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ABSTRACT

STEREO MATCHING ALGORITHM BY PROPAGATION OF
CORRESPONDENCES AND STEREO VISION INSTRUMENTATION

by

Peerajak Witoonchart

A new image processing method is described for measuring the 3-D coordinates of a

complex, biological surface. One of the problems in stereo vision is known as the

accuracy-precision trade-off problem. This thesis proposes a new method that promises to

solve this problem. To do so, two issues are addressed. First, stereo vision

instrumentation methods are described. This instrumentation includes a camera system as

well as camera calibration, rectification, matching and triangulation. Second, the

approach employs an array of cameras that allow accurate computation of the depth map

of a surface by propagation of correspondences through pair-wise camera views.

The new method proposed in this thesis employs an array of cameras, and

preserves the small baseline advantage by finding accurate correspondences in pairs of

adjacent cameras. These correspondences are then propagated along the consecutive pairs

of cameras in the array until a large baseline is accomplished. The resulting large baseline

disparities are then used for triangulation to achieve advantage of precision in depth

measurement.

The matching is done by an area-based intensity correlation function called Sum

of Squared Differences (SSD). In this thesis, the feasibility of using these data for further

processing to achieve surface or volume measurements in the future is discussed.
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CHAPTER 1

INTRODUCTION

1.1 Specific Aims

Primates are born with two eyes side by side positioning that share a common view of the

world. The locations of the eyes help the primate to be able to measure distances, hence

extremely enhancing their chance of survival. One eye alone see images in monocular

form, and the brain does not perceive depth. With two eyes viewing a common screen,

the brain and neural systems fuse the left and right eye images together in such a way that

the human gets the feeling of a three-dimensional world. The ability to see a 3-D world

using two or more image devices, either biological or machine, positioning side by side is

called stereovision.

A better definition of stereovision is described in [7] as "Stereo vision refers to

the ability to infer information on the 3-D structure and distance of a scene from two or

more images taken from different viewpoints." An example of how the brain functions to

generate stereovision can be done by holding a thumb at arm's length and closing the

right and left eyes alternately. The experiment shows that the relative position of the

thumb and background appears to change. It is this difference that is used by the brain to

reconstruct a 3-D representation of what a human sees. In doing so, the stereo systems

must solve two problems, namely, "correspondence problem" which consists in

determining which item in the left eye corresponds to which item in the right eye and the

"reconstruction" problem to give the 3-D view. The Reconstruction problem can be

solved once the correspondence problem is solved. The difference between the left and

right imaging device position is called disparity. Once the disparities are known, the
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reconstruction problem can be solved. The disparity map describes disparities of all

image points displayed in the image. Because of positioning difference of the imaging

devices, there exist some positions in the real world that can be seen only from one

device but not the others. This problem is known as the occlusion problem.

Applications of stereo-based depth measurement include automated cartography,

aircraft navigation, autonomous land rovers, robotics, industrial automation and

stereomicroscopy. Research in stereovision lies in recovering depth information by

solving corresponding problems. Reconstruction problems can be done by triangulation

once all corresponding points are known.

Matching is perhaps the most important stage in stereo computation. It can be

classified into area-based stereo techniques, which use correlation among brightness

(intensity) patterns in the local neighborhood of a pixel in one image with the brightness

pattern in a corresponding neighborhood of a pixel in the other image. First, a point of

interest is chosen in one image. A correlation measure is then used to search for a point

with a matching neighborhood in the other image. The area based techniques have a

disadvantage in that they use intensity values at each pixel directly, and are hence

sensitive to distortions as a result of changes in viewing position contrast and

illumination. Also, the presence of occluding boundaries in the correlation window tends

to confuse the correlation-based matcher, often giving an erroneous depth estimate.

Feature- based stereo techniques use symbolic features derived from intensity images

rather than image intensities themselves. Hence, these systems are more stable towards

changes in contrast and ambient lighting.
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In this thesis, a new concept for determining the geometric characteristics of

surfaces found in biological systems is described. The proposed approach extends

existing stereo camera methods to overcome many of the limitations presented by

occlusions, lighting and camera alignment. With arrays of cameras that are used to

develop accurate sparse representation of image surfaces, hypotheses relating to surface

behavior and active lighting can be generated. Using multiple cameras alone does not

solve the problem of macthing ambiguity that occurs with smooth untextured object

surfaces in the scene. For this reason the idea of using active lighting in the form of a

projected pattern on the scene may be important [13]. Combining these hypotheses with a

priori knowledge of biological surfaces and less accurate data from the camera arrays

allows the generation of a more complete 3-D representation of the surfaces.

Three-dimensional imaging allows the representation of geometrically complex

structures that cannot be approximated by mathematical functions. With a 3-D imaging

tool it would be possible to quantify dynamic surface and volumetric changes in soft

tissue and other deformable materials. In addition, it will be possible represent articulated

structures (e.g. hands, arms, and legs) that change the orientation of their segments over

time. This can facilitate computer recognition of sign language, and assessment of human

performance in ergonomics and rehabilitation.

1.2 Background

In this section, epipolar geometry, camera models, camera parameters, triangulation and

some previous well known methods to solve the correspondence problem will be

described.
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1.2.1 Correspondence Problem

As cited in Klette et. al. [2], two major important approaches to find a pair of points that

match in the two images are known to be: 1) Structured lighting, which encodes the two

images so that it is easy to see pairs of corresponding points, and 2) Employing epipolar

lines, which simplify the correlation calculation for corresponding point. To find a

corresponding point from one camera relative to the others, one needs to find a match of

that point in the other camera two dimensional image. In this approach, camera geometry

can be used to show that the search of a corresponding point of a camera can be done in

one dimension.

1.2.2 Epipolar Geometry

As cited in Klette et. al. [2], rectification is the term used in stereo vision that utilizes

geometrical characteristics to simplify the search for 2-D correspondences into one

dimension. This gives a simpler search algorithm consuming less time and giving better

results because of fewer mismatches.

It can be seen from Figure 1.1 that if a correspondence of a point P1 in Camera 1

whose focal point is C 1 is to be found in the image plane of camera 2, the geometry of

the camera dictates that the position of an object whose projection is P1 lies in the line

C1P1. The corresponding point of P1 must lie on the projection of this line to the image

plane of camera 2.
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Figure 1.1 Geometry of epipolar lines.
(Note: E. R. Devies 1997 [27])

A point P1 in one image plane may have arisen from any one of a line of points in

a scene, and may appear in the alternate image plane at any point on the epipolar line E2.

The Epipoles are poles of epipolar lines where all epipolar lines cross each other.

Epipoles can be placed at infinity, which means that all epipolar lines are parallel by

aligning two cameras.

1.2.3 Camera Models and Parameters

Since cameras are the important instruments for this project, one needs an understanding

of camera models, optical parameters of the lens, photometric and geometric parameters.

The optical parameters of the lens include lens type, focal length, field of view, and

angular apertures. The goal of camera modeling is to mathematically represent how the

camera maps the world coordinate points into pixels or pixel coordinate points. The

mathematical equations are called camera models and the variables are called camera
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parameters. To accomplish rectification, one needs to understand the camera models and

parameters. In this case, the perspective camera models, which are extensively used in

stereo vision and rectification is explained in this thesis.

Photometric parameters appear in models of the light energy reaching the sensor after

being reflected from the objects in the scene. They include type, intensity and direction of

illumination, reflectance properties of the viewed surfaces, effect of the sensor's structure

on the amount of light reaching the photoreceptors. Geometric parameters determine the

image position on which a 3-D point is projected. They include types of projections,

position and orientation of the camera in space, and perspective distortions introduced by

the imaging process.

1.2.3.1 Perspective Camera Model. With reference to E. Trucco and A. Verri

[7], the perspective camera (pin hole model) consists of the image plane, 3-D point 0, the

optical center or focus of the projection where all light converges to this point, as shown

in Figure 1.2. The distance between camera frame and image plane is focal length. The

line perpendicular to the image plane, which also passes through the optical center is

called the optical axis and the point of projection of the optical axis to the image plane is

the principal point or image center. The basic equations of the perspective projections in

the camera frame are defined by E. Trucco and A. Verri [7] and are;



Figure 1.2 The perspective camera model.
(Note: E. Trucco and A. Verri 1998 [7])

1.2.3.2 Camera parameters. It is assumed that the camera reference frame can

be located with respect to some other known reference frame, called the world reference

frame, and the coordinates, of the image points in the camera reference frame can be

obtained from pixel coordinates the only ones directly available from the image. Camera

parameters can be categorized into two kinds. They are extrinsic parameters and intrinsic

parameters. The extrinsic parameters are the parameters that define the location and

orientation of the camera reference frame with respect to a known world reference frame.

