

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ON CHIP IMPLEMENTATION OF DEADLOCK AVOIDANCE
IN WORMHOLE NETWORKS

by
Kiran K. Gururaj

This thesis gives a detailed description of the Application Specific Integrated Circuit

(ASIC) design to avoid deadlocks in Wormhole Networks. Deadlock avoidance is the

most critical issue while considering wormhole networks and should be avoided by any

routing protocol and algorithm. A novel architecture for the Turn Prohibition Based

Routing (TPBR) protocol has been proved to be efficient and was developed as a part of

this work. This architecture for implementing the algorithm is divided into three parts.

The first part determines the order of selection of the nodes in the network to run the

algorithm. The second part deals with the prohibition of the turns through the node.

which might possibly create a deadlock. The third part constructs a routing table, which

will have the route from a source to a destination, considering the prohibited turns into

account. A VHDL model was developed and simulated using IEEE numeric_std package

for this architecture. This model was synthesized with Cadence tools and the post

synthesis simulations verified the functionality of the architecture. The physical design

was created using the standard gate cell libraries and implemented in 0.35-micron CMOS

technology.

ON CHIP IMPLEMENTATION OF DEADLOCK AVOIDANCE
IN WORMHOLE NETWORKS

by
Kiran K. Gururaj

A Thesis
Submitted to

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

August 2002

APPROVAL PAGE

ON CHIP IMPLEMENTATION OF DEADLOCK AVOIDANCE
IN WORMHOLE NETWORKS

Kiran K. Gururaj

Dr. Durga Misra, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Lev Zakrevski, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Symeon Papavassiliou, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Kiran K. Gururaj

Degree:	 Master of Science

Date:	 August 2002

Date of Birth:

Place of Birth:

Education

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2002

• Bachelor of Engineering in Electronics and Communications Engineering,
Bangalore University, Bangalore, KA, INDIA

Major:	 Electrical Engineering

Publications:

Kiran K. Gururaj, Lev Zakrevski and D. Misra, "VLSI Architecture for Deadlock
Avoidance in Wormhole Networks", Proceedings of Fifteenth International
Conference on Systems Engineering, ICSE 2002, pp. 322-328, Aug 2002.

iv

To My Parents and the Almighty

v

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to his Graduate Advisor and

Thesis guide Professor D. Misra, for his guidance, moral support and encouragement

throughout this work.

Special thanks to Assistant Professors Lev Zakrevski and Symeon Papavassiliou

for serving as the members of the committee.

The author also thanks Prof. D. Misra and NJ center for Optoelectronics for the

financial assistance during Fall 200I and Spring 2002.

The author also thanks the Computing Services Division of NJIT for providing

the necessary tools and also appreciates the services rendered by them.

Finally, the author would like to thank his beloved parents for giving the

encouragement and moral support throughout his course of study at NJIT.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Applications and Importance of NOW 	 3

1.2 Design Flow of the TPBR Chip 	 3

1.3 Outline of the Thesis 	 4

2 OVERVIEW OF THE ROUTING CONCEPTS 	 6

2.1 Wormhole Routing 	 6

2.2 Deadlock in a Network 	 8

2.3 Routing Strategies 	 10

	

2.4 Up/Down Routing Technique 11

3 TPBR ALGORITHM AND ITS MATHEMATICAL MODEL 	 13

	

3.1 The Algorithm 13

	

3.2 Mathematical Model 16

4 ARCHITECTURAL DESIGN OF THE CHIP 	 20

4.1 Overview of the system 	 20

	

4.2 Architecture of the Chip 22

4.3 Token Unit Design 	 23

4.4 Turn Prohibition Unit 	 27

4.5 Routing Table Construction 	 30

4.5.1 Mathematical Model for Table Construction 	 30

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5 THE VHDL MODEL FOR TURN PROHIBITION 	 34

5.1 Description of the Model 	 34

5.2 Simulation of the Model 	 38

6 SYNTHESIS OF THE MODEL 	 44

6.1 Synthesis Problems 	 44

6.2 Synthesis of the model with Cadence Ambit BuildGates 	 45

	

6.3 Post Synthesis Simulation 50

7 LAYOUTS 	 54

	

7.1 Place and Route with Cadence Silicon Ensemble 54

7.2 DRC and PE with Cadence IC 	 s8

8 CONCLUSIONS 	 60

APPENDIX A VHDL CODE 	 62

APPENDIX B TOP LEVEL VHDL CODE 	 84

REFERENCES 	 88

viii

LIST OF FIGURES

Figure	 Page

1.1 Design flow for implementing the TPBR algorithm on a chip 	 4

2.1 Wormhole Routing in a Network 	 6

2.2 Deadlock in a Network 	 8

2.3 Possible solutions for avoiding Deadlock 	 9

3.1 Network showing the connectivity to show continuity 	 17

4.1 Overview of the Workstation in a Network 	 20

4.2 A Network composed of TPBR routers 	 21

4.3 Architecture of the chip 	 22

4.4 Architecture of the Token Unit 	 24

4.5 Structure of the Data field in a type 1 packet 	 25

4.6 Data structure of each slot in a packet 25

4.7 State Transition Diagram for Token Unit 	 26

4.8 Entity of the Turn Prohibition Unit 	 27

4.9 Architecture of the Turn Prohibition Unit 	 28

5.1 Block Diagram for the model designed in VHDL 	 36

5.2 High-Level Timing Simulation for the mentioned sequential tasks 	 37

5.3 Timing Simulation contd after Figure 5.2 	 4I

5.4 Timing Simulation contd after Figure 5.3 	 42

5.5 Timing Simulation contd after Figure 5.4 	 43

6.I Optimized synthesis for the Turn Prohibition and Token Unit 	 47

6.2 Optimized synthesis for the Routing Table Unit 	 48

ix

LIST OF FIGURES
(Continued)

Figure	 Page

6.3 PKS showing the placement of all the cells 	 49

6.4 Post Synthesis Simulation for the model designed 	 51

6.5 Post Synthesis Simulation continued from Figure 6.4 	 52

6.6 Post Synthesis Simulation continued from Figure 6.5 53

7.1 Layout of a block without power stripes 	 56

7.2 Expansion of 'Block l'shown in Figure 7.1 	 56

7.3 Layout of the chip with Power and ground rails and striped in between 	 57

7.4 Expansion of 'Block l'shown in Figure 7.3 	 57

7.5 Cadence IC Design Flow 	 59

CHAPTER 1

INTRODUCTION

1.1 Applications and Importance of NOW

Over the past few years, networks with irregular topologies like the Network Of

Workstations (NOW) have become an alternative to the parallel multiprocessors. In order

to reduce the communication latency, memory requirements and achieve high bandwidth

in data communications, the NOW use wormhole routing. However wormhole routing is

very much prone to deadlocks as packets are allowed to hold one node while requesting

for others. Deadlock avoidance is the most critical issue while considering wormhole

networks. Deadlock is an undesired feature that should be avoided by any routing

protocol and algorithm because a lot of network resources will be wasted and the

performance of the network will be degraded due to the abuse of network resource by

deadlock routing. Therefore, design of deadlock-free routing protocols is important to the

performance of a NOW. Although NOW do not provide the computing power available

in multi-computers and multiprocessors, they meet the needs of a great variety of parallel

computing problems at a lower cost. By using the Turn Prohibition Based Routing

algorithm (TPBR), deadlocks in the networks can be avoided by eliminating the turns in

the networks. In wormhole routing each packet consists of a sequence of elementary flow

control units called flits. As long as the transmission route is free, flits are forwarded to

their destination in a pipelined manner. The main advantage compared to the store and

forward switching is that the latency is reduced since there is no need to wait for the end

of the packet before transmitting flits to the next node. However these contiguous flits in

1

2

a packet are always contained in the same or adjacent nodes of the network. This can

cause difficulties, as possibility of deadlock arises. Deadlock in the interconnection

network occurs when no message can advance towards its destination because the queues

of the message system are full. As the header flit advances along a specified route, the

subsequent flits follow up in a pipelined fashion. This technique provides for low

communication latency, almost independent of the distance between the source and the

destination. Whenever the header flit is blocked at an intermediate node by another

message, the remaining flits stop advancing thus blocking each other. When considering

wormhole routing it must either have an effective procedure of recovery after deadlocks

or must be deadlocks free which is implemented in the form of a protocol. To prevent

deadlocks the necessary and sufficient condition is to eliminate the cycles in a channel

dependency graph. This can be achieved by eliminating the turns in the graph, which will

form closed loops in the network. Even though there exists other algorithms than

implement the wormhole routing, the TPBR algorithm proves to be a better solution for

e-inating the deadlocks in the networks.

Networks of Workstations (NOW) are comprised of a collection of routers,

communication links and workstations in an irregular topology. They have been applied

as an alternative to parallel multiprocessors. In a NOW, the message routed through the

network is subject to deadlock, which means the path between source and destination

forms a loop. Therefore, by applying TPBR algorithm, deadlock can be broken and the

flexibility of routing can still be maintained because of the small number of prohibited

turns. However, in TPBR algorithm works as a centralized algorithm which needs

knowledge of the network topology to determine the prohibited turns. For decentralized

3

network equipment such as a router, it is difficult for it to get knowledge of the network

topology, especially for large-scale networks. In this thesis a protocol for TPBR

algorithm to be performed in a decentralized manner is shown, which is implemented on

a VLSI chip.

1.2 Design Flow of the TPBR Chip

In this thesis, a novel architecture of the TPBR algorithm is proposed, which will make

the Network Of Workstations deadlock free. This architecture will be the basis for

implementing the Turn Prohibition Based Routing algorithm in VHDL and designing an

ASIC. The design flow for implementing the algorithm as an ASIC is as shown in

Figure. 1.1. Mostly Cadence tools were used, except Model Sim for VHDL simulations

and HSPICE for spice simulations.

The VHDL model for the algorithm is compiled and simulated using Model Sim.

The VHDL model is synthesized using Cadence Ambit Bulidgates. The design is

synthesized, mapped to the cells in the library for timing calculations. The output from

this tool gives us a Verilog file, which has gate level design information, a GCF file,

which has timing information and a DEF file which has placement information.

The placement and Routing of the standard cells is done using Cadence Silicon

Ensemble. The design, placement and timing information is read from the above

produced files and timing driven routing is done. The DRC and parasitic extraction is

done in Cadence Virtuoso environment. The extracted spice file is simulated using

HSPICE.

4

Figure 1.1 Design flow for implementing the TPBR algorithm on a chip.

1.3 Outline of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 provides an overview of

Wormhole routing, Deadlocks in a network, various routing strategies present till date

and also the Up/Down routing technique. Chapter 3 provides a detailed description of the

TPBR algorithm and its advantages over Up/Down routing technique. Chapter 4

describes the proposed architecture of the chip and its various components. Chapter 5

describes the VHDL model and different implementation issues, and it includes the test

and the simulation results. Chapter 6 addresses the synthesis issues and problems

encountered during the synthesis and modifications of the actual VHDL model to make it

synthesizable. Then the simulations of the gate level verilog netlist after synthesis are

5

listed. Chapter 7 describes the physical layout and device level simulation of the final

layout. Chapter 8 concludes this thesis by summarizing the results of the work and

discussing alternative implementations for reducing the gate count.

CHAPTER 2

OVERVIEW OF ROUTING CONCEPTS

2.1 Wormhole Routing

Packets in a network can be transmitted in many ways, including one called wormhole

routing. In wormhole routing, packets are divided into smaller parts of equal size called

flits (= flow-control digit), which are then transmitted one by one, instead of transmitting

the packet as a whole. All the flits of the same packet follow the same path and cannot

overtake each other.

Figure 2.1 Wormhole Routing in a Network.

6

7

Furthermore, each node on the path of the packet can contain only one flit of that

packet and will always try to transmit it to the next node. Because the movement of the

packets resembles the movement of a worm, the packets sometimes are called worms

themselves. An illustration of how a packet moves through a network is given in

Figure. 2.1

In wormhole routing the following is done:

1. The source node starts transmitting the flits one by one to the next node, beginning

with the head of the packet.

2. The nodes on the path of the packet receive the flits, but can store only one flit at a

time. If a flit is present in a node, other flits cannot enter this node, which means that the

previous node cannot send its flit.

3. A node always tries to send the flit which it receives on to the following node, unless

the node itself is the destination node.

4. The destination node receives the flits one by one until the last flit of the packet has

been received.

It must be noted that, in wormhole routing, it is impossible for flits of another

packet to cross the path of the current packet. This means, that even if a node is empty,

flits of the other packet cannot use this node, unless the last flit of the current packet has

passed it. This characteristic of wormhole routing introduces a problem called deadlock.

8

2.2 Deadlock in a Network

Deadlock in a network occurs when packets are blocking each other, thus effectively

preventing them from moving to their desired destination.

Figure 2.2 Deadlock in a network.

In this Figure. 2.2, packet 4 tries too make a left turn at node B, but is being

blocked by packet 2, which tries to make a left turn at node A and is being blocked by

packet 1 and so on. It becomes clear, that these four packets are stuck and cannot move,

until something radically is being done, like randomly removing one of the four packets.

However, this cannot be the solution to the problem.

The packets in Figure. 2.2 block each other, because they all are using the same

kind of channel. A possible solution to the problem in Figure. 2.2 is given in Figure. 2.3.

9

In this Figure, the problem is being solved by introducing two kinds of channels. First,

there are the channels (dotted), which will be used by packet, which have made a turn,

and second, there are the channels (solid), which will be used by packets, which do not

have made a turn yet. Because the packets in the nodes A through D are assigned to

different kinds of channels, they will not block each other any longer.In the example

above, the solution was to introduce a new kind of channel, namely, the one if a packet

has to make a turn. However, the previous solution only works, if other parts of the

network can be neglected, and, if the following assumption holds: the packets in the

network only have a maximum of ONE turn to make.

Figure 2.3 Possible solutions for avoiding Deadlock [3].

10

2.3 Routing Strategies

In an intercommunication network, routing algorithms that are used for determining the

path to the destination node can be classified according to their:

• Number of destinations- Unicast: packets may have a single destination, Multicast:

packets may hay multiple destinations

• Place where routing decisions are taken- Centralized: by centralized controller,

Source: by the source node, Distributed: determined in a distributed manner while the

packet travels, Multiphase: hybrid, source node computes some destinations, path

established in a distributed manner. De-centralized: The source and destination is not

pre-determined.

