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ABSTRACT

EXPERIMENTAL STUDIES OF WAVE PROPAGATION IN THREE-
DIMENSIONAL PHOTONIC CRYSTALS

by
John M. Tobias

Photonic crystals were proposed fifteen years ago. Propagation is selectively prevented

through these crystals resulting in a photonic band gap, that is, a frequency region where

light cannot propagate. These frequency bands are analogous to electronic band gaps in

solid-state crystals.

The optical properties of the photonic crystal in regions near the band gap remain

relatively unexplored. Yet, there is significant evidence to suggest that this avenue of

investigation can provide useful optical and microwave applications. Numerical studies

have predicted that the effective permittivity near the photonic band gap approaches zero

and becomes negative. Self-collimation of the propagating beam and ultrarefraction,

where radiation is redirected through large angles in the crystal, are predicted. Although

not considered as the ideal structure, the face centered cubic (fcc) opaline photonic is

crystal studied for reasons of practical realization.

The tools to examine the diffraction effects of photonic crystals, and in particular

those for three-dimensional structures, are somewhat lacking. To this end, commercial

simulation software and a series of experimental studies were employed to gain insight of

this unique wave propagation problem.

The emphasis of this study was upon frequency and polarization selectivity based

on the azimuthal and incident angles with respect to the crystal morphology. Some of the



results are consistent with calculations for two-dimensional crystals. However, they are

demonstrated here in three-dimensional crystals for the first time.

Defect modes, where the photon density of states is modified to allow propagation

in a certain direction was also explored. Although not optimized for low loss, significant

evidence was found for the existence of defect modes in the fcc crystal.

Modification of the photonic crystal by adding periodic features with negative

permittivity (metal) was examined as well. The addition of metal changed the refractive

index contrast leading to frequency selective self-imaging beam splitting, as well as

modification of the subwavelength self-imaging characteristic length.

It is expected that the experimental data will be useful toward in developing better

theoretical approaches for photonic crystalline optics.



EXPERIMENTAL STUDIES OF WAVE PROPAGATION IN THREE-
DIMENSIONAL PHOTONIC CRYSTALS

by
John M. Tobias

A Dissertation
Submitted to the Faculty of the

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Department of Electrical and Computer Engineering

May 2002



Copyright © 2002 by John M. Tobias

ALL RIGHTS RESERVED



APPROVAL PAGE

EXPERIMENTAL STUDIES OF WAVE PROPAGATION IN THREE-
DIMENSIONAL PHOTONIC CRYSTALS

John M. Tobias

Dr. Haim Grebel, Dissertation Advisor 	 Date
Professor, Department of Electrical and Computer Engineering, NJIT

Dr. Gerald Whitman	 Date
Professor, Department of Electrical and Computer Engineering, NJIT

Dr. Gregory A. Kriegsmann	 v	Date
Professor, Department of Mathematical Sciences
Foundation Chair, Applied Mathematics, NJIT

Dr. John F. Federici 	 Date
Associate Professor, Department of Physics, NJIT

Dr. Karl D. Moeller 	 Date
Research Professor, Department of Physics, NJIT



BIOGRAPHICAL SKETCH

Author:	 John M. Tobias

Degree:	 Doctor of Philosophy

Date:	 May, 2002

Date of Birth:

Place of Birth:

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, New Jersey, 2002

• Master of Science in Electrical Engineering,
University of Maryland, Baltimore County, Maryland, 1992

• Bachelor of Science in Physics,
Seton Hall University, New Jersey, 1987

Major:	 Electrical Engineering

Publications:

Tobias, J.M. & Grebel, H. (1999).
Self imaging in photonic crystals in a subwavelength range. Optics Letters, 24, 
1660-1662.

Tobias, J.M., Ajgaonkar, M., & Grebel, H. (2002).
Morphology-dependent Transmission Through Photonic Crystals. Journal of the
Optical Society of America B, 19, 385-389.

iv



DEDICATION

With imagination, determination, effort, and endurance, all is possible.

v



ACKNOWLEDGMENT

Over the past eight years of study, many people and organizations were very helpful in

furthering my efforts. First, I would like to recognize and thank Professor Haim Grebel,

my Dissertation Advisor, for his patience, wisdom and guidance over the past several

years.

Secondly, I would like to thank my dissertation committee, Professors

Kriegsmann, Whitman, Federici and Moeller, for their participation and many useful

suggestions.

My efforts would not be at all possible without the generous funding support of

the United States Army. In particular I would like to recognize Steven Horne and

Fernando Mancini for granting time for this endeavor as well as Steven Jakubowski and

Kenneth Blum for use of laboratory facilities. I also extend a special recognition and

thanks to Mr. Lawrence Goldberg of the Research and Development Center Technical

library for his help in locating arcane and ancient technical papers.

Last, but certainly not least, I would like to recognize my wife, Carol, and

children, Sarah, Rachel and Daniel, for their encouragement and understanding over the

course of the years of this work.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Discussion of the Technical Problem  	 1

1.2 Literature Review 	 4

1.2.1 Diffraction and Gratings 	 4

1.2.2 Fraunhofer Diffraction 	 5

1.2.3 Gratings and Filters 	 8

1.2.4 Subwavelength Features and Gratings 	 9

1.2.5 Self-Imaging: Talbot and Rayleigh 	 10

1.2.6 Recent Work in Self-Imaging 	 13

1.2.7 Applications of Self-Imaging 	 I5

1.3 Propagation in Periodic Media 	 I6

1.4 Literature Review of Photonic Crystal 	 20

1.4.1 Introduction 	 20

1.4.2 Photonic Bandgap 	 22

1.4.3 Photon Localization 	 25

1.4.4 Ultrarefraction 	 26

1.4.5 Variation of Azimuthal Angle 	 28

2 ELECTROMAGNETIC SIMULATIONS 	  30

2.1 Hewlett Packard High Frequency Structure Simulator 	 30

2.1.1 Inherent Limitations of the Finite Mesh Element 	 31

2.1.2 HPHFSS Structures 	 34

vii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.2 Simulation Results 	 35

2.2.1 Observations of the Electric Field Magnitude in the Crystal 	 35

2.2.2 Variation of Refractive Index of the Spheres 	 39

2.3 Summary of Electric Field Magnitude Simulation 	 47

2.4 Variation of Structure Orientation with Respect to Polarization 	 47

2.4.I Introduction 	 47

2.4.2 Construction of the Simulation 	 48

2.5 Simulation Results for Azimuthal Variation 	 49

2.5.1 Analysis for 10 mm Diameter Spheres 	 49

2.5.2 Discussion of the Simulation of the FCC Structure with 10 mm
Diameter Spheres 	 52

2.5.3 Change of Simulation Scale to Vary X/A 	 53

2.5.4 Simulation for Sphere Size of d = 31 mm, n = 1.5 	 54

2.5.5 Analysis of Results d = 31 mm, n = 1.5, Two and Four Layers 	 57

2.6 Overall Assessment of Simulation Results 	 58

3 EXPERIMENTAL EXAMINATION OF PROPAGATION IN ARTIFICIAL
OPAL FCC STRUCTURE 	  60

3.1 Introduction 	 60

3.2 Experimental Setup 	 60

3.3 Experimental Results 	 62

3.3.I Contrast Variation - Comparison of Ls for nsphere = 1.5, 2.25 and 2.5 ...	 62

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.3.2 Frequency Variation 	 66

3.4 Variation of Period, comparison of d sphere = 10 mm and 31 mm 	 70

3.5 Comparison to Simulations 	 76

3.6 Experimental Conclusions 	 77

4 AZIMUTHAL MORPHOLOGY AFFECTING TRANSMISSION
THROUGH FCC CRYSTAL 	  78

4.1 Introduction and Experimental Setup 	 78

4.2 Experimental Results for Variation of Azimuthal Orientation 	 80

4.2.1 Change of Experimental Scale to Vary VA 	 83

4.2.2 Analysis of Variation of Azimuthal Angle 	 85

4.2.3 Comparison to Simulations 	 87

4.3 Examination of Polarization Mixing in the Close-Packed FCC Structure 	 88

4.4 Conclusions 	 89

5 VARIATION OF INCIDENT AND AZIMUTHAL MORPHOLOGY 	  93

5.1 Introduction and Experimental Setup 	 93

5.2 Results 	 95

5.3 Discussion of Results 	  100

5.4 Correlation to Simulations 	 104

5.5 Conclusions 	  I06

6 HYBRID METAL — DIELECTRIC PHOTONIC CRYSTALS 	  107

6.1 Introduction 	 107

ix



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.2 Surface Plasmons 	  108

6.3 Experimental Setup 	  109

6.4 Results 	 112

6.5 Discussion of Self-Imaging Observations 	  1I6

6.6 Variation of the Azimuthal Morphology 	  118

6.7 Results of Azimuthal Morphology Variation 	  118

6.8 Discussion 	 119

6.9 Conclusions 	  I25

7. INVESTIGATION OF DEFECT MODES IN FCC CRYSTAL 	  127

7.1 Introduction 	  127

7.2 Experimental Setup 	  128

7.3 Results 	 129

7.4 Discussion 	  132

7.5 Redirection Through Defect Mode 	  136

7.6 Redirection Results and Discussion 	  137

7.7 Redirection Conclusions 	  138

7.8 Evidence of Ultrarefraction in the Polypropylene/Metal Hybrid Photonic
Crystal 	  140

7.8.1 Results of Field Mapping 	  140

7.9 Conclusions Regards Ultrarefractivity 	  143

x



TABLE OF CONTENTS
(Continued)

Chapter	 Page

8 CONCLUSIONS 	  144

8.1 Contributions 	 144

8.2 Applications 	  147

8.3 Research Directions 	  147

8.4 Final Remarks 	  149

APPENDIX: SIMULATION OF BODY-CENTERED CUBIC CRYSTAL 	  150

REFERENCES 	  155

xi



LIST OF TABLES

Table Page

1.1 Results of Rayleigh's Self-Imaging Experiment 	 12

2.1 Simulation Results for Self-Image Formation 	 43

2.2 ?A Ratios at Frequencies of Interest 	 53

3.1 5 GHz results for contrast variation 	 66

3.2 Effect of frequency variation on self-imaging distance, n = 2.5 	 67

3.3 Simulation and experimental results for self-image formation 	 76

4.1 Values nsphere ,and neff 	 79

7.1 Void measurement results, polypropylene and poly/metal 	 139

7.2 Field maps for the B and D crystal sides, all values in dBm 	 141

7.3 Field maps for the A and C crystal sides, all values in dBm 	 142

xii



LIST OF FIGURES

Figure 	 Page

1.1	 Illustration of Fraunhofer diffraction 	 4

1.2	 Single slit geometry 	 6

1.3	 Diffraction pattern arising from six slits (N = 6) , spaced at four times the	 7
slit width (a = 4b) and the resulting projected pattern 	

1.4	 Illustration of Talbot's first experiment 	 10

1.5	 Illustration of Talbot's second experiment. A second grating is imposed in 	 11
the beam perpendicular to the first 	

1.6	 Latimer-Crouse Diffraction Model 	  15

1.7	 Asymmetrical transverse Bragg reflection waveguide 	  19

1.8	 Beam propagation in the transverse Bragg waveguide. A particular mode
(in this example a low-order even mode) will be confined to the guiding
region my total internal reflection and attenuation of the x-components in
the Bragg reflector regions 	  20

1.9	 Representative photonic crystals illustrating periodicity and dielectric
contrast 	  2I

1.10 Example of a photonic bandgap, in this case, the complete photonic
bandgap identified by Yablonovitch. Essentially, δco(k)/δk (dispersion
fiunction) is plotted as a function of crystalline direction. The vertical axis
is in terms of normalized frequency, ωa/2πc. The horizontal relates the
planes on the Brillouin zone of the crystal. The cross-hatched region is
where k vectors are prohibited. Thus, in this example, the k vectors are
frustrated for all directions through the crystal since the gap extends across
the irreducible Brillouin zone of the crystal 	  24

1.1I	 Illustration of relationship of incident wavevectors, dispersion surface and
propagation directions (energy flow), with analogous conventional optical
case, after Kosaka1 3 . Propagation occurs normal to the dispersion surface 	  27

2.1	 A sample structure realized in HPHFSS 	  33

2.2	 6-layer "expanded" fcc structure 	  35



LIST OF FIGURES
(Continued)

Figure	 Page

2.3	 HFSS cross-sections depicting electric field magnitude in structure at 10
mm intervals along the direction of propagation. (f = 5 GHz, dsphere = 10
mm, n = 1.5) Scale is depicted to the right, however the cross-sections are
not normalized to each other. Thus each has it's own maximum on
individual scales, although dark blue is always zero 	  36

2.4a HPHFSS result for transmittance as a function of range within the crystal, f
= 5 GHz, n = 1.5, dsphere = 10 mm, 6-layer media 	  37

2.4b HPHFSS result for transmittance as a function of range within the crystal, f
= 10 GHz, n = 1.5, dsphere = 10 mm, 6-layer media 	  37

2.4c HPHFSS result for transmittance as a function of range within the crystal, f
= I5 GHz, n = 1.5, dsphere = 10 mm, 6-layer media 	  38

2.5a Plot of normalized electric field and normalized spot size (dotted line), n =
I.5, f = 5 GHz, dsphere = 10 mm 	  40

2.5b Plot of normalized electric field and normalized spot size (dotted line), n =
1.5, f = 10 GHz, dsphere = 10 mm 	  40

2.5c Plot of normalized electric field and normalized spot size (dotted line), n =
1.5, f = 15 GHz, dsphere = 10 mm 	  41

2.6	 Intensity plot (normalized E-field/spot size) for nsphere = 1.5, at 5, I0 and 15
GHz, dsphere = I0 mm 	  41

2.7a Comparison of HPHFSS normalized E-field values for 5 GHz, d sphere = 10
mm, nsphere 1.5 and nsphere = 2.5 (dashed line) 	  44

2.7b Comparison of HPHFSS intensity values for 5 GHz, dsphere = I0 mm,
nsphere = 1.5 and nsphere = 2.5 (dashed line) 	  44

2.8a Comparison of HPHFSS normalized E-field values for 10 GHz, dsphere =
10 mm, nsphere = 1.5 and nsphere = 2.5 (dashed line) 	  45

2.8b Comparison of HPHFSS intensity values for 10 GHz, dsphere = 10 mm,
nsphere I.5 and nsphere = 2.5 (dashed line) 	 45

2.9a Comparison of HPHFSS normalized E-field values for 15 GHz, dsphere =
10 mm, nsphere = 1.5 and nsphere = 2.5 (dashed line) 	  46

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

2.9b	 Comparison of HPHFSS intensity values for 15 GHz, dsphere = 10 mm,

nsphere 1.5 and nsphere = 2.5 (dashed line) 	 46

2.10	 Simulation coordinates. A fcc structure comprised of spherical media was
rotated with respect to the azimuthal angle, 0. Propagation was along the
x-axis, into the crystal (111) face 	  48

2.11	 Sample HFSS Structure. Media is rotated 75° with respect to beam
polarization 	  49

2.12a E-field with respect to 4), f = 5 GHz, dsphere = 10 mm, n = 1.5, 2 layers 	  50

2.12b E-field with respect to 4), f = 10 GHz, dsphere = 10 mm, n = 1.5, 2 layers 	  50

2.12c E-field with respect to 4, f = 15 GHz, dsphere = 10 mm, n = 1.5, 2 layers 	  5I

2.13a E-field magnitude vs. 4, dsphere = 3I mm, f = 5 GHz, n = 1.5, 2 layers 	  54

2.13b E-field magnitude vs. 43., dsphere = 31 mm, f = 10 GHz, n = 1.5, 2 layers 	  55

2.13c E-field magnitude vs. (I), dsphere = 3I mm, f = 15 GHz, n = 1.5, 2 layers 	  55

2.14a E-field magnitude vs. (I), dsphere = 3I mm, f = 5 GHz, n = I.5, 4 layers 	  56

2.14b E-field magnitude vs. 4), dsphere = 3I mm, f = 10 GHz, n = 1.5, 4 layers 	  56

2.14c E-field magnitude vs. 4), dsphere = 3I mm, f = I5 GHz, n = 1.5, 4 layers 	  57

3.1	 Configuration of experimental setup for field mapping at the crystal face.
The antenna for signal acquisition is (omitted here) was moved in the y-z
plane to map the transmitted signal at the crystal face 	  6I

3.2a	 Power versus range in media, polypropylene spheres, nsphere = 1.5, f = 5
GHz, 0 — 13 layers of fcc crystal 	  63

3.2b	 Power versus range in media, polypropylene spheres, nsphere = I.5, f = 10
GHz, 0 — 13 layers of fcc crystal 	  63

3.2c	 Power versus range in media, polypropylene spheres, nsphere = 1.5, f = 12
GHz, 0 — 13 layers of fcc crystal 	  64

xv



LIST OF FIGURES
(Continued)

Figure	 Page

3.2d Power versus range in media, polypropylene spheres, nsphere = 1.5, f = 15
GHz, 0 — 13 layers of fcc crystal 	  64

3.2e	 Power versus range in media, polypropylene spheres, nsphere = 1.5, f = 15
GHz, 0 — 13 layers of fcc crystal 	  65

3.3a Power versus range in media, silica spheres, n sphere = 2.5, f = 5 GHz, d sphere

= 10 mm, 0 — I3 layers of fcc crystal 	  67

3.3b Power versus range in media, silica spheres, nsphere = 2.5, f = 10 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal 	  68

3.3c	 Power versus range in media, silica spheres, nsphere = 2.5, f = 12 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal 	  68

3.3d Power versus range in media, silica spheres, nsphere = 2.5, f = I5 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal 	  69

3.3e	 Power versus range in media, silica spheres, nsphere = 2.5, f = I8 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal 	  69

3.4a Power versus range in media, ceramic spheres, nsphere = 2.25, f = 5 GHz,
dsphere 10 mm, 0 — 9 layers of fcc crystal 	  71

3.4b Power versus range in media, ceramic spheres, nsphere = 2.25, f = 10 GHz,
dsphere = 10 mm, 0 — 9 layers of fcc crystal 	  71

3.4c Power versus range in media, ceramic spheres, nsphere = 2.25, f = 15 GHz,
dsphere = 10 mm, 0 — 9 layers of fcc crystal 	  72

3.5a Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 5 GHz,
nsphere = 1.5 	 73

3.5b Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 7 GHz,
nsphere = 1.5 	 74

3.5c Power vs. range in polypropylene crystal, dsphere = 3I mm, f = 10 GHz,
nsphere = 1.5 	 74

3.5d Power vs. range in polypropylene crystal, d sphere = 3I mm, f = 12 GHz,
nsphere = 1.5 	 75

xvi



LIST OF FIGURES
(Continued)

Figure	 Page

3.5e Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 15 GHz,
nsphere = 1.5 	 75

4.1	 Experimental setup for azimuthal angle variation. The crystal is rotated
with respect to the y-axis which is the polarization direction for the input
beam 	  79

4.2	 Experimental realization of polypropylene (nsphere = 1.5, dsphere = 10 mm )

fcc structure. Total dimension of the structure is y = 135-mm and z = 181-
mm 	  80

4.3a Transmitted power variation vs. azimuthal angle, d sphere = 10 mm, nsphere =
1.5, 4 layers, 5 GHz. Note range of vertical axis is 2 dBm 	  81

4.3b Transmitted power variation vs. azimuthal angle, d sphere = I0 mm, nsphere =

1.5, 4 layers, 10 GHz. Note range of vertical axis is 2 dBm 	  81

4.3c Transmitted power variation vs. azimuthal angle, d sphere = 10 mm, nsphere =
1.5, 4 layers, 15 GHz. Note range of vertical axis is 4.5 dBm 	  82

4.4a Transmitted power variation vs. azimuthal angle, dsphere = 31 mm, nsphere =

1.5, 2 layers, 5 GHz. Note range of vertical axis is 1.4 dBm 	  83

4.4b Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, nsphere =
1.5, 2 layers, 10 GHz. Note range of vertical axis is 2.5 dBm 	  84

4.4c Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, nsphere =

1.5, 2 layers, 15 GHz. Note range of vertical axis is 12 dBm 	  84

4.5a Transmitted power variation vs. azimuthal angle, dsphere = 31 mm, n sphere =

1.5, 4 layers, 5 GHz. Note range of vertical axis is 2.5 dBm 	  86

4.5b Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, n sphere =

1.5, 4 layers, 10 GHz. Note range of vertical axis is 4.0 dBm 	  86

4.5c Transmitted power variation vs. azimuthal angle, dsphere = 31 mm, n sphere =

1.5, 4 layers, 15 GHz. Note range of vertical axis is 18 dBm 	  87

4.6a Transmitted power variation vs. azimuthal angle, d sphere = 10 mm, nsphere =

1.5, 4 layers, 5 GHz, vertical polarization (dashed) and perpendicular
polarization (solid line) 	  90

xvii



LIST OF FIGURES
(Continued)

Figure	 Page

4.6b	 Transmitted power variation vs. azimuthal angle, dsphere = 10 mm, nsphere =

1.5, 4 layers, 5 GHz, vertical polarization (dashed) and perpendicular
polarization (solid line) 	 90

4.6c	 Transmitted power variation vs. azimuthal angle, dsphere = 10 mm, nsphere =

1.5, 4 layers, 5 GHz, vertical polarization (dashed) and perpendicular
polarization (solid line)  	 91

5.1	 Illustration of experiment. Incident angle, 0, is varied from 0 to 25 degrees
while 4 is varied from 0 to 360 degrees. 0 remains in the x-y plane as the
crystal is rotated 	  94

5.2a Transmission through four-layer fcc crystal as a function of 4), 0, 5 GHz,
dsphere = 31 mm, nsphere = 1.5 	 96

5.2b Transmission through four-layer fcc crystal as a function of 4), 0, 10 GHz,
dsphere = 31 mm, nsphere = 1.5 	  97

5.2c	 Transmission through four-layer fcc crystal as a function of 4), 0, 10 GHz,
dsphere = 31 mm, nsphere = 1.5 	  97

5.3a Contour plot of transmitted intensity [dBm] at the self-imaging point as a
function of incident and azimuthal angles at f = 5 GHz 	  98

