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ABSTRACT
FORMATION AND CHARACTERIZATION OF n/p
SHALLOW JUNCTIONS IN SUB-MICRON MOSFETs
by
Sridhar Madishetty
Semiconductors are the burgeoning industries in today’s information age. Silicon based
microelectronic devices are shrinking day-by-day in accord with the scaling dimensions
reported by the International Technology Roadmap for Semiconductors (ITRS). There
have been many semiconductor models and simulation programs constantly keeping pace
with the continuously evolving scaling dimensions, process technology, performance and
cost. Electrical characterization plays a vital role in determining the electrical properties
of materials and device structures. Silicon based Metal Oxide Semiconductor Field
Effect Transistor (MOSFET) forms the basis of Complimentary Metal Oxide
Semiconductor (CMOS) circuits. Today’s aggressive scaling approaches in silicon
Integrated Circuit (IC) technology require ultra shallow junctions in MOSFETs.

The objective of this thesis is to study the leakage current in n/p shallow junctions
and to correlate them with process steps required for the formation of shallow junctions.
The leakage current measurements were performed by utilizing three-point probe
method, which is one of the popular techniques used in the semiconductor industry. Apart
from n/p shallow junctions, experiments have been performed on p/n shallow junctions.
Finally, comparison of the leakage current measurements has been made. The
comparison takes into account the implant variables and post-implant annealing steps that

have been deployed in the fabrication of shallow junctions.
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CHAPTER 1

OVERVIEW

This thesis is divided into seven chapters prefaced by the contents. Each Chapter begins
with an introduction to the chapter prior to the detailed explanation of the sub-topics
inside the chapter and ends with a summary.

The second Chapter deals with the fundamentals of transistors. Various types of
transistors and the principle of operation are explained in a lucid manner.

The third Chapter focuses on processing of formation of shallow junctions. Ion
implantation, which is one of the dominant methods of introducing dopants, is explained
in depth. The various ion implantation process parameters influencing the electronic
properties of silicon are also discussed. Different types of rapid thermal processing,
various types of annealing and thermal budget are some of the interesting topics covered.

The fourth Chapter focuses on the mathematical modeling of ion implantation.
Some of the mathematical models like Stopping Range of Ions in Matter (SRIM),
Transport of Ions in Matter (TRIM) and Rutherford Universal Manipulation Package
(RUMP) have been discussed.

The fifth Chapter describes characterization techniques. There are many
characterization techniques available to the semiconductor industry. Some of these
techniques are discussed.

The experiments performed at NJIT, for this research, are discussed in the sixth
Chapter. The electrical characterization technique using three point probe method is also

discussed.



The seventh Chapter focuses on results and discussion based on our experiments.
Conclusions and recommendations based on these studies are summarized in Chapter 8.

In the appendices, figures relevant to shallow junction device data are discussed
in the thesis. Also, sample experimental data is presented in Appendix C. A simple
program written in C++ for calculation of area and leakage current is included in

Appendix D.



CHAPTER 2

TRANSISTOR FUNDAMENTALS

Transistors are the heart of the microelectronics industry. In day-to-day life, there are
many applications of microelectronics in computers, televisions, mobile phones,
automobiles, home appliances, aircrafts, medicai appliances, space shuttles, et. In
Integrated Circuit (IC) technology, transistors can execute some millions (with >10°
frequency) of instructions per second, which is called flow of binary information.
Historically, transistors replaced vacuum tubes. In its simple operation, transistor can act

as an electronic switch with ON and OFF functions.

2.1 Principle of Operation of Transistors

The following are the different types of transistors:

Bipolar Junction Transistor (BJT).

- Junction Field Effect Transistor (JFET).

- MEtal Semiconductor Field Effect Transistor (MESFET).

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET).

- Metal Insulator Semiconductor Field Effect Transistor (MISFET).

Figure 2.1 shows a simple n-type (JFET) transistor with three terminals - emitter,

base and collector or source, gate and drain. In Figure 2.1, it can be seen that for an n-
type transistor, the substrate is p-type silicon and the source and drain are negatively
charged. The gate is generally doped polysilicon on an insulating layer, such as SiO,,

which is grown or deposited on the substrate. When a positive voltage is applied to the
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Figure 2.2 Schematic line diagram of an npn BJT.

2.3 Field Effect Transistor (FET)
One of the undesirable features of a bipolar transistor is low input impedance with the
base-emitter junction that causes matching impedances between interstage amplifiers.
The Field Effect Transistor (FET) has high input impedance combined with many other
advantages. These devices are useful for controlled switching in digital circuits between
conducting states and insulating states and are widely used in the (IC) industry. Bipolar
transistors use bias current between base and emitter to control conductivity whereas,
FET uses voltage to control an electrostatic field within the transistor. FETs can also be
called as unipolar devices, as the operation of these devices depends on only one type of
carrier i.e., majority carriers. BJT operates by the injection and collection of minority
carriers (action of both electrons and holes). Hence, it is called as a bipolar device [2].

There are two basic types of FETs:

Junction Field Effect Transistor (JFET or FET);

- Metal Insulator Semiconductor Field Effect Transistor (MISFET).









gate with respect to the substrate, then, in order to maintain equilibrium condition,
negative charges are induced in the substrate. A thin depletion region containing mobile
electrons is formed and the current flows from drain to source. As these electrons
continue to be induced electrostatically, the p-channel becomes less and less p-type. Due
to this, the valence band droops down away from the Fermi level. Consequently, there
will be no flow of current from source to drain until the electrons overcome the barrier
(which is the threshold voltage Vr). The threshold voltage is defined as the minimum
voltage required to form a channel and is controlled by the gate. Hence, the positive gate
voltage must always be larger than the threshold voltage so as to form a conducting
channel. This type of transistor that requires a positive voltage to turn on is called as
enhancement mode transistor. Similarly, in some cases, a source to drain current will
flow at zero gate bias and negative potential is required to turn off. These are known as

depletion mode transistors [4].

2.4 Applications of Transistors

The applications of transistors are as follows:

1. Transistors are used in amplifiers, which amplify the ac signal.

2. Transistors are used in oscillators that convert dc into an ac signal.

3. Transistors can be used as variable resistors.

4, Transistors are non-linear devices and are used in microwave mixing, modulation

and detection.
5. Transistors are used for impedance transformation for transforming the output

impedance to a much-reduced value.



6. Transistors are used in switching.
7. Transistors are widely used in the formation of logical blocks in the

microprocessor industry.

2.5 MOS Scaling
Device scaling technologies are improving at a drastic rate from time to time. The
dimensions of the vital parts of the transistors in the chip industry are shrinking
continuously and the circuits are becoming more and more complex, accompanied by
increase in number of transistors per chip. The main objective of the scaling is to
improve the performance of transistors consistently, increase the frequency of operation
and to decrease the rate of power dissipation. The process or methods in which the
dimensional downsizing is achieved is known as scaling theory [5,6]. According to
Moore’s law, the number of transistors doubles every eighteen months. This can be seen
in Figure 2.5. Also, the entire scaling laws can be summarized with a factor called ‘K’ as

shown in Figure 2.6.
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Figure 2.6 Scaling laws as a factor of ‘K’.
Table 2.1 Key Scaling Limits [8]
Feature Limit Reason
Oxide Thickness 2.3 nm Leakage (Igatr)
Junction Depth 30 nm Resistance (Rspg)
Channel Doping V=025V Leakage (Iorr)
SDE under Diffusion 15 nm Resistance (Rinv)
Channel Length 0.06 um Leakage (Iorr)
Gate Length 0.10 um Leakage (Iorr)

2.5.1 Oxide Thickness

The gate oxide scaling plays an important role in controlling short channel effects. In
order to maintain good gate control, the gate oxide thickness should be linear with respect
to the channel length [8]. Figure 2.7 represents the plot between the channel length versus
gate oxide thickness for Intel’s process technology over the past 25 years and the points

represent the technology development for every three years [8]. It is observed that the
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channel length is 45 times the gate oxide thickness. The gate oxide thickness plays a vital

role in tunneling of carriers. Direct tunneling occurs due to the decrease in the oxide

thickness.
60
n
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Figure 2.7 Channel length divided by gate oxide versus channel length [8].

2.5.2 Junction Depth

The following Table 2.2 gives the shallow Source Drain Extension (SDE) junction
requirements based on the 2001 ITRS roadmap [9]. Shallow junctions are required while
at the same time, the contact resistance should be low, sheet resistance should also be low
and the junction depth should be deep enough for silicidation [10]. In Table 2.2, the
blocks in white (no blocks) indicate that solutions exist, light gray blocks indicate that
solutions are known and bold blocks indicate that solutions are not known. The sheet
resistance (Rs), vertical junction depth (X;) and lateral abruptness are given in Table 2.2
for each technology node. For the 45-65nm node, the sheet resistance is 760-830 /0,
the junction depth is around 7-15 nm and abruptness is 2.0-2.8 nm per decade. There are
a number of results related to the junction depth and related parameters, which are

explained in the 7th Chapter.
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R. = Mt‘lﬂh Le fﬁ .
W 2,

(2.1)
where,

Rc = Contact resistance.

p. = Contact resistivity.

ps = Sheet resistance.

Lc = Length of metallization.

W = Width of the contact.

Summary
The Chapter above gives a basic introduction to transistors. The state of the art in
process technology and MOS device scaling is dealt in a brief manner. The fundamental
issues related to feature size, junction depth, gate oxide thickness etc., can be known for
the present as well as for the future shrinking regime. The ITRS roadmap gives the

overview of the scaling phenomena.



CHAPTER 3

SHALLOW JUNCTION PROCESS

The formation of shallow junctions has become an extremely critical step in the
fabrication of MOSFETs. For a sub-micron CMOS transistor, there are two extreme
features, one is the control of short channel effect (SCE) and the other is to have low
sheet resistance. This can only be achieved by formation of shallow junctions in the
MOSFET. Also, one of the important characteristic features of these devices is that they
reduce junction leakage across the channel.

Shallow junctions or ultra shallow junctions are fabricated by many techniques
such as, solid phase diffusion, epitaxial doping method, plasma doping method, laser
annealing, thermal annealing etc. However, in shallow junction fabrication, ion
implantation followed by rapid thermal annealing, are the conventional techniques used
for better controllability, reproducibility and dopant uniformity. During implantation
technique, the ions are bombarded onto the substrate with certain acceleration energies.
To obtain lower or reduced projected distribution range, the energies should be low. In
order to eschew thermal diffusion, sometimes, post annealing is done. High temperature
annealing at a rapid rate i.e., rapid thermal annealing is preferred to achieve low sheet

resistance [13].

3.1 Ion Implantation

This is one of the predominant methods used for introducing the dopant species into the

semiconductor substrate, to a precise depth below the surface. The basic idea of doping

15
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semiconductors by the bombardment of ions was first studied by William Shockley [14]
in 1954 at Bell Laboratories. The basic concept in ion implantation is the bombardment
of energetic species into the crystal lattice of the semiconductor surface. These energetic
species have controllable concentrations of n-type and p-type dopants [15]. These
energetic ions loose their energy by two processes, one is by undergoing elastic or
nuclear collisions and the other by undergoing inelastic collisions or electronic collision
processes [16].

