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ABSTRACT

A BI-LEVEL PROGRAMMING APPROACH FOR
THE SHIPPER — CARRIER NETWORK PROBLEM

by
Ya Wang

The Stackelberg game between shippers and carriers in an intermodal network is

formulated as a bi-level program. In this network, shippers make production,

consumption, and routing decisions while carriers make pricing and routing decisions.

The oligopolistic carrier pricing and routing problem, which comprises the upper level of

the bi-level program, is formulated either as a nonlinear constrained optimization

problem or as a variational inequality problem, depending on whether the oligopolistic

carriers choose to collude or compete with each other in their pricing decision. The

shippers' decision behavior is defined by the spatial price equilibrium principle. For the

spatial price equilibrium problem, which is the lower level of the bi-level program, a

variational inequality formulation is used to account for the asymmetric interactions

between flows of different commodity types. A sensitivity analysis-based heuristic

algorithm is proposed to solve the program. An example application of the bi-level

programming approach analyzes the behavior of two marine terminal operators. The

terminal operators are considered to be under the same Port Authority. The bi-level

programming approach is then used to evaluate the Port Authority's alternative

investment strategies.
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CHAPTER 1

INTRODUCTION

1.1 Background

Advances in transportation and information technology and the recent expansion of the

global economy are two major factors driving the fundamental changes in the shipping

industry and the role of United States ports. The advances in technology include:

containerization of cargo, new ship designs, and information technology (IT) driven

freight logistics.

Containerization begun in 1966 with the maiden voyage of a Sea-Land container

ship from Newark, New Jersey to Rotterdam, Holland (Talley, 2000). In the container

ship operation, freight loaded in steel boxes or containers is moved directly between an

origin and a final destination. The reduction and, in some cases, full elimination of the

freight loading, unloading, and repackaging at the intermediate points (as it was done in

the pre-container era) resulted in faster service at a lower cost. The storage of cargo in a

sturdy steel box reduced the damage cost as well. Since the introduction of

containerization, the volume of freight moving via containers has grown steadily. Figure

1.1 shows that from 1994 to 1999, the US container traffic measured in TEUs (twenty-

foot equivalent units) has increased by 36 percent, from 19.58 million to 26.67 million

TEUs (The American Association of Port Authorities, 2001).
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Figure 1.1 US Container Traffic 1994 to 1999 (in Million TEUs)
(The American Association of Port Authorities, 2001).

Another trend accompanying the advent of containerization is the increased size

of container ships. The standard ship size has increased from less than 1000 TEUs in the

late 1960s to 6000 TEUs in the late 1990s (Airriess, 2000). The driving factor behind this

trend is the fact that the average cost of transporting a container decreases with an

increase in the ship size. For example, a 6000 TEU ship has approximately 20 percent

lower average unit cost compared to a 4000 TEU ship. However, this cost advantage can

be realized only if the ship sails fully loaded. Unused ship capacity can quickly translate

into high opportunity cost, which is very detrimental to profit. In addition, the larger ship

has a higher operating cost (e.g., fuel, crew, and maintenance costs). It also needs larger

cranes with longer reach from the berth to the ship, more sophisticated equipment, and a

technology-skilled labor force, which translates into a higher terminal handling cost.

Collectively, the issues discussed above have resulted in a higher cost per port

call. To ensure that the capacity of their ships is fully utilized, the ocean carrier lines

share vessels by forming various strategic alliances and partnerships as well as outright



3

mergers. During this process, many routes have been reconfigured and some of the ports

are no longer visited.

Now turning to the change in the manufacturing process, the manufacturing

industry adopted the just-in-time (JIT) principle in order to reduce the inventory cost and

to increase flexibility of production. JIT is a demand driven process. All inventories is

kept at the suppliers, and brought in via a reliable transportation system only when and

where it is needed. The recent advance in information technology, such as Electronic

Data Interchange (EDI), Automatic Equipment Identification (AEI) and Global

Equipment Positioning System (GPS), have greatly facilitated the communication

between producers and consumers of goods and providers of transportation services, and

enabled the real time tracking of the containers (Helling, 2000). The uncertainty and the

inventory costs and requirements are reduced, and as long as the JIT system has a highly

reliable transportation component, it is no longer necessary to locate the distribution

centers close to the production facilities and the markets. Ports have now become an

important part of the logistics link in the JIT production and delivery chain, since use of

information driven logistics has opened up more potential markets. In other words, the

market reach of the ports is no longer restricted to their neighboring region. For example,

ten years ago, 90 percent of the port traffic at the Port of New York and New Jersey was

tied to its regional market. Now, more than 15 percent is destined to the Midwest and

Canada (Cottrill, 1999).



Figure 1.2 Share of International Trade in Goods and Services in the
US Gross Domestic Product (International Trade Administration

(ITA) of the United States Department of Commerce, 2000)

The international flow of goods, capital and labor have increased rapidly, driven

by the formation of trade agreements such as the North American Free Trade Agreement

(NAFTA), the economic and political organizations such as the European Union (EU)

and the Asia-Pacific Economic Cooperation (APEC). With this trend of globalization, the

United States has become deeply immersed in the international trade. Figure 1.2 shows

that from 1987 to 1999, the import and export as a percentage of Gross Domestic Product

(GDP) (based on the 1996-dollar) in America grew from 15 percent to 26 percent. The

rapid growth of trade with the Asia Pacific region, especially China, contributed greatly

to this trend. The trade with China, including Hong Kong, as a percentage of the total US

trade, grew from 5.54 percent in 1992 to 7.11 percent in 1999 (International Trade

Administration (ITA) of the United States Department of Commerce, 2000).

The trends discussed above brought both opportunities and challenges to the

ports. Fueled by the boom of international trade, container cargo at the ports is expected
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to grow correspondingly. Attracting the international market with strong growth potential

is critical to the development of the ports. The strong growth of trade between the US and

the Asian Pacific region has prompted several ports both in the East and the West Coast

to identify this traffic as the strategic area in their development plans. The Port Authority

of New York and New Jersey, for example, plans to form an agreement with the Suez

Canal Authority to capture a larger share of the US bound Asia cargo. According to its

forecast, by shifting just seven percent of the current West Coast-bound traffic to the East

Coast via the Suez Canal, the port volumes could double by 2020 (The Port Authority of

New York and New Jersey, 1999). Clearly, there will be a competition for this traffic

among the US ports.

Competition among seaports is an old issue dating back to the colonial times. Up

to 1980s, only a few large ports along the East Coast such as the Port of New York, the

Port of Boston, the Port of Philadelphia, and the Port of Baltimore were competing with

each other for international trade. The shift to larger container ships will intensify this

competition since the consolidated shipping lines are likely to redesign their routes and

call only at a few ports. Equipped with advanced information and communication

technologies, the shipping lines that are not restrained by a contract can evaluate the

service charge and congestion levels at any port in almost real time and change their

selection of port calls accordingly.

"Corporate managers can, if they want, evaluate options and switch ports as
easily as they change television channels. When Steven Shyne, manager of international
transportation at Pfizer Inc. became dissatisfied with port service in NY he began shifting
more specialty chemical shipments to the Big Apples archrival in Montreal-and he saved
time and money in the process.

Herbert Ovida, manager of regional export development program at the PA of
NY-NJ is acutely aware of the new competition. "We used to think that the customer was
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captive, that they had no choice", admits Mr. Ovida. "But today the small ports have
grown up, and NY has a hell of a lot of competition." " 1

Besides the increased intensity, the scope of competition has been expanded to

that between the East and the West ports and even to the national level.

With this increase in competition, the ports are rethinking ways to bolster capacity

and improve service quality in order to maintain current and attract new business. To

accommodate larger vessels, the ports need to deepen their navigation channels and

berths, acquire new larger cranes, implement state-of-the-art information and

communication technologies, and provide seamless connections between the modes such

as on-dock rail and truck. The increased competition adds to the pressure of infrastructure

investment. According to a report by the National Highway System (Department of

Transportation, 2000), most US port terminals have various deficiencies, among which

the most important is insufficient intermodal connectors that enable the seamless

movement of containers between modes. Hence, it can be expected that without prompt

infrastructure improvements, our ports may become a bottleneck for the international

trade between the United States and the rest of the world. This eventually may impair the

competitiveness of the export industry and hinder the growth of the US economy. In

response to the above opportunities and challenges, most ports have started to or plan to

redesign and reorganize their operations. Faced with the investment pressure, various

construction projects such as dredging and on-dock rail are being carried out at many

ports. In addition, most ports have come up with a long-term investment plan. The

federal government is a major source of funds for these projects. To receive the funds, the

ports need to conduct a comprehensive cost and benefit analysis. This gives rise to the

Miles, G. L. (1994). The War of the Ports. International Business. 7. 30-36.
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investment issue of port authorities' decisions, which is one of the issues discussed in this

dissertation.

The benefits of a port expansion are accrued not only by the immediate region in

which the port is located, but also extend beyond this region. The first focus of this

analysis is on economic benefits directly related to the operation at ports. Operations at

the ports are carried out by private terminal operators. Their activities include setting the

service charge and making the routing decisions. In the face of the intensified

competition, lowering service charges used to be the frequently preferred strategy by the

private terminal operators to increase business. However, severe service charge

competition and high operating costs have become detrimental for profit. Hence, it is

important to find an appropriate set of service charges, which are both competitive and

profitable, and make the optimal routing decision, which will allocate the limited

resources to the most efficient use, thus reducing the operating cost. Here arises the

pricing and routing issue of private terminal operators, which is addressed in this

dissertation.

The investment issues of the Port Authority and the pricing and routing issue of

the private terminal operators give rise to the realistic importance of this dissertation.

The dissertation aims to develop a model, which can derive the optimal service charge

and routing pattern at port terminals as applied to the Port Authority's investment

decision in the framework of a multimodal freight network. More specifically, the model

can aid the transportation planner to forecast the production, consumption, and link flow

pattern on a freight network, evaluate the performance of the port terminal operation, and

determine the best investment strategies. Even though the primary motivation of this
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dissertation was to develop a model for evaluating port terminal operations, the resulting

methodology is general and directly applicable to different types of carriers, such as

competing truck, rail, or intermodal service providers.

The rest of this chapter is organized as follows. Section 1.2 describes the role of

the seaports in the multimodal freight transportation system. Section 1.3 presents the

research problem to be solved in this dissertation. Section 1.4 gives the organization of

the dissertation.

1.2 Role of Seaports in the Multimodal Freight Transportation System

Ports in the U.S. are usually publicly owned facilities, consisting of channels, berths,

docks, and land, managed by a Port Authority, a public (or quasi-public) agency

operating in the public interest. A Port Authority may have several terminals within its

port complex and lease the land and facilities to private operators. The terminal operators

together with the other public and private transportation carriers that own and operate

transportation facilities constitute a multimodal freight transportation system. Through

this system, vehicles and containers carrying commodities from the shippers to the

receivers are located in spatially separated markets. Due to the existence of different

transportation modes and related complicated interactions between components of the

freight system within the port terminal, the analysis of port operations must be considered

within this framework of a multimodal freight system. In this section, the behavioral

principles of three major types of players involved in the port operation and the

interaction between these players will be described. Following this, the factors

influencing each player's behavior will be discussed.
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1.2.1 Players Involved in Port Operation

A set of players involved in the port operation include the steamship lines, railroads and

motor carriers, brokers, shippers, forwarders, port terminal operators, a Port Authority,

and the other regulatory agencies. Following the generalized definition of Harker et al.

(1986-a, 1986-b), these players could be combined into three major groups: the shippers,

the carriers, and the regulatory agency. It is the interaction of these players, which results

in an equilibrium of the spatially separated markets. At the same time, their individual

rent-seeking behaviors may disturb the market away from the equilibrium from time to

time. Understanding the behavior of each player and its rationale is the key to modeling a

freight network system.

1.2.1.1 The Shipper.	 As defined by Harker (1986-a, 1986-b), the shippers are

economic agents who engage in moving commodity over the spatial network to explore

the potential economic benefit arising from the difference in commodity price between

different regions. The rent seeking behavior of the shippers serves as an "invisible hand",

which drives the spatial market to an equilibrium point where all the potential benefits

have been exhausted. Here, the shippers are a generalized notion in the respect that any

one among the producer, consumer, forwarder or broker could be classified as shipper, as

long as the above definition is satisfied.

The shipper's decision variables consist of the amount of commodity supplied and

demanded at each market, and the freight flow between these markets. These flows are

assigned to a carrier or a sequence of carriers for a movement over their transportation

networks. The selection of the sequence of carriers is equivalent to the selection of the

transshipment locations. The transshipment locations are the points where the intermodal
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transfer of the goods (or the interlining practice--the exchange of goods between different

carriers) takes place. The objective of the shipper is profit maximization, which is

accomplished by shipping the commodity to market via the path with the cheapest

generalized cost, but with a high enough price to cover the sum of the production and the

transportation cost.

1.2.1.2 The Carriers. According to Harker (1986-a, 1986-b), the carriers are the

economic agents who operate the transportation facility and provide the transportation

service. The transportation facilities operated by the carriers may include the vessel, the

railroad, the berth, the warehouse, and so on. Facilities under different carriers could be

represented as non-overlapping sub-networks with various origins, destinations, and

intersection nodes. The union of all carriers' sub-networks is called the carriers' network.

The transportation service here is a generalized concept, which includes all those

processes needed in transporting the freight from an origin to a destination within a

carrier's sub-network. In this dissertation, it is assumed that the links between each O-D

pair on a carrier's sub-network represent not only the physical location, but the type of

service process taking place there as well. Different service processes taking place in the

same physical location are defined as different links. In another word, a link on a carrier's

sub-network is both geographical and service orientated. Based on the above definition,

the shipping lines, the rail companies and motor carriers, and the port terminal operators

all belong to the same group: the carriers. They all satisfy the behavior principles

described below.

The carrier's decision variables consist of link flow and service charge on the

routes on the sub-network under its control. The carrier's objective is profit
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maximization. It is accomplished by setting the service charge and routing pattern in such

a way that, for the flow of each commodity between each O-D pair, two conditions are

satisfied: 1. The marginal revenue (i.e. the gain in revenue by providing an additional unit

of service) equals the lowest marginal cost (i.e. the increase in the operating cost by

providing an additional unit of service). 2. The marginal cost on any used path between

this O-D pair equals the lowest marginal cost on all the paths between this O-D pair.

The next issue is modeling the carriers' behavior. First, with the merger of the

carriers' industry (Luberoff, 2000), the competition between different carriers exhibits an

oligopolistic nature. A carrier has certain power in setting the price instead of being

simply a price taker. A carrier adjusts its decision frequently according to the

environment and changes in the demand level, capacity of the facility, and service

charges offered by other carriers. Thus, the marginal cost pricing principle of the carriers

is not applicable here. Second, besides the competition, there exists certain level of

pricing collusion among the carriers. For example, before the Ocean Shipping Reform

Act (OSRA) was passed in 1998, the annual conference of ocean carriers (which also

serve the port) attempted to set some price agreement, though the agreement is not

always diligently observed (Pei, 2000). The above features are usually not captured by

the carrier level models presented in previous studies such as in Harker (1986-a, 1986-b).

This dissertation aims to fill these gaps by formulating the oligopolistic pricing behavior

of the carriers under either the non-collusive or collusive pricing schemes subject to the

shippers' equilibrium.

1.2.1.3 Port Authority. Besides the terminal operators as a type of carriers, the Port

Authority is another player involved in the supply side of port operations. The Port
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Authority is a public agency, responsible for major infrastructure investments at a port; it

decides where and how much to invest. Its objective is the maximization of the net social

benefit to the region it serves. Unlike the service charge and the routing pattern of the

carriers, the Port Authority's investment plan is carried out during a longer time period.

In this respect, the investment decision is not as flexible as the carriers' pricing and

routing decisions. Usually, its benefits are returned in a long run, unless the claim of one

Port Authority to increase the capacity seems so credible to other competing ports that it

effectively hinders the investment at those ports. The latter case happens when the

demand is not great enough for every port to expand its capacity and the Port Authority

taking the initial step to invest has an edge over other competing Port Authorities, which

react slowly.

1.2.1.4 Interactions among Players. The way the players interact with each other is

influenced by whether the decision they are making is a long-term or a short-term one,

and whether the market in which they operate can be described as a monopoly, oligopoly

or perfect competition. The long-term decision, once committed, is difficult to change in

the short term. Hence, the interaction between the long-term decision-maker and the

short-term decision-maker has a sequential nature. The market conditions also influence

the interaction by bestowing the decision-maker with different levels of market power

under different market conditions. For example, the monopoly supplier or the monopoly

consumer has strong control over the market price. On the contrary, under the market

condition of perfect competition, the supplier or the consumer acts as the price taker.

Understanding the short-term or long-term nature of each player's decision and the

market conditions is very important to the understanding of the interaction between and
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among the players. The nature of the decision and the market condition in which each

player acts are introduced below.

A shipper's decision is assumed to be a short-term decision. It is assumed that

there are numerous shippers in the system, which indicates that the market condition for

the shippers is perfect competition. The profit-seeking behavior of all shippers determines

the market price and the flow pattern in the transportation market, although none of them

alone has the power to determine price individually.

The pricing and routing decision of the carriers is assumed to be a short-term

decision. This assumption is justified by the fact that both the service charge and the

routing pattern can be easily adjusted according to the level of demand. It is assumed that

there are only a few carriers providing service at each port. The carriers can observe each

other's behavior and react accordingly. The market condition of the carriers' industry is

assumed to be oligopoly.

The investment decision by a Port Authority is a long-term decision. The number

of Port Authorities in the market is even smaller than the number of carriers. The Port

Authorities can observe each other's behavior and react accordingly as well. Unlike the

carrier, the Port Authority is a public agency. Besides the economic factors, its behavior

is considerably influenced by social and political factors, which render the economic

approach ineffective in formulating the competition between various Port Authorities.

Hence, the dissertation will not deal with this problem. Instead, the dissertation focuses

on developing a model, which can be used to evaluate the economic impact of several

alternative investment strategies and to identify the best strategy for a Port Authority.
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Based on the above discussion, the interaction between the three levels of players

can be summarized as follows:

Each shipper makes its commodity production and consumption decision based

on its knowledge of the pattern of the market prices in the spatially separated markets. It

makes its routing decision based on its knowledge of the pattern of the service charges set

by the carriers and the travel time function between O-D pairs on the carriers' network.

This is determined by the purely competitive assumption of shippers' market, which

indicates that each individual shipper is a price taker.

