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ABSTRACT

AN ALGORITHM FOR ESTIMATING THE QUALITY OF MICROARRAYS

by
Ajeet Sodhi

Microarray technology is currently one of the most valuable gene expression tools in

molecular biology allowing the experimenter to simultaneously quantify the expression of

thousands of genes. It is also one of the most difficult tools to use accurately as each

microarray produces a large amount of information that needs to be inspected and normalized

before analysis. As the size of a microarray or number of replicates increase, the use of

manual inspection becomes impractical. The aim of this thesis is to introduce an algorithm

that evaluates each feature of a microarray from the scanned data file. A quality score is

calculated from various spot parameters, the quality-quotient, and can be used to

automatically assess the quality of the spot. This quality-quotient can then be utilized to

automatically select quality spots or act as a weighting factor for comparing spots from

replicate microarrays.
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CHAPTER 1

INTRODUCTION

Functional Genomics is the study of all of the genes in a cell at the transcriptional level. This

refers to the measuring of the concentrations of mRNA of a sample. Techniques involved

include Quantitative Real-Time PCR, Serial Analysis of Gene Expression, and Northern

Blotting, all of which vary with respect to the precision, accuracy, and number of genes that

can be simultaneously profiled. For sheer quantity of genes assayed however, few methods

compare to the use of nucleic acid microarrays at this time. This technique is currently being

employed for purposes ranging from clinical diagnosis [17] to experimental biology in areas

as diverse as spinal cord injury research [23, 24] and plant genetics [18].

Although the use of nucleic acids immobilized on solid surfaces for the purposes of

quantifying biomolecules has been a core technique of molecular biology for decades, high

density microarrays are a relatively recent tool and allow profiling of the expression of

thousands of genes in parallel [1, 2, 3, 4]. Microarrays are composed of slide surfaces upon

which numerous spots have been printed by a robot. The spots are probes consisting of

nucleic acids representing genes obtained from a gene library and are affixed to the surface

during the printing process. Each spot represents a different gene.

Microarrays may contain probes consisting of either cDNA or oligonucleotides [1].

cDNA is the artificial nucleic acid formed from the transcript, mRNA. This is accomplished

with the enzyme reverse transcriptase, which produces DNA from RNA, a reversal of the

normal process. Because of this, the cDNA is exactly complementary to its mRNA

precursor. It is also much shorter than the original gene copy that the mRNA was derived

from since the production of mRNA eliminates the non-coding DNA regions known as
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introns. The result is a nucleotide polymer that can be used as a probe for a specific gene

transcript.

In a typical microarray experiment, the tissue or cell specimen that is to be tested is

isolated and processed, during which the total mRNA is extracted from it. This sample

contains a representation of all of the genes that were being expressed in the cells or tissue at

the time of harvesting. The sample is reverse-transcribed to cDNA along with the addition of

nucleotide fluorophores. This fluorescently labeled cDNA strand is referred to as the target

and is hybridized to the microarray.

Theoretically, the cDNA targets will bind to their specific complementary cDNA

probes. During scanning, a laser excites the labeled probe-target hybrids, inducing them to

fluoresce. The intensity of the fluorescent emissions is recorded and is indicative of the

quantity of bound target [4]. Additionally, the intensity of the emissions for a spot is directly

proportional to the concentration of transcript in the original sample.

Usually, a microarray experiment is performed using two samples, a control and a test

sample. This is the most robust method to determine the change in gene expression between

two treatments. The samples are labeled with different fluorophores, Cyanine 3 (Cy3) and

Cyanine 5 (Cy5) and hybridized to the microarray slide simultaneously. Two lasers are used

during scanning, each designed to excite only one of the fluorescent labels. Each laser is

employed separately. The resulting emissions are combined computationally and give a

simple, visual report of the findings.

Software, such as Genepix 4.0 (Axon Instruments Inc.), is used to analyze the results

of a microarray scan. This program produces a composite image of the information resulting

from the emissions of both of the fluorophores. A red spot indicates that the red fluorophore
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(Cy 5) is primarily found within the spot. Thus, the targets bound to the probes within the

spot are labeled with Cy 5, meaning that the Cy5-labeled sample is showing expression for

the given gene. Conversely, a green spot results from the binding of the targets from the Cy

3-labeled sample to the probes within the spot. The intensity of the red and green colors refer

to the intensity of their respective emissions. Finally, spots containing targets from both

samples are shown in an artificial yellow color [Fig. 1].

Figure 1 Spots resulting from bound Cye 5, Cye 3, and the mix of the two, respectively.

The microarrays discussed in this thesis use a modification of the standard microarray

procedure. The probes are printed with oligonucleotides instead of cDNA. Additionally, the

targets are modified to incorporate fluorophores through the use of dendrimers.