The intrinsic parameters are the parameters necessary to link the pixel coordinates of an

image point with the corresponding coordinates in the camera reference frame.

The extrinsic parameters are defined as any set of geometric parameters that

uniquely identify the transformation between the unknown camera reference frame and a

known world reference frame [7]. It involves 2 matrices called the rotation matrix and

translation vector which define the rotation and translation of the camera reference frame

to the world reference frame as shown in Figure 1.3. From [7], mathematically

7



Figure 1.3 the relation between camera and world reference frame.
(Note: Reinhard Klette et. al.1998 [2])

Intrinsic parameters are defined as the set of parameters needed to characterize the

optical, geometric and digital characteristics of the viewing camera[7]. The intrinsic

parameters include f, focal length, Ox,Oy the principal point of the image, which is

defined as the point on the image plane at which the optical ray passes the focal length

through the focal point and intersects the image plane perpendicularly; and S x , S y , the

effective size of the pixel in millimeters in the horizontal and vertical direction

respectively, and finally the radial distortion coefficient k.

The relationship between the image coordinates and the world reference frame

can be computed by knowing all intrinsic and extrinsic parameters, given a linear version

of the perspective projection equations, as found in [7],



For many

can be written in matrix

cameras, there is essentially no radial

equations.

distortion. The above equations

	

Matrix M int in equation (1.9) is the intrinsic parameter matrix and M ext in

equation (1.10) is the extrinsic parameter matrix.
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1.2.4 Triangulation and Reconstruction

Triangulation is the recovery of depth information given the known disparity value of the

3D point. As discussed in [261,

Figure 1.4 Triangulation of SSG.

Figure 1.4 is the case of "standard stereo geometry" where the optical axes of both

cameras are parallel. It also has a property that epipolar lines are parallel. Given the

camera position parameters such as pan angle, base lines, the depth information, Z is a

function of disparity only. More over they are inversely proportional. This can be verified

by experimentation. Note that if base line b is small then the uncertainty of the disparity

measurement will have a greater effect on the result Z. Also, large changes in Z of the far

area correspond to small change in disparity. Once the disparity of any position is

known, three-dimension information can be reconstructed using triangulation.



11

Figure 1.5 Triangulation with rotation around Y axis.

As shown in Figure 1.5, when the optical axes are not parallel, under small angle

approximation, triangulation with rotation around the Y axis, the reconstruction formulas

[26] are given by

where Zo is the fixation point where optical axes of camera L and R intersect.

If 0 is the rotation angle, Zo=b/tan(0)

1.2.5 Previous Methods

As cited by Dhond and Aggrawal [20], two major classifications of techniques have been

used for finding correspondences. These are area based stereo and feature based stereo.

Area-based stereo techniques correlate the brightness (intensity) patterns in the local

neighborhood of a pixel in one image with brightness patterns in a corresponding
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neighborhood of a pixel in the other image. Feature-based stereo techniques use a

symbolic feature such as edge points or edge segments, which may be located with sub-

pixel precision, to match. However, the feature-based process may be confused by large

local change in disparity, and it is very difficult to incorporate the smoothness assumption

into the matching strategy since it is most likely to be violated at the edges [24].

Man and Poggio [6] proposed a feature-point based computational model of

human stereopis. Grimson [5] developed a computer implementation of their algorithm

and demonstrated the effectiveness of this model on standard psychophysical test images,

random dot stereograms, as well as on natural images. Many additional psychophysical

predictions of the Marr-Poggio[6] model have been tested in which several modifications

have been proposed [16],[17],[18],[19]. Based on their computational structure of the

stereo fusion problem found in biology, Man and Poggio [6] proposed that the human

visual processor solves the stereo matching problem in five main steps. 1) Approximated

by the difference of two Gaussian functions with space-constants in the ration 1:1.75,

each left and right image are filtered at twelve deferent orientation-specific masks. 2)

Zero-crossings are found by scanning the filtered images along lines perpendicular to the

orientation of the mask. 3) For each mask size, matching takes place between the zero-

crossing segments extracted from each filtered image output that are of the same sign and

roughly the same orientation. Local matching ambiguities are resolved by considering the

disparity sign of nearby unambiguous matches. 4) Matches obtained from wider masks

control vergence movements aiding matches among output of smaller masks; 5) The

correspondence results are stored in a dynamic buffer called the 2.5-D sketch. In the field

of area-based stereo, much work has been done in stereo matching involving the use of
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correlation measures to match neighborhoods of points in the given images. With a

coarse-to-fine strategy, Moravec [21] has used area-based correlation to find

corresponding match points. Initially feature points are identified in each image by the

Moravec interest operator [21] that measures directional variance of image intensities in

four directions surrounding a given pixel. Gennery[22] developed a high-resolution

correlator. This correlator uses the matches provided by the previous correlation matcher

and produces an improved estimate of the matching point based upon the statistics of

noise in the image intensities. This high-resolution correlator provides improved match

points, and gives an estimation of the accuracy of the match in the form of variances and

covariance of the (x,y) coordinates of the match in the second image. Hannah [23]

developed a correlation-based stereo system for an autonomous aerial vehicle featured

with the modified Moravec Operator used to select control points. Autocorrelation in the

neighborhood of a candidate match point is used to evaluate the goodness of a match.

Sub-pixel matching accuracy is achieved through parabolic interpolation of correlation

values.

As cited by Kanade and Okutomi [11], one of the problems in Stereo vision is a

trade off between precision and accuracy (correctness) in matching. This is due to the fact

that disparity and distance are related by

Where d is disparity, B is baseline and f is focal length. This equation indicates that for

the same distance, the disparity is proportional to the baseline or that the baseline length

B acts as a magnification factor in measuring d in order to obtain z, that is, the estimated

distance is more precise if the two cameras are set farther apart from each other, which
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means a longer baseline. A longer baseline, however, has its own problem. Because a

longer disparity range must be searched, correspondence matching is more difficult, and

thus, there is a greater possibility of a false match [11].

1.2.6 Proposed Method

To solve the accuracy precision trade-off problem, Three-Dimensional Surface and

Volume Measurements Using a Camera Array [1] method is proposed in this thesis. The

proposed approach employs five cameras in an array that allow each pair of adjacent

cameras to have an acceptably small baseline, while the entire array provides a large

equivalent baseline. The proposed method determines these correspondences in a pair-

wise fashion among the cameras. Correspondences that appear with high correlations in

all pairs receive the highest rank, and those that have high correlations in only one pair

receive the lowest rank. The highly ranked correspondences can be used to compute a

sparse depth map of the surface. These data can be used with B-spline or Besier methods

to fit a smooth surface. To increase the density of the depth map, the proposed method

examines the behavior of correspondence gradients from camera to camera. Since

biological surfaces change shape gradually except at discontinuities, it is assumed that the

correlations of pixels representing a point on the object will behave smoothly from one

camera pair to another. Lower ranked correspondences that show high correlations

among some camera pairs can be promoted to higher ranking if their gradient of

correlations progresses smoothly through the other camera pairs. Conversely, candidate

correspondences that have high correlations in one or more pairs but very low

correlations in other camera pairs are viewed as errors.



CHAPTER 2

MATERIALS AND METHODS

2.1 Apparatus

In order to build the system described in this thesis, cameras with firewire (IEEE 1394)

connection to the PC are used as the imaging device. There are five high quality Pixelink

(Vitana Corp, Ottawa, Canada) firewire cameras attached to a firewire hub. Images of

1280 x 1024 pixels can be obtained from all cameras at frame rates 9.3 fps. The imaging

devices have 7.5 μm x7.5μm pixels. Lenses are attached via C mount. Rainbow CCTV

S16 1.4E-II (Rainbow CCTV, California, USA) lenses with focal length of 16mm,

maximum relative aperture 1:1.4 are selected. All cameras are mounted on an optical

table with high stability. The apertures of all cameras are set to receive maximum

illuminations. With the Pixelink cameras and their Twain drivers, snapshot images can be

taken for further processing.

Figure 2.1 Equipment setup.

15
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All software in this thesis is written in MATLAB version 6.0 (Mathworks, MA,

USA). Section 2.2 describes the camera calibration software, which was taken from the

camera calibration toolbox for Matlab[12]. Section 2.3 describes the rectification process.

The rectification program (rectify.m and art.m) are taken from [25]. The warping

program (Rec_routine_interp.m, adjustt.m, Warp_interp.m, Checkvert.m) is

designed and developed specially for this thesis. Section 2.4 describes the matching

process. The matching program is also developed in this thesis. Section 2.5 describes the

triangulation calculation. The calculation is done using Microsoft Excel work sheets.