Each carrier makes its pricing and routing decision based on its knowledge of the

Port Authority's investment decision and its forecast of the shippers' and competing

carriers' reaction. The sequential nature of the interaction between the Port Authority and

the carriers is determined by the fact that the Port Authority's investment decision is a

long-term decision while the carriers' pricing and routing decision is a short-term

decision. The interaction between different carriers is characteristic of the behavior in an

oligopoly market.

The shippers' and carriers' behaviors in turn influence the Port Authority's

decisions. How the shippers and the carriers react to the Port Authority's investment

strategy determines the effectiveness of this strategy. The Port Authority makes its

investment decision based on its forecast of the effects on carriers' pricing and routing

decision and the shift of the production, consumption and link flow pattern under

different investment strategies.
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1.2.2 Factors Influencing the Players' Behavior

Various factors influence each player's behavior and, consequently, the throughput of a

port terminal. In general, these factors can be classified into three categories: 1)

commodity supply and demand functions at a market, 2) transportation technology used

by modes and which is usually characterized by the operating costs and service

characteristics (e.g., travel time), and 3) how does a shipper perceives service

characteristics and derives a generalized cost (e.g., travel time plus related freight

charges). A small variation in the above factors may shift the production, consumption

and flow pattern in the system tremendously, and consequently change the profit of the

port operation significantly. Hence, a systematic analysis of the port operation should

take into account all of the above factors. These factors are discussed in this section.

1.2.2.1 Commodity Supply and Demand Functions. The producers and consumers at

each market jointly determine commodity supply and demand. Each producer's behavior

may be described by a supply function, which is mainly influenced by the technology and

the cost of inputs (e.g., materials, salaries, and interest rates). Generally, supply is an

increasing function in its own price and a decreasing function in the price of its input

resources. If a product serves as an input to the production of another product, its price

will have a major influence in the other product's production output. Alternatively, if two

products are competitive, an increase in price of one may stimulate the production of the

other. On the other hand, consumer behavior may be described by a demand function.

Unlike supply, the demand is usually a decreasing function in its own price. The price of

another product may influence the demand of the primary product either positively or

negatively depending on whether these two products are complementary or competitive

(i.e., they are substitutes for each other). The supply and demand functions at a market
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are obtained by aggregating the individual producer and consumer supply and demand

functions.

1.2.2.2 Transportation Technology Used by Modes. Transportation technology used

by modes is usually characterized by the operating costs and service characteristics (e.g.,

travel time). Operating cost is defined as the cost required to carry out a service process

at a carrier's facility within certain time period. Travel time is defined as the time

required to finish a service process (e.g. transporting, loading, unloading) at a carrier's

facility. Besides the level of technology, the operating cost and the travel time also

depend on the level of service demand, and the capacity of the carrier's facility or

equipment. The technology and the capacity take effect by shifting the curve that

represents the operating cost or travel time function upward or downward. On the

contrary, the service demand takes effect by moving the operating cost or travel time

along the curve that represents the operating cost function or the travel time function.

1.2.2.3 Service Characteristics Perceived by the Shippers. Shipper's behavior is

characterized by how a shipper perceives service characteristics and derives a generalized

cost. The service characteristics, which the shipper considers in its selection of the

carriers or transportation modes, are quite diverse, including both qualitative and

quantitative attributes. As identified by Evers (1996), there are at least six factors

influencing the shipper's decision: 1) service charge, 2) reliability, 3) travel time, 4) over,

short, and damage, 5) market considerations, and 6) carrier considerations. Among these,

only travel time and service charge will be considered in formulating the shipper

decision. As indicated in the Evers' study, travel time and service charge are the two of

the most important determinants in the selection of carriers or transportation modes. The
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relative importance of these two attributes in affecting the shipper's decision is indicated

by value-of-time. Value-of-time converts travel time into the same unit as service charge,

so that they can be combined together to calculate the generalized cost. The flow of

different commodity types has a distinct value-of-time. The inner value of a commodity

is not the sole factor in determining it's value-of-time. The logistic opportunity cost,

which is determined by the relative urgency to use certain commodity and the value-

decreasing rate of the commodity with the passage of time, are some other important

factors. In addition, the subjective perception of the players involved may also play a role

in determining the value-of-time of the freight. The generalized cost perceived by a

shipper is the linear combination of the service charge and the travel time that is

converted into monetary value by the value-of-time.

1.3 Research Problem

The interactions discussed above can be formulated using a three-level model. The first

level describes the behavior of the Port Authority in choosing the best investment

strategy to maximize net social benefit. The second level describes the behavior of the

carriers in choosing optimal service charge and routing pattern to maximize their profits.

The third level formulates the behavior of the shippers, which is to determine the supply

and demand of each commodity at each market (or centroid in transportation planning

parlance) and the distribution pattern of each commodity on the network. The structure of

the model is shown in Figure 1.3.
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Figure 1.3 Interactions between Different Players

More specifically, the research questions to be answered by each level of the

model in this dissertation are listed below:

1. Behavior of the Port Authority

Which investment strategy out of a finite set of alternatives should the Port

Authority implement in order to maximize the net social benefit? What will be the impact

of this strategy on the private terminal operators and consequently the shippers?

2. Behavior of the carriers

What is the equilibrium service charge and routing pattern on each carrier's sub-

network given the competitive pricing game among the carriers? What is the optimal set

of service charge and routing pattern on each terminal sub-network and the resulting

profit if the carriers choose to price collusively? What will be the impact of the

competitive or collusive pricing on the shippers' decisions?
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3. Behavior of the shippers

What are the optimal locations at which goods are produced and consumed, their

quantity and price? What is the equilibrium flow on the shipper network and the resulting

cost?

1.4 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 reviews the models found in the

literature to solve each of the above problems and discusses their advantages and

limitations. Chapter 3 describes the structure of the freight network, including both the

shipper perceived network and the carriers' network. The port facilities and the service

processes that take place at a port terminal are viewed as a carrier's sub-network. Chapter

4 presents the basic assumptions, equilibrium conditions, and formulations for the

carriers' pricing and routing problem with explicitly defined demand function. Chapter 5

extends the model from Chapter 4 by integrating the shipper level problem with the

carriers' pricing and routing problem. A bi-level program is developed to formulate the

Stackelberg game between the carriers and the shippers. A sensitivity analysis based

heuristic algorithm is developed to solve the bi-level program. Chapter 6 formulates the

Port Authority's investment behavior and uses the model from Chapter 5 to model the

Port Authority's investment decisions. Chapter 7 presents the case study. A numerical

example is developed and used to test the application of the model and the algorithms

developed in this dissertation. The model is implemented in the GAMS software (Brooke,

1992). Finally, Chapter 8 examines possible extensions of the model and directions for

future research.



CHAPTER 2

LITERATURE REVIEW

Chapter 1 defined the research problem of this dissertation. The problem consisted of

modeling decisions of three types of players - the shippers, the carriers, and the Port

Authority - and how they interacted in determining the production and consumption

patterns, resulting commodity flows and related carrier operations plans and service

charges. This chapter presents a review of the papers and studies from freight

transportation planning and spatial economics that were deemed relevant for the

formulation of a mathematical model of the research problem, and for designing a

solution algorithm for solving the model. The chapter concludes with a discussion of how

the approaches found in the literature relate to the models proposed in this dissertation.

2.1 Evolution of the Freight Transportation Planning Models

The freight transportation planning process in general needs to accomplish the following

tasks:

I. Determine, based on the underlying economic principles, the amount of commodities

to be produced and consumed at certain zones or regions under study.

2. Identify the trip matrix between the points of production and the points of

consumption.

3. Allocate demand over the available transportation modes.

4. Provide the routing of the vehicles carrying the commodities over the modal

networks.

20
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Early freight models mimicked the traditional four-step urban transportation

planning process for passengers. The first step, trip generation, represents the number of

trips to be produced at origins and attracted at destinations. The second step, trip

distribution derives the trip table that allocates the trips between origins and destinations.

The third step of the process, modal split is the allocation of trip interchanges to available

modes, while the fourth step, traffic assignment, disperses the modal trip interchanges to

available routes (Manheim, 1979). The freight planning process is more complex than the

passenger planning process because it involves interaction between at least two distinct

interest groups: the shippers that send the commodity, and the carriers that provide the

transportation system —(vehicles and the network) over which the commodity moves. The

freight planning models have evolved from those focusing on one stage and one type of

player/mode (e.g. the Railroads Routing Model (RRM) of Bronzini, 1981) to those

solving the problems of all four stages jointly, and considering both the shippers and the

carriers simultaneously (e.g. the Generalized Spatial Price Equilibrium Model (GSPEM)

by Harker et al., 1986-a, 1986-b).

Two strains of models with distinct focuses have been used throughout the history

to model the freight transportation planning process. The first strain is the pure spatial

price equilibrium model (Samuelson, 1952; Takayama and Judge, 1964), the purpose of

which is mainly to derive the competitive equilibrium of the commodity production,

consumption and distribution pattern among the spatially separated markets in a

simplified transportation network. On the simplified network, each Origin-Destination

(0-D) pair is connected by a link, and the link-based transportation cost is fixed. The

second strain is the freight network equilibrium model. It predicts the modal split and
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network assignment of freight flows over available links and paths on a general

multimodal transportation network consisting of various modal networks. The general

transportation network has the node-arc representation and flow-dependent transportation

costs. Various O-D pairs are connected at intermediate nodes, and the connecting paths

are made up of several links. Paths between different O-D pairs often share a link.

Usually, these models include performance functions that relate the travel time and cost

to traffic volumes. By assuming the amount of freight to be shipped as fixed, the models

ignore the impact of network performance and shipping cost on the commodity

production and consumption patterns in spatially separated markets.

With the recent methodological and theoretical advancements, these two strains

have converged. New models are sound in economic and behavioral theory, and have

been combined with the advancements in algorithmic developments and increased

computational power. The following sections review briefly the progress of the spatial

price equilibrium (SPE) model and freight transportation network equilibrium (FNE)

model, including both formulations and algorithms.

2.1.1 Pure Spatial Price Equilibrium Model

The pure SPE model aims to find an equilibrium solution in terms of the commodity

supplied and demanded at each market, and the inter-market network-based commodity

flows. The solution satisfies the market equilibrium condition: the delivered price at the

destination market (that is, the price of the product at the point of production plus the

lowest transportation cost to the market) equals the market price that the customers are

willing to pay. This means the appreciation of the supply price at the market has been

exhausted by the transportation cost. Figure 2.1 illustrates this concept.
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Figure 2.1 A Simple Pure SPE Model

The production and consumption on this simple network consisting of an origin

and a destination are described by the following functions:

denote the supply, the demand, the commodity

price, and the transportation cost, respectively. The subscripts i or j indicate the markets,

and Qij is the net commodity export from market i to market j. The spatial price

equilibrium satisfies the following conditions:

Solving Eqs. (2.5)-(2.7) yields the following:



with equilibrium supply, demand, price and commodity flows being:

Samuelson's (1952) pure SPE problem, which assumed an over-simplified

transportation network with fixed transportation cost between each O-D market and

linear supply and demand functions at each market, was formulated as an optimization

problem. Takayama et al. (1964) extended Samuelson's model to handle a multi-

commodity case and formulated the pure multicommodity SPE problem as a quadratic

programming problem. He assumed that the supply and demand functions are symmetric.

2.1.2 Freight Network Equilibrium Model

The FNE model aims to find the equilibrium solution in terms of link flows, which

satisfies Wardrop's First and Second Principles (Sheffi, 1985). Wardrop's First Principle,

also called the user equilibrium, states that at equilibrium all used paths between the same

O-D pair for the same commodity have equalized lowest cost. This principle is used for

modeling shippers' routing decisions. The modified statement implies that at equilibrium

each shipper has no incentive to unilaterally change routes, paths or modes because it

cannot further reduce its cost.

Wardrop's Second Principle, also called the system optimum, states that in order

to minimize the total transportation cost, all used paths between the same O-D pair for the

same commodity have the same lowest marginal cost. The principle applies to the

carriers' optimal routing decisions. It is modified to state that at the optimum a carrier has

24
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no incentive to change its routing plan on the sub-network under its control because it

cannot further reduce its cost.

A detailed review of the FNE models is given by Bronzini (1980) and Friesz

(1983-b, 1985). Bronzini (1978) used a national freight transportation network model (i.e.

a FNE model) to estimate the energy conservation impact as well as the modal traffic

shares, transportation costs and service levels on a general multimodal transportation

network. The model assumed that the commodity trip distribution matrix of various

commodities between selected O-D regions was known, based on information provided

by the U.S. Department of Commerce. The freight network was described by a set of

performance functions: a cost function, a capacity function, and an energy function. The

service attributes, such as cost, time, and energy were functions of freight tonnage. The

assumed linear combination of these three attributes was used to represent the total

disutility the shippers would perceive when choosing the bundles of modes and routes.

The shippers' equilibrium was obtained by the standard labeling algorithm (Sheffi, 1985).

In this approach, the disutility combines the carriers' cost (including the operating cost

and the energy cost) with the time delay and is used to generate the shippers' shortest

path. By mixing the carriers' concern (i.e. the operating cost and the energy cost) with the

shippers' concern (i.e. the time delay) and ignoring the impact of service rate on shippers'

choice in calculating the disutility, the model did not recognize a distinction between the

carriers' and the shippers' behavior.

In a latter paper, Bronzini (1981) ran the models with both the average operating

costs and the unit coal train rates to show that no major divergence existed between the

average cost-based approach and the price-based approach in determining the modal split.
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In the price-based approach, the unit coal train rates were determined using rate-cost

equations developed via the linear regression method. The transportation prices for all

other commodities except the unit coal train were simulated using marginal operating

costs. Bronzini (1981) is among the earliest efforts to relate the carriers' pricing behavior

to the carriers' cost. The limitation of the paper is that it only compared the divergences

in modal splits determined from the price-based and the cost-based approaches. The

potential divergence in the assignment patterns was ignored, thus the impact of using the

average carrier cost instead of actual rates in analyzing the shippers' assignment cannot

be ascertained.

Friesz et al. (1986) extended the freight network equilibrium models of Bronzini,

1978, 1981 by combining the trip distribution problem with the modal split and traffic

assignment problem and treating the shippers' and the carriers' decisions separately. He

divided the problem into two sub-problems: the shipper network and the carriers'

network. The two networks are related through an incidence matrix between the arcs on

the shipper network and the O-D pairs on the carriers' network. The trip distribution,

modal split and traffic assignment problem on the shipper network, and the assignment

problem on the carriers' network were solved sequentially. The solution satisfies the

Wardrop's First and Second principles. The trip distribution problem was solved using

the Gravity-type model (Manheim, 1979). There are two deficiencies in this approach.

First, it does not consider the trip generation problem, and uses the Gravity model for trip

distribution. Second, similar to Bronzini (1978), it assumes that the shippers' cost is a

function of the link flow on the shipper network instead of being derived from the
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carrier's behavior. Furthermore, it makes a strong assumption that the cost or delay

functions on both the shipper and the carriers' networks are separable.

2.1.3 The General Spatial Price Equilibrium Model

In the last two decades, the distinction between the SPE and the FNE models became less

prominent. The recent SPE models deal with the modal split and traffic assignment

problems as well as the traffic generation and distribution problems simultaneously via

the use of a general multimodal transportation network. The recent SPE models that use

the general multimodal transportation network are called the "general SPE model". For

these models, the definition of the pure SPE condition in section 2.1.1 needs to be

modified to include the Wardrop User Equilibrium condition of Section 2.2.2. The

revised definition of an equilibrium called the modified Wardrop User Equilibrium in this

dissertation states that for each commodity and a given O-D pair, the transportation cost

on any used path is equivalent to the difference between the supply price at the origin and

the demand price at the destination and is not higher than the costs on any unused paths.

Besides the use of the general multimodal transportation network, another

advance of the general SPE model lies in its mathematical formulation. The recent studies

adopt the nonextremal formulation, which uses either the Variational Inequality (VI) (see

Florian et al., 1982; Friesz et al., 1984; Harker et al., 1986-a, 1986-b; Pang 1984) or the

complementarity formulations (see Friesz et al., 1983-a), instead of the extremal

formulation from Section 2.1.1, which use the mathematical programming approach.

Florian (1982) pointed out that the application of the extremal formulation is restricted to

the situation where the inverse supply, inverse demand and cost functions are continuous

and have symmetric Jacobian matrix or separable functions. The nonextremal
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formulation has fewer restrictions, and can be used to formulate the problem with

asymmetric Jacobian matrix and non-separable functions, which frequently arises in the

problem with the general transportation network or dealing with multiple commodities.

Common to Florian (1982), Friesz (1983-a), (1984), Harker (1986-a, 1986-b), and

Pang (1984) is that they all cast the multicommodity SPE problem in a general

multimodal transportation network using a nonextremal formulation. However, these

papers have distinct features. Florian (1982) proposed the VI formulation with only the

nonnegativity constraints of the path flow variables. The flow conservation constraints

were incorporated in the formulation via the use of an indicator representing the

incidence relationship between path, link, and O-D pair. Friesz (1983-a) provided two

nonlinear complementarity formulations: one using the path flow and the other using the

arc flow formulation. Both Friesz (1984) and Pang (1984) gave the VI formulation using

the node- arc incidence relationship. Pang's formulation differed from Friesz (1983-a) in

that the commodity price is not restricted to be nonnegative. In spite of this difference,

the two formulations are equivalent, as proven by Pang, under the condition that a unique

solution exists for both formulations. Harker (1986-a, 1986-b) also employed the VI

formulation using path-arc incidence relationship. As distinct from the general SPE

models in Florian (1982), Friesz (1983-a), (1984), and Pang (1984), which didn't

distinguish the shippers' and the carriers' behaviors, the Generalized Spatial Price

Equilibrium Model (GSPEM) developed in Harker (1986-a, 1986-b) provided an explicit

treatment of the shippers' and the carriers' behaviors. In this respect, GSPEM model is

the most sophisticated SPE model.
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GSPEM model in Harker (1986-a, 1986-b) described the shippers' behavior by

using the modified Wardrop User Equilibrium condition presented at the beginning of

this section. It described the carriers' behavior by using the Wardrop's System Optimal

condition from Section 2.1.2. Similar to the shippers, the carriers were portrayed as

economic agents with their own objective functions and a set of constraints, instead of

being represented by a set of performance functions as in Bronzini (1978, 1981).