The microarrays are rat oligonucleotide microarrays and are used to study the change

in gene expression of rats following spinal cord injury. Each microarray consists of 4969

spots, with probe lengths of 65-70 nucleotides [6]. The use of short oligonucleotide probes

was introduced to reduce the problem of non-specific hybridization. The extensive

redundancy in the genomes of organisms, especially eukaryotes, allows targets to hybridize

to unintended probes with a frequency severe enough to render unreliable results. Short

oligonucleotide probes, usually about 50-70 nucleotides long, can be intentionally designed
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to be long enough for specific target identification, but short enough to reduce the

redundancy contributing to non-specific hybridization [1, 5].

The cDNA targets are modified to utilize dendrimers. The advantages of this

technique include a higher signal to background ratio and a decrease in the initial mRNA

required [21]. Following processing and isolation, the total RNA pool is reverse-transcribed

using an oligo-dT primer with a dendrimer "capture" sequence attached. The fact that nearly

all mRNA transcripts end with a repeating poly-adenosine (poly-A) nucleotide sequence

ensures that they will all be reverse-transcribed. Afterwards, heat and alkali substances

degrade the RNA leaving only the reverse transcription product. The result is a pool of

cDNA representative of the original total mRNA transcripts, each with an identical capture

sequence attached. The process is repeated for the second sample except a different capture

sequence is used.

After hybridization with the two samples, the slide is incubated with the dendrimers,

large molecules of branching oligonucleotides containing fluorescent dyes (Cy 3 or Cy 5).

Two types of dendrimer are used, each designed for one capture sequence and each

containing either Cy3 or Cy5. The dendrimers bind to their specified capture sequences and

fluoresce during scanning.

It is necessary to define some terms that will be used in this discussion. The

parameters associated with the feature of a particular gene refer to the actual spot on the

microarray. The background is a region surrounding a particular feature. It is individually

defined for every spot on the microarray. The inner boundary of the background is defined

as two pixels from the outer edge of the feature. The outer boundary is a circle extending

around the current feature for a radius that is three times the radius of the current feature,



excluding the boundaries of the surrounding spots (Fig. 2). All background calculations for

this spot are derived from within this bounded region.

5

Figure 2 The striped region denotes the background for the central spot.

Although the theoretical foundations of microarrays are straightforward, in practice

there are numerous conditions that may lead to substantial systematic variation. The result is

that normalization procedures must be applied to raw microarray data before reliable

expression data may be extracted. Sources of variation include dye biases dependent upon

intensity or spatial location within the slide, and variation due to minuscule differences in

printing hardware.

The second source of variation, known as print-tip variation is one of the most

important considerations when analyzing high-density microarrays. The probes on a

microarray are printed in discrete subunits. The current microarray configuration consists of

32 blocks of probes, 4 across and 8 down (Fig. 3). Each block consists of 168 probes, 12

across and 14 down. During the printing process, the probes within an individual block are



all placed upon the slide by the same printing pin. The pin resembles a slotted metal rod,

which draws up the probe in liquid form by capillary action and releases it onto the proper

location on the slide upon contact. Minuscule differences in pin structure produces

significant differences in probe capacity from block to block [22].

6

Figure 3 Block layout on microarray slide.

Print-tip normalization is accomplished using the Statistical Microarray Analysis

function [20] in	 a statistical software package based on the commercial S+ software [19].

The function transforms data for a single microarray to be displayed as a log of intensity ratio

vs. log of mean intensity and then finds a best fit to the scatter of points [22].



CHAPTER 2

THE PROBLEM

The important advantage of the microarray is the ability to assay thousands of genes

concurrently. And while the information obtained from the microarray does show general

trends in gene expression, its accuracy does not compare with other, more sensitive methods.

In one example, a two-fold increase in expression levels from a microarray was revealed as a

23-fold increase by the more sensitive method of Quantitative Real-Time PCR [16]. For this

reason, microarrays are used as a primary screening process, by selecting promising looking

genes for further study by more accurate methods.

The enormous amount of information generated by a microarray experiment presents

a problem for the researcher. Even a relatively small microarray with only a few hundred to

thousand spots produces overwhelming spreadsheets of data. The researcher can only

superficially examine the chip scan under a program such as Genepix to eliminate obvious

locations of error before submitting the image to normalization and analysis. It is not

practical to devote the necessary time and energy required to thoroughly examine a scan

manually, particularly with the necessary replicate arrays. Therefore, numerous

discrepancies are neglected that may still contribute to the intensity scores, possibly

influencing the data.

The result is that gene expression data may be obtained that appear to be highly

significant, but may have been influenced by errors within the chip. These types of errors

need not be a disaster for the entire experiment. Even a well-performed microarray chip may

have a significant population of questionable results. Therefore, a method that can

automatically discriminate between doubtful and reliable spots would be very useful.

7
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The purpose of this thesis is to introduce a quality-control function that can be used to

inform the researcher as to the reliability of his gene expression data. This function is

applied to the microarray data before the normalization procedures. The function calculates a

single score, a quality-quotient or qq for every spot within the raw data file. The qq is a

composite of several factors that examine the different aspects of a spot on a microarray.

