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ABSTRACT

A COMPUTATIONAL MODEL OF SPASTICITY BASED ON A DECOUPLING
OF THE ALPHA AND GAMMA EFFERENTS

by

Bruno A. Mantilla

It is generally accepted that spasticity results from changes in the excitability of the

stretch reflex. This change lowers the threshold of the motoneurons of the spinal cord

where the integration of a signal from velocity/position sensors is processed and then fed

back to the contracting muscle (alpha-extrafusal and gamma-intrafusal fibers). The

stretch reflex depends on the initial length of the muscle, the stretch velocity and

voluntary activity. The exact sequence of the triggering events remains unknown, is

poorly understood and as a result is controversial. The clinical classification scales are

mainly subjective and by definition, inaccurate.

This computational model of spasticity is based on the concept of the existence of

a normal neuromuscular control coupling function, which ordinarily encloses the

extrafusal and intrafusal fibers, and explains the spasticity as a result of the uncoupling of

this normal mechanism. The model involves mechanical parameters and basic

neuromuscular control theory.
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CHAPTER 1

INTRODUCTION

Biomedical Engineering is a novel developing discipline, which, through a

multidisciplinary approach, seeks the recognition, description, comprehension and

solution of various problems in medicine and biology, using the most recent and

advanced knowledge in science, engineering and technology.

Biomedical Engineering is always directed to improving the quality of life of

people with blemished medical status that limits their independent life and impairs their

integration into the community. Biomedical Engineering runs parallel to medicine giving

a new point of view to complex existing problems.

Whenever a problem has appeared in medicine, the first task has been to identify

it. This work is not always easy because medicine is not a coherent, complete and exact

body of knowledge. On the contrary it has numerous gaps inside itself, gaps that need to

be addressed and hopefully corrected.

In medical practice, a large number of uncertainties are found in daily practice.

Some of them might not have been even identified. Or maybe, by numerous reasons,

some of them have not received the attention or the time they certainly deserve. The next

step after identifying an uncertainty or an abnormality is to describe it. It is implied that

you, some how, have seen something unknown to others. However, a description of the

expression, of some underlying abnormality, is extremely different from understanding

its main cause of existence. Not withstanding not solving the cause yet, a new concept,

and a new entity has already been created.

1
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This entity becomes part of the public domain and the whole community of

specialist will drive their attention to it, even from cross related specialties, in a joined

competition to bring light into the origin. Now everyone wants to contribute and with all

his or her effort give a full explanation or even a clue towards the understanding of these

phenomena. Also, giving new terms and new concepts that might make it clear, but

frequently this community effort ends doing the opposite effect and makes it more

complex and difficult to understand. Which, by the way, is the most common situation

we find in our days when we first approach a problem. Surprisingly, after some short

time, the whole community of experts results in "walking in circles" around the same

points of accepted knowledge, not withstanding the fact the acquired knowledge is not

complete.

The Greek word deiknynai means to show, which is extended to dikE judgment. It

is extended also to Para- + deiknynai which forms paradeiknynai meaning to show side

by side. These gives origin to the Greek word paradeigma converted to the Late Latin

paradigma, which was later introduced- in the 15th century- to the English language as

paradigm.

A paradigm in its most strict meaning is, "an example of a conjugation or

declension showing a word in all its inflectional forms". When this is done it is expected

a full knowledge and understanding of the concept is enclosed in that word. Paradigm

was later extended to, "an outstandingly clear or typical example or archetype." Today its

most accepted use is, "a philosophical and theoretical framework of a scientific school or

discipline within which theories, laws, generalizations and the experiments performed in

support of them are formulated," in three words, "an accepted truth."



3

Frequently medicine moves on these types of basic postulates of "accepted truth"

and constructs a whole knowledge around them. It has to be functional and very efficient

in very little time, nearly immediate.