Generally, semiconductors follow elastic collisions and cause lattice damage or
disorder by direct displacement of atoms inside the crystal. In other words, whenever
high energy ions enters into the crystal lattice, they knock off the target atoms located in
the lattice position and thereby create a vacancies or interstitials or a combination of these
defects also called Frenkel Pairs. These defects are mobile and are the cause for dynamic
annealing and annihilation damage [17]. The damage caused depends on many
parameters such as ion arrival rate, ion energies, target temperatures and collision details
[18]. Finally, after ion implantation there can be substantial damage to the crystallinity
due to collisions and is the cause for point defect formation. Also, the dopants introduced
need to be electrically activated and transferred to substitutional sites during annealing

treatment.

3.1.1 Merits and Demerits of Ion Implantation
Merits:
- Wide choice of Masking Materials.

- Doses can vary from short to long ranges ( 10'! - 10" /cm?).
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- Control of doses, profile depths and area uniformity is very accurate and
precise.

- Effective for controlling the threshold voltage.

- Good reproducibility.

- Process cleanliness.

Demerits:

- Damage of crystallinity.

- Annealing of the damage created during implantation leads to transient
enhanced diffusion (TED) [12]. Hence, difficulty in achieving shallow
junctions.

- In some cases, the insulating layer also gets charged; in other words, this
technique is prone to junction passivation.

- This technique needs very expensive and complicated equipment.

3.1.2 Typical Ion Implanter

A typical ion implanter is as shown in Figure 3.1 [19]. It consists of an ionization
chamber, which is the source of ions to be implanted, an accelerator, for accelerating the
ions electrostatically to higher energies, target compartment, where the material that
desires implantation is placed for the impingement of ions. The amount of ions to be
impinged onto the target is known as dose and is given as per the requirements. The
amount of dose is controlled by the supply of current. Generally, this current is very
small and is typically in microamperes. The depth profile of these ions relies on ion
energies, ion species and also on the amount of dose. These ion energies may be from

KeV to MeV ranges.






19

Range (R)
R
et} -
Projected Range (Rp)
Vacuum Silicon

Figure 3.2 Schematic diagram of range and projected range of the ions [21].

Figure 3.3 shows the implant profiles of various dopant impurity species.
Projected range (um) is shown on the abscissa and concentration (cm™) is shown on the
ordinate axis. These profiles are formed when the dopant ions are accelerated at 200
KeV implant energies. Out of antimony (Sb = 122amu), arsenic (As = 74amu),
phosphorus (P = 3lamu) and boron (B = 1lamu), the heaviest is antimony and the
lightest is boron. The peak of heavier ions is found to be much narrower than that
compared to lighter ions. Antimony has the narrower peak and boron has the broader
peak. Hence, much shallower depths can be obtained by implanting antimony ions. In
generalized terms, it can be said that the heavier the ions, the shallower will be the depths
obtained. It is also vital to mention that these ion profiles undergo approximately

Gaussian distribution.
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3.1.3.3 Tilt and Twist Angles. Tilt and twist angles are very important, as they
have direct effect on channeling. Channeling occurs when the ions are bombarded
parallel to the crystallographic direction of the target material during ion implantation.
Hence, in order to avoid the effect of channeling, the trajectory of the ions needs to be
considered. The ions are therefore bombarded at an optimum angle to avoid channeling
and twist of wafer is required to obtain uniform distribution of the ions. This optimum
angle is also called the critical angle [23] of dopant (boron, phosphorus, arsenic) in

silicon and is a function of energy. Typically, for large ions, the critical tilt angle is 7°

off the wafer axis and the rotation or twist of the wafer is around 30° approximately [24].

3.1.3.4 Implant Energies. The implant energies mainly depend on the atomic species,
dose and range needed to form a shallow junction. The typical energies include KeV to
MeV range and most of the ion implanters use energies ranging from 30 KeV to 200
MeV range [21]. In some cases, the ion implantation can be done at lower energies by
using doubly charged species. It is known that the higher the energies, the deeper will be
the penetration of the ions. Figure 3.4 illustrates the dependence of the ion depth or
trajectories on implantation energies. Also, lower depth profiles can be obtained with
lower energies and high concentrations. In order to obtain higher depths, higher energies
and low concentrations are required. This is illustrated in Fig 3.4. For example, for boron

implantation into silicon, a depth of 0.6um is obtained for implantation energy of 100

KeV.
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electrically activates the dopant atoms, includes heating to a temperature of 900 °C and

for a time of 30 minutes. This simple method of heating to high temperature is also
called Furnace Annealing. In order to meet the challenges for the formation of shallow
junctions, diffusion of dopants should be controlled. Hence, other than the conventional
form of annealing, the silicon samples after implantation are heated to a certain anneal
temperature for a brief time period of ten seconds or may be less in some cases by a
method called Rapid Thermal Processing (RTP) [2].

There are many types of annealing techniques such as, laser annealing, photo-
assisted annealing and solid phase epitaxial annealing. It is important to note that in the
1960’s, AT&T used horizontal annealing furnaces. A typical furnace of this kind
consists of a furnace box, loading deck, heating elements, thermocouples etc. Today,
these furnaces are rarely used by the silicon industry. Instead they are modified and
replaced by vertical furnaces. The vertical furnace for rapid thermal processing is as
shown in Figure 3.5 [27]. The wafer is placed inside the bell jar onto a horizontal base by
means of an elevator. Then the wafer is heated in this bell jar with a vertical temperature
gradient and the temperature is controlled by adjusting the elevator height [27]. For
measuring the wafer radiance and temperature, pyrometers are used. These furnaces have

better process control, particle performance and possess fully automated capabilities [26].
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Figure 3.5 Typical Bell Jar furnace with vertical wafer movement [27].

3.3 Rapid Thermal Processing (RTP)
As the name suggests, Rapid Thermal Processing can be defined as fast heating and
cooling of wafers. It can also be defined as cold wall and control ambient processing. An
example of this type is shown in Figure 3.6. When compared to the conventional process,
RTP is not done in thermal equilibrium with the surrounding environment [28]. Soak
annealing, spike annealing, impulse annealing, flash annealing and laser annealing are the
various types of RTP presently used in the industry. Soak annealing is the conventional
RTP process where the samples are heated to a certain temperature and soaked for a

period of time and then cooled.
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3.3.1 Spike Annealing

In this type of annealing, the wafer is heated to a sudden high temperature and then
cooled immediately. Heating of the wafers can be done by various methods i.e., by using
arc lamps or by using incandescent lamps, etc., as shown in Figures 3.5 and 3.6. In case
of heating by incandescent lamps, the lamps are arranged in the form of an array on both
sides of the oven as shown in Figure 3.6(5). Pyrometers are used for measuring the
temperature and emissivity of the wafers. As the wafer is surrounded by the heating
filaments, the wafer gets heated uniformly by radiation [29,30]. The main aim of spike
annealing is to avoid thermally activated diffusion while maintaining a certain

temperature to achieve dopant activation.

Incandescent Lamps Reflector fmm——————
Wafer——
Arc

Absorbing Lamp
Chamber

.

Pwe o [ et g™ -
=0 Infrared Filter Imaging Detector— :‘_J

Lamp Sensor ¢  Photo Diode Detector

(a) Incandescent Lamp (b) Arc Lamp

Figure 3.6 Spike annealing by (a) Incandescent lamps and (b) Arc lamp method [27].

During spike annealing, there should be minimal dwell time at peak temperature
[31]. The effective annealing time and the sharpness of spike is illustrated in Figure 3.7.

Figures 3.7(a) and (b) illustrate the actual time and the cumulative time at an activation
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energy of 5eV for different spiking methods respectively. The effective annealing time
taken by the arc lamp method is 0.27 sec, for dual incandescent method it is 0.86 sec, for
furnace bell jar method it is 1.64 seconds and for the single incandescent method, the
value is 1.75 seconds. The cumulative time for the arc lamp is very much less compared
to the other spiking methods. Also the curves for the arc lamp spike annealing are sharp
and narrow when compared with the other curves. Mathematical equations involved in
spike annealing are as follows:
Activated process variable is given by,

r (t) =1, exp [-Ea/ k T(1)] 2.1)
Normalization prefactor is given by,

To = exp [-Ea/ k Tmax] 2.2)

Effective annealing time is given by,

t= [dr’r, exp [-Ea/k T(t)] 2.3)
where,
t’ = Cumulative time in seconds,
Ea=  Activation energy in electon-volts,
T= Temperature in °C,

Twmax = Maximum temperature in °C.
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Figure 3.7 (a) Temperature versus actual time and (b) temperature versus cumulative
time for various methods of spike annealing [32].

3.3.2 Impulse Annealing

This has been termed as a special case of conventional spike annealing using the arc lamp
method [33]. In this method, the response time for heating is faster than the wafer [34].
When a graph is plotted between temperature and time for spike annealing and impulse
annealing respectively, the peak of the impulse curve is pointed and the spike anneal
curves are rounded as illustrated in Figure 3.8. Reduction in thermal budget is possible
with this type of annealing. This process has been tested for its excellent repeatability

and controllability of temperature.
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Figure 3.8 Temperature versus time (A and C are impulse annealed at 400 °C/sec and
250 °C/sec respectively and B is spike annealed) [34].

3.3.3 Flash Annealing

This is one of the most promising techniques for the formation of ultra shallow junctions.
In this technique, the bulk of the wafer is heated to an intermediate temperature (T;) and
the device side of the wafer is heated to a higher temperature, by means of a flash or a
pulse of intense light for a short time [35] as illustrated in Figure 3.9. Generally, this
pulse of light will be of milliseconds duration [33]. The flash causes the thin layer to heat
up to a high temperature. However, the bulk of the wafer is not at the same (high)
temperature as that of the upper active layer. Thereby, it forms a heat sink. Thus, as soon
as the flash lamp is turned off, the device layer starts cooling rapidly. The temperature of
the bulk and the upper device layer are carefully selected so as to form a heat sink and
will cause a rapid cooling of the device layer. Due to this, there will be a very high
electrical activation with little or no dopant diffusion. The goal of the RTP is to increase
the sharpness of the peak temperature profile and to decrease the effective time, and this

can be achieved only by using lamps with low thermal mass. Thus, the technology of
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using continuous arc lamps has been developed for heating the bulk of the wafer to a
certain intermediate temperature. The radiation from the flash lamps are then incident on
the thin layer of the device as an additional energy source. This is illustrated in Figure 3.9
[35]. Generally, the values of T; are in the range of 600 — 800 ‘C and Twmax are in the

range of 1100 — 1350 °C.