The range of the qq is defined to be between 0 and 1. A researcher producing a qq score

close to 1 for a particular gene would know that the values obtained for the spot was

probably authentic and not an artifact of experimental error. Additionally, the distribution of

qq values can be analyzed for the entire chip to give an idea of the overall chip quality.

Other assessments of microarray quality exist, but vary according to usefulness or

application. The most common procedure is to have methods designed to assess variability

placed into a chip. Multiple spots of the same gene on a single chip is the obvious design.

The values for a given spot can immediately be compared to the values of its sister spots

revealing the extent of any within-chip variation [10, 11, 12]. While useful, this technique is

not practical because of space limitations on microarrays. Similar across-chip assessments

also suffer from the same weakness.

The use of the actual scanned microarray image is the ideal source of information for

any quality evaluating procedure. The image is the primary receptacle from which the

expression information is derived. It holds a pixel-by-pixel account of the intensities

generated by the laser stimulation. As such, it holds the largest amount of information from

which the most reliable data may be extracted. Most of the quality evaluation papers have

focused on this source [11, 12, 13].
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Matarray, a quality-assessment program, was demonstrated by Wang, Ghosh, and

Guo [13]. Here, intermediate scores are calculated from the microarray image scans to

record irregularities in spot intensity, size, and background noise levels. From these, an

assessment of individual spot quality is produced for every spot. This program, and others

like it, requires a fully descriptive, information-laden microarray image for the algorithm to

run on. The algorithm must examine the individual pixels that comprise the image.

The data file produced from the primary image by Genepix is a text file and contains

reduced information for every spot. Descriptive calculations have been tabulated for each

gene spot as a whole [8]. It was thought that if a quality control function could be

implemented directly from the information contained in the text file, the function could be

activated without the use of the actual image and be implemented at the same time as the

automation of the normalization and cleaning functions. It is noted that any assessments

made from the secondary text file would tend to not be as accurate as the functions directly

utilizing the primary image because of loss of information. However, the use of a quick,

simple quality predictor does carry advantages in the experimental field.

In order to produce the quality estimating functions that make up the quality-quotient,

it was necessary to analyze the results of microarray experiments, including both the scans

and the normalized intensity values. Usually, the normalization procedure is performed

manually in `R'. The 'R.' interface requires numerous lines of instruction for each

microarray slide. As well as being time consuming, this portion of the normalization

protocol presents frequent opportunities for error. In order to increase the efficiency of this

section of the normalization procedure, a function was written in `R' to automate it

(Appendix A).
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The purpose of this thesis is to describe the methods used to conceive the various

aspects of the quality control function. Following this, the function was tested on a set of

microarray spots. The results were compared to scores for the same set of spots evaluated by

individuals skilled in microarray analysis.



CHAPTER 3

METHOD

The parameters that compose the final quality control factor, or qq, were selected by careful

inspection of the data from numerous microarray experiments. It is worth noting that none of

these parameters, as individuals, are excellent predictors of spot quality alone. This is to be

expected, as they each measure a different aspect of the microarray spots. There are many

factors that may detract from spot quality. It is only with a composite score that a realistic,

overall assessment of a spot may be obtained.

After scanning, a microarray image is analyzed by the microarray analysis program

Genepix. Following analysis, the intensity values as well as several parameters calculated by

Genepix to aid analysis and normalization are placed in a file with a ".gpr" extension. This

data file is the source for the parameters discussed below.

3.1 Feature-Background Ratio

The first parameter was chosen to be a simple ratio expressing the extent to which the feature

fluorescence surpassed the background fluorescence for a particular gene and wavelength.

This was calculated using the feature median and background median. These two variables

are also the usual subjects of the normalization and analysis procedures since they are the

least sensitive to the random noise of the system.

The formula for the first parameter, feature-background ratio (FB) is,

where F stands for feature, B stands for background, and med is median.

11
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The analysis manual Biological Relevance of Genepix Results [7] suggests a

minimum FB ratio of 2, or having the feature value at least twice that of the background.

Experience has shown this to be a conservative score and that there are results that are

significant with a lesser FB, particularly when other feature qualities are assessed

simultaneously.

Additionally, there have been recent improvements to the experiment protocol,

reducing noise and creating a more sensitive system. The hybridization step of the

experiments were originally done manually, by placing both fluorescently labeled cDNA

samples on the surface of the chip in an amount of liquid and allowing the setup to sit

immobile overnight. With the introduction of the Ventana Discovery (Ventana Medical

Systems), a hybridization-automation machine, the target samples are forced to circulate on

the chip surface in a larger amount of liquid by the jet-blowing action of the machine. The

result is a dramatic drop in non-specific hybridization. The backgrounds images of the

microarrays hybridized by the Ventana are notably more uniform resulting in an overall noise

reduction in the system.

The combination of experience and the cleaner images has led to the conclusion that

an acceptable level of the FB ratio is '1.4'. In order to incorporate the raw FB score into the

overall quality assessment, it needs to be transformed with a scoring function into an

intermediate score with a value between 0 and 1.

