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ABSTRACT

DESTRUCTIVE DISASSEMBLY OF BOLTS AND SCREWS USING IMPACT

by
Kyung Geun Pak

Disassembly, the process of separating parts or components at the end of their useful life

is complex due to a variety of fastener shapes and variability in their damage during use.

As a natural solution, mechanical impact has been suggested as a cost-effective method

for destructive disassembly of joining elements,

The objective of this research is to improve the efficiency of impact disassembly

process by studying the characteristics of elastic waves caused by impact. This research

presents a new method for increasing the shear stress applied on the bolt head without

increasing the energy input invested on launching striker. The equations are developed

for the elastic waves in one-dimensional bar that transfers the impact energy to a

protruded bolt head mounted on an infinite elastic medium or structure. These

equations represent the stress wave for each period when the stress wave caused by

impact travels back and forth between the struck end and the other end that is in contact

with the bolt head mounted on an elastic body. The equations determine the impact load

exerted on the bolt head and also the impact force generated to shear-off the bolt head.

Since these equations are developed based on the assumption that the stress waves

reflect at the bolt-contacting surface with a constant ratio, the reflection characteristics

significantly affect the precision of the analysis.

The reflection characteristics from a bolt head are found to be more complex than

expected, and they affected the experimental result deviate from the analytical result.



However, the analysis and the experiment on relative evaluation between the developed

method and the conventional method show that the energy efficiency is improved with

the developed method.

The results can be used to design effective destructive disassembly procedures for

recycling processes and to develop new destructive disassembly devices for removing

bolt or screw fasteners. This research has potential for advancing de-manufacturing

technology resulting in an increase of disassembly efficiency and reducing recycling cost.
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CHAPTER 1

INTRODUCTION

Unlike the assembly process, disassembly process of products at the end of a life cycle

is generally manual and involves complex problems. The process is especially

difficult when dealing with a large variety of products and uncertainty in product

condition or damage after use. The aim of the disassembly process should be cost

minimization, hazardous materials isolation, and opportunities to re-use or re-utilize

materials and components. Therefore, an appropriate disassembly technology must

combine flexibility and robustness to be able to deal with these issues. The

disassembly process involves three activities: i) unfastening to separate the components,

ii) the destructive disassembly where either the fastener and/or the component may be

destroyed and iii) the partly destructive or semi-destructive disassembly where the

fastener can be destroyed during the disassembly process with no damage to the

components. The efficiency of the disassembly process is presently not well

understood especially for destructive methods such as cutting, sawing, or breaking the

joining elements e.g. screws and bolts. Since the efficiency in recycling is an

important issue, there have been some recent researches on destructive disassembly

techniques.	 In general, a product is a combination of parts or subassemblies

assembled by joining elements. 	 Therefore, determining the effort needed to

disassemble these joining elements has become a vital issue in de-manufacturing

research.

1
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1.1 Destructive Approaches in Product Disassembly

The purpose of product disassembly determines the procedure of disassembly and the

methods involved in each process. When a product is disassembled for service or

maintenance, the disassembly process should be reversible, so that the product can be

used as it is originally designed, In general, the disassembly processes for service

follow the inverse of assembly operation or other relatively simple processes.

However, when a product is disassembled for recycling purposes at the end of its life

cycle, there are many options for disassembly procedure and many more issues to

consider than dealing with newly assembled products, Such options and issues include

disassembly methodology, logistics problems, environmental concerns, security issues,

legal liability, indemnification, financial analysis problems and etc, Therefore, the

disassembly process becomes more complex and it demands a new technology that

would deal with these issues effectively. The destructive approaches in product

disassembly are widely accepted as recycling purposes for its economical advantages

and robustness.

In several disassembly line situations with the wide range of fastener geometry

and variation in fastener damage during use, it is advantageous to destroy the fastener

element to achieve economic viability of the process. Therefore in this study, the

research takes the destructive approach and focuses on developing a robust method for

breaking protruded head of joining elements such as screws and bolts by applying side

impact. Specifically, the analytical equations are derived to represent the impact stress

in a transmitter bar and the shear stress in the bolt head mounted on an elastic medium.

Based on the developed equations and the experiments, the efficiency of the developed

method in comparison with a conventional method is evaluated. The presented
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research should lead to an accurate determination of destructive disassembly effort of

commonly used fasteners and subsequently assist in developing an efficient destructive

disassembly procedure.

1.2 Research Objectives

The overall mission and objective of this research is to develop a new method, which

will improve the efficiency of destructive process for breaking protruded head of

joining elements by applying side impact. The analysis and the experimental tests

performed in this research will provide information needed to understand the impact

mechanism involved in the destructive disassembly process. Using this analysis, a

new method will be developed that creates higher maximum shear stress at the neck of

joining element without increasing the energy invested in launching striker. As

discussed in the literature review (Chapter 2), current researches do not address the

theoretical aspects of stress waves in one-dimensional bars used for transmitting impact

energy to bolt head. Therefore, the overall goal of this research is to investigate

theoretically and experimentally the mechanism involved in applying side impact on a

protruded joining element, and to develop a new method that will improve the

efficiency of the destructive disassembly process. More specifically, this research will:

1. Develop the equations representing stress waves in one-dimensional bar caused by

impact when the bar is in contact with a bolt head mounted on an elastic medium.

2. Develop the equations for the shear stress at the bolt neck from the equations of

stress waves. These equations will be developed for both cases of single reflection

and multiple reflections.
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3. Develop a new method that generates higher shear stress at the neck of joining

element without increasing the energy input to striker. A comparison between the

results from analytic equations of developed method and conventional method will

be presented.

4. Provide the experimental results that show the reflection characteristics of stress

waves from a bolt head and the profiles of stress waves generated by developed

method and conventional method. The experiments will prove the feasibility of

the developed method.

5. Evaluate the efficiency of the developed method in comparison with the

conventional method,

1.3 Research Approach

The approach taken to meet the objectives of this research is to:

1. Model the mechanical arrangement that is commonly used for applying mechanical

impact to a protruded head of joining element, Based on this model, the equations

of stress waves at the struck end will be derived for each period while the front end

of stress wave travels back and forth between the struck end and the other end that is

in contact with the head of joining element,

2. Transform the derived equations in Step 1 to the equations representing the stress at

the surface contacting with the head of joining element. These equations will be

converted to derive the equation for shear stress at the neck of joining element.

The derived equation for shear stress is useful in practical implementation.

However, the research focus will be on the stress at the surface contacting with the
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head of joining element.

3. Calculate and compare the maximum stresses at the surface contacting with the head

of joining element. The comparison will be made between the maximum stresses

acquired using the developed equations for the cases of single and multiple

reflections of stress waves.

4. Conduct experiments to find out the reflection characteristics of stress waves from a

protruded head of joining element mounted on an elastic body. The experiments

will be conducted to record the stress profiles near the joining element by applying

the conventional method and the developed methods.

5. Compare the experimental results to the analytic results and evaluate the factors that

cause discrepancies between them, The comparison also will be made between the

experimental results acquired by applying conventional method and the developed

method. The feasibility of new method will be demonstrated by showing the

increase of maximum stress.



CHAPTER 2

DISASSEMBLY IN DE-MANUFACTURING

2.1 Researches in De-manufacturing

Researches on disassembly are relatively recent activities. Because of demand from

consumer and new regulations from government, manufacturers are required to reduce

the quantities of manufacturing waste they generated or reclaim responsibility for their

product at the end of product life cycle. Consequently, a firm's competitiveness in

future world markets depends upon making environmental issues a central concern [I].

Recently, researchers have begun to address and devise general and standard solutions for

many aspects of product disassembly. Since disassembly is a necessary and critical

process for all end-of-life products, there have been many researches in how to design

products for easier disassembly. Much of this research emphasizes disassembly to

facilitate recycling [2][3][4][5]. There have been many researches on the design for

disassembly (DFD), which involves the development of products that are easy to take

apart to enable recycling. Research related to DFD has increased in recent years but a

major thrust of the work on disassembly has been focused on disassembly sequencing,

disassembly path planning, and the evaluation tool development. Gupta [6] and Penev

[7] have provided and overview of the ongoing research in disassembly and the trends for

future activities. Hrinyak [8] has examined the existing disassembly software tools

presently available to the designers. Recently, Shyamsunder and his associates [9] have

initiated work to build a three-dimensional virtual disassembly tool.

In order to find a method that evaluates a product's environmental consequences,

Life Cycle Assessment (LCA) methods have been researched extensively in recent years

6
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[10][11][12]. Vigon and Curran [13], Tummala and Koenig [14] and, Veldstra and

Bouwa [15] are the major studies related to LCA. These studies describe LCA as a

systematic procedure to evaluate energy use, raw material consumption and waste

emissions during the complete cycle of a product. The use of this procedure

necessitates the determination of extensive data regarding product's manufacture and

disposal, Though LCA studies have been popular in Japan, its use as a design tool is

unlikely until simpler procedures and accurate life cycle databases are developed (Hanft

and Kroll, [16]).

Another similar procedure called Activity Based Approach (ABC) has been

proposed by Emblemsvag and Bras [17]. This method is based on assessment of the

consumption of activities rather than energy or raw material. According to this

approach, all the operations associated with the remanufacture of a product are

considered as a single activity, Therefore, the product's cost is the sum of the costs of

all the processes performed on it during its life cycle. Using design parameters, the

procedure calculates alternative design metrics and compares associated activity costs.

The method has both advantages and disadvantages. It is easier for engineers to obtain

de-manufacturing costs in terms of dollars rather than energy expanded as in LCA

method. Zussman et al. [18] have determined the optimum end-of-life scenario for a

product. They use probability density functions for evaluation criteria of future

conditions through forecasts by experts. Issues such as future labor costs and expected

lifetimes of products are approximated with the forecasts.