Identifying the leading forces that govern the paradigm changes is of interest to

many disciplines. Management and economics, not to be surprisingly are listed among

the most concerned with these factors. Barker in his book "Paradigms, The Business of

Discovering The Future"[2] reviews the advance and evolution of the industry - which is

controlled by economic needs and rules - and shows how much it is intimately related to

the development of new technology, which is not surprising. What is fascinating is that

the development of new technology is related to, "a new way of looking at old

problems". Traditionally, it has happened when, by fortune or serendipity, an "outsider"

(obviously a curious one) meets in the precise site and in the precise minute with a group

of "insiders" studying the particular problem. [3]

What will now happen is definitely related to a new perspective, of the problem

(incognito), is applied catalyzing and developing it in a new fashion. This is what he calls

a change on the paradigm, all the related factors that define the state of the art are

suddenly affected by a new concept that, in an undeniable way, changes their dynamic.

Consequently, it allows a step forward in knowledge and development of new

technology. Obviously, this gives an advantage for the local industry developing the new

applied technology.

The big challenge faced today by both disciplines, biomedical engineering and

medicine, is to work together in order to find new perspectives which lead to solutions of

old problems.



CHAPTER 2

BACKGROUND REVIEW

The Greekword spastikos, which means contraction, gives origin to the Latin spasticus

where the word spasticity originates. [1]

The most common accepted definition for spasticity is "a motor disorder

characterized by a velocity-dependent increase in tonic stretch reflexes with exaggerated

tendon jerks, resulting from hyperexcitability of the stretch reflex, as one component of

the upper motor neuron syndrome." Symptoms may include hypertonicity, clonus,

exaggerated deep tendon reflexes, muscle spasms, and scissoring and fixed joints.

Although, the underlying etiologies are multiple, this term has been used to

indistinctively describe an altered pattern of physical movement. The spastic phenomena

is the most frequent and severe condition that hampers the recovery and rehabilitation,

from numerous pathologies which include stroke, cerebral palsy, spinal cord injury,

multiple sclerosis, CNS degenerative disease, and other pathologies. [15, 7, 19]

It is accepted that spasticity results from changes in neural excitability. Lowering

the threshold of the stretch reflex involved neurons in the spinal cord where the

integration of a signal from a velocity/position sensor information is processed, and then

is fed back to the contracting muscle (alpha motor neuron actuator and gamma intrafusal

fibers). This reflex depends on the initial length of the muscle and the stretch velocity as

well as voluntary control signal decoding from the central nervous system. However, the

exact sequence of the triggering events remains unknown, poorly understood and by

consequence remains controversial. [9, 25, 33, 41]

4
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2.1 Skeletal Muscle

The skeletal muscle is formed by an array of multiple muscle fibers. Each of these fibers

is a single skeletal muscle cell. The muscle fibers lie parallel to each other and they are

joined at the end of the muscle to a specialized type of connective tissue, the tendon that

attaches them to the bone. The muscle fiber is composed of myofibrils. Each myofibril

consists of a regular arrangement of thick filaments — myosin- and thin filaments —actin-.

The different bands of all the myofibrils, lined up in a parallel fashion, produce the

striated appearance of a skeletal muscle fiber. [9]

An "A" band (an-isotropic) consists of a staked set of thick filaments along with

the portion of thin filaments that overlap on both ends of the thick filaments. The thick

filaments are found only in the A band area. The H zone is the middle point of the A

band, where the thin filaments does not reach; are formed exclusively by thick filaments,

and in consequence it appears lighter The portion of the thin filaments that does not

overlap the A band forms the I band (isotropic). By definition it is formed exclusively by

a portion of the thin filament. In the middle of each I band is a dense, vertical line known

as the Z line. The area between two Z lines is the functional unit of the muscle known as

a sarcomere.



Figure 2.1. Microscopic Appearance Of The Muscle
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Figure 2.2. Diagram Representing The Muscle Contraction
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The thin filaments on each side of a sarcomere slide inward toward the A band's

center during contraction. In this way they pull the Z lines, to which they are attached,

closer together. As a result the sarcomeres size diminishes and the muscle contracts. This

is known as the sliding mechanism of the muscle contraction.