A percent ranking function was considered. This function assigns a percent score to a

member of an array according to the relative rank of the values with the other members of the

array. While this method did fulfill the objective of assigning a meaningful score to the raw

value, it was eventually rejected as being too relative. The transformed score should be
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independent of its relative status in the array data file. This would allow quality scores from

a particular array to be compared with scores from a different array. A relative ranking

method is capable of giving the same score for two different arrays even though their

respective qualities differed significantly.

Several other functions that would transform the raw score to a number between 0

and 1 were considered. The "squashing" function that was chosen is part of the arctan

function:

In addition to the ability to convert the raw score to a number between 0 and 1, the high slope

at the start of the function allows values that begin at the threshold to immediately receive

good scores, instead of being penalized by their proximity to the cutoff as in a sigmoidal

curve (Fig. 4).

Figure 4 Relationship of FB score vs. FB ratio.
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It was desired that the next component of the overall quality score incorporate

different measured characteristics of the microarray datasets. By including unrelated aspects,

it was hoped to get as complete an assessment as possible of the data. The next several

parameters all take into account the means and variances each spot.

3.2 Z-Score

The next parameter looked at was a calculation resembling a z-score obtained for a single

gene at both the red and green wavelengths:

This calculation was also reviewed with the median used in place of the mean. When

graphed as a function of the mean, it showed a general positive correlation with the increase

of the mean. This is required because it would be expected for the quality of a spot to

increase proportionally in this manner. As the measurement of a feature extended further

away from the background levels, it would become easier to distinguish the feature from the

general noise of the system.

Despite the positive trend of this parameter, it was ultimately rejected as a measure of

spot quality. The central use of the standard deviation of the background within the

calculation rendered it exceedingly sensitive to fluctuations caused by the imperfections in

the microarray design.

During the hybridization step of a microarray experiment, the two target samples

labeled with different fluorophores are placed on the surface of the microarray chip for a

length of time to allow the transcript targets to anneal to their complementary probes.

Although the majority of transcripts arrive at their destination, non-specific binding does
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occur. There are many potential sources of this non-specific hybridization. There may be

imperfections in the slide glass or surface coating that non-specifically trap the molecules.

There are probably certain gene targets for which no probe on the chip exists. There might

even be minute drops of probes unintentionally splattered by the robot during the

manufacturing of the chip. The scanned images of the microarrays never fail to show bright

pixels of both fluorophores resting in areas on the chip that are designated as background,

even in a well performed experiment.

The results of these imperfections are occasional disruptions of the calculations. The

intensity of a bright pixel or smudge caused by non-specific hybridization can render a

background standard deviation calculation many times above the actual value, making it

useless for this purpose (Fig. 5). Since this problem occurs frequently (an average of 1/12

spots) and since it also did not accurately assess the quality of a spot, it was rejected as a

quality measure.

Figure 5 Background standard deviation adversely affected by artifact in lower left.
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3.3 Coefficient of Variation

In an ideal experiment, the pixels of a feature would be expected to show a uniform intensity

with no variation. Every unit on the entire slide would be expected to show an equal

distribution of fluorophores. This is certainly not possible. There are numerous sources of

variation, even in the most well performed experiment. The result is that a pixel-by-pixel

analysis of any spot presents a distribution of intensity. A large distribution of pixels may be

due to dust on the slide, surface irregularities of the slide, anomalies arising from printing

such as cross-contamination or pin deformation, or many other contributing sources.

Therefore, it is known that the quality of a spot on a microarray is inversely

proportional to the intensity variance [12, 13]. The purpose of the next parameter, the

Coefficient of Variation (CV), is to take the variation in pixel intensity into account. The

CV is obtained with the following formula:

SD = spot Standard Deviation, F = spot feature, and med referring to the spot median.

Unlike the previous measure, the CV is not as sensitive to the occurrence of random non-

specific hybridization or experimental artifacts such as dust. The differing characteristic is

the use of the feature SD instead of the background SD.

The low background intensity levels are easily disrupted by the random appearance of

the high-intensity pixels caused by non-specific hybridization. The extreme contrasts are

manifested in the abnormally high SD of the backgrounds, rendering them useless for

inclusion in calculations as discussed before.

A feature usually presents a higher overall degree of fluorescence than background.

This allows it to absorb a similar quantity of non-specific hybridization without significantly
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affecting the spot measurements such as median, mean and SD, up to a certain point. As the

number of intense, non-specific pixels increase, the feature begins to lose the benefits of this

buffer zone. The presence of the disturbances begins to affect the other characteristics of the

feature.

To present an intermediate CV score for the overall quality score, the result of the CV

is transformed by a different squashing function (Fig. 6):

Figure 6 Graph of CV vs. CV score.