• Way of implementation- Table-Lookup: looking at a routing table, Finite-State

Machine: executing a routing algorithm in software or hardware according to a finite-

state machine

• Adaptivity- Deterministic: always supply the same path between a source/destination

pair,Adaptive: use information about network traffic and/or channel status to avoid

congested or faulty regions of the network. Non-deterministic: can be of any path

• Progressiveness- Progressive: move the header forward, reserving a new channel at

each routing operation, Backtracking: allow header to backtrack, releasing previously

reserved channels (used for fault-tolerant routing)

• Minimality- Profitable (minimal): supply channels that bring the packet closer to its

destination, Misrouting(non-minimal): may also supply channels that send the packet

away from its destination

• Number of alternative paths- Fully Adaptive, Partially Adaptive, Non -Adaptive.

11

2.4 UP/DOWN routing technique

In Up/Down routing, one of the nodes is chosen arbitrarily as the root of a tree and all

links of the topology are designated as 'up' or 'down' links with respect to this root. The

'up'/' down' state of a link is relative to a spanning tree computed in the background by a

distributed algorithm. A link is 'up' if it points from a lower to a higher level node in the

tree (i.e, to a node at a lesser distance from the root). Otherwise, it is 'down'. For nodes at

the same level, node IDs breaks the tie. The routing from a source to a destination is done

in such a fashion that zero or more 'up' links (towards the root) are traversed before zero

or more 'down' links are traversed (away from the root) in order to reach the destination.

This prevents circular waits and thus the routing is deadlock-free.

Myrinet runs a 'mapping' algorithm that computes the current topology in the

background. Myrinet uses up/down routing to build these paths [9]. Although the original

distributed up/down routing scheme provides partial adaptivity, in Myrinet only one of

the routes is selected to be included into the routing table, thus resulting in a deterministic

routing algorithm. On the other hand, many paths provided by the up/down routing are

non-minimal on certain networks. Myrinet uses up/down routing to build network routes.

Up/down routing is based on an assignment of direction to the operational links. To do

so, spanning tree is computed and then, the "up" end of each link is defined as:

• The end whose switch is closer to the root in the spanning tree;

• The end whose switch has the lower ID, if both ends are at switches at the same tree

level.

12

The result of this assignment is that each cycle in the network has at least one link in

the "up" direction and one link in the "down" direction. To eliminate deadlocks while

still allowing all links to be used, this routing uses the following up/down rule:

A legal route must traverse zero or more links in the "up" direction followed by zero or

more links in the "down" direction. Thus, cyclic dependencies between channels are

avoided because a message cannot traverse a link along the "up" direction after having

traversed one in the "down" direction.

Up/down routing can supply several valid routes between two network hosts and, in some

cases,there exist more than one shortest up/down route. Therefore, it is stored in the table

a set of routes for each source-destination pair, including the best ones, and selecting one

of them according to some criteria [5].

The following path selection algorithms:

• OSUD (One Shortest Up/Down path): Always the same shortest up/down path. This

is the current routing policy used in Myrinet.

• RSUD (Random Shortest Up/Down path): Randomly selection among all the shortest

up/down paths.

• RRSUD (Round-Robin Shortest Up/Down path): Round-robin selection among all the

shortest up/down paths.

• PUD (Probabilistic Up/Down path): 80% of selected paths using RSUD, and 20%

randomly chosen among up/down paths that are one hop longer than the shortest

up/down path. Even though Up/Down routing technique is being used nowadays and

is proved advantageous in regular networks, it fails to eliminate deadlocks when used

in Wormhole networks.

CHAPTER 3

TPBR ALGORITHM AND ITS MATHEMATICAL MODEL

3.1 The Algorithm

In wormhole routing, a router begins forwarding a packet as soon as the header is

received and the required channel buffer in the next router can accept one or more flits of

the packet. Flits are transmitted from one router to the next in a pipelined fashion and

may occupy several channels along the path from source to destination. Only the header

flit of a packet contains information required for routing. If the header flit is blocked

because the required buffer in the next router along it's path is full, all of the flits in the

packet are blocked. Design of efficient deadlock-free routing algorithms in irregular

topologies introduces new challenges.

The steps involved in the algorithm are:

1) Finding out the number of turns in the network.

2) Prohibiting some of the turns in a network over the nodes, this still can make the tree

connected.

3) Drawing a spanning tree based on the nodes through which turns are not e-inated.

4) Getting the route from source to the destination.

Now let us consider the prohibition of the some of the turns in a network. Here it is

assumed that a network consists of N nodes connected by E edges, constituting a graph

G. A node is considered as the router component of the processor-router pair In order to

tackle the problem of deadlock, the TPBR algorithm is used to eliminate the number of

turns in a network. Every routing algorithm prohibits some of the turns in network graph .

A turn (a, b, c) is a three-tuple of nodes such that (a, b) and (b, c) are edges in the

13

14

network graph G. In order to correctly model existing switch based networks such as

Myrinet, it is assumed that G is symmetric, i.e. if (a, b) is an edge in G, then (b, a) is also

an edge in the network.

At the first step, a node with the minimal degree is selected and labeled as node 1.

If after deletion from G of node 1 and all edges neighboring node 1, the remaining graph

G-1 is still connected, then all d (d -1)/2 turns like (a, 1, b) are prohibited and all turns (1,

b, c) are permitted where d is the degree of the node. If after deletion from G of node I

and all edges adjacent to node 1 the remaining graph G-1 consists of disconnected sub

graphs G1...Gs, (this procedure is used also for s=1) then select nodes al ... as (called tree

nodes) such that ai is a node of Gi and (ai, I) is an edge in G. All edges (ai, 1) are added

to the spanning tree. All constructed tree nodes, except one, are added to the set of basic

nodes B (initially B=0). At the next step the procedure is repeated to the remaining

graph G-1, labeling non-basic node with a minimal degree by 2. At each step, basic

nodes are selected in such a way, that every component of connectivity has only one

basic node. Process is completed, when all nodes are labeled.

Implementing TPBR algorithm in a distributed way which is a requirement of

today's' network equipments comes into two aspects. Firstly start the turn prohibition

from the node which has minimal (d a2-2)/Σ (d i-1) where da is the degree of the node that

is to be considered d i is the degree of the ithsurrounding node. However, each node does

not have any idea on the degree of other nodes in the network. Secondly each node does

not have a big picture of the topology of the network, therefore, it is unable to know if a

turn is removed from that node, the rest of the network is still connected or not.

15

To address these problems, a protocol based on the TPBR algorithm is developed, which

involves three steps.

Step 1: Calculation of (da2-2)/ Σ (di -1).

a. Each node broadcasts its degree to its neighboring nodes.

b. When a node receives the degree value from other nodes, it stores it.

c. When a node gets knowledge of all the nodes neighboring to it, then it will perform a

sorting algorithm and determine which turn has to be prohibited.

Step 2: Turn prohibition unit.

a. Each time there is only one node in the entire network, which is trying to determine its

prohibited turn.

b. Components of connectivity are constructed in the graph without the selected node.

Then it makes an edge special if any, by checking if there is a discontinuity in the graph.

The node, which is connected to special edge other than selected node, is marked as

special node.

c. TPBR algorithm doesn't select the special node.

d. Likewise the algorithm is carried out recursively until all the nodes are evaluated.

Step 3: Routing table construction.

a. In our TPBR protocol, the Bell-Ford algorithm is extended because it has better

decentralized feature than the Dijkstra's algorithm.

b. After each node determines its prohibited turn, then a routing table is constructed. This

can be achieved by extending any routing algorithm such as Dijkstra's algorithm or Bell-

Ford algorithm. The prohibited turns should be take into account, therefore some paths

16

cannot be taken even though they have a shorter distance, due to the existence of

prohibited turns.

3.2 Mathematical Model

Assume that the original network consists of N nodes, connected by E edges. Also

assume that all nodes are connected (for any two nodes there exists a path between them).

In the general case network graph G can be considered as a multigraph with several edges

between two nodes. In particular, if V virtual networks are used, any two nodes are

connected either by 0, or by V edges.

The total number of turns in T=Σ(di (di - 1))/2, where di is a degree (number of

neighbors) of node i. For example, for the up/down routing a spanning tree for G is

constructed, nodes are labeled preserving the partial order defined by the tree (the root

has label 1) and turn (a,b,c) is prohibited if b>a and b>c.

It is seen that the results on lower and upper bounds on fractions z=z(N, E) of

turns which have to be prohibited to prevent deadlocks in a given network graph [2,3,7].

The proposed upper bound is constructive, i.e. its proof generates a simple algorithm (its

is called z-algorithm) for construction of a tree and labeling of nodes by 1,2, ...,N such

that turn (a, b, c) is prohibited iff at least one of the edges (a, b) or (b, c) does not belong to

the tree and a>b and c> b.

Denote by Z(N,E) a minimal fraction of prohibited turns for prevention of deadlocks in

network graph G with N nodes and E edges. Let di be a number of neighbors

(degree) of node i and T be the total number of turns 2E = S(i=1 to N)d(i),

T=S(i=1 to N)d(i)*(d(i- I)/2

17

The following lower bounds for Z(N,E) [10] will be useful to estimate

performances of the routing strategies that will be described later. First note, that

Z(N,E) ≥ (E-N+1)/T (Bound A). This bound follows from the fact that there are b = E-

N+1 linearly independent cycles in G and each one of these cycles has to contain at least

one prohibited turn to prevent deadlocks.

Figure 3.1 Network showing the connectivity to show continuity.

For the example shown in Figure. 3.1 it can be seen that N=10, E=17, T=44 and by

Z(N,E)>=8/44. Let C={C1, ... CR} be a system of cycles in G and m is a maximal

number of cycles from C containing the same turn[1,2].

Then Z(N,E) R/mT (Bound B). If m=1, then Z(N,E) ≥ R/T, where Ris a

maximal number of cycles in the network graph such that every turn belongs to at most

one cycle. one can select as C the system of all 9 triangles and one cycle of length 5

(R=10). In this case cycles don't have common turns (m=I), and by Z(N,E)≥ 10/44.

Bound A is useful when a number of cycles in G is small and Bound B can be used for a

networks with large numbers of cycles.

Let us now consider graph G=(V,E), with I =N nodes (denoted by

connected by I El =M edges (denoted by (a, b) etc.) Considering the non-oriented case, so

(a,b)=(b,a). Without losing generality, assume that all nodes are connected (for any two

nodes there exist a path between them). If this is not the case, also consider all

18

components of connectivity separately. A path P=(v0,v1,...,vL) of length L (L_I) from

node a to node b in G is a sequence of (not necessarily different) nodes v i e V, such that

v0=a, vL=b, and every two subsequent nodes are connected by an edge, and every

ordered pair of subsequent nodes appears exactly once. Length L of the path is the

number of edges, included in it. Set W of turns in G is called cycle breaking (11,12,13) if

every cycle in G is covered by at least one turn from W. A solution is presented below a

for the problem of finding in a given graph a minimal cycle-breaking set of turns. Cycle-

breaking set of turns W is called irreducible, if there are no cycle-breaking subsets of W,

which are not equal to W. (Also note that not every irreducible cycle-breaking set is a

minimal one).

For example, for 2d pxp meshes N=p2 , M=2(p-1)p ,

T(G)= 6(p -2) 2 + 12(p - 2) + 4,

z(G) ≥ p2-2p+1/6p2-12p+4, and the lower bound for z(G) in this case is close to 1/6 for large

meshes [1]. (Note that for the North-Last algorithm and 2-d meshes the fraction of

prohibited turns is equal to lower bound 1, which proves optimality of the North-Last

algorithm.)

For the example as in Figure. 3.1, N=10, M=17, T(G)=44 and by bound 1, z(G)≥8/44.

If r=1, then according to bound 2, z(G) R/ T(G), where R is a maximal number of cycles

in the G with disjoint sets of turns. For the example shown in Figure. 3.1 one can select

as C the system of all 9 triangles and one cycle of length 5 (R=10). In this case cycles

have no common turns (r=1), and by bound 2, z(G) 10/44.

19

Bound 1 is useful when a number of cycles in G is small and bound 2 can be used for

graphs with large numbers of cycles. To generalize bound 2, Denote for system C of R

cycles by rj , the number of cycles covered by turn j and assume that r1 ≥ r2 ≥ ... ≥ rT. Then

Z(G) should satisfy the following condition: Σ z(G)i=1 ri≥R[3]. By this it can be said that the
1=1

TPBR algorithm gives us a optimal set of prohibited turns which will be good enough to

keep the network deadlock free. This model helps us to determine the set of turns, but the

set of turns got is not irreducible but is optimal.

CHAPTER 4

ARCHITECTURAL DESIGN OF THE CHIP

4.1 Overview of the System

The proposed VLSI architectural design of the whole chip is discussed in this section.

Figure. 4.1 gives an overview of the whole system, which can be considered as a single

node in an irregular network..

Figure 4.1 Overview of the Workstation in a Network.

20

21

As 4-port router is taken into consideration, therefore four network interface cards for

each router is taken, which means that four systems can be connected to each of the

workstation thus enabling each of the workstation to perform in a parallel fashion thus

using the concept of the parallel multiprocessors. The Central Processing Unit (CPU) of

the workstation is linked to the Turn Prohibition Based Routing (TPBR) chip, which

decides the route the packet should take from the source to the destination keeping the

prohibited turns into consideration.

The TPBR chip is responsible for running the proposed TPBR protocol. When the

protocol running is finished, the routing table will be stored in the memory. Then CPU

can utilize the routing information to receive and transmit message in the networks. A

typical network composed of such routers is shown in Figure. 4.2

Figure 4.2 A Network composed of TPBR routers.

22

4.2 Architecture of the chip

This chip is the controller of the router, so this chip has data bus, address bus, clock

signal and some control signals such as reset, chip select (cs), interrupt signals (int_req)

and interrupt acknowledge signals (int_ack), read and write signals (rw) as shown in

Figure. 4.3. In order to get the local information of the decentralized router, the chip has

port status input signals, it can be used to detect which port of the router, (also assume

each router has four ports) is connected with other neighbor routers. Since each router has

its own node id which is used to be identified by itself and located by others. Assign 4 bit

input signal for node_id (3..0). Reset signal is used only during initialization or system

failure. Figure. 4.3 demonstrates the architecture of the TPBR chip, which is mainly

divided into three sub parts, which individually takes care of a specific function for

determining the prohibited turns and thus making the network deadlock free.