When the acetylcholine is released from nerve terminals at the neuromuscular

junction, the skeletal muscles cells are activated. At each junction of the A band, the

surface membranes dips deeply into the muscle fiber to form a transverse tubule (T -

Tubule). The T - Tubule runs perpendicularly from the surface of the muscle fiber, and,

adjacent to the lateral sacs of the endoplasmic reticulum of the muscle (sarcoplasmic

reticulum). Calcium is stored in the lateral sacs of the sarcoplasmic reticulum and is

rapidly released upon a propagation of an action potential. The released calcium triggers

a series of steps that will finally end in the coupling of actin and myosin associated with

the breakdown of a molecule of ATP and the consumption of energy.

Voluntary muscle contraction is controlled by descending signals from

suprasegmental central nervous system that converge on to the alfa motoneuron, on the

anterior horn of the spinal cord, where the final nerve impulse to the muscle is originated.

This concept is known as the final pathway. The different processes that impact on the

suprasegmental control of movement are beyond the scope of the present review.

However, it is worth stating that their variations are as diverse in origin as are the

etiologies underlying the spastic phenomenon.



Figure 2.3. Artistic Representation of The Muscle and T-Tubule System
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The present study will center on the consequences of alterations believed to occur

at the spinal cord (segmental control) control of the motor function. These result from

various disorders of the central nervous system and produce an uncoordinated

(uncoupled) type of movement that is particularly inefficient, where a high amount

energy is used for any intended task. This increase in required energy constitutes the

basis of our analysis of spasticity. [20, 21, 9]

2.2 Propioception and Feedback

It is very important for the CNS to monitor the orientation of joints and derive the three

dimensional position of limbs, in order to program and adequately produce any

movement. This type of information is referred as propioception. Information is gathered

from various sensors located in muscles, joints and skin, and is integrated with

information coming from visual and vestibular input at different levels of the CNS: spine,

brainstem, cerebellum, cerebral cortex and basal ganglia. [9, 25]

The Muscle Spindle and the Golgi Tendon Organ act concomitantly to regulate

the different characteristics of the muscle. The Golgi Tendon Organ senses the tension.

Muscle spindles consist of collections of specialized muscle fibers known as intrafusal

fibers, which lie within the spindle shaped connective tissue capsules parallel to the

ordinary extrafusal fibers. The principal function of the muscle spindle is to monitor and

set up the desired length and related rate of change of this length in the muscle. It is

connected in parallel fashion to the rest of the muscle, the extrafusal muscle fibers.

The spinal cord gives origin to efferent fibers from two different types of

motoneurons: alpha motoneurons convey signals that determine the contraction of
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extrafusal fibers and hence the entire muscle. The gamma motoneurons connect directly

to the muscle spindles. They have relatively slow conduction and control their resting

tension or tone. [20, 21, 25, 26]

Figure 2.5. Explanatory diagram of the stretch reflex
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The muscle spindle is comprised of two types of neural endings: The primary

annulospiral endings, which wrapped in the central portion of the intrafusal fibers, detect

the change (dimension-position) in length and the rate of change in length (velocity). The

secondary flower-spray endings located at the lateral region of the muscle intrafusal

fibers and are sensitive only to length differences. Whenever the muscle is passively

stretched the intrafusal fibers are likewise stretched, increasing the rate of firing in the

afferent fibers. When the rate of change of the length of the muscle is more than the

expected, by the set up of the intrafusal fibers in relation to the extrafusal fibers, an action

potential arises in the intrafusal afferent neuron. This afferent pathway directly synapses

with the alpha motoneuron that innervates the extrafusal fibers of the same muscle

resulting in muscular contraction. This negative feedback triggers an alpha efferent,

which stimulates contraction that restores the muscle to its original length. This sequence

of events is known as the stretch reflex or the myotatic reflex.

