-3 1.5 1.E+15 as950,v00
A4-2 1.5 1.E+15 as970.v00
A4-1 1,5 1.E+15 as1000.v00
A6A 1.5 2.E+14 1090
A6B 1.5 2,E+14 1110
A6C 1,5 2.E+14 1130
A6D 1.5 2.E+14 1150
D1A 1.5 4.E+14 1050
D1B 1.5 4.E+14 1070
D1C 1.5 4.E+14 1090
D1D 1.5 4.E+14 1110
F4A 1.5 7.E+14 1005
F4B 1.5 7,E+14 1025
F4C 1.5 7.E+14 1045
F4D 1.5 7.E+14 1065
A4A 1.5 1,E+15 985
A4B 1.5 1.E+15 1005
A4C 1.5 1.E+15 1025
A4D 1.5 1,E+15 1045

CF3-1 5 1.E+15
CF3-2 5 1.E+15
CF3-3 5 1.E+15
CF3-4 5 1.E+15
F3A 5 1.E+15
F3B 5 1.E+15
F3C 5 1. E+15
F3D 5 1.E+15

1111 1074.0 4.760 1,02E+14 0.5123 3.33E-06 1.34E-05
1122 1045.3 4.604 1.06E+14 0.5291 3.33E-06 4,83E-04
1058 819.1 3.384 1,42E+14 0.3559 3.22E-06 9.95E-04
1075 665.3 2.690 1.78E+14 0.4462 3.58E-06 3.39E-06
1026 822.4 3.299 1.45E+14 0.2076 2.79E-06 1.85E-06
1037 722.5 2.824 1.69E+14 0.2417 2,79E-06 4.50E-07
1009 761.1 2.948 1.62E+14 0.1619 2.54E-06 1.93E-06
1017 729.4 2.826 1.69E+14 0.1689 2.65E-06 9.40E-07
1086 1797.0 8.280 6,02E+13 0.3008 2.20E-06 9.12E-07
1105 1500,0 6,627 7,45E+13 0.3727 2.25E-06 1.44E-06
1125 1369.0 6.099 8.11E+13 0.4057 2.55E-06 9.73E-07
1145 1265.0 5.630 8.79E+13 0.4394 2.74E-06 1.52E-06
1066 1248.0 5,265 9,30E+13 0.2326 2.24E-06 3,75E-06
1086 1006.8 4.157 1.17E+14 0.2934 2.53E-06 3.05E-06
1105 821.9 3.380 1.44E+14 0.3607 3.05E-06 1,14E-06
1125 688.7 2.839 1,72E+14 0.4296 3.68E-06 7.53E-07
1036 1261.0 5.180 9.41E+13 0.1345 1.98E-06 1.51E-06
1056 966.7 3.928 1.24E+14 0.1770 2.46E-06 8.76E-07
1075 752.8 3.000 1.62E+14 0.2311 2.90E-06 7.61E-07
1095 585,4 2,310 2,10E+14 0.2997 3.56E-06 9.84E-07
1006 1369.0 5.705 8.57E+13 0.0857 1.94E-06 1.29E-06
1026 1090.0 4.339 1.12E+14 0.1118 1.99E-06 2,20E-06
1046 879.0 3.470 1.40E+14 0.1397 2.38E-06 data missing
1065 693.4 2,694 1.80E+14 0.1796 2.81E-06 1.55E-06