2.2 Camera Calibration

The purpose of the camera calibration is to give the camera parameters described in

chapter 1. Camera calibration is not necessary in stereo vision but leads to simpler

rectification techniques once the cameras' internal parameters, mutual position and

orientation are known. On the other hand, when reconstructing the 3-D shape of objects

from stereo, calibration is mandatory in practice, and can be easily achieved [113].

To prevent time consuming camera calibration, this thesis uses the camera

calibration toolbox for Matlab [12]. This toolbox works on Matlab 5.x (up to Matlab 5.3)

and Matlab 6.x on Windows, Unix and Linux systems (platforms it has been fully tested)

and does not require any specific Matlab toolbox (for example, the optimization toolbox

is not required). The toolbox should also work on any other platform supporting Matlab

5.x and 6.x.
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Camera calibration must begin with calibration of each camera as well as each

stereo system. The work introduced in this thesis rectifies the image of adjacent cameras,

from which pixel correspondences will be matched. In this case, the stereo systems are

defined by a pair of cameras, not all five cameras as a whole.

2.2.1 Real Cameras and Pinhole Model

According to the web site, Camera Calibration [15], " Real Cameras deviate from the

pinhole model in several respects. First in order to get enough light exposed to the film,

the light is gathered across the entire surface of the lens. The most noticeable effect of

this is that only a particular surface in space, called the focal plane, will be in perfect

focus. In terms of camera calibration, each image point corresponds not to a single ray

from the camera center but to a set of rays from across the front of the lens all converging

on a particular point on the focal plan. Fortunately, the effects of this area sampling can

be negligible by using a suitably small camera aperture. Second is lens distortion or radial

distortion. A final and particularly insidious deviation from the pinhole camera model is

that the imaged ray does not necessarily intersect at a point. As a result, there need not be

a mathematically precise principal point."

2.2.2 Calibration grids

A calibration grid is produced by using an Excel work sheet. This can be achieved by

adjusting rows and columns in the Excel worksheet to be equally sized, and manually

place black to the blocks in a checkerboard way. The grid has of a block size 15.5x 16.8

mm with total of 24x14 blocks. The calibration grid is then printed out with a high
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accuracy printer on the paper size 11x17 inches and placed on a flat surface. Attention is

paid to the flatness of the calibration grid, which should be very smooth or otherwise will

give high error calibration parameters.

Figure 2.2 Calibration grid used in experiment.

2.2.3 Calibration method

Camera calibration may be done on a single camera. The camera calibration toolbox for

Matlab can also allows stereo calibration where each pair of cameras are formed to be

stereo systems.

Camera calibration starts with taking images of the calibration grid. At least 5

images are need for camera calibration purpose. Normally, 15 images for more accuracy

are needed. With more images and varying orientations of the calibration grids, the

software is able to locate more corners, which gives less variation in the parameter

outputs. Images are stored in the same subdirectory with the camera name followed by

the image index. The camera calibration toolbox for Matlab has a graphical user interface

to load all images with the same name but different by index. The images are then

displayed as shown in Figure 2.3.
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Figure 2.3 Example of camera calibration grid shown by camera calibration toolbox for
Matlab.

The next step is extraction of grid corners from all image by setting parameters

wintx and winty to a default value for which in this thesis wintx=winty=11. Calibration is

begun with manually selecting the corner of the grid to locate the position of origin of the

world reference. Because of the nature of this experiment, multiple stereo camera

systems, the same grid pattern of the reference frame needs to be consistently selected for

the different camera images. For each calibration grid image, the world reference frame is

defined by the first click of that image when the corner extraction process is being done.

Rotation and translation variables are then defined to be rotation and translation of the

optical center of the camera with the world reference frame as shown in Figure 2.4.



Figure 2.4 Extrinsic parameters, calibration grids and camera reference frame.

The main calibration steps can be done using a software available graphic user

interface. After the first calibration, attention should be paid to pixel errors and tolerances

of principal points. The calibration tool outputs all calibration parameters including

intrinsic parameters such as focal length, principal point, skew factor, distortion, pixel

error and extrinsic parameters such as rotation and translation matrices. The idea of good

calibration lies in minimization of pixel error, which can be done by controlling the

precision of calibration patterns and corner extraction.

In Figure 2.1 the focal lengths from the camera calibration toolbox for Matlab

fc(1) and fc(2) are actually focal length times pixel size in the x and y direction. Vector

CC gives the position of the principal point. After each camera is calibrated, the stereo

system of the two cameras can be computed. This gives rotation and translation matrices

20
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between the two cameras. Stereo calibration can be done by running the stereo_calib

script in the camera calibration toolbox for Matlab.

Table 2.1 Camera A. calibration results. (Focal length shown is Focal length by pixel
size)

Figure 2.5 Results of stereo calibration, rotation and translation matrices between two
cameras are defined.
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2.3 Rectification Process

When two stereo images are not taken by the camera with parallel optical axes, the

epipolar lines of the both images are not parallel. This means that the one dimensional

searching along the epipolar line become difficult as one needs to know the epipolar line

equation. Rectification is the method for projecting the entire image position back to the

standard stereo diagram plane so that the all epipolar lines become parallel to the image

horizontal axis. In this case, the searching for correspondences becomes a one dimension

horizontal search, which is much easier to accomplish.

Figure 2.6 Rectification.
(Note: E. Trucco and A. Verri 1998 [7])
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2.3.1 Rectified Coordinates

To implement rectification, the technique by A. Fusiello et al. [25] is chosen for

implementation. Details for solving the rectifying projection matrices are discussed in

[25]. The rectifying program, given from [25], is shown in Appendix A. In this algorithm,

what one needs to know as an input is the perspective projective matrices of both

cameras. The perspective projective matrix is defined by

where A is the intrinsic matrix defined by eq (1.9).

R is the rotation matrix

T is the translation vector.

The algorithm results in four matrices two of which are the new perspective

projective matrices and the other two are transformation matrices size 3 by 3 which

transform the whole image plane position to the rectified image plane position.

Mathematically,

Where Mn  is the image position in the rectified image plane

T is the transformation matrix

Mo is the original position in the original image plane

Note here that all position vectors use a homogeneous coordinate system.
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2.3.2 Image Warping

Image positions in the rectified image plane computed using the method descried in

section 2.3.1 usually have non-integer values. In order to be useful, the rectified image

must be warped or interpolated to integer values. The idea of the program lies in

starting with a new image plane and uses the inverse transformation

2.3.3 Implementation of Rectification Warping

Implementation is done using the following steps.

1. Pick all four corners of the original image and transform forward to the rectified

position

2. Find the size of the rectified image by finding maximum X, minimum X,

maximum Y and minimum Y of all four corners. Later these will be refered to as

Xmax, Xmin, Ymax, Ymin respectively.

3. From position (Xmin, Ymin) apply the inverse transformation to every position in

the rectified image plane to find the position of that point in the original image

frame. Usually the position found is not an integer.

4. The X value of the position found and the Y value of the position found are kept

in two position matrices. These matrices are then used for two dimension bilinear

interpolation. The result of bilinear interpolation is the rectified image.

5. The rectified image and position matrices values are returned. This way one can

restore a position of the original image given a position in the rectified image.
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Programs written for warping rectified images are named ad justt.m and

warp_interp.m. The whole routine for rectification is named

rec_routine_interp.m See Appendix A for the detail source code. Figure 2.7

shows the result of the rectification. Detailed rectification results are discussed in

section 3.2.

b) Rectified stereo pair

Figure 2.7 Rectification results a) Original Images b) Rectified Images.

2.3.4 Using the Rectification Program

To use the rectification program introduced in this thesis, it is necessary to have all

programs for rectification shown in appendix A in the same folder. The rectification can

be done by running rec_routine_interp.m. It is necessary to have three files of stereo

camera calibration results, left, right and stereo results, in the same folder. The stereo
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images taken by stereo system must be in the same folder and manually change in the

running rec_routine_interp.m.

2.4 Image Matching

After the stereo pairs have been rectified, image matching is done by a Sum of Squared

Difference (SSD). A window size of 12x12 pixels is chosen because it offers good

matching results while being small enough to give good depth map resolution. Given

input position (x,y) in the left image, the program slides a block horizontally along the

epipolar line in the right image to find the smallest SSD value. The position found with

the smallest SSD within the search range is identified as the correspondence, and the

difference between X1 (X position of the image point in the left image) and X2 (X

position of the correspondence point in the right image) are called disparity. The program

is shown in Appendix A named testmatch.m

This algorithm works fine in a textured area where there is no ambiguity. Figure 2.8

shows the program applied to a synthetic stereo pair, with good matching result.
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Figure 2.8 Dense disparity map found by application of SSD through synthesis stereo
pairs. (Large disparities are shown red)
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Figure 2.9 Dense disparity map found by application of SSD through a Renault stereo
pairs.