A more recent procedure for the recovery analysis of products has been developed

by Navin Candra [19], This is a computer-aided design tool for recovery analysis of

products where the disassembly planning and optimization program is based on a
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decision tree. The designer inputs information as to the type of fasteners and the

constraints used and subsequently determines the most profitable de-manufacturing

scenario using a data and times. Hanft and Kroll [16], have presented a procedure for

evaluating Ease-of-Assembly for product de-manufacturing. They use a spreadsheet

like disassembly sequences for the same product with focus on manual disassembly of

business equipment. The method provides a means for identifying design weaknesses

and comparing alternatives. The authors indicate a need to develop similar procedures

for automated disassembly of products, which they claim to be a challenging task due to

unequal wear in each product, the variety of disassembly processes and the flexibility in

parts such as wires.

Masataka Yoshimura [20] has presented a design optimization strategy for

designing products for the complete life cycle. Product life cycle based on the

environment of a product is classified into three categories, which focuses on

"manufacturing products", "selling products" and "using products". After

comprehending the environments of the products, concurrent processing of information

and knowledge related to the product decision making is conducted so that the product

design satisfies the requirements of the scoring scheme to quantify the degree of

difficulty of disassembly of various fasteners. They have integrated all the disassembly

information into a CAD database, Their database is applicable to specific products such

as PC's. It needs to be expanded to be more generic and applicable to other products.

Most of the researches related to disassembly for recycling are to find a model to

compute the disassembly effort and to facilitate the economic analysis of the disassembly

activities, Das, Yedlarajiah and Narendra [21] introduced a methodology that support

and facilitate the economic analysis of disassembly activities. They presented a multi-
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factor model to compute the disassembly effort index (DEI) score, which is representative

of the total operating cost to disassemble a product. The DEI score can then be

compared against the projected market value of the disassembled parts and subassemblies

to get an economic measure. Based on the survey of various commercial disassembly

facilities, they have developed a multi-factor weighted estimation scheme. These

factors include: time, tools, fixture, accessibility, instruction availability, hazard, and

force requirement. The DEI scale, which is defined in the 0 to 100 ranges, is assigned

on a weighted basis to each of these factors. Then for each factor, an independent utility

scale is formulated using the assigned range as anchors. Using a conversion scale, the

DEI score is used to derive an estimate of disassembly cost and the disassembly return on

investment.

Knight and Boothroyd [22] analyzed disassembly activities in terms of financial

and environmental aspects. They presented methods for optimizing disassembly

sequences to release valuable or environmentally beneficial items as early possible. In

an effort to standardize disassembly operation times, Dowie and Kelly [23] conducted a

series of disassembly experiments with simple operations including destructive

operations. They recorded times for a wide variety of operations, including screw

removal, cutting, and snap-fit release. Kroll [24] and Kroll et al [25] developed a

method for estimating the ease of disassembly using work measurement analysis. Hanft

and Kroll [16] proposed a metric for evaluating disassembly activities such as: drilling,

sawing, grinding and proposed a metric for evaluation. Other work extends to include

disassembly for maintenance [26][27][28][29] as well as remanufacture [18]. The

primary emphasis in disassembly is to minimize machine downtime and maintenance

labor cost.
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Seliger, Hentschel and Wagner [30] reported several research projects including

design of new tools for disassembly, logistics, product evaluation and disassembly

planning, and design for disassembly, Among the examples of research proposals, they

presented a disassembly tool that create acting surfaces during the disassembly process

using impact stamping of screw head surface with impulse forces. Since this

disassembly tool creates new acting surface before transmitting forces and torques, the

end-effector become independent of the acting surfaces that already exist in the joining

element and is robust against uncertain conditions like corrosion or others. Therefore,

the disassembly processes would become cost-effective with a reduced number of tools

and time-consuming tool changes. One other research project they presented, uses

fuzzy theory [31] for the disassembly and recycling planning of end-of-life products.

With this new approach for grouping, important disassembly and recycling information

can be derived and characterized from the products' design attributes such as: the country

of origin, the size and the weight of the product, usage condition and etc. This new

approach is suggested based on fuzzy set theory to cope with a high level of uncertainty

on the products' characteristics after use [32].

2.2 Methods for De-manufacturing

De-manufactured objects are influenced by different factors like volume or weight of the

structure, the number of parts, accessibility, arrangement, freedom of movement, wear,

corrosion, ability to clamp, complexity, sensitivity, and expenditure for cleaning. The

processes in de-manufacturing can be divided into two groups: non-destructive and

destructive. Non-destructive methods are used for soluble connections like assembled,

filled, pressed against and presses in connection, and destructive methods for insoluble
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ones like welding, adhesive, rivet or soldering joints. Deformed and textile connections

can belong to both groups. With that, the functionality will be lost. Non-destructive

methods are usually time-consuming disassembly methods, because the components are

de-manufactured reverse order. Between these two groups, there exists a transition state

of partly destructive methods, with which parts are not damaged, however, the fastener or

fastening element will be destroyed. This is usually very advantageous, because the

parts can be recovered and then reused. Further, with the partly destructive method the

process can be accelerated, because the intended destruction of the fastening element

usually needs less time than the reversed assembly process.

Based on a systematic approach according to DIN 8580, the process methods for

the de-manufacturing can be classified in six different groups:

• To disassemble:

Generally, these are non-destructive methods of separation without damage to the

parts. In de-manufacturing, only the taking apart and the loosing are for the time

being. The other methods (to empty, to melt-away, to form-away, to solder-away, to

glue-away, to take textile away) are tried in experiments, however, until now they

could not find use in the actual de-manufacturing processes. Somehow, it also can

be difficult how far they are non-destructive.

• To separate:

The characteristic of separation is the breaking of the material-fit connections.

Hereby, four different methods can be distinguished: to cut into pieces, to split up, to

tear, to break. In de-manufacturing process, mainly the cutting is used, because the

other methods are more difficult to control.
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• To cut:

The cutting or machining in de-manufacturing and the cutting or machining in

production are different. In the production, a part is produced through cutting of a

raw part or material, whereby functional surfaces are created. In de-manufacturing,

it is the goal to separate to basic assembly groups through the cutting of connection

links without influencing the geometry of the parts or the functionality of the system.

The cutting or machining can be divided into ten groups: to turn away, to drill away,

to mill away, to slot away, to shape away, to broach away, to saw away, to file away,

to chisel away, and to grind away. The problem of cutting in de-manufacturing is to

present the difficulty with the fixing or holding of the part or system.

• To beam-cut:

These are methods where the separation is the result of the use of a beam or a jet. It

can be divided into four groups: to water jet cut, to laser beam cut, to plasma cut, to

flame cut (torch cut). Because only small process forces are needed these are quite

important methods in the de-manufacturing processes

• To de-melt:

Here the connecting link is removed through melting. The solid area of the part

becomes at this place liquid. Through this, the material-fit, form-fit or non-negative

connection disappears. At least one part will be partly or totally damaged and

destroyed. This method can be divided into three different groups: to melt away, to

torch cut, to melt down,
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• To deform:

The separation is caused by deformation. This method destroys parts and causes

final damage to the parts. It means the parts cannot be used again. This method

can be distinguished into five different groups: to deform wire, to deform plates, to

deform tubes, to deform profiles, to deform rivets.

For de-manufacturing, other conditions and quality criteria are relevant than for the

standard production and assembly process. In the de-manufacturing the degree of

separation, the functionality of the separated parts and the cost for the disassembly

process are the main factors. Here the degree of separation depends on the cutting speed

and if at the end the parts are completely separated or not. The functionality is a

measure for the degree of damage during the disassembling process. If a part is mot

damaged at all, then the degree of functionality is 100%. The costs depend on the

machine cost per hour.

Some criteria to help eliminate unsuitable methods for the de-manufacturing

process:

• Accessibility:

Methods, which require accessibility from two sides, like rolling, are not suitable.

• Time:

Methods that have only small changes per time unit, like electric erosion, are not

proper for efficient de-manufacturing.

• Relative motion of object:

Methods which need a movement or motion of the object, like turning, are not
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appropriate methods because of the size of some de-manufacture objects.

Also, the limitation of physical effects for the transmission of forces can be critical.

They include:

• Size:

Principles where only small forces per area are created, like electric static, are not

powerful enough for a de-manufacturing process.

• Material dependency:

Principles that are bound to certain material properties of object, like magnesium, are

not suitable because of the material variety of the old products,

• Additional work:

Principles that need the direct contact of liquid or gaseous agents with the de-

manufacturing object require extravagant gaskets or sealing, which cannot be

accomplished if the geometry is quite complex.

2.3 Destructive Disassembly for End-of-Life Products

Although the overall economics of disassembly process is still not well understood, the

destructive disassembly approach is adopted in many recycling processes for fast and

efficient separation of products, Feldmann and Meedt [33] adopted use of destructive or

partially destructive processes for efficient and flexible disassembly of electronic devices.

They presented methods for the planning of optimal disassembly and the calculation of

the most economic disassembly depth, and reported the need of highly flexible tools

designed for disassembly operations. They proposed devices (drill-driver and drill-
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gripper) that combine transmission of torques or forces with drilling for unscrewing

various types of screwed fasteners and for increasing transmittable forces. The drill

driver is a tool, similar to a left-turning twist drill with two cutting edges, which are

shaped in a special geometry. Due to its special geometry, a drill-driver can perform

transmission of torques either by using existing working points or by using self-created

drill chips as starting points. Using a drill-driver, the following important disassembly

functions can be fulfilled:

• For the fasteners like cross recessed screws, hexagon sockets, and other many screw

types, this special geometry of the drill-driver allows to generate a form closure

between the cutting edges on it and existing working points of these screws. Then

this form closure is used to transmit the torque for unfastening.

• If there are no working points for form closures available, a short drill process is

needed with the drill-driver to create drill chips, which are used afterwards to transmit

the torque. Both processes, drilling and the transmission of the torque are done

without tool change.

• The drill-driver can be used similar to a drill bit to remove material with high

rotational speed until the joining is disassembled, When the disassembly of the

joining element by transmission of torque is not possible, this function makes it

possible to destroy joining elements such as corroded screws, rivets, and spot welding

points.