Accordingly, in addition to being dependent on the shippers' service demands, the service

attributes were influenced by carriers' decisions on the rates to be charged and routes

offered. GSPEM model provided the simultaneous solution of the shippers' and carriers'

problems by assuming the marginal cost pricing principle. Harker et al. (1985) used the

model to analyze the U.S. coal industry.

The mathematical formulation (both extremal and nonextremal) of the general

SPE model can be categorized into the quantity formulation (Nagurney, 1999), that uses

the inverse supply and inverse demand functions; and the price formulation (Nagurney,

1999), that uses the supply and demand functions. Based on the assumption that the

supply and demand functions are invertible, Florian (1982), Friesz (1984), Harker (1986-

a, 1986-b) and Pang (1984) provided the quantity formulation of the general SPE model.

For the non-invertible case, the reader is referred to Friesz (1983-a) and Nagurney

(1999).

From above, it is apparent that various types of formulations can be used for the

general SPE model. Accordingly, the solution algorithms are very diverse. For the

extremal formulation, various algorithms in the linear and nonlinear programming theory

such as the Frank-Wolfe algorithm (Sheffi, 1985) can be used. For the nonextremal



30

formulation, various algorithms including the linearization algorithm, the relaxation

algorithm, the projection algorithm, and various decomposition algorithms presented in

Nagurney (1999) can be used. More specifically, the linearization algorithm has been

used to solve the nonlinear complementarity problem. The decomposition algorithms are

applied to the VI problem defined over a separable set or a Cartesian product of sets.

Unlike the decomposition algorithms, the relaxation algorithm and the projection

algorithm have broader applicability in that they can be applied to a problem defined over

a nonseparable set as well. However, the decomposition algorithm is more suitable for

the large scale VI problem since the algorithm decomposes the problem into a sequence

of subproblems with much less dimensions and thus realizes efficiency of the algorithm.

The decomposition algorithms are categorized into parallel or serial versions. These

versions differ in that the serial version uses the information as soon as it becomes

available. Depending on whether the subproblems in the iteration of the algorithm are

linear or not, the decomposition algorithms are also categorized into the linear or the

nonlinear decomposition algorithms in Nagurney (1999).

Florian (1982) proposed the linear approximation method (LAP) for the nonlinear

programming formulation of a single commodity general SPE problem. He proposed the

nonlinear parallel version decomposition method for the multicommodity general SPE

problem with symmetric or separable functions, which was also formulated as a nonlinear

programming problem. For the multicommodity general SPE problem with asymmetric

and nonseparable functions (which was formulated as a VI problem) he proposed to use

the Jacobian diagonalization method. As he mentioned but did not prove in the paper, the

diagonalization method is the relaxation-type algorithm (Nagurney, 1999) that will
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converge if the Jacobian matrix is both row and column diagonal. Friesz (1983-a)

proposed the successive linearization method, which was used to solve the nonlinear

complementarity formulation of the general SPE problem and established the

convergence condition for this method. Friesz (1984) compared the efficiency and

accuracy of the successive linearization method shown in Friesz (1983-a) to the

diagonalization method for the problems with various degrees of asymmetry. For the

subproblems in the iteration of the diagonalization method, two versions of Frank-Wolfe

algorithm were proposed depending on whether the network structure was employed.

Through various numerical examples, he showed that the diagonalization method

together with the version of Frank-Wolfe algorithm that employed the network structure

is fast but not accurate. On the contrary, the diagonalization method together with the

other version of Frank-Wolfe algorithm is accurate but slow. The successive linearization

approach is both fast and accurate. Pang (1984) proposed the Gauss-Seidel-linearization

method (i.e. the linearized serial version decomposition algorithm presented in Nagurney

(1999)). This method decomposed the VI formulation of the multicommodity general

SPE problem into a sequence of single-commodity SPE subproblems with the linear

inverse supply, inverse demand and transportation cost functions, which were then solved

by a special version of the parametric principal pivoting algorithm. Nagurney (1987) also

suggested the use of Gauss-Seidel-type decomposition method to solve the VI

formulation of the general SPE problem with alternative structures according to how

Cartesian product of sets was defined. She compared the performance of the Gauss-

Seidel method to the projection method and showed its superiority in terms of speed.
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Based on the above discussion, Table 2.1, similar to that of Friesz (1983-b), was

developed to categorize the models found in the literature and discussed above.

Table 2.1 Categorization of the models in the freight planning according to various
criteria

Criteria

Multiple
commod-
ities

General
Multimodal
transportat-
ion network

Explicit
treatment of
shippers and

carriers

Simultan-
eous
solution

Extremal
formulation

Nonextremal
formulation

Samuelson (1952) No No No No Yes No

Takayama (1964) Yes No No No Yes No

Bronzini (1978) Yes Yes No No Yes No
Friesz
(1986) Yes Yes Yes No Yes No
Florian (1982),
Friesz (1983-a,
1984), Pang (1984),
and Nagurney
(1999)

Yes Yes No Yes No Yes

Harker et al. (1986-
a, 1986-b) Yes Yes Yes Yes No Yes

2.2 Game Models

The previous section reviewed freight transportation planning models ranging from the

most basic one (Samuelson, 1952) to the most comprehensive ones (Harker, 1986-a,

1986-b). However, even the most comprehensive model does not consider the complexity

in the carrier-carrier or shipper-carrier interactions that arises from the oligopolistic

behavior of the carriers in setting their service charges and routes. Some models in the

game theory and the oligopoly theory can be applied to analyze these interactions. The

basic concepts and applications of these game models are reviewed next.
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2.2.1 Nash Equilibrium and Variational Inequality Formulation

In the oligopoly theory defined in Chapter 1, a Nash game has been frequently used to

formulate the non-cooperative behavior of the oligopolistic players. In a Nash game, each

player is conscious of its rivals' decisions; and, makes a decision in the belief that the

rivals would maintain their current decisions. To illustrate this mathematically, assume

there are m players. Each player i selects a strategy vector x i = {xii ,• • •,x in } VXiє Ki to

maximize its utility u i denoted as a function of the strategy vector of all players: u i =

ui(x1,...,xm) in the belief that any other player's decision xj, i would not change. Here,

Ki c Rn is a convex set. Based on the above notation, Nash equilibrium is a strategy

.
vector x

. =(xl ,...,x,n ) E K, such as that it yields:

Nash equilibrium defined above can be classified as either the Cournot or the

Bertrand equilibrium, depending on whether the decision variable is quantity or price

(Tirole, 1988).

Under the assumption that each u i is continuously differentiable on K and concave

in xi, Nash equilibrium can be formulated as a VI problem (Nagurney, 1999).

"Theorem 6.1: (Variational Inequality Formulation of Nash Equilibrium)

Under the previous assumptions, x * is a Nash equilibrium if and only if

1

 Nagurney, A. (1999 ). Oligopolistic Market Equilibrium. In Network Economics: A Variational Inequality
Approach (pp. 211). Boston/Dordrecht/London: Kluwer Academic Publishers.
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This definition assumes that the strategy of each player is continuous. The

oligopolies may be faced with discrete strategies as well: whether to collude or to

compete. The "compensation principle" of Hicks and Kalder (Tirole, 1988) is used as a

criterion to evaluate whether the collusion could be established and sustained. The

principle states that the collusion should achieve better collective outcome than the sum

of the outcomes achieved individually without any cooperation. This principle also

requires that the winner can easily compensate the loser in the Nash game so that

everyone is better off. The compensation principle is expressed as follows:

where: 74l is the utility for the ith participant under the collusive game and	 is the

utility for the ith participant under the competitive game.

Weskamp (1985) and Dafermos (1987) formulated the production and distribution

behavior of oligopolistic shippers in spatially separated markets as a Cournot game.

These models are called the spatial oligopoly models, and the equilibrium is the spatial

Cournot-Nash oligopolistic equilibrium. They employed the VI formulation and assumed

an oversimplified transportation network. As an extension of Weskamp's paper,

Dafermos established that the spatial price equilibrium model is an extreme and limiting

case of the spatial oligopoly model. Proceeding from these works, Nagurney (1999)

formulated the spatial oligopoly model using the general transportation network.

2 Nagurney, A. (1999). Oligopolistic Market Equilibrium. In Network Economics: A Variational Inequality
Approach (pp. 212). Boston/Dordrecht/London: Kluwer Academic Publishers.
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The oligopolistic competitive behavior of the supply-side of the transportation

service and facility is rarely analyzed. Yang and Woo (2000-b) was the pioneer to

approach this problem to study the interactions of two oligopolistic private toll collectors,

each in charge of a single link on a general transportation network. The collectors' toll

pricing behaviors are formulated as a Nash game. The authors also formulated the

interaction between the two toll collectors and the road users, which fits well into the

framework of a Stackelberg game.

2.2.2 Stackelberg Equilibrium, Bi-level Programming and Sensitivity Analysis
Method

The Stackelberg game, also called a-leader-and-a-follower game, is characterized by the

sequential nature of the decisions made by players, (i.e., the game has a hierarchical

structure). In the game, the leader has the authority to make a first move based on its

forecast of the follower's rational reaction. The follower makes its decision in the

knowledge of the leader's decision. Both the leader and the follower aim to maximize

their own utility. To illustrate this concept mathematically, the notation from the pervious

section is used. The leader is designated by the subscript land the follower, by f. The best

strategy vector of the follower ( xƒ = {x ƒ1 , • • • ,xƒn} VXƒ E Kƒ ) is associated with the

strategy vector of the leader (x 1 = {x11 ,• • • ,x1 } Vxl  E K1 ) by a vector of the reaction

functions: xƒ = R(x / ) . The Stackelberg equilibrium is then defined as follows:

Definition: Stackelberg equilibrium is a strategy vector x * = (4 ,xƒ* )E K, such

Vx
ƒ 

E K
ƒ ' 

(Tirole, 1988)
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The above concept can be easily extended to define the equilibrium for the

Stackelberg game between multiple leaders and followers.

Mathematically, the bi-level programming problem is used to present the static

version of the Stackelberg game. Stackelberg game arises in various situations of the

transportation industry. Accordingly, the bi-level programming technique has wide

application in the analysis of the transportation problem. Typical examples include: the

spatial Stackelberg-Nash-Cournot competitive network equilibrium problem (Miller,

1991), the toll pricing problem (Yang and Lam, 1996; Yang and Bell, 1997-a), the signal

optimization problem (Yang and Yagar, 1995), the network design problem (Friesz et al.,

1992), the facility location problem (Miller, 1995; Taniguchi et al., 1999), and Stakelberg

equilibrium problem in the freight system (Fisk, 1983).

Different solution methodologies have been proposed to solve the bi-level

programming problem as reviewed by Yang and Bell (2001), such as the gap penalty

function approach (Meng and Yang 2001); the sensitivity analysis method based heuristic

algorithm (Yang et al., 1995, 1996, 1997-a, 2000-a, 2000-b); and the simulated annealing

algorithm (Friesz et al., 1992). Since the sensitivity analysis method is going to be used in

this dissertation, only the papers expounding on this method and the studies using this

method are reviewed.

In the literature, abundant studies have been performed on the methodology of the

sensitivity analysis for the nonlinear optimization problem or the VI problem. The

sensitivity analysis for the nonlinear optimization problem or VI problem is to compute

the derivatives of primal variables and dual variables with respect to perturbation

parameters. The general framework and rigorous approach for the sensitivity analysis of
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the network equilibrium problem formulated as the VI problem were provided in Tobin

(1988) and Yang (1997-b). For the general SPE problem, Dafermos (1984) derived the

direction of the change in the price and shipment pattern resulting from the change in the

inverse supply, inverse demand or transportation cost functions. Chao et al. (1984) and

Tobin (1987) provided the quantity sensitivity analysis method for the SPE problem with

perturbation in the parameters of the functions. Nagurney (1999) gave the sensitivity

analysis method for the parameter perturbation, which influences both the feasible set and

the functions. The sensitivity analysis method by Chao (1984) was applied to the

extremal formulation of the general SPE problem with separable nonlinear supply,

demand and transportation cost functions. The method involves the inversion of a matrix

with the rank being the number of regions, instead of the number of arcs. The number of

arcs is usually much larger than the number of regions. One of the assumptions underling

this method is that there is positive supply and demand at every node on the network.

Tobin (1987) advanced the work by Chao (1984) by developing the sensitivity analysis

methods for the nonextremal formulations (both VI and complementarity formulations)

of the general SPE problem. He reduced the size of the system of equations to be solved

in the sensitivity analysis by taking out the equations associated with the nonnegativity

constraints. Unlike Chao (1984), the method in Tobin (1987) is not restricted to the SPE

problem with separable functions and the assumption of this method requires only one of

the supply and demand at a node to be positive.

The sensitivity analysis method has been frequently applied to construct a

heuristic algorithm to solve the bi-level programming problem. For instance, Yang (1996,

1997-a) employed the sensitivity analysis method for the analysis of optimal pricing on a
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transportation network. Yang (2000-a) demonstrated the use of this method to determine

the optimal toll and capacity improvement for privately operated roads on the network.

There are also examples in the literature, which explore this method to solve the

competitive equilibrium between the oligopolies, among which there are a leader and a

number of followers. For instance, Miller (1995) employed this method to solve the

location, production and distribution problem of the Stackelberg leader firm subject to the

spatial Cournot-Nash oligopolistic equilibrium or the spatial price equilibrium of its

competitors on the freight network. In Miller's paper, the quantity decisions such as

production and the distribution decisions of the shipper both the Stackelberg firm and its

rivals are analyzed on a general transportation network while the role of the carriers in

the distribution of the commodity between spatially separated markets is not considered.

Yang and Woo (2000-b) combined this method with the quasi-Newton method to solve

the pricing competition between two private road providers subject to the Wardrop's User

Equilibrium (Sheffi, 1985) of the road users.

2.3 Features of the Study in this Dissertation

This dissertation aims to set up a framework to analyze the interaction between the

oligopolistic carriers and the shippers as well as to answer the research questions

formulated in the shipper level problem and the carrier level problem presented in

Section 1.3. Based on the solution to these two problems, the questions associated with

the Port Authority level investment problem are answered by calculating the economic

impact of the alternative investment strategies and identifying the best strategy. To

accomplish this, it is crucial to develop a model that can solve the shipper and the carrier
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level problems in a systematic way. The various aspects of the models reviewed in the

previous sections, mainly the GSPEM model by Harker (1986-a, 1986-b) and the bi-level

model by Yang and Woo (2000-b), are adopted and modified for this purpose.

The bi-level model in this dissertation is similar to the GSPEM model by Harker

(1986-a, 1986-b) in two aspects. First, it treats the shippers and the carriers distinctively

and integrates the shipper and the carrier level problems. Second, it formulates the

shippers' behavior using the general SPE model. The general SPE model was chosen

over the FNE model because it provides more generality and contains more economic

interpretation by accounting for the economic factors in solving its trip generation and

distribution problem.

The GSPEM model focuses on the shipper's and carrier's routing behaviors. It

simplifies the pricing behavior of the carriers by assuming the marginal cost pricing

principle. Proceeding from the work by Harker (1986-a, 1986-b), this dissertation

considers the oligopolistic pricing and routing behavior of the carriers. The carriers no

longer act simply as the price takers. Instead, they can use the pricing decision as a device

to manipulate the demand in order to maximize their profits. In addition, the carriers can

choose either to compete or collude in their pricing and routing decisions. Hence, the

equilibrium of the carriers' pricing behavior follows the Nash equilibrium or the

Compensation principle presented in Section 2.2. The other feature distinct from the

GSPEM model is that the interaction between the carriers and the shippers is cast into

Stackelberg game and formulated as a bi-level programming problem. The GSPEM

model treats both the carriers and the shippers as price takers, with both reacting to the

service charges in the market. No direct interaction between the carriers and the shippers
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are considered. In contrast, the model in this dissertation assumes that the carriers and the

shippers react to each other's decision. A heuristic algorithm based on the sensitivity

analysis method is developed, which solves the Stackelberg equilibrium in terms of the

carriers' pricing and routing decisions and the shippers' commodity production,

consumption and shipping decisions.

The bi-level model of this dissertation is similar to the bi-level model in Yang and

Woo (2000-b). First, both models formulate the Stackelberg game between the supply-

side (i.e. the leaders) and the demand-side (i.e. the followers) of the transportation

service. Second, both models cast the non-cooperative behavior of the leaders in a Nash

game and formulate it as a VI problem. Nevertheless, the model in this dissertation

contrasts with Yang's model in three aspects. First, the behavior of the shippers, which

are the followers, are stated using the general spatial price equilibrium condition instead

of the Wardrop User Equilibrium condition that was used in Yang and Woo's study

(2000-b). Instead of using the nonlinear programming formulation as shown in Yang's

model, the VI formulation shown in Florian (1982), Friesz (1984) or Nagurney (1999) is

used in this dissertation for the follower level problem that is the general SPE problem.

The VI formulation provides more flexibility and generality in dealing with the case

when the inverse supply, inverse demand or cost functions are nonseparable and

asymmetric. Second, each carrier, which is the leader of the Stackelberg game in this

dissertation, is in charge of a carrier's sub-network. The carrier's subnetwork is distinct

from the shipper network. On a carrier's sub-network, both the pricing and routing

problems are entailed. On the contrary, each toll collector in Yang and Woo's model

(2000-b) operates only a single link in the transportation network of the road user. The
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toll collector has only one decision variable that is the toll on this single link. This

difference gives the model in this dissertation more complexity. Third, various

commodities characterized by distinct value-of-time are considered in this dissertation.

On the shipper side, the interaction between various commodities in the commodity

supply, demand, and transportation cost functions is accounted for in the general SPE

model. On the carrier side, the model provides a solution to the problem concerning how

to excise the price discrimination according to the commodity type in order to maximize

profit.

In summary, the dissertation contributes to the body of transportation planning in

that it provides a methodology to formulate the carrier-carrier and carrier-shipper

interactions resulted from the carriers' oligopolistic behavior. In detail, a bi-level freight

planning model formulating the oligopolistic pricing and routing problem of two or more

carriers subject to the shippers' SPE problem is developed. A sensitivity analysis-based

heuristic algorithm is proposed to solve this model. This model and algorithm are applied

to solve the Stackelberg equilibrium between two terminal operators and shippers as well

as to facilitate the investment decision of a Port Authority in a numerical example.



CHAPTER 3

DESCRIPTION OF THE NETWORK

This chapter presents a conceptual network structure of the multimodal freight

transportation system and describes it from the perspective of different players, the

shippers and the carriers. The organization of the chapter is as follows. Section 3.1

describes the roles of the shippers and the carriers in the freight network system, based on

which the network will be decomposed to the shipper network and the carriers' network.