Fast ramp by Rapid cooling by radiation
flash heating and
\ / thermal conduction to bulk
)
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Figure 3.9 Illustration of the thermal profile during flash type of annealing for device
layer formation [35].

3.3.4 Laser Annealing
Laser annealing, compared to that of conventional RTA techniques, offers much steeper
profiles and high peak concentrations [36]. During this process, the surface layer of the
wafer is heated, as the response time of heat source is faster than the wafer [33].

The comparison of all types of annealing is done in Figure 3.10. In the case of
spike annealing, the thermal profile is more rounded and the wafer response is similar to
the heat source. This type of annealing is currently used for production. The thermal

profile is peaked in the case of impulse annealing and the heat source is faster than the
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wafer and the bulk is at uniform temperature. The thermal profile is sharper in laser
annealing when compared to all the other annealing techniques and the heat source has a
higher response time than the wafer. The laser annealing method is considered to be an
experimental technique for research purposes. In the case of flash assisted annealing,
initially the bulk is heated and then after certain intermediate temperature, flash lamps are
turned on so that the surface gets annealed. This technique is under development and

many experiments are being done for improving this method.

Spike Impulse Flash Assist Laser

Tempcraturce(T)

Temperatire(T)
Temperamre(T)
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Figure 3.10 Illustration of the different temperature curves with respect to time and
wafer depth for various annealing techniques[35].

3.3.5 Epitaxy
Epitaxy is the process of film growth over crystalline substrate in such a way that the
atomic arrangement of the film bears a crystallographic relationship to the atomic

arrangement of the substrate. Epitaxy is performed at temperatures below the melting
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amorphous layer, they are subjected to higher temperatures for electrical activation.
Hence, the optimum temperature must be chosen to be in between those corresponding to
the formation of amorphous regions and crystalline damage region. Even though the
crystalline defects beyond the amorphous layer can be eliminated during annealing, some
of them form extended defects giving rise to defects such as dislocations and stacking

faults.

3.4 Oxidation

In this process, silicon surface is made to react with oxygen to form a continuous layer of
silicon dioxide (SiO;). This layer of thin film of oxides can be used for many
applications. These include:

(a) Isolation of devices from one another.

(b) Insulation between the metallization pattern interconnecting devices in the circuit.

(c) Use as a gate dielectric in MOS devices.

(d) Mask against implantation or diffusion.

(e) Passivation (passivation minimizes the electrical activity of the device surface and

also serves as a protective layer against environmental contamination).
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Consequently, the oxidation part of the silicon surface is consumed. The oxidation rate
can be controlled by the chemical reaction rate between the film of silicon dioxide and
the underlying silicon substrate [39]. Sometimes, in IC manufacturing, only some part of
the silicon surface may be needed to be oxidized rather than the entire wafer surface. For

such applications, LOCOS (LOCal Oxidation of Silicon) is used.

3.5 Transient Enhanced Diffusion
During annealing, the dopants undergo enhanced diffusion because of excess silicon
interstitials that exist in the silicon crystal. These interstitials are also formed due to
residual implantation damage. This enhanced diffusion is present for a transient period
until the damage is annealed out. Hence the name of this type of diffusion is called
Transient Enhanced Diffusion (TED). This is also called as anomalous diffusion because
of the diffusion behaviour of the profiles. In Figure 3.13, it is seen that the implant
species of boron profiles that were annealed at low temperature diffuse more than the
profiles that were annealed at high temperature. TED has become one of the dominant
issues for producing shallow junctions. Essentially, reverse short channel effects can also

be reduced by avoiding TED [21].
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Figure 3.13 Diffusion profile of boron implants illustrating the TED effects [21].

TED depends on various process variables such as implant parameters (implant
energies, dose, dose rate, annealing), evolution of point defects, annealing parameters
(ramp up rates / thermal budget).

TED can thus be reduced or minimized by controlling the above factors. It is not
possible here to describe in detail influence of all the process parameters on TED since it
is beyond the scope of this thesis. Hence, only a few of them are considered. The role of
annealing and implant variables is the principal consideration for reducing TED. Figure
3.14 illustrates the effect of ramp-up rates, time and temperature on the formation of
shallow junctions by spike annealing. A Secondary Ion Mass Spectroscopy (SIMS)
profile for 1 KeV boron implant spike annealed at a peak temperature of 1050°C with

different ramp up rates of 75 / 150 / 230 °C/s and at a similar cooling rate is presented in
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3.6 Lattice Defects
Any deviation from an orderly array of lattice points can be termed as defect or
imperfection. If the deviatidn lies in the localized vicinity of only few atoms, then it is
called a point defect or point imperfection. The extension of this point defect through

microscopic regions of the crystal leads to lattice imperfection [41].

3.6.1 Point Defects
Any non-silicon atom incorporated into the lattice at either a substitutional or interstitial
site is called point defect. If only vacancies are present, then the defects are termed as
Schottky defects and if there are vacancies and interstial sites, then these defects are
called as Frenkel pairs or Frenkel defects.

Both vacancies and self-interstitials are present in crystalline silicon and these
undergo self and impurity diffusion processes. This was studied by Seeger and Chikk in
1968 [26]. Furthermore, investigating the formation of these intrinsic point defects is

done thermodynamically according to the Gibbs Free Energy (Gy) of the silicon material:

Gy = Hy-T.Sx 3.1

C1 (eq) = C(). Exp (-GI /k. T) (32)

Cyeqy= Co. Exp (-Gy / k. T) (3.3)

D =Dr1 + D, = (@1 + 1). D].CI/CS + (Qv+ 1).DV.CV/ Cs (34)

where,

x = I, V (I =interstitials and v= vaccancies),

Ds.ir = Diffusivity of self interstitial mechanism,
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Dy = Diffusivity of interstitials,

D, = Diffisivity of vacancies and

O and O, are the correlation factors of diffusion mechanisms involved in interstitial and

vacancy mechanisms.

3.6.2 Extended Lattice Defects

These are also called as lattice imperfections and can be classified as follows:
- Line defects,
- Surface defects/Planar defects,
- Volume defects.

Line defects are two dimensional lattice imperfections where, the defect
propagates in the form of lines in the crystallographic planes of a crystal. Line defects
can also be called dislocations. Dislocations play a major role in the electrical and
mechanical properties of semiconductors. The positive aspect of dislocation is that it acts
as pores, absorbing the dopant atoms and through these pores, the dopants travel into the
substrate. The disadvantage is that the dopants tend to segregate in these dislocations.
Such impurity segregation leads to the formation of dangling bonds that severely affects
the electrical activity of the devices [42]. The most common dislocations are edge

dislocations and screw dislocations.
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Dopant diffusion may occur through a myriad number of mechanisms depending
upon the atomic interactions between the dopant atoms and the silicon lattice. Among
these mechanisms, the most important are interstitial mechanism and vacancy
mechanism. Generally, diffusion takes place by interstitial mechanism for boron and
phosphorous. For antimony, diffusion occurs by a vacancy mechanism and arsenic
diffuses via both vacancy and interstitial mechanisms. These mechanisms are very much
influenced by point defects.

Diffusivity of dopants is given by the following basic equation that is also known
as Fick’s Law:

D (T) =Doexp (-E./ k T) (3.5)
where,
Dg = Diffusion Constant,
E, = Activation Energy,
k = Boltzmann Constant and
T = Temperature.
The activation energy is the energy in electron volts required to displace a

crystalline atom by the impurity atom [46].

3.8 Thermal Budget
The amount of time, the wafer has been exposed to a particular temperature during the
entire process is called as thermal budget. It can also be defined as the area under the
time-temperature dependent curves or the time-diffusivity curves [47]. In order to meet

the challenges of junction scaling, most of the silicon related industries are concentrating
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L= /Dt 3.6)
D = diffusivity in the solid,
T = processing time and
L = diffusion length.

Summary

This chapter deals with processes for the formation of shallow junctions. Ion
implantation, annealing, rapid thermal processing, transient enhanced diffusion, defects,
diffusion and the reduction in thermal budget have been discussed. Thermal budget is one

of the critical technical drivers for shallow junction performance.



CHAPTER 4

MATHEMATICAL MODELS OF ION IMPLANTATION

Implantation has become the primary process for introducing dopant atoms for formation
of shallow junctions. Low implantation energies and low doses have been found to be
practical for forming very shallow layers [49]. However, parameters such as
implantation damage, annealing conditions or rapid thermal annealing and thermal
budget need to be investigated. Process limitations and optimizations can be evaluated,
for making the shallow junction fabrication more economical and viable. This will also
lead to breakthroughs in models and simulation for shallow junction formation. The
main objective of these models is to reduce the thermal budgets, the number of materials
processing steps for process development and to bring down the manufacturing costs.
Basically, models can be classified as low energy models, two and three-dimensional
models and physically based models. Some of the current models include, Stopping
Range of Ions in Matter (SRIM), Transport of Ions in Matter (TRIM) and Monte Carlo
Simulation Models. These models are essentially function of implant parameters such as
dose, energy, tilt and rotation angles. In this chapter, SRIM and TRIM has been
discussed. These two models depend on the energy loss mechanisms [50] such as

electronic and nuclear stopping powers.

4.1 Stopping Range of Ions in Matter (SRIM)

Basically, SRIM works on the principle of the theory of ion stopping using a quantum

mechanical treatment of ion-atom collisions [S1]. According to this theory, whenever an
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ion collides with a solid target, it transfers its energy by two types of collisions. One is
known as electronic collision and the other is known as nuclear collision. This also
depends on the type of energetic ions used for implantation. If the mass of the ions are
light (for example, H* and He™ and B*) and when they are impinged on to the substrate
with high energy (= KeV range ), then these ions will be stopped by means of electronic
stopping. If the mass of the ions are heavier (for example, As®) and are bombarded on to
the target material at low energy (< KeV range), then they undergo nuclear collisions or

nuclear stopping. This is illustrated in the Figure 4.1 [21].

r Semiconductor Surface
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Figure 4.1 Implantation of ions into the semiconductor surface [21].

In the case of nuclear stopping, the ions collide with the lattice ions, thereby
displacing the lattice ion and create either a vacancy or an interstitial. This is
characterized by an energy loss per unit length and is mathematically represented as
‘Sh(E)’[21]. Similarly, the implanted ion also looses its energy due to the excitation
(emission of electrons to a higher state) and this energy loss per unit length due to

electronic stopping is mathematically represented as ‘Sc(E)’. These mechanisms of
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collisions are as shown in Figure 4.2. As a matter of fact, only nuclear collisions tend to
damage the crystallinity. The total energy loss per unit length, dE / dx, is given by the

sum of the nuclear and electronic losses:

dE
- = -N(Sn+Se) 4.1)
dx

where,

E = Energy of the ion at any point along the trajectory,

x = Length,

N = Density of the target atoms per unit volume,

S, = Energy loss due to nuclear collision and

Se = Energy loss due to electronic collision.
Range ‘R’ of the projectile is given by:

R EO
R= f dx = 1N j dE | Sn(E) + Se(E) (4.2)
0 0

The coulomb scattering potential ‘V(r)’ is given by the following formula for the nuclear

stopping power [21]:

V(r) = =--m- exp (-r/ a) 4.3)






Table 4.1 Critical Energy Corresponding to Stopping Power of Various Ions [21]

50

Impurity atom E; keV E; keV
B into Si 3 17
P into Si 17 140
As into Si 73 800
06 T T T
g L] £
1 dxin dx (e .