Figure 2.6. Diagram Showing the three possible relations between intrafusal and
extrafusal fibers
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The sensitivity and rate of change of the length of the muscle fibers (intra /

extra-fusal relation) is dependant on complex relations and integration of suprasegmental levels

of motor control. When this balance is altered or damaged, by different etiologies, a

segment of the spinal cord loses the influence or control from the suprasegmental centers.

This is referred as an emancipation process or "liberation effect", which creates and

hyper- responsive state. One of the most common ways of expression of these

"liberation" is the spasticity. [20, 21, 35, 36, 40]

Figure 2.7. Artistic Diagram Of The Stretch Reflex
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2.3 Assessment of Spasticity

In 1919, Robert Wartenberg (1887 — 1959) graduated from the University of Rostock, a

port in north East Germany near the Baltic coast. After working in Hamburg (Germany)

and in Breslau (Poland), he left Germany in 1935, after persecution by the Nazis, and

settled in San Francisco. In 1952, he was appointed clinical professor of neurology at the

University of California

Among his numerous biographers, Dr. Louis D. Boshes from the University of

Illinois at Chicago wrote: " This "Sherlock Holmes" in the discipline of neurology,

always searching for truth accuracy and dependability of researcher, clinician or writer,

advanced his endowment into book reviewing. His acrid criticism was accurate, for the

succeeding edition always embodied all recommendations, but at all times everyone

benefited from the Wartenberg warmth, for he never made enemies with his microscopic

scrutiny of facts in his unique but complete review of a tome." [15]

Wartenberg (1951) was the first to analyze the pendulousness of the lower

extremities, for diagnostic purposes. His work has special relationship to the assessment

of spasticity. He would ask a patient to sit on the edge of a table with the legs hanging

freely. An examiner would lift the patient's legs simultaneously to the same horizontal

level, and release them; permitting them to swing freely. Parameters that were observed

were the swinging time, the number of swings, the forward-swing and the backward

movement. [40]

He found the swinging time and the number of swings to be diminished while the

forward-swing was jerkier and of greater span and the backward movement was reduced.
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He also described irregular "zigzag movements " on the antero-posterior (sagittal) plane,

and registered the swinging time of the right and left leg. The test was only estimated

qualitatively. Further attempts to quantify the pendulum test were done by fastening an

electric light to the big toe and recording the swinging movements on a film of a slowly

moving camera.

Bajd and Bowman implemented the measurement of knee extensor spasticity by

assessing the joint movement with an electrogoniometer. They used a switch on the

patient's ankle, held by the examiner, as the signal to start the measurement, and surface

EMG of the quadriceps to determine the beginning and duration of knee extensor activity.

Knee joint goniogram, switch output and EMG potential were recorded by use of a

visicorder light oscillograph. They reported it as very useful to objectify the pendulum

testing results for spasticity and to be especially convenient to evaluate different

approaches to reduce spasticity. [2]

Using the pendulum test, Boczko evaluated the treatment with antispastic drugs,

while Bowman et al. and Vodovnik et al. studied the influence of electrical stimulation on

spasticity. The first effort to quantify the pendulum swing test by assigning numbers to

the deficits, was done by Schwab. His scale ranged from 0 as normal, (absence of any

deficit in swing) to 4 with maximum rigidity, (total absence of swing). [4, 38, 39, 40]

Wartenberg described and Boczko confirmed 6 to 7 cycles in normal subjects and

a reduced number of oscillations in spastic patients. Boczko measured the swinging time,

T, and defined an 'amplitude ratio' for spasticity. Figure 1 shows a typical oscillation of a

normal subject. [4, 40]
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Bajd and Bowman tried to define the parameters that best characterized spasticity

in their study and concluded that the initial drop of the leg was the most characteristic and

representative feature showing the level of spasticity: [2]

"Spasticity in general, stops the swinging of then lower leg and pushes it back

towards the starting position. Both events are represented by first minimum and

first maximum of the measured knee goniogram. The two values can therefore be

considered as an integral criterion of the degree of skeletal muscle spasticity." [2]