The CV scores for both the red and green wavelengths of a spot are averaged before

inclusion into the overall composite score.
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3.4 Difference of Ratios

The Genepix manual, Biological Relevance of Genepix Results [7] describes three

calculations derived from a scanned image that are useful to assess spot quality. These

calculations attempt to describe the same measurement, specifically the ratio of wavelength

intensity. These are the Ratio of Medians (rM), Median of Ratios (Mr), and the Regression

Ratio (rR). Each calculation is performed by different methods. A good quality spot will

produce similar values among the three calculations. They are calculated for every spot in

the microarray. The use of the median is preferred, as before, since the median is less

sensitive to outliers.

The rM is a "whole" feature calculation. After scanning, every pixel of a given spot

has values for the red and green intensities. Assuming that the ratio consists of red/green in

this discussion, the median of the red intensities is divided by the median of the green

intensities, for the entire spot, after correcting for the background. Pixels located in the

boundary are not included.

Unlike the rM, the Mr (Median of Ratios) is derived by calculating the red/green ratio

for every pixel (again subtracting background), and then taking the overall median.

The rR (Regression Ratio) is an independent ratio calculated using the all pixels

associated with a spot including feature, background, and boundary. A regression line is

defined based on the histogram of all spot associated with a feature. The slope is the rR.

The Genepix manual states that the three ratios, rM, Mr, and rR can be indicative of

abnormalities as these three values become more dissimilar for a given spot [8]. High quality

microarrays will produce ratios of rM, Mr, and rR that are very similar. Large discrepancies

between the values can indicate problems in the experimental procedure.
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The third parameter is a measure of the difference among the ratios. For a given spot,

the three ratios are averaged to provide a reference. Each ratio is then subtracted from the

reference. The absolute values of the differences are added and divided by three. This is

now the Mean Deviation (MD) of the ratios:

In order to normalize to other values, MD is divided by the reference value resulting

in the Percent Difference (PD). This is the value describing the overall difference in values

amongst the three ratios for a given spot.

In an ideal spot, there would be no difference among the three ratios. Therefore, the

highest score belongs to a PD of zero and descends from there. The scoring function of the

PD is (Fig. 7):

Figure 7 Graph of PD score.
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3.5 T-Test

Other measures were tested. It was thought that a statistical type of measure might give a

promising perception of the quality of a spot on a microarray. The obvious choice is a t-test

calculation, which incorporates the means and the variances of two distributions. The result

of a t-test is a decimal describing the probability that the two distributions are significantly

different. In this case, the two distributions would be the feature intensity and the

background intensity and the aim of the test would be to describe the extent to which the

feature could be distinguished from the background.

T-tests are used to analyze microarray data, but in a different respect than here.

Currently, the t-test is being used to distinguish results among treatments using multiple spots

on the same chip [8], a more familiar capacity.

To utilize the t-test, t values were calculated for both wavelengths between every

feature and background using only the means, standard deviations, and populations (pixel

number) as demonstrated in Intuitive Biostatistics (Motulsky, 1995) [8]. The p values were

obtained using the t values and the appropriate degrees of freedom. The resulting probability

values were examined as potential contributors to the quality analysis procedure.

There were several notable problems with the results of the t-test as a measure of

individual spot quality. Students' t-test is designed to analyze the difference between means

with known variances of datasets with small degrees of freedom (small samples of n<30) [9].

As such, it is enormously useful in biology experiments where it is used to inquire if the

difference between control and test sample sets as small as n=3 are significant. As the

number of samples increase, it becomes easier to distinguish their distributions leading to

more significant probabilities (lower probabilities that the two samples are actually the

same). Because every spot on a microarray contains an average of 700 total pixels (including
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background pixels), the probabilities produced on the t-test had ridiculously low values,

producing underflow errors on more than half of the spots.

Eventually, the t-test was rejected as a measure of quality. Besides the difficulty of

producing reasonable, meaningful measurements, the task of evaluating the extent to which

the feature could be adequately distinguished from the background was adequately handled

by the Feature-Background Ratio.

The formulas for the Quality-Quotient are listed in Appendix B. At this time, the

function is performed within Excel. It was considered to code the function, but that would

restrict the ability to improve it. The Excel implementation was found to give the most

dynamic view of the functions as the formulas and thresholds can be manipulated and

observed most easily in the spreadsheet format.
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RESULTS

The quality control algorithm was subjected to a comparison test to gauge the accuracy of its

predictions. Three "experts" were recruited to independently evaluate a total of sixty spots

from three separate chips in a double-blind quality assessment test. The experts were

individuals who work with microarrays on a daily basis, in all aspects of microarray

experiments, including preparation, RNA extraction and labeling, hybridization, washing,

scanning, normalizing, and analysis. The spots were chosen to represent a range of qualities,

intensities, and background noise. Each expert was instructed to manually inspect every spot

on the list of spots in order, by whichever methods they were accustomed to. This including

examining the spots at different magnification rates, constructing histograms of various

parameters, and viewing through separate wavelengths.