Tmax As RH NH NH/Dose Xj
1077 1114.0 -15.670 4.88E+13 0.2281 4.68E-06 2,49E-05
1097 1026.8 -14.380 5.32E+13 0.2484 5.04E-06 2.90E-05
1115 873.2 -11.150 6.77E+13 0.3163 4.92E-06 2.36E-05
1001 943.5 -12.740 5.97E+13 0.1396 5.10E-06 2.90E-06
1031 731.2 -8.598 8.63E+13 0.2017 4.91E-06 7.20E-06
1063 560.1 -6.036 1.20E+14 0.2813 5.21E-06 6.28E-05
971 565.1 -6.811 1.10E+14 0.1463 6,72E-06 2.17E-06
1003 425.6 -3.933 1.78E+14 0,2371 4.53E-06 1.30E-06
1032 335.6 -2.880 2,39E+14 0,3191 4.69E-06 sample not found
951 467.5 -4.114 1.68E+14 0.1571 3.60E-06 4.50E-06
972 367,9 -2.900 2,35E+14 0.2198 3.47E-06 5.97E-06
999 303.2 -2.373 2.87E+14 0,2684 4.14E-06 4,91 E-06
1090 1328.0 -18.640 4.27E+13 0.1994 3,55E-06 1.15E-06
1110 1173.0 -20.850 3.85E+13 0.1800 5.97E-06 4.66E-06
1131 1045,0 -13,700 5,74E+13 0.2682 3,95E-06 7,89E-06
1150 890.7 -11.880 6.64E+13 0.3103 4.81 E-06 6.59E-06
1051 818.4 -9.917 7.80E+13 0.1821 4,27E-06 8.40E-07
1071 688.3 -7.637 9.90E+13 0.2313 4.13E-06 1,94E-06
1091 640.5 -6.470 1.14E+14 0.2665 3,52E-06 6.66E-06
1111 549.0 -5.377 1.36E+14 0.3184 3.80E-06 2.21E-06
1006 532.5 -4.966 1.46E+14 0.1950 3.46E-06 1.18E-06
1026 474,3 -4,247 1.70E+14 0.2266 3,52E-06 1.49E-06
1046 423.5 -3.697 1.94E+14 0.2595 3.72E-06 9.26E-07
1066 343.3 -2.782 2.57E+14 0,3437 3.90E-06 sample not found
986,6 432.4 -3,457 2,07E+14 0.1936 3,02E-06 2.25E-06
1006 395.1 -3.200 2.24E+14 0.2091 3,39E-06 2,84E-06
1026 339,3 -2.575 2.79E+14 0.2610 3.50E-06 2.85E-06
1046 266.2 -1.838 3.98E+14 0,3722 3.86E-06 2.47E-06

948 371.9 -2.120 3.36E+14 0.3137 2,15E-06 1.72E-06
981 365.5 -2.067 3.45E+14 0.3225 2.18E-06 1.01 E-06
1009 341.9 -1,895 3.79E+14 0.3540 2.29E-06 1.68E-06
1036 315.3 -1.743 4.12E+14 0.3852 2.47E-06 7.14E-07
985.7 352.5 -1.881 4.33E+14 0.4049 2.22E-06 9.39E-07
1006 362.0 -1.967 4.11E+14 0,3837 2.19E-06 6.39E-07
1026 350.8 -1.888 4.30E+14 0,4017 2.25E-06 7,08E-07
1046 336.7 -1.799 4.53E+14 0.4231 2.33E-06 8.69E-07
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The third group of samples were prepared by implanting arsenic at one dose (1 x

10 15 cm-2) and energy (5 KeV). Half of the number of samples was annealed by

incandescent lamp, and the other half was annealed by the arc lamp method.

There were 50 samples in number that were tested in this experiment. The

process conditions of these samples are summarized in Table 7.1. Three to four anneal

temperatures were studied for each dose. From this experiment, observations were drawn

from three graphs of the leakage current data and sheet resistance as function of

annealing temperature: Two graphs for the phosphorus implants and one for the arsenic

implants.

Figure 7.1 Leakage current versus temperature for phosphorus samples that were rapid
thermal annealed by arc lamp method at a ramp-up rate of 400 °C / sec.
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7.1.1 Observations -1

Figure 7.1 illustrates the reverse bias diode leakage current density at +1 Volt bias vs. arc

lamp spike anneal temperature for 1.5 KeV phosphorus implants at four doses (cm-2

units). The leakage current density exhibits a maximum, as a function of the spike anneal

temperature. This is seen in the data for all lower phosphorus doses. From the graphs, it is

seen that for the two highest doses the leakage is low. The leakage current maximum is

found to be 2.85 x 10 -6 amp/cm2 at a dose of 1 x 10 15 cm-2 and the maximum is 7.89 x 10 -

6 amp/cm2 at a dose of 2 x 10 14 
CM

-2
. However, this trend is different for the lower two

doses annealed at higher temperatures. It is found that at higher temperatures the leakage

was high for a low dose, whereas theoretically, the leakage current might be expected to

be low at higher temperatures. One of the reasons for this might be due to the transient

enhanced diffusion of phosphorus, which causes defects. The data suggests that the

defects, which are responsible for the leakage, may be annealed out at sufficiently high

temperatures.
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Figure 7.2 Leakage current versus temperature for phosphorus samples that were rapid
thermal annealed by incandescent lamp method at a ramp-up rate of 200 °C / sec.