Section 3.2 describes the structure of the shipper network, the carriers' network, and a

sample carrier's sub-network graphically as three layers. Finally, Section 3.3 describes

the attributes of the elements of each network layer and defines them mathematically.

3.1 Distinctive Roles of the Shippers and the Carriers

The shippers and the carriers have distinctive roles in the multimodal freight

transportation system. These roles were discussed in detail in Section 1.2.3 and are

briefly summarized here.

Each shipper is concerned with the choice of origin and destination markets for

commodities, the choice of a carrier or a sequence of carriers (i.e. the choice of a

transportation mode or a combination of modes) that move the goods between markets. It

usually has no control over the detailed routing pattern within the system of an individual

carrier. Corresponding to its role, the shipper perceives the freight system as an

aggregated network. The basic components of this network include the centroid nodes

that represent the origin and destination markets, the intermediate nodes that represent

transshipment locations, and the links connecting these nodes.

42
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In contrast to the shipper, the carrier's role entails the routing of freight on a

detailed modal network. Each carrier conducts various transportation related service

processes moving the freight over the physical transportation facilities between the point

where it takes control of the goods and the point where goods leave this system.

Corresponding to the carrier's role, the links on a carrier's sub-network represent the rail

lines, the highway segments, the ocean lines, or various operations such as loading and

unloading. The intermediate nodes on a carrier's sub-network represent the change of

directions, the switching points, the stops, the change of facility class or the change of the

service process. The origin and destination nodes on a carrier's sub-network represent the

locations where the carriers take or release control of the goods.

The shippers and the carriers interact with each other. This is reflected in the

network presentation, where a link on the shipper network corresponds to an origin-

destination (O-D) pair on a carrier's sub-network. The incidence index between a

carrier's O-D pair and a shipper's link is denoted as ξl,v . If link 1 on the shipper

perceived network corresponds to O-D pair v on a carrier's sub-network, 1 ,„=1.

Otherwise, ξl,v =0.

3.2 Network Structure of the Multimodal Freight System

Figure 3.1 presents the multimodal freight system in a network structure with three

layers: Layer a is a detailed multimodal freight carriers' network; Layer b is a sample

carrier's sub-network: the terminal sub-network; Layer c is the shipper-perceived

network. Through out this presentation, the relationship between the network layers is

illustrated.



Figure 3.1 Schematic Representation of the Shipper Perceived Network, a Detailed
Multimodal Freight Carriers' Network and a Sample Carrier's Sub-network

44



45

3.2.1 The Detailed Multimodal Freight Carriers' Network

The detailed multimodal freight carriers' network (or the carriers' network) shown in

Layer a of Figure 3.1 is a union of five individual carriers' sub-networks, including two

highway sub-networks, one railway sub-network, one waterway sub-network, and one

port terminal sub-network. From this layer, it can be observed that the carriers' network

satisfies two properties:

1. Different carriers' sub-networks are separable; and

2. Each carrier operates a specific transportation mode or a port terminal.

Nodes x0 and x16 in Layer a represent the commodity origin and destination

markets respectively. Nodes x3, x5, x7, x8, and x9 in Layer a represent the transshipment

points. These nodes constitute the origin and destination nodes on each carrier's sub-

network. Table 3.1 below shows all the possible O-D pairs on the carriers' network.

Table 3.1 Origin-Destination Pairs on the Carriers' Network

the individual carrier's sub-network Carrier's O-D pair v=(xi, xj) Vvє V, xi, xj€X
Highway sub-network 1 v0=(x0, x3)

Railway sub-network v1=(x3, x5)
Waterway sub-network v2=(x5, x7) and v3=(x5, x8)

Port terminal sub-network v4=(x7, x9) and v5=(x8, x9)
Highway sub-network 2 v6=(x9, x16)

3.2.2 Port Terminal Sub-network

Layer b in Figure 3.1 shows a sample carrier's sub-network decomposed from the

carriers' network in Layer a, the port terminal sub-network. The port terminal operator is

the carrier that will be analyzed in detail in the case study of this dissertation. Hence,

more details concerning the port terminal sub-network will be discussed in the case study.
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From a modeling perspective, however, the description of the carrier model is general,

and any type of carrier may be considered in the analysis.

On a port terminal sub-network, a link presents a service process at some terminal

facility. This section discusses the service process at a port terminal and provides an

interpretation of the terminal sub-network shown in Layer b. The various complicated

service processes at a port terminal can be grouped into four major systems: the marine

side interface, the transfer system, the storage system, and the landside interface

(Holguin-Veras, 1998). The different combinations of the processes belonging to the four

systems may be used to move the cargo between an O-D pair on a terminal sub-network.

These combinations can be represented as different paths between this O-D pair. For

example, some cargo may be loaded into the railroad cars or trucks directly at the dock,

hence skipping the storage system. Some other cargo may require service at each of the

four systems (e.g., the cargo that is stored and processed at the terminal's warehouse

before further distribution). Each system is represented by several parallel or sequential

links. The links parallel to each other represent the alternatives to conduct the service

process. For example, the process of lifting cargo can be conducted with mobile cranes,

top loaders or straddle carriers. The links sequential to each other represent the sequential

service processes.

The port terminal sub-network in Layer b can be interpreted based on the above

discussion. For example, links a2, a3, a4, a7, connecting terminal O-D pair (x7, x9) may

represent the service processes belonging to each of the four systems mentioned above.

On the other hand, link a6 can be interpreted as an operation process, which transfers

container or cargo directly to the truck on the dock. Links a0 and a2 may be interpreted
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as service processes in the system of marine side interface, which may represent

unloading goods on two alternative modes or processes. The sequential links a3 and a4

may represent the two service processes involved in moving goods from the apron to the

storage system.

3.2.3 The Shipper Perceived Network

The shipper perceived network (or the shipper network) shown in Layer c of Figure 3.1 is

aggregated from the carriers' network shown in Layer a. The aggregation procedure is

demonstrated in this section. For example, assume that a shipper intends to ship a

commodity from origin market x0 to destination market x16 shown in Layer a. The

shipper may choose the following five steps to accomplish this goal. Each step is

presented as a link on the shipper network in Layer c.

Step 1 A truck company ships goods from the origin market x0 to a truck-rail

transfer point x3 on the highway sub-network 1 shown in Layer a. This step is presented

as highway link 10 connecting centroid node nO and intermediate node n1 on the shipper

network in Layer c.

Step 2 A rail company ships goods from x3 to rail-water transfer point x5 on the

railway sub-network shown in Layer a. This step is presented as railway link 11

connecting intermediate nodes n1 and n2 on the shipper network in Layer c.

Step 3 An ocean carrier ships goods from x5 to an entry point x8 to a port

terminal on the waterway sub-network shown in Layer a. This step is presented as

waterway link 13 connecting intermediate nodes n2 and n4 on the shipper network in

Layer c.
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Step 4 A port terminal operator moves goods from entry node x8 to exit node x9

on the port terminal sub-network shown in Layer a. The goods are transferred to a truck

company at node x9. This step is presented as a port link 15 connecting intermediate

nodes n4 and n5 on the shipper network in Layer c.

Step 5 A truck company ships goods from node x9 to the destination market x16

on the highway sub-network shown in Layer a. This step is presented as a highway link

16 connecting intermediate node n5 and centroid node n6 on the shipper network in Layer

c.

By connecting the above steps, a shipping path connecting markets (x0, x16) can

be constructed on the shipper network shown in Layer c, which is 10, 11, 13, 15, 16 or

n0->n1->n2->n4->n5->n6. Similarly, the other path can be constructed in Layer c,

which is Path 2: n0->n1->n2—>n3->n5->n6 or 10, 11, 12,14, 16.

The above aggregation procedure indicates that: the centroid nodes (n0, n6) and

the intermediate nodes (n1, n2, n3, n4, n5) in Layer c correspond to the origin and

destination markets (x0, x16) and the transshipment points (x3, x5, x7, x8, x9) in Layer a.

From this correspondence, the incidence matrix between the shipper links in Layer c and

the carrier O-D pairs in Layer a can also be derived as shown in Table 3.2:

Table 3.2 The Incidence Matrix between the Carrier O-D pairs and the Shipper Links

4-1,v=(xi,xf) 10 L1 12 13 14 15 16
v0=(x0, x3) 1 0 0 0 0 0 0
v1=(x3, x5) 0 1 0 0 0 0 0
v2 -(x5, x7) 0 0 1 0 0 0 0
v3-(x5, x8) 0 0 0 1 0 0 0
v4=(x7, x9) 0 0 0 0 1 0 0
v5=(x8, x9) 0 0 0 0 0 1 0

v6=(x9, x16) 0 0 0 0 0 0 1
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3.3 Attributes of the Network Elements

The attributes of the nodes and links on the network influence how the carriers and the

shippers carry out their roles in the freight transportation system. This section will briefly

describe these attributes and present their mathematical formulation.

3.3.1 Attributes on the Carriers' Network

As mentioned in Section 1.2.2, attributes on the carriers' network include operating cost,

which is a function of the service demand and capacity. Eqs. (3.1) and (3.2) below give

the mathematical form of the average operating cost function and the marginal operating

cost function on the carriers' network.

In the above equations, Ea , da E A denotes the link capacity on the carriers'

network, which is defined as the maximum flow of freight that the service process or

facility presented by link a can efficiently handle in a unit of time. If the flow of freight

exceeds the capacity, the level of service such as service time on this carrier link will

deteriorate with the formation of a queue and congestion.

Attributes regarding each O-D pair on the carriers' network include the service

demand (g,,,), which is assumed to be a function of the vector of service fares on all

carrier O-D pairs: gv,c(Rv). The exact form of service demand function will be discussed

in a later chapter of this dissertation.
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3.3.2 Attributes on the Shipper Network

As mentioned before in Section 1.2.1 and 1.2.2, the attributes associated with the shipper

network include the commodity supply and demand functions at a centroid, the service

fare and the travel time function on a link, and value-of-time. The mathematical form of

these attributes will be defined here.

For each commodity at any market, the general form of the commodity supply

and demand function is used, which assumes that the supply and demand of this

commodity depend on the vector of the market prices of all commodities at this market.

Equations (3.3-a), (3.3-b) present the supply and demand functions of commodity c at

centroid b used in this dissertation.

The supply and demand functions are assumed to be invertible with the inverse

supply and demand functions of commodity c at centroid b defined in Eqs. (3.4-a) and

(3.4-b) below:

The transit time on link l for flow of commodity c (4 c) is assumed to be a function

of the vector of flows on link l as shown in Eq. (3.5). The service fare on a shipper link is

derived from the service fare on the corresponding carrier's O-D pair (Rv,c) according to
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Eq. (3.6). The generalized cost (GCl,c) shown in Eq. (3.7) is the linear combination of

these two attributes.

Since a link on the shipper network is actually a path, or a sequence of links

between an O-D pair on the carriers' network, the link capacity as perceived by a shipper

needs to be derived based on the capacity of links in the carrier's network, as shown in

P3.1. The reader is referred to Morlok et al. (1999) for related work in estimating system

capacity. Alternatively, the capacity of the shipper link l is generated by the capacity of

links on the carriers' network. It represents the maximum volume of the freight that can

be handled in a unit of time, without exceeding the capacity of any link on the carriers'

network. It is obtained by solving the following mathematical program:

Table 3.3 Derivation of the Link Capacity on the Shipper Network
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Equation (3.8) calculates the capacity of link / from the service demand on the

carriers' network. This service demand is based on the incidence matrix between the

shipper links and the carrier O-D pairs. Eq. (3.9) is the flow conservation constraint,

which specifies that at an origin (or destination) node on a carrier's sub-network, the

difference between the total inflow and the total outflow equals the total demand entering

(or leaving) this node. At a intermediate node on a carrier's sub-network, the total inflow

equals to the total outflow. Equation (3.10) is the capacity constraint on each carrier's

link.

Problem P3.1 assumes that the shipper can estimate the perceived capacity on a

shipper link accurately and it is equivalent to the capacity on the corresponding O-D pair

on a carrier's sub-network. The capacity for a carrier O-D pair is defined as the maximum

flow of freight that the carrier's sub-network can handle without exceeding the capacity

on each link in this sub-network.



CHAPTER 4

PRICING AND ROUTING PROBLEM OF OLIGOPOLISTIC CARRIERS
WITH EXPLICITLY DEFINED DEMAND FUNCTION

This chapter presents the pricing and routing decisions of two or more oligopolistic

profit-maximizing carriers that face a set of commodity-specific demand functions

explicitly defined for the service provided between each carrier O-D pair. The chapter is

organized as follows. Section 4.1 states the assumptions of the analysis. The equilibrium

conditions under both the competitive game and the cooperative (collusive) game are

presented in Section 4.2. The objective function and the constraints of the carriers are

introduced in Section 4.3. Section 4.4 presents the mathematical formulation. Section 4.5

establishes the existence and uniqueness of the equilibrium solution. Section 4.6 proposes

a solution algorithm.

4.1 Assumptions

Each carrier makes its pricing and routing decisions based on its knowledge of the

operating cost function and its forecast of the service demand function between the

carrier O-D pairs under its control. The assumptions are:

Al: The average operating cost ACa , c(ea, c) for any a E A and c E C shown in

Section 3.3.1 is a separable function of the flow for each commodity type. Both the ACa, c

and Wax are continuous and strictly monotone increasing in the link flow ea,c.

53
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linear and continuous. The vector of service demand functions is strictly monotone

A3: The carrier is a profit maximizer. Its profit is calculated as the total revenue

obtained from providing service to the flow of all commodity types at all carrier O-D

pairs minus the total operating cost on all carrier links in the carrier's sub-network under

its control.

A4: The carriers can either compete or cooperate in setting the price for service

and service parameters such as routing or link flow pattern.

4.2 Equilibrium Conditions

The Nash equilibrium condition and the Compensation Principle mentioned before in

Section 2.3 are adopted to evaluate the equilibrium solutions to the competitive game and

the collusive game among carriers respectively. Denoting the profit of carrier t's decision

, the equilibrium conditions are defined below:

El: Nash Equilibrium



Condition El represents a price and routing pattern

at which no carrier can be better off by unilaterally changing its price and routing pattern

(e.g. from (R: ,e *,) to any other feasible price and routing pattern (Rt,et).

E2: Compensation Principle

Condition E2 states that at equilibrium, the combined value of all carriers' profits

under the collusive pricing must be greater than the sum of all individual carriers' profits

under the competitive pricing.

4.3 The Carrier's Objective Functions and Feasible Region

This section defines the objective functions and the feasible region. Then, their respective

properties are stated.

4.3.1 Objective Functions

In the competitive game, the objective of each carrier is to maximize its individual profit.

The carrier does this by assuming that the other carriers will keep their current level of

service charges (R,) constant. The profit Z of carrier t is calculated as follows:

The first part of Eq. (4.6) is the revenue for carrier t. This revenue depends on the

carrier's own service charges R t as well as the service charges of other carriers R-t .
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In the cooperative (or collusive) game, the objective of the carriers is to maximize

the total profit for all colluded carriers. The objective function Z for this game, given by

Eq. (4.7), is the sum of all individual carriers' profits from Eq. (4.6).

In this game, as reflected by the notation in Eq. (4.7), the service charges at all

carrier O-D pairs are decision variables.

4.3.2 Properties of the Objective Functions

According to assumptions Al and A2, both the demand function gv,c(Rv) and the

average operating cost function ACa,c(a,c) are continuous. Since the sum or the product

of various continuous functions is also a continuous function, the objective functions

shown in Eq. (4.6) and (4.7) are also continuous.

The first derivatives of the objective function with respect to 1?,,, and ea, shown

in Eqs. (4.8) and (4.9) respectively, are also continuous.



According to assumption A2, the demand function

the multiplier before R,,, in the second element of E

in Eq. (4.8) is also a linear and continuous function.

Assumption Al states that the marginal operating cost function MCa, c(ea, c) is

in Eq. (4.9) is also a continuous function.

are continuous functions, the vector of first

derivatives of the objective function VZ,(g,(R,,R_,),R„e,) defined in Eq. (4.10) below

is also continuous.

The objective functions Eqs. (4.6) and (4.7) are strictly concave in (RV , e). This is

shown in Appendix A.

4.3.3 Feasible Region

The profit maximization behavior of the carriers in either the competitive game or the

collusive game is subject to the flow conservation constraints and the nonnegativity
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constraints in the carriers' network. The feasible region of this problem defined by these

constraints is shown below:

4.3.4 Properties of the Feasible Region

According to assumption A2, gv,c(Rv) is linear. This implies that Eq. (4.11) is also linear.

Therefore, the feasible region is polyhedral. The polyhedral set is defined as:

"A set S in En is called a polyhedral set if it is the intersection of a finite number

of closed half-spaces; that is, S={x; p tx oti for i=1,2 ...m}, where p i is a nonzero

vector and αi is a scalar for each i. " 1

Since a polyhedral set is closed and convex (Bazaraa, 1993), the feasible region of

this problem KT is also closed and convex.

4.4 Mathematical Formulation

Based on the established properties of the objective function and the feasible region, the

competitive game can be formulated as a Variational Inequality (VI) problem and the

collusive pricing game can be formulated as a nonlinear optimization problem. The

problem formulations are shown in Tables 4.1 and 4.2:

Bazaraa, M. S. et al, (1993). Convex Sets. In Nonlinear Programming Theory and Algorithms (pp. 55).
New York: John Wiley & Sons, Inc.
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Table 4.1 Variational Inequality Formulation for the Competitive Game

P4.1

Determine ( RV ,e*)єKT, such that

Table 4.2 Nonlinear Programming Formulation for the Collusive Game

s.t. (R v, e) єKT

4.5 Existence and Uniqueness of the Solution

The examination of the existence and uniqueness of the solution to problem P4.1 in Table

4.1 is based on two theorems (Nagurney, 1999) that deal with the existence and

uniqueness of the solution to a generic VI problem F(x *)(x-x *)>_0, xєK, where K is the

feasible region for x. They are as follows:

"Let BR(0) denote a closed ball with radius R centered at 0 and let KR=K∩BR(0).
KR is then bounded. Let VIR denote the variational inequality problem:Determine

 Y 	 such  that

We now state:
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Theorem 1.5

VI(F,K) admits a solution if and only if there exists an R>0 and a solution of VIR,
XR , such that ||X*R 1 < R . "

"Theorem 1.6 (Uniqueness under strict monotone)

Suppose that F(x) is strictly monotone on K, then the solution is unique if one
exists. "2

First, it will be shown that there is a solution to P4.1. This will be presented based

on theorem 1.5.