A simple grading index was given to apply to each spot:

5 — excellent spot

4 — good or acceptable spot

3 — average spot

2 — probably unreliable, questionable spot

1 — unquestionable bad spot

Afterwards, each expert's score was averaged and placed alongside the qq score calculated

by the quality control function (Appendix C). Figure 8 displays five spots and their

corresponding expert average.
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Figure 8 Range of expert scores.

It was first decided to estimate the ability of the qq to replicate 'expert' scores. The

qq score was multiplied by 5 to bring it to the scale of the expert scores (ES). Although this

procedure is not entirely accurate because the ES ranges from 1-5 and the qq ranges from 0-

1, it was deemed sufficient for the purposes of evaluation. A correlation test revealed a value

of 0.49. This is not surprising however, since the qq is continuous and the ES is an index.

Another thought was to measure the average difference between the qq. The ES

average was compared to the modified qq score. The mean difference between them was

calculated for the entire set. The result was a mean difference of 0.71, or less than a quality

point of difference on average.

The ability to select quality spots was tested next. For accuracy, it was decided to

leave the ES and qq their respective original scales. Statistical tests were not included since

it was thought that they would produce unreliable information since there is a large amount

of subjectivity involved in the judgment of an "average" score. This can be shown by the

disparity seen in the experts' selection of average scores. This problem, however, is not too

severe for the task at hand. The entire aim of the algorithm is to bring good spots to the

attention of the researcher without the time and attention it would require manually.
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Thus, the comparison is conducted by the ability of the algorithm to correctly select

spots that will provide useful information. In the table, any spot with an expert average of 4

or 5 (good spots) are treated as desirable (Table 1). By setting a threshold of 0.75 for the qq,

it can be seen that the function correctly selects 9/11 of these good spots, or 82% of them.

However, in addition to correctly selecting these 9 spots, it also selects 10 false positives, an

error rate of 20%. By raising the qq threshold to 0.80, the detection of the positive spots

selected by the expert's dips slightly to 8/11, or 73%. This is offset by the decrease in false

positive rate to 7 spots, or 14%. By increasing the qq to 0.85, the detection rates stays stable

at 73%, but the false positive rate is lowered to 3/49, or just 7.6%. Thus, the qq is capable of

imitating an expert's selection of quality spots most effectively at a threshold of 0.85.

Table 1 Threshold QQ Ability to Select True and False Positives.

Threshold
Positive
(11 total)

False Positive
(49 total)

QQ percent percent
0.5 10 91% 44 90%

0.55 9 82% 37 76%
0.6 9 82% 31 63%

0.65 9 82% 24 49%
0.7 9 82% 19 39%

0.75 9 82% 10 20%
0.8 8 73% 7 14%

0.85 8 73% 4 8%
0.9 7 64% 2 4%



CHAPTER 5

CONCLUSIONS

In the last few years, the pace of biological research has increased to a blinding speed. Gone

are the days when whole laboratories devoted years to the study of the expression of a single

gene. It is now known that all gene expression is interrelated and that to study them requires

a more global approach. Such approaches are available today with tools like nucleic acid

microarrays.

Unfortunately, microarrays produce overwhelming bottlenecks of data that require

inspection, normalization, and analysis before it can be of any use. Only computers can

efficiently handle these types of tasks. The existence of a quality control procedure that

works concurrently with microarray analysis would greatly aid the researcher, since the

reliability of the information from microarray experiments is not readily obvious.

In this paper, the creation of such a quality control procedure has been outlined. It

has been shown how the careful analysis of raw microarray datasets were examined to

produce three measures, the Feature-Background Ratio, the Coefficient of Variation, and the

Percent Difference of Ratios and how the scoring equations were scaled and included.

Lastly, the usefulness of the algorithm was demonstrated by comparing the quality-quotient

or qq to the quality estimations of three individual trained in the use of microarrays.

The quality information provided by the qq can be applied to analyze variation

between microarray replicates. The strength of the score pertaining to the spots on an

individual chip could be used as a weighting factor. The weighted average of a particular

feature from the set of replicates would most prominently represent the feature values from

the strongest qq scores, and thus the best quality features.
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Future experiments could include comparing the results of the qq function to the

results of similar, image-based quality programs. It might also be useful to expand the

number of "experts" to reduce variation in comparison scores. Lastly, it seems that better

squashing function can reduce qq variability considerably.
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APPENDIX A

`R' CODE FOR AUTOMATION OF FUNCTIONS

The following is the `R' code written in order to automate the microarray normalization
procedure.