Nuclear Electronic

Figure 4.3 Rate of energy loss dE/dx vs. (Energy)" [21].

The total stopping power of the various ions are given in the form of a graph in

Figure 4.4. The critical energy where the nuclear and electronic stopping powers are

equal is approximately known. For (a) boron, it is equal to 3 KeV, (b) phosphorus, it is

equal to 140 KeV and (c) both arsenic and antimony, the critical energy should be more

than 500 KeV approximately [21]. This is shown in Figure 4.3 and is summarized in

Table 4.1.
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4.3 Rutherford Universal Manipulation Package (RUMP)
This software is used for the analysis of Rutherford Back Scattering (RBS) and Electron
Recoil Detection (ERD). Historically, RUMP was converted from FORTRAN into a ‘C’
language and thus, this package became one of the most powerful simulation packages
[53] for calculating the stopping powers for all elements in a given energy range. The
calculations used for the stopping powers are based on the polynomial representation and
the principle of Bragg’s Law. These polynomial fits are compared with those of the
analytical models to get a fair optimization of the energy ranges. As these computation
tools are expensive, the optimization is performed only once for each ion-target pair.
Recently, Chu, Mayer and Nicolet implemented a sixth-order polynomial fit for
representing the stopping power [53]. These calculations were simple and yet improved
the fit precision by extending the energy range. For example, in the case of silicon, the
tables for stopping power extended from 0.18MeV to 3.45MeV range and the maximum
deviation decreased to a value of 0.24 percent [52]. It is an interesting phenomena that
both RBS and ERD data analyses are to be performed separately with specific stopping
power tables for each. The tables are automatically loaded during the simulation runs.
The following Figure 4.5 shows a measured RBS spectrum (thick line) and the RUMP
simulations are indicated by the dashed line. The sample is a silicon wafer which was
first deposited with diamond like carbon (DLC) by using a CVD technique and then a
thin amorphous silicon film was deposited by Molecular Beam Epitaxy (MBE) at room

temperature [54]. The thickness of the DLC is 310A or 1.55 x 10" Si atoms/sq.cm. [54].






CHAPTER 5

CHARACTERIZATION TECHNIQUES

Semiconductors form the backbone of today’s microelectronic devices. Characterization
is one of the key issues to be considered for the advancement of this technology. From
the material characterization techniques, topographical properties, defects, structural
properties, compositional properties and luminescent properties of the material can be
known. There are several characterization techniques that are available depending upon
the applications in manufacturing and process development. The detailed list of material
and device characterization techniques can be mainly classified into three types namely,
optical  characterization, electrical  characterization and  physical/chemical
characterization. These techniques have been summarized in Table 35.1.
Physical/chemical characterization techniques provide visual and structural data,
compositional and defect parameters etc. Some of these techniques also provide
information in two as well as in three-dimension [55]. The main asset of this technique is
that the impurities can be clearly discerned by the characteristic energies and wavelengths
[55]. Optical characterization techniques are used for measuring layer thickness, physical
dimensions, impurity concentrations, optical properties, defect identification etc. For
device diagnostics, electrical characterization is the most widely used method. This
method is used for measuring the resistivity, mobility, contact resistance, channel length,
carrier concentration, barrier height, junction depth, leakage current, lifetime etc. Only a

few of the techniques have been discussed in this chapter.
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Table 5.1 Different Types of Characterization Techniques
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Physical, Chemical and Optical Electrical
Compositional technique Characterization Characterization
Scanning Tunneling Microscopy Optical Microscopy. | Current- Voltage
(STM). Technique.
Atomic Force Microscopy (AFM). Ellipsometry. Capacitance-Voltage

Technique.
Ballistic Electron Emission Near Field Scanning | Spectral Responsivity.
Microscopy (BEEM). Optical

Microscopy (NSOM).

Chemical Force Microscopy (CFM). | Optical Microscopy. | Hall Effect.
Scanning Chemical Potential Raman Spectroscopy. | Deep Level Transient
Microscopy (SCPM). Spectroscopy.
Interfacial force Microscopy (IFM). Van der Pauw’s

Method
Magnetic Resonance Force Scanning Tunneling. | Scanning Resistance
Microscopy (MRFM). Optical Microscopy. | Profilometry (SRP).
Nano Nuclear Magnetic Resonance Raman Spectroscopy. | Four-Point Probe
(Nano-NMR). Method.
Scanning Capacitance Microscopy Scanning Resistance
(SCM). Technique (SRT).
Scanning Ion Conductance Fourier Transform Reverse Bias Diode
Microscopy (SICM). Infrared (FTIR). Leakage.

Scanning Thermal Microscopy
(SThM).

Carrier Lifetime.

STOM: Scanning Tunneling Optical
Microscopy

Nano- Spreading Resistance
Profilomety (Nano-SRP).

Acoustic Microscopy.

X-ray Photoelectric Spectroscopy
(XPS).

X-ray Diffractometry.

Scanning Chemical Potential
Microscopy (SCPM).

Secondary Ion Mass Spectroscopy
(SIMS).

Rutherford Back Scattering (RBS).




Some of the characterization techniques described are as follows:
Four Point Probe Method.

Van der Pauw Method.

Hall Effect Measurements.

Deep Level Transient Spectroscopy (DLTS).

Secondary Ion Mass Spectroscopy (SIMS).

Rutherford Back Scattering (RBS).

Scanning Electron Microscopy (SEM).

Spreading Resistance Profilometry.

Capacitance — Voltage (C-V) Measurements.

Reverse Bias Diode Leakage Measurements.
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Before describing the above characterization techniques, it is necessary to show

Figure 5.1 shows a MOSFET with some of the important device parameters.

Channel Length, Width
Oxide Thickness Gate Resistance

Oxide Charge Contact Resistance

Series Resistance

Doping Mobility
Concentration Lifetime

Junction Depth

P Resistivity
Deep Level Impurities

Figure 5.1 MOSFET with various device parameters [55].

the device parameters that can be obtained to examine by these measurement techniques.
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In the four-point probe method, the outermost electrodes are used for current
injection and current collection. The innermost electrodes are used for measuring the
voltage drop. One of the important aspects of four-point probe method is that
measurement errors due to contact resistance between the electrodes and the surface can
be eliminated [57]. Resistivity of any semiconductor material can be measured by this
method. This method is also used for measuring the conductivity of the wafer by using
the rectification principle. The mathematical expression for the resistivity is shown
below.

For a bulk sample, (t >> s), the resitivity is given by the following formula:

p = emmme——— (5°2)

Tt \Y%
p= - X - (53)
In2 I
= 4.532t (V) (5.4)
= 4.532 (V/T) Ohms/O (5.5)

where,

t = sample thickness and s = probe spacing.

5.2 Van der Pauw Method
This method measures the sheet resistance (Rs) for the sheets of actual boundary shapes.
As the samples may not always be square or rectangular, the probe arrangement, in Fig.

5.3, is the good option for measurements. The most common geometry is of the square
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5.3 Hall Effect Measurements
Hall Effect is the technique for deriving useful semiconductor properties like carrier type
in p or n-type materials, majority carrier concentration, majority carrier mobility, Hall |
voltage and Hall coefficient. Hall effect works on the principle of Lorentz force. “When
an electron moves in the direction perpendicular to the applied magnetic field, it
experiences a force acting normal to both the directions and moves in the direction of the
force.”[59]. Figure 5.4 represents an n-type semiconductor with majority carriers,
electrons, of bulk density ‘n’ and constant current ‘I ¢ flowing from left to right and

excess charge is created on the side of the sample thereby resulting in Hall voltage (Vg).

Vu=IB/qnd, 5.7
where,
I = Current,
B = Magnetic Field,
d = Sample thickness and
q = Free carrier charge
The sheet density is given by:
ngs=nd, (5.8)
ns=1B/q|V4, (5.9)

The Hall mobility is given by:

u =|Vil/RsIB=1/(qnsRy), (5.10)
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Figure 5.5 Standard DLTS (a) Pulse (b) Voltage signal [61].

5.5 Secondary Ion Mass Spectroscopy (SIMS)
SIMS is widely used in detecting dopants and impurities within a junction. This
technique is used by ion implanters for determining the dose and shape of the dopant
profile [57]. This technique is dependent on the application of sputtering phenomena.
The incident ions with high energies are bombarded onto the surface, and thereby,
transfer some of the energies into the lattice atoms. These incident ions are also called as
primary ions and they interact with the sample or surface that is to be measured. Initially,
the upper layer of the sample gets amorphized and some of the ions get implanted due to
atomic collisions within the solid, thus releasing some of the secondary ions which can be

analyzed mass spectrometrically. Figure 5.6 represents the basic principle of this






ITon
Source

Primary
Ions

Energy Mass
Analyzer =1 Spectrometer
SecI:r:‘:ary Detector

Sample

=P

Mass Spectrum

Depth Profile

Figure 5.7 Flowchart explaining the SIMS technique [62].

5.5.1 Merits and Demerits of SIMS

Merits

64

- This can be used for wide range of materials including organic, inorganic

compounds, ceramics, polymers, biological samples, solid state materials etc.

- The sensitivity of this analysis is very high and range from ppm to ppb.

- SIMS has the ability to distinguish isotopes.

- High spatial resolution.

Demerits

- This is a destructive technique.

- The equipment is highly complex.

- The sensitivity is more for boron in silicon than for the rest of the impurities.
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5.6 Rutherford Back Scattering (RBS)

Lord Ernest Rutherford first introduced this technique in 1911. This is the most widely
used technique in the semiconductor industry for surface analysis. This is because the
scattered ions come out from the surface as well as from the inner or sub regions. This
technique works on the simple principle of backscattering of ions from a solid surface.
Beams of high energetic ions are incident on the solid surface and these energetic ions
elastically collide with the lattice atoms. Some ions are absorbed and some of them are
back scattered into a suitable detector, which measures the number of back-scattered
particles and their energy [63]. Typically He+ or He++ monoenergetic ions is used as the
incident beam (1-3MeV) as this passes very close to the nucleus of an atom in the solid
and they are back-scattered through a large angle and leave the target [57].

The back scattering of the ions mainly depends on the mass of the target element.
If the target atoms are heavy, then the back-scattering energy will be high almost close to
the incident energy [64]. If the target atoms are light, then the energy back scattered is
very low. Hence they need to be scattered in the forward direction. Typical examples
include hydrogen. The thickness of RBS in terms of density is given by the following
formula:

Tres - Dras = (atom / cm®) = Treal - Dreat (5.11)

where,
Tres = thickness obtained by RBS,
Drgs = Density assumed during the calculation of RBS thickness,

Trea = actual film thickness and Dge, = actual density.
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This is useful when the density assumed is different from the actual density of the

film [65]. The RBS spectrum for the Si/ DLC / Si is given in Figure 4.5 in chapter four.