They introduced the drill-driver as an extremely flexible device, concerning different

fastener types and sizes as well as concerning different disassembly processes (non-

destructive, partial destructive, or destructive).
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One other device that they have developed and patented is a tool that integrates a

drill and a grip device, and is called drill-gripper, As shown in Figure 2.1(a), a working

Figure 2.1 Integrated tools for the transmission of forces and torques.

point is created by drilling a hole in the product or component. Then the grip device is

shortened by pressure and the diameter of the elastomer increases so that a form closure

between the tool and the component is created. The grip process can be finished by

elongating the grip device, By the use of this tool, the following operations are

possible:

• Grip and clamp processes for handling and fixing complex products without existing

usable working points.

• Transmission of high forces in order to achieve a destruction of components (i.e.

housings).

• Many drill-grippers can be combined in order to increase the transmittable forces and
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to transmit torques.

• With little changes the tool can be used for the continued transportation and handling

of work pieces. In this case, the tool is fixed at the work-piece and is used as a

defined working point for handling and transportation systems.

They also have proposed a device that combines the drill-driver and the drill-gripper so

that the processes of "transmission of forces" and "transmission of torques" are integrated.

Therefore, using this integrated flexible tool makes it possible to fulfill the requirements

of many disassembly processes without tool change.

A very interesting disassembly method is presented by J.D. Chiodo, E.H. Billett

and D.J. Harrison [34]. They reported the results in the application of Shape Memory

Polymer (SMP) technology to the Active Disassembly of modern mobile systems. With

the fasteners made of these smart materials, it is possible for products to disassemble

themselves at specific triggering temperatures in an oven-like disassembly line. They

applied this smart material technology to various types of mobile phones and achieved

cost effectiveness and apparent time performance,

An efficient, environmentally friendly system for CRT disassembly and cleaning

was designed and demonstrated by E. S. Geskin, B, Goldenberg and R Caudill [35].

They adopted waterjet technologies capable of effectively and efficiently cutting CRT's

in order to separate the faceplate from the funnel. The developed technology is capable

of separating CRT's at the frit line or just below in order to achieve both high-lead cullet

output compositions. This capability extended potential secondary markets for

recovered CRT glass to include architectural and construction applications by avoiding

the environmental concern for lead glass,
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In contrast to the literatures mentioned above, D. Studny et al [36] proposed to

apply the destructive disassembly procedure based on impact mechanics, and provided

rigorous investigation on the mechanical aspect of the disassembly process. In their

research, they applied lateral impact on the head of joining element to cause shear

fracture on neck area. They adopted 'instrumented bar' (Kolsky, [37]) between the

striker and screw head in order to measure and apply impact load (see Figure 2.2). By

comparing the pulses before and after the reflection at the screw head, they evaluated the

energy invested in fracturing the screw head. Having this 'instrumented bar' in between

the screw and the striker is advantageous in practical design application since it ensures a

predictable contact surface to transmit stress waves and to position where the impact is

applied.

Figure 2.2 Side impact for destructive disassembly.

The striker launched by an air gun hits one end of the instrumented bar and

generates a stress wave. This stress wave travels toward the other end where the
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instrumented bar and the screw head are contacting each other. At the contacting

surface, the stress wave reflects after losing some of its energy transmitted to the screw

and stand assembly and travels back toward the struck end. The energy transmitted to

the screw head causes fracture in the neck area of the screw if it generates higher stress

than the dynamic strength of the bolt neck. The strain gauges attached in the mid-length

of instrumented bar measure the stress waves before and after the reflection. Then the

reflected stress wave is corrected using the dispersion corrections along with the damping

factor, and is shifted forward in time to coincide with the stress before reflection. From

the differences between the stress waves before and after reflection, the time histories of

force and energy invested into fracture are calculated, The experiments were conducted

on commercial stainless steel and carbon steel screws with diameters ranging from 2.0 to

5.0 mm, which are commonly used in standard commercial electronic systems. They

provided quantitative investigation on the fracture energy of various types of screws and

related them with the net fracture area and thread root radius. In their report, they

showed the feasibility of using dynamic impact to fracture screwed fasteners in

disassembly processes and integrated their results into the preliminary design of a robotic

disassembly device. However, in spite of their rigorous study on the fracture energy and

quantitative test results, it is needed to investigate more in the theoretical aspect of impact

in order to improve the efficiency of the process.



CHAPTER 3

IMPACT MECHANICS IN DESTRUCTIVE DISASSEMBLY

3.1 Introduction

Application of mechanical impact on a protruded head of joining element is introduced as

a robust destructive approach for optimizing disassembly processes. This approach

consists of fracturing the neck area of joining element by applying side impact.

Specifically, instead of applying impact directly with a moving striker to the head of

joining element, a one-dimensional bar is placed in between them and transfers the

impact force to the head of joining element. Studny, Rittel and Zussman [36], in their

research on impact fracture of screws for disassembly, adopted this one-dimensional bar

to measure stress waves with strain gauges attached on it. With the measured stress

waves, they were able to calculate input forces to screw heads and fracture energy.

They investigated the correlation of total fracture energy to different parameters such as:

net fracture area and thread (notch) root radius, and provided fractographic analysis.

However, to understand more of the impact mechanism involved in the process of

transmitting the impact energy to the bolt head, more investigation is required in the

theoretical aspect of impact.

In this research, contrast to the work of Studny et al. [36], the focus will be placed

on the impact mechanisms before the fracture begins at the neck of joining element,

The force and the stress applied to the bolt head will be formulated with the physical

parameters of the striker, transmitter (instrumented bar) etc., and a new method that

improves the efficiency of impact-destructive disassembly process will be suggested.

This research adopts the analysis of Timoshenko and Goodier [38] to develop

20
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equations representing the stress waves and forces generated by the impact. The method

that will be presented in this research has its basis on B. Hopkinson's experiment. In his

experiments, he was able to measure the maximum tensile stress at the top of the steel

wire that is suddenly stretched by a falling weight onto a clamp attached to the bottom of

the wire. He showed that in certain condition the maximum tensile stress occurs when

the stress wave has its second reflection at the top of the wire, instead of its first

reflection [37]. When stress wave reflects at the top of the wire for the second time, the

maximum stress was higher than the stress at the first reflection.

In this research, the type of impact-destructive method is categorized and defined

according to the number of reflections of the stress wave at the bolt-contacting surface.

If it is designed to create maximum stress when the stress wave reflects at the bolt-

contacting surface second or subsequent period, it is defined as Multiple Reflection of

Stress Wave (MRS W) Method. If the maximum stress occurs only at the first reflection

at the bolt-contacting surface, and this should cause fracture at the bolt, it is defined as

Single Reflection of Stress Wave (SRSW) Method,

3.2 SRSW Method

When the length of stress wave is short so that the front end of the wave does not overlap

with its tail end in the same direction at any place along the transmitter bar, the maximum

stress at the bolt neck occurs only at the first reflection of the stress wave. The

experiment conducted by D. Studny [36] falls into this case. In their setup, the material

and the diameter of striker are identical to those of the transmitter (`instrumented bar'),

however the length of the striker is set relatively shorter than that of the transmitter.	 In

this case, the stress wave is a rectangular-shaped pulse. Therefore, no matter how fast
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the striker hits, the pulse duration ends before the front end of the reflected wave reaches

back to the struck end of the transmitter. The pulse duration varies not with the speed

but with the length of the striker, and the magnitude of the stress depends only on the

speed of the striker. Therefore, the maximum stress occurs at the front of the wave and

this should cause the fracture on the bolt neck when it first reflects at the bolt-contacting

surface. In this case, the maximum stress in the transmitter is given by:

where:

: stress in transmitter

p: material density of transmitter

CL : longitudinal wave velocity in transmitter

125 : speed of striker

If the cross section area of the striker is much larger than that of the transmitter

bar as shown in Figure 3.1, and the material of both the transmitter and the striker is

identical, the initial stress in the transmitter bar at the moment of impact can be written

as:

where:

A,, A,: section area of transmitter and striker respectively (in this case, A, << As)

cs : longitudinal wave velocity in transmitter and striker respectively

A, A: material density of transmitter and striker respectively



23

In this case, the profile of the stress wave has an inverse of exponential curve as σ(t) in

Figure 3.1(a). This stress wave proceeds toward the bolt-contacting end and reflects at

Figure 3.1 Single reflection of stress wave from a rigid bolt head.

the interfacing surface. If the bolt is mounted on a rigid body, the stress at the interface

is 2σ (t) and the shear stress on the bolt neck can be written as



24

where Ab is the section area of the bolt neck,

The force that will cause fracture of the bolt head can be calculated from the

stress equations given above. In both cases, whether the stress wave is rectangular-

shaped or an inverse of exponential form, the maximum stress occurs when the stress

wave reflects at the bolt-contacting end in the first contact, and this maximum stress

should be higher than the dynamic shear strength of the bolt head to cause fracture.

3.3 MRSW Method

When the length of stress wave is very long so that the front end of the stress wave

overlaps with its tail end more than once in the same direction, the maximum stress at the

bolt neck is higher than it occurs in single reflection. Suppose that the striker and its

speed are remained as in Figure 3.1, and the transmitter bar is replaced with much shorter

one. Then the time needed for the wave front makes a round trip become short, and the

wave front can travel back and forth along the transmitter bar between the struck end and

the bolt-contacting end until the striker stop generating compressive stress wave at the

struck end (see Figure 3.2). Therefore, the compressive stress wave superpose itself

twice or more than twice at the bolt-contacting end, and produce higher stress than it does

with single reflection. Then the maximum stress occurs when the wave front reflects in

second or subsequent period instead of occurring at the first reflection. The maximum

stress in this case is higher than in the SRSW Method even if the same striker with the

same speed generated the impact. In other words. higher stress can be applied to the

bolt head with the same amount of energy invested on launching the striker if the mass

and the length of the transmitter are reduced. However, this method requires the

condition that the body on which the bolt is mounted has enough inertia so that the whole



Figure 3.2 Multiple reflection of stress wave from a rigid bolt.

assembly supports the bolt, and do not move away until the maximum stress occurs. In

addition, the material and structural strength of the bolt-mounted body need to be strong

enough to withstand the stress transmitted from through the bolt. More precisely, the

deformation of the bolt-mounted body should be remained within the elastic boundary

during the whole process of impact. If it is assumed that the bolt is mounted on a rigid

body, and the bolt is assumed as rigid, the problem can be solved as 'a bar with a fixed

end struck by a moving mass at the other end' introduced in many literatures

[37] [38][39] [40] [41]. However, in most of practical situation, the bolt-supporting body

would be non-rigid. In other words, when the stress wave reflects at the bolt-contacting

25
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surface, some of its energy will be lost and dissipated into the bolt mounting body.