5.3b Contour plot of transmitted intensity [dBm] at the self-imaging point as a
function of incident and azimuthal angles at f= 10 GHz 	  99

5.3c	 Contour plot of transmitted intensity [dBm] at the self-imaging point as a
function of incident and azimuthal angles at f = 15 GHz 	  99

5.4a Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 0
degrees  101

5.4b Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 10
degrees  102

5.4c	 Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 25
degrees 	  102

xviii



LIST OF FIGURES
(Continued)

Figure	 Page

5.5	 Transmission through 4-layer fcc crystal as a function of φ, θ, dsphere = 31
mm, 10 GHz, revisited. Emphasis is placed on the position of the peaks,
denoted by arrows. (a) Incident angle, θ = 0 degrees. (b) Incident angle, θ
= 10 degrees (close to the `magic'angle). (c) Incident angle, θ = 15
degrees 	  104

5.6	 Experimental results for artificial opal, λ = 0.532 µm, d = 0.300 µm. The
structure consists of 40 layers with an approximate total thickness of 10
pm. The data is normalized to a reference signal 	  105

6.1	 Photograph of polypropylene and metal fcc crystal, dsphere = 10 mm. Scale
on bottom of photograph is in millimeters. Beam propagation was out of
the page, relative to the figure 	  110

6.2a Polypropylene and metal media, dsphere = 10mm, f = 5 GHz 	  II1

6.2b Polypropylene and metal media, dsphere = 10mm, f = 10 GHz 	  111

6.2c Polypropylene and metal media, d sphere = 10mm, f = 15 GHz 	  112

6.3	 Photograph of ceramic and metal fcc crystal, dsphere = 10 mm. Beam
propagation was out of the page, relative to the figure 	  I13

6.4a Ceramic and metal media, dsphere = 10mm, f = 5 GHz 	  114

6.4b Ceramic and metal media, dsphere = 10mm, f = 10 GHz 	  114

6.4c Ceramic and metal media, dsphere = 10mm, f = 15 GHz 	  II5

6.5	 Polypropylene media (dashed line) compared to polypropylene /metal
hybrid, dsphere = 10mm, f = 5GHz 	  I15

6.6	 Ceramic media (dashed line) compared to ceramic/metal hybrid, dsphere =
lOmm, f = 5GHz 	  116

6.7a Multilayer transmission with respect to azimuthal angle, polypropylene
and metal fcc crystal, d = 10, f = 5 GHz 	  120

6.7b Transmission variation as a function of crystal layers, for selected
azimuthal angles. Sample is polypropylene-metal, d = 10 mm,
f = 5 GHz 	  120

xix



LIST OF FIGURES
(Continued)

Figure	 Page

6.8a	 Multilayer plot of transmission with respect to azimuthal angle,
polypropylene and metal fcc crystal, d = 10 mm, f = 10 GHz 	  121

6.8b	 Transmission variation as a function of crystal layers, for selected
azimuthal angles. Sample is polypropylene-metal, d = 10 mm,
f = 10 GHz 	  121

6.9a	 Multilayer plot of transmission with respect to azimuthal angle,
polypropylene and metal fcc crystal, d = 10 mm, f = 15 GHz 	  I22

6.9b Transmission variation as a function of crystal layers, for selected
azimuthal angles. Sample is polypropylene-metal, d = 10 mm,
f = 15 GHz 	  122

6.10 Comparison of 15 GHz, 4-layer results for pure dielectric (polypropylene,
dotted line) and hybrid crystal 	  123

7.1	 Photograph of the polypropylene crystal with void introduced. Numbers
represent sectors of the crystal face used in measurement. Beam
propagation is out of the page. The transmitting antenna is on crystal
lower face, opposite sector 5 	  130

7.2a Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = I0 mm,
f = 5 GHz 	  130

7.2b Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = 10 mm,
f = 10 GHz 	  13I

7.2c Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = 10 mm,
f = 15 GHz 	  131

7.3	 Repositioning of the void off-center in the photonic crystal. Spherical
media fill is omitted for clarity 	  133

7.4	 Propagation at 10 GHz measured in position 1, polypropylene crystal with
void at position 3 	  134

xx



LIST OF FIGURES
(Continued)

Figure	 Page

7.5	 Introduction of a 90° void into the 10-layer crystal (spherical media
omitted for clarity). A, B, C and D positions are on the side faces (center)
of the crystal. Positions 1-9 are on the upper crystal face. Receiving
antenna polarization with respect to the A, B, C and D is noted 	  I36

7.6	 Power throughput at side crystal faces A, D and C at noted polarization.
The void output is at position A 	  137

A.1	 Body-centered cubic simulation realized in HPHFSS. A crossesction of
the electric field magnitude is depicted within the structure at a range of
approximately 11 mm from the incident face of the crystal 	  150

A.2	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media 	  151

A.3	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media 	  151

A.4	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media 	  152

A.5	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media 	  152

A.6	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media 	  153

A.7	 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = I.5, 6-layer media 	  153

xxi



CHAPTER 1

INTRODUCTION

1.1 Discussion of the Technical Problem

An enormous proliferation of optical devices has occurred in recent years. Optical

devices are now ubiquitous in telecommunication applications. This trend continues into

other applications. A major field for the application of optical devices is in integrated

optics, the combination of optical and electronic devices, ideally, on one integrated

circuit. Major advantages result from this technology, stemming from the large

bandwidth of optical waveguides, the lack of inductive effects to disperse signals, and the

lack of radiated interference to distort signals. While waveguide applications concentrate

on passage of data, there are many other applications for optical devices. For example,

another major application is the conversion of optical signals to electrical signals, giving

rise to light emission and detection applications.

In the past, optical and electrical devices were made of discrete components. A

trend toward integration of optical and electrical devices has occurred in the past ten

years. Many specific applications resulted from this trend, for example the now

ubiquitous charge-coupled devices used for image acquisition as well as solid-state lasers

and detectors used in data storage. Yet, the field of integrated optics, that is, the

engineering of optical and electrical devices as a single component, is in its infancy. The

key toward development of integrated optics is the understanding of the interaction of

radiation with matter. Thus, a major emphasis of this investigation is the propagation and

diffraction properties of a relatively new class of materials, the photonic crystal.

1
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In particular, the close-packed face centered cubic (fcc) crystal remains a

relatively unexplored area for exploitation as an optical device. Until quite recently, the

ability to tailor the fabrication of fcc crystals was limited. However, it is now possible to

construct fcc crystals that are custom tailored'. Consequently, it is possible to fabricate

fcc crystals for use as optical devices and possibly construct effective photonic crystals

through a self-assembly process.

Several advantages are apparent from utilization of fcc photonic crystals. In

addition to the increasing ease of assembly, large diffraction effects are possible.

Consequently, small devices or very thin optical elements are envisioned. Elements with

sizes of a few wavelengths of light lend themselves to integration with increasingly

smaller solid-state devices. Nano-sized (on the scale of 10 -9 m) structures for the

manipulation of radiation are possible. Ultimately one can imagine applications in lasers,

spectroscopy, imaging, wavelength multiplexing and in optical masks for solid-state

fabrication.

In the realization of close-packed fcc-structure photonic crystals, parameters

available for design are limited. In terms of geometry, the designer is limited to d, the

feature size, which in turn limits A, the period of the structure. Another aspect of the

design geometry is the orientation of the crystal with respect to the radiation propagation

direction in the crystal. This aspect has been explored to a large degree by the

development of models to predict the photonic band gaps in materials. With the variation

of crystal orientation the packing density is not affected, unless the media can be

distributed in a filler or matrix of some other material, which also affects A.

Consequently, attention is focused upon the close-packed fcc structure. Although
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it may be relatively simple to fabricate, this structure poses significant challenges in

characterization as a photonic crystal, or even as an optical component, for that matter.

Analytical methods have not been developed to account for wave propagation within the

crystal. Due to the close packing, electromagnetic simulations fail in providing precise

information on the amplitude and phase of the propagating wave. Despite this,

simulations were found to be useful in providing general guidance for the conduct of

experiments. In addition, the maximum advantage of modern fabrication technology is

realized if the elements of the fcc crystal are at the same size or even smaller than the

wavelength of the light to be controlled. This also complicates the problem, since

simulations do not handle computations in this regime well.

Electromagnetic simulations and numerical methods are not useful without

qualification. In the study of past work in the area of photonic crystals, particularly for

those operating as optical components, one can find that there remain many unexplored

topics. Further, much of the work performed was limited to their stop band properties or

was limited to one or two-dimensional crystals. Here, the study is extended to three

dimensional crystal structures.

Consequently, this study relies upon the experimental characterization of the fcc

crystals where individual crystal element size is on the order of the wavelength of the

propagating beam. This characterization is a first step in the development a general

theory for propagation in three-dimensional photonic crystals as of well as the ultimate

realization of useful devices.
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1.2 Literature Review

1.2.1 Diffraction and Gratings

Diffraction arises when electromagnetic waves interact with an obstruction. It has been

said that "...an exact solution for a particular diffracting configuration is amongst the

most troublesome to be dealt with in optics..." 2 . Despite this formidable statement, it is

easy to describe the observable effects of diffraction. A brief review is presented for the

reader, however, more detailed references are available 2 . In general, there are two types

of diffraction, Fraunhofer and Fresnel diffraction. Consider a situation as illustrated in

Figure 1.1 Illustration of Fraunhofer diffraction.

Figure 1.I. An opaque screen with an aperture is illuminated by plane waves from a

distant radiant point at distance, d. The lens in the figure is there to collimate the beam

on the left of the aperture. At the outset, imagine that the viewing screen is very close to

the aperture at distance, r. The arrangement projects an image of the aperture upon the

viewing screen at right. Close examination would reveal some fringes of light and dark

regions about the periphery of the image of the aperture. When the light source is
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monochromatic, fringes appear as a result of diffraction by the aperture. For reasons of

analytical simplification, one may distinguish between the diffraction pattern in the near-

field (close to the aperture) and in the far-field (away from the aperture). The fringes at

the periphery of the image of the aperture are an example of Fresnel, or near field,

diffraction. Fresnel diffraction is rather complicated and is only solved for simple

systems by using graphical means or through tabulated values of the Fresnel integrals. If

the screen is moved so that the range, r, becomes very large, a pattern of light and dark

regions would remain without the image of the aperture. At this point, moving the screen

further away increases the size of the pattern, but would not change the pattern itself. In

this case, the screen is exhibiting Fraunhofer, or far field diffraction.

1.2.2 Fraunhofer Diffraction

If the aperture is a single slit of width b and height D, as illustrated in Figure I.2,

the instantaneous electric field intensity from Fraunhofer diffraction is described by

writing:

where: EL is the electric field per unit length at the aperture (source strength), D and R

are as defined in Figure 1.2, ω = 2πf (angular frequency), β  = (kb/2) sinθ, where k ≡ 2π/λ,.

However, performing actual measurements the irradiance is used, defined as the time

average of the square of the electric field, 40) = cc o<E2>, expressed in units of watts per

square meter2 . Thus, it is possible to write:



This expression can be written more compactly as 40) = I(0)sinc2β.

6

Figure 1.2 Single slit geometry.

If a periodic multiplicity of slits is visualized, at distance, a, between each other,

the irradiance pattern 2 can be written:

Note that I0 is the irradiance at a single slit and a = 0, ±7E, ±27C, .... The location of the

principal maxima can also be written as:
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where: a is the distance between slits, m = 0, ±1, ±2, .... There will also be subsidiary

maxima at locations where sin(Nct) has greatest value. To visualize this, a diffraction

pattern and associated geometry is illustrated in Figure 1.3. The vertical axis of the lower

graph is the intensity while the horizontal axis is the interval, in units of sine, from the

center of the diffraction pattern. The pattern is projected onto a screen and the intensity

Figure 1.3 Diffraction pattern arising from six slits (N = 6) , spaced at four times the slit
width (a = 4b) and the resulting projected pattern.

maxima are periodic along z. Note the decreasing intensity of each principal maxima

and the subsidiary maxima in between. Fraunhofer diffraction is observed for other

aperture geometries, notably the circular aperture which is the well-known Airy disk.

In this basic description of the Fraunhofer (far field) diffraction, it is noted that

there are several approximations (e.g. Fraunhofer approximation) are used in developing
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these expressions as well as several assumptions. In the system described by Figure I.2 it

is assumed that b >> 2k, and R >> d. Once out of this regime, the Fraunhofer description

of diffraction ceases to be valid.

Multiple slit diffraction describes a commonly used optical device, the diffraction

grating. This description (Figure 1.3) assumes a transmission grating since the situation

lends itself to develop some intuition of the three-dimensional photonic crystal. It is

noted that three-dimensional gratings are possible. A three-dimensional diffraction

system is manifest in the transmission of x-rays through a crystal resulting in the well-

known Laue pattern. Fundamentally, sites of constructive interference result on the Laue

pattern where the atomic planes of the crystal obey the Bragg Law, 2a sinθ = mλ, where a

in this case is the interplanar spacing of the atomic planes. Note that the scale is

preserved, that is, the planar spacing is much larger than the wavelength and the ranges

are much larger than the crystal size preserving the validity of the Fraunhofer diffraction

theory.

1.2.3 Gratings and Filters

Using gratings as filters in optical and microwave applications was proposed some time

ago 3
. Using gratings in a waveguide or optical path it is possible to realize high and low

pass filters. A series of gratings were found to promote spectral filtering (Ulrich)3 . Since

then, many studies have concentrated on the experimental and theoretical development of

this application. As a natural progression, this work led into investigation of arrays of

apertures (grids) in opaque screens. Recent work codifies these grids into two categories:

inductive and capacitive grids.
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Inductive grids 4 are usually realized by the perforation of a metallic opaque

screen. Consequently, one can envision the reduced size of the metallic areas between

the apertures as inductive elements. (Electromagnetic surface waves, also known as

surface plasmons, are discussed in more detail later.) The modification of the surface

wave is thought to couple to the wave transmitted through the grating, changing the

properties of the transmission. Wood's anomaly (a discontinuity in the reflected

diffraction efficiency of a grating with respect to the incident angle) is a well-known

consequence of this phenomena routinely observed in gratings.

Capacitive grids5 are realized by inversion, that is, by separating the conducting

elements. Thus, surface waves are modified by the capacitive elements and couple to the

transmitted wave in a fashion analogous to the inductive grid.

Intense study of these grids continues to this day and researchers have made

analogies between the behavior of these grids and two-dimensional photonic crystals 6 .

Recent grating work concentrates on subwavelength features in the gratings.

1.2.4 Subwavelength Features and Gratings

It has been recognized very recently that gratings with subwavelength features can

modify a beam transmitted through them. In fact, recent observations of this phenomena

have yielded surprising results. In 1998, Ebbesen, observes unusual transmission

characteristics 7 through a hexagonal array of subwavelength circular apertures. In

exploring the effects of the aperture depth, he notes that the coupling mechanisms

through the array are not well understood. Later work by Bomzon demonstrates the use

of subwavelength features in transmission dielectric gratings to modify beam

polarization8 . The basis for these effects are attributed by Bomzon to optical singularities
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appearing at points where the phase or amplitude either are undefined or have abrupt

changes. Despite this recent work, grating effects that are of interest in this study were

first explored quite some time ago.

1.2.5 Self-Imaging: Talbot and Rayleigh

Self-imaging occurs when a beam is transmitted through periodic media. At regular

intervals of range along the axis of the transmitted rays, images resembling the periodic

media can be observed. Earliest observation of the self-imaging effect due to

transmission through a periodic media was made by Talbot 9 in the early 19th century. In

his series of experiments, Talbot used a darkened room and the most intense light

available to him, solar light, The light was reduced to a relatively small point and

directed through a mirror to the periodic media, In fact, Talbot described five

experiments performed on light transmission through periodic media, the results of which

are important and bear discussion in turn.

The first experiment transmitted the solar light through a vertically oriented

Fraunhofer grating as illustrated in Figure 1.4. With the grating placed at a range d = 20

Figure 1.4 Illustration of Talbot's first experiment.
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feet and the grating to screen range, r, varied from zero to a few feet, Talbot observed a

series of red and green lines parallel to the lines on the grating projected upon the screen.

At the range increased, the color of the lines shifted to yellow and blue and thence

repeated the pattern out to a range of two feet.

Talbot's second experiment imposed a second grating perpendicular to the first as

illustrated in Figure 1.5, A two-dimensional version of the alternating red/green and

blue/yellow effects was observed. Talbot describes these as a fabric woven with red and

green threads.

Figure 1.5 Illustration of Talbot's second experiment. A second grating is imposed in
the beam perpendicular to the first.

In Talbot's third experiment, an opaque copper plate is substituted in place of the

single grating. This plate had several holes of regular periodic spacing and equal

diameter drilled into it. As the range, r, varied, the rows of circles were observed with

lines separating them. At a particular range of r, close to the plate an image was observed

where a spot appeared in each of the circles on the plate, which Talbot attributes to

interference, as it was known in his time. In the fourth and fifth experiments, the plate
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and lens incident angle was varied with respect to the beam. Talbot notes that various

patterns were observed similar to the fabric woven of various colors and that the patterns

remain distinct as if in the focus of the lens despite its distance from the lens.

Rayleigh presents the first analysis of the Talbot experiments 10. The first

observations made by Raleigh is that the variation of color as a function of the range, r,

denotes that the effect is dependent upon wavelength of the incident light. Consequently,

Rayleigh then reproduced Talbot's experiment with monochromatic light. Tabulating his

results, (Table 1.1) he documented the positions of best and worst definition for each

instance of monochromatic light used.

Rayleigh also notes that the successive image reproduced along the distance

(range) from the grating is, in fact, a photographic negative. He first proposes the

proportionality of the self-imaging distance (the periodic range between images), to d 2/λ,

where d is the period of the grating. This was determined by Rayleigh experimentally as

well as analytically.

Table 1.1 Results of Rayleigh's Self-Imaging Experiment

Red light, X= 0.664 µm* Green light, λ= 0.576 µm*
Best Worst Best Worst
I% 35/8 11/4 3%

5 3/4, 6% 7 1/2 6 1/4 8 5/8
I0 1/4 I2 1/2 II 14 1/4

15 1/8 17 16 1/2 19 %
I9 3/4 21 7/8 22 I/8 25 1/4
24 3/4 27 27 3/4 3I1/2
29 1/4 32 1/8 33 1/4 37
341/2 37 1/2 - -

Dimension in inches.
* Wavelength experimentally determined by Rayleigh.

Ultimately Rayleigh arrives at the following expression for the self-imaging distance:
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where d is the period of the grating. Since, in this case, λ 2<< d2 so that z = 2d2/λ, which

matched Rayleigh's experimental observations. This expression is recognized as the

classical self-imaging distance", where z denotes the linear distance from the periodic

media where an image forms, also called a Talbot plane. Rayleigh pointed out that there

may be subordinate periods that are omitted due to the approximations used and more

importantly, that this approximation does not rigorously apply to the principal periods

themselves, as one might expect from the omission of higher-order effects.

1.2.6 Recent Work in Self-Imaging

Subordinate image planes were revisited by researchers much later. These subordinate

images were observed out of the Talbot self-imaging planes. Cowley and Moodie, in their

extensive study of Fourier images 12 , arrived at the existence of a suborder n, for the

image occurring at z = 2d2/nλ, where n is an integer. In their development, they

considered periodicities of objects comprised of unit cells using squares or rectangles.

Early computational work conducted by Rogers hinted at yet other subordinate Talbot

planes 13 ' 14 at non-integral values of n, and further suggested that n = 2/p, where p is an

integer, resulting in z = d2/pλ. Further developments using Fresnel optics principles were

conducted by Winthrop and Worthington 15 ultimately suggesting the form of

z = v(2d2/λ)+β(2d2/λ), where v is an integer (including zero) and f3 = N/n, where

n = 2N/p, where N and p are integers.
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A recent development in the theory of self-imaging is the formal identification of

constructive interference planes to explain all Talbot planes. In the wave-optics

treatment by Latimer and Crouse, diffraction modes were correlated by phase difference

and examined at the Talbot planes". Modes of the same order produce a stronger self-

image while higher order modes produce weaker images. For the sake of completeness,

this theory is presented here. The relation given by Latimer and Crouse" for the self-

imaging distance is:

where the variables are determined using a multiple slit grating model as illustrated in

Figure 1.6. R 1 is the distance from the light source to the grating and R2 is the distance

from the grating to the Talbot plane. T = a2/λ, where a is the distance between each slit,

and n = j 2/q, where j is an integral multiple of a, found from d, the distance from the

center of the grating to the individual slit position, e.g., j = d/a, and q is the diffraction

order from Bragg's law. For example, the upper slit in Figure 1.6 would have j = 1, since

it is at a distance of d = ja from the center. The diffraction order is given, in general by

the expression:

where d is the distance between slits, d = ja, cp = incident angle, from normal to the

grating, 0 = transmitted angle from normal to the grating and m is an integer to express

diffraction order. The parameter q is set equal to m in this equation. Notice the possible

values of j increases as the extent of the grating increases. These definitions of j and q

tend to limit the possible values of n in the expression for the self-imaging distance so

there are not an infinite number of possible Talbot planes. Although this is cited as a
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Figure 1.6 Latimer-Crouse Diffraction Model.

general solution to the self-imaging distance, it is a solution based on diffraction concepts

and again reaches it's limit where the value of a, as illustrated, approaches the value of λ.

Despite this, it remains useful as an explanation for some phenomena.

1.2.7 Applications of Self-Imaging

Self-imaging has found applications in several optical devices. One particular use is

application of the self-imaging phenomena in optical waveguides. In it's most basic

form, nearly all multimode optical fibers are rudimentary self-imaging devices. Simplest

fibers are comprised of a core and cladding, where the index of refraction of the core is

greater than that of the cladding. Beyond some angle, light incident on this boundary

undergoes total internal reflection and is thus confined to propagation within the fiber

core. In this sense, the fiber is self-focusing, yet all of the image information is not



16

necessarily preserved. Note the distinction that Talbot self-imaging is observed in free

space and that a guiding media is not a necessary condition self-imaging, however. Other

more sophisticated schemes employ graded-index or step-index fiber. Graded-index

fibers operate by providing a gradient of the index of refraction as a function of fiber

radius, thus causing internal reflection within the fiber. Similarly, step-index fibers

provide a sharp contrast of refractive index. The gradient or contrast of the index of

refraction is transverse to the propagation direction. An advantage of multiple index

layers is that total internal reflection occurs in a greater range of angles, resulting in less

light leaving the fiber core. The graded index provides yet another improvement upon

this since its transmission properties generally ensure better preservation of the signal

form.