Figure 2.9 shows the result of application of the SSD algorithm through a Renault

stereo pair, which is commonly used in stereo research [24]. The result is good in the

region where the texture is abundant. The SSD algorithm fails in many parts where
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texture is not abundant. Figure 2.10 shows the correct intensity match results from figure

2.9.

Figure 2.10 Correct intensity match found by searching rectified stereo pair shown in
Figure 2.9.

2.5 Triangulation

Triangulation is done by eq (1.14). The angle theta can be found from the rotation matrix

between the two cameras obtained from the camera calibration. From [2], the rotation by

angle -0 about the Y axis

The experiment was mechanically set up in such a way that the rotation between

the Z axis and X axis is negligible. The angle 0 in eq. (2.4) is approximately sin - ' [R(1,3)]

where R(1,3) is the first row and third column of R. Baseline B can be found from the

translation vectors. Because of the nature of the experimental setup, the baseline can be

approximated by T(1) with sub millimeter precisions.

Triangulation for the proposed method can be done by summing the disparities

among camera pairs. This is due to the fact that the rectified plane is the plane in which

the epipolar lines become parallel. The pair wise disparities then lie in the same plane and

thus may be summed directly.
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2.6 Experimental Procedure

After completing the instrumentation and programming, an experimental procedure was

conducted. Five cameras were mechanically mounted to an optical table along the same x

line. Each camera was equipped with a Rainbow CCTV S 16 1.4E-II with a focal length

of 16mm. The lenses were set to full aperture.

Camera calibration is needed for all cameras. A camera calibration grid was made

using the Excel program. The calibration grid was attached to a smooth surface. Ten

images of the calibration grid were taken from different views. The cameras were named

from the leftmost camera to rightmost camera, "A", "B", "C", "D", "E" respectively. One

should try to minimize the pixel error in camera calibration. When every camera is

calibrated, the stereo calibration can be done. Stereo calibration included the stereo pairs

"A-B", "A-C", "A-E", "B-C", "C-D", and "D-E".

When stereo calibration is finished, the next step is taking pictures in all view of a

subject, which was a cylinder wrapped by gift paper. The subject images are then

rectified using calibration results of stereo pair "A-B", "A-C", "A-E", "B-C", "C-D", and

"D-E" calibrated earlier.

The traditional matching method employs a direct matching of the A-C pair, A-D

pair and A-E pair. To compare with the proposed method, traditional matching is done

for six points of interest. The positions in the left image, disparity, and the new position

in the right image are noted. Due to bad illumination condition found in camera E, the

matching results in camera E are omitted.
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Figure 2.12 Proposed method, propagation of correspondences.

The proposed matching method employs a propagation of correspondences. In

Figure 2.12, for example, to find the correspondence in A-C, a position in rectified image

A was matched with image B. The position in rectified image A, disparity, and new

position in rectified image B are recorded. When rectified, the position matrices of the

left and right images are saved. These position matrices are used for tracking the position

of the original image given a position in the rectified image. One can track back to the

position of the original image B given a known rectified position B, row and column (i,j),
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by finding the row and column (i,j) of the position matrices. The positions of the original

image B are noted. The positions of the rectified image B in stereo pair B-C are found by

using program lookgo.m. The program searches for a position (k,l) in rectified image B

whose values are (i,j). Value k and 1 are returned as the position of a point of interest in

rectified image B of the stereo pair B-C. SSD matching is done the same way it was done

in A-B. The position and disparity of the path of the points are noted.



CHAPTER 3

RESULTS AND DISCUSSION

3.1 Calibration Results

The calibration results are shown and discussed. All camera calibration results are shown

in Appendix B. Table 3.1 shows the calibration results for camera A. The calibration

results of camera A will be discussed as the stereotype of all camera results.

The focal length fc is actually the focal length divided by pixel size. Pixelink

cameras use a 7.512m pixel size. The actual focal length is therefore fc*7.5μm. In the case

of camera A, this equals 18.07mm and 17.9mm for x and y axes respectively. The

principal point is the point where the optical axes pass through the image plane. The

distortion coefficient kc is expected to approach zero. One can improve pixel error and

generate a more correct value of all parameters by reducing associated human error.

These errors are smoothness of the calibration grids, and variation in camera position.

Extrinsic parameters are more difficult to check. Normally one can check using two

methods. The first method is to mechanically measure the distance between the origin

point of the world coordinate system and the camera, and verify that distance with the

magnitude of the translation vector. The result should be the same. For the case of camera

A, the translation vector Tc_1 with the first coordination grid location #1, [30 7 1290] T,

which gives a magnitude of 1.29 m, which is in agreement with the distance measured.

The second way is by checking the image with the extrinsic parameter image. The

outcome should agree as well.
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Table 3.1 Calibration result of camera A.

34

Figure 3.1 Extrinsic parameter for camera A.

The stereo calibration results could also be checked by the same two methods. If

they are in agreement, it can be assumed that the results are sufficient for rectification.
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3.2 Rectification Result

The rectification result for the A-C stereo system is shown in Figure 3.2. Rectification

results of all image pairs are shown in Appendix B. From the rectification program, the

image would not align vertically, but the epipolar lines are parallel. This is no surprise

since the y coordinates of the principal points in each camera are not equal and there is

also variation in the pitch angle. Therefore, there is a mismatch in the y position of the

optical centers of the two rectified images. This misalignment is corrected by manually

cropping the rectified images. Once that is done, searching for correspondences can be

achieved using the horizontally sliding block.

Figure 3.2 Original and Rectified image pair. Epipolar line become parallel after
rectification. a) Left and right images from camera A-C, b) Rectified stereo pair A-C
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The rectification results are not perfect. It is found to have maximum error of 1-2

pixels misalignment. This is due to the uncertainty in the camera calibration result. The

misalignment may cause a problem if too small a window size is chosen for SSD

matching. The window size is chosen to be 12x12 pixels to keep the maximum error

around 10%. The inversion of the rectified images is an artifact of the algorithm, and

causes no problem in matching. Therefore, there is no need to change the rectification

result.

To use the rectification results with the proposed algorithm, one needs to crop the

position matrices, specifying the original position of the unrectified image using the same

crop parameters. Refer to Figure 2.12 in section 2.6 for detail of how the position

matrices work.

Figure 3.3 Image taken from each camera and the points of interest.
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3.3 Matching Results

To demonstrate that the proposed algorithm works, the depth dimensions of 11 points on

the surface are found using the traditional and proposed methods shown in Figure 3.3.

Eleven points where correspondences are easy to find in the A-B stereo pair are chosen.

The graphs in Figure 3.4 show matching result for the "Dog nose". In this case, an error

occurred in A-C where the lowest SSD yields a incorrect disparity of 94 pixels. The SSD

graph shows good matching from A-B and from B-C. The disparity of A-B, A-C reads 82

and 178 pixels respectively. This added up to 260 pixels. The visual approach of the SSD

plots supports these findings, sharp, unambiguous SSD minima occur in the A-D and B-C

matching. The plot of A-C shows much more ambiguity around its lowest value of SSD.

c) SSD graph for A-C

Figure 3.4 SSD value versus candidate disparity for three stereo pairs.



38

The reconstruction of the propagation proposed method gives the result of

1100.22 mm, while the reconstruction of the matching method is 1683.77 mm. The object

is placed at the position around 1100mm-1300 mm. This result will be verified in the

reconstruction section. The reason for poor matches in camera A-C is because the image

is slightly out of focus in camera C. In this case, the accuracy of matching is degraded

when a larger baseline is used. This is called accuracy-precision trade off [8]. The

proposed method gives a clearly better result in this case.