5.6.1 Merits and Demerits of RBS
Merits
- This technique is widely used for measuring the thickness, nature, amount and
distribution of impurities in thin films [57].
- RBS associated with channeling is used for locating the impurity atom
position in a single crystal [63].
- The primary use of this technique is in the quantitative depth profiling of
semiconductors, polymers, catalysts, superconductors etc.
- Good reproducibility.
Demerits
- It has limited sensitivity.

- Cost of equipment is high.

5.7 Scanning Electron Microscopy (SEM)
This is the primary tool used as an analytical technique. With the demand for increasing
performance and for practical applications in the VLSI era, SEM has become the standard
instrument because of its high resolution. In principle, a high-energy electron beam is
focused on to the surface of a sample. This electron beam interacts with the surface of
the sample and creates a variety of signals (secondary electrons, X-rays, photons, back-
scattered electrons, internal currents, etc.). These signals are scanned so as to form an

image on the screen. The image formed is highly magnified. The present state of the art
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SEM has a magnification in the range of 20x — 650000x [66] and the resolution of the
image is found to be in the order of 1-3nm [67]. Figure 5.8 represents a schematic
drawing of a SEM. An electron gun is used for producing electrons, which pass through
several lenses. The electrons are then accelerated so as to optimize the electro-optical
performance of the lens and also to enhance the brightness of the electron source.
Generally, the accelerating voltages are in the range of 15-30kV [68]. When the electron
passes through the electrostatic lenses, it is focused like a spot on the surface of the
specimen. As the electron strikes the sample, it undergoes multiple collisions and
produces images from the signals such as cathode-luminescence, electron beam induced
conductivity, specimen current, auger electrons, fluorescent X-rays, backscattered
electrons, etc. [68].

Most of the SEM tools produce images based on the back-scattered electrons.
These signals are detected by means of detectors and the characteristic of these detectors
play a vital role in the contrast of the image. The distance traversed by some of the
incident electrons that do not backscatter and come to rest is called Range (R). The
electron range is a factor of the atomic number and incident beam energy. The range

increases with decrease in atomic number and increase in the incident beam energy [69].
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5.8 Spreading Resistance Profilometry (SRP)
This technique is used for measuring the dopant concentration and depth profiles of
silicon. Figure 5.9 shows the schematic representation of the measurement setup of the
alignment of probes used in SRP. The two probes are placed at a step along the
semiconductor surface. Care is to be taken during the placement of probes. The probes
are placed in such a way that it should make an electrical contact, while at the same time,

the probes should not penetrate too much into the surface [21].

O o O O O
Original Surface
O O O O O

AX

AX = S sin® eveled Surface

Figure 5.9 Schematic diagram of the alignment of probes using SRP [21].
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The probes are generally made of osmium or tungsten alloy. The samples are
beveled at a shallow angle (®) and this angle is approximately 1° for shallow layers [55].
When the probes are made to come in contact with the silicon, it appears that the probes
tend to fracture whereas the probe / silicon interface deforms elastically. On supplying
the voltage between the two probes the resistance can be measured and plotted [55].

Mathematically, the spreading resistance — resistivity relationship can be expressed as:

Rep=p/4r (5.12)
where,
p = Resistivity
and r = Probe radius.

SRP cannot be performed with accuracy as it is dependent on the probe and the
sample preparation. Hence it is necessary to use calibration procedures [71]. SRP is used
for the study of epitaxial autodoping effects because of its wide carrier concentration
sensitivity range [72]. It also finds application in verifying the models for arsenic dopant

activation and autodoping phenomena [73].

5.9 Capacitance — Voltage (C-V) Measurements
This technique is the most dominant and widely used method as it provides detailed
information about dielectrics and interfaces used in the semiconductor industry [21]. In
this technique, the capacitance of a semiconductor device as a function of voltage is
studied. C-V techniques are used in determining the semiconductor parameters such as

dopant profiles, threshold voltage, density of interface states, carrier lifetime and oxide
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charge. In the doping profiling method, a reverse biased space charge region is required
to create a junction [55]. C-V profiling is used in the characterization of MOS capacitors,
p-n junctions and Schottky barrier junctions, MOSFETs and junctions formed by
electrochemical methods [55]. C-V measurements for a reverse bias capacitance of an

n+/p or p+/n junction is given by the following formula:

C(V) = [qesiCa/21" x [Vu £ Vr—(2kT/q)]"? (5.13)
where,

C (V) = Capacitance of a junction,

q = Free carrier Charge,

Esi = Permitivity of silicon,

Ca = Substrate doping concentration,

Vi = Built in potential of the junction and
Vr = Applied reverse bias voltage.

The concentration of majority carriers can be determined by this technique by
using a time varying voltage of variable frequency. Measurement of threshold voltage
(V1) plays a major role in characterizing the sub-micron MOSFETs. The measurement
of ultra thin film oxides and Vrt is done by using hard probe and also by using a high

repeatability mercury probe.
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5.10 Reverse Bias Diode Leakage Measurements
Reverse bias diode leakage is a diagnostic tool for the study of n/p junctions. Electron
and hole recombination at defects in n/p junctions increases the reverse bias current.
Theoretically, high quality n/p junctions should show leakage currents as low as 10" to
10® amp/em™? [74]. Increased leakage indicates the presence of defects. The typical
defects produced by ion implantation and RTA are dislocations or dislocation loops,
small clusters of silicon interstitials and vacancies, and impurity-defect clusters. Low
leakage is required for ultra shallow junctions in MOSFET fabrication. In this thesis, a
study of the leakage currents in n/p junctions, produced by ion implantation of
phosphorus and arsenic into silicon, and diffusion by RTA, is presented. The

experimental procedures are summarized in Chapter 6.

Summary
As characterization plays a vital role in determining the device parameters and also in
failure analysis, it is critical to discuss them. In this chapter, various characterization
techniques have been described. To name a few, the four-point probe method, DLTS,
SIMS, RBS, SRP, SEM have been discussed in detail. Table 5.1, presented in this
chapter, provides information on techniques that are being utilized in the semiconductor

industry.



CHAPTER 6

EXPERIMENTAL TECHNIQUES DEPLOYED IN THIS STUDY

In this chapter, the experiments performed in this research are explained. Many
experiments were carried during the study. Shallow junction samples were prepared by
ion implantation followed by rapid thermal annealing. The wafers were 200 mm in
diameter. In the first experiment, p-type silicon substrates were ion-implanted with
phosphorus and arsenic. The wafers were then cut to a specific dimension of 1 cm’.
Then they are subjected to spike annealing. In the second experiment, the large wafers,
after ion implantation, are subjected to rapid thermal annealing step. In this experiment,
arsenic monomer and dimer were implanted at a constant dose with varying energies and
the samples are cut to specific dimension of 1 cm’. Major companies like Sematech
International, Vortek Industries, Agere Systems and Axcelis Technologies provided the
samples, which forms the building block of this research.

This research focuses on experimental study of the leakage currents in shallow
junctions. This begins with the sample preparation at the laboratory at NJIT. Processing
steps (RTP) were done at the collaborating companies and then finally, testing and
measurements were done at NJIT. The results of leakage currents were analyzed using
semiconductor theory. From the analyses of the experimental data, conclusions were
drawn which are explained in the next chapter. The flowchart given in Figure 1.1

explains the formation of shallow junctions.
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Figure 6.3 Schematic representation of cutting of wafers to a desired size.

The cutting of the samples is shown in Figure 6.2. After cutting, the final
dimensions of the samples should be 1cm x Icm and generally four samples were taken
from each big wafer. The cut samples were marked with the help of a diamond indenter
on the back for identification purposes. In the second step, the samples were again sent
for processing, which is done by the collaborators. The four chips (5, 6, 10 and 11) from
Figure 6.3 were annealed at different temperatures, which is the case for the first

experiment.
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After wax patterning, the chips were etched by using CP4 etchant (fast, polishing
or slow polishing) under a chemical station, which is shown in Figure 6.5. The etching
time typically ranged from 20 — 30 seconds. The wax was removed after this step by
dissolving it in solvents. Generally, first the chips were dipped in toluene, acetone, and
propanol. Then they were immersed in distilled water and dried under nitrogen gas.
Finally, the chips were dipped in hydrofluoric acid (HF) and then into acetic acid
(CH3COOH). The wax removal led to the creation of diodes in the form of circular dots.
In reality, these dots were elliptical. During patterning of the dots, some space was left
for scratching which formed the base of the sample and one of the probes was placed on

this spot. The circular dots and the scratch on the base are illustrated in Figure 6.4.

6.3 Measurements

The sample after finishing the chemical step was ready for the measurement. A
semiconductor probe station, shown in Figure 6.6, was used for the measurements. The
probe station consists of a base platform or probe anvil. It has a chuck or a slot for
mounting the sample. When the vacuum is turned on, the chuck secures the sample
firmly. The sample can be moved longitudinally as well as laterally with the help of the
knobs on the either side of the probe station. For making a good contact, indium was
used. Indium is a very soft, adhesive and conductive material. The probe tips of the
needles were also coated with indium by soldering.

The microscopic eye lens of the probe can be adjusted horizontally and vertically
with the knobs. One of the knobs is shown in Figure 6.6. Out of the two eye-pieces, the

left eye is used for making contacts and the right eye consists of a micrometer scale that
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One of the important steps is the circuit connection. Current amplifiers, digital
multimeter, banana cables and connectors are required to complete the circuit. This is
shown in the simple line diagram in Figure 6.7. The circuit connections should be
checked before starting the experiments. There may be damage of the cables, improper
functioning due to leakage or improper connections. Hence, it is always good to rectify
them by double-checking and replacing the same.

There are a large number of mesa dots on the chip. For experimental purposes,
the measurements were made only on four dots. The main aim of performing this
experiment was to measure the +1V reverse biased leakage current of the diodes.
Initially, a current reading is obtained. However, as time passes, there are fluctuations in
the current readings and the value drops. These fluctuations cannot be completely
eschewed. Consequently, the fluctuation in readings decreases as time passes. Hence, the
readings are noted with increment of one minute for three minutes. The third reading of
current after three minutes is the final value, as this is constant and there will be little or
no fluctuations. In order to minimize fluctuations, the probe station enclosure, after
making the electrical contacts is closed. The lamp of the microscope must also be turned

off and the circuit should be properly grounded.
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Summary
This chapter explains the experimental procedures used in this research. Details of
sample preparation and leakage current measurements have been presented. A simple
program written in C++ (Appendix D) has been utilized for data formatting and

calculations of area and current densities.