Since the Talbot effect depends on the interaction of propagating modes, it is

useful to point out that a variety of periodic, multi-mode interference (MMI) devices have

received much attention for optical and microwave applications, recently 16,17. An

example (in one dimension) is the family of transverse Bragg waveguides 18 . The

transverse Bragg waveguides achieve mode shaping and self-imaging through the

diffraction of higher-order modes from the transverse Bragg planes 19 . The propagating

modes interfere in the direction of the beam propagation along the diffracting planes.

The diffraction pattern is periodic along the direction of propagation.

1.3 Propagation in Periodic Media

A characteristic of periodic media is translational symmetry. The permittivity of a

periodic media can be expressed as:
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where a is a lattice vector and x is a distance in the crystal across the periodic features. In

more than one dimension, x and a are vectors, c is the dielectric permittivity tensor. In

three-dimensional media, the primitive lattice vectors of the crystal determines the

translational invariance of the crystal. Maxwell's equations can be written in the in the

general case as:

Upon substitution of (x + a) for x in Maxwell's equations, the equations remain

unchanged and the normal modes of the medium can be written as:

This concept is known as the Bloch or Floquet theorem 20 , where K is known as the Bloch

wave vector. Consequently, a dispersion relation exists between the frequency co, and K:
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Without further elaboration, one can see that the frequency is dependent upon the value

of K, a vector. This implies that the direction of the Bloch wave vector affects the

propagating mode frequency.

Regions in the frequency domain where K becomes complex can exist and the

resulting Bloch wave is evanescent. Consequently, like the example of total internal

reflection, the wave will be completely reflected and will not propagate in the media.

There are only certain spectral bands where propagation can occur for a particular

frequency. A simple example is a Bragg reflector, where the reflectivity is dependent

upon the angle of incidence. Interpreting this by Bloch theorem, at the incident angles

where the reflection is high in the Bragg reflector, the Bloch wavevector is complex,

prohibiting propagating modes. (An example of the solution of the Bloch theorem applied

to propagating modes in the one-dimensional Bragg mirror case can be found in Optical

Waves in Crystals by Yariv20 .)

Calculation of this dispersion relation for periodic media is not trivial, especially

for three-dimensional crystal systems and is the topic of much research in photonic

crystals. So far, numerical methods can calculate band diagrams for some three-

dimensional crystal systems, but the Bloch formalism does not necessarily apply in the

finite crystal cases that will be experimentally studied.

It is possible to qualitatively describe the performance of a simple periodic

structure that will provide some insight into the physics of the photonic crystals studied.

In Figure I.7, a waveguide is illustrated of a dielectric guiding region and a region of

alternating dielectric contrast that comprises the well-known transverse Bragg reflector.
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The Bragg reflector is an example of one-dimensional periodic media. When the

Bragg condition, mλ , = 2Λ cosθ  (where Λ  is the period and 0 is the incident angle) is

fulfilled for non-normal incidence to the Bragg reflector region, constructive interference

in reflection occurs. Ultimately, the Bragg condition is an integral number of

wavelengths between reflected rays from successive dielectric (or lattice, in a three-

dimensional crystal) planes.

Figure 1.7 Asymmetrical transverse Bragg reflection waveguide.

When light is coupled into the waveguide, the guiding (slab) region has particular

propagating constants permitting modes of propagation. Light leaving the guiding region

and entering the Bragg reflector region is going either to fall within the band gap (of the

Bragg reflector) and be entirely reflected back into the guiding region, or escape through

the Bragg reflector. By engineering the period of the Bragg reflector dimensions of the

waveguide and the dielectric contrast, mode shaping and self-imaging can be achieved 19 .
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A simple example is illustrated in Figure 1.8. In the example, a low-order even

mode is illustrated. Assuming the central guiding region will support multimode

propagation, one can easily imagine the superposition of several modes and the

consequent effect on self-imaging location and intensity. By extension of this basic

concept to three dimensions, it is expected that similar effects can be achieved. Adding

periodicity in the direction of propagation transforms the problem from a multimode

interference (MMI) device like the transverse Bragg waveguide to a new class of

materials termed photonic crystals.

Figure 1.8 Beam propagation in the transverse Bragg waveguide. A particular mode (in
this example a low-order even mode) will be confined to the guiding region by total internal
reflection and attenuation of the x-components in the Bragg reflector regions.

1.4 Literature Review of Photonic Crystal

1.4.1 Introduction

Photonic crystals were recently proposed as a method to control light propagation 21 .

These crystals are regular, repeating arrays of contrasting dielectric materials. Many
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photonic crystal realizations are possible but, in general, one can categorize them in terms

of the dimensions in which periodicity is exhibited. For example, in Figure 1.9, a one-

dimensional photonic crystal has a periodic dielectric contrast relative to one axis only as

in the Bragg reflector. Even with the relatively simple one-dimensional crystal all of the

effects of a photonic crystal can be explored, as the all of the essential properties of the

crystal are manifest. This distinction brings up a fine point in the definition of photonic

crystal. In order for the crystal to exhibit a photonic bandgap, the media must have a

periodic contrast in the direction of propagation.

Figure 1.9 Representative photonic crystals illustrating periodicity and dielectric
contrast.

In Figure 1.9, the one-dimensional crystal must have radiation propagating

through it in a direction normal to the contrasting dielectric planes for any of the photonic

crystal effects to appear. Thus, the transverse Bragg waveguides do not fall within the

definition of a photonic crystal device, at least not for impinging plane waves. On the

other hand, devices utilizing multilayered dielectric films are familiar, such as the

quarter-wave stack (Bragg reflector) commonly utilized for frequency-selective, high-

quality reflection. Once the transition is made from transverse one-dimensional crystal
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architecture to a two or three-dimensional architecture, the photonic crystal effect

becomes the major contributor to the propagation qualities of the crystal. The exact

nature of these qualities are not fully known. Several properties have been predicted or

identified by researchers in photonic crystal. These effects include the existence of a

photonic bandgap, photon localization and superprism, or ultrarefractive effects.

1.4.2 Photonic Bandgap

A major goal of photonic crystal research to date has been the identification and

characterization of a crystal structure with a complete photonic band gap, that is, a crystal

that prevents wave propagation in all directions through the crystal. A complete

photonic bandgap is useful, since the familiar quarter wave stack is limited to near-

normal reflection — a three-dimensional photonic crystal would be highly reflective at any

incident angle.

Without computing a bandgap, it is possible to deduce the nature of the effect of

the crystal on a radiation field by recalling c=λ 0f and defining the wavenumber, k= 2π/λ0.

It then follows that the angular frequency is given by: co=ck, an equation known as the

dispersion relation of the radiation field in free space. The density of states 22 of the

propagating fields is proportional to an arbitrary volume, V, of free space and the

frequency, co, of the field:

In a dielectric media of refractive index, n, the properties of the radiation field are

modified. The propagation speed of the radiation field in the media, becomes the phase

velocity, up = c/n, and the effective wavelength in the media becomes λn = λ0/n.



23

Consequently, the value of co is replaced by cop and c is replaced by u p in the density of

states equation and D(ω) changes. Another technique to change D(o) is to place

contrasting dielectrics in a periodic arrangement.

Placement of the periodic dielectric contrast in the direction of propagation results

in a photonic crystal, by definition. In some realizations, the crystal can be engineered to

have a zero density of states at particular frequencies, which prevents propagation of the

radiation field. In this region, there is no solution for the eigenvalue equations governing

the wave propagation through the media. This region of zero density of states is termed a

photonic bandgap. A complete photonic bandgap results when there is a photonic

bandgap at a particular frequency for all axes of the crystal. An example of a photonic

bandgap diagram illustrating a complete photonic bandgap is in Figure 1.10.

Initial discussion of the existence of the photonic bandgap was in the context of

the construction of electrooptical devices, notably lasers, solar cells and transistors. From

the initial identification of the concept23 by Yablonovich in I987, attention was turned

toward utilizing the fcc structure in photonic crystal applications. A primary reason for

this was the extensive study of electron bandgaps in semiconductors. Even at this early

juncture of photonic crystal exploration, the analogous behavior of electron waves in

semiconductors to electromagnetic waves was evident. The fcc case was intensively

studied due to it's electronic bandgap properties and was well-known, thus making it a

logical candidate for a photonic crystal realization. Yet, at the outset, some important

differences were identified21 . These differences have roots in the nature of

approximations used in the band theory of solid-state materials. The primary differences

identified by Yablonovitch were:
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I) Dispersion relations for electrons are parabolic, while for photons the dispersion

relations are linear.

2) The vector wave mathematics play a major role in the photonic bandgap theory.

Contrast this to scalar wave approximations used for electronics. Ultimately the

difference in electron spin and photon spin is the reason for this difference.

3) Electron band theory is approximate due to the neglect of electronic repulsion.

Absence of photon interaction makes the photonic bandgap theory more exact.

After making these significant points concerning the nature of the photonic

bandgap, a trial and error approach was taken to identify the photonic bandgap in fcc

material using microwave techniques. The primary result of this effort was the

identification of a photonic bandgap in a material of high relative permittivity with a

Figure 1.10 Example of a photonic bandgap, in this case, the complete photonic
bandgap identified by Yablonovitch. Essentially, δω(k)/δk (dispersion function) is
plotted as a function of crystalline direction. The vertical axis is in terms of normalized
frequency, ωa/2πc. The horizontal axis relates the planes on the Brillouin zone of the
crystal. The cross-hatched region is where k are prohibited. Thus, in this example, the k
vectors are frustrated for all directions through the crystal since the gap extends across
the irreducible Brillouin zone of the crystal.
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close-packed fcc arrangement of spherical "air atoms." (The technique of using a high

permittivity material as the majority bulk volume is sometimes termed "contrast

inversion.") Similar experiments with photonic "atoms" of high relative permittivity fcc

spheres in close-packed arrangements did not yield a bandgap 21 . This concept of using

"air atoms" was further developed into optical-scale fcc structures with non-spherical

features with improved complete photonic bandgaps, 24 but only with higher-contrast

crystals. Typically, the contrast had to be in excess of 3:1 for the existence of significant

bandgaps. Despite the emphasis on identification of a complete photonic bandgap, other

properties of the photonic crystal are proving worthy of interest.

1.4.3 Photon Localization

John, citing the work of Yablonovitch, predicted that the bandgap in photonic crystals

would lead to the experimental observation of photon localization 25 . A feature of this

premise was the existence of some level of disorder in the lattice. Since the initial work

by John, defect modes have been demonstrated by simulation 26 and experimentally22 .

Essentially, a defect mode is caused by the introduction of a controlled disorder in the

periodic lattice. This controlled disorder changes the local periodicity and consequently

the local photon density of states in the crystal. The presence of the bandgap is essential

for photon localization. If the disorder is placed such that it allows an eigenmode

solution for an electromagnetic wave in the bandgap of the crystal, localization of the

wave in the crystal occurs. An example of the possibilities of such localization are

predicted by Mekis in 1996, where nearly lossless transmission of radiation around low-

radius bends is postulated by application of numerical methods. A further suggestion of

this work is that unique modes may exist at the defect discontinuity such that a bound
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localization may occur, in effect a trapping of the radiation. This "self-trapping" is also

demonstrated27 .

1.4.4 Ultrarefraction

Quite recently, some other aspects of the effects of photonic crystals have come under

scrutiny. Ultrarefraction, also termed "superprism," is an interesting effect that implies a

radically changed refractive index beyond what one would expect based on estimating the

bulk of the media by volume fraction. Lin reports a highly dispersive prism28 operating

in a frequency regime near the photonic bandgap. Larger than expected dispersion was

measured when compared with classical expectations. According to this work, the

effective index of refraction nest-, increases in nonlinear fashion as the frequency

approaches the photonic bandgap. Initial reports of "superprism" phenomena 29 were

published in 1998. In this work, Kosaka reports "extraordinary angle-sensitive light

propagation," where a change of a beam incident angle of 7° resulted in a 70° change in

the output direction. Further, the paths showed bending contrary to the direction

expected by application of Snell's Law, implying a negative index of refraction.

Modification of the group velocity is the proposed mechanism for this effect, as

opposed to Lin's expectation of nonlinear neff. Further investigation into this effect by

Enoch, et. al., reveals some theoretical basis 30 for these effects since the permittivity at

the bandgap edges can approach zero and become a purely imaginary number inside the

gap. One would expect that the refractive index inside the bandgap is a negative real

number, but since the media is lossless, it must become imaginary. Enoch demonstrates

the theory in numerical simulations conducted on two-dimensional photonic crystal.

Several physical effects on the beam should be evident from the numerical predictions.
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One predicted effect is a transmission analogy to the Goos-Hanschen effect2 , a larger than

expected translation of the output beam from a crystal, compared to the location of the

input beam. Another prediction from this work is an extreme beam widening or a

splitting into separate emergent beams.

Following the initial reports of wide angular shift and numerical prediction of

ultrarefractive effects, a self-collimation effect was also reported 31 by Kosaka. This work

details beam dispersion within the photonic crystal as a function of the incident angle of

the input beam. Under certain combinations of crystal direction and incident angle, a low

loss collimating waveguide effect is observed through the crystal. The theoretical

rationale for this effect is the incident wavevectors impinging on the dispersion surface of

the photonic crystal. Kosaka contends that since the propagation of light in photonic

Figure 1.11 Illustration of relationship of incident wavevectors, dispersion surface and
propagation directions (energy flow), with analogous conventional optical case, after
Kosaka 13 . Propagation occurs normal to the dispersion surface.
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crystal is governed by dispersion surfaces, or by the photonic bandgap (this corresponds

to the index ellipsoid in conventional crystal optics) there is a region of the dispersion

surface that will support self-collimation. Propagation direction is normal to the

dispersion surface, under the circumstance that the group velocity and the energy velocity

are the same when integrated over a crystal unit cell31. Kosaka depicts the possible

situations as being analogous to optical components, reproduced here in Figure 1.11.

Although the self-collimation case is illustrated by situation B in the figure, note case C,

in which a beam incident with the dispersion surface acts as an analogue to a convex lens.

Kosaka demonstrated that the transition between lensing and collimation was closely

dependent upon frequency of the radiation and its incident angle upon the crystal.

1.4.5 Variation of Azimuthal Angle

Despite the investigation of the effect of incident angle variation on the beam

propagation, azimuthal angle variation remained somewhat unexplored. As will be

demonstrated, simulations in use for the prediction of photonic bandgaps do not predict

development of bandgaps based on azimuthal orientation. Yet, recent work 32

demonstrates that different azimuthal orientation of finite photonic crystal (that is,

crystals with dimensions on the order of a few wavelengths) does impact the beam

transmission. This experimental work is amplified by a recent study based on numerical

methods that predicts that ultrarefraction, or superprism, effects may occur with a

dependency on the azimuthal angle of the fcc crystal 33 .

Consider that the theoretical or numerical developments usually consider either

infinite crystal, or more specifically a unit cell of an infinite crystal. It has been

demonstrated that methods developed based on Bloch modes, which find common
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application in simulation of photonic crystal, do not account for the physical realities of

finite crystal 34 . Crystal finiteness is more realistic for many applications, especially for

the realization of on-chip optical components where area is at a premium. The effect is

thought to come from variation of the transverse modal propagation characteristics with

respect to beam polarization. As the crystal is rotated about the propagation direction, the

propagation of the transverse component of the wavevector is alternatively prohibited or

permitted which affects the overall transmission.



CHAPTER 2

ELECTROMAGNETIC SIMULATIONS

To assist in the prediction of experimental behavior and to help design better

experiments, electromagnetic simulation techniques were used. Simulations help in

mapping the electric field for any "slice" of the structure, whereas the experiments

possess a limited spatial resolution for obvious physical reasons.

Another reason for the use of simulation in this work is to answer the question of

qualification, that is, how well the simulation matches the experiments. Simulations are

critical design tools for complex systems such as photonic crystals. If it is possible to

demonstrate the suitability of an existing simulation, then a powerful design tool for

future research or for realization of device applications is acquired. Especially, in light of

the fact that at this writing, general laws for photon crystalline optics have not been

formulated.

2.1 Hewlett Packard High Frequency Structure Simulator

In this effort, a commercial simulation package was used, the Hewlett Packard High

Frequency Structure Simulator (HPHFSS). The advantage of this approach is that the

package has been well tested and verified as an accurate tool for many electromagnetic

problems. HPHFSS lends itself to the construction of complicated structures via a

computer-assisted drawing (CAD) interface, making it ideal for the realization of fcc

crystal. Another significant advantage to this model, unlike many photonic crystal

simulations, is that it uses the entire structure rather than a unit cell of the crystal.

30



31

HPHFSS employs the finite element method to solve the wave equation in three

dimensions, with the ability to map the resultant fields. In general, the finite element

method divides the full problem space into thousands of smaller regions and represents

the field in each sub-region (element) with a local function. In HPHFSS, the geometric

model is automatically divided into a large number of tetrahedra, where a single

tetrahedron is formed by four equilateral triangles. This collection of tetrahedra is

referred to as the finite element mesh. The value of a vector field quantity (such as the

H-field or the E-field) at points inside each tetrahedron is interpolated from the vertices

of the tetrahedron. At each vertex, HPHFSS stores the components of the field that are

tangential to the three edges of the tetrahedron. In addition, the component of the vector

field at the midpoint of selected edges that is tangential to a face and normal to the

edge can also be stored. The field inside each tetrahedron is interpolated from these nodal

values, thus a field can be calculated for the whole structure.

2.1.1 Inherent Limitations of the Finite Mesh Element

Although the HPHFSS poses several advantages, there are disadvantages as well. The

primary disadvantage results from the implementation of the finite mesh elements used.

Intuitively, it is apparent that as the interstitial spaces between contrasting dielectric

features become smaller, a large number of tetrahedra are required to resolve the

structure. This, in turn, leads to two problems. First is a problem of convergence and

accuracy. If the mesh is too small, the computation will take excessive time to converge,

or it will not converge at all. If the tetrahedra are too large, the result will be inaccurate.

Determining an ideal mesh size was largely a process of trial and error. The second

problem is computational -its of the hardware. If the mesh size is too small, the
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program memory or the software itself will reach its physical limit before convergence,

crashing the HPHFSS. Since the finite element method is iterative, the solution process

is memory intensive. In the implementation, the physical memory exceeded the program

limits making the software itself the limiting factor.

Despite this, it is easy to exceed the software limitations with these types of

structures. In close-packed fcc structures, the spheres are in contact — a very bad

situation for implementation of finite element mesh. The combination of curvature and

close-packing made the HPHFSS quickly exceed its limits. Luckily, the overall size of

the structures was generally not larger than a few wavelengths of the propagation

wavelength used, so physical size limitations were self-enforcing. Nevertheless, since the

HPHFSS remained a useful tool, some adjustments were necessary in order to control the

number of tetrahedra used in the finite element solver. Progressive implementation of the

controls proved helpful in reducing the size of the computational problem.

The first control was to use an approximate sphere. The spheres in the fcc media

were approximated by a multifaceted polyhedron. This reduced the number of tetrahedra

used in the HPHFSS by more clearly defining points of media contrast making the mesh

generation algorithm force larger tetrahedra. A second control implemented was

increased intersphere spacing thereby increasing the crystallographic period, A, of the

structure. This is, unfortunately, a critical parameter in photonic crystals, so there will be

some sacrifice in accuracy. To this end, the results are monitored as a function of

crystallographic period, A. The final control was to take a one-quarter slice of the

structure and impose appropriate periodic boundary conditions.
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Figure 2.1 A sample structure realized in HPHFS S.

At the conclusion of this process, structures similar to the one depicted in Figure

2,1 were realized. Further controls were explored, such as manual reduction of the

number of tetrahedra from the default numbers but, in general, this was not used due to

an expected decrease in accuracy. At each stage, power conservation laws are checked

with software and manually to verify accuracy. Despite these measures, it was not

unusual for the simulation to run for several hours before producing a result, limiting the

throughput of the simulation process.
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2.1.2 HPHFSS Structures

An explanation of the HPHFSS structures is in order to better understand the simulation.

Referring to Figure 2.1, the dielectric spheres are depicted in green. Once the sphere

dimensions are defined, they can be realized in any material desired. Only the relative

permittivity with respect to air is adjusted. In the figure, the spheres are arranged in an

expanded fcc structure with the crystallographic period of A = 1.5dsphere.

Boundary definition in the structure is critical due to the relatively small size,

compared to the wavelength. In Figure 2.1, the red box defines the structure space. For

the larger section of the structure, the outer surfaces bounded by the red lines are

absorptive (called radiation boundaries in HPHFSS nomenclature), in essence immersing

the dielectric media in an anechoic chamber. This necessity for accurate portrayal of the

transmission through the crystal was first identified by Yablonovitch 21 , thus it is

recognized that it is essential to eliminate reflections in the structure. Since the

simulation takes a one-quarter slice of the entire structure along the propagation

direction, the horizontal bottom surface is a perfect conductor and the vertical surface at

the front of the view is a perfect magnetic boundary (which forces the H-field to be

normal to it) to match the electric field polarization of the input radiation. Input electric

field was polarized vertically with respect to the structure. The source of radiation is a

waveguide, detailed by the short stub outlined in red at the "front" of the structure

(extreme right in the figure) that was bounded by perfect conductors. Having a short

waveguide input, rather than just a direct port into the structure, is a technique necessary

in HPHFSS to eliminate decaying modes that might interfere with field maps. (There is

also a software issue concerning matching of port sizes into the media.) Some simulation
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trials showed that these modes decay quite rapidly and thus almost any length of

waveguide suffices for the purpose. Generally, a length of 10 mm to 20 mm is used. A

map of the electric field magnitude can be taken for any cross-section of the structure.