Then the magnitude of the reflected wave will be reduced, and this will affect the forming

of the wave equation of the subsequent period. Therefore, it is required to develop new

equations for the stress wave forming after the first reflection,

3.3.1 Determination of It to Apply MRSW Method

Keeping the diameter of transmitter constant and using identical striker, multiple

reflections can be generated at the bolt head by simply reducing the length of the

transmitter. Theoretically, the length of the transmitter for MRSW Method should be

determined so that the stress at the struck end has not decayed to zero when the front end

of stress wave complete the first round trip. Furthermore, in order to have a noticeable

effect of stress increase with MRSW Method, the stress at the struck end need to be much

more than zero at that moment, In this research, it is defined that the stress 6i (t) at the

struck end calculated from the equation (3.4) is greater than 10% of its initial stress ao

when t = 3T. Therefore, substituting t with 3T in (3.4), the following condition need to

be satisfied:

The condition of (3.5) yields

Therefore, the mass of transmitter needs to be smaller than 0.38 times of the mass of the

striker in order to observe a noticeable effect of MRSW Method.
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3.3.2 Efficiency of MRSW Method

Increase of maximum stress by reducing the mass ratio can be evaluated in comparison

with the maximum stress in SRSW Method. The efficiency of MRSW Method is

defined in this research as the percentage of increased amount of stress to the maximum

stress in SRSW Method. This relationship can be written as:



CHAPTER 4

EQUATIONS FOR STRESS WAVES IN A BAR CAUSED BY IMPACT

4.1 Stress Wave Equation When Bolt is Mounted on a Rigid Body

If bolt is assumed rigid and is mounted on a rigid body, the classical representation and

analysis of stress waves in one-dimensional bar can be applied. In this case, the problem

can be treated as that one end of the bar is fixed at an infinite rigid wall and the other end

is struck by a rigid mass P811391140]. With one-dimensional stress wave theory, the

relationship between the stress at bolt head and the parameters of the instruments

including the striker and the transmitter can be formulated.

Schematic of instrument setup for applying impact on a bolt head for fracture is

shown in Figure 4.1.

Figure 4.1 Schematic of instrument setup for impact fracture of bolt.

28
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When a rigid striker of mass m s impinges with speed v s on one end of transmitter,

the stress σ0 at the head of the stress wave is given by the equation:

According to the analysis by Johnson [39] and Spott [40], the stress wave generated by

the impact at the struck end of the transmitter during time 0 < t < T can be derived from

the equation of motion for Mc as

where σ1  is the stress intensity at the struck end of transmitter at time t after first contact;

v 1 is the particle speed of the transmitter at the struck end, Solving above equation, the

stress wave in the transmitter during 0 < t < T is

where α  = Mt/Ms  and T=2lt/ ct

This compressive stress wave propagates from struck end toward the bolt-contacting

surface at the speed of ct, the propagation speed of the dilatational stress wave. The stress

at the bolt-contacting surface is zero until I = 6/c, = T/2, and it suddenly becomes 26/

right after the front end of the wave is reflected at this surface, The stress at bolt-

contacting end α can be written as

This means that the stress at the bolt-contacting end is twice the stress on the struck end

during this period.

The head of the reflected wave travels back to the struck end, and generates more
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stress between the striker and the transmitter from t = 2lt/ct and again, travels toward the

bolt-contacting surface. Therefore during this period, the striker faces more resistance

after t = 2 6/c,, and since this returned wave affects the striker initiating stress, the stress

wave equation for T < t < 2T needs to be redefined, When the stress wave is being

reflected at the struck end during this period it provides a compressive stress of 26j.

Then the total stress Σσ at the struck end during this period would be

where σ2(t) is the stress wave equation during T < t < 2T and is to be determined.

Again, the motion equation during this period can be written as

Solving (4.6) gives

This process repeats for σ3 (t), σ4 (t) and further, but the equations become very lengthy.

From the equations for σ1 (t), σ2(t), σ3 (t), σ 4(t), and so on, the stresses at struck

end and bolt-contacting end can be calculated. It is shown that the plots of the empirical

equations solved for the fixed end give very good approximation to the theoretical curves

calculated from the equations developed as above [40]. Therefore, in order for the

analysis of the shear stress on the bolt neck mounted on a rigid body, the above equations

can be converted to an expression for the shear stress on a bolt neck.
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4.2 Stress Wave Equation When Bolt is Mounted on an Elastic Body

In most of the practical disassembly situation, the material on which the bolt is mounted

cannot be treated as rigid. Thus, when stress wave is being reflected at the bolt-

contacting surface some of its energy would be transmitted and dissipated into the

material. Therefore, the magnitude of the stress wave after reflection becomes smaller

than that of the stress wave before reflection.

Usually in a high velocity impact analysis, overall structural behavior can be

ignored because deformation is concentrated at the impact point. However, in a case of a

relatively low velocity of the striker or a relatively low density of the material on which

the transmitter is contacting, loss of impact energy dissipated into the material need to be

considered [41]. Wada [42] showed that the reflection characteristics of longitudinal

wave in a semi-infinite cylindrical rod vary with the thickness of the elastic plate to

which the rod is connected. He showed analytically and experimentally that when a

compressive incident wave in a bar reflects at the contacting surface, the reflected stress

wave gradually shifted from tensile to compressive as the plate thickness increased,

which means that the rigidity of the plate affected the reflection characteristics of the

stress waves. Therefore, depend on the characteristics of the material or the structure on

which the bolt is mounted, the reflected stress wave at the bolt-contacting surface will

have different magnitude. Figure 4.2 shows a schematic diagram of stress wave being

reflected from a bolt head mounted on an elastic medium.
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Figure 4.2 Reflection and dissipation of compressive stress wave from a bolt
mounted on an elastic medium.

The stress wave equation at the struck end for 0 < t < T is identical to (4.3)

because the front of reflected stress wave has not return to the struck end in this period,

therefore does not affect the equation. However, for the second period of T < t < 2T, the

stress wave equation for this period will be different from (4.7), because the returning

wave that was reflected at the bolt-contacting surface has been reduced in its magnitude.

Therefore, the striker faces less resistance during this time interval than when bolt is

mounted on a rigid body, Assume that there exists a ratio R (-1 R 1) between the

stress before reflection and after reflection. It is reasonable to assume that the elastic

wave reflects with a constant ratio R if the transmitted elastic load remains in the elastic

boundary of the supporting medium or structure. Then the reflected stress wave a,. and

the transmitted stress wave a- before reflection can be related as
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When the front end of this reflected stress wave returns to the struck end of

transmitter, it affects the stress wave equation for T < t <2T. Then the total stress Ea at

the struck end during this period will be

where 62 (t) is the stress wave equation during T < t < 2T and is to be determined. The

force equilibrium during this period is

Solving the equation for second period of T, the stress 62(t) is

This process repeats for the stress wave equations of σ3 (1), 64(t) and so on. Then the

solutions for 63(t) and σi (t) can be achieved, and they are:

where
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Overlapping the equations (4,3), (4.11), (4.12) and (4.13), the total stress at the

struck end during 0 ≤5≤4T can be calculated for different values ofR.Figure 4.3 is the

plots of the normalized stress (σ /σ0 ) along t/T at struck end for different values of R with

a =1/4. The graph shows that the normalized stress (σ/σo ) for R = 1.0 with α  = 1/4

calculated from the developed equations is identical to the classical solutions for stress

waves in one-dimensional bar fixed to a rigid wall [40]. The reason for selecting α  = 1/4

is to evaluate the developed equations by comparing them with the classical solutions that

provide analytical results for this particular mass ratio in rigidly fixed end case. Many

different graphs can be plotted for different values of a. The stress profiles at struck end

for any value of R are identical during the first period because they are not affected by the

stress wave returning from the reflection, After that, the magnitude of stress gradually

decreases as R decreases. Notice that the location of maximum stress shifts from 2T to T

as R decreases from 1,0 to 0,8.
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Figure 4.3 Stress ratio o- /σ0 at struck end for different R- values.

On the other hand, the resultant stress σ  at the bolt-contacting end of the

transmitter is of interest since this stress can be converted as shear stress τbat the bolt-

neck, They relate as

The shear stress τb should exceed the dynamic shear strength of the bolt in order to cause

fracture. In the first period, the bolt head will receive no stress at all until the stress wave

propagated from the struck end reaches it when t = T/2. Then at I = T/2, the resultant

stress suddenly becomes 2σl (t) - σd, and will last until t = 3T/2. Since σd = σl (t) - Rσl (t),
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the resultant stress at the bolt-contacting end can be written as

Similarly, the resultant stress that the bolt head is receiving from the transmitter for

continuing periods can be derived, and they are

For the weight ratio α  = 1/4, profiles of normalized stress (σ/σ0 ) for different

vales of R are shown in Figure 4,4. Notice also from Figure 4.4 and Figure 4.3 that the

Figure 4.4 Stress at bolt-contacting end for different values of R (α  = 1/4).
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maximum stress at the bolt-contacting end is higher than the maximum stress at the

struck end.

Using (4.14), the resultant stresses calculated from the equations (4.15), (4.16)

and (4.17) can be related to the shear stress that is exerted on the bolt neck. This

calculated shear stress is compared with the dynamic strength of bolt neck to analyze

fracture of bolt head.