Table 3.2 Proposed method A-D disparity results

Position name
Disparity
AB

Disparity
BC

Disparity
CD Acumulate Disparity

Soldier duck's ribbon 80 176 30 286
Star between ducks' heads 82 #155 #30 267
Big star over duck's hat 82 #89
Mouse's pant 75 #14
Dog's heart 81 178 31 290
Dog's nose 82 178 32 292
Dog's leg 81 176 30 287
Brown dog's ear 81 176 30 287
Yellow dog's ear 82 177 30 289
Micky mouse's leg 79 175 29 283
Micky's face 80 176 29 285

In the experiment, camera C is out of focus and caused the matching between camera A

and D to have better results than A-C. This is because the image should be large enough

to gain the advantage of having many pixels representing small spots in the image. In the

future, the lenses, which have smaller focal length, are need. This example shows that the

proposed method is more robust with regards to this error.
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Table 3.3 Direct matching method A-D disparity results

Position name
Position image A in

AD
Disparity
AD

Position image D in
AD

x y x y
Soldier duck's ribbon 134 83 #287 421 83
Star between ducks' heads 151 79 #182 333 79
Big star over duck's hat 214 76 #247 461 76
Mouse's pant Occluded
Dog's heart 209 226 300 509 228
Dog's nose 190 210 304 494 210
Dog's leg 189 287 299 488 287
Brown dog's ear 154 235 300 454 235
Yellow dog's ear 181 188 304 485 189
Micky mouse's leg 138 339 294 482 339
Micky's face 173 375 295 468 375

According to Tables 3.2 , 3.3 and the raw data provided in Appendix B, from A to

D, the proposed algorithm has the same error as the long baseline method for three

points. The proposed algorithm may have a problem in that it propagates some

mistakenly matched points. Future work should concentrate on statistical analysis of

many points using the proposed method and direct matching. From the matching result,

the proposed method is a feasible method of solving correspondences in large baseline

using propagation of correspondences.

3.4 Triangulation Results

Table 3.4 demonstrates the Z dimension triangulation results. For full triangulation

results see appendix B. The triangulation is done according to the method described in

section 2.5. The differences in distance values are found to be camera calibration related.

This is because one needs to use the camera calibration results for triangulation. In the
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experiment, it is approximated that the rotation is entirely about the Y axis. This

assumption is valid in this experiment because the cameras were mechanically attached to

the optical table in which case the X axis rotation and Z axis rotation are negligible.

According to eq. (1.14) The angle 0 in eq. (2.4) is found by sin -1(R(1,3)) where R(1,3) is

the element(1,3) in the rotation matrix R.

Table 3.4, shown below, gives the triangulation results. For full reconstruction

results see Appendix B. The "#" in front of number indicates that the triangulation is

done under the mismatched result. Due to low camera calibration precision, the Z

dimension has some error. This case can be prevented by better camera calibration,

especially the camera calibration grid, which must be absolutely flat.

Table 3.4 Triangulation results

Direct Matching Method
Proposed

Method
Position name AB AC AD BC CD AC AD

z z z z z z z
Dog's heart 1055.27 1052.39 1276.44 1133.69 1432.63 1102.31 1295.81
Dog's nose 1051.44 1048.59 1268.86 1133.69 1424.68 1100.22 1291.89
Yellow dog's ear 1051.444 1262.85 1268.86 1138.13 1440.67 1102.31 1297.78
Dog's leg 1055.27#1683.77 1278.35 1142.61 1440.67 1106.51 1301.74
Brown dog's ear 1055.27#2045.39 1276.44 1142.61 1440.67 1106.51 1301.74
Soldier duck's ribbon 1059.12#1604.70 1301.74 1142.61 1440.67 1108.62 1303.72
Micky's face 1059.12#1299.57 1286.05 1142.61 1448.80 1108.62 1305.72
Micky mouse's leg 1063.01 1060.07 1287.99 1147.13 1448.80 1112.87 1309.72
Mouse's pant #1069.82
Star between ducks' heads 1051.4441171.19
Big star over duck's hat 1051.4441273.92

In Figure 3.5, it was shown that the result matching between A-C was not

accurate due to the blurred image of C. Large baseline tends to give error for a variety of

reasons. In this case, the proposed algorithm does work better as shown by triangulation



41

result for A-C. It is because of the matching accuracy that the proposed algorithm gives

this precision. The object in this case was placed at 1.100 meters from camera C.

Figure 3.5 Proposed method gives superior result dealing with image blurred.

If the large baseline itself gives error due to a variety of reasons, the smaller

baseline has its own problem. Though the accuracy of matching is high, the resolutions

on measuring depth are low. This is demonstrated in Figure 3.6. The small baseline offers

poor resolution. Taking C-D for example, there are step distances of four sizes. A-B,

likewise, has a step distance of five sizes. The resolution for small baseline, in this

experiment, is 3.83 mm/pixel, while the resolution of the large baseline A-D is 1.91

mm/pixel. From the experiment, the A-D matching results turn out to be good as

demonstrated by Figure 3.7.
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Figure 3.6 Small baseline triangulation results.

In the case in which the matching can be done correctly from A to D, there is no

reason to use the proposed algorithm. However, it is likely that the larger baseline will

results in correspondence matching error [8]. A-C is a good example of this situation

where most of the matching using the direct matching method gives mostly incorrect

results, while the proposed method gives consistently good results.

Figure 3.7 shows . good triangulation results given by both the traditional direct

matching and proposed methods. The correspondence found for the point named "Soldier

duck's ribbon" in the direct matching method is mismatched and causes the resulting

incorrect depth measurement at this point. The proposed method shows no mismatch in

this figure, and gives better results.
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Figure 3.7 The precision of A-D is higher than A-B.

Figure 3.8 shows the triangulation results as normalized distances. Because the target

points lie on the surface of the cylinder, the maximum difference in depth dimension

among them is approximately 25 mm, as measured mechanically. Since the cylinder is

placed at the position 1100 mm from camera C, the center camera in the array, it is no

surprise that the normalized distances of the eight points appear to be near unity in this

figure. It also gives an experimentally determined maximum difference in depth

dimension of 19.14 mm, which very close to the measured value of 25 mm. The proposed

method has better resolution than when using a small baseline, and gives better

correspondence matching than the A-D direct matching. The proposed method also gives

better resolution than with a small baseline direct matching method. The depth resolution
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with a small base line is approximately 3.8 mm/pixel, and the proposed method

resolution is 1.0 mm/pixel. These results confirm the main premise of this thesis.

Figure 3.8 Triangulation result.



CHAPTER 4

CONCLUSIONS

The precision of the proposed method can equal that of large baseline, if the

correspondences are matched correctly in both methods. The accuracy of matching in the

proposed method in this experiment is better than the direct matching method. In the case

of four cameras, A to D, the direct method resulted in a major error in a correspondence

of one point, resulting in a substantial depth calculation. The proposed method of

propagating correspondences determined from multiple small baselines minimizes this

kind of error.

In the case of the slightly out of focus image of camera C, the proposed method is

more robust than the direct matching method, which fails to achieve good matching. Due

to the nature of summing disparities, the proposed method gives the results as if the

object is viewed from four cameras simultaneously. The proposed method gives better

distance resolution than the small baseline, while it enjoys the advantage of accurate

matching that is typical of a small baseline. When compared to the large baseline, it

enjoys the same advantage of more accurate depth resolution, while keeping

correspondences matching accuracy high. The accuracy-precision tradeoff problem is

resolved by the proposed method.

Future work requires a strategy of how one can precisely distinguish the high

confidence corresponding points and use them to generate sparse representation of

biological surfaces. Enhancement of the camera calibration precision, improvement of

target textures, inclusion of camera rotation among x axes, and use of a more accurate

triangulation algorithm are recommended for future continuation of this work.
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APPENDIX A

PROGRAM USED IN THESIS

Rectification process

Program named art.m and rectification.m are found from A. Fusiello, E. Trucco, and A.