An example of a typical cross-section is outlined in light blue in Figure 2.1,

2.2 Simulation Results

2.2.1 Observations of the Electric Field Magnitude in the Crystal

A primary use of simulation is to gain physical insight of the system behavior. Thus, the

three-dimensional fcc structure, within the limitations described, was the subject of a

series of simulations to determine the effect of frequency variation and contrast variation

on propagation through the crystal. An illustration is presented at Figure 2.2.

Figure 2.2 6-layer "expanded" fcc structure.
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Despite the limitations imposed by the HPHFSS computational method, the

simulation can yield useful insights. Figure 2.3 illustrates a typical result of the

HPHFSS, a series of cross-sectional plots of the electric field magnitude for particular

ranges within the crystal along the propagation direction. For easier visualization, the

electric field magnitude at the center of each cross-section can be plotted as a function of

propagation distance.

Figure 2.3 HFSS cross-sections depicting electric field magnitude in structure at 10 mm
intervals along the direction of propagation. (f = 5 GHz, dsphere = 10 mm, n = 1.5) Scale
is depicted to the right, however the cross-sections are not normalized to each other. Thus
each has it's own maximum on individual scales, although dark blue is always zero,

Overall, the simulations will show that Rayleigh's predictions for focusing within

a periodic media generally hold where X/A <1. However, a periodic focusing occurs

where λ/Λ > 1 and further, the periodic focusing occurs at intervals less than X. This

periodic focusing is similar to Talbot self-imaging.

Figures 2.4a-c depict the center E-field values as a function of range in the

structure at frequencies of 5, 10 and 15 GHz respectively. The initial peak at the zero

point is attributed to the launching source (waveguide) at the crystal surface (111).



Figure 2.4a HPHFSS result for transmittance as a function of range within the
crystal, f = 5 GHz, n = 1.5, dc„ here 10 mm, 6-laver media.

37

Figure 2.4b HPHFSS result for transmittance as a function of range within the
crystal, f = 10 GHz, n = 1.5, d sphere = 10 mm, 6-layer media.
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Figure 2.4c HPHFSS result for transmittance as a function of range within the
crystal, f = 15 GHz, n = 1.5, dsphere = 10 mm, 6-layer media.

Then the wave quickly loses energy to scattering finally reaching a steady state with

periodic variations.

These periodic variations are indicative of focusing and defocusing of the

propagating beam. To reinforce this point, the data is normalized and replotted in Figure

2.5a-c. In these plots a "spot size" is shown, defined here as the fractional portion of the

structure cross-section that showed a non-zero electric field. The distinction between

regions of zero field were very sharp in the simulation, making this comparison

convenient compared to a full-width at half maximum, or similar criteria. Notice that the

normalized "spot size" can be unity, which generally signifies a relatively uniform field

across the structure. Electric field magnitude is normalized by using the maximum value

in the respective frequency range (local max). Thus, an electric field maxima combined
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with a spot size minima at a particular range signifies an intensity peak. Finally, the data

is expressed in terms of intensity in Figure 2.6 for 5, I0 and 15 GHz. The 5 GHz plots

show a weak but clear periodicity at approximately a 40 mm range. At 10 GHz the

periodicity is approximately 30 mm, and it becomes 20 mm at 15 GHz. At 15 GHz, the

effect is markedly weaker. Although both the E-field data and spot size data suggest

periodic maxima, or images of the source radiation, but the E-field maxima and spot

minima are not always co-located with respect to the range in the media. This may

suggest differences in the depth of field of the image or may reflect that the cross-

sections chosen to examine the field magnitude may not be exactly on the E-field maxima

or spot size minima. In this regard, the accuracy of imaging distance in the simulation is

+/- 5 mm.

Two items that the simulation data thus far suggest are:

1) Simulation findings are contrary to the expectation that the self-imaging distance, Ls

∞ d2/λ. 	 An increase in the self-imaging distance is observed as the wavelength is

increased.

2) Subwavelength imaging occurs in the media. Given that at 5 GHz, λ, = 60 mm or λ,„

45 mm, (recall that the filling fraction of the simulated structure is low) the Ls < λ,„.

2.2.2 Variation of Refractive Index of the Spheres

In order to understand the scattering in photonic crystal the index of refraction of the

spheres was varied to assess the effect on the self-imaging distance, Ls. The expectation

from Rayleigh's development is Ls oc d 2/&. However, in adapting the relationship to the

crystalline structure (where there is a crystallographic period, A) this relationship must be
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Figure 2.5a Plot of normalized electric field and normalized spot size (dotted line), n
= 1.5, f = 5 GHz, dsphere = 10 mm.

Figure 2.5b Plot of normalized electric field and normalized spot size (dotted line), n =
I.5 f = 10 GHz, dsphere = 10 mm.



Figure 2.5c Plot of normalized electric field and normalized spot size (dotted line),
nsphere = I.5, f = 15 GHz, dsphere = 10 mm.
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Figure 2.6 Intensity plot (normalized E-field/spot size) for nsphere = I.5, at 5, I0 and
15 GHz, dsphere 10 mm.
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rewritten as Ls ∞ Λ2/λneff, where λneff = λ/neff. Here the effective index of refraction, neff,

which is based on the filling fraction (volumetric fraction) of the dielectric media must be

noted. Thus, it is expected the self-imaging distance to increase proportionally to nor.

Simulation results are plotted in Figures 2.7a-c. At 5 GHz, the increasing nsphere,

(consequently increasing neff) actually leads to a decrease in the self-imaging distance,

Ls, from approximately 40-50 mm to 30 mm. E-field peaks are also stronger at nsphere =

2.5 than nsphere = 1.5. For I0 GHz, the change is marked, but not as clear. A noticeable

shift in position of the E-field peak also occurs, however, the magnitude of the peaks are

much less at nsphere = 2.5 in comparison to nsphere = 1.5. Consequently, it is much more

difficult to judge the self-imaging distance. For 10 GHz, the self-imaging distance

appears to be the same, 30 mm or is possibly indeterminate. The self-imaging range for

15 GHz, nsphere = 2.5 is also not clear. It is possible that the self-imaging distance

becomes larger than the available range of the experiment. In Figure 2.6, note that the

weak E-field maxima at 20 mm intervals (which is cited as the self-imaging distance)

becomes a single large intensity maxima at 60 — 70 mm.

An observation worth noting at this juncture is that the 10 — 15 GHz range

represents a transition region where the radiation wavelength is becoming comparable to

the feature size. At nsphere = 1.5, 5 GHz, the wavelength (λ  = 60 mm or λn sphere = 40 mm

or λneff = 45.5 mm) is much larger than the feature size d = 10 mm or A ~ 8 mm. At 10

GHz, = 30 mm, λ n sphere = 25 mm and λneff = 23 mm using the nsphere = 1.5. (λn, sphere is a

less important parameter, since it is the wavelength within the bulk material which is

observed here.) As the index of refraction increases, the wavelength in media becomes

shorter.
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In the particular case of f = 10 GHz, note that the self-imaging distance, Ls, is

quite distinctive where nsphere = 1.5 (λneff = 23 mm) but vanishes, or possibly shifts

outside of the observation range where nsphere = 2.5 (λneff = 15 mm). At 10 GHz, n sphere =

2.5, an E-field maxima is noticed at the x = 20 mm and x = 60 mm ranges citing a

possible self-imaging distance of 40 mm, larger that that observed when the λ > A. From

these results in the X < A region, it is observed that the Rayleigh relationship of

Ls cc Λ2/λ may hold true. A summary of the observations is presented in Table 2.1.

Table 2.1 Simulation Results for Self-Image Formation

f
[GHz] (λneff)

[mm]

Ls
[mm]

2JA
(λneff/Λ)

n sphere

(n eff )
REMARKS

5
60.0
(45.5)

40
7.35
(5.58)

I.5
(1.3)

Distinct subwavelength imaging

I0
30.0
(22.7)

30
3.67
(2.78)

I.5
(1.3)

15
20.0
(15.4)

20
2.45
(1.88)

1.5
(1.3)

Small maxima at 20 mm range, larger
single maxima at 60 mm. Predicted
Ls -.-L-= 30 mm

5
60.0
(30.0)

30
7.35
(3.68)

2.5
(2.0)

10
30.0
(15.0)

40
3.68
(1.83)

2.5
(2.0) Predicted Ls = 30 mm.

15
20.0
(10.0)

70
2.45
(1.22)

2.5
(2.0)

However, when λneff is considered, there is some discrepancy. It is useful to point out

again that the Rayleigh approximation was for a thin grating rather than a thick crystal, so

a relationship based on λ, is valid. However, in the three dimensional crystal described,

it is necessary to consider the λneff.



Figure 2.7a Comparison of HPHFSS normalized E-field values for 5 GHz, dsphere =
10 mm, nsphere = 1.5 and nsphere = 2.5 (dashed line).
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Figure 2.7b Comparison of HPHFSS intensity values for 5 GHz, dsphere = 10 mm,
nsphere = 1.5 and nsphere = 2.5 (dashed line).



Figure 2.8a Comparison of HPHFSS normalized E-field values for I0 GHz, dsphere
10 mm, nsphere = I.5 and nsphere = 2.5 (dashed line).
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Figure 2.8b Comparison of HPHFSS intensity values for 10 GHz, dsphere = 10 mm,
nsphere = 1.5 and nsphere = 2.5 (dashed line).



Figure 2.9a Comparison of HPHFSS normalized E-field values for 15 GHz, dsphere =
10 mm, nsphere = 1.5 and nsphere = 2.5 (dashed line).
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Figure 2.9b Comparison of HPHFSS intensity values for I5 GHz, dsphere = 10 mm,
nsphere = I.5 and nsphere = 2.5 (dashed line).
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Consider since the relationship Ls ∞ Λ 2/λneff = Λ2neff/λ, review of Table 2.1

reveals that the increase in neff at 5 GHz does not increase the self-imaging distance one

would expect from the Rayleigh relationship.

2.3 Summary of Electric Field Magnitude Simulation

The simulation was useful to determine some basic characteristics of the system despite

the larger A than the close-packed fcc system. Overall findings are:

1) Self-imaging occurs generally as predicted by Rayleigh for VA < 1.

2) Self-imaging occurs for VA > 1 but its mechanism might be different than that

predicted by Rayleigh.

3) In the subwavelength region (VA > 1), there is no longer a direct proportionality

between the refractive index and the self-imaging distance.

Consequently, an object of the experimental program is to verify these findings overall

and extend them, if possible, to the close packed fcc crystal system.

2.4 Variation of Structure Orientation with Respect to Polarization

2.4.1 Introduction

The HPHFSS simulation was used in an attempt to gather information on the behavior of

the crystal when its orientation was varied with respect to the polarization of the input

beam. The general configuration as depicted in Figure 2.I0 was used, where the

azimuthal angle, (I), is varied with respect to beam polarization, which is in the z-

direction. The plane of incidence is the (11I) face of the crystal. A two-layer structure

was chosen since it matched the self-imaging distances for nsphere = 1.5, determined
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earlier, so that most of the energy could be collected at a central point eliminating the

need to evaluate the entire surface. At the outset, the symmetry of transmission

properties is intuitively expected at 60° or 120° intervals when it is rotated about the axis

of propagation direction, matching the fcc system crystal symmetry.

Figure 2.10 Simulation coordinates. A fcc structure comprised of spherical media
was rotated with respect to the azimuthal angle, 0. Propagation was along the x-axis,
into the crystal (111) face.

2.4.2 Construction of the Simulation

The structure was an expanded fcc structure as depicted in Figure 2.1I. The starting

point for the construction of each simulation was a full waveguide cross-section. Within

the boundaries of the simulation space, the spherical media was structured in the fcc

configuration and then rotated about the centerline (corresponding to the centerline of the

waveguide input) at I5° increments. After rotation, the structure was then sliced into a

one-quarter section. As in the previous simulations the inner x-y boundary was a

"perfect electric conductor" and the inner x-z boundary was a "perfect magnetic
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conductor" to use the method of images for the emulation of the entire waveguide

cross- section. The other outer boundaries were made to be "radiation" (nonreflective or

perfectly absorptive) boundaries. Figure 2.11 illustrates the result for (13. = 75°.

Figure 2.11 Sample HFSS Structure. Media is rotated 75° with respect to beam
polarization.

2.5 Simulation Results for Azimuthal Variation

2.5.1 Analysis for 10 mm Diameter Spheres

As the crystal was rotated through (I) = 0° — 180°, significant variations of the E-field

magnitude were noticed, as illustrated in Figures 2.12a-c. Strong variations in the

transmission are noted for each frequency. Small changes were noted at f = 5 GHz,

where there can be seen a series of small maxima of approximately 10 V/m in the E-field

at intervals of 43. φ = 30° — 45°. This was approximately 20% of the average field value

over the entire range of (I). Periodicity of transmission at intervals of (13. = 30° is also noted



Figure 2.12a E-field with respect to (I), f = 5 GHz, dsphere = 10 mm, n = 1.5, 2 layers.
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Figure 2.12b E-field with respect to φ, f = 10 GHz, dsphere = 10 mm, n = 1.5, 2 layers.
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Figure 2.12c E-field with respect to φ, f = 15 GHz, dsphere = 10 mm, n = 1.5, 2 layers.

in the data at f = 15 GHz, in addition to two distinct stop bands at φ = 15° and 150°.

Data for f = 10 GHz are somewhat puzzling, as it shows no distinct periodicity and a

single transmission maxima at I05°. As such, it is difficult to draw a conclusion from the

10 GHz result, although scattering may be a dominant mechanism in this case. Since the

wavelength of the incident beam is close to the media periodicity (Λ ~ 12 mm to 17 mm

depending on orientation with respect to polarization), much of the energy may be

strongly scattered and consequently, lost to the observer. Note, that the media period A

changes while the rotating the crystal and maintaining a fixed polarization direction of

the input beam. Interplanar distances change in the z-direction along the beam

polarization direction and may consequently enhance or disrupt scattering.
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2.5.2 Discussion of the Simulation of the FCC Structure with 10 mm Diameter

Spheres

Examination of the fcc system via other simulation techniques by other researchers does

not predict azimuthal orientation of the crystal having an effect like this on the

transmission35 ' 36. Relatively small periodic maxima in the E-field transmission might be

explained by averaging errors or some other artifact in the simulation software. Yet, the

large variations as a function of azimuthal angle (20% and greater of the overall scale)

cannot be dismissed as artifacts. Typically, other models use effective media concept of

a unit cell of the crystal. An effective media model accounts for only layers of the

effective permittivity. Such an approach is not sensitive to the local details of the

structure. Similarly, other models account for only the irreducible Brillouin zone of the

crystal, thus only the section of fcc crystal from 0° - 60° is considered due to the

symmetry. The HPHFSS simulation, despite its inherent limitations, performs finite-

element boundary computations for the entire structure accounting for those details.

Hence, the finite size effects may appear in the HPHFSS simulation. In contrast, the

crystal thickness recognized by some other software is semi-infinite making it impossible

to detect layer-by-layer variations.

Knowing this, it can be noted that within the crystal there are two major lateral

directions related to the polarization sensitivity, these are the <I00> and <110> crystal

directions. The <100> direction is visualized easily as the direction along an edge of the

crystal unit cell, while the <110> direction is a diagonal across the face of the fcc unit

cell. In the model used in this simulation, propagation is made along the <11I> direction

(body diagonal across the crystal unit cell). Since the <100> and <110> crystal directions
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possess periodicities that differ by I2 one may assume that azimuthal symmetries will

have a period of Δφ = 45°.

2.5.3 Change of Simulation Scale to Vary ?JA

It appears that the ratio λ/A plays a significant role in the self-imaging distance. In order

to more thoroughly explore the effect of the beam polarization on transmission, the role

of the ratio λ/Λ, and to facilitate experimental studies, the scale of the simulation was

changed. While the frequency range remained in the 5 — I5 GHz region, the size of

spherical media was changed to d = 31 mm and the experiment repeated for both two and

four layers. Note that the ratio of λ/Λ ≈ 2 is nearly matched by both the simulation

results for f = 15 GHz, d = 10 mm and f = 5 GHz, d = 31 mm. Table 2.2 summarizes the

λ/Λ ratios used in this simulation.

Table 2.2 λid Ratios at Frequencies of Interest

f A, λneff λ/Λ, d = 10 λneff/Λ, 	d	 = λ/A, d = 31 λneff/Λ, 	 d	 =
[GHz] [mm] [mm] mm 10 mm mm 3I mm
5 60 45.5 7.35 5.58 2.37 1.80
10 30 22.7 3.68 2.78 1.19 0.90
15 20 15.4 2.45 1.88 0.79 0.61

Another viewpoint to assess the self-imaging property of the crystal is to define a

quality factor used in holographic (e.g. self-imaging) waveguides 19 . This is given by:

Q = 2πλ (Ls)/(n eff d2)	 (2.I)

where d is the width of the central guiding channel of the waveguide. The quality factor

defines if the hologram is "thin" (Q < 10) or "thick" (Q > 10). If d is replaced with A in

equation 2.1, it is possible to estimate the Q factor for these structures. In doing so, the

self-images of thin holograms (Q < 10) are at 15 GHz, d = I0 mm (which is quite close to
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Q = 10) and at 10 GHz and 15 GHz, d = 31 mm. Overall, this distinction reinforces the

concept of a transition point as the VA ratio approaches unity.

2.5.4 Simulation for Sphere Size of d = 31 mm, n = 1.5

Much stronger periodicity is noted for 5 GHz, dsphere = 31 mm than the 5 GHz, dsphere = 10

mm results. Note that the λneff/Λ ≈ 2 for dsphere = 31 mm case. It is appropriate to

compare it to the f = 15 GHz, dsphere = 10 mm case based on the VA ratio. Making this

comparison, similarities are found in that four periodic maxima appear at intervals of

approximately 30° - 45° in both cases. At 10 GHz, two distinct maxima appear at 45°

intervals from each other, but is not periodic through the range of (I). At 15 GHz,

periodicity at 45° intervals appears to return.

Figure 2.13a E-field magnitude vs. 4, dsphere = 31 mm, f = 5 GHz, n = 1.5, 2 layers.



Figure 2.13b E-field magnitude vs. φ, dsphere = 3I mm, f = 10 GHz, n = I.5, 2 layers.
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Figure 2.13c E-field magnitude vs. 4, dsphere = 31 mm, f = I5 GHz, n = I.5, 2 layers.



Figure 2.14a E-field magnitude with respect to φ, dsphere = 31 mm, n = 1.5, f = 5 GHz,
4 layers.
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Figure 2.14b E-field magnitude with respect to φ, dsphere = 3I mm, n = 1.5, f = 10
GHz, 4 layers.
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Figure 2.14c E-field magnitude with respect to φ, dsphere = 31 mm, n = 1.5, f = 15 GHz, 4
layers.

The last three plots in the series (Figure 2.14a-c) are results for simulation of

dsphere = 31 mm structures 4 layers thick. Curiously, the periodic behavior of the 5 GHz,

2-layer result ( 30° — 45°) disappears and is replaced with what appears to be a 90°

periodicity, with the stronger stop band (minima) at 90°. Isolated pass bands at 45°, 75°

and I20° are reinforced at the 4-layer I0 GHz result, with the remaining angles at zero

transmission. Arguably, scattering may dominate since λ/Λ ~ 1. The simulation result

for dsphere = 3I mm, f = 15 GHz is unique in that it is the only case where the media cease

to be subwavelength features. Here there is a periodicity within the 45° - 60° range.

2.5.5 Analysis of Results d = 31 mm, n = 1.5, Two and Four Layers

If any periodicity occurs, it seems to have an interval of φ = 45° with one case of φ = 90°

appearing in the 5 GHz case as the layers increase from two to four. At face value, there

seems otherwise to be general consistency with the dsphere = 10 mm results. Weakest case
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for periodic behavior with respect to 4  seems to be λ/Λ ~ 1, where scattering is expected.

Periodic behavior with respect to 4 is also observed in the single case where 2JΛ < 1.

2.6 Overall Assessment of Simulation Results

Conduct of the simulation met with limited success. Imaging phenomena was predicted,

not only in accordance with classical (Rayleigh) expectation but also subwavelength

imaging where λ/Λ > 1 in the fcc crystal system.

It was determined that variation of the transmission properties may exist with

respect to the azimuthal orientation of the fcc crystal structure. The azimuthal periodicity

appears to have a 45° rotational symmetry, which is correlated to the <100> and <110>

crystal directions. Note that the close packed fcc crystal has a rotational 60° symmetry.

Overall, several novel facts were gained from this simulation series:

1) For small crystals (total cross-section on the order of a few wavelengths),

transmissivity with respect to the azimuthal orientation of the crystal does not appear to

depend on crystal rotational symmetry.

2) Current simulations do not accurately account for the polarization state of the

transmitted beam in these cases.

3) Increase of crystal thickness changes the propagation qualities as a function of

azimuthal angle. In the case of dsphere = 3I mm, f = 5 GHz, the observed periodicity

changed from •:1) = 45° to 4 = 90°, as the number of layers increased from 2 to 4. This

implies that new stop or pass bands were created at different φ, which was not previously

observed.
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Simulations are somewhat limited, as was pointed out, thus the next step in

characterizing fcc crystal systems as photonic crystal or optical components is to resort to

an experimental campaign.



CHAPTER 3

EXPERIMENTAL EXAMINATION OF PROPAGATION IN
ARTIFICIAL OPAL FCC STRUCTURE

3.1 Introduction

A series of experiments to determine the nature of the beam propagation in the crystal

media was devised37 . Close control of the crystal structure is required. For this reason

the series of experiments were performed in the microwave regime. Free-space

wavelengths range between 20 and 60 millimeters. Therefore the feature size of the

spheres is macroscopic and can be easily manipulated into near-perfect crystal forms. In

contrast, construction of artificial opaline structures on the order of optical wavelengths is

much more difficult and less precise. It is difficult to control or determine the number of

layers in an optical artificial opaline structure as well as the presence of an increased rate

of defects. For the determination of the self-imaging distance, a crystal somewhat devoid

of defects is important, since defect modes can make a significant difference in radiation

transmission in the crystal.