Using equations (4.15), (4.16) and (4.17), the normalized maximum stress (duo)

can be plotted for different values of mass ratio, a. The dashed curve in Figure 4.5 is a

plot of the empirical equation for rigidly fixed-end case [40] that gives very good

approximation to theoretical solution for R = 1.0. The curves from equations (4.15),

Figure 4.5 Maximum stress at bolt-contacting end for different values of mass ratio.
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(4.16) and (4.17) with R = 0.8 are shown also for only the portion of each curve that rises

above the adjoining curves. As noticed in the Figure 4.5, the maximum stress decreases

significantly as the reflection ratio R decreases. This means that the effect of stress

increase by adjusting mass ratio reduces if bolt is mounted on a less-rigid body.

4.3 Determining the Reflection Ratio R

There are limited numbers of literatures that address the reflection characteristics of stress

waves in one-dimensional bar contacting with other medium, One of the researches most

relevant to this issue is the one presented by Hiroshi Wada [42]. He reported the

theoretical equations and the experimental results about the reflection characteristics of

longitudinal elastic waves in a cylindrical rod connected perpendicularly to an elastic

infinite plate. In his analysis, the motion equation of the rod in z-axis is related to the

motion equation of the plate in the direction perpendicular to its surface, and the

relationship between the incident wave and the reflected wave was obtained. In his

experiment, strain gauges are cemented in the mid-length of the bar and one end of this

bar is in contact perpendicularly with an infinite plate. The stress waves are measured

before and after the reflection, and it is shown that the magnitude of the reflected wave

becomes smaller as the thinner plate is being used. This implies that the ratio between

the magnitude of the stress waves before and after the reflection varies with the rigidity

of the plate.

However, determining the analytic value of R would be a very challenging

research subject even with the bolt mounted on an ideally shaped geometry, such as, an

infinite plate or an infinite half space, Unlike Wada's situation, the analysis for finding R

would be very difficult because the elastic medium on which the bolt is mounted is



39

receiving stress in transversal direction; there exist combination of dilatation wave and

distortion wave. Because the bolt is protruded, the elastic medium will also receive

moment that will cause motion perpendicular to its plane, Therefore, the stress wave

equation of one-dimensional bar should relate to three independent equations of motion

of the elastic medium in order to find the analytic solution for R. It is even more

complicated if the bolt is mounted on an arbitrarily shaped medium. With all the effort,

even if an analytic solution for R were achieved for ideally shaped geometries, its

implementation to practical situations would be limited. Since the reflection of stress

waves is highly sensitive to material and structural characteristics of the immediate

vicinity of the bolt, there will be some differences between the R-values even if they are

measured from the same bolt from different directions. Therefore, for practical

applications, it is desirable to investigate many different types of combination of

materials and structural conditions, and broaden the knowledge about the reflection

characteristics.

In this research, the reflection ratio will be determined by investigating the

reflection characteristics of stress waves from a bolt head obtained from experiment. A

transmitter bar with strain gauges attached in the mid-length of it will be in contact with a

bolt head. The length of the transmitter bar needs to be long enough in order to separate

reflected and incident waves, By generating a square-shaped incident pulse with a

relatively smaller striker, the profiles of stress wave before and after the reflection from a

bolt head will be measured. Then the value of R will be determined by analyzing these

recorded profiles of stress waves,
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4.4 Increase in Maximum Stress by MRSW Method

From the analysis of stress waves in a bar, it is possible to calculate the stress wave

profiles at bolt-contacting end when each SRSW Method and MRSW Method is applied.

The maximum stress at bolt-contacting end in MRSW Method is calculated much higher

than in SRSW Method even when a striker hits transmitter with the same speed in both

methods. In other words, the maximum stress is increased with MRSW Method even

with the same amount of energy invested in launching the striker. Therefore, the

efficiency of disassembly process can be improved with MRSW Method.

Table 4.1 Increase in Maximum Stress for Different Reflection Values (For a= 0.25)

Maximum Stress (6l60)
R Increase (%)

SRSW Method MRSW Method

1.0 2.0 3.213 60.7

0.9 1.9 2.862 50.6

0.8 1.8 2.532 40.7

0, 7 1.7 2.221 30.6

0.6 1.6 1.930 20.6

0.5 1.5 1,660 10.7

The analysis shows that the difference in maximum stress between both methods

varies depend on the reflection ratio R. If more of the stress wave energy is dissipated

into the bolt-mounted medium, less the stress is increased at the bolt-contacting end in

MRSW Method. For a = 0.25, the maximum stresses in SRSW Method and MRSW
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Method are calculated for different values of R and are shown in Table 4.1 with the

percentile of increase.

Similarly, tables can be made for different values of mass ratio a. As indicated in

the table, for a = 0.25, the maximum stress can be increased theoretically up to 60.7%

using MRSW Method if bolt is mounted on a rigid body.



CHAPTER 5

EXPERIMENTAL INVESTIGATION

5.1 Experimental Setup

Experimental setup has been prepared to evaluate the feasibility of MRSW Method.

Since one of the main purposes of the experiment is to demonstrate the effect of stress

increase in MRS W Method, more focus is placed on monitoring the stress wave in

transmitter bar near bolt-contacting end without fracturing the bolt. The experimental

process is divided into two stages. One is to acquire the reflection characteristics of the

stress wave so that the reflection ratio R can be determined for further calculation of the

stress wave profile near the bolt-contacting end. The other is to measure the stress wave

profile near the bolt-contacting end when each SRSW Method and MRSW Method is

applied, Photographic images of the experimental setup and equipments are shown in

Appendix.

5.1.1 Setup for Measuring the Reflection Characteristics of Stress Wave

The experimental arrangement for the acquisition of reflected stress wave is shown

schematically in Figure 5.1. A steel rod (transmitter) of 9.525 mm in diameter and

900mm in length is placed horizontally on V-shaped rubber supports. One end of the

transmitter is in contact with one of six sides of the bolt head that is joining two identical

steel angled beams. See Figure 5,2 for detailed configuration of the angled beam

assembly. The size of the bolt and the angled beam are given in Table 5.1. When the

equations are formulated, it is assumed that the contact between transmitter and bolt head

is made over the entire end surface of the transmitter, and that they remain in contact for

42
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the duration of the impact. However, these conditions are difficult to realize not only in

the experiment but also in the actual disassembly processes, The length of the angled

beam assembly is determined so that the time needed for the transmitted stress wave

Figure 5.1 Setup for measuring reflection of stress waves.

makes a round trip from bolt head to the edge at far end is long enough. Thus, the

tensile wave returning from far end of the assembly would not affect the stress wave

reflections at the bolt head. The assembly of angled beams is clamped at its mid-length

into a wood plate. In the mid-length of the transmitter, in order to increase sensitivity

and accuracy in observing the stress waves two identical strain gauges of 3mm in length

are cemented to opposite sides of the rod and connected to a bridge box. The output

from the strain gauges is fed through a bridge box and a strain amplifier (VISHAY

ELLIS-20) to a digital storage oscilloscope (Tektronix 2230) and the oscilloscope traces
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are down loaded to a pen-plotter (HP-7470A) to produce hard copies. The internal

trigger (fast-rise) in the oscilloscope is used to initiate storing the time histories of the

stress waves.

The striker, launched by a spring-loaded launcher, is made of a steel rod of

270mm in length and of the same size in diameter of the transmitter. This striker hits

the transmitter and generates a compressive pulse. For the length of this striker, the

pulse duration is 105μs. This rectangular-shaped pulse travels toward the interface

between the bolt and the transmitter, and comes back after being reflected at the interface.

While this pulse travels fore- and backward, it passes the strain gauges attached in the

mid-length of the transmitter, and its intensity is recorded.

Figure 5.2 Angled beam assembly.

Table 5.1 Sizes of Bolt and Beams in the Assembly

No, Name Size Material

1 Bolt 10mm-1.0 x 20mm Steel

2 Angled Beam 50.8 x 50.8 x 915mm, t = 3.18 Steel
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5.1.2 Setup for Measuring Stress Wave Profile

As shown in Figure 5.3, the incident pulses are generated by the impact of a steel block

(25.4 x 25.4 x 50.8mm3 , 0.415kg) that is hung by a pendulum. The steel block, which is

the striker, is attached to a pendulum of 810mm in radius with a rubber insulator inserted

between them. In order for the striker to be treated as `rigid', the striker in this setup has

Figure 5.3 Experimental setup for measuring stress wave profile.

much larger section area than that of the striker used for investigating reflection

characteristics of the stress waves. Therefore, the stress wave generated by this striker

has a form of an inverted exponential curve decaying to zero over time instead of having

a rectangular pulse as in the previous section.

Two different transmitters are prepared to acquire the stress wave profiles near
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bolt-contacting end for SRSW Method and MRSW Method. The transmitters have the

same size of diameter (9.525mm), but one has 900mm while the other has 103mm in

length. Therefore, it takes 349μs for a stress wave makes a round trip in the long

transmitter bar while it takes 40μs in the short one (from equation T = 21 1/c 1 , T = 349μs in

SRSW and T = 40μ s in MRSW Method). The length of the transmitter bar for the

experiment of MRSW Method is determined in a way that the stress wave reflects at least

three times at the bolt head. Since the striker in this experiment generates the stress

wave lasting more than 200 μs until it decays to 10% of its initial stress, the stress wave

in the transmitter of 103mm in length can make more than three reflections at the bolt

head. The mass ratios (a = Mt/ Ms) are 1.96 for long transmitter bar and 0.224 for short

transmitter bar. Each transmitter is placed horizontally on V-shaped rubber supports.

One end of each transmitter is in contact with one of six sides of the bolt head that is

mounted on the angled beam assembly described in the previous section. Each of the

transmitters has strain gauges cemented to opposite side of the rod approximately 14mm

away from the bolt-contacting end. The strain gauges cemented on each transmitter are

connected through a bridge box and a strain amplifier to an oscilloscope for monitoring

stress waves. The striker of steel block hits one end of each transmitter with a same speed

in order to make energy input identical for both SRSW and MRSW Methods. The stress

profiles near the bolt-contacting end of each transmitter are monitored through the

oscilloscope.
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5.2 Reflection Characteristics of Stress Waves

5.2.1 Experimental Results

Using the experimental setup described in 5.1.1, a graph (Figure 5.4) showing the

incident wave and reflected wave is achieved. Unlike the experimental results presented

by Boucher [43] and Wada [42], the reflected stress wave from a protruded bolt mounted

on an elastic material showed a unique characteristic. When stress wave in one-

dimensional bar reflects from an infinite plate or an infinite half space, the stress wave

maintained its shape although its magnitude varied according to the thickness and

material properties of the plate. However, the reflected stress wave from a bolt head

showed an 'unstable period' in the beginning and then gradually stabilized. It seems

Figure 5.4 Reflection of stress wave from a bolt head.
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that the 'unstable period' in the beginning of the reflected wave exists because of

imperfect surface-to-surface contact between the transmitter and bolt head and also the

tensile wave reflected from the other faces of the bolt head.