Bajd and Vodovnik created a relaxation index R2 as the ratio between the

magnitude of the first drop Al and the magnitude of the initial angle Ao. A normal value

for R2 was found to be 1.6 or more, consequently a normalized index R2n was specified as

R2/1.6. Thus R2n > 1 would denote a normal limb but R 2n < 1 would describe different

degrees of spasticity. [2, 38]

Other two important parameters: the period, T, as well as the amplitude ratio, R

are illustrated in the figure. In normal subjects R I was found to be greater than 5,

whereas patients with spasticity have an R 1 of about 2.6. Although this was progress in

terms of a description of the phenomena, it did not describe, what were the causes for the

difference in the values between normal and abnormal subjects from a dynamic point of

view.

Bajd and Vodovnik after a thorough study tried to characterize the severity of

spasticity by 8 different indexes, but again they did not give a real explanation of the

acting parameters or what type of relation between them was represented in those

indexes. [2,38]



Figure 2.8. Typical Oscillation Of A Normal Subject.

At the present time clinical measurements of muscle spasticity, that are both valid

and reliable, are very difficult to obtain. There is an overall agreement that there is need

of better, precise and reliable scales for measuring spasticity. As Fowler pointed out,

"The ability to quantify the presence and severity of spasticity is essential to

understanding and treating spastic CP." Bajd emphasized in 1982, "A need for an

objective measurement of spasticity is unquestioned". But still in year 2001, Pandayan
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et. al. claimed: "The need to quantify neurological impairment is increasing rapidly with

a perceived need to justify clinical procedures used routinely. The technical challenge of

doing this relates to the need to provide reliable and sensitive measurement systems that

can be used within the short time available at the clinic." [2, 16, 28]

2.4 Clinical Assessment

There are two types of clinical measures that are generally used to assess muscle tone.

The first type measures passive movement of the joint by applying a subjective ordinal

scale to the resistance discerned by the examiner. It is implied that the examiners scale is

always the same, particularly that his sensitivity and quantization does not vary.

The most common of these is the Ashworth Scale (AS) or its successor, the

modified Ashworth scale (MAS). The reliability of the AS is still debated. Some

researchers question its reliability as minimal at best, and unsuitable at worst. However

other studies have shown it to have reasonably good intra-rater reliability, but with

deficiencies in inter-rater reliability. [23, 28, 29, 31]

" Evidence from this study supports previous findings suggesting that MAS may

not have sufficient construct validity or reliability in assessing spasticity, however it may

still provide a crude measure of resistance to passive movement." [28]
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Table 1 Ashworth Scale

0: No increase in muscle tone.

1: Slight increase in muscle tone, mild clasp-knife phenomenon, or minimal resistance at

the end of the range of motion when the affected part(s) is moved in flexion or extension.

2: Slight increase in muscle tone, clasp-knife phenomenon, followed by minimal

resistance throughout the remainder (less than half) of the range of motion.

3: More marked increase in muscle tone through most of the range of motion, but

affected part(s) easily moved.

4: Considerable increase in muscle tone, passive movement difficult.

5: Affected part(s) rigid in flexion or extension.

Some, considering it has a good inter-rater variability and reproducibility, regards the

clinical Ashworth Scale (AS) as very reliable. The AS has a trend to be a more popular

choice among clinicians because of the relative ease of its execution, its expert based

calibration and to its consequently "wider" applicability. [5, 35, 28, 29]

Table 2 Modified Ashworth Scale

0: No increase in muscle tone

1: Slight increase in muscle tone, manifested by a catch and a release or by minimal

resistance at the end of the range of motion when the affected part(s) is moved in flexion

or extension.

1+: Slight increase in muscle tone, manifested by a catch, followed by minimal resistance

throughout the remainder (less than half) of the range of motion.
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2: More marked increase in muscle tone through most of the range of motion, but

affected part(s) easily moved.

3: Considerable increase in muscle tone, passive movement difficult.

4: Affected part(s) rigid in flexion or extension.

The second type of assessment objectively measures and records the resistance to

passive joint movement present, while the limb is driven by gravitational force. The

Wartenberg's pendulum test (WPT) is an example of this type of clinical test.