CHAPTER 7

DISCUSSION AND COMPARISON WITH RESULTS AND LITERATURE

The experiments that were carried out are listed here. The data sheets for each
experiment are in the Microsoft Excel format. The summary sheet for each set of
experiments is also presented.

In the first experiment, two different methods of spike annealing were done at
Vortek Industries and Agere Systems. Vortek Industries performed the spike annealing
(arc lamp) by heating the samples at a ramp-up rate of 400 °C / sec. Agere Systems
utilized the other method of spike annealing (incandescent lamp), where the samples
were heated at a ramp-up rate of 200 °C / sec. The results of the measured diode leakage
current were plotted as function of annealing. These graphs also show the variation of
diode leakage current with implant dose for the two types of annealing methods. The
implant doses included 2 x 1014, 4 x 1014, 7 x 10" and 1 x 10" cm™? of boron and
phosphorus, and 1 x 10" cm™ of arsenic. The conclusions drawn from these plots are
explained below. For the other device parameters such as junction depth, Hall carrier
density, sheet resistance, etc., the graphs are presented in Appendix A.

In the second experiment, leakage current measurements for arsenic monomer
and dimer implants were studied. These samples were rapid thermal annealed by
Heatpulse method at two different temperatures: 850 °C, 900 °C, for 30 seconds. The
dimer arsenic (As 2) species was implanted at double the energy (6 KeV) than the
monomer (As), which is implanted at 3 KeV. Graphs were plotted for the variation of the

leakage current with the implant dose for these samples. Results were also compared
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with those obtained in the first experiment. RBS channeling spectra provided useful
information about the implantation damage that occurred during the monomer and dimer

arsenic implants.

7.1 Experiment 1

An example of an experimental data sheet is attached in Appendix C. Table 7.1 gives the
summary of the samples studied in this experiment. It includes some of the ion implant
parameters such as energy, dose, maximum temperature (Tpax), sheet resistance (RS),

Hall coefficient (RH), Hall carrier density (NH), junction leakage current (Jicakage), €tc.

The first group of samples were prepared by boron ion implantation into n-type
silicon wafers at an energy of 0.5 KeV and doses of 2 x 10", 4 x 10", 7 x 10" and 1 x
10" cm™. The first eight samples in this group were spike annealed at Agere Systems by
the incandescent lamp method using a Heatpulse rapid thermal annealing system. The
rest of the samples in this group were annealed at Vortek Industries using an arc lamp
system.

The second group of samples were prepared by phosphorus ion implantation into
p-type silicon wafer, at energy of 1.5 keV, and the same range of doses as for the boron
group. In this group, the first 12 samples were spike annealed by incandescent lamp and

the next set of samples in this group were spike annealed by arc lamp method.



Table 7.1 Summary Sheeet for Experiment 1.

shallow extension junctions
HP8108: 12mm sq chips on 8" aperture wafer.Ar +0.1% O2 spike anneals, ramp="200C/s"
Vortek: 25mm sq chips, Ar+0.1%02 spike anneals,ramp 400C/s
Incandescent (Incand) and Arc Lamp Method (Arc Lamp.)
B implant, n-type wafer

CHIP ID Energy dose recipe
D3-2 0.5 2.E+14 as1108.v00
D3-3 0.5 2.E+14 as1125.v00
F5-3 0.5 4.E+14 as1062.v00
F5-2 0.5 4.E+14 as1067.v00
A5-3 0.5 7.E+14 as1027.v00
A5-1 0.5 7.E+14 as1033.v00
DO0-3 0.5 1.E+15 as1008.v00
DO-1 0.5 1.E+15 as1012.v00
D3A 05 2E+14 1085
D3B 05 2E+14 1105
D3C 05 2E+14 1125
D3D 05 2E+14 1145
F5A 05 4.E+14 1065
F5B 05 4E+14 1085
F5C 05 4E+14 1105
F5D 05 4E+14 1125
A5A 05 7.E+14 1035
A5B 05 7.E+14 1055
A5C 05 7.E+14 1075
AS5D 05 7.E+14 1095
DOA 0.5 1.E+15 1005
DOB 05 1.E+15 1025
DOC 05 1.E+15 1045
DOD 0.5 1.E+15 1065

Phos implant, p-type wafer

CHIP ID Energy dose recipe
A6-1 1.5 2.E+14 as1079.v00
A6-3 1.5 2.E+14 as1100.v00
A6-2 1.5 2.E+14 as1108.v00
D1-3 1.5 4.E+14 as1000.v00
D1-2 1.5 4.E+14 as1028.v00
D1-1 1.5 4.E+14 as1060.v00
F4-3 1.5 7.E+14 as970.v00
F4-2 1.5 7.E+14 as1000.v00
F4-1 1.6 7.E+14 as1028.v00
A4-3 1.5 1.E+15 as950.v00
A4-2 1.5 1.E+15 as970.v00
A4-1 1.5 1.E+15 as1000.v00
ABA 15 2E+14 1090
A6B 1.5 2.E+14 1110
A6C 1.5 2.E+14 1130
A6D 15 2.E+14 1150
D1A 15 4.E+14 1050
D1B 1.5 4.E+14 1070
D1C 1.5 4.E+14 1090
D1D 1.5 4.E+14 1110
F4A 15 7.E+14 1005
F4B 15 7.E+14 1025
F4C 1.5 7.E+14 1045
F4D 1.5 7.E+14 1065
AdA 15 1.E+15 985
A4B 1.5 1.E+15 1005
A4C 1.5 1.E+15 1025
A4D 1.5 1.E+15 1045

Arsenic implant, p-type wafer
CF3-1 5 1.E+15 as950.v00
CF3-2 5 1.E+15 as980.v00
CF3-3 5 1.E+15 as1010.v00
CF3-4 5 1.E+15 as1040.v00
F3A 5 1.E+15 985
F3B 5 1.E+15 1005
F3C 5 1.E+15 1025
F3D 5 1.E+15 1045

Method
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.

Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.

incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.
Incand.

Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.

Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.
Arc Lamp.

Tmax
1111
1122
1058
1075
1026
1037
1009
1017
1086
1105
1125
1145
1066
1086
1105
1125
1036
1056
1075
1095
1006
1026
1046
1065

Tmax
1077
1097
1115
1001
1031

971
1003
1032

951

972

999
1090
1110
1131
1150
1051
1071
1091
1111
1006
1026
1046
1066

986.6
1006
1026
1046

948
981
1009
1036
985.7

1026
1046

Rs
1074.0
1045.3

819.1
665.3
822.4
722.5
761.1
729.4
1797.0
1500.0
1369.0
1265.0
1248.0
1006.8
821.9
688.7
1261.0
966.7
752.8
585.4
1369.0
1090.0
879.0
693.4

Rs
1114.0
1026.8

873.2
943.5
731.2
560.1
565.1
425.6
335.6
467.5
367.9
303.2
1328.0
1173.0
1045.0
890.7
818.4
688.3
640.5
549.0
532.5
474.3
423.5
343.3
432.4
395.1
339.3
266.2

371.9
365.5
341.9
315.3
352.5
362.0
350.8
336.7

RH
4.760
4.604
3.384
2.690
3.299
2.824
2.948
2.826
8.280
6.627
6.099
5.630
5.265
4.157
3.380
2.839
5.180
3.928
3.000
2.310
5.705
4.339
3.470
2.694

RH
-15.670
-14.380
-11.150
-12.740
-8.598
-6.036
-6.811
-3.933
-2.880
-4.114
-2.900
-2.373
-18.640
-20.850
-13.700
-11.880
-9.917
-7.637
-6.470
-5.377
-4.966
-4.247
-3.697
-2.782
-3.457
-3.200
-2.575
-1.838

-2.120
-2.067
-1.895
-1.743
-1.881
-1.967
-1.888
-1.799

NH
1.02E+14
1.06E+14
1.42E+14
1.78E+14
1.45E+14
1.69E+14
1.62E+14
1.69E+14
6.02E+13
7.45E+13
8.11E+13
8.79E+13
9.30E+13
1.17E+14
1.44E+14
1.72E+14
9.41E+13
1.24E+14
1.62E+14
2.10E+14
8.57E+13
1.12E+14
1.40E+14
1.80E+14

NH
4.88E+13
5.32E+13
6.77E+13
5.97E+13
8.63E+13
1.20E+14
1.10E+14
1.78E+14
2.39E+14
1.68E+14
2.35E+14
2.87E+14
4.27E+13
3.85E+13
5.74E+13
6.64E+13
7.80E+13
9.90E+13
1.14E+14
1.36E+14
1.46E+14
1.70E+14
1.94E+14
2.57E+14
2.07E+14
2.24E+14
2.79E+14
3.98E+14

3.36E+14
3.45E+14
3.79E+14
4.12E+14
4.33E+14
4.11E+14
4.30E+14
4.53E+14

NH/Dose
0.5123
0.5291
0.3559
0.4462
0.2076
0.2417
0.1619
0.1689
0.3008
0.3727
0.4057
0.4394
0.2326
0.2934
0.3607
0.4296
0.1345
0.1770
0.2311
0.2997
0.0857
0.1118
0.1397
0.1796

NH/Dose
0.2281
0.2484
0.3163
0.1396
0.2017
0.2813
0.1463
0.2371
0.3191
0.1571
0.2198
0.2684
0.1994
0.1800
0.2682
0.3103
0.1821
0.2313
0.2665
0.3184
0.1950
0.2266
0.2595
0.3437
0.1936
0.2091
0.2610
0.3722

0.3137
0.3225
0.3540
0.3852
0.4049
0.3837
0.4017
0.4231

Xj
3.33E-06
3.33E-06
3.22E-06
3.58E-06
2.79E-06
2.79E-06
2.54E-06
2.65E-06
2.20E-06
2.25E-06
2.55E-06
2.74E-06
2.24E-06
2.53E-06
3.05E-06
3.68E-06
1.98E-06
2.46E-06
2.90E-06
3.56E-06
1.94E-06
1.99E-06
2.38E-06
2.81E-06

Xj
4.68E-06
5.04E-06
4.92E-06
5.10E-06
4.91E-06
5.21E-06
6.72E-06
4.53E-06
4.69E-06
3.60E-06
3.47E-06
4.14E-06
3.55E-06
5.97E-06
3.95E-06
4.81E-06
4.27€-06
4.13E-06
3.52E-06
3.80E-06
3.46E-06
3.52E-06
3.72E-06
3.90E-06
3.02E-06
3.39E-06
3.50E-06
3.86E-06

2.15E-06
2.18E-06
2.29E-06
2.47E-06
2.22E-06
2.19E-06
2.25E-06
2.33E-06

Jlsakags (N cm2)
1.34E-05
4.83E-04
9.95E-04
3.39E-06
1.85E-06
4.50E-07
1.93E-06
9.40E-07
9.12E-07
1.44E-06
9.73E-07
1.52E-06
3.75E-06
3.05E-06
1.14E-06
7.53E-07
1.51E-06
8.76E-07
7.61E-07
9.84E-07
1.29E-06
2.20E-06

data missing
1.55E-06

2.49E-05
2.90E-05
2.36E-05
2.90E-06
7.20E-06
6.28E-05
2.17E-06
1.30E-06
sample not found
4.50E-06
5.97E-06
4.91E-06
1.15E-06
4.66E-06
7.89E-06
6.59E-06
8.40E-07
1.94E-06
6.66E-06
2.21E-06
1.18E-06
1.49E-06
9.26E-07
sample not found
2.25E-06
2.84E-06
2.85E-06
2.47E-06

1.72E-06
1.01E-06
1.68E-06
7.14E-07
9.39€-07
6.39E-07
7.08E-07
8.69E-07
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The third group of samples were prepared by implanting arsenic at one dose (1 x
10" cm?) and energy (5 KeV). Half of the number of samples was annealed by

incandescent lamp, and the other half was annealed by the arc lamp method.