As shown in Figure 5.4, there are two tensile peaks in the beginning of the

reflected wave. The magnitude and its duration of the first peak are depending on the

contact condition between the bolt and the transmitter. If the contacting surface gets

larger, the magnitude and the duration of the first peak get smaller and shorter

respectively. It seems that the second tensile peak is a result of reflected wave returning

from the other faces of the bolt head. In order to verify it, an experiment was conducted

by placing the transmitter contacting with one edge of the angled beam assembly in the

same direction as for contacting the bolt head (see Figure 5.5).

Figure 5.5 Transmitter is in contact with an edge of the angled beam assembly,

Figure 5.6 is the result and it shows the incident wave and its reflected wave from

the edge of the angled beam assembly, As noticed, there exists only one tensile peak at

the beginning of the reflected wave and this peak is the result of imperfect contact

condition as described above, Therefore, the second tensile peak is a unique

characteristic found in the wave reflection from a bolt head,
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Figure 5.6 Reflection of stress wave from an edge of the angled beam assembly.

Another characteristic found in the reflected wave from a bolt head is in the

`stable period'. The magnitude of reflected wave reached rapidly to a certain level and

remained constantly when the stress wave reflects from an edge of the angled beam

assembly, However, the stress wave in the 'stable period' of reflected wave from a bolt

head does not reach to a constant level rapidly, Its magnitude slowly increased until the

tail end of incident wave reflects and escapes from the contacting surface. It is not

known from this experimental setup whether the magnitude reaches to a certain level and

remains constantly because the lengths of the transmitter and the striker are not long

enough to measure longer time history. However, it is obvious from Figure 5.7 that the

magnitude did not reach to a constant level during the first 150 μs, which is enough time
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Figure 5.7 Reflection of stress wave from a bolt head (striker length = 338mm).

to monitor the stress wave when MRSW Method is applied, Figure 5.7 is the result of

experiment with a striker of 338mm in length, which is almost the maximum length that

can be used for the transmitter in this experimental setup.

5.2.2 Determining Reflection Ratio R

Those unique characteristics found in the reflected wave from a bolt head make it

difficult to determine the reflection ratio. For the stress wave reflected from an edge of

the angled beam assembly. the reflection ratio can be obtained simply by dividing the

magnitude of the reflected wave in 'stable period' with the magnitude of incident wave.

In this case, the results of stress wave analysis for both MRSW and SRSW Method would

be similar to its experimental results, However, due to the tensile peaks in the beginning
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and inconsistent magnitude of the 'stable period' in the reflected wave from a bolt head,

the accuracy in analyzing stress waves in both methods would be affected significantly.

In order to find a closest stress wave profile, the reflection ratio is determined by

dividing the average magnitude of 'stabilized period' with the average magnitude of

incident wave, Since there is only one equation describing the stress profile at the bolt-

contacting end for SRSW Method, the analytic stress profile during the 'stable period'

obtained by applying this reflection ratio is close to the experimental result. However,

the analytic stress profiles in MRSW Method obtained by using this reflection ratio are

not quite accurate as much as in SRSW Method due to the 'unstable period' in the

beginning of the reflected wave. It is because of the nature of how the equations are

derived. Since the initial conditions for the second and further period correlate to the

previous period, the 'unstable period' in the beginning will affect whole equations.

Therefore, decreased stress during this 'unstable period' in the beginning will cause delay

in stress accumulation in consecutive periods. This unexpected characteristic of

reflected stress wave would affect the accuracy of the analysis.

For the purpose to evaluate feasibility of MRSW Method over SRSW Method, the

reflection ratio determined by dividing the average values of the magnitudes is used to

calculate stress wave profiles as a reference. From the experiment, the reflection ratio R

is obtained as 0.52,
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5.3 Numerical Analysis and Experimental Results

5.3.1 Stress Profile at the Bolt-Contacting End with SRSW Method

The physical constants for transmitter and striker are taken from the experimental setup

described in 5.1.2. The optical sensors measure the speed of the striker at the moment

of impact. To ensure the accuracy of experimental setup, the stress profile at struck end

is measured and compared with the stress profile at struck end calculated using following

equation:

Figure 5.8 Incident pulse from equation (5.1) and its experimental result.
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Until the front end of incident wave reflects and comes back to the struck end

again, the measured stress wave at the struck end is purely generated by the striker. The

shape of the incident wave at the struck end taken from the experiment is shown in Figure

5.8 with the graph calculated from the equation (5.1). The figure shows that the pulse

shape taken from the experiment is very close to the curve calculated from the equation

(5.1). This stress wave travels along the transmitter toward bolt-contacting end and

reflects back toward the struck end, When this stress wave is being reflected, the stress

at the bolt-contacting end can be calculated from the following equation:

Replacing the reflection ratio R obtained from the experiment in previous section

into the equation (5.2), stress profile at the bolt-contacting end is obtained as in Figure

5.9. For the time interval that matches with the 'stable period' in the reflected wave

(approximately between 65,μs ~140μs), the numerical curve (with R = 0.52) passes the

experimental curve in the middle, It is because the reflection ratio is obtained from the

averaged magnitudes of reflected wave and incident wave during this period. After

135 μs, the experimental curve follows the numerical curve calculated with R = 0.9 for a

while. The reflection characteristics of this time region (after around 150/B) are not

known from the previous experiment examining the reflections of stress waves. As

shown in Figure 5.9, the maximum stress is generated near the moment when the stress

wave contacts bolt head in the beginning. Then after the 'unstable period', stress rises

again and gradually decreases similarly to numerical curve, Therefore, depend on the

contact condition between the transmitter and the bolt, maximum stress may occur at the

first peak during 'unstable period' or when the stress rise again in 'stable period'. In this
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Figure 5.9 Stress at bolt-contacting end (SRSW).

experiment with SRSW Method, the maximum stress at the bolt-contacting end occurred

at the first peak and is measured as σn = 144,6MN,

5.3.2 Stress Profile at the Bolt-Contacting End with MRSW Method

The length of the transmitter is shorter in this case. Therefore, the mass ratio a and the

time required for the stress wave make the first round trip T are different from the ones

used for SRSW Method in the previous section. The numerical stress wave profile at

the bolt-contacting end is obtained by substituting the parameters in the equations

developed for MRSW Method and shown with its experimental result as in Figure 5.10.

Since the strain gauges are attached approximately 90mm away from the struck end, it



Figure 5.10 Stress at bolt-contacting end (MRSW),

takes about 18,μs for the stress wave to reach them. The numerical curve shows the

maximum stress occurs at the second peak. However in the experiment, due to the

stress decrease during the 'unstable period', the stress did not rise as much as expected at

the beginning of the reflection, The stress at the first peak is 142.4MN, and that is

almost the same magnitude of maximum stress measured in SRSW Method. Then the

stress continues to rise in the consecutive peaks, and the maximum stress is generated at

the third peak. In this experiment with MRSW Method, the maximum stress at the bolt-

contacting end is measured as σmax = 183.44MN,

55
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5.3.3 Increase in Maximum Stress by MRSW Method

As noticed in the experiments, the tensile peaks in the beginning of reflected stress wave

from a bolt head caused decrease in maximum stress significantly for both SRSW and

MRSW Methods. Since the analysis shows that the stress wave in SRSW Method has

its maximum stress in the front end, these tensile peaks in the beginning of reflection

affected directly reducing the maximum stress. For the stress waves in MRSW Method,

the reduced stress due to the tensile peaks in the beginning of reflection caused the initial

condition of stress wave in the second period reduced, and consequently, affects

subsequent periods. Therefore, the maximum stress in MRSW is also reduced due to

the tensile peaks in the beginning of the reflected stress wave. However, even with this

Figure 5.11 Stress profiles near bolt contacting end (Experimental result).
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unfavorable reflection characteristic, the maximum stress was increased in MRSW

Method compare to SRSW Method as the stress wave accumulated in the 'stable period'.

In Figure 5.11, the time histories of stress waves measured near the bolt-contacting end in

both methods are shown overlapped together.

The stress wave profiles in both methods showed similarity during the 'unstable

period'. However, as they go into the 'stable period" the maximum stress in MRSW

Method has increased while the stress in SRSW Method gradually decreased. As shown

in Figure 5.11, the maximum stress is placed in the beginning of the impact in SRSW

Method while the maximum stress is placed around 150μs after the beginning of the

impact in MRSW Method. In this experiment, the maximum stress is increased 26% in

MRSW Method using the same striker with the same speed used in SRSW Method.

5.4 Applying Impact on a Smaller Bolt Head

A set of experiments is conducted to investigate how the size of a bolt head affect the

reflection characteristics and stress profiles in both SRSW Method and MRSW Method.

Since the size of bolt head is smaller than the one used in the previous experiments, the

contact surface between the bolt head and the transmitter is significantly reduced. In the

analysis of reflection and transmission of compressive stress waves between bars, the

contact surface area between bars is an important parameter. Therefore, smaller bolt

size would affect the reflection characteristics and the stress wave profiles of SRSW and

MRSW Methods.

The experiments presented in this section will show how smaller size of a bolt

affect the reflection characteristics and the efficiency of increasing maximum stress using

MRSW Method.
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5.4.1 Experimental Setup

The experimental setup is identical to the one used in the previous section, except the

smaller bolt mounted on the other end of the angled beam assembly. The size of the bolt

is 0.8mm-1.5 x 25mm, and is made of steel, Since the size of the contacting surface

area between the bolt head and the transmitter is of interest, one of six side-faces of the

bolt head is measured, and compared with the contacting surface area of the larger bolt

head, As shown in Figure 5,12, the size of contacting surface area between the

transmitter and the smaller bolt head (View B) is half the size of the contacting surface

area with a larger bolt head (View A) in the previous experiments.