7.1.2 Observations - 2

Figure 7.2 illustrates the reverse bias diode leakage current densities at +1 Volt bias Vs.

incandescent spike anneal temperature for 1.5 KeV phosphorus implants at four doses

- 2(cm units). From the graph, it is observed that for the higher two doses the leakage is

lower than the lowest two doses. This behavior is the same as was observed for the arc

lamp annealing method as discussed in observations - 1. This also gives a hint of the

maximum temperature effect. However, there are too few data points to draw this as an

independent conclusion. The leakage current maximum is found to be 5.97 x 10-6
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amp/cm2 at a dose of 1 x 10 15 cm-2 and the maxima is 6.28 x 10 -5 amp/cm2 at a dose of 4

x 1014 cm-2. The highest leakage is observed for the 4 x 10 14 cm -2 dose.

From the comparison of two methods of spike annealing, it can be concluded that

the leakage current for the incandescent lamp method is generally higher than the arc

lamp method. The temperature ranges for the incandescent lamp anneals are lower than

the arc lamp anneals. This is due to the fact that the goal of these experiments is to obtain

films with comparable sheet resistance range in the two methods as shown in Figures 7.3

and 7.4 for the same samples.

Figure 7.3 Sheet resistance versus peak temperature for 1.5 KeV phosphorus implants
(Heatpulse by using incandescent lamps).
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Figure 7.4 Sheet resistance versus peak temperature for 1.5KeV phosphorus implants
(Vortek spike RTA by using arc lamp method).

Figure 7.5 Leakage current density vs. temperature for arsenic implants (Comparison is
made with the annealing procedures for incandescent lamps and arc lamp method of
annealing).
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7.1.3 Observations - 3

Figure 7.5 shows the variation of the leakage current density versus spike anneal

temperature for arsenic implants, using the arc lamp and incandescent lamp methods. The

variation of leakage current with temperature is not particularly systematic. The leakage

current decreases with decrease in temperature. However, at an annealing temperature of

1009 °C, the leakage current was found to be high in the case of incandescent method of

annealing. Also, the leakage current behavior is found to be similar for both types of

annealing.

It is observed from Figure 7.5 that the average leakage current by the

incandescent lamp method is higher than the average leakage current by the arc lamp

method for the arsenic implants. This is also found to be true in the case of phosphorus

implants (Observation-2). The overall leakage levels for the arsenic implants is lower

than that of the phosphorus implants by a factor of 5.

From the observations of the above graphs, it can be summarized that the arsenic

implants are favorable for shallow n/p junction formation because arsenic implants have

negligible transient enhanced diffusion. Results of the leakage current density presented

here show that there is an additional advantage of lower junction leakage for using

arsenic in n/p junction.

Experiment 2

This experiment compares arsenic monomer (As) and dimer (As 2) implants at two

implant energies chosen to yield the same range for both species. Moreover, the implant

doses differ by a factor of 2 (dimer species has twice the implant energy than the
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monomer arsenic species). Five implant doses were studied in this eXperiment. The

samples were annealed by incandescent lamp rapid thermal annealing method for 30

seconds. Most of the samples were annealed at 850 °C. Several samples were annealed

at 900°C in a test for possible variation of device properties with anneal temperature.