There were 50 samples in number that were tested in this experiment. The
process conditions of these samples are summarized in Table 7.1. Three to four anneal
temperatures were studied for each dose. From this experiment, observations were drawn
from three graphs of the leakage current data and sheet resistance as function of

annealing temperature: Two graphs for the phosphorus implants and one for the arsenic

implants.
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Temperature in °C

Figure 7.1 Leakage current versus temperature for phosphorus samples that were rapid
thermal annealed by arc lamp method at a ramp-up rate of 400 °C / sec.



88

7.1.1 Observations - 1

Figure 7.1 illustrates the reverse bias diode leakage current density at +1Volt bias vs. arc
lamp spike anneal temperature for 1.5 KeV phosphorus implants at four doses (cm™
units). The leakage current density exhibits a maximum, as a function of the spike anneal
temperature. This is seen in the data for all lower phosphorus doses. From the graphs, it is
seen that for the two highest doses the leakage is low. The leakage current maximum is
found to be 2.85 x 10°® amp/cm2 at a dose of 1 x 10" cm? and the maximum is 7.89 x 10
% amp/cm® at a dose of 2 x 10" cm™. However, this trend is different for the lower two
doses annealed at higher temperatures. It is found that at higher temperatures the leakage
was high for a low dose, whereas theoretically, the leakage current might be expected to
be low at higher temperatures. One of the reasons for this might be due to the transient
enhanced diffusion of phosphorus, which causes defects. The data suggests that the

defects, which are responsible for the leakage, may be annealed out at sufficiently high

temperatures.
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Figure 7.2 Leakage current versus temperature for phosphorus samples that were rapid
thermal annealed by incandescent lamp method at a ramp-up rate of 200 °C / sec.

7.1.2 Observations - 2

Figure 7.2 illustrates the reverse bias diode leakage current densities at +1Volt bias vs.

incandescent spike anneal temperature for 1.5 KeV phosphorus implants at four doses

(cm™ units). From the graph, it is observed that for the higher two doses the leakage is

lower than the lowest two doses. This behavior is the same as was observed for the arc

lamp annealing method as discussed in Observations - 1. This also gives a hint of the

maximum temperature effect. However, there are too few data points to draw this as an

independent conclusion. The leakage current maximum is found to be 5.97 x 10°°
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amp/cm’ at a dose of 1 x 10° cm? and the maxima is 6.28 x 10” amp/cm’ at a dose of 4
x 10" cm™. The highest leakage is observed for the 4 x 10" cm 2 dose.

From the comparison of two methods of spike annealing, it can be concluded that
the leakage current for the incandescent lamp method is generally higher than the arc
lamp method. The temperature ranges for the incandescent lamp anneals are lower than
the arc lamp anneals. This is due to the fact that the goal of these experiments is to obtain
films with comparable sheet resistance range in the two methods as shown in Figures 7.3

and 7.4 for the same samples.

1.5 keV phosphorus implants HP Spike RTA
1200.0
o ——P 2E14
e 1000.0 | | —m—p 4E14 ‘\\
43 G 800.0 { |—&—P7E14
5 9 ——P 1E15
@ E 6000
x c
58 4000 %
L .0 A
5 200.0
0.0 ] , . ,
900 950 1000 1050 1100 1150
Peak Temperature (°C)

Figure 7.3 Sheet resistance versus peak temperature for 1.5 KeV phosphorus implants
(Heatpulse by using incandescent lamps).
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1.5 keV phosphorus implants Vortek Spike RTA
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Figure 7.4 Sheet resistance versus peak temperature for 1.5KeV phosphorus implants
(Vortek spike RTA by using arc lamp method).
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Figure 7.5 Leakage current density vs. temperature for arsenic implants (Comparison is
made with the annealing procedures for incandescent lamps and arc lamp method of
annealing).
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7.1.3 Observations - 3

Figure 7.5 shows the variation of the leakage current density versus spike anneal
temperature for arsenic implants, using the arc lamp and incandescent lamp methods. The
variation of leakage current with temperature is not particularly systematic. The leakage
current decreases with decrease in temperature. However, at an annealing temperature of
1009 °C, the leakage current was found to be high in the case of incandescent method of
annealing. Also, the leakage current behavior is found to be similar for both types of
annealing.

It is observed from Figure 7.5 that the average leakage current by the
incandescent lamp method is higher than the average leakage current by the arc lamp
method for the arsenic implants. This is also found to be true in the case of phosphorus
implants (Observation-2). The overall leakage levels for the arsenic implants is lower
than that of the phosphorus implants by a factor of 5.

From the observations of the above graphs, it can be summarized that the arsenic
implants are favorable for shallow n/p junction formation because arsenic implants have
negligible transient enhanced diffusion. Results of the leakage current density presented
here show that there is an additional advantage of lower junction leakage for using

arsenic in n/p junction.

Experiment 2
This experiment compares arsenic monomer (As) and dimer (As 2) implants at two
implant energies chosen to yield the same range for both species. Moreover, the implant

doses differ by a factor of 2 (dimer species has twice the implant energy than the
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monomer arsenic species). Five implant doses were studied in this experiment. The
samples were annealed by incandescent lamp rapid thermal annealing method for 30
seconds. Most of the samples were annealed at 850 °C. Several samples were annealed

at 900°C in a test for possible variation of device properties with anneal temperature.

Table 7.2 Summary Sheet of Arsenic Monomer (75 arsenic) and Dimer (150 arsenic 2 )
Samples

Chip Id Dose Energy Species Leakage

(KeV) Current

( Amp/ cmz)

H114 A | 5.00E+13 3 75 Arsenic 6.36 E-9
H119A | 1.00E+14 3 75 Arsenic 3.35E-9
H172A 2.00E+14 3 75 Arsenic 4.64 E-9
H132 A | 4.00E+14 3 75 Arsenic 4.57 E-9
H020 A | 8.00E+14 3 75 Arsenic 528 E -9
H020B 8.00E+14 3 75 Arsenic 5.09 E-9
HO2A 5.00E+13 6 150 Arsenic2 8.07E -9
H68 A 1.00E+14 6 150 Arsenic2 5.76 E-9
HOl A 2.00E+14 6 150 Arsenic2 5.95E-9
HO04A 2.50E+13 6 150 Arsenic?2 6.05 E-9
H 67 B 4.00E+14 6 150 Arsenic2 6.58 E-9

The motivation for this study is the desirability of using higher implant energy for
shallow junction formation. A higher energy allows a higher beam current in the
implanter and this lowers the cost of production. Table 7.2 gives the summary of the
arsenic samples. The wafers were 200 mm diameter highly doped p-type silicon. The
sheet resistivity of the wafers was approximately 10 Ohm-cm. The reverse bias diode
leakage measurements were carried out for arsenic monomer and dimer implants after

soak RTA. The experiment was performed on 11 samples and the graphs were plotted.
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Figure 7.6 Leakage current density versus implant dose for arsenic samples that were
rapid thermal annealed at 850 °C for 30 seconds or 900 °C for 30 seconds.

7.2.1 Observations - 4

Figure 7.6 shows the variation of leakage current density with arsenic implant dose for
arsenic monomer and dimer species. The leakage current density is found to have a small
(10 %) variation with dose. The largest variations are as follows: the 5 x 10" cm™ dimer
implant shows the highest leakage and the 1 x 10" ¢cm™ monomer implant shows the
lowest leakage. Even though the dimers were implanted at double the implantation
energy, i.e., 6 KeV, the leakage current density was found to be consistently larger than
the monomer implanted at 3 KeV. These differences were found to be approximately up

to 50 percent. However, the leakage current density values for both species are two
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Finally, from the above discussions of Experiment 2, it can be concluded that the
dimer arsenic species creates more damage and the diode leakage indicates that more
defects remain after annealing the dimer implant. The damage that remained after

annealing thus correlates with the damage created by the implant.



CHAPTER 8

CONCLUSIONS

In this thesis, n/p shallow junction formation was studied with the influence of various
parameters such as: implantation dose, energy cénditions, rapid thermal annealing (RTA)
methods, annealing temperatures and type of species (P*, As’, and As,"). Electrical
characterization technique is used for measuring the reverse bias diode leakage current at
+1Volt bias. The three-point probe method is used for performing the leakage current
density.

It can be concluded that the leakage current densities for the incandescent lamp
method RTA are generally higher than for the arc lamp RTA method. When comparing
the leakage current densities of both phosphorus and arsenic, the overall leakage levels
for the arsenic is lower than that of phosphorus implants by a factor of 5. Transient
Enhanced Diffusion (TED) plays an important role in the leakage levels for arsenic and
phosphorus. TED for arsenic is negligible. For the phosphorus, the higher leakage is
attributed to defects caused by TED. Leakage in phosphorus-based n/p junctions show
maxima in the temperature dependence, which indicate that these defects can be annealed
out at sufficiently high temperatures.

These studies show that the arsenic implants are in general favorable for the
formation of n/p shallow junctions. Comparison of monomer (As') and dimer (As;")
implants show that at equivalent doses and ranges, n/p junctions prepared with dimer
implants have systematically higher leakage, which correlates with the relatively greater

damage produced by dimer implants found by ion scattering measurements.
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The samples are spike annealed at a ramp rate of 200 °C/sec and this is done in a
Heatpulse (HP) 8108 furnace in argon ambient. The sheet resistance decreases with
decrease in temperature and decreases with increase in dose. The sheet resistance is in
the range of 700-800 ohms/[) for the high energy dose of boron 1 x 10 5 ecm? and is in

the range of 1000-1000 ohms/0 for the low energy dose of boron 2 x 10 “em?,

B
| 0.5 keV B implant HP Spike RTA
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Q 1000.0
c
ST 8000 -
B g Xs¢ S .\.
o 2 6000
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S | —A—B 7E14
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0.0 . *
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Peak Temperature (°C)

Figure A.2 Sheet resistance versus peak temperature for 0.5 KeV boron implants
(HP spike RTA).
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As the energy dose increases, the sheet resistance decreases. For a constant energy dose,
the sheet resistance decreases with increase in annealing temperature. This is observed
for all energy doses ranging from low energy dose of boron 1 x 10 5 ¢m? to a high-
energy dose of boron 1 x 10 > cm™. This shows that the sheet resistance depends on the
energy dose as well as the peak annealing temperature. Also, flash lamp annealing at a

rate of 400 °C/sec shows much steeper curves than the heat pulse annealing done at a

ramp rate of 200 °C/sec
0.5 keV B implant Vortek Spike RTA
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Figure A.3 Sheet resistance versus peak temperature for 0.5 KeV boron implants
(Vortek spike RTA).