Verri [25]. Program rec_routine_interp.m is the main routine, which calls

warp_interp.m and adjustt.m for rectification. Checkvert.m check the rectification

result manually to see if both image are aligned up.

art.m

function [A,R,t] = art(P)
% ART: factorize a PPM as P=A*[R;t]

Q = inv(P(1:3, 1:3));
[U,B] = qr(Q);

R = inv(U);
t = B*P(1:3,4);
A = inv(B);
A = A ./A(3,3);

rectification.m
% This is the rectification function

function [T1,T2,Pn1,Pn2] = rectify(Po1,Po2,Xoff,Yoff)

% RECTIFY: compute rectification matrices

% factorize old PPMs
[A1,R1,t1] = art(Po1);
[A2,R2,t2] = art(Po2);

% optical centers (unchanged)
c1 = - inv(Po1(:,1:3))*Po1(:,4);

c2 = - inv(Po2(:,1:3))*Po2(:,4);

% new x axis (= direction of the baseline)
v1 = (c1-c2);
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% new y axes (orthogonal to new x and old z)
v2 = cross(R1(3,:)',v1);
% new z axes (orthogonal to baseline and y)
v3 = cross(v 1,v2);

% new extrinsic parameters
R = [v 1 7norm(v 1)

v2'/norm(v2)
v3'/norm(v3)];

% translation is left unchanged

% new intrinsic parameters (arbitrary)
A = (Al + A2)./2;
A(1,2)=0; % no skew
A(1,3)=A(1,3)-Xoff;
A(2,3)=A(2,3)-Yoff;

% new projection matrices
Pnl = A * [R -R*c1 ];
Pn2 = A * [R -R*c2 ];

% rectifying image transformation
T1 = Pn1(1:3,1:3)* inv(Po1(1:3,1:3));
T2 = Pn2(1:3,1:3)* inv(Po2(1:3,1:3));

Rec_routine_interp.m

% Main Rectification Routine.

load calib_Results_left
QRc_left=Rc_1;
QTc_left=Tc_1;

load calib_Results_right
QRc_right=Rc_1;
QTc_right=Tc_1;

load calib_results_stereo
QKK _left=KK_left;
QKK_right=KK_right;

clear A*;clear B*;clear C*;clear D*;clear E*;clear F*;clear G*;clear H*;clear I*;
clear J*;clear K*;clear L*;clear M*;clear N*;clear O*;clear P*;clear R*;clear S*;
clear T*;clear U*;clear V*;clear W*;clear X*;clear Y*;clear Z*;clear a*;clear b*;
clear c*;clear d*;clear e*;clear f*;clear g*;clear h*;clear i*;clear j*;clear k*;
clear 1*;clear m*;clear n*;clear o*;clear p*;clear q*;clear r*;clear s*;clear t*;
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clear u*;clear v*;clear w*;clear x*;clear y*;clear z*;
PPM_left=QKK Jeft*[QRc_left QTc_left];
PPM_right=QKK_right*[QRc_right QTc_right];

%PPM_right=[9.767e+2 5.376e+1 -2.4e+2 4.003e+4;9.868e+1 9.3 1 e+2 1.567e+2
2.517e+5;5.766e-1 1.141e-1 8.089e-1 1.174e+3]
%PPM_left=[9.765e+2 5.382e+1 -2.398e+2 3.875e+5;9.849e+1 9.333e+2 1.574e+2
2.428e+5;5.790e-1 1.108e-1 8.077e-1 1.118e+3]
leftcomx=200;leftcorny=250;spanx=800;spany=500;

[TL,TR,c,d]=rectification(PPM_left,PPM_right,0,0) % First rectification
Imlef=imread('dCoke22','tif);%imshow(Imlef);

Imleft=imcropamlef(:,:,1),[leftcornx leftcorny spanx spany]);
Imrigh=imread('eCoke22Vtif);%figure;imshow(Imrigh);
Imright=imcrop(Imrigh(:,:,1),[leftcornx leftcorny spanx spany]);

[Xoff L,Yoff L,Xmin_L,Ymin_L,Xmax_L,Ymax_L]=adjustt(TL,Imleft,leftcornx,leftcor
ny,spanx,spany);
[RecIm_L,PxL,PyL]=warp_interp(TL,Xmin_L,Ymin_L,Xmax_L,Ymax_L,Imleft,leftcor
nx,leftcorny);

[Xoff R,Yoff R,Xmin_R,Ymin_R,Xmax_R,Ymax_R]=adjustt(TR,Imright,leftcornx,left
corny,spanx,spany);
[RecIm_R,PxR,PyR]=warp_interp(TR,Xmin_R,Ymin_R,Xmax_R,Ymax_R,Imright,leftc
ornx,leftcorny);

RecIm_L=mat2gray(RecIm_L);
RecIm_R=mat2gray(RecIm_R);
FlipRec_L=fliplr(rot90(RecIm_L,3));FlipRec_R=fliplr(rot90(RecIm_R,3));
imshow(Imleft);figure;imshow(Imright);figure;imshow(RecIm_L);figure;imshow(RecIm
_R);figure;imshow(FlipRec_L);figure;imshow(FlipRec_R);

save deCoke22reclm;
%checkvert(FlipRec_L,FlipRec_R);

adjustt.m

% Function Adjust to give image position offset to rectify.m so that the
% image center is in the center and to warp_interp for postioning.
% Input to this function is T1 and the image.

function
[Xoff,Yoff,Xmin,Ymin,Xmax,Ymax]=adjustt(T,ImageIn,leftcornx,leftcorny,spanx,spany
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Imsize=size(ImageIn);
a=T*[leftcomx leftcorny 1]';
b=T*[leftcornx+spanx leftcomy 1]';
c=T*[leftcornx leftcorny+spany 1]';
d=T*[leftcornx+spanx leftcorny+spany 1]';
Imedge(1,:)=(a./a(3))';
Imedge(2,:)=(b./b(3))';
Imedge(3,:)=(c./c(3))';
Imedge(4,:)=(d./d(3))';
Xmax=max(Imedge(:,1));
Ymax=max(Imedge(:,2));
Xmin=min(Imedge(:,1));
Ymin=min(Imedge(:,2));
ImCenter=[(Xmax+Xmin)/2 (Ymax+Ymin)/2];
Xoff=ImCenter(1)-512;
Yoff=ImCenter(2)-620;

Warp_interp.m

This function computes warping to warp image

function
[RecIm,Px,Py]=warp_interp(T,Xmin,Ymin,Xmax,Ymax,ImageOrig,leftcornx,leftcorny)

ImSize=size(ImageOrig);
ImageOrig=double(ImageOrig);
%xorg=[1:ImSize(2)];
%yorg=[1:ImSize(1)];
Reclm=zeros(Ymax,Xmax);
Tinv=inv(T);
XminIN=round(Xmin);
YminIN=round(Ymin);
XmaxLN=round(Xmax);
YmaxIN=round(Ymax);
icounter=0;jcounter=0;%Px=zeros((XmaxIN-XminIN),(YmaxIN-
YminIN));Py=zeros((XmaxIN-XminIN),(YmaxIN-YminIN));
for j=YminIN:1:YmaxIN

jcounter=jcounter+1;
icounter=0;
for i=XminIN:1:XmaxIN

i
J
icounter=icounter+1;
a=Tinv*[i j 1]'
P=double(a./a(3))
Px(icounter,jcouriter)=P(1);
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Py(icounter,jcounter)=P(2) ;
end

end
Px=Px-leftcornx;
Py=Py-leftcorny;
size(Px)
size(Py)
RecIm=mat2gray(interp2(ImageOrig,Px,Py));

imshow(Reclm);title('Reclm from warp function');
Px
Py

Checkvert.m

function ver_mis=checkvert(I1,Ir)
figure;imshow(Il)
[n1,m1]=ginput(1)
figure;imshow(Ir);
[n2,m2]=ginput(1)
disans=n2-n 1

ver_mis=m2-m1
K=imcrop(II,[n1 m1 30 30]);

%figure;imshow(K)
L=imcrop(Ir,[n2 m2 30 30]);
%figure;imshow(L)

Matching Process 

Matching is done by testmatch.m which calls function SSDto.m. Program named

matching.m is used to create a dense disparity map. Lookgo.m helps search position of a

point in the rectified image given a known value position in the unrectified image.

Checkdis.m and markerpointpoint.m are used to check the result of matching.

Checkdis.m allows a user to select 2 points manually and see the disparity while

markerpointpoint.m needs position (x,y) of a point and displays that point in the image.



Testmatch.m

% Match only one block

load acCoke22Reclm;
BothSize=[870;532];
imL=imcrop(FlipRec_Lc,[0 0 BothSize']);
imLsize=size(imL);
imR=imcrop(FlipRec_Rc,[0 0 BothSize']);

wsize=[12 12];dcanmax=700;blockindex=0;MinSSD=10000000;icounter=0;
imshow(imL);
[i j]=ginput(1);
%i=214;j=76;

K=imcrop(imL,[i j wsize(1) wsize(2)]);
uplefpos=[i j];
Dis=0;
MinSSD=SSDto(imL,imR,wsize,BothSize,uplefpos,Dis);

blockindex=blockindex+1;

for dcan=0:dcanmax
SSD_ij=SSDto(imL,imR,wsize,BothSize,uplefpos,dcan);

if SSD_ij<MinSSD
MinSSD=SSD_ij;
Dis=dcan;
DisPos=[i+dcan j];
end

end
L=imcrop(imR,[i+Dis j wsize(1) wsize(2)]);

figure;imshow(K);figure;imshow(L);figure;imshow(imR)
DisPos
Dis

J
PxR(DisPos(1),DisPos(2))
PyR(DisPos(1),DisPos(2))