Table 7.2 Summary Sheet of Arsenic Monomer (75 arsenic) and Dimer (150 arsenic 2 )
Samples

Chip Id Dose Energy
(KeV)

Species Leakage
Current

( Amp/ cm2)
H114 A 5.00E+13 3 75 Arsenic 6.36 E-9
H119 A 1.00E+14 3 75 Arsenic 3.35 E-9
H172A 2.00E+14 3 75 Arsenic 4.64 E-9
H132 A 4.00E+14 3 75 Arsenic 4.57 E-9
H020 A 8.00E+14 3 75 Arsenic 5.28 E -9
H020B 8.00E+14 3 75 Arsenic 5.09 E-9
H02A 5.00E+13 6 150 Arsenic2 8.07 E —9

H68 A 1.00E+14 6 150 Arsenic2 5.76 E-9
H01 A 2.00E+14 6 150 Arsenic2 5.95 E-9
H04A 2.50E+13 6 150 Arsenic2 6.05 E-9

H 67 B 4.00E+14 6 150 Arsenic2 6.58 E-9

The motivation for this study is the desirability of using higher implant energy for

shallow junction formation. A higher energy allows a higher beam current in the

implanter and this lowers the cost of production. Table 7.2 gives the summary of the

arsenic samples. The wafers were 200 mm diameter highly doped p-type silicon. The

sheet resistivity of the wafers was approXimately 10 ohm-cm. The reverse bias diode

leakage measurements were carried out for arsenic monomer and dimer implants after

soak RTA. The experiment was performed on 11 samples and the graphs were plotted.



94

Figure 7.6 Leakage current density versus implant dose for arsenic samples that were
rapid thermal annealed at 850 °C for 30 seconds or 900 °C for 30 seconds.

7.2.1 Observations - 4

Figure 7.6 shows the variation of leakage current density with arsenic implant dose for

arsenic monomer and dimer species. The leakage current density is found to have a small

(10 %) variation with dose. The largest variations are as follows: the 5 x 10 13 cm-2 dimer

implant shows the highest leakage and the 1 x 10 14 cm-2 monomer implant shows the

lowest leakage. Even though the dimers were implanted at double the implantation

energy, i.e., 6 KeV, the leakage current density was found to be consistently larger than

the monomer implanted at 3 KeV. These differences were found to be approximately up

to 50 percent. However, the leakage current density values for both species are two



95

orders of magnitude lower than that obtained by spike annealing of arsenic implants in

Experiment 1 (compare Figure 7.6 with Figure 7.5). It can be concluded that soak

annealing is more effective for removing defects than spike annealing in n/p junctions.

Figure 7.7 RBS channeling spectra for the implants shown in Table 7.2.

There are three peaks in the spectra in Fig. 7.7. The lowest energy peak (330-

335KeV) is from a surface oxide. The middle peaks, from 340-360 KeV, represent the

damage of amorphized silicon. In the middle peak, the dimer (dotted curves) creates

greater and deeper damage than the monomer (solid curves) at the same equivalent

arsenic dose. The amorphized silicon peak becomes broader i.e., it extends to lower

energy with increasing dose. The highest energy peak from 365-380 KeV represents the

monomer and the dimer arsenic profiles. The profiles for both species are almost the

same for equivalent doses as shown by the broad peaks at 375 KeV (expanded 10 times).
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Finally, from the above discussions of Experiment 2, it can be concluded that the

dimer arsenic species creates more damage and the diode leakage indicates that more

defects remain after annealing the dimer implant. The damage that remained after

annealing thus correlates with the damage created by the implant.



CHAPTER 8

CONCLUSIONS

In this thesis, n/p shallow junction formation was studied with the influence of various

parameters such as: implantation dose, energy conditions, rapid thermal annealing (RTA)

methods, annealing temperatures and type of species (Pt, Ask, and As2+). Electrical

characterization technique is used for measuring the reverse bias diode leakage current at

+1 Volt bias. The three-point probe method is used for performing the leakage current

density.

It can be concluded that the leakage current densities for the incandescent lamp

method RTA are generally higher than for the arc lamp RTA method. When comparing

the leakage current densities of both phosphorus and arsenic, the overall leakage levels

for the arsenic is lower than that of phosphorus implants by a factor of 5. Transient

Enhanced Diffusion (TED) plays an important role in the leakage levels for arsenic and

phosphorus. TED for arsenic is negligible. For the phosphorus, the higher leakage is

attributed to defects caused by TED. Leakage in phosphorus-based nip junctions show

maXima in the temperature dependence, which indicate that these defects can be annealed

out at sufficiently high temperatures.

These studies show that the arsenic implants are in general favorable for the

formation of nip shallow junctions. Comparison of monomer (As k) and dimer (As2+)

implants show that at equivalent doses and ranges, n/p junctions prepared with dimer

implants have systematically higher leakage, which correlates with the relatively greater

damage produced by dimer implants found by ion scattering measurements.