Figure 4.3 Architecture of the chip.

23

These three parts are invoked sequentially one after the other starting from the

token unit then the prohibition unit and finally the routing table construction unit. After

the process is completed then the routing table will have the route from each particular

source to all the other nodes in the network.

4.3 Token Unit Design

The architecture of the token unit is shown in Figure. 4.4. In protocol step 1, each node

needs to claim its degree in the network. This information needs to be broadcasted in the

entire network. This is the important step in the process of Turn Prohibition, as each node

should be aware when and on what all nodes the TPBR has to be run. By giving each

node an identity, the nodes will run the algorithm in the way they were assigned the

numbers. Only the 'node 0' should be able to claim its degree in a packet type so that is

set as 1. Other nodes simply wait for the first packet. The data structure of data field in

type 1 packet is shown in Figure. 4.5.

Each node in type 1 packet has a fixed slot for it to claim its own degree

information. Whenever it receives a type 1 packet, it checks whether every node has

claimed its degree in the packet. This is accomplished by checking the counter field,

which is incremented by the node when it provides its degree information in its slot as

shown in Figure. 4.5. The W bit is used to check whether a node has claimed its degree in

this packet. If every node has claimed the degree in the packet, the node that receives the

packet will check the R bit in its slot. Based on the functionality of the token unit, it is

divided it into several sub-parts, such as interrupt_ unit, port controller, core_logic unit,

transmit unit and receive unit as shown in Figure. 4.4. Core_logic unit is an essential unit

24

of this token unit. It is used as the main frame of the design. The transmit and receive

process is used to send and receive the packets which will be broadcasted in the network.

Figure 4.4 Architecture of the Token Unit.

The above protocol design for the Token Unit can be seen in Figure. 4.7 in the

form of state transition diagram. In startup state, the chip will be initialized, which

includes initializing the registers inside the chip, getting the node_id and also the

port_status. In trans_ini state, a packet will be formed according to the format of the

packet, which is 16-byte long, and then transmitting it to all the nodes, which are

connected with 'node 0'. Only 'node 0' will enter this state. In trans_spec state, after

receiving a packet whose type code is 0, the state machine will enter the trans_spec state.

It will transmit a packet to other nodes. In the transmit state, it is in charge of transmitting

R (Read) (1 bit) W (Write) (1 bit) Degree of the Node (2 bits)

25

packets to the outside node. In the waiting state, the node will simply wait for an

incoming packet and when a packet comes, check its type. If packet is type 0, it will go to

trans_spec state; if type 1, it will go to Receive state. In the Receive state, the process will

perform the data field check and perform the protocol as described in Figure.4.5 and

Figure. 4.6.

Counter (8 bit) Degree of Node 0 Degree of Node 1 Degree of Node 2

Figure 4.5 Structure of a data field in a type 1 packet.

Figure 4.6 Data structure of each slot in a packet.

In the Token Unit, the Interrupt Unit controls the four interrupts from the outside

port and generates the interrupt signal to the receive unit and also generates port number

for receive unit. It receives the interrupt_ack signal from the receive unit. After interrupt

unit gets the interupt_ack signal it begins to wait for a new interrupt from the other port.

The Receive Unit gets signal from Interrupt unit and outputs the signal and data to Core

Logic unit. After getting the interrupt signal from interrupt unit, receive unit checks

which port has data and controls the address bus, data bus , r/w and cs signal to receive

data from that port. After receiving data it generates the receive_data and port number

signal for the Core Logic and then waits until Core Logic unit sends the rxd_ack signal

26

back to receive unit, and sets the mode to active. Transmit Unit get signal from Core

Logic and transmit data to the outside port. After transmitting the data it gives back a

txd_ ack signal to the Core Logic. After the process is done then the transmit unit will

wait for new data to transmit.

Figure 4.7 State Transition Diagram for the Token Unit.

27

4.4 Turn Prohibition Unit

In this block, as in the case of most routing algorithms certain turns in the network graph

are prohibited. Consider a turn (a, b, c). The turns (a, b, c) and (c, b, a) are prohibited if

some other path exists between nodes 'a' and 'c'. To implement this, a flat packet is

broadcasted from all the ports of the node. Components of connectivity are constructed in

the graph without the selected node. Then it makes an edge special if any, by checking if

there is a discontinuity in the graph. The node, which is connected to special edge other

than the selected node, is marked as special node. As seen in the Figure. 4.8, this block

gets the 'enable' signal and 'token' from block1, which is the Token Unit. The final

output of this block is the P-matrix, which is written to the memory.

Figure 4.8 Entity of the Turn Prohibition Unit.

28

This block also has interface with the 'address' and 'data' buses for reading and

writing data. The 'interrupts' and 'interrupts ack' ports are for synchronizing this block

with the IO drivers. This block gets its node number from the 'node num' port. The `buf

read' and `buf write' will determine the type of I0 operation to be performed.

TPBR algorithm doesn't select the special node. After a node recognizes that one

of its neighbor is a special node, then it broadcasts a packet to that node indicating the

node is special, and then the node will not run the TPBR algorithm. If the received packet

is the token release packet from the node with the preceding token then it is checked

whether the broadcasting of the flat packets is done previously. If not, it is completed and

will wait again for the interrupts.

Figure 4.9 Architecture of the Turn Prohibition Unit.

29

As seen in Figure. 4.9 the Turn prohibition unit consists of 3 main parts start &

control, the turn prohibition unit, I/O memory block. The startup unit receives the

`enable' and the 'token' signal. When 'enable' is 'high', making 'prohibit_enable' high

turns on the whole block. Making 'prohibit_enable' low after the token is released again

turns off the whole block. If prohibit_enable is 'I', broadcast packet is request by making

broadcast_packet_req 'high' and the flat packets are broadcasted by the appropriate

process. After the flat packets are broadcasted the timeout process is enabled and waits

for a time of 6 I/O operations and after the time is elapsed the `timeout' signal is made

`high'. If after the IO is enabled, the interrupts are checked and the one with the highest

priority is serviced first. The same process is used for memory write after the token

release packet is broadcasted that is the token_relsd is 'high'. The third block of the Turn

Prohibition unit is the core unit of the whole chip, which mainly deals with the Turn

Prohibition. This block has three sub-parts, one is the packet broadcast part, which

broadcasts the appropriate packets in response to the broadcast packet request, and

broadcasts to different ports depending upon the request arrived. The second sub-part is

the prohibition part, which runs the TPBR algorithm so as to find the turns to be

prohibited. In the process of e-inating the turns, at some time the algorithm recognizes

some of the nodes to be special which means that the node which is special, should not

run the TPBR algorithm. In order to keep track of the special nodes identified by a

particular node (system), a memory module is used which stores the identity of the

special node. After the whole process of Turn Prohibition is completed, the special node

identity stored in the memory is recalled and is intimated to that corresponding node, so

that the special node does not run the TPBR algorithm.

30

4.5 Routing Table Construction

In this section, a decentralized algorithm is described for the construction of local routing

tables (for a given set of prohibited turns Z (G)) minimizing average path length and

average delivery time. Assume that Z (G) is already constructed. For a given source s and

destination d our goal is to select the shortest routing path al ...am (a1=s, am=d) among

all paths, satisfying the routing restrictions (not including turns from Z (G)) . For any

intermediate node i the algorithm estimates the length of the shortest permitted path

between neighbors of i and the destination, and routes the message to neighbor j with the

lowest estimated path's length (providing that the corresponding turns in i and j are

permitted). Assume that every node has up to d neighbors ("node" here is the router

component of the processor-router pair). Hence, it would have up to d+1 input/output

buffer, including the buffers for the consumption channel to the processor.

Initially, every router knows the set of turns, which are permitted, and which are

prohibited in this router. After the implementation of the TPBR algorithm, all the nodes

in the network broadcasts their turns which are either permitted or prohibited through

them to all the other nodes in the network by flooding a packet.

4.5.1 Mathematical model for Table Construction

This can be represented by (d+1) x (d+1) matrix P, such that P (i, j)=1 if the turn from

input buffer i to the output buffer j is permitted and i{0,...,d} (case i (or j) =0 corresponds

to the consumption channel). It follows from the TPBR-algorithm that matrix P has the

following properties:

31

1) It is symmetrical, i.e. P(i ,j)=	 ,i);

2) P (0,i)=1, P (i, 0)=1.

For every node routing matrices R(i,k) and D(i,k) are constructed, where i{ 0, ...,d},

k{1, ...,N}, N is the number of nodes. R (i, k) = j, if a message, coming from input port i

to destination node k, should be routed to output port j. Elements of R take values from 0

to d. D (i,k) is the length (number of hops) on the path from input buffer i to destination

node k. Matrix D is used at the pre-routing stage only, while matrix R is used for on-line

routing. The total memory required to store these matrices is of the order of 2(d+I) N.For

d=4, N=1,000 it is around 10K; hence a hardware implementation for this algorithm is

feasible. Ra and Da for node a are initialized as: Ra(i,j)=X, Ra(i,a)=0, Da (i,j)=X, Da

(i, a)=0. (Assign X as a special value, corresponding to the undetermined case) At each

step, elements of Ra and Da are recalculated, using matrices RI ...Rd, D 1 ... Dd of

neighbors/ ... d of node a. After t steps all paths of length up to t hops will be determined.

The rule for step t (initially, t=I) is the following:

If Ra (i, j) =X then for all m, such that P (i, m)=1 (the turn from i to m is permitted, node

m is a neighbor of node a)

If Dm (y,i)=t-1, then { Ra 	; Da (i,j):=t } (Here y is the input port for node m,

which corresponds to the neighboring node a).

For the hardware realization, at each step t every node should transmit to its

neighbors, messages with numbers i, such that Dm (y, i) =t-1. During the whole pre-

routing procedure, up to N such numbers can be sent by every link. The algorithm is

terminated after L steps, where L is the maximal possible length of a minimal permitted

32

path between two nodes, or if at some step t no changes have been made in any of the

matrices.

It is noted that the proposed algorithm can be used to construct a set of shortest

paths for any given set of prohibited turns, which will increase the efficiency of the

network. The objective is to find the shortest path from any node to any node in the

network. To calculate this the following assumptions are made.

1) It is assumed that the links between nodes are full duplex, which means that there

exists a two-way communication between the two nodes.

2) Data can be back routed; i.e., if data is received on port, it can be transmitted back on

the same port.

3) A P(i,j) vector will be formed after the execution of the second block, if P(i,j)= '0'

then the turn is prohibited.

4) Each node will be labeled and each node as an entity knows its' own label which is

unique in the network.

For examples, each port will be labeled with a number and each Node with a letter. Port 0

is reserved for the local machine. Now let us consider the steps for finding the shortest

path taking the above assumptions into consideration.

1) Initialize arrays 'D (5xI6)' and a (5x16)'and zero counter. Through reset signal

a) A counter is initialized to a count of "0".

b) Values in 'D (i, a)' `R (i, a) are set to '0', where 'a' is the node ID. This is the

local machine. All other elements for Array 'D' and 'R' are initialized to 255.

This assumes 8-bit value, for implementations sake.

33

Notes: For example, node B will set 'D (i, B)' and `R (i , a) = '0'. Array 'D' is the

distance vector. Array 'R' is the routing table vector. The wait period is determined by

network latency.

2) Advance time counter by 1, i.e., t = t+1'

3) Update `R. (i, k)' using information from `D (i, k)'. If 'D (i, k)' = t-1, (i, j)' = '1'

and `R (i, k)' = '255' then write T into `R (i, k)'.

4) Make only ONE write to any location in array 'R'. This is accomplished by checking

for the default state. The first write made to 'R' is the shortest possible route to

destination node k though port i.

a) Read T (k) from port Pr and update D (i, k). Receive message from neighbor

and Place in local 'T (k)' array. Update Array 'D (Pr, k)' with 't' if 'T (k)' = 't-

1', Where, Pr is the local receive port ID.

Notes: Each message received on a port may or may not update element(s) in Array 'D'.

Suppose, Node 'A' received Array 'T (k)' from Node 'B' on Port '4'. Port 4 will cause

an update elements 'D (4, k)' if 'T (k)' = t-1.

b) Build message from 'D (i, k)' array and transmit to neighbor.

Notes: To build the message for transmit check down the columns of the 'D' array. The

`D' array specifies the "hops" to a destination node. For example, if a column 'k' has the

value of 't-1' then it can be said that destination node k is 't-1' hops away, which also

means that all ports of this node see node k as 't-1' hops away, if the turn is allowed. If

the turn is not allowed, write '255'. All this information must be put in the Tx message.

The Tx message will be an array T (1X16).

CHAPTER 5

THE VHDL MODEL FOR TURN PROHIBITION

5.1 Description of the Model

The high level simulation module for the architecture discussed in the previous chapter is

simulated and tested in VHDL. The basic architectural module underlying the behavioral

process consists of 3 sequential units namely token unit, prohibition check and routing

table construction. Each of the unit's output is fed as an input to the following unit, which

determines its function based the input fed from the previous unit. The system level

module consists of various tasks performed at different points of time. They are

mentioned below along with the inputs and the outputs. The chip is checked for its

sequential execution, which assumes that the Enable signal to be 'high', and also the

token is assigned a certain value which can be the identity of the node. Also all the

possible interrupts are made 'low', so as to confirm whether the prohibition unit takes the

control of the chip after the token unit has completed its computation of the assigning the

nodes with an identity. Here the architecture is verified keeping in mind that the nodes

already have an identity assigned to them, which means to say that the prohibition unit is

mainly targeted for the efficient performance to verify the architecture.

The block diagram for the model designed in VHDL is as shown in Figure. 5.1.

This has three blocks basically which are the three main blocks discussed in the

architecture namely the Token Unit, Prohibition Unit and the Routing Table Unit. As can

be seen each block within the three main blocks has been divided into many sequential

34

35

sub-blocks. Each sub-block does a unique function, which is described in the

architecture.