51



52

Matching.m

% This is matching program for matching left and right images with the goal to generate
% disparity map.The stereo pairs used are expected to be calibrated and rectified.

filel='c:\Documents 	 and	 settings\peerajak\My
Documents\Stereo_database\renault\left.jpg';
filer='c:\Documents	 and	 settings\peerajak\My
Documents\Stereo_database\renault\right.jpg';

surl='jpg';
sun-='jpg';
imL=imread(filel,surl);
imLsize=size(imL);
imR=imread(filer,surr);
imRsize=size(imR);
%subplot(1,2,1);imshow(imL);subplot(1,2,2);imshow(imR);
wsize=[4 4];dcanmax=120;blockindex=0;MinSSD=10000000;icounter=0;
fti=[1 wsize(1) 232];ftj=[1 wsize(2) 232];
imshow(imcrop(imL,[fti(1) ftj(1) fti(3)-fti(1) ftj(3)-ftj(1)]));
for i=fti(1):fti(2):fti(3);

jcounter--0;
icounter=icounter+1;

for j=ftj(1):ftj(2):ftj(3);
jcounter=jcounter+1;
uplefpos=[i j];
MinSSD=SSDto(filel,surl,filer,surr,wsize,imRsize,uplefpos,0);

Dis=0;

for dcan=1:dcanmax
SSDA=SSDto(filel,surl,filer,surr,wsize,imRsize,uplefpos,dcan);
if SSD_ij<MinSSD

MinSSD=SSD_ij
if MinSSD>=10000000

Dis=0;
else

Dis=dcan
end

j
%else if SSD_ij==MinSSD
% Dis=dcan
% Hx='Anbiguity at x='
% i
% Hy='Anbiguity at y='
% j



% end
end

end
%if Dis>160
% Dis=0

%end

blockdis=Dis*ones(wsize);
DisMap((icounter-1)*wsize(1)+1:icounter*wsize(1),(jcounter-
1)*wsize(2)+1:jcounter*wsize(1))=blockdis;
end
end
figure;mesh(DisMap);
figure;image(DisMap);

SSDto.m

% This is function SSD in 2D. Given upper left position vector(x,y) in left image,
% candidate disparity d and window size vector W(1x2),the function will calculate the
% and return sum of square different value (scalar)

function y=SSD(Leftlm,Rightlm,winsize,Rpicsize,upleft,disp);
Fl=double(imcrop(Leftlm,[upleft(1) upleft(2) winsize(1)-1 winsize(2)-1]));

if upleft(1)<=Rpicsize(2)-disp-winsize(1)-10

upleft_R(1)=upleft(1)+disp;
upleft_R(2)=upleft(2);

else

upleft_R(1)=15;
%upleft_R(1)=Rpicsize(1)-disp-winsize(1)-10;
upleft_R(2)=upleft(2);

end
Fr=double(imcrop(Rightlm,[upleft_R(1) upleft_R(2) winsize(1)-1 winsize(2)-1]));
%disp

sum_sq_diff=sum(sum((Fl-Fr).^2));
y=sum_sq_diff;

lookgo.m

% Program to find back the position[i,j] given value
load deCoke22Reclm
PxLsize=size(PxL);
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for j=1:PxLsize(2)-1
for i=1:PxLsize(1)-1

if PxL(i,j)>298 & PyL(i,j)>442 & PxL(i,j)<299 & PyL(i,j)<443
%if PxL(j,i)=607

PXLi=i;
PXLj =j ;
% end

end
end

end
PXLi
PXLj

Checkdis.m

figure(1);
[n1,m1]=ginput(1);
figure(2);
[n2,m2]=ginput(1);
disans=n2-n 1
K=imcrop(imL,[n1 m1 30 30]);
figure;imshow(K)
L=imcrop(imR,[n2 m2 30 30]);
figure;imshow(L)

markerpointpoint.m

load adCoke22RecIm
MarkerL=zeros(size(FlipRec_Lc));
j=214;i=76;
MarkerL(i,j)=1;

MarkerL(i-1,j)=1;
MarkerL(i+1,j+1)=1;
MarkerL(i-1,j+1)=1;
MarkerL(i+1,j-1)=1;

LeftImpose=imimposemin(FlipRec_Lc,MarkerL);
figure;imshow(LeftImpose);
figure;imshow(FlipRec_Lc);
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APPENDIX B

RAW DATA

Appendix B shows raw data used in this thesis. Figure B.1 shows the target image and

points of interest. Figure B.2 and B.3 show the target viewed by different camera and

rectification results, respectively. Table B.1, B.2, and B.3 show positions and disparities

of various stereo pairs. Table B.4 shows parameters used for triangulation. Table B.5 —

B.9 show triangulation results. Table B.10 — B.15 show camera calibration results.

Figure B.1 Image taken from each camera and the points of interest.
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b) image taken from Camera B

Figure B.2 Image taken from all views.
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d) image taken from right most camera D.

Figure B.2 Image taken from all views. (Continued)



a) Rectified stereo pair A-B

Figure B.3 Rectified image all pairs.
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b) Rectified stereo pair A-C

Figure B.3 Rectified image all pairs. (Continued)
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c) Rectified stereo pair A-D

Figure B.3 Rectified image all pairs. (Continued)
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d) Rectified stereo pair B-C

Figure B.3 Rectified image all pairs. (Continued)
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Figure B.3 Rectified image all pairs. (Continued)
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Table B.1 Position and disparity of a stereo pair A-B

Position name
Position image A in

AB
Disparity
AB

Position image B in
AB

x y x y
Soldier duck's ribbon 151 113 80 231 113
Star between ducks' heads 182 126 82 264 126
Big star over duck's hat 232 113 82 314 113
Mouse's pant 328 177 75 403 177
Dog's heart 230 263 81 331 263
Dog's nose 204 245 82 286 245
Dog's leg 209 326 81 289 326
Brown dog's ear 168 271 81 250 272
Yellow dog's ear 198 255 82 280 225
Micky mouse's leg 154 379 79 233 379
Micky's face 184 414 80 264 414

Table B.2 Position and disparity of a stereo pair B-C.

Position name
Position image A in

AC
Disparity
AC

Position image C in
AC

x y x y
Soldier duck's ribbon 170 97 284 454 97
Star between ducks' heads 198 97 286 484 97
Big star over duck's hat 264 87 #192 456 87
Mouse's pant 378 151 #77 455 151
Dog's heart 276 250 #16 292 250
Dog's nose 250 233 #94 344 233
Dog's leg 262 318 #179 441 318
Brown dog's ear 210 262 280 490 262
Yellow dog's ear 234 211 #275 510 211
Micky mouse's leg  203 379 #228 431 379
Micky's face 244 418 #188 432 418

(Note: Shown with # is mismatch result)
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Table B.3 Position and disparity of stereo pair A-D

Position name
Position image A in

AD
Disparity
AD

Position image D in
AD

x y x y
Soldier duck's ribbon 134 83 #287 421 83
Star between ducks' heads 151 79 #182 333 79
Big star over duck's hat 214 76 #247 461 76
Mouse's pant Occluded
Dog's heart 209 226 300 509 228
Dog's nose 190 210 304 494 210
Dog's leg 189 287 299 488 287
Brown dog's ear 154 235 300 454 235
Yellow dog's ear 181 188 304 485 189
Micky mouse's leg 138 339 294 482 339
Micky's face 173 375 295 468 375
(Note: Shown with # is mismatch result)

Table B.4 Parameters from camera calibration

Focal length by pixel size
fc a fc b fc c fc d
2281.00 2263.00 2254.00 2265.00

f(mm) 17.11 16.97 16.91 16.99
Baseline Bab Bac Bad Bbc Bcd

mm 127.07 254.69 374.38 128.31 113.89
Rotation matrix Rab(1,3) Rac(1,3) Rad(1,3) Rbc(1,3) Rcd(1,3)

0.08 0.12 0.16 0.03 0.07
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Table B.5 Triangulation results. Shown red are mismatch points

Position name AB AC AD
x y z x y z x y z

Soldier duck's ribbon 70.11 52.89 1059.12 79.37 45.07 1052.39 77.01 47.70 #1301.74
Star between ducks' heads 83.89 58.54 1051.44 92.11 44.91 1048.59 103.32 54.05 #1549.79
Big star over duck's hat 106.94 52.50 1051.44 147.91 48.51 #1262.85 130.98 46.51 #1386.26
Mouse's pant 155.13 84.38 1078.83 282.37 112.25 #1683.77
Dog's heart 106.41 122.64 1055.27 250.46 225.76 #2045.40 117.78 127.36 1276.44
Dog's nose 94.03 113.83 1051.44 177.98 165.08 #1604.71 106.44 117.64 1268.86
Dog's leg 96.69 152.02 1055.27 151.06 182.46 #1299.58 106.67 161.98 1278.35
Brown dog's ear 77.72 126.37 1055.27 98.76 122.62 1060.07 86.79 132.43 1276.44
Yellow dog's ear 91.27 118.48 1051.44 111.06 99.66 #1069.83 101.40 105.32 1268.86
Micky mouse's leg 71.77 178.03 1063.01 105.48 195.98 #1171.20 78.47 192.77 1287.99
Micky's face 85.44 193.76 1059.12 137.91 235.10 #1273.93 98.23 212.92 1286.05