97



APPENDIX A

RESULTS OF BORON IMPLANTS

Electrical and junction depth data of n/p junctions formed by boron implantation and

spike annealing are presented here.

In Figure A.1, the sheet resistance is plotted versus the junction depth for four

different implant doses. The samples are spike annealed at a ramp rate of 400 °C/sec. In

general, as the junction depth increases, the amount of dose required decreases. However,

the sheet resistance is approximately constant with increase in the junction depth. The

sheet resistance is highest for the energy dose of 2 x 10 14 amp/cm2 and is lowest for the

energy dose of 7 x 10 14 amp/cm2 .

Figure A.1 Sheet resistance versus junction depth for 0.5 KeV boron implants
(spike RTA).

98



99

The samples are spike annealed at a ramp rate of 200 °C/sec and this is done in a

Heatpulse (HP) 8108 furnace in argon ambient. The sheet resistance decreases with

decrease in temperature and decreases with increase in dose. The sheet resistance is in

the range of 700-800 ohms/ ❑ for the high energy dose of boron 1 x 10 15 cm-2 and is in

the range of 1000-1000 ohms/❑ for the low energy dose of boron 2 x 10 14 CM-2.

Figure A.2 Sheet resistance versus peak temperature for 0.5 KeV boron implants
(HP spike RTA).
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As the energy dose increases, the sheet resistance decreases. For a constant energy dose,

the sheet resistance decreases with increase in annealing temperature. This is observed

for all energy doses ranging from low energy dose of boron 1 x 10 15 CM-2 to a high-

energy dose of boron 1 x 10 15 cm-2 . This shows that the sheet resistance depends on the

energy dose as well as the peak annealing temperature. Also, flash lamp annealing at a

rate of 400 °C/sec shows much steeper curves than the heat pulse annealing done at a

ramp rate of 200 °C/sec

Figure A.3 Sheet resistance versus peak temperature for 0.5 KeV boron implants
(vortek spike RTA).
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The Hall carrier density increases with implant dose. For a given dose, it tends to increase

with annealing temperature.

Figure A.4 Hall carrier density versus peak temperature for 0.5 KeV
boron implants (HP spike RTA).
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Hall carrier density is almost constant with increase in annealing temperature. However,

as the implantation dose decreases, the Hall carrier density increases. For a constant

dose, as the temperature increases, the Hall carrier density also increases. Similar results

are observed for both ramp rates for the two spike annealing methods.

Figure A.5 Hall carrier density versus peak temperature for 0.5 KeV boron implants
(Vortek spike RTA).
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The activated fraction of boron increases with the increase in temperature and the

activated fraction increases with the decrease in implantation dose. For a high

implantation dose, the activation fraction is found to be in the range of 0.1 - 0.2 at low

temperatures. For a low implantation dose of boron 2 x 10 14 cm-2 , the activated fraction

of boron is high, in the range of 0.5 - 0.6, approximately.

Figure A.6 Activated fraction versus peak temperature for 0.5 KeV boron implants (HP
Spike RTA).



104

In Figure A.6, the activated fraction (Hall carrier density / Implant dose) is plotted as a

function of the arc lamp spike anneal temperature for four doses (cm -2) as indicated in the

legend. It is conspicuous from the figure that, as the temperature increases, the activated

fraction of boron increases, irrespective of the implant dose. The spike annealing is done

at a ramp rate of 400 °C/sec. In general, the Boron Enhanced Diffusion (BED) increases

with the implant dose. Further, it has been found that the diffusivity had very minimal

influence on the electrical activated fraction.

Figure A.7 Activated fraction versus peak temperature for 0.5 KeV boron implants
(Vortek Spike RTA).



APPENDIX B

RESULTS OF PHOSPHORUS AND ARSENIC IMPLANTS

Electrical and junction depth data of n/p junctions formed by phosphorus implantation

and spike annealing are presented here.