Figure 5.12 Contacting surface area is reduced in half with smaller bolt head.

5.4.2 Reflection Characteristics from a Smaller Bolt Head

Profiles of stress waves are acquired by following the procedure that was used for

measuring incident wave and reflected wave in the previous experiments. 	 Figure 5.13



59

shows the profiles of the incident wave and the reflected wave from a smaller bolt head.

In comparison with the reflected stress wave from the larger bolt head, one noticeable

difference is found at the second tensile peak. The magnitude of the second tensile peak

has increased approximately 50% compare to the larger bolt head (compare with Figure

5.4). Consequently, the stress wave profile during the stable period also has shifted

approximately 74mV toward tensile side compared to the stress wave profile in Figure

5.4. Therefore, the reflection ratio during this stable period (approximately, 50μs

100μs) has linearly increased from —0,17 to 0.14.

When the contacting surface area between the transmitter and the bolt head is

much smaller, meaning that there is a larger non-bolt-contacting surface area in the

Figure 5.13 Reflection of stress wave from a smaller bolt head.
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circular end of transmitter, much higher tensile peak was expected in the beginning of the

reflection. It was a reasonable expectation because there is much larger free end surface

from which compressive stress wave is reflected as tensile stress wave. However, as

shown in Figure 5.13, the magnitude of the first tensile peak in the beginning of the

reflected wave did not change compared to the first tensile peak found in the reflected

stress wave from a larger bolt head (see Figure 5,4),

5.4.3 Stress Wave Profiles with a Smaller Bolt Head

First, the stress profile near the bolt-contacting end is measured by applying SRSW

Method. Since the striker, transmitter and the speed of the striker are kept identical to

the previous experiment with a larger bolt head, the difference in stress wave profile

Figure 5.14 Stress at bolt-contacting end with smaller bolt head (SRSW Method).
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resulted from smaller size of bolt head can be characterized. Figure 5.14 shows the

measured stress profile near the smaller bolt head with SRSW Method applied. As

expected form the reflection characteristics found in Figure 5,13, the magnitude of the

compressive stress during the unstable period in the beginning is significantly reduced.

Compared to the larger bolt head case, the location of maximum stress is shifted from the

first peak to the second peak, and the time that maximum stress occurs is delayed from 30

μs to 60 μs measuring from the moment of reflection, However, even with the delay in

time and location of the maximum stress, its magnitude did not change much with the

change of size in bolt head.

Figure 5.15 Stress at bolt-contacting end with smaller bolt head (MRSW Method).

Interestingly, the stress profiles after the unstable period (approximately 75 us from the

beginning of reflection) measured in both cases are almost identical. This means that



62

the size of the bolt head only affects the stress profile during the unstable period not

during the stable period.

One other experiment is conducted to measure the stress profile near the smaller

bolt head with MRSW Method applied, Its result is shown in Figure 5.15. As

expected from the reflection characteristics, the magnitude of stress in the beginning has

been reduced significantly due to the increased first tensile peak found in the beginning

of the reflected wave. It is noticeable in Figure 5.15, compared to the stress profile

shown in Figure 5.16 obtained with a larger bolt head, that the magnitude of periodic

compressive stress have been reduced in the first two periods, However, as time lapses,

the compressive stress near the bolt-contacting surface is increased and reached to the

maximum stress as much as in the experiment with a larger bolt head,

Figure 5.16 Stress at bolt-contacting end with larger bolt head (MRSW Method).
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5.4.4 Efficiency of MRSW Method with a Smaller Bolt Head

It seems from the experiment with a smaller bolt head that the size of bolt head affects the

stress profile only in the beginning (unstable period). The experiment obtaining the

reflection characteristics shows that a smaller bolt head causes the second tensile peak

becomes much higher in tensile direction, Consequently, it reduces the compressive

stress at the bolt-contacting surface in both SRSW Method and MRSW Method is applied.

Although the location of the maximum stress is shifted in SRSW Method, its magnitude

reached as much as in the experiment with larger bolt head. In both cases of MRSW

and SRSW Methods, the magnitudes of maximum stress were not affected by the size of

bolt head. Therefore, the efficiency of increasing the maximum stress applying MRSW

Method to a smaller bolt head remains same as it is to a larger bolt head.

5.5 Consistency of the Experimental Results

The experimental results presented in this chapter, including the reflection characteristic

profile and the stress wave profiles obtained with SRSW and MRSW Methods, are

chosen from ten repetitive results for each experiment. In each experimental subject,

the results were consistent throughout the repeated experiment with little variation in

noise. The presented experimental results represent the average of the ten repetitive

results for each experiment,



CHAPTER 6

DISCUSSION AND APPLICATION IN PRODUCT DISASSEMBLY

In an attempt to improve the efficiency of destructive disassembly process, fracturing bolt

head using mechanical impact has been introduced. The impact stress waves in a

mechanical arrangement for fracturing bolt head are studied, and a new technique that

creates higher maximum stress on a bolt neck is proposed. The equations are developed

to provide a theoretical basis of the proposed technique. However, the unique

characteristic found in the stress wave profiles that was reflected from a bolt head made

the analysis deviate from experimental results. This unique characteristic of a bolt head

in response to a dynamic impact worked as a negative factor in both conventional

(SRSW) and new (MRSW) methods. It caused the maximum stresses to be reduced and

become much less than they are expected in analysis. Meanwhile, even with this

negative characteristic, the relative evaluation of both methods with the experiments

showed that the proposed method generates higher stress with the same amount of energy

invested in launching the striker.

In this chapter, some of the factors that affected the analysis and the experiments

are discussed. Then potential application of the new technique in a destructive

disassembly process is addressed along with the proposal of future studies.

64
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6.1 Discrepancies between Analysis and Experiment

6.1.1 Positioning Problem of Strain Gauges

Measuring stress waves at the interfacing surface between bolt head and transmitter is not

an easy task. In many cases, load cells are widely used to measure static and dynamic

mechanical loads. But placing a load cell in between them and measuring stress waves

with it would not be a proper technique for the experimental purpose because the load

cell itself will cause interference in transmitting stress waves between bolt and transmitter.

Instead, stress waves are measured in the experiment with a pair of strain gauges attached

to the transmitter bar near the bolt-contacting end in order to avoid influence from

Figure 6.1 Delay in stress wave superposition due to the positioning problem

of strain gauges.
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measuring devices. This method of measuring stress waves has been used in many

other researches studying elastic stress waves in one-dimensional bars. However, the

strain gauges were attached only near to the bolt-contacting surface, because if they were

too close, they would give us distorted signals with noise. For this reason, the stress

waves can be measured near the bolt-contacting end, not at the bolt-contacting surface.

Therefore, the stress wave profiles acquired from this set of strain gauges cannot be an

accurate measurement to be compared with the analytic solution for the stress wave

Figure 6.2 Graphic illustration of delay in stress superposition.

profiles at the bolt-contacting surface. 	 In Figure 6.1, the delay in stress wave

superposition during the first 20 μs near the bolt-contacting end is resulted from this strain

gauge positioning problem. This effect of delay in stress wave superposition is
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illustrated in Figure 6.2. The striker impinges on one end of the transmitter and

generates compressive stress wave that will travel along the transmitter bar. When the

stress wave travels toward the bolt-contacting end, it passes the strain gauges right before

it reaches to the contacting surface (Figure 6.2a), The measured stress continues to rise

until the wave front that reflected from the bolt head comes back to the strain gauges

again (Figure 6,2b). From this moment, superposition between the compressive stress

wave coming from the struck end and the reflected tensile wave occurs at the position of

strain gauges. However, when the stress wave comes back from the reflection, its shape

has been changed due to the 'unstable period' found in the beginning of the reflected wave

from a bolt head. Then the two tensile peaks in this 'unstable period' of reflected wave

pass through the strain gauges (Figure 6,2c). If the strain gauges are attached closer to

the interfacing surface, the effect of delay in stress wave superposition will be reduced.

However, if the strain gauges are too close to the interfacing surface, the possibility of

getting distorted waves and noise increases.

If the purpose of the experiment were to measure the stress wave profiles exactly

at the bolt-contacting surface and to evaluate them with the analytic solution, it would be

needed to adopt other technique more precisely designed for that purpose. However, the

measurements in this experiment are aimed at relative evaluation between the

experimental results acquired by applying different methods. Thus, as long as the strain

gauges are attached at the same distance from the bolt-contacting end for both methods,

the position of the strain gauges seems acceptable for the experimental purpose of this

research.



68

6.1.2 Contact Condition between Transmitter Bar and Bolt Head

One of the factors that affected the accuracy of experimental results is related to the

initial state of contact between the transmitter bar and the bolt head. This factor was not

considered in developing the equations. It was assumed that the entire circular surface

at the end of the transmitter bar is in full contact with the bolt head while the stress waves

are being reflected, However, even with a considerable effort to increase the initial

contact surface area, this condition was difficult to realize in this experiments.

Meanwhile, it has been observed that the duration and its magnitude of the first

tensile peak in the reflected stress wave get shorter and smaller respectively as the initial

contact surface gets larger. The shorter duration of the first tensile peak, which was

Figure 6.3 Higher and longer tensile peaks due to a poor initial contact.
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caused by a better contact condition, resulted in increasing the maximum stress in both

SRSW Method and MRSW Method.

Figure 6.4 Lower and shorter tensile peaks due to a better initial contact.
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6.1.3 Elasticity of Striker

The assumption made for the striker as rigid could have caused the discrepancy between

the analysis and the experimental result especially on MRSW Method. In the analysis,

the striker was assumed rigid. However, the striker in the experiment is made of steel as

the transmitter bar, and they are elastic. Therefore, in the analysis of MRSW Method,

while the stress wave travels back and forth between the struck end and the bolt-

contacting end, some of the stress wave transmits into the striker and loses its energy.