The Token Unit block has? sub-blocks. The whole process starts when the Node

id and the port status are known. The first sub-block namely the state machine calculates

the minimum value of the (da2-2)/Σ (d i-1) based on the information from all the

neighboring nodes. After this is done then the transmit process is invoked where in the

result to be sent out to the neighboring nodes is ready. Then the block waits and checks if

there are any interrupts from the nodes nearing it. This is taken care of by the interrupt

arbitration block. Based on the interrupt then either a transmit or a receive process is

invoked. After the interrupts are checked, data bus arbitration takes place so as to make to

the bus available for the data. Finally the chip select is generated which will basically set

the enable signal high and also restores the token, which will enable the Turn Prohibition

Unit.

In the Turn Prohibition Unit, the enable and the token is checked by the prohibit

and the token processes. Then interrupt control checks for any of the external interrupts

and the I/O control checks for the interrupts due to data or the address coming from the

other nodes in the network. The next sub-block, which is the bus arbitrator, does the

similar function as the one in the Token Unit. In fact the same block is invoked at

different points of time depending on the necessity. The packet broadcast block takes care

of formulating the packet and also has the information as to which turn is prohibited and

which turn is permitted so that the neighboring nodes will have an idea on the turns in the

network. The time out process is used as a counter within which the process has to be

completed.

36

The Routing Table block gets the input from the Turn Prohibition block, which

has mainly the information regarding the ports, which are permitted and the ports, which

are not permitted. This information will be in the form of a 16 bit data. Then the table is

formulated; this formulation is done initially for the first time. Only updating and reading

from the records are done all the time. The build table block is done after updating each

record, so that only final table will be stored and that will be used as a reference.

Figure 5.1 Block Diagram for the model designed in VHDL.

37

Figure 5.2 High-level timing simulations for the mentioned sequential tasks.

38

5.2 Simulation of the Model

As can be seen from Figure. 5.2, enable is '1' at Ons. Therefore after 1 clock cycle

that is 100ns prohibit enable is '1' and the whole block is turned on by this signal. Here

the node number is 3, which means the node which is acted upon is 3 and the token is 5,

which means it's the fifth node in the network. With this the buf read signal also

becomes high but since there is no interrupt at that time I0 process doesn't start. After

100ns it senses the 'interrupt 0' to be 1, and with 'io_enable' being 1 at 200ns the I0

process is started. 'Interrupt Ack 0' is made 1 at 100ns. Also 'bus assign' is high at I00ns

since the 'Interrupt 0' is high at Ons. Since only 'Interrupt 0' is high, all the other

interrupts namely Interrupt 1, Interrupt 2, Interrupt 3 are all 0. This is to make sure that

only interrupt is being handled at this time. After 1 more clock cycle that is at 300ns

`buf_read' is high and at 400ns data is read into 'packet_reg1, which can be clearly

noticed from the change at 400ns in the 'packet register1 ' signal. Signals like 'buffer

write', 'broadcast to diff ports' are undefined because only the read operation is taking

place at this time. 'Packet register 2' is also undefined because the data that is being read

to the 'packet register 1' and also the prohibition process is not yet completed. Signals

like 'Port in', 'Port out', are undefined as far as Figure. 5.2 is concerned because the

process is not yet completed whereas signals like 'Matrix for updation', 'all ports' have

still 0's because the table is not formed yet.

From Figure. 5.3 notice that, there is a change in 'data', 'addr, 'buf_read' and

`packet_reg1 ' till 2100ns. This shows that the packet in the buffer is read 16 bits at a time

into a register for further examination. This packet can be token release packet or a

packet having the information about the other node in the network. Also notice that the

39

signals 'Port in', 'Port out', 'Matrix for updation' are all initially set to the '0', but the

`port in' signal gets a value '00' at 1I00 ns indicating that the data which is going to be

processed is coming from "Port 0". Therefore it is noticed that at 1000 ns, the 'Interrupt

0' has become low and after 1 clock cycle that particular interrupt is acknowledged which

can be seen at 1100 ns. Now also notice that the signal 'bus assign' has become low at

1100 ns indicating that the data to be processed is fed into the 'packet register I', so at

the same time the 'packet examine' goes 'high' indicating that the prohibition unit has

taken control of the incoming data. At 1200 ns it can be seen that the 'packet examine

complete' signal is high indicating that the process is over and so at the next clock cycle

which is at 1300 ns it can be seen that all the ports other than port 00 are intimated

regarding the interrupts, which means that the module is now in the process of Table

formulation and will not process any interrupts from the other ports. Signals 'interrupt 1',

`interrupt 2', 'interrupt 3' all remain low because only one interrupt that is 'interrupt 0' is

taken into consideration for ease of understanding.

In Figure. 5.4, after the Data is read, the 'Bus assign' signal becomes low

indicating that all the Data is read from the bus. At the same instance 'Packet examine'

signal goes high, which marks the starting of the actual process of turn prohibition. It can

also be seen that the 'Port in' signal has got a value indicating that the packet is got from

the Port '00'. 2 clock cycles after the 'Packet examine ' is high, a change in the signal

`Packet register 2' is seen, indicating that the data present in the 'packet register I' is

being acted upon and is finally put in 'Packet register 2'. At the same time the 'interrupt

write out' is high indicating that the data is ready to be sent out, also it can be noticed that

the 'Port out' signal has changed its value to '01' at 1400 ns, indicating that the data is to

40

be sent out through the Port 1. Now the data in the 'packet register 2' is sent out through

Port I. In this figure 'prohibit enable' and 'IO enable' remain high as the process is still

in progress.

The continuation of Figure. 5.4 is shown in Figure. 5.5, wherein it can be seen

that the packet register 2 has been updated with the data present in the 'packet register 1',

indicating that the data is ready to be fed out to the main bus which will be sent through

the port 1. Also it can be seen that the data signal has again gone back to the undefined

state indicating that it is ready for the next I0 process. After the last data packet is fed

into the 'packet register 2', the 'bus assign' goes low indicating that the bus is free for

data transfer which can be seen at 2200 ns. After the data has been moved to the 'packet

register 2', the 'buffer write' signal which was undefined so far becomes high indicating

that the data is ready to be fed out. In this process the interrupt write out and its

acknowledge shows the transition. Now from the whole process it can be noticed that the

`port in' is port 0 and the 'port out' is port 1, and since the algorithm for turn prohibition

has recognized that this particular turn doesn't pose any problems as far as deadlock is

concerned, the matrix is now updated which will mainly have the permitted turns at l's in

the matrix and prohibited ones as 0's. This can clearly be seen from the signal 'Matrix for

updation' wherein there is a 1 in the first set of 4 bit s and also a 1 in the next set of 4

bits, indicating that the turn from port 00 to port 01 is permitted.

41

Figure 5.3 Timing simulation continued after Figure. 5.2.

42

Figure 5.4 Timing simulation continued after Figure. 5.3.

Figure 5.5 Timing simulation continued after Figure. 5.4.

CHAPTER 6

SYNTHESIS OF THE MODEL

6.1 Synthesis Problems

The VHDL model is synthesized with Cadence Ambit Bulidgates. However, it was not

synthesizable first up as the build gates didn't support multiple wait statements in a

process and also the event scheduling on signals. Therefore the model had to be modified

keeping these in mind.

Only clock'event was synthesizable and this event could be used once in a process.

Therefore checking the condition for every rising or falling edge of a clock was a difficult

task. The model was changed accordingly so that at the beginning of every process the

rising edge of the clock is checked and whenever there is an event desired either the

rising edge or the falling edge, a flag is made high and this flag was being checked

periodically when there was a necessity for a conditon to be checked at the rising or

falling edge of the clock. Also mathematical functions like square root was not supported

by the buil gates, so whenever square root was necessary, the squares of the signal had to

be taken and calculated for results. There was also problem due to insufficient memory

which resulted in disintegrating the blocks into smaller sizes. Power optimization is not

supported by the Build gates. Only the blocks could be optimized for Area and Timing.

In Build Gates we first build the generic and then optimize the generic for Area and

Time. Then the generic is built, the verilog netlist is created, which will have the cell

structures of ATL and XATL formats. These formats are further disintegrated to the

44

45

Nand, Nor And, Or, Mux, Latch, Flip Flop and other basic components during

Optimization. The problem was that during disintegration, some of the cells in the

generic like ATL_TRI ,ATL_DC couldn't be disintegrated further down into one of the

basic components. This created a problem in Silicon Ensemble as these ATL cells were

not recognized. Therefore back tracking had to be done to see which process had created

the ATL cells and the process had to be modified keeping the functionality in picture.

In the synthesis, the design was mapped to TSMC 0.351„t technology standard cells

generated by CMC. A total of 1 million gates resulted after optimizing it with strict area

and time constraints. The design was optimized with area as priority. The optimization

was done with Physically Knowledgeable Synthesis (PKS) option where the cells are

physically placed for calculating the parasitic capacitances.

6.2 Synthesis of the model with Cadence Ambit BuildGates

In this section, synthesis of the VHDL model with Cadence Ambit Buildgates is

described. Following are the steps that were followed for synthesis.

1. Ambit BuildGates is started by entering a command called "cadence" at the

console and choosing the 6 th option.

2. Buildgates is started with ac_shell —gui —pks at the ac_shell prompt in the

command window of the application .

3. The 'File -> Open' menu is brought up and the timing library option is selected to

read the `timing.ctlf file provided by standard cell library vendor. This file has

capacitance, timing and functionality of the cells and wire load models for

calculating the delay due to routing parasitics.

46

4. The `cmosp35_4m.lef file is read by typing `read_lef ~/proj/cmosp35_4m.lef in

the command window of the application. This file contains the technology

information used to develop the standard cells and also their abstract views. This

file is used to run the PKS.

5. The VHDL file is read by selecting the VHDL option in the File -> open window.

6. The VHDL model is then mapped to generic gates with 'Commands -> Build

Generic ...' and selecting the first 3 options in the build generic window.

7. The constraints are set by typing the following commands in the command

window. The clock is necessary for timing optimization. The second command

tells the tool that the input arrival time is 0; third one tells the tools that data

required time is 10 ns. These two commands are the constraints to optimizer. The

fourth command tells the tools to use the wire load model enclosed.

set_clock clock -period 2.0 -waveform {0.0 1.0}
set_input_delay 0.0 -clock clock [find -input *1
set_data_required_time 10 -clock clock [find -output *]
set wire load mode enclosed

8. Optimization window is brought up by 'Command -> Optimize' menu. The

`Effort level' is set to high, 'Flatten mode' is set to off, 'Priority' is set to

Area/Time and in 'Options' minimize area/Timing budget is selected accordingly.

The optimization is shown in Figure. 6.1, Figure. 6.2.

9. Now a gate level design is produced in which optimization is done with the wire

load models in the library. Wire lengths calculated are approximate and the timing

analysis done by the tools to added buffers is not accurate. For accurate results

PKS is done by selecting the PKS option in the optimize window. In this, the cells

47

are actually placed and the wire lengths are calculated. The placement is shown in

Figure. 6.3, Figure. 6.4.

10. The synthesis is complete and the design is saved as gate level verilog netlist and

DEF format which has the placement information generated in PKS using 'save'

window. If timing driven placement and routing is to be done a GCF file should

also be produced which has the timing constraints and the path of `ctlf file.

Figure 6.1 Optimized synthesis for the Turn Prohibition Unit and Token Unit.

48

In the Figure 6.1 it can be seen that optimized synthesis for the Turn Prohibition

Unit and the Token Unit has 7 blocks namely the token check, control 2, packet broad

cast, prohibit start, control 1, prohibit check and bus arbitration unit. All these blocks are

labeled in the figure. The functionality remains the same as described in the architecture.

Figure 6.2 Optimized Synthesis for the Routing Table Unit.

In the Figure 6.2, the optimized synthesis for the Routing Table unit is presented.

Though there are 7 blocks in this module, only 4 of them are highlighted, as the other

three blocks are very small and cannot be seen unless it is zoomed further. The blocks

which are visible are the update record blocks, multiplexer block, write data block and

the table formulation block. These blocks perform the same function as described in the

architecture. The darker lines show the connectivity between the blocks.

49

Figure 6.3 PKS showing the placement of all the cells.

The PKS option also generates the random placement of the IP blocks depending

on the approximate size of the chip. A total of 54 10 pins are created randomly around

the die area of the chip as shown in Figure. 6.4. In fact all these pins are not used by the

process, only 40 pins are used by the whole process of which 16 pins are for the data and

16 pins are for the address and the rest 8 pins are for the clock, chip select, interrupt,

interrupt acknowledge, node ID, port status, read/write and the Tx/Rx. In addition to this

a reset pin can also. be taken into consideration. Since the use of this pin is not

demonstrated, this pin is not taken into account. Since this PKS synthesis is done

automatically, the pins placement and the pin count cannot be controlled. However the

pin count obtained by the synthesis is always greater than the desired pin count

50

6.3 Post Synthesis Simulation

In the synthesis process, gate level models of the design were produced and were

simulated with MTI Model Sim for functionality as well as timing as described in chapter

5. For simulation purposes, a top-level verilog module is obtained from the Cadence

Ambit Buildgates in which all the modules are instantiated. Since all the modules are

sequential, all the blocks were simulated individually in a pipelined way, which means

that the output of one block is input to the next one with the produced delay. The final

results are shown in the following figures.

Figures 6.4 through Figure 6.6 show the solutions for the model developed. The

results were almost the same as those obtained before synthesis. All the signals behave in

the same way as obtained before the synthesis, but only with delays due to the gates

created by the synthesis. It is observed that the worst delay is around 1200ns which is

observed at the 'Packet register 2' which happens to be the final process. The difference

can be seen from Figure 5.4 and Figure 6.6.

The delays observed here are just due to the gate delays. So in the worst case this

delay will not be more than 2m, second. However, in the actual layout there will be a lot of

parasitic capacitances due to routing metal layers. Due to size of the design, the actual

delay may drastically go up because of these parasitic capacitances.

51

Figure 6.4 Post Synthesis Simulation for the model designed.

52

Figure 6.5 Post Synthesis Simulation continued from the Figure 6.4.

53

Figure 6.6 Post Synthesis Simulation continued from the Figure 6.5.

CHAPTER 7

LAYOUTS

7.1 Place & Route with Silicon Ensemble

The placement and routing using Cadence Silicon Ensemble is discussed in this section

This performs the timing and power driven placement. The layouts of the individual

blocks are put together using the top-level verilog module with the help of the same tool.