Wartenberg's pendulum test has found some acceptance as a clinical test. The tester lifts

the relaxed leg and releases it so that it swings by gravity. Angular velocity and number

of swings are measured with goniometers or by other devices. More complicated

biomechanical methods involve torque motors to measure the torque when a joint is

moved. [2, 23, 38,40,]

One of the more frequent ways of calculating PT scores is as follows. The patient

lies supine on a table with the legs positioned such that the knee joint is about 5 cm

beyond the end of the table. The examiner supports the leg at the heel and releases it,

allowing the limb to swing to a resting position. According to the method of Bajd and

Vodovnik a PT score is calculated as a ratio of the total angular displacement (i.e., the

first swing) to the displacement between the starting and final knee angles. [2]

Three knee angles are required for the calculation of R2n: the starting angle of the

knee (normally full extension), the knee flexion angle on the first swing of the leg (first

acute angle), and the final resting knee angle.

According to Bohannon et. al. the equation used to determine R2n is as follows:
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All angles refer to flexion-extension angles in the sagittal plane. PT scores range from 0

to approximately 1, with 0 being rigid and 1 being normal muscle tone. [5]

Fowler et. al. from UCLA, studied the " Sensitivity Of The Pendulum Test For Assessing

Spasticity In Persons With Cerebral Palsy" comparing the PT with MAS (Modified

Ashworth Scale). [15]

They concluded that the number and duration of oscillations, and the excursion of

the first backward swing was very different between the normal and spastic people. The

first oscillation was the best predictor of the severity of spasticity in people with cerebral

palsy. The number of oscillations was useful in differentiating between normal and

abnormal subjects but did not allow a classification for the severity of the spasticity.

Fowler et. al. also concluded that the Relaxation Index, defined as the ratio between the

first swing excursion and the difference between the resting and starting angles (R I=

First Swing excursion / difference between starting and resting angles), was not reliable

for classifying spastic patients. Even though the PT is an objective and highly repeatable

measure, at this point its use has been limited to only a few muscle groups, such as the

quadriceps, and its interpretation is still not well developed and understood. Neither type

of muscle tone test is an ideal one. [15]

In an effort to better understand what is happening and what is being measured,

we produce a more mathematical approach. This implies knowledge of basic concepts of

the dynamics of an oscillating system.
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For a free undamped oscillator, the equation that describes the motion, according

to Newton's second law, is:

Or rewriting it:

We can also define the Wo as the natural frequency of the system, which is equal to:

Meaning as well, that the square of the natural frequency ( w o 2) multiplied by mass (m)

gives the value of the elastic constant (k), also referred to as the spring constant. This k

constant is an indicator of the system's capacity for storing elastic recoverable energy.

This equation can be can re-written as:

The general solution for this equation is:



and if:
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then:

were:

C= amplitude

Wo=natural Frequency in radians per second

a =phase angle
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Also the period (T) and the frequency (v) in cycles per second can be calculated:

T= period

v = frequency in cycles per second

When an external force reduces the motion of an oscillator, the oscillator and its motion

are said to be damped. At the time, when the oscillator stops oscillating, the system

energy is expected to be totally transferred to the damping force. As the damping force is

proportional to the velocity of the system, then the damping force (Fd):

Then if we include this term in the equation of the undamped system:



The equation for a free damped oscillation according to Newton's second law is:

The energy relationship between the storing capacity and the damping capacity of the

system is dictated by the relationship of the B (damping coefficient) and the K (spring

coefficient),
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And the equation can be re written as:

And if:



then:

The characteristic equation will be:

Which will have two roots:

The relationship between B (damping coefficient) and K (spring coefficient) is defined

by:

26

Three different types of relationships have been described:
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The first is when the damping capacity far exceeds the stored energy, so the system will

dissipate the energy very rapidly and with no oscillation. This is called an overdamped

case. [14]

The following relation characterizes it:

And its solution is:

In this case in which both roots are a real, and negative explaining the trend of:

So the displacement occurs without any oscillation.