101

The Hall carrier density increases with implant dose. For a given dose, it tends to increase

with annealing temperature.

0.5 keV B implant HP Spike RTA
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Figure A.4 Hall carrier density versus peak temperature for 0.5 KeV
boron implants (HP spike RTA).
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Hall carrier density is almost constant with increase in annealing temperature. However,
as the implantation dose decreases, the Hall carrier density increases. For a constant
dose, as the temperature increases, the Hall carrier density also increases. Similar results

are observed for both ramp rates for the two spike annealing methods.

0.5 keV B implant Vortek Spike RTA
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Figure A.5 Hall carrier density versus peak temperature for 0.5 KeV boron implants
(Vortek spike RTA).
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The activated fraction of boron increases with the increase in temperature and the
activated fraction increases with the decrease in implantation dose. For a high
implantation dose, the activation fraction is found to be in the range of 0.1 - 0.2 at low
temperatures. For a low implantation dose of boron 2 x 10" cm™, the activated fraction

of boron is high, in the range of 0.5 - 0.6, approximately.

0.5 keV B implant HP Spike RTA
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Figure A.6 Activated fraction versus peak temperature for 0.5 KeV boron implants (HP
Spike RTA).






APPENDIX B

RESULTS OF PHOSPHORUS AND ARSENIC IMPLANTS

Electrical and junction depth data of n/p junctions formed by phosphorus implantation
and spike annealing are presented here.

In Figure B.1, the sheet resistance decreases with increase in temperatures
irrespective of the implanted dose. However, for high phosphorus implantation dose, the
sheet resistance is found to be low at low temperatures. It is found to be high at low
doses and at high temperatures. The sheet resistance is found to be almost constant for
arsenic implants (independent of the dose) as the temperature is increased. It can also be
seen from the figure that, even though the dose is high for arsenic, the sheet resistance is
found to be low. The behavior of sheet resistance is almost similar in both spike

annealing methods.

1.5 keV P & 5 keV As implants HP Spike RTA
1200.0
8 1000.0 - \
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0.0 ; ‘ : :
900 950 1000 1050 1100 1150
Peak Temperature (°C)

Figure B.1 Sheet resistance versus peak temperature for 1.5KeV phosphorus and 5 KeV
arsenic implants (HP spike RTA).
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Figure B.2 represents the same qualitative behavior as described in the Figure B.1.

However, the temperatures tend to be lower for comparable R,.

R 1.5 keV P & 5 keV As implants Vortek Spike RTA
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Figure B.2 Sheet resistance versus peak temperature for 1.5KeV phosphorus and
arsenic implants (Vortek Spike RTA).
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The activated fraction increases with the increase in temperature irrespective of the

implant dose. However, arsenic showed higher activated fraction than phosphorus for the

same implantation dose and at different energies.

1.5 keV P & 5 keV As implants HP Spike RTA
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Figure B.3 Activated fraction versus peak temperature for 1.5KeV phosphorus and

5 KeV arsenic implants (HP spike RTA).
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The activated fraction behavior is similar to that observed in Figure B.3. The activated
fraction is almost constant even though there is a decrease in the implanted dose of
phosphorus. In the case of arsenic, the activated fraction is high, and is almost constant

with increase in temperature.

1.5 keV P & 5 keV As implants Vortek Spike RTA

0.5
3
® 041 Sy
S
w 0.3
o
£ o2 M
©
> ——P 7E14
S 01 —>—P 1E15
< —X—As 1E15

0-0 1 T T T

950 1000 1050 1100 1150 1200
Peak Temperature (°C)

Figure B.4 Activated fraction versus peak temperature for 1.5KeV phosphorus and
5 KeV arsenic implants (Vortek spike RTA).
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Hall carrier density decreases with the increase in temperature. For a high implant dose,
the Hall carrier density is high and is low for a low implanted dose. Generally, the Hall
carrier density increases with the increase in temperature for a constant dose. This

behavior is observed for both the ramp rates.

1.5 keV P & 5 keV As implants HP Spike RTA
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o
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Figure B.5 Hall carrier density versus peak temperature for 1.5KeV phosphorus
and 5 KeV arsenic implants (HP Spike RTA).
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The following table illustrates the sample data sheet of the experiments performed at NJIT.

Date Performed T Notes and Comments
Name of the supplier : ‘ ) |
Annealing Details @ | i i
Type of implants
Dot| Dia1 Dia 2 Area (-)Voltmeter Current Current Avg. Current Two Lowest
No. | Divisions| Divisions Sq.Cm Reading (V)| Reading(Amp) | Density(dot) Density(chip) Avg. Dots
(Amp/Sq.Cm) (Amp/Sq.Cm)
1 136 138 0.007853563 1 1.07E-08 1.36E-06
2 161 154 0.010375173 1 2.60E-09 2.51E-07 1.34E-05 avg 3and4
3 124 123 0.006382275 1 9.40E-08 1.47E-05
4 135 130 0.007343885 1 8.83E-08 1.20E-05
1 111 113 0.005248681 1.002 4.32E-06 8.23E-04
2 135 140 0.007908799f  1.001 4.25E-06 5.37E-04 4.83E-04 avg2 and3
3 136 127 0.007227555|  1.002 3.09E-06 4.28E-04
4 118 124 0.006122833|  1.001 3.15E-06 5.14E-04
1 135 137 0.007739325|  1.001 7.51E-06 9.70E-04 9.95E-04 avgland2
2 135 136 0.007682834|  1.001 7.86E-06 1.02E-03
3 126 124 0.006537941 1.002 4.12E-05 6.30E-03
4 109 125 0.005701449 1.001 2.33E-05 4.09E-03
1 179 171 0.012808489 1 3.39E-08 2.64E-06
2 135 127 0.007174411 1 4.77E-08 6.65E-06 3.39E-06 avgland4
3 119 120 0.005975537 1 3.50E-08 5.86E-06
4 114 117 0.005581353 1 2.31E-08 4.14E-06
1 122 125 0.006381439]  1.001 3.63E-08 5.69E-06
2 146 138 0.008431031 1.001 2.80E-09 3.32E-07 1.85E-06 avg2and4
3 124 126 0.006537941 1.005 2.77E-08 4.24E-06
4 138 147 0.008488778]  1.001 2.86E-08 3.37E-06
(Amp/Sq.Cm) (Amp/Sq.Cm)
1 125 126 0.006590666|  1.001 3.01E-09 4.57E-07
2 131 133 0.007290741 1.001 3.39E-09 4.65E-07 4.50E-07 avgland4
3 124 126 0.006537941 1.001 3.29E-09 5.03E-07
4 134 124 0.006953048 1.001 3.08E-09 4.43E-07
1 120 131 0.006578112]  1.001 1.51E-08 2.29E-06
2 132 126 0.006959743]  1.001 1.10E-08 1.57E-06| 1.93E-06 avgland2
3 100 100 0.00418455]  1.001 1.25E-04 2.99E-02
4 116 120 0.005824893]  1.001 1.94E-08 3.33E-06
1 138 140 0.00808455!  1.001 6.46E-09 7.99E-07
2 129 127 0.006855548]  1.001 2.20E-04 3.21E-02 9.40E-07 avgland4
3 120 118 0.005925323(  1.001 9.45E-09 1.59E-06
4 131 133 0.007290741 1.001 7.90E-09 1.08E-06
1 161 164 0.011048885 1 3.28E-08 2.97E-06
2 158 155 0.010247963 1 9.50E-09 9.27E-07 9.12E-07 avg2and3
3 162 157 0.010642984 1.001 9.55E-09 8.97E-07
4 150 155 0.009729078|  1.001 1.02E-08 1.05E-06
1 144 145 0.00873734] 1.001 9.63E-09 1.10E-06 1.44E-06 avgland2
2 174 172 0.012523521 1.001 2.23E-08 1.78E-06
3 152 159 0.01011322{  1.001 2.77E-08 2.74E-06
4 151 146 | 0.00922525 1.001 2.65E- B7E-
1 144 138 0.008315537 1 5.87E-09 7.06E-07
2 162 165 0.011185302]  1.001 1.39E-08 1.24E-06 9.73E-07 avgland2
3 173 155 0.01122087{ 1.001 1.39E-08 1.24E-06
4 168 160 0.01124807|  1.002 2.33E-08 2.07E-06




APPENDIX D
C++ PROGRAM FOR LEAKAGE CURRENT DENSITY

The following program evaluates leakage current density of shallow junctions.

#include<iostream.h>
#include<math.h>
#include<stdio.h>

double dial[4], dia2[4], area[4], Vr[4],Curr[4],CurrDens[4], AvgCurrDens;

int chipid;
int i=0;

void bubblesort(double* ptr, int Imt)

{ ‘

void order(double* , double*);

int j,k;

for(j=0;j<(Imt-1);j++)
for(k=j+1;k<lmt;k++)

order(ptr+j,ptr+k);
}
void order (double * numb1, double* numb2)
{
if(*numb1>*numb?2)

{

double temp=*numbl;
*numbl=*numb2;
*numb2=temp;

}

void main()

{

cout<<"Enter the chipid"<<endl;
cin>>chipid;

for(i=0;i<4;i++)
{

cout<<"Enter the dial of the dot"<<endl;
cin>>dial[i];
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cout<<"Enter the dia2 of the dot"<<endl;
cin>>dia2[i];
area[i]=(3.1428571428571428571428571*dial[i]*dia2[i]*0.01)/(137*137*4);

cout<<"Enter the reading from the voltmeter"<<endl;
cin>>Vr|i];

cout<<"Enter the reading for the current"<<endl;
cin>>Curr(i];

CurrDens[i]=Curr[i]/area[i];

cout<<endl;

}
bubblesort(CurrDens,4);
AvgCurrDens=(CurrDens[0]+CurrDens[1])/2;
for(i=0;i<4;i++)

{

cout<<"The dial of the dot:\t"<<dial[i]<<end]l;

cout<<"The dia2 of the dot:\t"<<dia2[i}<<end];

cout<<"The area of the dot:\t"<<area[i]<<endl,

cout<<"The reading from the voltmeter:\t"<<Vr[i]<<endl;
cout<<"The reading for the current:\t"<<Curr[i]<<end]l;

cout<<"The Current Density is :\t"<<CurrDens[i]<<endl;

}

cout<<"The Average Current Density for the "<< chipid<<"
is:\t"<<AvgCurrDens;

cout<<endl;
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