Only regular placement and routing is done to save time and computer memory. The

total die size without pads came upto 6 mm x 6 mm. This could not be imported into the

Cadence IC tools for DRC and Extraction due to insufficient computer memory. In this

tool the synthesized design is imported in block level verilog format .The standard cell

library is imported into tool in LEF format which is the "cmosp35_4m.lef. The output to

this tool is the layout which is stored in the form of LEF block and DEF form which is

then imported to the Cadence Virtuso Layouts for Design Rule check and the Extraction.

Following steps are followed to get the layouts using the Silicon Ensemble.

1. Silicon Ensemble is started by entering a command called "cadence" at the

console and choosing the 4 th option.

2. The "cmosp35_4m.lef" file is imported by using the 'File -> Import -> LEF'

menu. After this step a database is created for storing the created design and

viewing it when needed.

3. The verilog netlist which has a `.v ' extension ,which was generated in the

Ambit Build Gates is imported by using 'File -> Import -> Verilog' menu.

54

55

The top module should be identified correctly. Also the power (VDD!), and

ground (VSS!) nets should be entered as show .Make sure the VDD and VSS

are in upper case. The reference libraries and the compiled verilog output

libraries are "cds_vbin" by default . Also a verilog module called "cells.v" is

also imported along with the main verilog module, which has the information

about the basic gates and their specifications, which are helpful for generation

fo the layouts.

4. After the compiling is done successfully the floorplan has to be initialized by

using 'Floor plan 4 Initialize' menu. The I0 to core distances in the dialog

are initialized to 40 microns. Space utilizations is kept for about 70-75 %.

This creates the rows for standard cell placement and 40 micron empty space

around them. This space is used for VDD and VSS rings and I0 connectivity.

Figure. 7.I shows the layout without the power and ground stripes.

5. IOs are placed with 'Place ---> IO' menu. In the displayed dialog, IO constraint

file option is selected and the name of the file is entered. This is a DEF file,

which has IO pads' placement information. This is developed manually as per

our requirements.

6. Power plan dialog is brought up with 'Route 4 Plan Power' menu. VDD and

VSS rings and stripes are added. Rings are the power paths that surround the

core area and stripes are the power paths that pass over the core area.

7. Standard cells are placed with 'Place -3 Cells' menu with 'Generate

Congestion Map' option. The layout after placement of IO and cells and the

power rails is shown in Figure. 7.2. As can be seen in the Figure. 7.2 two

56

stripes are added which run vertically in between the layout for the power and

ground lines, so as to minimize the drop.

Figure 7.1 Layout of a block without the power stripes.

Figure 7.2 Expansion of 'Block 1' shown in Figure 7.1 showing the power connections.

57

Figure 7.3 Layout of the chip with power and ground rails with stripes in between.

Figure 7.4 Expansion of Block 1 shown in Figure 7.3. VDD and VSS stripes can be seen
in between the layouts for drop control.

58

8. The connection to the rails are done by using 'Route -9 Connect Ring' menu.

Figure. 7.3 shows the power connections between the cells and the VDD and

VSS rails.These rails are present at the outer ring of the Die.

9. Routing is done with 'Route ---> Wroute' menu as shown in Figure. 7.2. Here

global and the final routing is done together.

10. The design is saved as DEF ,LEF BLOCK formats with 'File -3 Export'

menu. Also the database is saved with 'File --> Save' menu. This is useful for

viewing or modifying the layout at any time.

This concludes the layout process through Silicon Ensemble tool. The DEF and the LEF

block format is then exported to the Cadence IC tools for DRC and Extraction.

7.2 DRC and PE with Cadence IC

Cadence IC tools are used for DRC and Extraction of parasitics. Also the GDSII for tape

out can be produced only from this tool set. A step-by-step procedure for working with

the imported design from Silicon Ensemble is described here. The flow diagram is as

below.

1. ICFB is invoked with icfb & ' command.

2. In the IC environment, a library is created for the design with 'File -› New -->

Library' menu in the CIW window.

3. The layout developed in the SE is imported into IC in DEF format with

`File--> Import DEF' menu. In the dialog, the library name is the name of

the library created and view name is 'auto Layout'

59

4. Imported design will use the 'abstract' view for all cells. All 'abstract' views

are to be changed to 'layout' views. First, 'auto Layout' view is opened, then

with 'Tools -Layout' menu layout tool is invoked.

Figure 7.5 Cadence IC Design Flow.

5. Using 'Edit 4. Search' command search menu is brought up. All instances

with view name = 'abstract' are searched and replaced with view

name = 'layout'. The modified design is saved as 'layout' view.

6. With 'Verify --> DRC...' menu DRC dialog is brought up and in the library

box, name is changed to the name of the technology library and "OK" button

is clicked. This will check for DRC and report the errors with flashing

rectangles. These are to be corrected manually. Usually if the LEF file

imported into SE is perfect in technology point of view then there will be no

DRC errors.

CHAPTER 8

CONCLUSIONS

This thesis gives the architectural details and the on—chip implementation procedure for

the TPBR algorithm, which will avoid deadlocks in wormhole networks like Network Of

Workstations. It can be seen that the fractions of the turns, which will create the cycles in

the channel dependency graph, are eliminated so that the whole of the network would

become deadlock free, which will lead to efficient communication within the network. It

is also considered that an efficient way of creating routing tables based on the set on

prohibited turns thus by minimizing the average delivery time and achieving low

communication latency, low memory requirements and achieve high bandwidth in data

communications. The implementation in VHDL was a straightforward approach in which

as the block were sequential. The VHDL model could be synthesized and implemented

on silicon with some exceptions. The total number of gates produced was 1 million.

Most of the gates were due to the use of 'for' loops and also due to the lack of complex

gates in the standard library, which just has basic gates. This resulted in large area and

hence the gates. The gate level verilog simulation of the design could not be carried out

and so was the DRC and extraction because of large gate count and insufficient

computing power. The gate count could be considerably decreased by doing one or more

of the following.

1. Use of Karnaugh—maps for breaking down the modules and getting it to a

basic Boolean expressions and then performing the manual synthesis.

60

61

2. Use of shift operations for addition and multiplication of Std_logic_vectors, as

there is no direct syntesis for operations on Std_logic_vector

3. Reducing the type conversion, like integer to std_logic_vector and back, can

reduce the gate counts drastically.

4. Use of tools which support numric_std and unsigned libraries for optimization

during the synthesis.

5. Using standard cell libraries which have complex gates, for optimization in

area and timing. The library used here was very well optimized for only for

timing and area but there are no libraries for power optimization.

6. Use of merging operators during the synthesis. For this the whole VHDL

model should be synthesized with out breaking it into blocks, which requires a

large memory and time.

7. The device level simulations can be carried out by using Star-Sim and Start-

time which are high capacity simulators.

Use of multiple 'event in a process was not possible on clock signal and also use of 'event

on any other signal was not possible in a process, which resulted in lots of 'if ' and 'for'

statements for condition checking. Use of flags for the clock'event at every instance

during the process resulted in expanding the code. This also increases the pin count as the

data and the address packets were fed parallely instead of using a shift registers for serial

operations.

APPENDIX A

VHDL MODEL FOR TURN PROHIBITION

This Appendix gives the listing of the VHDL model for the TPBR Algorithm.

-- TOKEN UNIT
library ieee;
use ieee.std_logic_1164.all;
use ieee.stdlogic_arith.all;
library work;
entity token_unit is
port

clock : in std_logic;
node_id : in std_logic_vector(3 downto 0):="0000";
vector_8: in std_logic_vector(7 downto 0);
enable: out bit:='0';
order: out std_logic_vector(7 downto 0):="00000000";
intrO,intrl,intr2,intr3 : in std=1logic;
dbus : inout std_logic_vector(15 downto 0);
pstat : in std_logic_vector(3 downto 0);
addbus: out std_logic=1vector(15 downto 0);
rw : out std_logic; --0 read 1 write
reset: in std_logic;
cs0,csl,cs2,cs3: out std logic);

architecture arch behavioral of token_unit is
type other_array is array(integer range 0 to 3) of std_logic_vector(10
downto 0);
type array_sort is array (integer range 0 to 1) of array_new;
type state is (start, initx, waiting ,spec,transmit,receive,ending);
type array_new is array(integer range 0 to 15) of integer;
signal node_id: integer;
signal BITPM: bit_vector(3 downto 0):="0000";
signal route_table: other=1array;
signal degree:std_logic_vector(1 downto 0):="01";
signal order: integer;
type port_array is array (integer range 0 to portsize-1) of
std_logic_vector(127 downto 0);
signal in=1port,port_to :port_array;
signal act_tx : std_logic:='0';
signal act_all: std_logic:='0';
signal intr_out: std_logic:='0';-- no intr
signal intr_out_ck : stdlogic:='1 1 ; -- no response
signal port_num: stdlogic_vector(1 downto 0);
signal d_rx: std_logic :='0';-- no data
signal rxd_port: integer:=0;
signal rxd_ck: std_logic :='1'; -- no ck;
signal dbus_busy : std_logic:='0';
signal txd_data: std_logic:='0'; -- 0 no data, 1 have data to transmit
signal txd_port: integer:=0;
signal txd_ck: stdlogic:= 1 1';

62

63

signal rec_begin: bit :='0';
signal present_state, next_state : state;
signal t_count :std_logic_vector(7 downto 0) ;
signal sreset: bit:='1';
signal txd_begin: bit :='0';
signal trans_ing : bit:='0';

begin

state machine : process(present_state,d_rx,reset,trans_ing)
variable all_dirty: bit:='1' ;

function get_order(signal pac: stdlogic_vector(127 downto 0);
signal id:integer) return integer is

variable sort:array_sort;
variable flag,flagl,i,j,order: integer;
begin
ini: for i in 0 to 15
loop
sort(0)(i):=i;
sort(1)(i):=sv2i(pac(71-i*4-2 downto 7I-i*4-3));
end loop ini;
flag:=-1;
flagl:=-1;
sorting: for i in 1 to 15
loop
flag:=sort(0)(i);
flagl:=sort(1)(i);
j :=i-1;

loop2: while ((j>=0) and flagl<sort(1)(j))
loop
sort(0)(j+1):=sort(0)(j);
sort(1)(j+1):=sort(1)(j);
j :=j-1;
end loop loop2;
sort(0)(j+1):=flag;
sort (1) (j+1) :=flag1;
end loop sorting;
finding: for i in 0 to 15
loop
if (id=sort (0) (i)) then
order:=i;
end if;
end loop ;
return order;
end get order;

variable shared_reg, tran_reg: std_logic_vector(127 downto 0);
variable src, sport, dest, d_port, tp_vec, sub_vec, time_left,crc
:std logic vector(7 downto 0);

variable data field : std logic vector(63 downto 0);

begin
if(rxd_ck='0') then rxd_ck<='1';
d_rx='0') then end if;

case present_state is
WHEN start => id :=sv2i(node_id);
mynode id <= id;

64

for i in 0 to 3 loop
route_table(i)(10)<='0';
end loop;
for i in 0 to 3 loop
if(pstat(i)='1') then
route_table(i)(10)<='1';
bit_port(i)(10):='1';
BITPM(i) <='1';
else
BITPM(i)<='0';
route_table(i)(10)<='0';
bit=1port(i)(10): = '0';
end if;
end loop;

case pstat is
when "0000" => dg :=0;
when "0001" 1"0010"1"0100"1"1000" => dg :=1;
when "0011" 1"0110"1"1100"1"1001"1"1010"1"0101" => dg :=2;
when "0111" 1"1110"1"1011"1"1101" => dg :=3;
when "1111" => dg :=4;
when others => null;
end case;

if trans_ing = '0' then
for i in 0 to portsize-1 loop
port_to(i) <= (others => '0');
end loop;

end if;
if (reset ='0') then
next_state <= start;
elsif (id =0) then
next_state <=ini_tx;
else
nextstate<=waiting;
end if;
when ini_tx => src :="0000"&node_id(3 downto 0);

s_port :="0000"&pstat(3 downto 0);
dest :="11111111";

for i in 63 downto 0 loop
data_field(i) := '0';
end loop;

data_field(4*id+2) :='1';
data_field(4*id+1 downto 4*id+0):=int_vector(degree)(1 downto 0);
create_pac:for i in 0 to portsize-1
port_to(i)(127 downto 120) <= src(7 downto 0);
port_to(i)(119 downto 112) <= s_port;
port_to(i)(111 downto 104) <= dest;
port_to(i)(103 downto 96) <= d_port;
port_to(i)(95 downto 88) <= tp_vec;
port_to(i)(87 downto 80) <= sub_vec;
port_to(i)(79 downto 16) <= data_field;
port_to(i)(15 downto 8) <= time_left;
port_to(i)(7 downto 0) <= crc;
end loop create_pac;

65

if(d_rx'event=false and trans_ing'event=false
and reset'event=false) then
pro_act_ini(act_tx);
end if;

if (reset ='0') then
next=1state <= start;
else
next_state <= waiting;
end if;
when waiting =>if (reset='0') then
next_state<=start;
else
if (d_rx'event and d_rx='1') then
aport:=rxd_port;

TIME LEFT:=int vector(sv2i(shared reg(7 downto 0))-1);
if ((shared_reg(95 downto 88)="00000000") and

(sv2i(TIME_LEFT)>0)) then
next_state<=spec;
tran_reg(127 downto 120):="0000"&node_id;
tran_reg(119 downto 8):=shared_reg(119 downto 8);
tran_reg(7 downto 0):=TIME_LEFT;
bitport(aport)(10):='1';

finding: for i in 0 to 3
loop

if((bit_port(i)(10)='0') =bit_port(i)(9 downto 2))) then BITPM(i)<='0';
elsif ((shared_reg(127 downto 120)/=bit_port(i)(9 downto 2))and
(bit_port(i)(10)='1')) then

BITPM(i)<='1';
port_to(i)<=tran_reg;
end if;

end loop finding;

elsif ((shared_reg(95 downto 88)="00000001") and
(sv2i(TIME_LEFT)>0)) then

route_table(aport)(10)<='1';
route_table(aport)(9 downto 2)<=shared_reg(127 downto 120);
next_state<=receive;
else rxd_ck<='0';
end if;
else
next_state<=waiting;
end if ;
end if;