In Figure B.1, the sheet resistance decreases with increase in temperatures

irrespective of the implanted dose. However, for high phosphorus implantation dose, the

sheet resistance is found to be low at low temperatures. It is found to be high at low

doses and at high temperatures. The sheet resistance is found to be almost constant for

arsenic implants (independent of the dose) as the temperature is increased. It can also be

seen from the figure that, even though the dose is high for arsenic, the sheet resistance is

found to be low. The behavior of sheet resistance is almost similar in both spike

annealing methods.

Figure B.1 Sheet resistance versus peak temperature for 1.5KeV phosphorus and 5 KeV
arsenic implants (HP spike RTA).
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Figure B.2 represents the same qualitative behavior as described in the Figure B.1.

However, the temperatures tend to be lower for comparable R.
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Figure B.2 Sheet resistance versus peak temperature for 1.5KeV phosphorus and
arsenic implants (Vortek Spike RTA).
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The activated fraction increases with the increase in temperature irrespective of the

implant dose. However, arsenic showed higher activated fraction than phosphorus for the

same implantation dose and at different energies.

Figure B.3 Activated fraction versus peak temperature for 1.5KeV phosphorus and
5 KeV arsenic implants (HP spike RTA).
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The activated fraction behavior is similar to that observed in Figure B.3. The activated

fraction is almost constant even though there is a decrease in the implanted dose of

phosphorus. In the case of arsenic, the activated fraction is high, and is almost constant

with increase in temperature.

Figure B.4 Activated fraction versus peak temperature for 1.5KeV phosphorus and
5 KeV arsenic implants (Vortek spike RTA).



109

Hall carrier density decreases with the increase in temperature. For a high implant dose,

the Hall carrier density is high and is low for a low implanted dose. Generally, the Hall

carrier density increases with the increase in temperature for a constant dose. This

behavior is observed for both the ramp rates.

Figure B.5 Hall carrier density versus peak temperature for 1.5KeV phosphorus
and 5 KeV arsenic implants (HP Spike RTA).
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The Hall carrier density increases with implant dose. For a given dose, it tends to increase

with annealing temperature.

Figure B.6 Hall carrier density versus peak temperature for 1.5KeV phosphorus
and 5 KeV arsenic implants (Vortek spike RTA).
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The following table illustrates the sample data sheet of the experiments performed at NJIT.

Date Performed 	 •
Name of the supplier
Annealing Details :

Type of Implants

Notes and Comments 	 :

Dot Dia 1 Dia 2 Area (-)Voltmeter Current Current Avg. Current Two Lowest
No, Divisions Divisions Sq.Cm Reading (V) Reading(Amp) Density(dot) Density(chip) Avg. Dots

(Amp/Sq.Cm) (Amp/Sq.Cm)

1 136 138 0.007853563 1 1.07E-08 1.36E-06
2 161 154 0.010375173 1 2.60E-09 2.51E-07 1.34E-05 avg 3and4
3 124 123 0,006382275 1 9.40E-08 1.47E-05
4 135 130 0.007343885 1 8.83E-08 1,20E-05

1 111 113 0.005248681 1.002 4,32E-06 8,23E-04
2 135 140 0,007908799 1.001 4,25E-06 5,37E-04 4.83E-04 avg2 and3
3 136 127 0,007227555 1.002 3.09E-06 4,28E-04
4 118 124 0.006122833 1.001 3,15E-06 5.14E-04

1 135 137 0.007739325 1.001 7,51E-06 9.70E-04 9.95E-04 avg1and2
2 135 136 0.007682834 1,001 7,86E-06 1.02E-03
3 126 124 0.006537941 1.002 4.12E-05 6.30E-03
4 109 125 0,005701449 1,001 2.33E-05 4.09E-03

1 179 171 0,012808489 1 3.39E-08 2.64E-06
2 135 127 0,007174411 1 4.77E-08 6.65E-06 3.39E-06 avg1and4
3 119 120 0,005975537 1 3.50E-08 5,86E-06
4 114 117 0,005581353 1 2,31 E-08 4.14E-06

1 122 125 0,006381439 1.001 3.63E-08 5.69E-06
2 146 138 0.008431031 1.001 2.80E-09 3.32E-07 1.85E-06 avg2and4
3 124 126 0.006537941 1.005 2.77E-08 4.24E-06
4 138 147 0.008488778 1.001 2.86E-08 3.37E-06