Here, KTM is

compact and convex. P4.3 shown in Table 4.3 is the restricted problem of P4.1.

Table 4.3 Restricted Problem of Problem P4.1

P4.3

Determines (RV , e t )єKTM, such that

Based on theorem 1.5, Problem P4.1 admits a solution if and only if there exists a

large constant M>0 and a solution (R; , e * ) to problem P4.3 such that

The existence of a solution to problem P4.3 is guaranteed by the continuity of the

and the compact convex property of the feasible region

KTM based on another theorem of Nagurney (1999).

2 Nagurney, A. (1999). Variational Inequality Theory. In Network Economics: A Variational Inequality
Approach (pp. 15, pp. 18). Boston/Dordrecht/London: Kluwer Academic Publishers.
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"Theorem 1.4 (Existence Under Compactness and Continuity

If K is a compact convex set and F(x) is continuous on K, then the variational
inequality problem admits at least one solution x*. "3

The solution to P4.3 is established above. Next, a large constant M will be

constructed, which will make the solution (RV , e * ) to P4.3 satisfy I I( R; , e * )||<M .

is shown to be bounded for any

(4.19) yields that:

3 Nagurney, A. (1999). Variational Inequality Theory. In Network Economics: A Variational Inequality
Approach (pp. 14). Boston/Dordrecht/London: Kluwer Academic publishers.
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Equation (4.20) indicates that there exists a constant R. such that

Since R,,, is defined as the highest service charge, the

bounded R,,, indicates that R v is bounded. This, together with the continuity of the

indicates that the demand

must also be bounded. With a bounded g,„ the link flow ea, c must also be bounded as

specified by the flow conservation constraint in Eq. (4.11) (i.e., there exists a value em.

Thus, the large value M is constructed as

With M thus constructed, the solution (R; , e * ) to problem P4.3 satisfies

R; , e * )II<M. Based on theorem 1.5 (Nagurney, 1999), this implies that there exists a

solution to problem P4.1. Based on theorem 1.6 (Nagurney, 1999), this solution to

problem P4.1 is unique, since Eq. (4.14) in P4.1 was shown in Section 4.3.2 to be

continuous and strictly monotone in (R v, e).

For the collusive game, the nonlinear optimization problem P4.2 has continuously

differentiable and convex objective function and a closed and convex feasible region KT.

With these properties, problem P4.2 is equivalent to VI problem P4.4 shown in Table 4.4

according to Nagurney (1999).
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Table 4.4 Equivalent VI Problem of Problem P4.2

P4.4

The existence and uniqueness of solution to this problem P4.4 and consequently

problem P4.2 can be similarly established as those shown above for problem P4.1 since

and feasible set KT for problem P4.4 has the

same properties as those shown in P4.1. The procedures of the examination are not

repeated here.

4.6 Solution Algorithm

With the existence and uniqueness of the solution established, various algorithms found

in the literature pertaining to variational inequalities and nonlinear programming can be

used to solve the VI problem P4.1 and the nonlinear optimization problem P4.2.

The relaxation algorithm reviewed in Section 2.1.3 is used to solve problem P4.1.

Its advantage over the decomposition algorithm is that it is able to solve the problem with

a non-separable feasible set. For problem P4.1, the feasible set KT is not separable due to

the inclusion of a non-separable demand function gv,c (Rv) in the flow conservation

constraint in Eq. (4.11). Therefore, the relaxation algorithm is chosen to solve the

problem. The relaxation algorithm resolves problem P4.1 as a sequence of VI

subproblems, each of which will then be transformed into a nonlinear optimization
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problem of each individual carrier. More details regarding the application of the

relaxation algorithm are described below.

First, the feasible region for the subproblem of each carrier tє T is defined by

three constraint functions:

Equation (4.22) is the flow conservation constraint. In it, the vector of the service

charges at the other carriers' sub-networks, denoted as R-t, is considered as constant.

Similar to KT, KTt is also a closed and convex set.

Second, the function for subproblem of carrier tє T is defined as follows:

Based on the above definition of the feasible set in Eqs. (4.22)-(4.24) and the

function in Eq. (4.25) for the subproblem, VI subproblem of carrier tє T P4.5 is defined

below in Table 4.5.



P4.5

Determine (R: , e*t)єKTt, such that
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Table 4.5 Variational Inequality Subproblem of Carrier t є T

In problem P4.5 above, the Jacobian matrix of

positive definite and symmetric as can be derived from the Section 4.3.2. Hence,

problem P4.5 is equivalent to a strictly convex nonlinear programming problem P4.6

shown in Table 4.6.

Table 4.6 Nonlinear Programming Problem of Carrier tє T

Problem P4.6 maximizes the individual carrier's profit in the belief that the vector

of the service charges at the other carriers' sub-networks remains constant at R-t . The

existence and uniqueness of a solution to problem P4.6 can be similarly demonstrated

using the logic from Section 4.5.

Based on the above discussion of the feasible region, the mathematical

formulation for both the VI formulation in P4.5 and the nonlinear programming
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formulation in P4.6 for the subproblem of carrier t, the steps of the relaxation algorithm

are as follows:

Step 0 Initialize the service charge and the link flow at each carrier's sub-

network (Rv° , e°). Let i denote the order of the carrier. Let k denote the order of the

iteration. Set i:=1, and k: =1. Let 9 denote the convergence parameter that evaluates the

relative improvement in results from two consecutive iterations. Set 9 to a small value

close to zero such as 10 -6 .

Step 1 Denote ti as the carrier with its order in the set T being i. Solve problem

P4.6 for the ith carrier with R-ti =	 . Denote the solution as (Rti,e*ti) . Let R: = R *ti

solve the problem for the next carrier by setting i:=i+1. Otherwise,

go to step 2.

Step 2 Calculate the relative improvements from RV k-1 to RV as:

For the collusive game, the nonlinear programming problem P4.2 as well as the

subproblem P4.6 shown in the relaxation algorithm above will be solved by the reduced

gradient method (Bazaraa, 1993). This method linearizes the nonlinear programming

problem using frequently updated derivative information and solves a sequence of linear

programming problems.



CHAPTER 5

THE OLIGOPOLISTIC BEHAVIOR OF THE CARRIERS SUBJECT TO
SHIPPERS' SPATIAL PRICE EQUILIBRIUM

Chapter 4 sets up the framework for solving the equilibrium pricing and routing problem

of a single type of players: the oligopolistic carriers. This chapter extends this framework

by taking into account the carrier-shipper interaction and solving jointly the oligopolistic

equilibrium in the carriers' market and the spatial price equilibrium (SPE) in the

shippers' market. As mentioned in Section 2.3, the carrier-shipper interaction is

formulated as a Stackelberg game and modeled as a bi-level programming problem. In

this bi-level game, the shippers' SPE model is the lower level problem, and the carriers'

pricing and routing model from Section 4.4 is the higher-level problem. The linkage

between the two levels is provided by the sensitivity analysis method (Tobin, 1987) of

the SPE model.

This chapter is organized as follows. Section 5.1 introduces the SPE model.

Section 5.2 presents the sensitivity analysis method used to generate the derivative of the

equilibrium link flows with respect to the service charge in the neighborhood of the

current service charge. This information is utilized to locally approximate the service

demand function between each carrier O-D pair. Section 5.3 presents a bi-level program

formulation for the Stackelberg game. A heuristic algorithm based on the sensitivity

analysis method is developed in Section 5.4.
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5.1 Spatial Price Equilibrium Model

In this section, the assumptions and the equilibrium conditions for the SPE problem are

presented. Following these, a Variational Inequality (VI) formulation of the spatial price

equilibrium is given. Finally, a decomposition algorithm is adopted to solve the problem.

5.1.1 Assumptions

The travel time functions, the inverse commodity supply functions, and the inverse

commodity demand functions are the main inputs to the SPE problem. The following

assumptions are made:

Al: The average travel time function 4,0 shown in Section 3.3.2 is continuous.

The vector of travel time functions is strictly monotone increasing in the vector of flows

(f) (i.e., the Jacobian matrix of the vector of the travel time functions, [V ƒt(ƒ)] , is

positive definite).

A2: The inverse commodity supply function π b,c(Sb ) and the inverse commodity

demand function ρb,c(Db), shown in Section 3.3.2, are continuous and linear. The vector

of the inverse supply functions is strictly monotone increasing in the vector of supplies

(S) (i.e., the Jacobian matrix of the vector of the inverse supply functions, [sπ(S)], is

positive definite). The vector of the inverse demand functions is strictly monotone

decreasing in the vector of demands (D) (i.e., the Jacobian matrix of the vector of the

inverse demand functions, [V D p(D)], is negative definite).

A3: The inverse commodity supply and inverse commodity demand functions

satisfy the following:
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Db,c = S b,c = 0 , then pb , c (Db )>n- b , c (Sb ) Vb єCN,c єC 	 (5.1)

Equation (5.1) states that for each commodity, when both its supply and its

demand are zero, then the market price that the consumer is willing to pay is greater than

the supply price.

A4: The commodity demand function Db , c (pb ) is linear and continuous. Its

Jacobian matrix, [V pD(p)], is negative definite and diagonal dominant, i.e.,

A5: Each commodity flows through every node in the shipper network

5.1.2 Spatial Price Equilibrium Conditions

Spatial price equilibrium conditions are defined in Section 2.1.3. Here, their

mathematical presentation is given as follows:

El: Wardrop's User Equilibrium Condition

Condition El states that for each commodity: 1. All used paths from origin b1 to

destination b2 have the same minimum generalized shipping cost; and 2. If the cost on a

path is greater than this minimum cost, the flow on this path is equal to zero.

E2: Market Equilibrium Condition between Two Spatially Separated Markets
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Condition E2 states that for each commodity, if there is a flow between b1 and

b2, then the price at origin b 1 plus the generalized cost of shipping from b1 to b2 must

equal the destination price. At equilibrium, neither producer nor consumer has any

motivation to change the production or consumption pattern.

Combining El and E2 yields the following:

Equation (5.6) is the modified Wardrop User Equilibrium condition stated in

Section 2.1.3.

5.1.3 Feasible Region

Feasible region KS is defined by the flow conservation constraints (Eqs. (5.7) and (5.8))

and the non-negativity constraints (Eq. (5.9)) as follows:

Equations (5.7) and (5.8) state that for each commodity: 1. The supply at a market

equals the sum of the local demand and the net outflow (e.g., the outflow minus the

inflow); and 2. The inflow equals the outflow at an intermediate node.



.Figure 5.1 Flow Conservation at Node n EN

The concept of flow conservation is illustrated in Figure 5.1. Here, ƒl3,c, ƒl 5 ,c are

the outbound flows and r
, cl,c 1 , t

r 2,c , fI4,c are the inbound flows of commodity c at node n.

If n is a centroid node, then the supply and the demand of commodity c are denoted as

S.  and Dn,c . By definition δl1,n ' 15812,n ' 8 14,n = —1 and 6.13,n 5 815,n

into Eqs. (5.7) and (5.8), the flow conservation constraints (Eqs.

(5.10) and (5.11)) are obtained.

The feasible region KS defined by Eqs. (5.7)-(5.9) is a polyhedral set. As shown

in Section 4.3.4, it is closed and convex.

5.1.4 Mathematical Formulation of the Spatial Price Equilibrium Problem

Table 5.1 shows the VI formulation of the multicommodity SPE problem by Nagurney

(1999).
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=1. By substituting



Table 5.1 Variational Inequality Formulation of the Multicommodity SPE Problem

P5.1

Determine (S * , f * ,D * ) є KS such that

5.1.5 Existence and Uniqueness of the Solution

The examination of the existence and uniqueness of the solution to problem P5.1 in Table

5.1 is conducted similarly to that for problem P4.1 in Table 4.1 of Chapter 4.

First, it will be shown that there is a solution to P5.1. This will be presented next

based on theorem 1.5 from Section 4.5.

Here, KS m, is

compact and convex. P5.2 shown in Table 5.2 is the restricted problem of P5.1.

Table 5.2 Restricted Problem of P5.1
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Based on theorem 1.5, problem P5.1 admits a solution if and only if there exists a

large constant M' >0 and a solution (S* ,f' , D *) to P5.2 such that: 11(41, D*)||<M' .

Based on theorem 1.4 from Section 4.4, the existence of a solution to problem

P5.2 is guaranteed by the continuity of the vector of functions (π(S*),GC(f * ),— p(D * ))

and the compact convex property of the feasible region KS m , .

The existence of a solution to P5.2 is established. Next, a large enough constant

M' will be constructed, which will make the solution (S*,f* , D *) to P5.2 satisfy ||(S* , f,

D *) II<M' •

is shown to be bounded for any

nonnegative Db,c in the following:
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Equation (5.15) indicates that the market price ρ b,c is bounded. Since ρb,c is

defined as the highest market price among all commodity types at all centroid nodes, the

market price of any other commodity type at any other centroid node is also

bounded.From assumption A2, the inverse commodity demand function is linear,

continuous and strictly monotone. This implies that the demand function is also

continuous in the market price. With market price bounded, the commodity demand is

also bounded (i.e., there exists a positive value D max , such that condition

is satisfied for any p.0). This condition, in turn, leads

to the conclusion that the supplies and the link flows are also bounded.
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Equations (5.16) and (5.17) prove that there exist S max , f max , such that

With M' thus constructed, the solution (S* ,	 D *) to P5.2 satisfies 11(S *, f,

D*)||< M . Based on theorem 1.5 from Section 4.5, this implies that there exists a solution

to problem P5.1. Based on theorem 1.6 from Section 4.5, this solution is unique since

in Eq. (5.12) are strictly monotone in (S, f, D).

5.1.6 Solution Algorithm for the Spatial Price Equilibrium (SPE) Model

With the existence and uniqueness of the solution established, the serial nonlinear

decomposition algorithm (Nagurney, 1999) reviewed in Section 2.1.3 is used to solve

problem P5.1. This algorithm decomposes problem P5.1 into a sequence of single

commodity VI subproblems, which are then transformed into nonlinear optimization

problems. The rationale for choosing this algorithm is that the feasible set KS for problem

P5.1 is a Cartesian product of the feasible sets for the variables associated with each

commodity:

where ci denotes the ith commodity in set C, and KSci is a feasible set for variables

associated with commodity ci. KSci  is defined as:



P5.3 shown in Table 5.3 is the subproblem of P5.1 for commodity ci defined over KSci.

Table 5.3 Variational Inequality Subproblem of P5.1 for Commodity ci

In Eq. (5.21), the vector of commodity supplies, link flows and commodity

demands of commodities other than c, denoted as (S -a , f-c, D-c), are considered

are separable since

it is assumed that the interaction only exists between different commodities at the same

centroid or on the same link. Therefore, problem P5.3 is equivalent to a nonlinear

optimization problem P5.4 shown in Table 5.4.



Table 5.4 Equivalent Nonlinear Programming Problem to P5.3
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Based on the above discussion of VI subproblem P5.3 and its equivalent

nonlinear optimization problem P5.4, the steps of the serial nonlinear decomposition

algorithm are as follows:

Step 0 Initialization

Initialize the vectors of the commodity supplies, link flows and commodity

demands in the shipper network as (S°, f° , D°). Let k denote the order of the iteration, and

i denote the order of the commodity in set C. Set k:=1; i:=1. Let t9 denote the

convergence parameter that evaluates the relative improvement in the results between

two consecutive iterations. Set t9 to a value close to zero, e.g. 10 -6 .

Step 1 Relaxation and computation

Solve problem P5.4 using the reduced gradient algorithm (Bazaraa, 1993) for ci
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. If i<m, solve the problem for the next commodity type

by setting i:=i+1. Otherwise, go to Step 2.

Step 2 Convergence verification

set k:=k+1, i:=1 and go to Step 1.

The serial nonlinear decomposition algorithm shown above is illustrated by the

flowchart in Figure 5.2:

Figure 5.2 Flow Chart of the Serial Nonlinear Decomposition Algorithm
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If the serial decomposition algorithm converges, the solution obtained must be an

equilibrium solution. This is stated in the following proposition:

is a spatial price equilibrium

solution satisfying El and E2 if the nonlinear serial decomposition algorithm converges

To demonstrate this, the proof from Sheffi (1985) for the Jacobian diagonalization

method is adopted.

Proof: Let 77,,, denote the dual variable for the flow conservation constraints in

Karush-Kuhn-Tuker (KKT) conditions (Bazaraa, 1993) of problem P5.4 are:

The KKT conditions (Eqs. (5.23)-(5.26) or Eq. (5.27)) correspond to the

equilibrium conditions El and E2 (Eqs. (5.4) and (5.5)) or the adjusted Wardrop User

Equilibrium condition (Eq. (5.6)). Thus, Proposition 5.1 is proven.
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5.2 Local Approximation of the Demand Functions on the Carriers' Network

Section 5.1 describes the SPE problem and the solution method. Given the current level

of service charges, the equilibrium link flow is solved from the spatial price equilibrium

model. The service charge is the decision of the carrier. If a carrier changes the service

charge, the shippers will react by adjusting their commodity supply, commodity demand

and link flow pattern correspondingly. In a general Stackelberg game, the decisions of the

lower level decision maker and the upper level decision maker are related using a

reaction function. However, due to the large scale of the shipper network and the

multidimensional nature of the spatial price equilibrium model, it is difficult to derive the

explicit forms of the reaction functions of the shippers that would relate the shippers'

flows to the carriers' service charges. An alternative approach is to locally approximate

those reaction functions using the sensitivity analysis method.

5.2.1 Sensitivity Analysis Method of the Spatial Price Equilibrium Problem

In this section, the sensitivity analysis method for a general VI problem (Tobin, 1987) is

applied to problem P5.1 to generate the derivative of the equilibrium link flows with

respect to the service charges in the neighborhood of the current service charges. This

method is described in Appendix B. The conditions required for applying this method to

problem P5.1 are shown to be satisfied in Appendix C.

Given the vector of the current level of service charges on all shipper links

the equilibrium solution of the primal variables and dual variables

blem P5.1 satisfies the KKT conditions defined in Table 5.5.



Table 5.5 Karush-Kuhn-Tuker Conditions of Problem P5.1
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The first derivative of the flow conservation constraints (Eqs. (5.7), (5.8)) and

Eqs. (5.28)-(5.30) in P5.5 is taken with respect to the service charge of commodity ci on

a shipper link /j which is the perturbation parameter for problem P5.1. Eqs. (5.31),

(5.32) and Eqs. (5.33)-(5.35) in Table 5.6 are obtained.