WHEN spec => rxd_ck<='0';
if(d_rx'event=false and trans_ing'event=false and reset'event=false)
then

pro_act_ini(act_tx);
end if;

process:state machine
if (trans_ing ='0' and trans_ing'event) then 	 next state <=

start;
else
next state<= spec;
end if;

66

rxd_ck<='0';
when receive =>if (reset='0') then
next_state<=start;
else
tran_reg(127 downto 120):="0000"&node_id;
tran_reg(119 downto 8):=shared_reg(119 downto 8);
tran_reg(7 downto 0):=TIME_LEFT;
if (shared_reg(71-mynode_id*4-1)='0') then
tran_reg(71-mynode_id*4-1 downto (71-mynode_id*4-3)):='1'°ree;
tran_reg(79 downto 72):=int_vector(sv2i(shared_reg(79 downto

72))+1);
finding2: for i in 0 to 3
loop
if(route_table(i)(10)-'1') then
BITPM(i)<='1';
port_to(i)<=tran=1reg;
else
BITPM(i)<='0';
end if;
end loop finding2;

next state<=transmit;
finding5: for i in 0 to 3
loop

if((route_table(i)(10)='0') or (shared=1reg(127 downto
120)=route_table(i)(9 downto 2))) then

BITPM(i)<='O';
elsif ((shared_reg(127 downto 120)/=route_table(i)(9 downto 2))

and (route_table(i)(10)='1'))then
BITPM(i)<='1';
port_to(i)<=tran_reg;
end if;
end loop finding5;
next state<=transmit;
end if;
end if;
when ending =>if (reset='0') then
next_state<=start;
else
enable<='1';
order<=int_vector(order);
end if;
end case;

end process state_machine;
state_clked: process(clock)
begin
if(clock'event and clock='1') then
present_state <= next_state;
end if;
end process state_clked;

transmit: process (act_tx,txdck,txd_data,clock)
variable j :integer :=0;
variable control :integer :=0;
begin
if(clock'event and clock='1') then

67

if txd_ck = '1' and txd_data = '0' and control=1 then
if BITPM (j)='1' then 	 txd_port <= j;
txd_data <='1';

trans_ing<='1';
j:=j+1;
else j:=j+1;
end if;
if(j=4) then
j:=0;
control:=0;
trans_ing<-'0';
end if;
elsif txd_ck= ' 0' then -- if txd_ck =0,means i/o device is still

transmitting,at present,the txd_data,should be 0
txd_data <='0';
end if;
end if;
end process transit;

intr_arb:process(reset,clock,intr_out_ck)
begin
if(clock'event and clock='1' and reset= ' 0 ') then
ck0<='1';
ck1<='1';
ck2<='1';
ck3<='1';
intr_out<='0';
elsif(clock'event and clock ='1' and reset='1') then
if(intr_out='0') then

if(intr0='1') then
intr_out<='1';
port_num<="00";
ck0<='0';
elsif (intr1='1') then
intr_out<='1';
port_num<="01";

ck1<='0';
elsif (intr2='1') then
intr_out<='1';
port_num<="10";
ck2<='0';
elsif (intr3='1') then
intr_out<='1';
port_num<="11";
ck3<='0';
endif;

end if;
elsif(introut='1') then

case
port_num is
when "00" => ck0<='1 ' ;
when "01" => ckl<='1';
when "10" => ck2<='1';
when "11" => ck3<='1';
when others => null;
end case;

end if;

end if;
end process intrarb;

intrrx:process(reset,clock,introut,rxdck)

variable bitm: integer:=0;
variable count : integer :=0;
variable clock_count: integer :=0;
begin
if(clock'event and clock='1' and reset='0') then
dbus<="ZZZZZZZZZZZZZZZZ";
addbus<="ZZZZZZZZZZZZZZZZ";
rw<='Z';
elsif (clock'event and clock='1' and reset='1' and
intr_out_ck='0') then
intr_out_ck<= ' 1';
elsif (rxd_ck= ' 0 ' and d_rx='1' and
clock'event and clock='0') then

d_rx<='0';
elsif (clock'event and clock='1' and reset='1') then
if(intr_out='1' and d_rx= ' 0') 	 then if(dbus busy='0 ' or

rec_begin='1') then
rec_begin<= ' 1';
if(count<8) then
if(clockcount=0) then

case count is
when 0 => addbus<="0000000000000000";
when 1 => addbus<="0000000000000001";
when 2 => addbus<="0000000000000010";
when 3 => addbus<="0000000000000011";
when 4 => addbus<="0000000000000100";
when 5 => addbus<="0000000000000101";
when 6 => addbus<="0000000000000110";
when 7 => addbus<="0000000000000111";
when others => addbus<="ZZZZZZZZZZZZZZZZ";
end case;

rw<='0';
clock_count:=clock_count+1;

case port num is
when "00"=> bitm:=0;
when "01" => bitm:=1;
when "10" => bitm:=2;
when "11" => bitm:=3;
when others => null;
end case;
elsif(clock_count=2) then

in_port(bitm)((count+1)*16-1 downto count*16)<=dbus;
clock_count:=clock_count+1;
elsif(clock_count=5) then
addbus<="ZZZZZZZZZZZZZZZZ";
rw<='Z';
clock_count:=0;
count:=count+1;
else
clock count:=clock_count+1;

68

else d rx<='1 ' ;
rxd_port<=bitm;
count:=0;
intr_out_ck<='0';
rec_begin<='0';
end if;
end if;
end if;
end if;

end process intrrx;

dbus_arb: process(rec_begin,txd_begin,trans_ing)
begin
if(rec_begin='1' or txd_begin='1') then
dbus_busy<= ' 1';
else if(trans_ing= ' 0 ') then

dbusbusy<= ' 0';
end if;

end if;
end process dbus_arb;

chip_select: process(reset,rec_begin,txd_begin)
variable count: integer :=0;
begin
if(clock'event and clock='1' and reset='0') then
cs0<='1 ' ;
csl<='1';
cs2<='1';
cs3<= ' 1 ' ;
elsif (reset='1') then
if(rec begin='1') then

case port num is
when "00"=>cs0<='0';
when "01"=>csl<= ' 0';
when "10"=>cs2<='0';
when "11"=>cs3<='0';
when others=> null;
end case;
elsif(txd_begin='1') then
case txd_port is
when 0=>cs0<='0';
when 1=>cs1<='0';
when 2=>cs2<='0';
when 3=>cs3<='0';
when others=> null;

end case;

elsif(rec_begin= ' 0 ' and txd_begin='0') then
s0<= 7 1 ' ;
s1<='1';
s2<='1';
s3<='1';
end if;
end if;

end process chip_select;
end arch behavioral;

69

70

-- TURN PROHIBITION

LIBRARY ieee;
USE ieee.std_logic 1164.ALL;
USE ieee.numeric std.ALL;
ENTITY prohibit IS
PORT(clock 	 : IN std logic;

node num 	 : IN std logic_vector(3 DOWNTO 0);
enable 	 : IN std_logic;
token 	 : TN std_logic_vector(3 DOWNTO 0);
data 	 : INOUT std_logic_vector(15 DOWNTO 0);
addr 	 : INOUT std_logic_vector(15 DOWNTO 0);
buf_read 	 : OUT std_logic;
buf_write 	 : OUT std logic;
intro 	 : IN std logic;
intra0 	 : OUT std logic;

intr1 	 : IN std logic;
intra1 	 : OUT std logic;
intr2 	 : IN std logic;
intra2 	 : OUT std_ logic;
intr3 	 : IN std logic;
intra3 	 : OUT std_logic;
mem_cs 	 : OUT std_logic;
mem rw 	 : OUT std logic);

END prohibit;

ARCHITECTURE behaviorale OF prohibit IS

SIGNAL prohibit_enable, prohi_chk, brdcst_diff_ports : std_logic;
SIGNAL io enable, brdcst_pak_req, bus_assn 	 : std logic := '0';
SIGNAL intr_write_out, write_out, timeout, token_relsd 	 : std logic
:='0';
SIGNAL pak_exam_cmplt 	 : std logic :='1';
SIGNAL paks_brdcsted, pak_exam	 : std logic := '0';
SIGNAL pac_regl, packet_register_2 	 : std logic vector(79
DOWNTO 0);

SIGNAL from_port, to_port 	 : std logic vector(1 DOWNTO
0);

TYPE matrix4x4 IS ARRAY(3 DOWNTO 0, 3 DOWNTO 0) OF std_logic;
SIGNAL matp:

'0','0', ' 0'));
TYPE matrix3x3 IS ARRAY(2 DOWNTO 0) OF std_logic_vector(1 DOWNTO 0);
SIGNAL diff_ports : matrix3x3 := ("00","00","00");
CONSTANT one : natural := 1;

BEGIN
--FIRST PROCESS
Prohibit_start : PROCESS(clock,enable, token relsd)

BEGIN
if (clock='1' AND enable='1') then

prohibit enable <= '1';
end if ;
if (token relsd = '1') then

prohibit_ enable <= '0';
end if ;

END PROCESS Prohibit_start;

71

--SECOND PROCESS
token check : PROCESS(clock, token, to_port, write_out)
VARIABLE state : INTEGER := 0;
BEGIN

IF rising_edge(clock) THEN
IF token = "0001" THEN

brdcst pak_req01 <= '1';
CASE state IS
WHEN 0 => state := 1;
WHEN 1 => state := 2;

WHEN 2 => IF (to_port = "11" AND write_out = '1')
THEN

state := 3;
END IF;

WHEN 3 => IF(write_out = '0') THEN
write out <= '0';

brdcst_pak_req01 <= '0';
state := 0;

END IF;
WHEN OTHERS => NULL;
END CASE;

END IF;
END IF;

END PROCESS token check;

--THIRD PROCESS
cntrll : PROCESS(clock,intr0,intrl,intr2,intr3, intr_write_out,
pak_exam_cbitpmlt, prohibit enable, bus_assn)

BEGIN
IF (rising_edge(clock) AND rising_edge(pak_exam_cbitpmlt) AND
(rising_edge(intr0) OR rising_edge(intr1) OR rising_edge(intr2) OR
risinq_edge(intr3) OR rising_edge(intr_write_out))) THEN

IF prohibit_enable ='1' AND bus_assn= ' 0 ' THEN
io_enable <= '1';

ELSE
io_enable <= '0';

END IF;
END IF;

END PROCESS cntrll;

--FOURTH PROCESS
cntrl2 : PROCESS
VARIABLE state, inner_state1, inner_state2 : INTEGER := 0;
BEGIN

CASE state IS
WHEN 0 => IF rising_edge(pak_exam) AND falling_edge(bus_assn)

THEN
pak exam_cbitpmlt <= '0';
state := 1;
END IF;

WHEN 1 => IF rising_edge(clock) THEN
pak exam_cbitpmlt <= ' 1';
state := 2;

END IF;
WHEN 2 => IF rising_edge(clock) THEN
IF brdcst pak req = '1' THEN

72

CASE inner statel IS
WHEN 0 => IF to_port = "11" AND rising_edge(write_out)

THEN inner_state1 := 1;
END IF;

WHEN 1 => IF falling_edge(write_out) THEN brdcst_pak_req <= '0';
inner_state1 := 0;
state := 0;

END IF;
WHEN OTHERS => NULL;

END CASE;
ELSIF prohi_chk = '1' THEN
WAIT ON matp, token_relsd;
prohi_chk <= '0';
ELSIF brdcst diff_ports = '1' THEN
CASE inner_state2 IS

WHEN 0 => IF to port=diff_ports(2) AND rising_edge(write_out) THEN
inner_state2 := 1;

END IF;
WHEN 1 => IF falling edge(write out) THEN

brdcst_diff ports <= '0';
inner_state2 := 0;
state := 0;
END IF;

WHEN OTHERS => NULL;
END CASE;

END IF;
END IF;
WHEN OTHERS => NULL;
END CASE;

END PROCESS cntrl2;

--FIFTH PROCESS
bus_arbit_io : PROCESS(clock, io_enable, token_relsd,

bus_assn, matp, intr_write_out, intr3, intr2, intr1, intr0)
VARIABLE intr : std_logic_vector(4 DOWNTO 0) := "00000";
VARIABLE read_state, write_state, state : INTEGER := 0;
variable intra : std_logic_vector(2 downto 0);
PROCEDURE io read_opr(state : INOUT INTEGER) IS

VARIABLE j : integer RANGE 0 TO 127;
BEGIN

FOR i IN 4 DOWNTO 0 LOOP
addr <= std_logic_vector(unsign(i, 16));
j := ((i+1)*16)-1;
buf read <= '1';
CASE state IS

WHEN 0 => 	 IF rising_edge(clock) THEN
pac_reg1(j DOWNTO (j-15)) <= data;

buf_read <= '0';
state := 1;

END IF;
WHEN 1 => IF rising_edge(clock) THEN

state:= 0;
END IF;

WHEN OTHERS => NULL;
END CASE;
END LOOP;

73

CASE intra IS
WHEN "001" => from_port <= "00";
WHEN "010" => from_port <= "01";
WHEN "011" => from_port <= "10";
WHEN "100" => from_ port <= "11";
WHEN OTHERS => NULL;

END CASE;
pak exam <= '1';

END ioreadopr;

PROCEDURE opr write(state 	 INOUT INTEGER) IS
VARIABLE j : integer RANGE 0 TO 127;
BEGIN

CASE to port IS
WHEN "00" => intra0 <= '1';
WHEN "01" => intra1 <= '1';
WHEN "10" => intra2 <= '1';
WHEN "11" => intra3 <= '1';
WHEN OTHERS => NULL;

END CASE;
FOR i IN 4 DOWNTO 0 LOOP

addr <= std_logic_vector(unsign(i+1,
16));

j := ((i+1)*16)-1;
buf_write <= '1';
CASE state IS

WHEN 0 => IF rising edge(clock) THEN
data <= packet_register_2(j DOWNTO (j-15));

buf write <= '0';
state := 1;

END IF;
WHEN 1 => IF rising_edge(clock) THEN

state := 0;
END IF;

WHEN OTHERS => NULL;
END CASE;

END LOOP;
END opr write;

BEGIN
IF rising_edge(clock) AND ((io_enable= ' 1 ' OR token_relsd ='1') AND
bus_assn='0') THEN