The following relationship characterizes the second case, which is known as critically

damped, in this case:

And:
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as:

Then:

Its solution is:

In this case it the system is critically damped. This means that the damping force is just

large enough to allow displacement with minimal oscillation.

As e-rlt > 0, and since c 1 + c2 t at most has one point crossing, the system will cross at

most just once the zero position. [14]

It is also clear that as:

Third situation is the underdamped case, and the following relationship characterizes it:

The solution will have two complex roots as:



And if it is defined:
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C = as the maximum amplitude of the system
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This solution represents exponentially damped oscillations of the body around its

equilibrium point. The graph of X( t) will be located between ce-bt , and, -ce-bt.

The maximum and minimum of the curve X t will touch them when w i t — a is an integral

number of 71-.

The motion is not strictly periodic however, it is useful to call W1  its circular

frequency, T1=(2π)/w1 its pseudoperiod of oscillation, and Ce-bt its time varying

amplitude.

The damping factor in this case has three effects:

1)- Damps the oscillation in an exponential form with a time varying amplitude

2)- It slows the motion

3)- As an effect of the phase angle (w1t — a), it delays the motion.



CHAPTER 3

THE MODEL

The word model comes from the Vulgar Latin modellus, originating from the Latin

modulus, which means small measure. It was incorporated to the English language circa

1575 and to date it has about 13 different accepted uses, according context, some of

which are:

1. A description or analogy used to help visualize something (as an atom) that

cannot be directly observed.

2. A system of postulates, data, and inferences presented as a mathematical

description of an entity or state of affairs.

The art of modeling is capturing the " essence" of the system intended to be

described. In this way the important and determining characteristics of the system are

highlighted and attention and analysis are easily focused on these elements. Omitting the

details that can contribute little to describing the system also enhances the process.

For our purposes, we have developed an approximation to a dynamic spastic

system incrementally beginning with a very simplified model and adding more

complexity to each subsequent version of the model. [2,10, 14, 22, 23,36, 37, 38, 42, 43]

As it was explained earlier, the accepted mathematical model used for describing

oscillating systems such as the pendulum, spring-mass- damping systems and some

simple electrical circuits is the general second order differential equation:

31
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The equation for a forced oscillating system without damping is [14]

And when we assume that there is a damping force proportional to the velocity it

becomes:

As exposed by Bajd, Bowman and Vodovnik [38] the movement from a passive

normal knee could be described by the following differential equation, implying a second

order system:

Which constitutes the starting point of our model.
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Taking the approximation of a cylinder as a representation of the inferior limb, with an

average radius and length:

A mass and a density of:

We will also take the normal values calculated by Bajd, Bowman and Vodovnik [38] for:

For an underdamped second order system the damping ratio is:

and the frequency co is:

Bajd, Bowman and Vodovnik [2, 38, 39] found:



T= period

Since the work of Bajd and Bowman in 1982, much effort has been devoted to

unraveling the meaning and implications of the Wartenberg test. As stated before, some

indexes have been proposed. None of which has achieved wide applicability.

Furthermore, a number of models have been created mainly from a pure mathematic

point of view.

Even though nearly nothing is linear in biological systems, the accepted approach

has been to settle on the linearized second order differential equation that explains the

behavior of a forced underdamped oscillator. Thus:

For the only purpose of mathematical convenience, the equation is then linearized

so it can be solved numerically. [14]

One of the advantages of computer modeling is that there is no further need to use

a linear model to simplify an equation. Presently, any real non-linear relationship can be

solved using computer-modeling software such as Simulink (Mathworks, Natick, Ma.)