> readin #function to read in the chip
function (x)
{

a <- paste(x, ".txt", sep="")
data <- read.genepix(a, sep="\t", header=T, skip=0)
data

}

> chipdef #function to define chip parameters
function() {

ngrid.r <- 8; ngrid.c <- 4
nspot.r <- 12; nspot.c <- 14

list(nspot.r = as.integer(nspot.r), nspot.c = as.integer(nspot.c),
ngrid.r = as.integer(ngrid.r), ngrid.c = as.integer(ngrid.c))

}

> normal #function that performs normalization on chips
function()
{

library(sma)

cat("What is the chip name?: ")
prefix <- readline()

#cat("How many chips are there?: ")
#quantity <- readline()
#quantity <- as.integer(quantity)
#namelist <- paste(prefix, 1:quantity, sep=""); #constructs a list of prefix and number

chip.setup <- chipdef() #need done just once. chip dimension

#for(i in 1:quantity)	 #read in chip function; one cycle per chip
#{

x <- prefix
chip <- readin(x)

rm(x)
cat("Done reading in chips.\n")
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#****************************init.data function included here as list of commands

name.G <- "Gmed"
name.Gb <- "Gbmed"

name.R <- "Rmed"
name.Rb <- "Rbmed"

res <- list(R = NULL, G = NULL, Rb = NULL, Gb = NULL)

tmp <- eval(as.name("chip"))[, c(name.R, name.G, name.Rb, name.Gb)]

res$R <- cbind(res$R, as.numeric(as.vector(tmp[, 1])))
res$G <- cbind(res$G, as.numeric(as.vector(tmp[, 2])))
res$Rb <- cbind(res$Rb, as.numeric(as.vector(tmp[, 3])))
res$Gb <- cbind(res$Gb, as.numeric(as.vector(tmp[, 4])))

chip.data <- res

cat("Finished creating the dataset.\n")

rm(name.G,name.Gb,name.R,name.Rb, tmp, res)

#*************************************************** end of funct ion init. data

chip.lratio <- stat.ma(chip.data, chip.setup, norm="p") #calculate lowess

filename <- paste(prefix,"lratio.txt", sep="")
filename <- as.character(filename)

write.table(chip.lratio, file=filename, sep="\t", row.names=F)
#}

}
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APPENDIX B

THE QUALITY-QUOTIENT FORMULAS

The formulas exist in a separate spreadsheet. They are copied as a whole and placed in cell

`AR' after cell 'AO', the last cell of the Excel results worksheet ("flags"). Only the first row

of formulas need be copied. The rest can be obtained by copying the first row down. The

formula for each cell of the quality-quotient is given below.

1. Cell AR (635nm feature divided by 635nm background)
Column heading: "F/B 635"
Formula: "-13/3"

2. Cell AS (635 Feature-Background ratio scoring function)
Column heading: "F/B 635 score"
Formula: "--(2/PI())*ATAN(2*(AR3-1.4))"

3. Cell AT (635 feature divided by 635 background)
Column heading: "CV 635"
Formula: " --K636"

4. Cell AU (635 CV scoring function)
Column heading: "CV 635 score"
Formula: "=1-(1.2/(1.2+0.7*(0.1/AT6^5)))"

5. Cell AV (532nm feature divided by 532nm background)
Column heading: "F/B 532"
Formula: "=R6/U6"

6. Cell AW (532 Feature-Background ratio scoring function)
Column heading: "F/B 532 score"
Formula: "=(2/PI())*ATAN(2*(AV6-1.4))"

7. Cell AX (532 feature divided by 532 background)
Column heading: "CV 532"
Formula: "=T6/56"

8. Cell AY (532 CV scoring function)
Column heading: "CV 532 score"
Formula: "=1-(1.2/(1.2+0.7*(0.1/AX6^5)))"
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9. Cell AZ
Column heading: "Final scores>"
Formula: none (leave blank)

10. Cell BA (Only counts red (635) FB scores above 0)
Column heading: "Red F/B score"
Formula: "=IF(AS6<0,0,AS6)"

11. Cell BB (Only counts green (532) FB scores above 0)
Column heading: "Green F/B score"
Formula: "=IF(AS6<0,0,AS6)"

12. Cell BC (organize scores by copying red CV score)
Column heading: "Red CV score"
Formula: "=AU6"

13. Cell BD (organize scores by copying green CV score)
Column heading: "Green CV score"
Formula: "=AY6"

14. Cell BE (Average of the three Ratio Quantities)
Column heading: "Mean Ratio"
Formula: "=AVERAGE(AA6,AC6,AF6)"

15. Cell BF ( Mean difference of the three ratio quantities from average)
Column heading: "MD"
Formula: "=(ABS(AA6-BE6)+ABS(AC6-BE6)+ABS(AF6-BE6))/3"

16. Cell BG (Mean difference divided by average)
Column heading: "PD"
Formula: "=BF6/BE6"

17. Cell BH (Score for Percent difference)
Column heading: "PD score"
Formula: "=IF(BG6>1,0,1-(2.1/(2.1+0.6*(0.2/BG6^3 .1))))"

18. Cell BI (Average CV scores for both wavelengths)
Column heading: "CVcomp"
Formula: "=(BC6+BD6)/2"

19. Cell BJ (Average FB scores for both wavelengths)
Column heading: "F/Bcomp"
Formula: "=(BC6+BD6)/2"
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20. Cell BK (Final score-average of the FBcomp, CVcomp, and PD)
Column heading: "QQ"
Formula: "= AVERAGE(BH6:BJ6)
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APPENDIX C

EXPERT SCORES

This chart shows the results: each expert score for spot 1-60 are listed followed by the expert

average and QQ score.