IF token_relsd = '1' THEN
bus_assn <='1';
mem cs <= '1';
CASE state IS
WHEN 0=> IF rising_edge(clock) THEN

mem_rw <= '1';
addr <= "0000000000000001";

data(15 DOWNTO 0) <=

matp(0,0)&matp(0,1)&matp(0,2)&matp(0,3)&

matp(1,0)&matp(1,1)&matp(1,2)&matp(1,3)&

74

matp(2,0)&matp(2,1)&matp(2,2)&matp(2,3)&

matp(3,0)&matp(3,1)&matp(3,2)&matp(3,3);
state := 1;

END IF;
WHEN 1 => IF rising_edge(clock) THEN

mem_cs <= '0';
bus assn <= '0';
state := 0;

END IF;
WHEN OTHERS => NULL;
END CASE;

ELSE
bus_assn <= '1';
pak_exam <= '0';
intr := intr write out & intr3 & intr2 & intr1

& intr0;
IF std_match(intr, "1----") THEN

write_out <= '1';
intra := "000";

ELSIF std_match(intr, "00001") THEN
intra0 <= '1';
intra := "001";

ELSIF stdmatch(intr, "0001-") THEN
intral <= '1';
intra := "010";

ELSIF std_match(intr, "001--") THEN
intra2 <= '1';
intra := "011";

ELSIF std_match(intr, "01---") THEN
intra3 <= '1';
intra := "100";

END IF;
CASE intra IS

WHEN "000" => opr_write(write_state);
write_out <= '0';

WHEN "001" => io_read_opr(read_state);
intra0 <= '0';

WHEN "010" => io_read_opr(read_state);
intral <= '0';

WHEN "011" => io_read_opr(read_state);
intra2 <= '0';

WHEN "100" => io_read_opr(read_state);
intra3 <= '0';

WHEN OTHERS => NULL;
END CASE;
bus_assn <= '0';

END IF;
END IF;
END PROCESS bus_arbit_io;

-- \SIXTH PROCESS
pak_brdcst : PROCESS (clock, from_port, pac_reg1, brdcst_diff_ports,

timeout, brdcst_pak_req, write_out, node_num, diff_ports, token,
prohibit enable, bus_assn)

75

VARIABLE innerstate1, inner state2, inner state3 : INTEGER
:= 0;

VARIABLE inter state', inter state2, inter state3 : INTEGER
:= 0;

BEGIN
IF rising_edge(clock) AND (brdcst_pak_req='1' OR

brdcst_pak_req01='1 ' OR brdcst_diff_ports= ' 1' OR timeout
='1') THEN

IF brdcst_pak_req='1' OR brdcst_pak_req01='1'
THEN

CASE inner_state1 IS
WHEN 0 =>FOR i IN 0 TO 3 LOOP

CASE inter state1 IS
WHEN 0 => IF rising_edge(clock) AND write_out = '0'

THEN
packet register 2(79 DOWNTO 72) <= "0000" & node_num

packet_register_2(71
register_

	64) <= std_ logic_ vector(unsign(i,8));
packet_register_2(63 DOWNTO 56) <= "0000" & node_num;
packet_register_2(55 DOWNTO 48) <= "11111111";
packet register 2(47 DOWNTO 40) <= "00000010";

packet_regiser_2(39 DOWNTO 32) <= "00000000";
packet_ register _ 2(31 DOWNTO 16) <= "0000000000000000";

packet register 2(15 DOWNTO 8) <= "00100000";
packet register 2(7 DOWNTO 0) <= "00000000";
to _port <= std_iogic_vector(unsign(i,2));
intr_write_out <= '1';
inter_state1 := 1;

END IF;
WHEN 1 => IF rising_edge(clock) AND write_out = '1' THEN

END IF;
WHEN OTHERS => NULL;
END CASE;
END LOOP;

inner state1 := 1;
WHEN 1 => If rising_edge(clock) AND write_out = '0' THEN

paks_brdcsted <= '1';
inner_state1 := 0;

END IF;
WHEN OTHERS => NULL;

END CASE;
ELSIF brdcst_diff_ports='1' THEN

CASE from port IS
WHEN "00" =>

diff_ports(0)<="01";diff_ports(1)<="10";diff_ports(2)<="11";
WHEN "01" =>

diff_ports(0)<="00";diff_ports(1)<="10";diff_ports(2)<="11";
WHEN "10" =>

diff_ports(0)<="00";diff_ports(1)<="01";diff_ports(2)<="11";
WHEN "11" =>

diff_ports(0)<="00";diff_ports(1)<="01";diff_ports(2)<="10";
WHEN OTHERS => NULL;

END CASE;
CASE inner state2 IS

76

WHEN 0 =>FOR i IN 0 TO 2 LOOP
CASE inter_state2 IS

WHEN 0 => IF
rising_edge(clock) AND write out = '0' THEN

packet_register-2(79 DOWNTO 72) <= pac_reg1(79 DOWNTO 72);
packet_register_2(71 DOWNTO 64) <= pac_reg1(71 DOWNTO 64);
packet_register_2(63 DOWNTO 56) <= pac_reg1(63 DOWNTO 56);
packet_register_2(55 DOWNTO 48) <= pac_reg1(55 DOWNTO 48);
packet_register_2(47 DOWNTO 40) <= pac_reg1(47 DOWNTO 40);
packet_register_2(39 DOWNTO 32) <= pac_reg1(39 DOWNTO 32);
packet_register_2(31 DOWNTO 16) <= pac_reg1(31 DOWNTO 16);
packet_register_2(15 DOWNTO 8) <= pac_reg1(15 DOWNTO 8);
packet register_2(7 DOWNTO 0) <= pac_reg1(7 DOWNTO 0);
to port <= diff_ports(i);
intr_write_out <= '1';
inter state2 := 1;
END IT';

WHEN 1 => IF rising edge(clock) AND write_out = '1' THEN
intr_write out <= '0';

inter state2 := 0;
END IF;
WHEN OTHERS => NULL;
END CASE;
END LOOP;
inner_state2 := 1;
WHEN 1 => IF rising_edge(clock) AND write_out = '0' THEN
inner state2 := 0;
END IF;
WHEN OTHERS => NULL;
END CASE;
packet_register_2(79 DOWNTO 72) <= "0000" & node num;
packet_register_2(71 DOWNTO 64) <= std logic_vec tor(unsign(i,8))
packet_register_2(63 DOWNTO 56) <= "00000000";
packet_register_2(55 DOWNTO 48) <= "11111111";
packet_register_2(47 DOWNTO 40) <= "00000010";
packet_register_2(39 DOWNTO 32) <= "1111" & token;
packet_register_2(31 DOWNTO 16) <= "0000000000000000";
packet_register_2(15 DOWNTO 8) <= "00100000"; -- TIME_LEFT(1 BYTE) =>
20H

packet_register_2(7 DOWNTO 0) <= "00000000"; -- CRC(1 BYTE) =>
00

to_port <= stdlogicvector(unsign(i,2));

intr write out <= '1';

inter state3 := 1;
END IF;
WHEN 1 => IF rising_edge(clock) AND rising_edge(write_out) THEN

END IF;
WHEN OTHERS => NULL;
END CASE;

END LOOP;
inner state3 := 1;

WHEN 1 => IF rising_edge(clock) AND falling_edge(write_out)
THEN 	 token relsd <= '1';

77

inner_state3 := 2;
END IF;

WHEN 2 => IF rising_edge(clock) AND falling_edge(prohibit_enable)
AND rising_edge(bus_assn) THEN

inner state3 := 3;
END IF;

WHEN 3 => IF rising_edge(bus assn) THEN
token rels <= '0';
paks_brdcsted <= '0';
inner_state3 := 0;

END IF;
WHEN OTHERS => NULL;
END CASE;

END IF;
END IF;

END PROCESS pak_brdcst;

--SEVENTH PROCESS
prohibit_chk : PROCESS
BEGIN

WAIT ON clock UNTIL clock='1' AND prohi chk='1';
matp(to_integer(unsigned(pac_reg1(71 DOWNTO 64))) ,

tointeger(unsigned(from_port))) <= '1' ;
matp(to_integer(unsigned(from port)),
to integer(unsigned(pac_reg1(71 DOWNTO 64)))) <= '1';

END PROCESS prohibit_chk;

END behaviorale;

-- ROUTING TABLE UNIT
- Intialize
LIBRARY ieee ;
USE ieee.std logic 1164.ALL ;
ENTITY intialize IS
PORT (enable : IN bit ;
node_id : IN integer ;
data_out : OUT integer ;
row, column : OUT integer ;
write_d, write_r, done : OUT bit ;
state : IN bit_vector(5 downto 0) ;
clock : IN std_logic);
END intialize ;
ARCHITECTURE behavioral OF intialize IS
SIGNAL ii, jj : integer := 0 ;
FUNCTION bvec2int --bit vec2int
(SIGNAL bit vec : IN bit vector (15 downto 0))
RETURN integer IS
VARIABLE int_value, i : integer := 0;
BEGIN
int_value := 0 ;
i := 0 ;
IF bit vec(i) = '1' THEN
int_value := int_value + 2**i ;
END IF ;

i := i + 1 ;
RETURN int_value ;
END bvec2int ;

FUNCTION integer_vec --int2bit_vec
(SIGNAL int_in : IN integer)
RETURN bit vector IS
VARIABLE bit vec value : bit_vector(15 downto 0) ;
VARIABLE j, int_bitm: integer ;
BEGIN
bit_vec_value := "0000000000000000" ;
int_bitm := int_in ;
j := 0 ;

vec:LOOP
IF int_bitm >= 2**(15-j) THEN
bit_vec_value(15-j) := '1' ;
int_bitm := int_bitm - 2**(15-j) ;
ELSE
bit_vec_value(15-j) := '0' ;
END IF ;
j := j + 1 ;
RETURN bit_vec_value ;
END integer_vec ;
BEGIN

S0: PROCESS(clock,enable,state)
VARIABLE r,c, do : integer := 0 ;
VARIABLE i,ii,jj,j : integer := 0 ;
VARIABLE wd, wr : bit := '0' ;
BEGIN
if (clock = '1' AND enable = '1' AND state = "000001") then
done <= '0' ;
write_d <= wd ;
write_r <= wr ;
row <= jj ;
column <= ii ;
data_out <= do ;
wd := '1' ;
wr := '1' ;
ii := i ;
jj := j ;
IF node_id = i THEN
do := 0 ;
ELSE
do := 255 ;
END IF ;
IF j = 4 THEN
j := 0 ;
END IF ;
j := 1 + j ;
end if ;
i := i + 1 ;
IF i = 16 THEN
done <= '1' ;
END IF ;
if(rising edge(clock)) then
done <= 	 ;

78

write_d <= wd ;
write_r <= wr ;
row <= jj ;
column <= ii ;
data_out <= do ;
wd := '0' ;
wr := '0' ;
END if;
END PROCESS S0 ;
END behavioral ;

Table buld
LIBRARY ieee ;
USE ieee.std_logic 1164.ALL ;
ENTITY table buld IS
PORT (r5, c5 : OUT integer ;
d in : IN integer ;
tx_count : OUT bit ;
state : IN bit vector(5 downto 0);
count : IN integer ;
pr : OUT bit vector (1 to 4) ;
p_in : IN bit ;
p_read : OUT bit ;
d read : OUT bit ;
s5_done : OUT bit ;
clock : IN std_logic);
END table buld ;
ARCHITECTURE behavioral OF table buld IS
SIGNAL tx_array : bit_vector(15 downto 0) ;
BEGIN
TRANSMIT:PROCESS(clock)
VARIABLE i, k, pt, to : integer ;
BEGIN
if (clock = '1' and state(3) = '1') then
pt := 1 ;
end if ;
tx_array <= "0000000000000000" ;
i := 0 ;k := 0 ;r5 <= i ;c5 <= k ;
d read <= '1';
if (clock'event and clock = '1') then
d_read <= '0' ;
end if;
if (clock'event and clock = '1') then
IF d_in = count - 1 THEN
r5 <= pt ;c5 <= i ;p_read <= '1';

if(clock'event and clock = '1') then
p_read <= '0' ;
end if ;

if(clock'event and clock = '1') then
IF p_in = '0' THEN
tx_array(k) <= '1' ;
END IF ;
end if ;
END IF ;
END IF;

79

i := i + 1 ;
IF i = 5 THEN
i := 0 ;
END IF ;
k := k + 1 ;
IF k = 16 THEN
ta := 1 ; pr(pt) <= '1' ;

--TRANSMIT:LOOP 	
if (clock'event and clock = '1') then
tx_count <= tx_array(ta) ;
ta := ta + 1 ;
-- END LOOP ; 	
END IF ;
end if;
IF k = 16 THEN
k := 0 ;
END IF ;
-- END LOOP ;

if(clock'event and clock ='1') then
pr(pt) <= '0' ;
pt := pt + 1 ;
end if ;
IF pt = 5 THEN
pt := 1 ;
END IF ;
-- END LOOP ;

s5_done <= '1' ;
if (clock'event and clock = '1') then
s5 done <= '0' ;
end if ;
END PROCESS TRANSMIT ;
END behavioral ;

- Array read
LIBRARY ieee ;
USE ieee.std_logic 1164.ALL ;
ENTITY array_read IS
PORT(d_bus : IN std_logic_vector(15 downto 0) ;
state : IN bit vector(5 downto 0) ;
s4_done : OUT bit ;
ck : OUT bit vector (1 to 4) ;
interupt : IN bit_vector (1 to 4) ;
w s4 : OUT bit ;
clock : IN std_logic ;
count : IN integer ;
r4 , c4 : OUT integer) ;
END array read ;
ARCHITECTURE behavioral OF array_read IS
BEGIN
READ N:PROCESS(clock)
VARIABLE pr, k : integer ;
BEGIN
if (clock'event and clock = '1') then
if (state(2) = ' 1 ')then

80

pr := 1 ;
IF interupt(pr) = '1' THEN
ck(pr) <= '1' ;
k := 0 ;

If(clock'event and clock = '1') then
RREAD:LOOP

IF bvec2int(d_bus) = count - 1 THEN
r4 <= pr ;
c4 <= k ;
w s4 <= '1' ;
END IF;

If (clock'event and clock = '1') then
w_s4 <= '0' ;
k := k + 1 ;
-- EXIT WHEN k = 16 ;
END IF;