Table 5.6 Sensitivity Analysis Method of Spatial Price Equilibrium Problem
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P5.6 consists of a set of linear equations. By solving problem P5.6, the

derivatives of the equilibrium solution (S * , f * , D * , ri * ) to problem P5.1 with respect to

Rlj,ci in the neighborhood of RL° are derived.

5.2.2 Locally Approximated Service Demand Function

solved from problem P5.6, the reaction function of

the link flow fu with respect to the vector of service charges on all shipper links

in the neighborhood of RL0, denoted as f1 c, (R L ) , can be

approximated locally as follows:

The property of the function in Eq. (5.36) is shown in the following proposition.

Proposition 5.2: The vector of the locally approximated flow functions on the

shipper links as shown in Eq. (5.36) is monotone decreasing in the vector of the service

charges if the vectors of the inverse commodity supply, inverse commodity demand and

generalized cost functions are strictly monotone. For the sub-vector of the flow variables

that have positive equilibrium solution at the current level of service charge, the sub-

vector of the locally approximated functions is strictly monotone decreasing in the sub-

vector of the service charges corresponding to these flow variables. The proof is shown in

Appendix D.

Along with the reaction function fl,c(RL) estimated by Eq. (5.36), the service

demand function at each carrier O-D pair is estimated based on the incidence matrix
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between the links on the shipper network and the O-D pairs on the carriers' network

kr,v 	 . The formula used for the estimation of the demand function is shown in Eq.

(5.37).

The continuous and monotone property of fl,c(RL ), together with the

nonnegativity of /,„, guarantees that gv,c(Rv) in Eq. (5.37) is also a continuous and

monotone function. In Eq. (5.37), gv,c(Rv) representd the approximated service demand

function in the neighborhood of RV ,

5.3 Bi-level Programing Problem

By combining the shippers' SPE model from Section 5.1 and the carriers' pricing and

routing model from Section 4.4, the bi-level program formulating the Stackelberg game

between the carriers and the shippers is constructed. The bi-level programs for the

competitive game and the collusive game are shown in Table 5.7.



Table 5.7 Bi-level Programs
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5.4 Solution Algorithm for the Bi-level Programming Problem

This section presents the development of a sensitivity analysis method-based heuristic

algorithm to solve the bi-level programming problems P5.7 and P5.8. The detailed steps

of this algorithm are as follows:

Step 0 Initialization

Initialize (5" 9 , , D°)=(0). Initialize the service charges on all carrier O-D pairs as

RV . Set k:=1 . Set the convergence parameter t9 defined in Section 5.1.6 to a value

close to zero, such as 10 -6 .

Step 1 Solve the shipper level problem at the current service charges on the

shipper links (R" = ,,v 	 V ).

Use the serial nonlinear decomposition algorithm from Section 5.1.6 to solve

problem P5.1. Obtain the solution (S*, D *). Set (sk ,, Dk)=(s* , , D *). Go to Step 2.

Step 2 Sensitivity analysis

Solve P5.5 for the dual variable (ηk) based on the current SPE solution (4/, Dk).

Solve P5.6 for the derivative of (Sk,fk, Dk, k) with respect to RL in the neighborhood of

the current service charges ( RLk-1 ), based on which locally approximate the flow function

fl,c(RL) according to Eq. (5.36). Then, derive the local approximated demand function

g ,(Rv ) according to Eq. (5.37). Go to Step 3.

Step 3 Solve the carrier level problem P4.1 or P4.2 from Section 4.4 based on

the local approximated demand function gv,c(Rv) derived in Step 2.
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Substitute g v,c(Rv ) into problem P4.1 or P4.2. Solve problem P4.1 using the

relaxation algorithm from Section 4.6 or solve P4.2 using the reduced gradient algorithm

(Bazaraa, 1993). Obtain the solution R; . Set RV = R; . Calculate

If this value is less than ,9 , stop. Otherwise, set k:=k+1 and go to step 1.

The sensitivity analysis method-based heuristic algorithm introduced above will

be further illustrated in Figure 5.3 below.

Figure 5.3 Flow Chart of the Sensitivity Analysis Method-Based Heuristic Algorithm



CHAPTER 6

PORT AUTHORITY'S INVESTMENT PROBLEM

Chapter 5 provided a bi-level programming approach to solve the Stackelberg

equilibrium between carriers and shippers. This approach can be used to facilitate the

Port Authority's investment decisions, as demonstrated in this chapter. The chapter is

organized as follows. Section 6.1 introduces the criteria for comparing alternative

investment strategies. Section 6.2 defines the net social benefit. Section 6.3 defines the

investment cost. Section 6.4 presents the mathematical formulation of the Port

Authority's investment problem.

6.1 Criteria Used in Comparing Alternative Investment Strategies

To facilitate investment decisions of the government and to help the Port Authority in

evaluating alternative strategies, three criteria suggested in the literature (National

Research Council, 1988) can be adopted. These criteria include:

Is the current infrastructure sufficient? Investing in the infrastructure of a port

whose facilities are underutilized would be wasteful. However, when the facility operates

at or over capacity, investment is warranted. The bi-level programming model in Section

5.3 can be used to identify critical links, meaning links that are highly utilized and may

require future investment in capacity expansion.

Is there an external economy or market inefficiency? In the port operation, in

addition to the economic gain occurring directly at the port, there is a substantial spillover

of economic benefit to other sectors or industries in the region. This economic impact of

87
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the port on the local economy justifies the government's involvement in the port

infrastructure investment.

Is the incremental net social benefit brought by the investment greater than the

incremental investment cost? The net social benefit is defined as the sum of the net

benefits of all players in the port vicinity affected by the Port Authority's investment in

the port infrastructure. The incremental net social benefit accumulated through the

investment strategy u is defined as the difference between the net social benefit under the

investment strategy u and that under the do-nothing strategy. The investment cost is the

capital expense associated with an investment strategy. Both the net social benefit and the

investment cost in this dissertation are expressed in dollars per hour. For an investment

strategy to be feasible, the incremental net social benefit should exceed the incremental

investment cost. The investment strategy that yields the highest ratio of incremental net

social benefit to the incremental investment cost is the most desirable alternative strategy.

6.2 Net Social Benefit

As indicated in Section 6.1, the net social benefit (NSB) is an important measure of the

worthiness of an investment strategy. To make an accurate estimation of the net social

benefit, the various players impacted by the Port Authority's investment in the port

infrastructure need to be identified. The benefits to these players are estimated, and the

sum of the benefits is the NSB.

The carriers and the shippers are two major types of players impacted by the Port

Authority's investment decision. The investment improves the terminal operators'

operating cost and the shippers' generalized cost. In response to the improvement in these
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costs, the terminal operators as well as the other carriers and the shippers will adjust their

behavior until a new Stackelberg equilibrium is attained. The Bi-level program P5.7 and

P5.8 from Section 5.3 can predict this new equilibrium, and is used to estimate the

terminal operators' net benefit (TNB) and the shippers' net benefit (SNB) associated with

the Port Authority investment decision. These benefits are defined in Section 6.2.1 and

Section 6.2.2 below.

6.2.1 Terminal Operators' Net Benefit

Terminal operators are the producers of the port service. For the terminal operators, the

monetary value of their net benefits is indicated by the total profits earned from their

services. Let (R u , eu) denote the terminal operators' decision at the Stackelberg

equilibrium under investment strategy u. Then, the terminal operators' net benefit under

investment strategy u (TNBu) is given as Eq. (6.1).

The service demand gv,c(Rtu andand the link flow eauc are in units of flow per hour;

TNBu is in dollars per hour. Assuming that all terminals' profits occur in the port vicinity,

100 percent of TNBu are included in the calculation of the net social benefit. As to the

carriers other than the terminal operators, their profits may or may not occur in the port

vicinity. Here, for the sake of simplification, the profits of the carriers other than the port

terminal operators are not included in the analysis.
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6.2.2 Shippers' Net Benefit

Shippers are the users of the terminal service. According to the economic theory (Wohl,

1984), their net benefit is the monetary value of their total willingness to pay (i.e. the

integral of the inverse demand function or the area under the inverse demand curve)

minus the amount that they actually do pay. The shippers can be either the consumers or

the producers of the transported commodities. The shippers' net benefit is segregated into

two sources: 1. consumer surplus (CS) (i.e. the area of triangle AEC at pub,c in Figure 6.1)

from the consumption of the transported commodities; and 2. producer surplus (PS) (the

area of the triangle BCD at πub,c in Figure 6.1) from the production of the transported

commodities. Consumer surplus is the consumer's total willingness to pay (i.e. the area of

trapezoid AEHO in Figure 6.1) minus what the consumer actually pays for the

transported commodities (i.e. the area of rectangle CEHO in Figure 6.1). Producer

surplus is the total sales revenue (i.e. the area of rectangle OCDG in Figure 6.1) minus

the total production cost (i.e. the area of trapezoid BDGO in Figure 6.1).

Figure 6.1 Shippers' Net Benefit
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Figure 6.1 illustrates how to estimate various sources of the shippers' net benefit

based on the spatial price equilibrium (SPE) solution under investment strategy u (Su, f,

To illustrate this application, the inverse supply and inverse demand

functions from Section 3.3.2 are restated in Eqs. (6.2) and (6.3) by fixing the cross effects

of the other commodities.

In Eqs. (6.2) and (6.3), mob, (Sb,c ) is the inverse supply function of commodity c at

centroid b, given that the supply vector for the other commodities is S. The term

pub,c(Db,c) is the inverse demand function of commodity c at centroid b, given that the

demand vector for the other commodities is Dub,-c. The curves of πub,c(Sb,c)  (Sb,c ) and

,0: c (Db , c ) are plotted in Figure 6.1. Using these functions in Eqs. (6.2) and (6.3), the

consumer surplus and the producer surplus at centroid b for commodity c can be

calculated.

The consumer surplus at centroid b from the consumption of commodity c (CSbu,c )

is calculated using the formula in Eq. (6.4).
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The producer surplus at centroid b from the production of commodity c (PSub,c) is

calculated using the formula in Eq. (6.5).

Combining Eqs. (6.4) and (6.5), the shippers' net benefit at centroid b from the

consumption and the production of commodity c (SNBbub,c) is obtained as follows:

The shippers' net benefit (SNBu ) is calculated as the sum of SNBub,c for each

centroid and each commodity type as follows:
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In Eq. (6.7), the first element is the sum of consumers' willingness to pay for each

commodity at each market. The second element is the sum of production cost for each

commodity at each market. The third element is the total generalized transportation cost.

The supply S bu the demand D bu , and the link flow Pc are all in units of flow per hour;

whereas SNBu is in dollars per hour.

6.2.3 Adjustments to the Shippers' Net Benefit

It is important to note that two adjustments are required before including the shippers' net

benefit in the calculation of the net social benefit. First, only part of the commodity

transported via the port terminals is produced or consumed in the local region. The rest is

bound for designations outside the region and as such, does not contribute to the region's

net social benefit. The portion of the shippers' net benefit that directly contributes to the

net social benefit of the local region is called the local shippers' net benefit. A ratio (vc)

is used to denote the through-traffic as a percentage of the total freight of commodity c.

Then, the local shippers' net benefit is expressed as a percentage of the total shippers' net

benefit of commodity c by l vc . Second, in addition to the shippers' net benefit directly

related to the local production and consumption of these traded commodities, other

economic sections in the port vicinity are involved and benefit in a meaningful way. All

associated manufacturing and services benefit from the traded commodities. To account

for this external net benefit, a multiplier (4) is used to denote the ratio of external benefit

to the localized shippers' net benefit.
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Taking into account the passing through traffic and the external economy, the

adjusted shippers' net benefit under investment strategy u (ASNBu) is calculated in Eq.

(6.8).

Given the Stackelberg equilibrium (Su, f , Du , Ru , eu), the net social benefit under

investment strategy u (NSBu) is calculated as:

The above discussion of the various sources of net social benefit is illustrated in

Figure 6.2.

Figure 6.2 Net Social Benefit
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6.3 Investment Cost

There are a finite number of alternative investment strategies. Associated with each

investment strategy (u E U) is a specific vector of capacity improvement pattern

. Under the do-nothing-strategy, AE U = 0 . The investment cost

associated with an investment strategy is defined below.

To compare among different investment strategies, the capital expenses for the

investment projects must be converted to common units. However, the facilities that are

improved under different strategies may vary in their service lives. Even under the same

strategy, different facilities may also vary in their service lives. In order to convert the

capital expenses of different service lives into a commensurate unit, a common analysis

period or planning horizon is designated. Then, the cost outlays for each year are

estimated for the initial investment as well as replacements, if necessary, occurring over

the planning horizon. Finally, the annual investment cost is converted into the same unit

as the net social benefit, which is dollars per hour. More details on how to calculate the

hourly investment cost are presented below.

The hourly investment cost on link a under investment strategy u is a function of

u
the capacity improvement ΔEua , the analysis period designated, the service life of the

facility improved, and the discount rate. The total investment cost of the Port Authority is

the sum of the investment costs on all improved links.

For the investment cost, a linear function similar to that shown in Yang and Meng

(2000) is implemented. The flow dependent investment cost such as the maintenance cost
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is not considered. The investment cost on link a under investment strategy u (IC:) is

defined as follows:

In Eq. (6.10), p1ua is a parameter that represents the cost of one additional unit of

capacity. The value of p1ua is determined by the type of facility represented by link a and

the resources such as technology used for investment strategy u. In Eq. (6.10),

u
p1ua * ΔEua represents the capital expense for the capacity improvement of Eua on

link a. The term p2ua  is a factor that converts the capital expense into an hourly

investment cost. The value of p2ua depends on the analysis period, the service life of this

capital expense, and the discount rate. The method to calculate p2 ua  is illustrated in

Appendix E.

Then, Eq. (6.10) can be restated as:

total hourly investment cost under investment strategy u (ICu) can be calculated as the

sum of Ka:, over all links. Thereby:

6.4 Mathematical Formulation of the Port Authority's Investment Problem

The objective of the Port Authority is to maximize the ratio between the incremental net

social benefit brought about to the region through an investment, and the incremental



97

investment cost. The incremental net social benefit through investment strategy u

(ΔNSBu ) is calculated as follows:

where NSBu (S" , fu , Du , Ru ,eu ) is the net social benefit under investment strategy u.

NSB°(Sº,fº,Dº , Rº,e ° ) is the net social benefit under the do-nothing strategy. The

incremental investment cost is calculated as follows:

is the hourly investment cost under investment strategy u. The term

is the hourly investment cost under the do-nothing strategy, which equals to

—º
zero, since Eu =0.

Combining Eq. (6.12) and Eq. (6.13), the investment problem for the Port

Authority is defined and stated in Table 6.1.

Table 6.1 Port Authority's Investment Problem

In problem P6.1, u * denotes the most desirable investment strategy.



CHAPTER 7

CASE STUDY

This chapter focuses on solving the Stackelberg equilibrium between two oligopolistic,

private port terminal operators that set service charges and routing patterns in the

terminal sub-networks. At the same time shippers make commodity production,

consumption and routing decisions on the shipper network by assuming the service

charges of the carriers other than the terminal operators to be constant. Various strategies

the Port Authority can use to invest in terminals are evaluated. A numerical example is

developed to demonstrate: 1. the capability of the bi-level programming method and the

sensitivity analysis method-based heuristic algorithm in solving the Stackelberg

equilibrium; and 2. the applicability of the model in facilitating the Port Authority's

investment decision. Through this numerical example, the power of the GAMS software

package is demonstrated by implementing the bi-level program and the sensitivity based

heuristic algorithm.

Section 7.1 presents the transportation networks used in the example. The

attributes of the network elements, such as the link operating cost function on the

terminal sub-networks, the inverse supply and demand functions, and the link generalized

cost function on the shipper network, are defined. Section 7.2 presents the computational

efficiency of the sensitivity analysis based-heuristic algorithm in solving the Stackelberg

equilibrium of the terminal operators and the shippers. This is followed by the results

from the GAMS model and the verification of the equilibrium conditions for both the

shippers' SPE problem, and the terminal operators' oligopolistic pricing and routing

98
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problem. Finally, section 7.3 compares four proposed investment strategies by evaluating

criteria from the perspective of various players.

7.1 Structure and Attributes of Network Elements

7.1.1 Terminal Operators' Sub-networks

The two terminal operators' sub-networks that are used in this numerical example are

shown in Figure 7 .1, Layers a and b. Terminal sub-network 1, shown in Layer a of Figure

7.1, consists of nine nodes (x0-x8), twelve links (a0-a10, a22) and four O-D pairs

Terminal sub-network 2, shown in

Layer b of Figure 7.1, also consists of nine nodes (x9-x17), twelve links (al 1-a21, a23)

7.1.2 The Shipper Network

The shipper network used in this numerical example is shown in Layer c of Figure 7.1.

The network consists of 22 nodes (n0-n17, n41, n42, n71, n72) and 34 links (10-133).

Among the 22 nodes, n12-n17 are centroid nodes, which represent nine O-D pairs ((n12,

The shipper network and the terminal sub-networks are related through the

incidence matrix between the port links 17-114 in the shipper network and the O-D pairs

v0-v7 in the terminal sub-networks.
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Figure 7.1 Transportation Networks for the Example



101

The incidence relationship between the port links and the terminal O-D pairs is:

This relationship is also manifested in Figure 7.1. For

example, (x0, x7) are the origin and destination nodes of O-D pair v0, corresponding to

(n3, n6), which are the starting and ending nodes of link 17.

In Figure 7.1, the shipper links (except 17 to 114) correspond to certain O-D pairs

on the sub-networks of the carriers other than the terminal operators. As mentioned

before, the pricing and routing behavior of these other carriers is not the focus of this

chapter. Their service charges are assumed to be constant, which indicates that the

shippers will not change their perception of the generalized cost between the O-D pairs

on the sub-networks of these carriers. Hence, the presentation of the sub-networks of

these carriers as a set of links on the shipper network is sufficient for the demonstration

purpose of this chapter.

7.1.3 Attributes of Network Elements

Tables F.1 through F.4 in Appendix F provide information on the values of various

indexes associated with the case study network. The link operating cost function in the

terminal sub-network, the inverse commodity supply, inverse commodity demand, link

travel time and generalized cost functions are defined in Tables F.5-F.8 respectively.