Experts Expert
Average

Modified
QQ Difference# Spot ID DA JE JA QQ

1 A-10-1 3 3 5 3.67 0.97 4.86 1.19
2 A-10-2 5 4 4 4.33 0.55 2.75 1.58
3 A-10-3 3 3 3 3.00 0.63 3.13 0.13
4 A-10-4 3 3 3 3.00 0.55 2.77 0.23
5 A-10-5 3 3 2 2.67 0.64 3.19 0.52
6 A-10-6 4 4 2 3.33 0.99 4.94 1.61
7 A-10-7 3 3 4 3.33 0.25 1.27 2.07
8 A-10-8 3 3 3 3.00 0.63 3.13 0.13
9 A-10-9 3 4 2 3.00 0.72 3.60 0.60
10 A-10-10 5 4 2 3.67 0.56 2.82 0.85
11 A-10-11 3 4 2 3.00 0.67 3.33 0.33
12 A-10-12 5 5 3 4.33 0.35 1.74 2.59
13 A-5-1 4 3 3 3.33 0.60 3.00 0.33
14 A-5-2 5 3 4 4.00 0.90 4.48 0.48
15 A-5-3 4 3 3 3.33 0.71 3.55 0.22
16 A-5-4 4 4 3 3.67 0.52 2.60 1.07
17 A-5-5 3 3 4 3.33 0.83 4.17 0.84
18 A-5-6 5 5 5 5.00 1.00 5.00 0.00
19 A-5-7 4 3 3 3.33 0.50 2.52 0.81
20 A-5-8 3 3 2 2.67 0.68 3.39 0.73
21 A-5-9 4 3 3 3.33 0.79 3.97 0.64
22 A-5-10 3 4 3 3.33 0.63 3.16 0.17
23 A-5-11 2 3 2 2.33 0.54 2.71 0.38
24 A-5-12 1 1 1 1.00 0.29 1.46 0.46
25 A-6-1 4 3 3 3.33 0.82 4.10 0.77
26 A-6-2 3 3 3 3.00 0.72 3.58 0.58
27 A-6-3 4 3 2 3.00 0.52 2.58 0.42
28 A-6-4 5 3 5 4.33 0.92 4.58 0.24
29 A-6-5 4 3 3 3.33 0.50 2.50 0.83
30 A-6-6 3 3 4 3.33 0.59 2.93 0.40
31 A-6-7 4 3 3 3.33 0.45 2.24 1.09
32 A-6-8 4 3 3 3.33 0.61 3.07 0.26
33 A-6-9 3 4 3 3.33 0.69 3.47 0.14
34 A-6-10 4 3 2 3.00 0.51 2.57 0.43
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DA
Experts

JE JA
Expert

Average
Modified

QQ DifferenceSpot ID QQ
35 A-6-11 4 4 2 3.33 0.30 1.50 1.83
36 A-6-12 1 1 1 1.00 0.50 2.51 1.51
37 B-4-1 4 4 3 3.67 0.69 3.47 0.20
38 B-4-2 3 4 3 3.33 0.74 3.70 0.36
39 B-4-3 5 5 5 5.00 0.99 4.95 0.05
40 B-4-4 5 3  4 4.00 0.91 4.55 0.55
41 B-4-5 3 3 4 3.33 0.87 4.33 1.00
42 B-4-6 4 3 5_ 4.00 0.96 4.79 0.79
43 B-4-7 3 3 3 3.00 0.72 3.62 0.62
44 B-4-8 3 4 2 3.00 0.69 3.44 0.44
45 B-4-9 3 4 2 3.00 0.62 3.12 0.12
46 B-4-10 4 4 4 4.00 0.94 4.69 0.69
47 B-4-11 2 3 4 3.00 0.84 4.22 1.22
48 B-4-12 5 5 5 5.00 0.97 4.87 0.13
49 C-5-1 4 4 3 3.67 0.55 2.75 0.91
50 C-5-2 4 4 3 3.67 0.70 3.52 0.14
51 C-5-3 3 3 4 3.33 0.88 4.41 1.08
52 C-5-4 3 3 3 3.00 0.79 3.97 0.97
53 C-5-5 4 3 3 3.33 0.47 2.35 0.98
54 0-5-6 3 4 3 3.33 0.73 3.63 0.29
55 C-5-7 2 3 2 2.33 0.58 2.90 0.57
56 0-5-8 4 3 3 3.33 0.74 3.72 0.39
57 0-5-9 1 2 1 1.33 0.56 2.80 1.47
58 0-5-10 1 3 2 2.00 0.73 3.66 1.66
59 0-5-11 2 3 2 2.33 0.77 3.86 1.53
60 0-5-12 5 3 4 4.00 0.79 3.95 0.05
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