This phenomenon would have affected actual stress wave profile become lower than the

stress wave profile obtained from the analysis starting from the second period.

6.1.4 Damping Effect of Transmitter Bar

When stress wave travels through a section of transmitter bar, it causes longitudinal and

radial motions of expansions and contractions in that section. These motions create

internal friction and consequently, the stress wave loses its energy and attenuates as it

travels along the transmitter bar. Usually, this phenomenon is said to be a damping

effect. In the report presented by Studny et al [36], this damping effect was considered

as they calculate the fracture energy of a screw head. The damping was an appreciable

amount of effect when they calculate the fracture energy by comparing the incident wave

and the reflected wave returning after fracturing a screw head. However, this damping

effect was not taken into the consideration in the analysis since it has much less influence

than other factors in this relative evaluation of experimental results. The damping effect

was not a significant factor in this relative evaluation of actual maximum stresses

generated by different methods.
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6.1.5 Non-Constant Characteristics of Reflection Ratio R

The analytic equations developed in this research are based on the assumption that stress

waves reflect from a bolt head with a constant ratio. This assumption might be true if

the transmitter is in contact with an elastic object with no abrupt change in its geometry

near the interfacing surface between the transmitter and the object. In the experiment,

Figure 6.5 Reflection of stress wave showing constant reflection magnitude.

when the transmitter is in contact with an edge of the angled beam assembly, it is

observed that the magnitude of reflected stress wave remained in a constant value (see

Figure 6.5). If it were not for the tensile peak resulted from the initial contact condition,

the assumption made for R being constant is reasonable in this situation. However,



72

when the transmitter is in contact with a bolt head, the reflected stress wave shows very

complex characteristics. Therefore, the assumption made for R in this case is not

appropriate in order to predict an exact solution of the stress wave profiles.

6.1.6 Extension of Time Intervals between the Peaks

One noticeable phenomenon found in the experiment of MRSW Method is that the time

intervals between the peaks are longer than they are expected in the analysis. In the

analysis, the time required for the stress waves make a round trip up and down the

transmitter is 40 μs (CL = 5150m/s, 1, = 103mm). This length of time interval should be

equal between the peaks. However, the experiment shows that the time intervals

Figure 6.6 Experimental result of MRSW Method showing irregularity in

time intervals between the peaks.
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between the peaks are longer than the ones in the analysis. In addition, it is also

observed that the lengths of the time interval between consecutive peaks are different

from each other. At this point, it is not certain from the experiment what caused this

phenomenon, and there was no literature found that addresses these issues. Meanwhile,

it seems that some type of disturbance affects the stress wave profile at the third peak and

therefore the location of the maximum stress is shifted from its original location.

Therefore, the lengths of the time intervals between the peaks become irregular. This

disturbance might be the tensile stress waves returned from edges on the other side of the

angled beam assembly.

6.2 Application of MRSW Method in Destructive Disassembly

When the equations for the stress waves in MRSW Method are developed, the

geometrical aspect of a protruded bolt head was not accounted. The assumption made

for the transmitter in contact with a bolt head is equivalent to the situation in that the

transmitter is in contact perpendicularly with an elastic half space. Therefore, in order

for the exact evaluation of the equations developed for MRSW Method, an experimental

setup similar to the one developed by S. Boucher and H, Kolsky [43] would be needed.

However, since the experimental purpose is to show the feasibility of applying MRSW

Method in destructive disassembly to increase energy efficiency, the experiments are

conducted with an emphasis on a relative evaluation between the two methods.

Moreover, it is shown in the experiments that the maximum stress reaches higher with

MRSW Method than with a conventional SRSW Method. Therefore, if more

information about the reflection characteristics were gathered from different sizes and

types of bolt corresponding to different types of mounting material and structure, it would
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be useful for design purposes of a destructive disassembly device. In designing a

disassembly device, when dynamic strength for fracture of the bolt is given, physical

parameters of striker and transmitter can be determined based on the reflection

characteristics,

Modifications can be made to improve the performance of disassembly device.

Among them, it is possible to modify the shape of the end of the transmitter that contacts

bolt head in order to improve contact condition or to increase the stress exerted on a bolt

head. Modifying the transmitter bar by shaping its end into a chisel type profile may

produce higher stress to a bolt head, However, stress waves become highly distorted

when they reflect from this type of end [36], Therefore, modifying the end into a chisel

type may give good results in actual practice, but is not useful for the experimental

purposes of this research.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Contribution to Destructive Disassembly

The objective of this research was to present a new method for improving the efficiency

of destructive disassembly processes. The type of destructive disassembly in this

research consisted of breaking a protruded bolt head by applying side impact, which is

proven to be feasible and applicable as a rapid and cost effective disassembly method.

This research adopted and modified the classical analysis of stress waves in one-

dimensional bar, and developed a method to improve the efficiency of generating stresses

on the bolt head. The classical analysis provides the stress wave equations in one-

dimensional bar that has its end attached to an infinite rigid mass. However, in most

disassembly situations, the medium or the structure on which the bolt is mounted cannot

be treated as rigid. Therefore in the analysis, the equations for the stress waves are

developed based on the assumption that this end of the bar is attached to an elastic

medium. In other words, it was assumed that there exists a ratio in magnitudes between

the stresses before and after the reflection. The developed equations and their analysis

provide the time histories of non-dimensional stresses at both end of the bar for different

values of reflection ratio and mass ratio between the bar and the striker.

Experiments for precise evaluation of the developed equations can be conducted

with a transmitter bar that has its end attached to an infinite elastic half space. However,

the objective was to show feasibility of the new method, and the experiments in this

research were conducted focusing on the relative evaluation of maximum stresses

between the conventional and the new methods.
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The reflection characteristics of stress waves from a bolt head were unique, and

they are more complex than that from an elastic half space. These unique characteristics

from a bolt head caused discrepancies between the stress wave profiles obtained from the

experiment and the analysis. Even though, as expected in the analysis, the maximum

stress was increased in the experiment with the new method, Therefore, it was shown

that with the new method the stress exerted on a bolt head could be increased with the

same amount of energy invested on the striker. This research made the following

contributions:

1. This research developed the equations representing stress waves in one-dimensional

bar caused by impact when the bar is in contact with a bolt head mounted on an

elastic medium. The developed equations provide the understanding of impact

mechanism involved in the process of fracturing a bolt head by applying side impact.

2. Based on the developed equations. this research developed the equations representing

the shear stress at the neck of joining element for both cases of single reflection and

multiple reflections.

3. This research developed a new method that generates higher shear stress at the neck

of joining element without increasing the energy input to striker, This research

provided the analysis showing that the developed method creates higher stress at the

neck of joining element than applying conventional method.

4. This research provided the experimental results supporting the analysis and the

feasibility of the new method. The experiments showed that the stress waves

reflecting from a bolt head have very unique characteristics, and they cause the stress
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profiles acquired from the experiment deviate from the analytic results.

5. This research improved the efficiency of applying mechanical impact to fracture

joining elements by introducing the new method.

7.2 Recommendations for Future Work

Analysis of materials or structures under impact loads involves much more complicated

problems than dealing with static loads, One of the reasons is that when impact is

applied to an object, it introduces stress waves and vibrations into the objects, which are

time-dependant, and involves mathematical issues. Then the results of analysis become

highly sensitive to small changes of parameters or boundary conditions. The stresses

resulting from impact depend upon many parameters such as: the shape and mass of the

struck body and the striking body, the relative striking speed or force, and the physical

properties of the materials [44], and etc. 	 Likewise, the mechanical arrangement

introduced in this research may have some parameters, which are not included in the

analysis but have significant effect on the result of actual implementation. For example,

the initial contact condition between the transmitter and the bolt head, which is not

accounted in the analysis, affected the maximum stress in both SRSW and MRSW

Methods. It would be very difficult to maintain consistency of this condition if the

initial contact is made manually in a fast moving disassembly line. However, it is not

certain how much the initial contact condition would affect the maximum stress in both

methods, The influence of contact condition might be negligible if the speed of striker

is very high. It is also of interest how the tensile peaks in the beginning of the reflected

wave would affect the stress wave profile in both methods with a higher speed of striker.
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One of the parameters that need to be considered in the actual implementation is

the angle of contact between the bolt and the transmitter, The impact is applied

perpendicularly to the bolt head in the experiment, which is obviously the best way to

maximize the shear stress in the bolt head. However, in practice, it also would be

difficult to maintain this condition, In some situation, in order to improve accessibility

and contact condition, the bolt-contacting surface of the transmitter can be modified to

have the best contact with a bolt head by shaping it with an angle. The influence from

different angles of contact needs to be assessed for practical implementation.

The reflection characteristics to the combinations of different sizes of bolt and

different types of bolt-mounting body and their influence to the stress wave profiles in

both methods need to be characterized. When bolt is mounted on a soft material or a

soft structure so that the reflection ratio is small, MRSW Method would not be effective.

If the reflection ratio is too small, which means the stress wave loses too much of its

energy to the bolt-mounting body the magnitude of the stress at the bolt-contacting end

would not rise as much from the second period. In this case, the situation also would

not be favorable to SRSW Method because the energy of stress wave would be dispersed

into the bolt-mounting body before it builds shear stress at the bolt neck, In an extreme,

the impact will cause fracture at the bolt-mounting body instead of breaking the bolt head.

Therefore, it would be useful to have the criteria for bolts and bolt-mounting bodies

whether they are eligible for MRSW Method to be effective. These requirements can be

established with the bolt size and its fracture strength to dynamic impact related to the

material properties and structural characteristics of the bolt-mounting body.



APPENDIX

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP AND EQUIPMENTS

The followings show the experimental setup and equipments described in Chapter 5.

Figure A.1 Experimental setup.

79



Figure A.2 Pen plotter, HP4470A.
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Figure A.3 Oscilloscope, Tektronix 2230.



Figure A.4 Bridge box and strain amplifier, VISHAY ELLIS-20.
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Figure A.5 Transmitter for measuring reflection characteristics and striker.



Figure A.6 Striker hitting transmitter in SRSW Method.
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Figure A.7 Striker hitting transmitter in MRSW Method.
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