(Note: Shown with # is mismatch result)

Table B.6 Disparity of our method A-B-C

Position name
Position B

unrectified in AB
Position B

rectified in BC
Disparity

BC
Position C in
rectified BC

x y x y x y
Soldier duck's ribbon 607 371 201 97 176 377 97
Star between ducks' heads 576 361 230 103 #155 #385 #103
Big star over duck's hat 531 377 275 85 #89 #364 #85
Mouse's pant 446 323 363 135 #14 #377 #135
Dog's heart 528 234 286 228 178 464 228
Dog's nose 552 250 260 214 178 438 214
Dog's leg 544 172 272 292 176 488 292
Brown dog's ear 584 222 230 243 176 406 243
Yellow dog's ear 558 268 253 196 177 403 196
Micky mouse's leg 595 118 224 348 175 399 348
Micky's face 564 86 256 378 176 432_ 	 378



Table B.7 Proposed method B-C-D

Position name

Position C
in

unrectified
BC

Position C
in rectified

CD Disparit
y CD

Position D
in rectified

CD Acumulate
Disparity

Disparity
AB (for
comparison
)

x y x y x y
Soldier duck's ribbon 422 420 392 66 30 406 116 286.00 80
Star between ducks' heads #414 #415 #399 #75 #30 #414 #127 #267.00 82
Big star over duck's hat #434 #433 82
Mouse's pant #423 #383 75
Dog's heart 339 268 474 206 31 503 243 290.00 81
Dog's nose 365 301 448 190 32 476 231 292.00 82
Dog's leg 357 233 455 259 30 485 259 287.00 81
Brown dog's ear 398 274 415 217 30 445 217 287.00 81
Yellow dog's ear 372, 320 441 171 30 471 171 289.00 82
Micky mouse's leg 408 169 403 323 29 432 323 283.00 79
Micky's face 376 137 435 355 29 464 355 285.00 80
(Note: Shown with # is mismatch result)

Table B.8 Triangulation proposed method

Position name BC CD
x y z x y z

Soldier duck's ribbon 101.49 49.17 1142.61 240.96 61.70 1440.67
Star between ducks' heads #126.59 #56.92 #1245.54 #246.08 #65.51 #1440.67
Big star over duck's hat #211.13 #65.52 #1737.44
Mouse's pant #505.60 #188.78 #3151.99
Dog's heart 143.28 114.68 1133.69 294.92 144.21 1432.63
Dog's nose 130.25 107.64 1133.69 276.85 134.61 1424.68
Dog's leg 137.34 148.02 1142.61 311.91 185.73 1440.67
Brown dog's ear 116.13 123.18 1142.61 259.50 154.56 1440.67
Yellow dog's ear 127.24 98.97 1138.13 257.58 124.67 1440.67
Micky mouse's leg 113.55 177.11 1147.13 256.46 222.60 1448.80
Micky's face 129.26 191.62 1142.61 277.68 241.79 1448.80
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Table B.9 Triangulation of proposed method (cont.)

Position name AC AD AB
x y z x y z x y z

Soldier duck's ribbon 73.39 55.36 1108.62 86.31 64.59 1303.72 70.11 52.89 1059.12
Star between ducks' heads #91.78 #64.05 #1150.33 107.13 74.17#1342.67 83.89 58.54 1051.44
Big star over duck's hat 106.94 52.50 1051.44
Mouse's pant 155.13 84.38 1078.83
Dog's heart 111.15128.11 1102.31 130.66 149.41 1295.81 106.41 122.64 1055.27
Dog's nose 98.40119.11 1100.22 115.54 138.76 1291.89 94.03 113.83 1051.44
Dog's leg 101.39159.40 1106.51 119.27 186.04 1301.74 96.69 152.02 1055.27
Brown dog's ear 81.50132.51 1106.51 95.88 154.66 1301.74 77.72 126.37 1055.27
Yellow dog's ear 95.68124.21 1102.31 112.65 145.08 1297.78 91.27 118.48 1051.44
Micky mouse's leg 75.13186.38 1112.87 88.42 217.62 1309.72 71.77 178.03 1063.01
Micky's face 89.43202.81 1108.62 105.33 236.99 1305.72 85.44 193.76 1059.12
(Note: Shown with # is mismatch result)

Table B.10 Calibration result of camera A.

Focal Length: 	 fc = [ 2410.59382 2391.42953 ± [ 56.69217 60.46237
Principal point: 	 cc = [ 500.24104 209.06385 ± [ 38.38559 17.09149 ]
Skew: 	 alpha_c = [ 0.00000 ] ± [ 0.00000 ] => angle of pixel axes = 90.00000 ±
0.00000 degrees
Distortion: 	 kc = [ -0.60010 1.68491 0.01623 -0.00452 0.00000 ± [ 0.04969
0.50549 0.00296 0.00658 0.00000
Pixel error: 	 err = [ 0.43780 0.40924

Table B.11 Calibration result of camera B.

Focal Length: 	 fc = [ 2282.32932 2266.86396 ] ± [ 47.93600 49.34110
Principal point: 	 cc = [ 449.46831 275.35311 ± [ 33.68075 15.24367 ]
Skew: 	 alpha_c = [ 0.00000 ± [ 0.00000 ] => angle of pixel axes = 90.00000 ±
0.00000 degrees
Distortion: 	 kc = [ -0.51899 1.18991 0.01154 0.00501 0.00000 ] ± [ 0.03942
0.32066 0.00237 0.00505 0.00000
Pixel error: 	 err = [ 0.38697 0.40938
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Table B.12 Calibration result of camera C

Focal Length: 	 fc = [ 2279.86858 2268.92749 ] ± [ 35.79652 36.68829 ]
Principal point: 	 cc = [ 437.90009 372.01523 ± [ 24.72611 13.81380 ]
Skew: 	 alpha_c = [ 0.00000 ] ± [ 0.00000 ] => angle of pixel axes = 90.00000 ±
0.00000 degrees
Distortion: 	 kc = [ -0.44748 1.64914 0.00317 -0.00372 0.00000 ] ± [ 0.04005
0.58075 0.00181 0.00260 0.00000
Pixel error: 	 err = [ 0.35492 0.41640 ]

Table B.13 Calibration result of camera D

Focal Length: 	 fc = [ 2272.06613 2261.01983 ± [ 32.20768 32.49057 ]
Principal point: 	 cc = [ 494.86567 437.78209 ± [ 20.03213 12.67956 ]
Skew: 	 alpha_c = [ 0.00000 ] ± [ 0.00000 ] => angle of pixel axes = 90.00000 ±
0.00000 degrees
Distortion: 	 kc = [ -0.35473 0.87491 0.00173 -0.00666 0.00000 ± [ 0.04075
0.85849 0.00143 0.00134 0.00000 ]
Pixel error: 	 err = [ 0.30312 0.37641 ]

Table B.14 Stereo calibration result, translation vectors between cameras

Translation vector
between camera
coordinates

x y z
Tab -126.36 -2.5797 -13.1762
Tac -254.612 3.3888 5.1835
Tad -371.353 -0.3189 -4.2171
Tbc -127.903 3.5186 -9.5656
Tcd -113.864 -0.075 2.282
Tde -125.209 -1.3128 3.8447

TableB.15 Stereo calibration result, Rotation matrices between cameras

Rotation Matrices between camera coordinates
Rab Rac Rad

0.9979 0.0225 0.06 0.995 0.0343 0.0936 0.987 0.0169 0.1597
-0.0195 0.9985 -0.0505 -0.029 0.9979 -0.0578 -0.0061 0.9977 -0.0675
-0.0611 0.0493 0.9969 -0.0954 0.0548 0.9939 -0.1605 0.0657 0.9848

Rbc Rcd
0.9993 0.0104 0.0345 0.9976 -0.0209 0.0656

-0.0101 0.9999 -0.0077 0.0217 0.9997 -0.0116
-0.0346 0.0074 0.9994 -0.0653 0.013 0.9978
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