3.2 Experimental Setup

Transmitted power in the y-z plane was measured for each successive layer of dielectric

media at the crystal face. A continuous wave signal source (Hewlett-Packard 8673E

signal generator) was fed through a standard gain horn (MicroTech HWR112) on the

transmit side. To acquire the signal, spectrum analyzer (Hewlett-Packard 8563E) was

used with an identical standard gain horn antenna. The second standard gain horn can be

60
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moved in the y-z plane for each media layer to measure the power distribution over the y-

z surface (Figure 3.l). In this fashion, field maps for each crystal plane was constructed.

The resolution of the field map was limited by the physical size of the gain horn,

however. For a typical structure, a field map is comprised of nine rectangular sectors on

the crystal face and a center value measurement. For determination of the self-imaging

distance, the transmitted power at y = z = 0 is of primary interest anyway. The spot size

could not be acquired with any reasonable accuracy due to this limitation.

Figure 3.1 Configuration of experimental setup for field mapping at the crystal face.
The antenna for signal acquisition is (omitted here) was moved in the y-z plane to map
the transmitted signal at the crystal face.

Dielectric spheres were stacked in a microwave-transparent box to achieve the

opaline structure illustrated in Figure 3.1. Although optical opaline has a face-centered

cubic (fcc) structure, realization of other crystal structures such as simple cubic, body-

centered cubic (bcc) and hexagonal close-packed (hcp) were possible (in fact, hcp and fcc

are indistinguishable for the first two layers of media). For this series of experiments,
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two media sizes were used, 10 mm and 31 mm with an index of refraction nsphere = 1.5,

2.25 and 2.5 for the 10 mm spheres and nsphere = 1.5 for the 31 mm media. All values of n

are determined in the 5 - I8 GHz frequency range.

3.3 Experimental Results

3.3.1 Contrast Variation - Comparison of Ls for nsphere = 1.5, 2.25 and 2.5

Figures 3.2 through 3.4 detail the results of the experiment for media with n sphere = 1.5,

2.25 and 2.5.	 Note that the measurements are not normalized and that different

frequency ranges are encountered due to varied efficiencies over the rated range of the

standard gain horn antennas. Recall that the effective refractive index 35 ' 37 is:

Here no], n02 are the refractive indices of the corresponding silica or polypropylene

spheres and air, respectively. The filling factor is F = 0.74, for an fcc close-packed

structure and may be smaller for a loosely packed structure. It was determined that neff =

1.37 for the polypropylene close-packed experimental configuration of nsphere = 1.5 with

an approximate F = 0.70. Similarly, the silica structure ne= 2.16 and for ceramic n eff =

1.96. The relationship between the pitch and the sphere's diameter is Λ = 0.816d for a

close-packed structure. The experimental structure closely replicates this and was quite

defect-free, with some exception at the structure edges.

Strong imaging is noted at low frequencies, evidenced by the recurring peaks at 5

GHz for all media. As the frequency is progressively increased, the differences between

minima and maxima decreased.



Figure 3.2a Power versus range in media, polypropylene spheres, nsphere = 1.5, f
= 5 GHz, 0 — 13 layers of fcc crystal.
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Figure 3.2b Power versus range in media, polypropylene spheres, nsphere = 1.5,
f = 10 GHz, 0 — 13 layers of fcc crystal.
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Figure 3.2c Power versus range in media, polypropylene spheres, nsphere = I.5,
f = 12 GHz, 0 — 13 layers of fcc crystal.

Figure 3.2d Power versus range in media, polypropylene spheres, nsphere = 1.5,
f = 15 GHz, 0 — 13 layers of fcc crystal.
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Figure 3.2e Power versus range in media, polypropylene spheres, nsphere = I.5, f = 17
GHz, 0 — 13 layers of fcc crystal.

For example, the polypropylene media (nsohere = I.5, neff = 1.37) at I0 GHz

(Figure 3.2b) shows an excursion of less than I dBm, after accounting for the downward

trend of the power with increasing media layers. It is expected that this loss is due to

scattering since it appears as linear with the crystal layers and the media is purely

dielectric. Recent simulation work (with two-dimensional structures) also predicts

significant out-of-plane scattering, which occurs mostly within the first ten periods in a

photonic crystal structure 38 . This scattering loss in the polypropylene is similar for any

frequency, a peak-to-peak loss of approximately 4 - 6 dBm in the first 40 mm or so of

media. At the lower frequencies, an important feature was noticed. The self-imaging

distance is on the order of, or less than the wavelength of the radiation in the media 37 .

The results for 5 GHz are in Table 3.1. In fact, the classical picture of the self-imaging

distance does not hold, since the wavelength is larger than the crystallographic pitch A.
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For example, the inverse trend of the self-imaging distance with respect to increasing n is

opposite to what one might expect from the classical result (Equation 1.7).

Table 3.1 5 GHz results for contrast variation

Material f [GHz] neff Average Ls [mm] (1) 2 	 [mm]
Polypropylene 5 1.37 29.3 43.8
Ceramic 5 1.96 I9.2 30.6
Silica 5 2.I6 I8.0 27.I
NOTES:
1) Ls measurements are +7- 4 mm — closer tolerance is not possible since only integral multiples of crystal
layers are used.

3.3.2 Frequency Variation

Examination of the experimental results clearly indicates that strong self-imaging occurs

at longer wavelengths (lower frequencies). The worst case of imaging at 5 GHz is the

ceramic media result. This may result from the comparatively non-uniform ceramic

media. Compared to the high quality polypropylene media, the manufacture of the

ceramic media was not to the same tolerances. Generally, the imaging can be correlated

to the value of X/Λ. In the nsphere = 1.5 case (neff = 1.37), strong imaging was observed at

f = 5 GHz and f = 12 GHz. At f = 10 GHz, a series of small maxima were detected at a

period of 16 — 24 mm. For the most part, the magnitudes at I0 GHz are only on the order

of 1/3 dBm, which is close to the resolution -it of the acquisition equipment. At 12

GHz, however, strong imaging returns where λneff/Λ ~ 2.2. As λ neff/Λ < 1, the period of

the self imaging range becomes indeterminate and even somewhat erratic.

In the silica (nsphere = 2.5) spheres, the weakening of the imaging effect is

noticeable yet maxima are somewhat distinct through 15 GHz. At higher frequencies,
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smaller peaks are encountered while the overall power loss becomes greater most likely

due to scattering of energy out of the crystal structure or perhaps I5 GHz approaches the

photonic band gap of this fcc structure, frustrating transmission through the crystal. An

important observation from Table 3.2 is that as the λneff IΛ ratio becomes smaller, the

inverse proportionality between wavelength and the self-imaging distance holds true.

Table 3.2 Effect of frequency variation on self-imaging distance, n = 2.5

f
[GHz]

X,
[mm] λ /Λ λneff[min] λneff /Λ Average Ls [mm] (1) Remarks

5 60.00 7.35 27.80 3.41 18.0 Loss: 9 dBm
10 30.00 3.68 13.90 1.70 not evident Loss: 7 dBm
12 25.00 3.06 11.60 1.42 32.0 Loss: 9 dBm
15 20.00 2.45 9.30 1.13 36.1 Loss: 24 dBm
18 16.67 2.04 7.72 0.94 40.0 Loss: 58 dBm
NOTES:
1) Ls measurements are between maxima exceeding 2 dBm from a straight-line
extrapolation of the loss.

Figure 3.3a Power versus range in media, silica spheres, nsphere = 2.5, f = 5
GHz, dsphere = 10 mm, 0 — I3 layers of fcc crystal.



Figure 3.3b Power versus range in media, silica spheres, nsphere = 2.5, f = 10 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal.
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Figure 3.3c Power versus range in media, silica spheres, nsphere = 2.5, f = 12 GHz,
dsphere = I0 mm, 0 — 13 layers of fcc crystal.



Figure 3.3d Power versus range in media, silica spheres, nsphere = 2.5, f = 15
GHz, dsphere = I0 mm, 0 — 13 layers of fcc crystal.
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Figure 3.3e Power versus range in media, silica spheres, nsphere = 2.5, f = 18 GHz,
dsphere = 10 mm, 0 — 13 layers of fcc crystal.



70

3.4 Variation of Period, comparison of d sphere 10 mm and 31 mm

To compare the experimental result to the classical relationship, the experiment was

repeated with an fcc crystal comprised of polypropylene (nsphere = 1.5) spheres of d = 3I

mm. Figure 3.5a-e illustrates the results. The nsphere = 1.5 and neff = 1.37, since the filling

fraction is identical to the d = 10 mm experiment. Note that there is no strong recurring

maxima until f = 15 GHz although at f = 10 and 12 GHz, maxima are beginning to form.

At f = 15 GHz, the ratio of λneff/Λ = 0.58 with dsphere = 31 mm, therefore, one may think

that a comparison to the classical self-imaging relationship given by Rayleigh may be

attempted. However, recall the quality factor used in holographic (e.g. self-imaging)

iwaveguides 19 . This is given by:

where d is the width of the central guiding channel of the waveguide. The quality factor

defines if the hologram is thin (Q < 10) or thick (Q > 10). Computing the quality, Q, for

the structures with the d sphere = 31 mm structures where the λneff/A < 1 reveals that for 10

and 15 GHz self-images (holograms) remain in the thin regime with Q < 10.

Attempting Rayleigh's computation:

where the value for the crystallographic pitch, A is substituted for d. Substituting the

value of λneff = I4.6 mm and Λ = 25.2 mm into this equation results in z = 78.9 mm.

Examining Figure 3.5e, there is a recurring maxima at a range of z = 74 mm in the first

five layers, but then a strong recurring image appears at intervals of 50 mm. (Note that



Figure 3.4a Power versus range in media, ceramic spheres, nsphere = 2.25, f = 5
GHz, dsphere = 10 mm, 0 — 9 layers of fcc crystal.
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Figure 3.4b Power versus range in media, ceramic spheres, nsphere = 2.25, f 10
GHz, dsphere = 10 mm, 0 — 9 layers of fcc crystal.
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Figure 3.4c Power versus range in media, ceramic spheres, nsphere = 2.25, f = 15
GHz, dsphere = 10 mm, 0 — 9 layers of fcc crystal.

the first imaging planes are not as strong as that observed in the dsphere = 10 mm, f= 5

GHz case.) There is some agreement with the Rayleigh relationship, considering that it

is an approximation. Moreover, it is an approximation that becomes less accurate as the

value of λ, approaches the value of Λ.

Another comparison that can be made is to the Latimer and Crouse relation for the

self-imaging distance given by:

where the variables are based on the multiple slit diffraction model already discussed.

The primary approximation to apply this model to the experiment is that the "diffraction

grating" is not a two-dimensional plate, rather, it comprises the ranges from source to
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diffraction plane. If the gross approximation to consider the crystal as a "lumped"

element is made, and let q = 1 to 5, which can be the maximum number of diffraction

orders given the physical size of the crystal using λneff, the result is z I00 mm in the

relatively crude approximation, depending on the Bragg diffraction order used. The 100

mm result is interesting since it's an integral multiple of the experimental observation

where Ls = 50 mm at greater ranges in the dsphere = 3I mm crystal at 15 GHz. Despite its

lack of sophistication, the approximation of the Latimer — Crouse self-imaging

relationship yields some confidence that the three dimensional photonic crystal may

behave within the predictions of diffraction theory as λ << Λ. Attempting extension of

Latimer-Crouse self-imaging relationships to three-dimensional systems may have some

merit. More sophisticated techniques are needed as λ, > Λ, however.

Figure 3.5a Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 5 GHz,

nsphere = 1.5.



Figure 3.5b Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 7 GHz,

nsphere = 1.5.
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Figure 3.5c Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 10 GHz,
nsphere = 1.5.



Figure 3.5d Power vs. range in polypropylene crystal, d sphere = 31 mm, f = 12 GHz,

nsphere = 1.5.
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Figure 3.5e Power vs. range in polypropylene crystal, dsphere = 31 mm, f = 15 GHz,

nsphere = 1.5.
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3.5 Comparison to Simulations

At the outset, a direct comparison to simulation is not possible due to the differences and

limitations of the simulated structures, as discussed. However, trends can be compared.

In doing so, the cases of large refractive index contrast and small contrast were used. For

both experimental data and simulation, Ls (the self-imaging distance) decreases as the

refractive index is increased in the case of λ/Λ > 1 (subwavelength media). Self-imaging

was most evident in the VΛ > 1 region. Increasing the frequency (decreasing

wavelength) seemed to generally decrease Ls, as would be expected from the classical

theory. Simulation and experiment generally agree on this although Ls is not evident in

some of the simulation and experimental trials. Table 3.3 enumerates the self-image

formation results for simulation and experiment.

Table 3.3 Simulation and experimental results for self-image formation

f [GHz] X, [mm] n sphere Simulated Ls [mm] Experimental Ls [mm]

5 60.0 1.5 40 29.3

10 30.0 1.5 30 not evident

15 20.0 1.5 20 42.0

5 60.0 2.5 30 I8.0

10 30.0 2.5 40 not evident

15 20.0 2.5 70 36.1

As one can see, the trends are the same but the values do not precisely match.

The simulation appears more accurate at lower frequency (5 GHz), since both simulation

and experiment show approximately a 10 mm change in the self-image position. At
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higher frequency (I5 GHz) there is a larger disparity between simulation and experiment.

This may be caused by the wavelength size compared to the size of the finite element

mesh.

3.6 Experimental Conclusions

Several conclusions can be drawn from these experiments. Subwavelength (VA > 1)

imaging is verified. In addition, short (subwavelength) imaging ranges are observed,

where the images form at intervals less than the wavelength of the incident beam.

Contrast variation in the subwavelength (VA > 1) imaging regime does not

behave as one would expect from classical predictions. While there should be a direct

proportionality, experimentally the self-imaging distance, Ls, decreases as refractive

index, n, increases. Again, this is proven out by experiment and simulation. Some

similarity is noted with this case and self-imaging chirped holographic waveguides 19 ,

although in this case there is a periodicity in the direction of propagation and the

refractive index contrast is much larger. Evidence suggests also that the direct

proportionality between n and Ls may return to the fcc crystal system as VΛ < 1.

A possible mechanism for subwavelength imaging and imaging at subwavelength

ranges is the phenomena of ultrarefraction (also called superprism), discussed in the

review of photonic crystals. To better characterize these effects, other experiments on the

three-dimensional fcc photonic crystals were performed.



CHAPTER 4

AZIMUTHAL MORPHOLOGY AFFECTING TRANSMISSION
THROUGH FCC CRYSTAL

4.1 Introduction and Experimental Setup

HPHFSS Simulations demonstrate transmission variation with change of the azimuthal

orientation of the crystal. The survey of the literature has also revealed that numerical

methods suggest ultrarefractive properties are modified by azimuthal orientation as

well33 . Overall, the effect of the azimuthal orientation with respect to beam polarization

on wave propagation through the fcc photonic crystal is not well known. Thus, the next

experimental series endeavors to characterize the dependency of the azimuthal orientation

of the crystal on transmission.

Dielectric spheres of diameter d sphere = I0 mm and dsphere = 31.25 mm with

refractive indices of nsphere = 1.5, nsphere = 2.25 and nsphere = 2.5, were stacked in a face

centered cubic structure similar to the method described earlier. The crystal was

articulated to rotate through an azimuthal angle of φ = 0° - 360° with respect to beam

polarization at 15° increments. Experiments were repeated for a range of 0° <0 < 25°

with the coordinates specified in Figure 4.1. The beam was propagating along the x-

direction. The spheres were placed in a box with inner dimensions, y = I35 mm and z =

181 mm with air cladding. Recall the effective refractive index of a close-packed array

of spheres is given by (neff)2 = F(n01)2+(1-F)(n02)2. Here no], n02 are the refractive indices

of the corresponding spheres and air, respectively. Also recall the relationship between

the pitch and the sphere's diameter is Λ = 0.816d for a closely packed fcc structure.
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Figure 4.1 Experimental setup for azimuthal angle variation. The crystal is rotated
with respect to the y-axis which is the polarization direction for the input beam.

The filling factor is F = 0.74, for an fcc close-packed structure and may be

smaller for a loosely packed structure sometimes used in the simulations. Values for neff

are presented in the Table 4.1. For the experimental structure used, the fill factor was F =

0.70 due to minor irregularities in the crystal.

Table 4.1 Values nshpere ,and neff

nsphere neff

1.500 1.369

2.250 1.961

2.500 2.162

Measurement of the transmitted energy was performed in the near-field since this

would emulate the conditions of the simulation and is the most useful case for coupling

of devices in microelectronic applications. Power was measured at x Ls, the self-
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imaging distance, to maximize the radiation collection for signal acquisition.

Instrumentation used was a HP 8673E signal generator and a MicroTech HWR112

standard gain horn on the transmit side, as in the previous experiment. To acquire the

signal, a HP 8563E spectrum analyzer was used with an identical standard gain horn. A

photograph of the structure (polypropylene spheres, d = 10 mm) is at Figure 4.2.

Figure 4.2 Experimental realization of polypropylene ( nsphere = 1.5, dsphere = 10 mm ) fcc
structure. Total dimension of the structure is y = 135 mm and z = 181 mm.

4.2 Experimental Results for Variation of Azimuthal Orientation

Initial trials were performed with two layers of dsphere = 10 mm polypropylene (nsphere =

1.5) media. A very flat response (+1- 0.2 dBm, generally) was noted throughout the range

of (I). Since the two-layer crystal is very thin compared to the wavelength, the number of

layers was increased to four, these results are illustrated in Figure 4.3a-c. Again a flat
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Figure 4.3a Transmitted power variation vs. azimuthal angle, d sphere = 10 mm, nsphere = 1.5,
4 layers, 5 GHz. Note range of the vertical axis is 2 dBm.

Figure 4.3b Transmitted power variation vs. azimuthal angle, dsphere = 10 mm, nsphere = 1.5,
4 layers, 10 GHz. Note range of the vertical axis is 2 dBm.
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Figure 4.3c Transmitted power variation vs. azimuthal angle, dsphere = 10 mm, nsphere =
1.5, 4 layers, 15 GHz. Note range of the vertical axis is 4.5 dBm.

response is noted for the f = 5 and 10 GHz trials. The resolution of the detection

apparatus was 0.17 dBm, therefore it can be concluded that this variation is negligible.

Note that at 15 GHz some variation becomes evident, but it is only on the order of 1

dBm. There appears to be little or no periodicity to the transmission pattern at I5 GHz.

It appears from this result that subwavelength features do not affect the

transmission as a function of polarization. Note that at 5 GHz, λneff/Λ ≈ 5.4 and at 10

GHz, λ neff/Λ ≈ , 2.7. However at 15 GHz, λneff/Λ ≈1.8 and at this point, more significant

transmission variations (approximately 1 dBm) are encountered. In order to investigate

this trend, it is necessary to change the scale of the experiment. For the next series of

trials d sphere = 31 mm media is used.
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4.2.1 Change of Experimental Scale to Vary VA

Once the scale change is effected, λneff/Λ 1.74, 0.87 and 0.59 for f = 5, 10 and 15 GHz,

respectively. Examining these results (Figure 4.4a-c) at 5 GHz there is a 90° periodicity

evident with maxima at 30°, 120° (although truncated), 210° and approximately 300°

(actually 315°). As the frequency is increased, further lowering the λneff/Λ ratio, the

maxima do not exhibit a specific periodicity at 10 GHz and then combine at 15 GHz into

two maxima centered on approximately 75° and 255°, 180° apart. Note that the power

excursion is on the order of 5 dBm, much greater than data at lower frequency.

Recalling the two major lateral directions related to the polarization sensitivity

(the <100> and <110> crystal directions) and that they possess periodicities that differ by

.q2, one may assume that azimuthal symmetries may have a period of Δφ = 45°. (The

series of <100> and <110> crystal directions are 45° and 90° from each other.)

Figure 4.4a Transmitted power variation vs. azimuthal angle, dsphere = 3I mm, nsphere =
I.5, 2 layers, 5 GHz. Note range of the vertical axis is 1.4 dBm.



Figure 4.4b Transmitted power variation vs. azimuthal angle, dsphere = 31 mm, nsphere =
1.5, 2 layers, 10 GHz. Note range of vertical axis is 2.5 dBm.
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Figure 4.4c Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, nsphere =

1.5, 2 layers, 15 GHz. Note range of the vertical axis is 12 dBm.
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Therefore, it is easily expected that periodic transmission variations could occur at some

multiple of 45°. Reflection or interference from the crystal "box" is ruled out, since the

identical box did not affect the transmission properties of the dsphere = 10 mm trials. Since

increasing thickness had the effect of making the transmitted power variations more

pronounced on the dsphere = 10 mm trials, the number of layers in this crystal system was

increased to four and the experiment repeated. Generally, these effect of increasing the

number of layers in the dsphere = 31 mm experiment, illustrated by Figure 4.5a-c, is similar

to the dsphere = 10 mm results. At 5 GHz, there are irregular maxima that have an

excursion of +/- 1 dBm, however at 10 GHz it is evident that grouping is occurring into

two distinct maxima. At 15 GHz, this grouping is complete and the two maxima,

centered at approximately 75° to 90° and 240° to 255°, return. Excursion of the

transmission is also much greater, on the order of I0 dBm.

4.2.2 Analysis of Variation of Azimuthal Angle

Despite the formation of self-imaging in the fcc crystal system when the media is much

smaller than the wavelength, the crystal appears rotationally homogeneous in this region

where λneff/Λ > 1. As λneff/Λ approaches unity, the transmission begins to exhibit

dependence upon the azimuthal angle but no periodicity is yet apparent. At 10 GHz the

excursion of the transmitted power is greater for four layers. This is sensible from the

viewpoint that scattering may be a dominant mechanism as λneff/Λ approaches unity.
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Figure 4.5a Transmitted power variation vs. azimuthal angle, d sphere = 3I mm, n sphere =
1.5, 4 layers, 5 GHz. Note range of the vertical axis is 2.5 dBm.

Figure 4.5b Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, n sphere = 1.5,
4 layers, 10 GHz. Note range of the vertical axis is 4.0 dBm.
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Figure 4.5c Transmitted power variation vs. azimuthal angle, d sphere = 31 mm, n sphere =

1.5, 4 layers, 15 GHz. Note range of the vertical axis is 18 dBm.