Parameters 	 b c',c in Table F.6 and roic,, in Table F.7, which represent the
)‘1,,,c  

interaction between commodity c and commodity c' , are set in such a way that the strict

monotone property of the inverse commodity supply, inverse commodity demand, and

generalized cost functions is guaranteed. The capacity and the service charges on the
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shipper links are set at the values shown in Table F.8. The capacity (Caps) on a port link

may be obtained as explained in Section 3.3.2, and the service charge on the port link is

The rationale is to initialize a service

charge on the port link at a low level, so that, at equilibrium, the service charge is low

enough to result in some service demand on this link. In order to have positive flow of

commodity c on port link pl (i.e.,fplєL(p),c > 0 ), at least one path among the paths

containing port link pl has positive path flow of commodity c. Let p connecting O-D pair

b1andb2be such a path, that ish,>0. The equilibrium condition

from	 Section	 5.1.2	 indicates	 that:

into	 this	 inequality,	 it	 becomes:

Since Sb1,c and Db2,c

are also variables to be determined, it is natural to initialize the service charge (R pl , c )

In this numerical example, the service charge is initialized at

According to the results of the GAMS program, this initial

point results in convergence of the heuristic algorithm.

The value-of-time (vote) in the generalized cost function is set at $2.50/day,

$10/day and $5/day for commodity c1, c2 and c3 respectively. These values are

arbitrarily selected; the accuracy of the value-of-time is not essential for the

demonstration purpose of the numerical example in this chapter.
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7.2. Computational Efficiency of the Heuristic Algorithm and Verification of
Equilibrium Conditions of the Stackelberg Game

Based on the network structure and attributes information presented in Section 7.1, the

specific form of the bilevel programming problems P5.7 and P5.8 from Section 5.3 is

developed to formulate the Stackelberg game between the terminal operators and the

shippers of this example, under either the competitive or collusive game. The sensitivity

analysis method based heuristic algorithm is applied to solve these bilevel problems. The

bilevel programming problem and the heuristic algorithm are implemented in a GAMS

input file. The structure of the GAMS input file is not presented here. Interested readers

can refer to Boilé et al. (1997, 1998) for a detailed discussion on the basic structure of a

GAMS input file and the power of using the GAMS language to describe the network

problem. However, the computational efficiency of this heuristic algorithm to solve the

bilevel programming problems of this example is provided below.

7.2.1 Computational Efficiency

The heuristic algorithm from Section 5.3 iteratively solves the upper level terminal

operators' pricing and routing problem and the lower level shippers' SPE problem via the

linkage provided by the sensitivity analysis of the SPE problem. The upper level problem

under the competitive game and the lower level problem are solved using the relaxation

algorithms from Section 4.6 and the nonlinear serial decomposition algorithm from

Section 5.1.6 respectively. In this example, all three algorithms are implemented in a

GAMS input file by developing a set of GAMS models and using the iteration feature

provided in GAMS language to solve them iteratively. These GAMS models correspond

to the subproblems created in those three algorithms. Models are developed for the three
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single-commodity SPE problems created in the nonlinear serial decomposition algorithm.

Each of these models has 85 equations and 139 variables.

Models are also developed for the two individual terminal operators' pricing and

routing problems under the competitive game, which are created in the relaxation

algorithm. Each of these models has 40 equations and 61 variables. In addition to the five

models described above, another two GAMS models are developed for this example.

One is the nonlinear optimization problem formulating the collusive game between two

terminal operators, which has 79 equations and 131 variables. The other solves the set of

equations in the linear program problem P5.6 from Section 5.2.1 for the sensitivity

analysis of the lower level SPE problem; it has 55 equations and 73 variables. Since the

problems corresponding to the seven models are either linear or nonlinear programming

problems, all seven models are solved using a powerful solver implemented within

GAMS, called CONOPT2 (Drud, 1996). CONOPT2 solves these models using the

generalized reduced gradient algorithm (Bazaraa, 1993). These models were solved in

0.03 to 0.3 seconds on a PC with a 400-MHz Celeron processor.

The heuristic algorithm converges after 11 and 12 iterations for the collusive and

competitive problems, respectively, when the stopping tolerance of 1E-8 is employed.

The convergence pattern of the GAMS programs is shown in Figure 7.2. In this figure,

with k denoting the number of

iterations. For this sample problem, it is observed that the sensitivity analysis algorithm

converges consistently for both the collusive game and the competitive game.
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Figure 7.2 Convergence Pattern of the Heuristic Algorithm

With the convergence of the heuristic algorithm demonstrated above, the

following two sections show that the solution that is obtained is, in fact, a Stackelberg

equilibrium solution. First, the spatial price equilibrium will be demonstrated. Then, the

optimality of the terminal operators' pricing and routing problem will be verified.

7.2.2 Verification of Spatial Price Equilibrium

Tables G.1 and G.2 in Appendix G show the solution of the shipper level problem

including the commodity supply and demand, supply price at the origin, demand price at

the destination, link flows and generalized costs. To show that the solution is a SPE

solution, the conditions El-E2 specified in Section 5.1.2 must be verified. The

verification of El and E2 involves the path enumeration and the path flow derivation. It

would be an arduous task to enumerate all possible paths between each O-D pair; hence,

only several paths between an O-D pair (n13-n16) are enumerated and El and E2 are

verified for this O-D pair.

Figure 7.3 shows the generalized costs for commodity c/ on the links between

origin n13 and destination n16.
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Figure 7.3 Solution for the Competitive Game

Between this O-D pair, there are 16 paths, among which four are enumerated

below.

Similarly, the generalized costs on the other 12 paths can be calculated and it can

be shown that they are all equal to $49.06/unit. Based on the generalized costs calculated
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above, the supply price and the market price shown in Figure 3.1, the following can be

observed:

Hence, El and E2 from Section 5.1.2 are satisfied for O-D pair (n13-n16).

For the other O-D pairs, similar verifications can be conducted that will not be

repeated here. Instead, an alternative condition, which is in accord with the link and node

incidence presentation, is provided in Proposition 7.1 and verified in place of El and E2.

Proposition 7.1: A feasible solution (S, f , D) E KS is an equilibrium solution for

the spatial price equilibrium problem, if and only if there exists a nonnegative vector

The proof of Proposition 7.1 is shown in Appendix H. Based on Proposition 7.1,

the spatial price equilibrium can be verified by showing that there exists a nonnegative

vector of the dual variables (77) that satisfies Eqs. (7.1)-(7.3). To demonstrate, verification

for a few solutions of the collusive game is presented.



108

fl33,c1=25.026 units/day>0, 133 connects n72 and n7. ηn72,c2+GCl33,c2-ηn7,c2

Similar verifications can be conducted for all solutions. The conditions in Eqs.

(7.1) and (7.2) are satisfied for each demand and supply market. This can be shown by

following the above example and using the results from Table G.1, parts a and b. The

condition in Eq. (7.3) is satisfied for all links as shown in Table G.2 parts a and b for the

competitive and collusive games, respectively. Tables G.3 —G.5 present the Jacobian

matrix of the locally approximated demand function for the competitive (G.3) and

collusive (G.4) games and the verification of the diagonal dominance of the Jacobian

matrix (G.5). Tables G.3 and G.4 also show that the data along the diagonal of the

Jacobian matrix are negative. Therefore, diagonal dominance property indicates that the

Jacobian matrix is negative definite (according to the proof in Appendix I). Hence,

Proposition 5.2 proved in Appendix D is verified. More important is that the negative

definite property guarantees that the upper level problem (i.e. the terminal operators'

pricing and routing problem) is strictly convex. The strict convexity implies that the

solution to the upper level problem is unique in the neighborhood of the locally

approximated demand function. This demand function is a close guess of the relationship

between the shippers' equilibrium link flow and the carriers' service charge. The

verification of the optimality of this solution to the upper level problem is conducted

below using a basic macroeconomic principle; that is, at the profit maximization point

where the marginal revenue equals the marginal cost (Tirole, 1988).
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7.2.3 Verification of Optimality of the Terminal Operators' Pricing and Routing
Problem

The solution of the terminal operators' pricing and routing problem that resulted from the

GAMS model is shown in Tables G.6 and G.7 of Appendix G. Table G.6 presents the

equilibrium travel demand, service charges and travel times, while Table G.7 presents the

equilibrium link flows and operating costs. Link flows for all commodities are shown in

Table G.8. To verify that the solution is optimal, the conditions shown in Eqs. (7.4) and

(7.5) need to be verified.

Marginal revenue on a terminal O-D pair v for commodity c (MRv,c ) is defined as

the increase in revenue that results from providing one additional unit of service to the

flow of commodity c on terminal O-D pair v. The marginal operating cost on a path

pєPH(v) for commodity c (MCpєPH(v),c) is defined as the increase in the total operating

cost of the terminal operator that results from providing one additional unit of service to

the flow of commodity c on path p. The marginal cost on a path p is the summation of the

marginal cost on all the links constituting this path. MCv,c is the minimum marginal cost

on all paths connecting terminal O-D pair v for commodity c.

Marginal revenue (MR„) is calculated based on information obtained from the

sensitivity analysis. With V RL f(RLk-1 ) derived at each iteration, both the locally
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approximated service demand function g(Rv) and the inverse service demand function

R v(g) can be estimated, and the marginal revenue can be calculated as shown below.

The resulting marginal revenue and the minimum marginal cost for each terminal

O-D pair for each commodity type are shown in Table G.9 of Appendix G. As shown in

Table G.9, Eq. (7.4) is satisfied.

The results of path flow and the marginal path operating cost are shown in Table

G.10 of Appendix G. From these data, two observations can be made for each O-D pair:

1. The marginal cost of any used path equals the lowest marginal cost among all the paths

between this O-D pair; and 2. The marginal cost on any unused path is no less than the

marginal cost on any used path between this O-D pair. For example, consider paths (p0,

p1, p2, p4)connecting terminal O-D pairv0.Under the competitive game, all paths are

used for commodity c./. Table G.10 shows that MCp0,c1 = MCp1,c1 = MCp2,c1 = MCp4,c1 =

$9.678/unit. For commodity c2, paths p0, p1 and p4 are used, butpath p2 is not used.

Table G.10 shows that MCp0,c1 = MCp1,c1 = MCp4,c1 = $4.821/unit < MCp1,c1 =

$4.880/unit. This indicates that Eq. (7.5) is satisfied. The routing pattern in the terminal

sub-network minimizes the operating cost, while it satisfies the service demand generated

by the current service charge.
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The data of the terminal profits for both the collusive and the competitive game

are shown in Table 7.1 below.

Table 7.1 The Terminal Profit under Collusive and Competitive Game
Pricing schemes Profit at all terminals

($/hr)
Profit at terminal 1

($/hr)
Profit at terminal 2

($/hr)
Collusive game 7460.07 3278.97 4181.10

Competitive game 6810.59 3012.19 3798.40

As shown in Table 7.1, the total terminal profit obtained is $7460.07 per hour

under the collusive game with $3278.97 from terminal l's operation and $4181.10 from

terminal 2's operation. This total profit is greater than the sum of the profits obtained by

all individual terminal operators in the competitive game, that is $6810.59 per hour with

$3012.19 from terminal 1's operation and $3798.40 from terminal 2's operation. Hence,

the compensation principle is satisfied. A comparison of the profits of individual terminal

operators shows that both terminal operators achieve better profits by cooperating.

Therefore, collusion is likely to continue if the government does not interfere.

In summary, the pricing and routing pattern solved from the GAMS model is

optimal for the terminal operators, and cooperation is beneficial to both terminal

operators.

7.3 Using the Model to Evaluate Port Authority's Investment Decisions

The bi-level programming approach can be used by the Port Authority to identify the

terminal links that are candidates for improvement, and evaluate the economic impact of

various investment strategies. In this example, it is assumed that both terminal operators

are under the same Port Authority. This application is demonstrated in this section.
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7.3.1 Identifying the Candidate Terminal Links for Improvement

Denote the do-nothing strategy as S0. Using the results of the model, the candidate

terminal links for improvement can be identified by comparing the current flow on a link

(e °) with its capacity (Ea
s o 

). The comparison is shown in Table G.8 of Appendix G. The

links where flow exceeds capacity (eas° ) are candidates for improvement. These

The Port Authority can choose to invest in expanding the capacity of those

-- a ,
candidate links to their current flow level, that is AE a = (easo — 

Eso
) Depending on the

availability of funds, some or all candidate links may be improved. In this example, in

addition to the do-nothing strategy SO, three investment strategies are envisioned. Their

impact on the shippers and terminal operators are predicted using the bilevel model

developed in this dissertation. The first investment strategy Si adds capacity on those

links belonging to the first terminal: a0 al, a4, and a22. The second investment strategy

Si adds the capacity on those links belonging to the second terminal: a12, a13, a14, a17,

a19, a20, a21, and a23. The third investment strategy S3 adds the capacity on all of the

candidate links. Table 7.2 presents the intended capacity improvement associated with

investment strategies S1, S2 and S3.

Table 7.2 shows that the competitive game has higher investment requirements

than the collusive game. Under the competitive game, the terminal operator tends to

charge a lower service fee, which results in more service demand. The induced demand

results in capacity deficiencies.



Table 7.2 Capacity Improvement under Three Investment Strategies
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7.3.2 Comparison of Alternative Investment Strategies

For investment strategies Si, S2 and S3 proposed above, the equilibrium supply, demand

and routing decision of the shippers as well as the equilibrium service charge and routing

pattern in each terminal sub-network are forecast by solving the GAMS model with

updated capacity information. Based on the equilibrium solution, various indexes

regarding the port operation are calculated and compared for different investment

strategies, as shown in Tables 7.3-7.4.

Table 7.3 shows that the investment of the Port Authority will generate additional

service demand at the port terminal with capacity improvement, and may decrease the

service demand at the port terminal without capacity improvement. For example, under

the collusive game with the investment strategy Si, the service demand at port terminal 1

will increase from 102 units per hour to 108 units per hour. However, demand will

decrease at port terminal 2 from 123 to 120 units per hour. Given the cost advantage
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resulting from the capacity improvement, terminal 1 is able to lower the service charge

and attract some of terminal 2's business. The increase in average travel time that results

from the increased demand at terminal 1 is greater than the travel time savings resulting

from the increase in capacity. Consequently, an overall increase in the average travel time

results. For example, for the competitive game, the investment strategy S1 causes the

average travel time at port terminal 1 to increase from 4.41 hours per unit to 4.69 hours

per unit.

Table 7.3 Total Demand, Average Travel Time, Total Revenue and
Total Profit under Four Investment Strategies

Table 7.3 also shows that investment in one terminal can have the opposite effect

on the other terminal. For example, the investment strategy S2 increases the revenue and

profit at port terminal 2 while it decreases the revenue and profit at port terminal 1 under

both the collusive and competitive games. This result is attributed to the decrease of the

service charge at terminal 1 in order to maintain business and the resulting decrease in

demand for terminal 1 service. Table 7.3 also shows that the investment strategy S3 may

have different effects on the revenue and profit at the two terminals even though both

terminals receive investment. For example, the investment strategy S3 under the
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competitive game decreases the profit at port terminal 1 while it increases the profit at

port terminal 2. The investment intensifies the price competition between the two

terminals, thus reducing the equilibrium service charges at both terminals as shown in

Table 7.4.

Table 7.4 Equilibrium Service Charge of Commodity c3

Depending on the elasticity of the service demand with respect to the service

charge, revenue may increase or decrease with the reduction of the service charge. If the

elasticity of the service demand is less than 1, the negative effect on the revenue from the

decrease in service charge dominates the positive effect from the increase in demand.

Hence, revenue will decrease. If the elasticity is greater than 1, revenue will increase. In

this example, investment strategy S3 decreases the revenue at port terminal 1 in spite of

the increase in the service demand from 123 to 127 units per hour. This result indicates

that, at the current equilibrium point, the demand elasticity at port terminal 1 is less

than 1.

The Port Authority is also interested in the net social benefit (NSB) and the

investment cost (IC) under different investment strategies. In calculating NSB, the

economic multiplier C . is set to 4 to account for the external economy. To demonstrate
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the effect on NSB from the percentage of the through traffic, a set of different percentages

of through traffic ( vc = v 'vice C) is used. In calculating IC, p au is set to $5 per unit for any

terminal link a and any investment strategy u. Similar to the value-of-time, the values for

these three parameters are also selected arbitrarily. Again, the accuracy of these arbitrary

selected values does not affect the demonstration purpose of the numerical example.

Based on these values of the parameters C, pat' and vc and the Stackelberg equilibrium

result of the GAMS model, NSB and IC for each investment strategy are calculated

according to the formulas in Eqs. (6.9) and (6.11) from Sections 6.2.3 and 6.3 and are

shown in Table 7.5.

Table 7.5 Net Social Benefit (NSB) and Investment Cost (IC)

Two observations can be made based on Table 7.5. First, if no freight is produced

or consumed locally (v =1), the NSB is higher for the collusive game under all investment

strategies. Collusion brings more profit to the terminal operation as a whole, thus

increasing both operators' contribution in the NSB formula. Second, with the decrease in

the percentage of through traffic, the NSB becomes higher for the competitive game. The

competitive game generates more commodity production, consumption and shipment.

With the percentage of through traffic low enough, the positive effect on NSB from the
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gain in local shippers' net benefit will more than offset the negative effect from the loss

of total profit at port operation.

Based on the net social benefit (NSB) and the investment cost (IC) shown in Table

7.5, the incremental benefit-cost ratios under the various investment strategies are

calculated according to the formulas in Eq. (6.14) from Section 6.5. These ratios are

shown in Table 7.6

Table 7.6 The Ratio between Incremental Net Social Benefit (ΔNSB) and Incremental
Investment Cost (ΔIC)

Table 7.6 shows that when through traffic is high, the do-nothing strategy may

become the best choice, since the gain in NSB may not be enough to cover the increase in

IC. For example, for both the competitive and collusive games, when the proportion of

through traffic is 70 or 100 percent, the ratio between the incremental NSB and IC is less

than one under all investment strategies. Table 7.6 also shows that with the decrease of

through traffic, the investment strategy for the competitive game results in higher

incremental benefit-cost ratios. When through traffic is high, there are lower incremental

benefit-cost ratios.

Observations from Tables 7.5 and 7.6 together with the result in Table 7.3

indicate that, if a very high percentage of the freight is not produced or consumed locally,

both the terminal operators and the Port Authority favor collusion of the terminal
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operators under the control of one Port Authority. In this case, the social benefit to the

local region brought by the terminal operations is mainly contributed by the terminal

profits, which are higher under the collusive game. With the decrease of this percentage

and the investment, the weight of the shippers' contribution to the net social benefit

becomes higher. The Port Authority prefers the competitive game, since it will bring

about more shippers' net benefit and accordingly more net social benefit to the local

region.