END IF ;
END IF ;
ck(pr) <= '0' ;
-- WAIT UNTIL (clock'EVENT AND clock = '1') ;
IF (clock'event and clock = '1') then
pr := pr + 1 ;
-- EXIT WHEN pr = 5 ;
END IF ;

s4_done <= '1' ;
if (clock'event and clock = '1') then
s4 done <= '0' ;
End IF;

END IF;
End if;
END PROCESS READ _N ;
END behavioral ;

-- Status
LIBRARY ieee ;
USE ieee.std_logic_1164.ALL;
ENTITY status IS
PORT(clock : INOUT std_logic ;
state : OUT bit_vector(5 downto 0);
state_done : IN bit_vector(5 downto 0);
enable : IN bit ;
done : OUT bit ;
count : IN integer);
END status ;
ARCHITECTURE behavioral OF status IS

BEGIN
S0:PROCESS (enable, clock)
VARIABLE st, sd : bit vector(5 downto 0);
BEGIN

If (clock'event and clock = '1') then
if enable = '0' then
state <= "000000" ; -- default state
ELSE if (clock = '1') then
state <= st ; --output latch

81

3d := state done ; --input latch

IF st = "000000" THEN
st := "000001" ;
END IF ;

CASE sd IS
WHEN "000001" => st(1) := '1' ;
st(0) := '0' ;
WHEN "000010" => st(2) := '1' ;
st(1) := '0' ;
WHEN "000100" => st(3) := '1' ;
st(2) := '0' ;
WHEN "001000" => st(1) := '1' ;
st(3) := '0' ;
IF count = 15 THEN
st(4) := '1' ;
st(2) := '0' ;
done <= '1' ;
END IF ;
WHEN "010000" => st(0) := '1' ;
st(4) := '0' ;
WHEN OTHERS => NULL ;
END CASE ;
End if ;
END IF ;
end if ;
END PROCESS S0 ;
END behavioral ;

Record_renew
LIBRARY ieee ;
USE ieee.std logic_1164.ALL ;
ENTITY record_renew IS
PORT (state : IN bit_vector(5 downto 0) ;
p in : IN bit ;
clock : IN std logic;
row, column : OUT integer ;
r in, din : IN integer ;
s3_done, write_r : OUT bit ;
count : IN integer ;
read _p : OUT bit ;
r data : OUT integer);
END record renew ;
ARCHITECTURE behavioral OF record_renew IS
BEGIN
UPDATE_R : PROCESS
VARIABLE i ,j, k : integer ;
BEGIN
i := 0 ;
j := 0 ;
k := 0 ;
row <= 0 ;
column <= 0 ;
IF (clock'event and clock = '1') then
if state(1) = '1' THEN

OUTER:LOOP

82

83

k := 0 ;
row <= i ; ----address d array for read
column <= k ;
IF (Clock'event and clock = '1') THEN
IF d_in = count - 1 THEN
j := 0 ;

WRITE:LOOP
r_data <= i ;
row <= i ; ----addrss p array for read
column <= j ;

read_p <= '1';
IF (CLOCK'event and clock = '1') THEN

read_p <= '0' ;
END IF ;
IF p_in = '0' THEN
row <= j ; ----address r array for read
column <= k ;
if (clock'event and clock = '1') then

IF r_in = 255 THEN
row <= j ; ---address r array for write
column <= k ;
write_r <= '1' ;
IF (CLOCK'event and clock = '1') THEN
write_r <= '0' ;
END IF ;
END IF;

END IF;
END IF ;
--END LOOP WRITE;

END IF;
END IF ;

END IF ;
END IF;
s3 done <= '1' ;
WAIT UNTIL (clock'EVENT AND clock ='1');
s3_done <= '0' ;
-- WAIT UNTIL (clock'EVENT AND clock = '1') ;
END PROCESS UPDATE _R ;
END behavioral ;

APPENDIX B

TOP LEVEL VHDL MODEL

This Appendix gives the listing of top level VHDL model for simulation in VHDL.

LIBRARY ieee ;
USE ieee.std_logic 1164.ALL ;
ENTITY all_route IS
PORT(
id : IN bit vector(15 downto 0) ;
start : IN bit ;
ck : OUT bit_vector(1 to 4) ;
interupt : IN bit_vector(1 to 4) ;
r_w : OUT bit ;
d_bus : INOUT std_logic_vector(15 downto 0) ;
done : OUT bit) ;
END all_route ;

ARCHITECTURE all route OF all_route IS
SIGNAL clock : std logic;
SIGNAL tx_count, p_in, p_read, dread : bit ;
SIGNAL s0write_d, s0write_r, 	 s0_done, s3_done, p_in, read_p,
w s4, s4_done : bit :='0';
SIGNAL node_id, d_in, r_in, r5, c5 : integer ;
SIGNAL init_data, row, column, r3, c3, r4, c4, count, r_data, d_ins5 :
integer ;
TYPE my_array IS ARRAY (natural RANGE 0 to 4 , natural RANGE 0 to 15)
OF integer ;
SIGNAL array_r, array_d : my_array ;
SIGNAL state_done, state : bit_vector(5 downto 0);
SIGNAL d_buf : std logic_vector(15 downto 0) ;
TYPE p_array IS ARRAY (natural RANGE 0 to 4 , natural RANGE 0 to 4) OF
bit ;
SIGNAL pr, ckn : bit_vector(1 to 4) ;
SIGNAL parray : p_array :=
(('0','0 ' , ' 0 ' , ' 0 ' ,'0'),('0','0','1','0','0'),('0','1','0','0','0'),

('0','0','0','0','0'),('0','0','0','0','0'));

COMPONENT intialize
PORT (enable : IN bit;node id : IN integer ;data_out : OUT integer ;row
: OUT integer ; column : OUT integer

write_d : OUT bit ; write_r : OUT bit ;done : OUT bit;clock : IN
std_logic ;state : IN bit_vector(5 downto 0));
END COMPONENT ;

COMPONENT status
PORT (clock : INOUT std logic ;state : OUT bit_vector(5 downto 0)
;state done : IN bit_vector(5 downto 0);enable : IN bit ;

done : OUT bit ;count : IN integer);
END COMPONENT ;

84

85

COMPONENT record renew
PORT (state : IN bit_vector(5 downto 0) ;clock : IN std_logic ;p_in :
IN bit ;row : OUT integer ;column : OUT integer ;

r_in : IN integer ; d_in : IN integer ; s3_done : OUT bit
;write_r : OUT bit ;count : IN integer ;read_p : OUT bit ;

r data : OUT integer);
END COMPONENT ;

COMPONENT array read
PORT (d bus : IN std_logic_vector(15 downto 0) ;state : IN bit_vector(5
downto 	 ;s4 done : OUT bit ;

ck : OUT bit vector(1 to 4) ;interupt : IN bit vector(1 to 4)
;w_s4 : OUT bit ;clock : IN std logic ;count : IN integer ;

r4 : OUT integer ; c4 : OUT integer) ;
END COMPONENT ;

COMPONENT table buld
PORT (r5 : OUT integer ; c5 : OUT integer ;d_in : IN integer ;tx_count
: OUT bit ;state : IN bit_vector(5 downto 0);

count : IN integer ;pr : OUT bit_vector(1 to 4) ;p_in : IN bit
;p_read : OUT bit ;d read : OUT bit ;s5_done : OUT bit ;

clock : IN std_logic);
END COMPONENT ;

FOR ALL :table_buld USE ENTITY work.table_buld(behavioral) ;
FOR ALL :array read USE ENTITY work.array_read(behavioral) ;
FOR ALL :record_renew USE ENTITY work.record_renew(behavioral) ;
FOR ALL :intialize USE ENTITY work.intialize(behavioral) ;
FOR ALL :status USE ENTITY work.status(behavioral) ;

FUNCTION bv2st (in_data : IN bit_vector)
RETURN std_logic_vector IS
VARIABLE bitm : std_logic_vector(15 downto 0);
BEGIN
FOR i IN 0 to 15
LOOP
IF in_data(i) = '1' THEN
bitm(i) := '1' ;
ELSE
bitm(i) := '0' ;
END IF ;
END LOOP ;
RETURN bitm ;
END bv2st ;

BEGIN
node id <= bvec2int(id) ;

COUNTER:PROCESS
BEGIN
WAIT ON clock UNTIL (clock'EVENT AND clock = '1') ;
-- WAIT until rising_edge(clock);
IF start = '0' THEN
count <= 0 ;

86

END IF ;
IF (state_done(0) OR state_done(3)) = '1' THEN
count <= count + 1 ;
END IF ;
END PROCESS COUNTER ;

Ul:intialize
PORT MAP (start, node_id, init_data, row, column, s0write_d,
s0write_r, s0_done, clock, state) ;
state_done(0) <= s0 done ;

U2:status
PORT MAP (clock, state, state done, start, done, count) ;

U3:record_renew
PORT MAP (state, clock, p_in, r3, c3, r_in, d_in, s3_done, w_s3, count,
read_p, r_data) ;
state_done(1) <= s3_done ;

U4:array_read
PORT MAP (d_bus, state, state_done(2) , ckn, interupt, w_s4, clock,
count , r4, c4) ;
ck <= ckn ;

U5:table_buld
PORT MAP (r5, c5, d ins5, tx_count, state, count, pr, p_ins5, p_read,
dread, state_done(3), clock);

WRITE D:PROCESS(clock)
VARIABLE s : bit_vector(5 downto 0) ;
BEGIN
-- WAIT ON clock UNTIL (clock'event AND clock = '1') ;
if (clock'event and clock = '1') then
s := state ;
CASE s IS
WHEN "000001" => IF s0write_d = '1' THEN
array d(row,column) <= init_data ;
END IF ;
WHEN "000010" =>d in <= array_d(r3,c3) ;
WHEN "000100" => IF w_s4 = '1' THEN
array d(r4,c4) <= count ;
END IF ;
WHEN "001000" =>
IF d_read = '1' THEN
d ins5 <= array_d(r5,c5) ;

ELSIF p_read = '1' THEN
p_ins5 <= parray(r5,c5) ;
END IF ;
WHEN OTHERS => NULL ;
END CASE ;
End if ;
END PROCESS WRITE D ;

WRITE R:PROCESS(clock)
VARIABLE s : bit vector(5 downto 0) ;
BEGIN
if(clock'event and clock ='1') then

s:= state ;
CASE s IS
WHEN "000001" =>
IF s0write_r = '1' THEN
array r(row,column) <= init_data ;
END IF ;
WHEN "000010" =>
IF w_s3 = '1' THEN
array_r(r3,c3) <= r data ;
ELSIF read_p = '1' THEN
p in <= parray(r3,c3);
ELSE
r in <= array_r(r3,c3);
END IF ;
WHEN OTHERS => NULL ;
END CASE ;
End if;
END PROCESS WRITE R ;

MUTIPLEX: PROCESS(d_bus, d_buf, state, tx_count, pr, clock)
BEGIN
CASE state IS
WHEN "000100" => d_bus <= d buf ;
WHEN "001000" =>
IF tx_count = '1' AND pr /= "0000" THEN
r_w <= '1' ;
d_bus <= integer vec(count) ;
ELSIF pr 1= "0000" THEN
d_bus <= "0000000011111111" ;
r w <= '1' ;
ELSE
dbus <= "ZZZZZZZZZZZZZZZZ" ;
r w <= '0' ;
END IF ;

WHEN OTHERS =>
d bus <= "ZZZZZZZZZZZZZZZZ" ;
END CASE ;
END PROCESS MUTIPLEX ;

END all route;

87

88

REFERENCES

[1] Sharad Jaiswal, Lev Zakrevski, Mehmet Mustafa, Mark Karpovsky. "Unicast

Wormhole Message Routing in Irregular Computer Networks". Proc. of Int. Conf. on

Parallel and Distributed Processing Techniques and Applications, 1998, pp. 2279-2285.

[2] R. Liebeskind-Hadas and et al "Tree-Base Multicast Routing in the Mesh with No

Virtual Channels," Proc. of the First Merged Int. Parallel Processing Symp. and Symp. on

Parallel and Distributed Processing, pp.244-249, 1998.

[3] L. Zakrevski, S. Jaiswal, L. Levitin and M. Karpovsky "A New Method for Deadlock

Elimination in Computer Networks with Irregular Topologies," Proc. of the IASTED

Conf. PDCS-99, 1999.

[4] J.Duato, and et al Interconnection Networks: An Engineering Approach, Los

Alamitos, IEEE CS Press, 1997.

[5] L. Ni, M. and P. McKinley, K. "A Survey of Wormhole Routing Techniques in

Directed Networks," Computer, vol. 26, pp. 62-76, I993.

[6] M. Schroeder and et al. "Autonet: A High-Speed self-configuring Local Area

Network Using Point-to-point Links," (Technical Report 59, DEC SRC, April 1990).

[7] W. Dally and C. Seitz, L. "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks," IEEE Trans. on Comput. Vol. 36, pp. 547- 553, 1987.

[8] N. Boden and e. al. "Myrinet: A Gigabit per second Local Area Network," IEEE

Micro, pp. 29-35, I995.

[9] F. Harary "Graph Theory", Addison-Wesley, Reading, Mass, 1969.

89

[10] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, B.Smith, "The

Tera Computer System," Technical report, Tera Computing Company, I991.

[11] M. Bae and B. Bose "Resource Placement in Torus-Based Network," IEEE Trans.

on Computers, vol.46, pp.1083-1092, October 1997.

[12] P.H. Bardell, W.H. McAnney, and J.Savir, Built-in Test for VLSI: Pseudorandom

Techniques, John Wiley, New York, 1987.

[13] C. Cunningham and D. Avresky "Fault-Tolerant Adaptive Routing for Two-

Dimensional Meshes," Proc. of First Int. Symp. on High Performance Computing

Architecture, Raleigh, North Carolina, USA, January 1995.

[14] Cadence Open Book Documentation, Cadence Design Systems, 2000.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Biographical Sketch
	Approval Page
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Overview of Routing Concepts
	Chapter 3: TPBR Algorithm and its Mathematical Model
	Chapter 4: Architectural Design of the Chip
	Chapter 5: The VHDL Model for Turn Prohibition
	Chapter 6: Synthesis of the Model
	Chapter 7: Layouts
	Chapter 8: Conclusions
	AppendixA: VHDL Model for Turn Prohibition
	Appendix B: Top Level VHDL Model
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