4.2.3 Comparison to Simulations

The simulations generally predict larger power variations at the two-layer 5 and 10 GHz

results. This can be explained by the larger Λ of the simulation compared to the close-

packed structure. When the simulation is rotated there can be azimuthal angles where

there are gaps in the dielectric media in line with the polarization direction of the wave,

similar to a grating. This cannot happen in close-packed crystal. Gaps may be especially

prominent for the two-layer case. In simulation, the peak-to-peak transmitted power

variation is significantly less for the four-layer results than the two-layer results. In the

four-layer case, there are generally fewer gaps. In contrast, the transmitted power trend

in the experiment indicates transmission variation enhancement as the number of layers

increases. Also recall that the effective wavelengths λneff are larger in simulation due to

the low packing density (or filling fraction) of the crystal. Comparing the two and four



88

layer simulation results for 10 and 15 GHz results in similarity to the experimental

results. The response across the range of (I) (which is only 180° for simulations) is flatter

at 4 layers and at 15 GHz, the plot transitions from several maxima to a single dominant

maxima at (I) = 0° with a series of smaller periodic maxima across the remaining range of

(1). Qualitatively, at least, the simulations predict the combining of field maxima as the

number of layers increase when λneff/Λ 0.5. Without the ability to simulate a close-

packed structure, simulating the effect of azimuthal crystal rotation on the transmitted

power is somewhat inaccurate.

4.3 Examination of Polarization Mixing in the Close-Packed fcc Structure

Reflection polarization mixing is reported on finite two-dimensional photonic crystal

waveguides39 as a function of azimuthal angle, φ. In this effort, transmission

measurements were made of two-dimensional, low filling fraction (22% and 30% )

photonic crystals with λneff/Λ ranging from two to five. In this case, simulations and

numerical methods also failed to characterize the true polarization state of the output and

reflected beams, that is, locating polarization-mixed modes for the two-dimensional case.

Characterization of the polarization mixing quality in photonic crystals is useful so that

specific birefringent symmetries to control mode energies and mode polarization can be

realized. The experimental apparatus used in the experiments presented here is ideally

suited for the detection of polarization mixing. Only a small modification of the

apparatus is required: the receiving antenna is fixed at 90° with respect to the transmitting

antenna while the crystal is rotated about its z-axis. In so doing, it is possible to detect
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transmission polarized perpendicular to the transmitter as opposed to the previous results

which detect transmission in the parallel direction.

The results, (Figures 4.6a-c) suggest a small birefringent effect with respect to

azimuthal angle, (I). This is particularly true at 5 GHz since the detected power of the

perpendicular polarized modes is not far below the parallel polarized modes, as they do

with an increase in frequency 32 . Further evidence for this is established by the loss of

transmitted power in the perpendicular polarized modes as the frequency increases.

Examining the experimental results, the loss of power in the perpendicular modes occurs

at 10 GHz and continues in the 15 GHz results.

4.4 Conclusions

The experimental results reveal several interesting observations of the effect of azimuthal

morphology changes in the fcc crystal on transmissivity. These variations appear to be

based on the location of crystallographic planes rather than the rotational symmetry of the

fcc crystal. The effect appears to be more pronounced at lower λneff/Λ ratios. Despite the

fact that power variation is much greater when the number of crystal layers are increased,

qualitatively the transmission is similar for changes in the number of layers of crystal

media. Since the effect is predominant where λneff < Λ, it is possible that the self-imaging

distance may occur within a layer and consequently be lost to the observer. Although it

is possible to make these observations from the information gained, it is difficult to draw

more concrete conclusions.



Figure 4.6a Transmitted power variation vs. azimuthal angle, d sphere = 10 mm, nsphere =

1.5, 4 layers, 5 GHz, vertical polarization (dashed) and perpendicular polarization (solid
line).
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Figure 4.6b Transmitted power variation vs. azimuthal angle, dsphere = 10 mm, nsphere =

1.5, 4 layers, I0 GHz, vertical polarization (dashed) and perpendicular polarization
(solid line).
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Figure 4.6c Transmitted power variation vs. azimuthal angle, d = 10 mm, n = 1.5, 4
layers, 15 GHz, vertical polarization (dashed) and perpendicular polarization (solid
line).

Overall, simulations provided qualitative insight into the nature of the

phenomena. The simulation results agree qualitatively with the experimental results but

do not yield a precise match to the experiments. Typically, the simulations yielded larger

power variations than the corresponding experimental values, however, the location of

power maxima or, minima did not match the experiment. This was attributed to the

conditions forced by the computational limitations of the simulation. Simulation were

successful in producing the number of maxima, which only in some cases, were

correlated with the exact experimental azimuthal angles, 0. While the finite element

approach was found to be somewhat successful in determining the self-imaging

distances37, it was unsuccessful in determining the true polarization state of the output

wave.
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To gain more information about this effect, the crystal morphology dependency

on transmission is explored by combining modification of the incident angle with

azimuthal variation.



CHAPTER 5

VARIATION OF INCIDENT AND AZIMUTHAL MORPHOLOGY

5.1 Introduction and Experimental Setup

This segment of the experimental program is important, since the beam transmission was

varied through different Brillouin zone directions, which may affect the pass band of the

radiation. Recalling the band diagrams for the photonic crystal, note that the slope of the

band may change as the variation is implemented. Numerical simulation predicted

transmittance variation as a function of the incident beam angle as well as ultrarefractive

effects 31 . In addition, nonlinear experiments exhibited the role of 'magic angles'. At

these angles, the transverse component of the wavevector is prohibited from propagation

and nonlinear characteristics are substantially amplified40 . Thus, the purpose in this

portion of the experimental program is to reveal the role of wave polarization around

these angles by varying the azimuthal orientation of the crystal and incident angles.

Wave propagation in photonic crystals is rather complex 41 . Most of recent efforts

were spent in identifying the band-gap properties of the structure. Yet recent efforts are

recognizing the possible usefulness of photonic crystals as optical components operating

in frequency regions near the band gap42 . To this end, with nonlinear properties in mind,

one would like to assess the amplitude and phase of the electromagnetic field at every

point within the photonic crystal. This task is not simple since the propagation properties

are comprised of local modes (intra-modes) within the high-dielectric features in addition

to propagating modes (inter-modes). As a consequence, the experiment is -ited to a

study of transmission variations. The crystallographic planes that interact with the beam
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are also affected. Up to this point in the experimental program, the plane of interface is

the (111) plane. As the incident angle is varied from 0 = 0° to 25°, different

crystallographic planes become the incident plane, changing the interplanar spacing and

consequently modifying the propagation of modes with a particular wavevector, k. For

example, the (221) plane is the incident plane at approximately 16° and (321) at 22°.

In this experiment, the incident and azimuthal angles of the beam are varied, as

illustrated in Figure 5.1. All other components of the experimental setup remain as in the

previous experiments. Transmission variations at self-imaging distances are examined

since it provides, among other things, a natural means to collect the entire radiation

Figure 5.1 Illustration of experiment. Incident angle, 0, is varied from 0 to 25 degrees
while (I) is varied from 0 to 360 degrees. 0 remains in the x-y plane as the crystal is
rotated.

output. As a first step, the polarization dependence of multi-mode beam propagation was

studied where the propagating wavelength is smaller, comparable to, and larger than the
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corresponding scattering feature size. As before, photonic crystals used in the

experiments were scaled up into the microwave spectrum to emulate artificial opal in the

other spectral regions and in particular, the optical spectrum. To verify the scaling

validity microwave experiments are correlated to optical experiments on a corresponding

artificial opal.

5.2 Results

The experimental results are plotted in Figures 5.2a-c to illustrate the effect of changing

the incident angle, 0, through the entire range of the azimuthal angle, (I), at a particular

frequency. At 5 GHz there is some additional loss as 0 increases, but the overall shape

of the curve over the range of (I) does not vary greatly. The additional loss may be

explained by the increase of media thickness through which the beam has to pass as 0

increases. At 10 GHz, as λneff/Λ < 1, the qualitative nature of the curves change

considerably. As 0 is increased from 0° to 10°, loss is incurred as previously however, as

0 is increased from 10° to I5°, the original waveshape is restored and the transmission

peak at (I) = 210° is actually a few dBm higher, suggesting an imaging effect. Continuing

to increase 0 from 15° to 20° results in a change in from transmission maxima to a

minima at (I) = 180°-210°. Finally at 0 = 25°, the original waveshape, with a transmission

maxima at 4 = I80°-210° is restored. As the frequency is increased to 15 GHz

continuing the trend of decreasing λneff/Λ, the characteristic double maxima at 90° and

180° becomes progressively weaker and is ultimately lost at 0 = 20°. Further increase to

0 = 25° results in a flatter transmission profile over the range of (I), with minor maxima at

0° and 180°. Again, this is an "inverse" effect than that observed at 10 GHz. Note that
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all of the results beyond the initial 0 = 0° incident angle is essentially without change in

loss.

Two generalized conclusions can be drawn from the experimental data:

1)λneff/Λ = 1 appears to be a transition point for the nature of the effect of 0 variation.

2) 0 = 10° and 20° appears to mark other transition points for the effect of 0 variation on

transmission of the beam through the media.

To further explore and better illustrate the dependence of the transmission on 0, 4)

and f, the following contour plots (Figures 5.2a-c) show the transmitted power at the

center of the structure for a four layer close-packed fcc (or hcp) structure, at frequencies/

= 5, 10 and 15 GHz, respectively, The structure remains as spheres of d = 31 mm,

neff = 1 5	 . .

Figure 5.2a Transmission through four-layer fcc crystal as a function of (I), 0, 5 GHz,
dsphere = 3 1 mm, nsphere = 1.5.



Figure 5.2b Transmission through four-layer fcc crystal as a function of (I), 0, 10
GHz, dsphere = 31 mm, nsphere = 1.5.
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Figure 5.2c Transmission through four-layer fcc crystal as a function of d), 0, 15
GHz, dsphere = 31 mm, nsphere = 1.5.
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Depiction of the information in three-dimensions better guides the eye in visualization of

the effects changing the variable 0, (I) and f. Using a two-layer structure, the transmitted

intensity is mapped in Figures 5.3a-c, in dBm, at the self-focusing point (y = z = 0) as a

function of incident angle, 8 and azimuthal angle. (I), at a given frequency. In Figures

5.4a-c the transmitted intensity is plotted in dBm, as a function of frequency through a

range of the azimuthal angles, (I), at a given incident angle, 0. The values in these plots

were adjusted to account for changes in detection and reception efficiencies over the

frequency range of interest.

Figure 5.3a Contour plot of transmitted intensity [dBm] at the self-imaging point as a
function of incident and azimuthal angles at f= 5 GHz.



Figure 5.3b Contour plot of transmitted intensity [dBm] at the self-imaging point
as a function of incident and azimuthal angles at f= 10 GHz.
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Figure 5.3c Contour plot of transmitted intensity [dBm] at the self-imaging point as
a function of incident and azimuthal angles at f= I5 GHz.
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5.3 Discussion of Results

Propagation in photonic crystals may be described by a combination of local and

extended mode analysis. As was demonstrated, many simulation programs fail to give

adequate results. For that reason, a systematic mapping of the transmission through the

photonic crystal was undertaken.

The transmission through the cubic, close-packed structure is governed by the

four-fold symmetry when the direction of propagation is made along the <111> direction

and the radiation is integrated. In addition, the structure has two major directions for

which the propagating beam is transversely prohibited: these are the <100> and <110>

directions. The results show that the number of excited modes depends on the incident

angle, 0, azimuthal angle, 0, and the numerical aperture of the incident beam. Yet, one

should expect that the number of transmission maxima as a function of azimuthal angle,

doubles when the incident angle is close to the transverse confining situation.

Such behavior is indeed demonstrated in all measurements. The positions of

these maxima vary as a function of the incident angle and frequency. Transmission

variation at points of rapid phase shift has been simulated for thin two-dimensional sub-

wavelength photonic crystal 31 . From these studies, ultrarefractive behavior was predicted

with effects ranging from transmitted power variation, a transmission analogy to Goos-

Hanschen shift, beam widening and beam splitting. Unfortunately, there is no equivalent

rigorous numerical technique for three-dimensional crystals. Yet, these experimental

results demonstrate analogous behavior in the three-dimensional case. Large

transmission variations in the vicinity of rapid phase shifts are correlated with transverse

confinement of the wave propagation. These transverse confinements imply the
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existence of 'magic angles', for which the transverse component of the wavevector is

prohibited from propagation. This means, k, = k0neffsin(θ) = qπ/Λ, with q = 1/2,1,2,3...,

where Λ is the structure pitch and neff = l.369. For example, at f = 10 GHz, one magic

angle is calculated at 0 = 21 ° and 0 = I0 ° , for Λ = 31 mm, q = 1 and q = 1/2, respectively.

Another angle exists for √2Λ0: this occurs at 0 = 14.5 ° for q = 1. Changes in the nature of

the beam transmitted through the crystal are observed at, or near these angles. Figure

5.3b exhibits a transition to a single peak at 0 = 10 ° and 25 ° from two peaks at 0 = 0 ° and

0 = 20° . For example, these changes are observed for 4 = 0 ° and 10° < 0 < 25 ° in Figure

5.3b. The effect of change in the number of peaks is more pronounced for the optical

data (Figure 5.6): there, the A = 45 ° interval is replaced by A = 90 ° through the 'magic

angle' of 0 = I8 ° (q=1/2).

Figure 5.4a Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 0 degrees.
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Figure 5.4b Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 10 degrees.

Figure 5.4c Contour plots of transmitted intensity variations [dBm] as a function of
radiation frequency and azimuthal angles at an incident angle of 0 = 25 degrees.
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The change in peak characteristics is also pronounced as the radiation wavelength

becomes comparable to sphere's size. This corresponds to a frequency of approximately

9.7 GHz. For example, in Figure 5.4b, note the change in number of peaks and their

characteristics close to the magic angle of 0=10° as the frequency is scanned from f = 5 to

f = I5 GHz. At the (I) = 0 axis, the power decreases from 2.00 dBm to 0.83 dBm from 5

to 10 GHz and then increases to 2.83 dBm at 15 GHz. (The power values are adjusted for

changes in signal sensitivity over the frequency range in order to make a valid

comparison). This is also true for f-10 GHz near the other 'magic angle' of 0 = 22°

(Figure 5.4c at 0 = 25°). These changes are more pronounced in Figure 5.5 at 0 = 10 ° ,

where the arrows point to the position of the peaks with 0(I)=90 ° interval.

By comparison, the overall transmission was decreased at the 'magic' angles

where more peaks appear. This is true for both optical and microwave experiments.

Note that the optical sample was twenty wavelengths thick compared to the

corresponding 2.5 wavelengths thick microwave sample. Crystal imperfections and

therefore, couplings between polarization modes may explain the additional peaks in the

optical experiments.

In Figure 5.5 the transmission variations at I0 GHz across four layers of sample is

revisited for 0 = 0 °, 10° and 15°, respectively. The angle 0 = 10 ° is close to the predicted

`magic angle'. The doubling or even quadrupling of number of transmission peaks is

evident.

A similar experiment was conducted using laser radiation 32 of λ = 0.532 microns

and an artificial opal structure with sphere diameter of d = 0.300 microns (Figure 5.6).

The effective index of refraction of the structure was, neff = 1.35. In these experiments,
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the opaline structure contained 40 layers. Both angles of incidence and azimuth were

varied. Figure 5.6 illustrates intensity data taken at two degree intervals while rotating

the structure from (I) = —50 through d = +50 degrees at angles of incidence varying from

16° to 20° . The periodic intensity variations may be observed at approximately Δφ = 45°

intervals at the 'magic angle of 0 = 18 ° . The situations change just below or above this

angle.

Figure 5.5 Transmission through 4-layer fcc crystal as a function of 4, 0, dsphere = 31 mm,
10 GHz, revisited. Emphasis is placed on the position of the peaks, denoted by arrows. (a)
Incident angle, 0 = 0 degrees. (b) Incident angle, 0 = 10 degrees (close to the 'magic'
angle). (c) Incident angle, 0 = 15 degrees.

5.4 Correlation to Simulations

It was concluded in simulations provided qualitative insight into the nature of azimuthal

angle (4) variation. In that effort, simulation results agree qualitatively with the
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experimental results but do not yield a precise match to the experiments. Due to the

conditions forced by the computational limitations, it appeared that simulation of incident

angle variation would be too far removed from the physical reality of the system under

study and would not reveal any new facts. Worse, since the features modified are critical

parameters for the formulation of the photonic band gap, it was thought the

approximations may even provide misleading data. Although simulation has some use in

determining the self-imaging distances 37 it is clear that it did not determine the true

polarization state of the output wave 32 . Consequently, simulations were abandoned for

this portion of the study.

Figure 5.6 Experimental results for artificial opal, λ = 0.532 1.1m, d = 0.300 µm. The
structure consists of 40 layers with an approximate total thickness of 10 µm. The data
is normalized to a reference signal.
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5.5 Conclusions

In summary, it is demonstrated that the transmitted intensity variations occur at regular

intervals depending on the spatial orientation of the fcc crystal structure with respect to

the polarization of the input beam. These variations can be correlated with the

crystallographic symmetry in addition to transverse Bragg confinements. Due to the

complicated nature to the propagation through the media, it is difficult to formulate

numerical or simulation models to accurately predict the precise behavior. Better

simulation tools are needed to grasp the full notion of these three-dimensional structures.

These findings provide insight to wave propagation in three-dimensional photonic

crystals and specifically in the optical regime, since it is demonstrated that the results are

scalable.



CHAPTER 6

HYBRID METAL — DIELECTRIC PHOTONIC CRYSTALS

6.1 Introduction

One can easily see that the dielectric contrast is a key design parameter in photonic

crystal fabrication. In most photonic crystals, the variation of dielectric contrast is

actually accomplished by increasing the air space between the dielectric media or

increasing the dielectric thickness between air spaces in negative contrast crystals. In this

phase, a radically different approach is tried. A hybrid metal-dielectric crystal is

constructed to alter the dielectric contrast of the media (in all three dimensions) as well as

the effective overall dielectric constant of the media.

Usually, the addition of metal elements into a waveguide would be expected to

incur losses that may be unacceptable to performance. Recent work, however, suggests

that this may not be the case. In recent work by Ebbesen, a hexagonal array of

subwavelength circular apertures is claimed to have greater than unity transmission

efficiency. While there is some dispute about this claim, the observations were in

opposition to the expected transmission efficiency t oc d/2 4 , where d is the aperture

radius. Thus, according to Ebbesen, the intensity of the transmission would be expected

to fall off as I ∞ λ -1 with range from the aperture array.

In the experimental results demonstrated thus far, there is an analogous behavior

with subwavelength imaging and transmission through crystal. Consequently it is

assumed that analogous behavior is possible in photonic crystal with metal elements.

Several effects are possible. Assume that the overall dielectric contrast of the system
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may be locally increased between crystal planes. On the other hand, the effective

medium viewpoint will lower the overall medium contrast between the bulk crystal and

air due to the addition of the metal elements into that crystal plane. From the viewpoint

of grating theory, electromagnetic surface waves (surface plasmons) will be excited in the

metal components, consequently affecting transmission. This must occur through

coupling of the surface plasmon modes with the propagating modes of the transmitted

beam. Thus a discussion of surface plasmons is in order in preparation for the next series

of experiments, where analogous behavior is explored in the context of the fcc crystal

system.

6.2 Surface Plasmons

Surface plasmons, or electromagnetic surface waves, can occur at the interface of a

homogeneous dielectric and a periodic dielectric or at a dielectric-metal interface. In the

first case, these wave modes are evanescent Bloch waves of the periodic medium, as

discussed earlier. In the second, an important distinction to observe is that the transition

is from a medium of positive to negative dielectric. In the context of the dielectric-metal

interface, surface charges are induced in a conductor. Oscillations of the surface charges

are excited in the conductor interface when the correct conditions are present. If the

system under study is similar to a grating, electron momentum and the incident photons

have to match with matching grating conditions for the excitation of surface plasmons.

In the context of the experimental coordinate system used here, this relationship is

expressed by':
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where: ksp is the surface plasmon wavevector: k,, = (2π/λ) sin θ, or the component of the

incident beam wavevector in the plane of the media, where 0 = 0 is defined as normal to

the plane of the media, Gy = Gz = 2π/Λ, the media (or grating) momentum wavevectors

for a square array, where Λ is the crystallographic period or pitch and n, m denote

integers. Ebbesen acknowledges that this effect is sensitive to polarization7 , which will

be explored to some degree in this experiment. Another dependency noted in the

Ebbesen experiments is the depth of the apertures in the conductor. In the context of the

experimental three-dimensional analogy, this is represented by the periodic layering of

conductive spheres in the fcc crystal matrix.

With this knowledge of surface plasmons, assume that the effect of the dielectric-

metal media on a penetrating beam will be similar to that already seen with pure

dielectric. However, it is expected that the metal components will enhance some of the

effects already observed through enhancement of the formation of surface plasmons.

6.3 Experimental Setup

This experiment comprises two phases, an examination of the self-imaging distance as a

function of range in the crystal and a view of how polarization affects the transmission,

also as a function of range. An fcc crystal, of dsphere = 10 mm polypropylene and steel

spheres was assembled. The dimensions were scaled to be comparable to the wavelength

of microwave radiation in the f = 5 - 15 GHz range. Minority steel spheres were placed

in a next-nearest-neighbor distribution in all three dimensions within the crystal. The

crystals were thin compared to the wavelength of the incident beam, not more than 10

layers of spheres, which ranges between approximately I to 5 wavelengths. A
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microwave beam was directed through the crystal central axis of the (111) crystal face

with the polarization oriented along the y-axis, as in the previous experiments. The

crystal was successively built up, layer by layer, and subjected to a measurement of the

transmission through the crystal at the center of the output plane through azimuthal

rotation of (I) = 0° - 360°. Two dielectric medias were used, polypropylene (nsphere = 1.5)

and Al203 ceramic. The Al203 ceramic had a refractive index of nsphere = 2.25, based on

density43 of the Al203 media. Consequently, it is possible to compare results with two

media with significant contrast. To begin, the self-imaging qualities of the hybrid crystal

are assessed. Experimental results are plotted in Figures 6.2a-c.