(Amp/Sq.Cm) (Amp/Sq.Cm)
1 125 126 0,006590666 1.001 3.01E-09 4.57E-07
2 131 133 0.007290741 1.001 3.39E-09 4.65E-07 4.50E-07 avg1and4
3 124 126 0.006537941 1,001 3.29E-09 5.03E-07
4 134 124 0.006953048 1.001 3.08E-09 4.43E-07

1 120 131 0.006578112 1.001 1.51E-08 2,29E-06
2 132 126 0.006959743 1.001 1.10E-08 1,57E-06 1.93E-06 avg1and2
3 100 100 0.00418455 1.001 1,25E-04 2.99E-02
4 116 120 0.005824893 1.001 1,94E-08 3,33E-06

1 138 140 0,00808455 1.001 6.46E-09 7,99E-07
2 129 127 0,006855548 1.001 2,20E-04 3,21 E-02 9.40E-07 avg1and4
3 120 118 0,005925323 1.001 9,45E-09 1,59E-06
4 131 133 0.007290741 1.001 7,90E-09 1,08E-06

1 161 164 0.011048885 1 3,28E-08 2.97E-06
2 158 155 0,010247963 1 9.50E-09 9.27E-07 9.12E-07 avg2and3
3 162 157 0.010642984 1.001 9.55E-09 8.97E-07
4 150 155 0,009729078 1.001 1.02E-08 1.05E-06

1 144 145 0.00873734 1,001 9.63E-09 1.10E-06 1.44E-06 avg1and2
2 174 172 0.012523521 1,001 2.23E-08 1.78E-06
3 152 159 0,01011322 1.001 2,77E-08 2.74E-06
4 151 146 0.009225259 1.001 2.65E-08 2.87E-06

1 144 138 0.008315537 1 5.87E-09 7.06E-07
2 162 165 0.011185302 1,001 1.39E-08 1.24E-06 9.73E-07 avg1and2
3 173 155 0,01122087 1.001 1.39E-08 1.24E-06
4 168 160 0,01124807 1.002 2,33E-08 2.07E-06



APPENDIX D

C++ PROGRAM FOR LEAKAGE CURRENT DENSITY

The following program evaluates leakage current density of shallow junctions.

#include<iostream.h>
#include<math.h>
#include<stdio.h>

double dia 1 [4], dia2[4], area[4], Vr[4],Curr[4],CurrDens[4], AVgCurrDens;

int chipid;
int i=0;

void bubblesort(double* ptr, int lmt)
{

void order(double* , double*);
int j,k,
for(j=0;j<(lmt-1);j++)

for(k=j +1 ;k<lmt;k++)
order(ptr+j,ptr+k);

}

void order (double * numb1, double* numb2)
{

if(*numb 1 >*numb2)
{

double temp=*numb1;
*numb1=*numb2;

*numb2=temp;
}

1

void main()
{

cout<<"Enter the chipid"<<endl;
cin>>chipid;

for(i=0;i<4;i++)
{

cout<<"Enter the dial of the dot"<<endl;
cin>>dial [i] ;
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cout<<"Enter the dia2 of the dot"<<endl;
cin>>dia2[i];

area[i]=(3.1428571428571428571428571*dial [i]*dia2[i]*0.01)/(137*137*4);

cout<<"Enter the reading from the voltmeter"<<endl;
cin>>vr[i];

cout<<"Enter the reading for the current"<<endl;
cin>>Curr[i];

CurrDens[i]=Curr[i]/area[i];

cout<<endl;
}

bubblesort(CurrDens,4);

AvgCurrDens=(CurrDens[0]+CurrDens[1])/2;

for(i=0;i<4;i++)
{

cout<<"The dial of the dot:\t"<<dial [i]<<endl;

cout<<"The dia2 of the dot:\t"<<dia2[i]<<endl;

cout<<"The area of the dot:\t"<<area[i]<<endl;

cout<<"The reading from the voltmeter:\t"<<vr[i]<<endl;

cout<<"The reading for the current:\t"<<Curr[i]<<endl;

cout<<"The Current Density is :\t"<<CurrDens[i]<<endl;
}

cout<<"The Average Current Density for the "<< chipid<<"
is:\t"<<AvgCunDens,

cout<<endl;
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