CHAPTER 8

FUTURE RESEARCH DIRECTIONS

The dissertation has proposed and developed a framework to analyze the pricing and

routing behavior of freight carriers. It explored this application in facilitating the

investment decisions of the Port Authority in the background of the general freight

network that recognizes market-clearing forces. In particular, a bi-level programming

approach has been introduced to solve the Stackelberg equilibrium between carriers and

shippers, and the related investment issue is shown to be computationally tractable. The

sensitivity analysis based heuristic algorithm that was used to solve the bi-level model

was implemented within GAMS, a mathematical programming software package.

Possible extensions to the work presented in this dissertation are discussed below.

The model application presented in this dissertation analyzed the behavior of a

special type of carrier, namely two port terminal operators. Pricing and routing of all

other carriers were assumed to be fixed. Alternative investment strategies at the port

terminals were also evaluated. The model and the algorithm is flexible, however, and can

be adopted to analyze the pricing and routing decision of any or all other private carriers.

In addition, the investment issues at other kinds of transportation terminal, such as a

logistics terminal or airport terminal could be examined as well. For example, the public

logistics terminal in Japan involves both the public and private sectors (Taniguchi et al,

1999), including various trucking companies. Issues that may be examined by using the

methodology developed in this dissertation include the optimal location of the terminal,

its optimal size, and how the investment decisions of a government interact with the

routing decisions of a private company.

119
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The hierarchical model can be extended to assess the impact of policies in various

states, such as tax policy, investment policy and so on, on the location of the production

and consumption pattern. The model can be used to analyze the interstate competition.

To illustrate this point, suppose that one state invests in its transportation infrastructure.

The investment is intended to increase the state's accessibility and attract more

businesses. However, it may, at the same time, generate more traffic to the transportation

facilities in the state, inducing higher congestion and land costs, and consequently, higher

production cost. The end result could be that, despite an investment in transportation

infrastructure, the state becomes a less desirable location for business than its

neighboring states. The neighboring states may benefit more from the transportation

infrastructure investment than the state that made the initial investment. To make sound

decisions, planners need to balance these gains and losses carefully. The model

introduced in this dissertation can be used to identify gains and losses resulting from the

interactive relationship between traffic flow, production, consumption and the attributes

of the transportation network such as capacity and cost, which provide criteria for

decision making. Another application is to evaluate user, societal and environmental

impacts of a particular public policy (e.g., introducing tolls on an interstate road) on a

region.

A discrete value-of-time is assumed for each commodity. In the future, the value

of time can be modified so that it follows a distribution (e.g., the normal distribution).

The distribution pattern of the value-of-time differs according to the commodity type and

the origin/destination of the commodity being shipped. In an application to passenger

transportation, Dial (1979, 1996) develops a bicriteria traffic assignment model to
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analyze the assignment of traffic, the value of time of which has different distribution

between different O-D pairs.

Numerous shippers are assumed in this dissertation and the shippers' market is

considered to be purely competitive. A future study may relax these assumptions and

consider, for example, that a finite number of shippers who compete for the limited

resources for production and transportation exist in the network. The interaction of these

shippers can be modeled using the spatial oligopolistic model by Nagurney (1999) as

reviewed in Section 2.2.1. Accordingly, the bi-level model in this dissertation can be

extended to analyze the interaction between the oligopolistic carriers and the oligopolistic

shippers. Summarizing, the model has the potential to be a useful tool for transportation

planning.



APPENDIX A PROOF OF THE STRICTLY CONCAVE PROPERTY OF THE
OBJECTIVE FUNCTION IN EQS. (4.6) AND (4.7)

The objective function

concave in (R V, e). Its Hessian matrix is negative definite as shown below.

According to assumption A2 from Section 4.1, [VRVgv  (Rv )] is negative definite.

is also negative definite. Then, the sum

is also negative definite.

This matrix is also symmetric. From assumption Al in Section 4.1, — V eMC(e) is also

negative definite and symmetric. Therefore, the Hessian matrix H(Zt), which as shown in

and zero elsewhere, is also negative definite and symmetric.
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The negative definite property of the Hessian matrix H(Zt ) indicates that: 1. The

part of the objective function Eq. (4.7) contributed by carrier t (Zt(gt(Rt,R-t),Rt,et)) is

strictly concave in (Rv, e) . 2. The objective function for the collusive game (Z), as a

summation of Zt(gt(Rt,R-t),Rt,et) is strictly concave in (R v, e). 3. The vector of the

first derivative of the objective function (Eq. (4.6) of individual carrier

VZt(gt(Rt,R-t),Rt,et) is strictly monotone decreasing in (R e, et).



APPENDIX B SENSITIVITY ANALYSIS FOR A PERTURBED VI PROBLEM

Let g Denote the perturbation parameter. A perturbed VI problem PB.1 can be defined in

Table B.1:

Table B.1 A Perturbed VI Problem

The sensitivity analysis method for problem PB.1 estimates the derivative of the

*
equilibrium solution of the primal and dual variables to problem PB.1 (x

*
 ,ii *) with

respect to c in the neighborhood of e =0.

Four conditions are required for the sensitivity analysis of problem PB.1.

1. F(x, e) is once continuously differentiable in (x, e). The equality constraints

G(x)=0 are linear affine and the nonnegativity constraints x 0 are concave.

2. Solution to PB.1 at e =0 is a local unique solution.

3. Solution to PB.1 at e =0 satisfies the strictly complementary slackness

condition, that is if x1=0 then to- >0.

4. The gradients of the binding nonnegativity constraints and the gradients of the

equality constraints are independent.
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With these four conditions satisfied, there exists a locally unique solution of the

in the neighborhood of s =0.

The Jacobian matrix of Eqs. (B.1) and (B.2) with respect to (x, η) is:

The Jacobian matrix of Eqs. (B.1) and (B.2) with respect to the perturbation

variable e is:

Then, the first-order derivative of x * (e) and η * (s) with respect to s can be

calculated as follows:



APPENDIX C CONDITIONS FOR THE SENSITIVITY
ANALYSIS METHOD OF SPE MODEL P5.1

The four conditions from Appendix B specific for the sensitivity analysis of problem

P5.1 are shown to be satisfied below.

are once continuously differentiable in (S, f,

D, RL). The flow conservation constraints (Eqs. (5.7) and (5.8)) are linear affine and the

nonnegativity constraint (Eq. (5.9)) is concave.

are guaranteed to be continuously differentiable by

assumptions Al and A2 from Section 5.1.1. The linear affine property of Eqs. (5.7) and

(5.8) and the concave property of Eq. (5.9) are obvious since all these equations are

linear.

2. The equilibrium solution (S* , f , D*) to problem P5.1 is locally unique.

This is proven in Section 5.1.5.

3. The strictly complementary slackness condition holds for the solution to problem

P5.1 (i.e., if a nonnegativity constraint is binding, the dual variable for this constraint is

positive).

These conditions are shown in Eqs. (C.1)-(C.3) below.

126



127

If Eqs. (C.1)-(C.3) are not satisfied, problem P5.1 can be slightly perturbed until

the satisfactory result is obtained.

4. The gradients of flow conservation constraints (Eqs. (5.7) and (5.8)) and the

binding nonnegativity constraint (Eq. (5.9)) are independent.

To demonstrate this, the proof similar to that of Tobin (1987) is used here. In

Tobin's paper, the commodity production or consumption is assumed to take place at any

node on the shipper network. Unlike Tobin's approach, in this dissertation the nodes on

the shipper network are categorized into intermediate nodes and centroid nodes

depending on whether there is a production or consumption activity. Correspondingly,

the flow conservation constraints are different for the centroid node and the intermediate

node. This difference is taken into account in the proof below.

Proof:

• 	 • 	 •
Using the notation of Tobin (1987), / f , IS , ID are the matrices remaining after the

columns corresponding the nonbinding nonnegative constraints are deleted from the

identity matrix of the order of the number of f, D and S. The conditions of the

independence of gradients are equivalent to the full rank of the following matrix:
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Based on assumption A5 from Section 5.1.1, which states that each commodity

.
flows through each node, the rows in [AT, 0 0] and [If 	0 0] are independent.

According to assumption A3 from Section 5.1.1 and the strictly complementary slackness

conditions in Eqs. (5.30) and (5.31), the supply and the demand for each commodity type

can not both be zero at any centroid node. This indicates that the rows in [ΛT CN I-I]

. 	 .
are independent from the rows in [0 IS 0] and [0 0 /D ]. The independence

. 	 . 	 .
between [/f 	0 0] , [0 IS 0], and [0 0 /D ] is obvious. Hence, it is shown that

the above matrix is of full rank.



APPENDIX D PROOF OF PROPOSITION 5.2

the	 vector of the locally approximated flow functions 	 P

being the vector of the current service charges) is monotone decreasing in the vector of

the service charges ( RL ) if the vectors of the inverse commodity supply, inverse

commodity demand and generalized cost functions are strictly monotone. (For the sub-

vector of the flow variables that have positive equilibrium solutions at the current level of

service charges, the sub-vector of the locally approximated functions is strictly monotone

decreasing in the sub-vector of the service charges corresponding to these flow

variables.)

Proof:

The proof is conducted by verifying the Jacobian matrix of the local approximated

using the sensitivity analysis result from Tobin (1987) applied to the price formulation of

spatial price equilibrium (SPE) model. The advantage of the price formulation over the

quantity formulation is that the derivative of the link flow is separable from the derivative

of the commodity supply and demand.

From assumption A2 in Section 5.1.1, both the vector of the inverse supply

functions and the vector of the inverse demand functions are linear and strictly monotone.

This indicates that the vector of the supply functions and the vector of the demand
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functions are also linear and strictly monotone. Using the supply function and the demand

function, the complementary formulation of the SPE problem similar to the one in Tobin

(1987) is presented in Table D.1. In this formulation, the difference in the intermediate

node and the centroid node is accounted for.

Table D.1 Complementary Formulation of SPE problem
with Supply Function and Demand Function

Applying the sensitivity analysis method for the complementary problem

introduced in Tobin (1987) to problem PD.1, the following can be derived.

denote for each commodity the

vectors of flow variables, service charges, the generalized cost functions and the link

node incidence matrix on the links with positive current flows. 7/ - ' , S' (7c) and D'(71-)
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denote for each commodity the vectors of the price variables, the supply functions and

the demand functions for the nodes with positive current prices.

Then_ Ea. (D.7) can be restated as follows:

f' I and I R' I equals to the summation of the number of links with positive current flows

derived that:

In matrix V R,GC'(f , R) , the elements along the diagonal equal to 1 and all the

elements off the diagonal are equal to 0. Hence, it follows:

Here, I is an identity matrix with dimension equals to I f' |*| R'|. R'

Equations (D.9) and (D.10) yield that:
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From Eq. (D.1 1), it is easy to see that V R , f' is negative definite if and only if B111

is positive definite. The sufficient condition for B111 to be positive definite is that B 11 is

positive definite. The latter is proved below.

is positive definite.

ψ

 is shown to be positive definite below. According to the assumption A4 from

Section 5.1.1, V f , GC' (f , R) is positive definite. It follows that:

Hence, ψ is positive definite.

As mentioned before, the vector of the supply functions and the vector of the

demand functions are strictly monotone, which indicates that F is positive definite.

Hence, F 1 is also positive definite. It follows that:

Hence, MΓ-¹ M T is also positive definite.

also a positive definite matrix. Consequently, B 111 as a submatrix along the diagonal of

B11 is positive definite, and V R , f' is negative definite. This, based on the definition of
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ƒ' , R' , indicates that for each commodity the Jacobian matrix of the sub-vector of the

locally approximated functions of the flow variables on the links with positives current

flow is strictly monotone decreasing in the sub-vector of the service charges on those

links.

is a submatrix along the diagonal of VRƒ  since VR'ƒ' only includes the

derivative of flow variables with respect to the service charges on the links with positive

current flows. In order to analyze the property of VRƒ , the derivative on the links with

no current flows need to be considered as well, which is demonstrated below.

Under the conditions specified in Appendix C, the links with no flow will remain

unused with small perturbation of the service charge (Tobin, 1987). Mathematically,

. On the other hand, a small change of service charge on an unused

link will not alter the assignment pattern in the network since this link will remain unused

for a small change. This small change of the service charge on the link doesn't influence

the cost structure of those used links. Hence, the derivative of link flow with respect to

With VR'ƒ' negative definite and all other elements zero, OR ƒ is negative

semidefinite. This indicates that the vector of the locally approximated flow functions on

is monotone decreasing in the vector of

the service charges on the shipper links (RL ). Hence, Proposition 5.2 is proved.



APPENDIX E DERIVATION OF A FACTOR IN THE
INVESTMENT COST FUNCTION

Consider that the investment project on link a has a 20 year analysis period and a 5%

discount rate. The investment strategy u improves the capacity on link a by AE,, units.

The cost of additional unit of capacity is p1au . The original capital expense (IQ) is

Let the service life of the capital expense be 6 years. On

every 6 years, a replacement investment is needed with the same capital expense as the

original one (Ia ). This investment project is illustrated in Figure E.1 below.

Figure E.1 A Sample Investment Project

Given the information of the analysis period, the service life, and the discount rate

for this sample investment project, the following steps are used to derive p2au .

1. Convert the initial capital expense and the replacement investment expense to

present value:

Present value of the initial investment: Iua

Present value of the first replacement (6 years later): Iua *PWF6,5%

Present value of the second replacement (12 years later): / au *PWF12,5%
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Present value of the third replacement (18 years later): Iua *PWF18,5%

Present value of all capital expenses on link a under investment strategy u in the

analysis period ( PICua ):

Where, PWF is the single payment Present Worth Factor, CRF is the Capital

Recovery Factor, SPW is the uniform series Present Worth Factor.

Using y to denote the number of years and i% to denote the discount rate, then

(Refer to the class notes of Transportation Economics by Pignataro).

2. Convert the present value of the capital expenses in Eq. (E.1) into the annual

cost within the analysis period.

Annual investment cost of all capital expenses on link a under investment

strategy u in the analysis period ( AICua):
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3. Convert the annual investment cost in Eq. (E.2) into the hourly investment cost.

Hourly investment cost of all capital expenses on link a under investment

strategy u in the analysis period (ICau  ):

From Eq. (E.3), p2ua =2.24*10 -5 is derived, which are used to convert the capital

expenses during the analysis period into the hourly investment cost. In the same way,

p2ua can be derived for the links and investment strategies with different service life or

discount rate.



APPENDIX F INPUT DATA FOR THE NUMERICAL EXAMPLE

rwl 'am -N-4 	 m1 	 T 	 • 1 	 T 1 	 T 	 T 	 - 1 I, "T-■ -7". • 	 1,1 	 • 	 117_1_

Table F.2 The Incidence Index gp, a between Terminal Path p EPH and Link a EA.

8n.a=1 Indicates that Link a is in Path p
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Table F.3 The Incidence Index 6, „ between Terminal Path p EPH and Terminal O-D

Table F.4 The Incidence Index v Between Port link lєPL and the Terminal O-D Pair
v 	 Tf Pnrt Link- 1 Corresponding to Terminal 0-T) Pair v_ 	 =1_ Otherwise_ 	 =0



Table F.5 Parameters in the Terminal Link Operating Cost Function
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Table F.6 Parameters in Inverse Supply Function ,

Table F.7 Interaction Ratio rol,c',c in Travel Time Function



Table F.8 Service Charge, Free Flow Travel Time and Capacity in Travel Time
Function tl,c(fl) and in Generalized Cost Function GC,,c = R1 c + votc * tl,c
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APPENDIX G SOLUTION OF THE NUMERICAL EXAMPLE

Table G.1 Quantities of Commodities Supplied and Demanded
and the Production and Market Prices

a) Competitive Game

hl Collusive Game

* units of flow



Table G.2 Spatial Price Equilibrium Flows and Generalized Costs

a) Competitive Game



Continued from the previous page

b) Collusive Game



Continued from the previous nave



Table G.3 Jacobian Matrix of the Locally Approximated Demand Function for the Competitive Game
al Terminal 1

b) Terminal 2



Table G.4 Jacobian Matrix of the Locally Approximated Demand Function for the Collusive Game
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Table G.5 Verification of the Diagonal Dominance of the Jacobian matrix V Rg(R)

Table G.6 Equilibrium Service Demands, Service Charges, and Travel Times

a) Competitive Game



Table G.7 Equilibrium Link Flows and Operating Costs
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rw, • 	 Ar, -1-'1 	 r• ♦ 1 1 e, 1	 1 • 	 rrn 	 ■^-1 	 • •

Table G.9 Marginal Revenues and Minimum Marginal Costs



Table G.10 Path Flows and Marginal Path Costs



APPENDIX H PROOF OF PROPOSITION 7.1

Proposition 7.1: A feasible solution (S, ƒ , D) E KS is an equilibrium solution for the

spatial price equilibrium problem, if and only if there exists a nonnegative vector

Proof:

First is to prove that El from Section

Define L(p) as the sequence of links within path ,

Summing Eq. (H.4) for all links in path p, the following can be obtained:
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In the summation over link lєL(p), the dual variables for the intermediate nodes

such as 17710,c ,1 n1,c are cancelled out. Only those for the centroids nb1,c ' 11 b2,c remain in

the final equation.

According to definition, the generalized cost for commodity c on path p is the

summation of the generalized cost for commodity c on each link 1 in path p. That is

Substituting it into Eq. (H.5), it can be derived that:

This together with Eq. (H.3)

According to Eq. (H.3) the

flow on this link (ƒl,c) equals zero. As long as one link on a path has no flow, the whole

path has no flow. Hence, hp ,c = 0.

Therefore, it is proved that:

Combining Eqs. (H.6) and (H.7), it follows that:

Substituting Eq. (H.9) into Eq. (H.8), it yields:

complete.



Next, it is to show that E2 from Section 5.1.2:

can also be derived from Eqs. (H.1)-(H.3).

As demonstrated in the proof of E1, μb1,b2,c= b1,b2,c = ηb2,c 	 - ηb1,c • Hence,

Conversely, if Qb1,b2,c≠ 0, it must be positive since Qb1,b2, c is assumed to be

as proved above, which constitutes a

Combining Eqs. (H.11) and (H.12), the proof of E2 is accomplished.

Thus, the proof of proposition 7.1 is completed.



APPENDIX I A SUFFICIENT CONDITION FOR
A MATRIX TO BE POSITIVE DEFINITE
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