Figure 6.1 Photograph of polypropylene and metal fcc crystal, dsphere = 10 mm.
Scale on bottom of photograph is in millimeters. Beam propagation was out of the
page, relative to the figure,



Figure 6.2a Polypropylene and metal media, dsphere = 1 0mm, f = 5 GHz.
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Figure 6.2b Polypropylene and metal media, dsphere = 10mm, f = 10 GHz.
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Figure 6.2c Polypropylene and metal media, dsphere = 10mm, f = 15 GHz.

6.4 Results

The dielectric-metal hybrids demonstrate self-imaging qualities not unlike the pure

dielectric case. Strong imaging is noted at 5 GHz and less so at the higher frequencies.

This is consistent with the pure dielectric case. Changing the dielectric contrast has a

greater effect than in the pure dielectric case, however. In the polypropylene-metal

crystal, the imaging distance is 48 mm as demonstrated in Figure 6.2a. Yet, with the

change in dielectric contrast in ceramic-metal crystal, the imaging distance changes to

between 16-24 mm as illustrated in Figure 6.4a. A series of small maxima between 0.5

and 1.0 dBm is noted at 10 GHz and 15 GHz in the polypropylene-metal hybrid,

illustrated in Figures 6.2b and 6.2c. The same series of maxima is present at 10 GHz in

the ceramic-metal crystal. However, the waveform changes radically at 15 GHz (Figure
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6.4b and 6.4c). Here there is a broad maxima at approximately 44 mm from the initial

peak.

Since the strongest imaging is demonstrated at 5 GHz, there results can be

examined more closely and compared to the pure dielectric cases. Note that the only

change to the crystal is the introduction of metal, the crystal period, feature size, etc.,

remains the same. Figures 6.5 and 6.6 show that introduction of metal into the crystal

changes the self-imaging period with dependency on the dielectric contrast. In the

polypropylene-metal case the self-imaging distance is approximately 1.5 times that of the

pure polypropylene crystal, as illustrated in Figure 6.5. The peaks are also less distinct in

the polypropylene-metal case. Despite this, the interpeak loss is almost identical, which

is a somewhat surprising result. Introduction of metal elements introduces a complex

component into the effective dielectric constant and into the effective refractive index of

the media.

Figure 6.3 Photograph of ceramic and metal fcc crystal, dsphere = I0 mm. Beam
propagation was out of the page, relative to the figure.



Figure 6.4a Ceramic and metal media, dsphere = 10mm, f = 5 GHz.
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Figure 6.4b Ceramic and metal media, dsphere = 1 0mm, f = 10 GHz.



Figure 6.4c Ceramic and metal media, dsphere = 10mm, f = I5 GHz.
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Figure 6.5 Polypropylene media (dashed line) compared to polypropylene /metal hybrid,
dsphere = 10mm, f = 5 GHz.
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Figure 6.6 Ceramic media (dashed line) compared to ceramic/metal hybrid, dsphere =

10mm, f = 5 GHz.

Thus, greater attenuation is expected than in the pure dielectric case, which is not

demonstrated by these results. Figure 6.6, which illustrates the ceramic-metal crystal at 5

GHz, also demonstrates a low interpeak loss. Note that the self-imaging distance does

not change significantly between the metal-ceramic case and pure ceramic crystals. Yet,

the nature of waveform is different, the formation of an initial image at less range in the

metal-ceramic case is observed. The peak width of this image is narrowed also. From

these observations, it can be concluded that reduced dielectric contrast between the metal

elements and dielectric media appears to promote the subwavelength self-imaging effect.

6.5 Discussion of Self-Imaging Observations

Analogous behavior is demonstrated between the periodic array of subwavelength

apertures in metal film and metal-dielectric three-dimensional photonic crystal. As



117

Ebbesen notes, the mechanics of surface plasmon coupling between the front and back of

the array of apertures is not well understood', yet it is a more complicated problem in the

3-dimensional crystals. Despite this, the effect of surface plasmons on the throughput is

suspected due to the low interpeak transmission loss.

Yet, it is clear that greater than unity transmission efficiency (which is manifest in

the self-imaging maxima) is possible in pure dielectric case thus the surface plasmon

effect cannot be the sole contributor. One theory involves the contribution of the effect

of negative permittivity. As Enoch points out, in the region approaching and in the

photonic band gap, the permittivity approaches zero ultimately becoming a real negative

number31 . Consequently, the index of refraction becomes complex. This is a primary

contributor to the ultrarefractivity phenomena. Thus, it can be postulated that addition of

metal elements affects self-imaging through this mechanism. As observed in the first

self-imaging experiments, reduction of the dielectric-air contrast resulted in a longer self-

imaging period. Addition of the negative permittivity features (metal) to the crystal

increased the self-imaging period here for low contrast material (polypropylene). In the

ceramic case, there was little change in the imaging distance. Expected contributing

factors for this were the higher permittivity material and the relatively low density of

metal elements. With the contribution of the higher permittivity material, the effective

index of the bulk crystal did not change greatly. However, the local, e.g., planar, index

changed enough to affect the shape and nature of the waveform.

If tailoring of the fcc crystal is possible to introduce contrasting dielectric and

conductive elements, it can be concluded that it is possible to control the transmissivity of

the crystal, as demonstrated by these experiments. Although construction of the
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macroscopic crystal is relatively simple, it is not yet possible to construct these crystals at

optical wavelengths. However, the construction of hybrid-metal photonic crystals may

be a field for exploration through various microfabrication techniques. There is no reason

to believe that scaling this type of hybrid metal-dielectric crystal to optical wavelengths

would not produce the same general results.

6.6 Variation of the Azimuthal Morphology

It is expected that transmissivity of the hybrid metal-dielectric crystal to be affected by

polarization, possibly more than the pure dielectric case. It was demonstrated earlier that

pure dielectric crystal is also affected by polarization in varying degrees, depending on

the ratio λ/Λ. The expectation is that the crystallographic pitch, Λ, will change with the

rotation of the crystal for a given polarization state. For the generally square array of

metal features embedded in the fcc crystal as illustrated in Figures 6.1 and 6.3, one would

expect a 90° polarization periodicity at angles of 0°, 90°, 180°, 270° or offset by 45° at

45°, I35°, 225° and 315°. In the context of surface plasmons, the media momentum

wavevectors, Gy = Gz = 2π/Λ, change as Λ varies with respect to polarization with this

periodicity also. In this experiment, the crystal depicted in Figure 6.1 was rotated (I) = 0°

to 360° using a procedure consistent with the previous azimuthal rotation experiment.

6.7 Results of Azimuthal Morphology Variation

Radiation transmitted through the crystal at 5 GHz has little dependence upon the

azimuthal orientation for fewer layers, however, a consistent 90° symmetry becomes

quite apparent at six layers evident in Figure 6.7a. At nine layers, it has a greater overall
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transmissivity through the crystal. Figure 6.7b shows the transmission power variation

for each layer of media. At layers six, seven and nine, the power diverges the most,

however, it is only a 1-2 dBm variation. At 5 GHz the filtering effect of azimuthal

orientation is weak. Examining Figures 6.8a and 6.8b (10 GHz), significant variation is

noted, again with (I) = 90° periodicity, beginning at layer three. As the number of layers

increases, the effect is progressively stronger. The quality of the plot also changes, the

symmetrical periodic behavior achieved at layer six is lost at layer nine. The minima in

layer six are at approximately 90° and 270°, at layer 9 the 270° minima is lost. Figure

6.8b depicts a steady loss as the number of layers increases but greater deviation, up to 4

dBm, is noted. Steady loss with increasing layers is consistent with the self-imaging

behavior observed. When the experiment is repeated at 15 GHz, the filtering effect of

azimuthal angle variation is most pronounced with a minima that near 180°. Increasing

the number of layers increases the prominence of this feature (Figure 6.9a-b).

6.8 Discussion

Like the pure dielectric crystal, the azimuthal variation of the dielectric-metal crystal

increases with the addition of media thickness. Note that the effect is more pronounced

in the metal media results for a few hybrid crystal layers, which have transmission

variations greater than values obtained for the pure dielectric case, illustrated in Figure

6.10 for the I5 GHz, four-layer case. A hybrid crystal transmission difference of

approximately 5-6 dBm as opposed to 1-2 dBm in the pure dielectric crystal. Note also

the beginning formation of minima at an approximately interval of (I) = 90° (the 90° and



Figure 6.7a Multilayer transmission with respect to azimuthal angle, polypropylene
and metal fcc crystal, d = 10, f = 5 GHz.
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Figure 6.7b Transmission variation as a function of crystal layers, for selected
azimuthal angles, Sample is polypropylene-metal, d = 10 mm, f = 5 GHz.



Figure 6.8a Multilayer plot of transmission with respect to azimuthal angle,
polypropylene and metal fcc crystal, d = 10 mm, f = 10 GHz.

121

Figure 6.8b Transmission variation as a function of crystal layers, for selected azimuthal
angles. Sample is polypropylene-metal, d = 10 mm, f = 10 GHz.



Figure 6.9a Multilayer plot of transmission with respect to azimuthal angle,
polypropylene and metal fcc crystal, d = 10 mm, f = 15 GHz.
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Figure 6.9b Transmission variation as a function of crystal layers, for selected
azimuthal angles. Sample is polypropylene-metal, d = 10 mm, f = 15 GHz.
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180° peaks are slightly skewed) which becomes more apparent at greater layer numbers

(Figure 6.9a).

A few explanations can be proposed for this phenomena. It is noted that the

matching of the surface plasmon wavevector material component, G y = Gz = 2π/Λ, more

closely matches the incident beam wavevector as the incident wavelength becomes

comparable in size to the crystallographic pitch. Thus, the variation in transmission at (I)

= 90° intervals is expected as the distance between the metal minority spheres in their

square array within the fcc lattice changes. Yet, artifacts like the plot for 10 GHz, 9-layer

(Figure 6.8a) remain where there is an irregular transmission with respect to polarization.

This leads to the possibility that the slight misalignment between small numbers of

crystal layers with metal spheres has an effect on transmission.

Figure 6.10 Comparison of 15 GHz, 4-layer results for pure dielectric
(polypropylene, dotted line) and hybrid crystal.
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In the stacking of these crystals, the '13' layer of the fcc lattice was used for the minority

steel spheres. This was an intentional measure to ensure alignment of the spheres

through the depth of the crystal as much as possible. It can also be postulated that the

number of complete crystal periods also has an effect. The artifact is observed at nine

layers, which does represent three complete crystal periods in the direction of

propagation. Note that the artifact is not present in the I5 GHz results, thus it is expected

that it is a wavelength dependent phenomena. An immediate observation is the

difference in wavelength of the incident beam compared to the crystal period between

metal and pure dielectric layers. At four layers, the incident beam variation between 10

GHz and 15 GHz ( 18 mm) approaches matching the period of the metallic minority

sphere period in the crystal (Λmetal ≈  16 mm). This approach leads into nearly infinite

possibilities of arrangement of minority conductive elements in three-dimensions for

spectral filtering.

Although azimuthal variation filtering is more effective at higher frequencies due

to the matching conditions for the surface plasmon wavevector, note that changing the

frequency changes the azimuthal location of relative stop and pass bands. For example,

see Figures 6.7a and 6.9a, specifically the nine-layer results. In Figure 6.7a (5 GHz),

there is a maxima at (I) = 180° while in Figure 6.9a (15 GHz) a minima is at the same

position. Although this may be construed from the expression for the surface plasmon

wavevector, ksp = ky ± nGy mGz, note that this expression is formulated for a general

square array. In the case of these experiments, there is periodic square array in the

direction of propagation as well. Thus, the differences in transmission point to coupling

between the elements, or to an effect on the coupling of the propagating modes in the
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dielectric. As such, it is possible that a Fabry-Perot standing wave is set up between

layers, affecting the transmission through coupling with the propagating beam. To

reinforce this possibility, note the position of the minima at (I) 180° and that the

wavelength nearly matches the Λmetai , (minority metal sphere period). Formation of this

standing wave would vary with azimuthal crystal orientation with respect to beam

polarization due to the surface plasmon wavevector relationship.

6.9 Conclusions

Transmission through the metal-dielectric crystal is dependent upon azimuthal

orientation, frequency, thickness and upon the patterning of the metal features. Thus it

may be possible to construct devices for polarization or wavelength division filtering

once a structure is completely characterized.

The modification of the permittivity and consequently the self-imaging distance in

three-dimensional photonic crystals by the introduction of metal elements was

demonstrated. Results of this are consistent with the pure dielectric case. Lower than

expected interpeak loss through the range of the crystal, comparable to the pure dielectric

media, suggests low attenuation making this type of crystal viable for applications.

Further, by demonstrating the selectivity of the crystal azimuthal morphology as a

function of thickness and frequency, polarization selective filtering is possible.

A major finding is that selectivity of crystal azimuthal morphology reinforces the

significant role of modification of the transverse wavevector in affecting crystal

transmissivity. This finding provides significant insight toward development of photon

crystalline optical principles. Since the modification of the transverse wavevector is
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related to the photonic band gap, the technique of dispersal or patterning of negative

permittivity elements may lead to novel ways to engineer the band gaps. Changing the

slope or location of the band gap could result in the realization of novel optical devices.

Lastly, recall that modification or attenuation of the transverse wavevector was a primary

feature of the transverse Bragg waveguide. This feature can be combined with the

concept of a defect mode, that is, an intentional perturbation to change the density of

states of the propagating modes.



CHAPTER 7

INVESTIGATION OF DEFECT MODES IN FCC CRYSTAL

7.1 Introduction

One of the effects of the photonic crystal on radiation is photon localization. In 1987,

John conjectured that an analogous effect to electron localization could exist in photonic

crystals25 , based on Yablonovitch's predictions of the inhibition of spontaneous

emission23 .

Since then, the primary emphasis in photonic crystal is the identification and

characterization of photonic bandgaps. Propagation of radiation is prohibited in the

electromagnetic bandgaps in photonic crystal, at least for selected crystal directions. The

existence of a band gap is useful and is proposed for the construction of lossless mirror,

resonant cavities and so on36 . Localization occurs when a property is introduced into the

crystal that allows the existence of an eigenmode for propagation within a bandgap. One

technique of doing this is to introduce a void, or gap into the photonic crystal. Such an

introduction is called a defect mode implying there is an irregularity in the crystal along

which radiation can propagate in permitted modes. An analogy to this is the transverse

Bragg waveguide, already discussed. The periodic media on one or both sides of a

guiding region attenuate the transverse wavevector. In this context, the periodic media in

a photonic crystal affect the transverse wavevector propagation while the defect modifies,

or permits propagation in a particular direction.

Defect modes have been demonstrated by numerical simulation. Mekis details a

numerical method that simulates defect mode transmission through a one-dimensional

127
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slice of two-dimensional photonic crystal. In this work, propagation is calculated to

occur in a physical gap in a direction of the two-dimensional crystal where there is a

photonic band gap. Nearly lossless transmission is supported through the physical gap

turning very sharp bends26 . In standard waveguides or optical fiber, the bend radius must

greatly exceed the wavelength of the radiation, otherwise light leaves the waveguide.

The incident angle upon such a bend would not support total internal reflection and the

radiation would leave the guide. On the other hand, a metallic guide would also direct

the radiation, but with significant loss.

With this background the introduction of linear voids in the fcc crystals under

investigation is explored. Characterization of the fcc system for defect modes would be

particularly useful toward realization of microwave and optical devices. By extension of

the experimental work already done, an attempt to identify simple defect modes in the

crystal can be made.

7.2 Experimental Setup

For this phase of the experiment, crystal assemblies identical to the other experiments are

used. Input powers to the crystals were the same in all of the experiments, with some

exception where noted. Concentration is placed on the use of polypropylene and

polypropylene-metal crystals. These particular crystals are relatively well characterized

by the previous experiments and show lossy characteristics at f = 10 GHz. It is not

expected that this crystal will demonstrate a photonic bandgap since Yablonovitch

demonstrated that is it unlikely that a close-packed fcc crystal, especially one of relatively
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low index contrast will possess a band gap 21 . Thus, experimental data already

determined is relied upon to determine a situation that frustrates propagation.

Figure 7.1 illustrates the introduction of the void for the polypropylene crystal.

The material is transparent to microwave radiation. While the size of the void is quite

small compared to the wavelength at 5 GHz, the size becomes comparable at 15 GHz.

The photograph shows the cylindrical spacer just below the center of the crystal face, but

within the resolution of the detector. This spacer holds the spheres to construct a void

somewhat larger than the diameter of the cylindrical tube. It was difficult to preserve the

stacking order of the fcc crystal and introduce the void, some dislocations of spheres can

be noticed at the periphery of the crystal. However, it is expected that edge effects will

not contribute greatly. The general procedure of the experiment was to take a

measurement at each sector of the crystal face, illustrated in Figure 7.1. Measurement of

individual sectors was performed for each crystal layer. Each sector is the size of the

cross-section of the detector, thus a high-resolution field map is not possible. Despite

this lack of fine resolution it will be possible to gain enough information to detect

differences in power distribution across the crystal face as well as to make comparisons

to the bulk polypropylene and polypropylene-metal crystals.

7.3 Results

The 5 GHz results for the polypropylene with void resemble the bulk crystal, with three

significant differences. First, there is a significant power offset for the void results.

Power transmitted through the crystal with void is higher through all layers, with little
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Figure 7.1 Photograph of the polypropylene crystal with void introduced. Numbers
represent sectors of the crystal face used in measurement. Beam propagation is out of
the page. The transmitting antenna is on crystal lower face, opposite sector 5.

Figure 7.2a Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = 10 mm, f = 5 GHz.
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Figure 7.2b Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = 10 mm, f = 10 GHz.

Figure 7.2c Transmission through successive crystal layers, bulk polypropylene
(dashed line) and polypropylene with void near center, dsphere = 10 mm, f = 15 GHz.
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loss. In this case, it is suspected that this difference is due to an input power mismatch

between trials, since the zero layer result should be nearly the same for each of the plots

in Figure 7.2a-c. Despite this unknown, the qualitative nature of the result remains

useful. Imaging occurs as in the bulk result, which leads to the second difference. The

self-imaging distance has decreased in the crystal with void. Lastly, the crystal with the

void has the interval of the maxima shifted. The initial maxima occurs at x = 0, unlike

the results for the bulk crystal where the initial maxima occurs at x = 10 mm. At 10 GHz,

the same structure again yields a surprise. It is expected that it is more likely that a

propagation mode will exist as the wavelength becomes closer to the void size. Yet in

the 10 GHz case, the loss is actually greater than in the bulk crystal over an equivalent

range. Initially, the transmission is higher, possibly indicating propagation in the void

but by the tenth layer, the output is within I dBm of the bulk crystal. Effect of the void is

pronounced at 15 GHz also. Initially, the transmission through the crystal with void

shows a flat response, compared to the bulk crystal.

7.4 Discussion

Without zero-layer matching input powers in the 5 GHz result, only conjecture is possible

about any localization in the void. At the outset, it seemed that localization might have

been occurring in the void, with the modes excited outside the waveguide superimposing

the self-imaging maxima onto the localized modes. Note that the magnitude of the

maxima in the crystal with void is slightly less than those in the bulk crystal, supporting

this theory. Unfortunately, the zero-layer power mismatch renders this conclusion as

questionable. There is, however, no error in the observation of the change in the self-
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imaging distance. The same void at 10 GHz appears to retard propagation more than the

bulk crystal. At 15 GHz, the trends between void crystal and bulk are similar, yet there

remains an offset.

Although this segment of the characterization of the fcc photonic crystal may

seem less than conclusive it is possible to assume that, especially in the case of the void

crystal at 10 GHz (Figure 7.2a), that energy is coupling out of the central portion of the

crystal. To further investigate this line of thought, a void was placed off-center in the

crystal to determine if modes could be coupled through the bulk crystal into an off-center

void. While unsuccessful in demonstrating the coupling, this effort led to the observation

of propagation through other directions in the fcc polypropylene crystal.

Figure 7.3 Repositioning of the void off-center in the photonic crystal. Spherical
media fill is omitted for clarity.

Figure 7.4 shows propagation as a function of crystal layers measured in crystal

position #1 (see Figure 7.1 for the detector positions). In this particular experimental

trial, a void was introduced into crystal sector #3, so the propagation measured in position
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#1 was entirely through bulk polypropylene crystal. The microwave beam was launched

at the center of a { 111 } crystal face (as noted in Figure 7.3). Distinct self-imaging is

noted as well as an increase in the measured power. This is not an instrumentation

artifact, similar behavior was observed in the complimentary detector positions #3, #7

and #9. The introduction of the void in position #3 did not greatly affect the imaging

pattern, consistent with the observations from the introduction of the void into crystal

center, at position #5. These patterns were also highly reproducible in the center-void

crystal at the same (corner) positions. The detector position corresponds generally to a

<110> crystal direction, however, it is not possible to verify this exactly due to the

detector size. Note that other crystallographic directions are contained within the area of

the detector. Despite this, some conjecture can be made about this result.

Figure 7.4 Propagation at 10 GHz measured in position I, polypropylene crystal with
void at position 3.
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At 10 GHz, the center measurement as a function of layers shows more loss

overall than the pure dielectric crystal. It can be concluded that loss from the center is

coupling into modes propagating in the general <1I0> crystal direction. As power is lost

from the center mode, it is transferred into the modes in the <1I0> directions. At the

same time, the Bragg condition is fulfilled by the {110} planes. Recall that prohibition of

transverse wavevector propagation32 occurs when kx= k0neffsin(θ) =qπ/Λ, where q = 1/2,

1, 2 ,3..., where Λ is the structure pitch and n eff = 1.369. It is also possible that

k0neffsin(θ) = qπ√2Λ, recalling the spacing of Λmeta 1 with respect to the azimuthal crystal

orientation. Using this relationship, it is possible to calculate approximate values of 0 =

30° , 43 ° and 64° at f=10 GHz, for Λ = 10 mm, q=1 and q=1.5. These angles correspond

roughly to the angle between the (111) plane which is the incident plane and the (31I) or

(100), (310) and (211) crystallographic planes, respectively. The detector cannot

discriminate angles much smaller than 30 ° or 40 ° given the size of this crystal. So it is

likely that the transverse Bragg condition for propagation is prohibited or modified within

this range of angles in the crystal, resulting in the observed self-imaging.

The experimental observation of redirected self-imaging also confirms the

prediction of ultrarefraction and beam splitting in photonic crystal 33 . Moreover, it has

been demonstrated in three dimensions by these experiments, representing an

experimental first in the field. Although the initial exploration of propagating defect

modes in the fcc crystal met with limited success, this line of inquiry is continued for

completeness. The next step in the exploration of defect modes in the crystal is to

attempt redirection through the crystal through the defect mode.
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7.5 Redirection Through Defect Mode

A new experiment was devised where a field map was constructed of the five non-

incident crystal boundaries for ten-layer fcc crystals comprised of dsphere = 10 mm

polypropylene spheres, and a polypropylene/metal hybrid crystal. In this experiment a

90° void was introduced into the crystal, as illustrated in Figure 7.5. The void began on

the incident face and continued along the incident beam direction until the fifth layer

where it was redirected 90° to the side of the crystal, toward position A. Measurements of

the output microwave radiation with the detector polarization oriented vertically and

horizontally on selected side crystal faces were undertaken.

Figure 7.5 Introduction of a 90° void into the 10-layer crystal (spherical media omitted
for clarity). A, B, C and D positions are on the side faces (center) of the crystal.
Positions 1-9 are on the upper crystal face. Receiving antenna polarization with respect
to the A, B, C and D is noted.
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7.6 Redirection Results and Discussion

From the mapping effort, it is possible to examine redirection of energy at 90° through

the introduced defect mode. Table 7.1 enumerates the results. Very significant power

differences are noted at 10 GHz between results for the bulk polypropylene crystal (with

and without void) and the polypropylene/metal hybrid. In general, power output at

position A is highest for metal hybrid crystal, less for bulk polypropylene with void and

small for bulk crystal. This is visualized by the plot at Figure 7.6. Since birefringence is

not expected, the polarization of the redirected beam will be horizontal at positions A and

D, but vertical at position D. This is accompanied by a loss of throughput power at 10

GHz for the on-axis (center) measurement. For the polypropylene crystal with void, the

throughput at center is approximately 6 dBm less than the same crystal without a void.

Figure 7.6 Power throughput at side crystal faces A, D and C at noted polarization. The
void output is at position A.
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Comparison of the polypropylene/metal with void shows 9 dBm less center

throughput than the bulk crystal. Comparing the horizontal polarization measurements at

positions A and C, at 10 GHz, it can be concluded that there is redirection of energy

along the void. A difference of approximately I6 dBm is noted for the

polypropylene/metal crystal with void between the A and C positions (horizontal

polarization). Yet, a difference in throughput of only 3 dBm is noted in the

polypropylene-only crystal with void. Horizontal polarization measurement is consistent

with the polarization of the input mode and minimal birefringence. The output at

position D is also noteworthy. No void is installed at position D, yet a large throughput

difference is noted there when compared to both the polypropylene cases. These two

observations point to wide redirection of the propagating beam in absence of the void.

Numerical predictions assert that this is possible in close-packed fcc crystal systems 33 .

The effect is also observed in the hybrid metal crystal. The redirection of the beam is far

from lossless in this media, however. Consider also that the size of the transmitter

(identical to the detector) made it impossible to confine the input beam to the void.

Therefore other modes will always be present, as well as energy scattered in the case of

the crystal faces parallel to the crystal x-axis.

7.7 Redirection Conclusions

Summarizing the experimental findings:

1) Redirection along the 90° void is occurring for the hybrid dielectric/metal crystal.

2) Significant energy leaves the crystal through the D-side.
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Table 7.1 Void measurement results, polypropylene and poly/metal

Vertical polarization, position A
f [GHz] NO VOID (Poly Only) VOID (Poly & Metal) VOID (Poly Only)
5 -57.67 -63.50 -63.17
10 -44.33 -39.33 -46.I7
15 -42.17 -38.83 -48.17

Horizontal polarization, position A
f [GHz] NO VOID (Poly Only) VOID (Poly & Metal) VOID (Poly Only )
5 -51.00 -50.67 -49.I7
10 -54.50 -15.67 -28.50
15 -42.67 -37.00 -33.67

Vertical polarization, position C
f [GHz] NO VOID (Poly Only) VOID (Poly & Metal) VOID ( Poly Only)
5 -57.67 -59.33 -56.67
10 -44.33 -34.17 -40.50
15 -42.17 -37.I7 -49.50

Horizontal polarization, position C
f [GHz] NO VOID (Poly Only) VOID (Poly & Metal) VOID (Poly Only)
5 -57.67 -51.67 -50.33
10 -54.50 -31.83 -31.50
15 -42.67 -37.00 -41.33

Vertical polarization, position D
f [GHz] NO VOID (Poly Only) VOID (Poly & Metal,) VOID (Poly Only)
5 -43.33 -42.33 -43.50
10 -32.33 -16.50 -34.50
15 -49.67 -43.83 -45.67

Horizontal polarization, position D
f [GHz] NO VOID (Poly only) VOID (Poly & Metal) VOID (Poly Only)
5 -63.50 -56.83 -65.00
10 -4I.50 -34.17 -41.33
15 -42.67 -31.00 -41.50

Parallel to transmitter polarization, Position 5
f [GHz] NO VOID (Poly only) VOID (Poly & Metal) VOID (Poly Only)
5 -36.67 -37.83 -40.33
10 - 0.33 -9.00 -6.33
I5 -I7.17 -2I.50 -23.67
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From this segment of the experiment it is concluded that propagation can be enhanced by

the inclusion of defects in the fcc crystal. Due to the lack of a complete bandgap, at least

in the crystal directions examined, the redirection of energy is not nearly lossless.

However, the phenomena is frequency-selective and may be useful for device

realizations. Another conclusion is that redirection of the energy may also be occurring

due to ultrarefraction without influence of the void defect, evidenced by the position D

measurements in the polypropylene/metal hybrid crystal. Thus, the polypropylene/metal

crystal will be examined in more detail.

7.8 Evidence of Ultrarefraction in the Polypropylene/Metal

Hybrid Photonic Crystal

Seeking the presence of defect modes in the hybrid crystal yielded strong evidence for

ultrarefractive behavior, illustrated in Figure 7.4. To this end, a complete field map of all

five non-incident sides of a solid hybrid metal crystal was constructed. Templates on

each side of a microwave-transparent box were setup for the detector in both vertical and

horizontal polarizations. Measurements for eight and ten-layer crystals were conducted

with the beam input at the center of a (111) crystal plane. The criteria for

ultrarefractivity is the presence of a power measurement within 6 dBm of the center

output face power measurement.

7.8.1 Results of Field Mapping

Enumeration of the field maps for selected polarizations is given in Tables 7.2 and 7.3.

The positions of the numerical results in the table reflect their position on that particular

crystal face. In the experiments with crystal voids significant transmission was noted on
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Table 7.2 Field maps for the B and D crystal sides, all values in dBm.

Side B (Metal & PP Solid ,10 LAYERS) - Vertical Polarization:
5: -52.67 5: -46.17 5: -46.83 5: -54.33
10: -28.17 10: -15.17 10: -I7.I7 10: -34.I7
15: -35.83 15: -50.83 15: -44.17 I5: -40.33

5: -42.33
10: -20.00
15: -31.17

5: -55.83 5: -44.83 5: -45.67 5: -53.33
10: -27.83 10: -17.50 10: -16.I7 10: -34.67
15: -37.83 15: -44.83 15: -36.I7 15: -47.67
Position 5 (top center) 5: -37.85 10: -9.00 15: -21.50

Side D (Metal & PP Solid ,10 LAYERS) - Vertical Polarization:
5: -66.00 5: -46.50 5: -46.50 5: -64.50
10: -37.67 10: -22.33 10: -28.83 10: -27.I7
15: -32.83 15: -34.17 I5: -36.67 15: -47.50

5: -42.50
10: -24.83
15: -26.67

5: -5I.50 5: -42.17 5: -43.33 5: -62.50
10: -32.50 10: -12.17 10: -I5.83 10: -28.33
15: -32.17 15: -32.50 15: -30.00 I5: -40.00
Position 5 (top center) 5: -37.85 10: -9.00 15: -21.50

the D-side center. Field mapping of this side and the complimentary B-side in hybrid

bulk crystal reveals less significant power being directed to these positions at 10 GHz

(-I0 dBm), compared to throughput noted in the crystal with the void. In comparison, the

top crystal face power (at center, position #5) is -I0.33 dBm. On the B-side for vertical

polarization, sectors surrounding the face center show significant power throughput (-15

to -17 dBm). These values are underlined as a guide to the eye. In addition, the power

just below and left of center on the D-side for vertical polarization is -12 dBm, also

underlined. The power at the complimentary position to the right is only a little lower, at

-15.83 dBm. Since these are at acute angles to the incident beam, it may be a reflection

from a crystal plane.
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Consider that the size of the detector resulted in some overlap of these

measurements, so it is possible that the beam is being redirected through some solid

angle, generally perpendicular to the crystal center axis. This behavior is not entirely

Table 7.3 Field maps for the A and C crystal sides, all values in dBm.

Side A (Metal & PP Solid ,10 LAYERS) - Horizontal Polarization:
5: -53.00 5: -67.33 5: -54.83 5: -52.17
10: -42.17 10: -23.67 10: -21.50 10: -29.00
15: -33.33 15: -32.00 15: -43.17 15: -28.33

5: -50.17
10: -I9.67
15: -28.83

5: -55.33 5: -50.00 5: -48.17 5: -57.67
10: -39.67 10: -15.83 10: -14.83 10: -30.00
15: -43.33 15: -33.00 I5: -37.67 I5: -29.17
Position 5 (top center) 5: -37.85 10: -9.00 15: -21.50

Side C (Metal & PP Solid ,10 LAYERS) - Horizontal Polarization:
5: -51.17 5: -57.17 5: -54.50 5: -53.67
10: -38.50 10: -20.00 10: -24.67 10: -22.67
I5: -32.33 15: -32.67 15: -37.83 15: -31.33

5: -52.33
10: -I3.83
15: -40.67

5: -61.00 5: -61.83 5: -54.83 5: -53.83
10: -22.83 10: -17.83 10: -I9.00 10: -27.00
15: -37.00 15: -50.17 I5: -34.33 I5: -47.67
Position 5 (top center) 5: -37.85 10: -9.00 I5: -21.50

unexpected, since some predictions based on numerical results have been made

concerning redirection in opaline three-dimensional photonic crystals. Predictions have

the beam redirected through large azimuthal and transmitted angles compared to the

incident angle33 . This experiment provides experimental confirmation of the phenomena

in three-dimensional crystals. In addition, the results of azimuthal and incident

morphology provide a reciprocal confirmation of the numerical predictions. Comparison
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of the A and C-sides at horizontal polarization confirm the redirection of the beam,

particularly to the C-side (center value of —13.83 dBm, underlined compared to the —9.00

dBm value at the top of the crystal at position #5). Again evidence of reflection, or

possibly obtuse beam redirection, in solid dielectric/metal crystal is observed.

7.9 Conclusions Regards Ultrarefractivity

The results qualitatively suggest ultrarefractivity since significant, although lossy,

redirection of the beam is taking place through 90° without the presence of a void. Since

the detector size is large compared to the crystal face, exact determination of the angle

from the incident beam is not possible making comparisons to particular crystal planes

difficult. Yet, there is a consistency in the results since the crystal side sectors exhibiting

the higher power transmission may be in similar crystal planes to the observations of

Figure 7.4. It is difficult to express observations on the transverse wavevector

propagation for the crystal side sector results, since it was not possible to examine the

propagation through the crystal layer by layer, as can be done with the top face. Despite

these difficulties, beam splitting and ultrarefractivity is demonstrated in the three-

dimensional metal/dielectric crystal system. Of course, the frequency selection, dielectric

contrast, minority metal sphere pattern are all variables that have not been explored in

detail.



CHAPTER 8

CONCLUSIONS

8.1 Contributions

In this dissertation, the characteristics of three-dimensional face center cubic (fcc)

photonic crystals were explored as self-imaging components and as polarization and

frequency selective components. The experimental work performed represents a first

detailed examination of the fcc photonic crystal system, in particular for it's optical

properties.

The experimental characterization advances work started in 1836, by F. Talbot

and his initial observations of self-imaging. Photonic crystals studied in the experiments

presented here show some analogous behavior to the self-imaging developed from

Talbot's work. In addition, a short-range imaging effect, where the images form at

intervals shorter than the beam wavelength caused by propagation through media of

features smaller than the beam wavelength, was also identified. Such a phenomena was

not predicted by Talbot or Rayleigh, since it is below the Fraunhofer diffraction limit.

Dependence of the self-imaging phenomena was correlated to frequency, polarization,

dielectric contrast and feature size. The mechanisms of transverse wavevector frustration

and ultrarefractivity are proposed as the causative factors for these phenomena. Work

performed in this dissertation experimentally confirms several numerical studies of

predicted optical effects in photonic crystals. Further, it demonstrates a three

dimensional analogue to behavior observed in photonic crystals of less than three

dimensions.
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In addition, frequency selectivity and polarization selectivity was demonstrated as

a function of crystal morphology. The bulk of photonic crystal work performed to date

concentrates on the identification of a photonic band gap as a function of crystal

morphology, whereas this study concentrates on the transmission characteristics. The

results provide evidence for some predicted effects from numerical work and identify

significant new findings that arise from the use of small crystals that are a few

wavelengths of the incident radiation in overall dimension. One result is the dependence

on azimuthal morphology matching of crystalline planes. Frustration of the transverse

wavevector, as in a transverse Bragg waveguide, is explored as an explanation for the

incident morphology's effect on transmissivity of the crystal.

Throughout this effort, simulations based on finite element solving of Maxwell's

equations were used to guide the development of experiments. In doing so, the utility

and limitations of these simulations were identified. It was also found out quite early in

the effort that classical expectations based on diffraction left much to be desired in

predicting the behavior of these systems and that other analytical methods were

intractable. Overall, it was found that electromagnetic simulations in common use cannot

fully characterize this photonic crystal system, in particular, the polarization

dependencies. Moreover, inconsistencies between simulations used to determine band

gaps in generalized photonic crystal and the experimental realities of finite photonic

crystals have been identified.

Efforts led to novel experimentation with elements of negative permittivity in the

photonic crystal in an attempt to engineer the effective index of refraction, modify the

dispersion relation and/or enhance the formation of surface plasmons. Effects were
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examined in terms of self-imaging and azimuthal morphology. These effects were

correlated to the dielectric contrast and frequency and matching of surface plasmon

wavevectors. It was demonstrated that addition of these elements provides an additional

means to control the propagation of radiation through the crystal. Lower than expected

losses in propagation through the metal/dielectric hybrid also demonstrate it's usefulness

as an optical component.

Led on by analogous behavior predicted in two-dimensional systems, propagation

along void defects in the pure dielectric and metal/dielectric hybrid crystal was

investigated. While significant evidence for defect mode propagation was found, it is

recognized as being far from efficient and needs optimization. With the knowledge of

theoretical correlation of negative permittivity at the edge of photonic band gaps with

ultrarefractivity, the crystal was examined for ultrarefractive effects. Pursuing evidence

of defect modes led to the discovery of self-imaging ultrarefractivity in the

metal/dielectric hybrid photonic crystal. Unfortunately it was not possible to correlate

the ultrarefractivity to the dispersion relation since known models were suspect due to the

finiteness of the crystal and the resolution of the detectors. In the particular case

observed, however, energy lost to the center of the structure was coupled into a series of

images of increasing intensity along another crystal direction. This is the first known

report of beam splitting self-imaging ultrarefractivity in photonic crystal and may be a

particular consequence of the addition of elements of negative permittivity. Further,

reciprocity is suggested by the results, where beams can be redirected and filtered

through solid angles of the photonic crystal media.
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Overall, the fcc opaline crystal system, thought not to possess great usefulness

due to the lack of complete photonic band gaps (e.g., band gaps in all crystal directions)

has been demonstrated to have novel, interesting and possibly useful transmission

properties than can ultimately be characterized and controlled.

8.2 Applications

Several applications of these properties of the fcc opaline photonic crystal come to mind.

First, a frequency selective imager or filter can be envisioned. Beams of different

frequency can be input into the crystal and be redirected or imaged at various crystal

output direction, or possibly split into several beams. Arranging detectors judiciously at

these output directions may have application to optical switching, multiplexing or optical

interconnection. With the short range subwavelength self-imaging effect examined, one

can also envision very thin optical elements for use in detection or integrated optics

applications. Another use of this may be in optical masks for microcircuit production.

8.3 Research Directions

Many possible directions for future research are possible. Ultimately, the goal is

development of photonic crystal optics toward which it is hoped this experimental work

is useful. Without this, researchers are confined to (what was first termed by

Yablonovitch) the Edisonian experimental method adopted here. Analogous behavior in

two-dimensional systems or numerical predictions was used as a guide in this

exploration. In the short term, several specific topics for research for advancement in the

field can be suggested.
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First, advanced simulations that can accurately assess the propagation in the fcc

opaline crystal structure are needed. It can be surmised that the computing power exists

for such a task. To be fully functional, the simulation must account for the polarization

states and the surface plasmon coupling. Simulation and numerical methods are crucial

in the effort to fully characterize propagation in photonic crystal since the analytical

solutions are often intractable (as in Mie scattering, with the exception of a few special

cases) and the complexity of the problem is high.

Further characterization of ultrarefractivity is needed, as well. Limitations in the

extent of the crystals compared to the detector sizes made the exploration of

ultrarefractivity somewhat approximate. (Note that facilities and budget are a

consideration in the scale of the experiment!) Two avenues to do this are open. All of

the experiments performed here can be repeated in the optical regime. Or higher

resolution methods can be developed to better determine the angles. While construction

of optical monolayers poses a challenge, determined researchers could construct crystals

of larger extent or differing scale and measure it through 4π steradians of solid angle.

Another aspect of the research that is relatively unexplored is the construction of

three-dimensional metal/dielectric hybrid crystals. Design parameters used were chosen

in order to preserve some predictability in the context of gratings, surface plasmons, and

effective medium theories. Variation of the distribution or layering of the metal minority

spheres is an obvious starting point. However, it is possible to extend analogous behavior

to the large body of knowledge available concerning microwave propagation and

consequently explore other possibilities. In addition, extension of the fcc crystal

properties to microfabrication of pseudo-fcc opaline crystal with metal elements could be
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explored. Demonstration of these effects in the optical regime would be a notable

accomplishment in the field and verify the expected scalability of the crystal.

A low loss redirection of energy through the introduction of a defect mode has yet

to be demonstrated in three-dimensional crystal. The information of this experimental

study will provide useful insight to researchers making these attempts.

8.4 Final Remarks

In conclusion, several novel propagation effects have been identified for the fcc opaline

photonic crystals. Some are surprising, while other effects were hinted at through

analogous behavior observed or predicted in other crystal systems. Verification of

analogous phenomena in other crystal systems is an important contribution since it will

provide further study with a point of departure in the quest for cause. Armed with this

new knowledge of these experimental successes and failures, it is hoped that it will

provide direction and some inspiration to researchers investigating photon crystalline

optics.



APPENDIX

SIMULATION OF BODY-CENTERED CUBIC CRYSTAL

Early in the conduct of the study of wave propagation in photonic crystals, body-centered

cubic (bcc) crystals (Figure A.1) were subject to the same basic HPHFSS simulations as

the fcc crystals. For completeness, this data is included for reference purposes.

Figure A.1 Body-centered cubic simulation realized in HPHFSS. A cross-section of the
electric field magnitude is depicted within the structure at a range of approximately 11
mm from the incident face of the crystal,

The material parameters of the bcc crystal were nsphere = 1.5, A = 1.5dsphere and

dsphere 10 mm, Simulations were run at frequencies of 5, 7, 10, 12, 15 and 17 GHz. A

field cross-section was taken at intervals of 10 mm in the structure and the electric field

magnitude values at the center of the cross-section were plotted as a function of range in

Figures A.2 through A.7.
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Figure A.2 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 5 GHz, nsphere = 1.5, 6-layer media.
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Figure A.3 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 7 GHz, nsphere = I.5, 6-layer media.



Figure A.4 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 10 GHz, nsphere = 1.5, 6-layer media.

12 GHz
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Figure A.5 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 12 GHz, nsphere = 1.5, 6-layer media.



Figure A.6 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 15 GHz, nsphere = 1.5, 6-layer media.

153

Figure A.7 HPHFSS result for transmittance as a function of range within the bcc
crystal, f = 17 GHz, nsphere = 1.5, 6-layer media.
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Comparing these simulations to the fcc simulations of Chapter 2, one finds great

similarity. Periodic maxima occur, especially at 5 and 10 GHz, generally at the same

range as the fcc result. At 5 and 10 GHz, these maxima appear at Ls = 30 mm, while at

the 7 GHz the maxima are less distinct and further apart. For f = 15 GHz the maxima

may occur outside of the simulation bounds (assuming the media were continued) or, in

other words, the Ls is larger than the structure. At f = 17 GHz, periodic behavior is not

discernable.

Overall, it is reasonable to expect these similarities between the bcc crystals and

fcc crystals to become manifest in physical behavior. Imaging and azimuthally

dependent transmissivity can be assumed, since the {110} and 111I1 crystallographic

planes exist in the bcc system as well as the fcc system. Note, however, that this

simulation suffers the same constraints as the more detailed simulations of the fcc crystal

so the similarities may become more pronounced in a close-packed system.

Although the bcc system may be of less interest in terms of device development

(since the bcc system is generally more difficult to fabricate at small scales and is found

less commonly in nature) it may be of greater interest as a basic science problem. Due to

the lower filling fraction and simpler stacking symmetry, the bcc crystal system may be

of interest for simulation or numerical method development .
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