In order to describe the behavior and the altered dynamics of the Pendulum Knee

Drop Test in spastic patients it is essential to adopt a non- linear approximation. In this

model theta is the angle depicted by the limb as it moves from the horizontal to a vertical
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position, and the sine of theta is the function, which describes the influence of gravity

force on the limb. It is now believed that the muscle contraction threshold control is

related, in a direct or indirect way, to the sine of theta function. Spasticity is believed to

be controlled by two important parameters:

First, a value related to the sine of theta, and second its relationship to threshold

that is derived from the uncoupled function of the alpha and gamma motoneurons. As a

result there is an ill-controlled muscle contraction, which will deliver a great amount of

energy to the system. This energy, represented as the force of the contraction, is normally

intended to produce a carefully limited and regulated amount of contraction, which is

translated into movement. As a consequence of this loss of control, the energy is

transmitted in an uncoordinated and inadequate amount. Therefore, the muscles contract

in an uncoordinated fashion that transforms the system into a non-operational, very stiff,

greatly damped and highly inefficient one. Non-operational because it opposes the

gravitational force and maintains a static position instead of allowing a fluid movement.

Stiff because the contracted muscles will give more stabilizing energy to the joint

limiting the limb excursion, and, will prevent it to move in direct proportion to the degree

of spasticity, a situation that is easier to assess when the co-contraction phenomenon is

present. Greatly damped because it is the only way in which a high amount of energy is

delivered and is not causing any appreciable movement in the system. Consequently,

energy is being absorbed and rapidly dissipated by the system. Inefficient because there is

not any purpose in the release and delivering of the energy, on the contrary it hampers the

expected movement.
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First Model - Starting Point —: As it was outlined before, we are going to start

with the simplest linear equation for an underdamped oscillation.

As a result we have the first simple model in Simulink for the Knee Drop

Pendulum Test: It is a pseudoperiodic oscillator that diminishes its amplitude until it

vanishes. In human subjects it last about seven seconds and have around seven

oscillations before it dissipates. When applied to human inferior limb some adjustments

need to be made as the force is applied at the gravity center of the leg.

Figure 3.1. Underdamped Oscillator Second Order Linear Differential Equation
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In this model, data from Vodovnik et. al. [11], were implemented as values for the

simulation. Assuming the lower leg is simplified as a uniform cylinder of length 1 and

mass m with elasticity K and viscous damping B in the joint, we have the following

equation:

Where J is the moment of inertia. When linearized it becomes:

Instead of dividing the length of the limb in half in order to calculate the center of

gravity, it was decided to divide the gravity in half, in this way any time a new simulation

is done with different values extra calculations are avoided; yet the relation is preserved.

O is isolated as an starting point for the model:

Notice the negative value of — ii- mg/0 , which implies a negative direction of the limb

movement when influenced by gravity.
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Second Model- Non linear Gravitational Force —The primary advantage of

Simulink modeling is the ease of adding non linear elements. Thus the gravitational

excitation proportional to the sine of theta is added.

There is not a large change in the response of the system model in Simulink for the Knee

Drop Pendulum Test: It is still a pseudoperiodic oscillator that diminishes its amplitude

until it vanishes. The period itself has varied becoming a slightly longer, than in the

previous model.

Figure 3.3. Underdamped Oscillator -Position-Second Order Differential Equation
(sine function)



Figure 3.4. Second Model -Sine Function -
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Third Model — Muscle Contribution: A very significant component of the

definition of spasticity is the sudden appearance of a muscle contraction; up to the present

only related to a certain type of "velocity dependent" threshold, which reflects a

hyperexcitability of the stretch reflex. In order to model spasticity it is necessary to

represent this sudden muscle contraction, or better to represent the effect that this muscle

contraction produces on the dynamics of the system.

When the muscle contracts it provides certain force to the limb, which is

multiplied by the lever arm producing a torque. The distance of this lever arm is

measured from the location where the muscle is inserted in the bone to the pivot of the

joint. Adding an extra torque to the equation characterizes the muscle contraction. The

next important determination is to provide the adequate value of magnitude, and a way of

modeling the appropriate onset and duration for this torque.

Initially, we will be able to manually set the proper timing and magnitude of the

torque. We model it as set of two separate step functions acting together. A step function

turning it on and then another step function turning off. According to the work done by

Fee and Foulds, and by Rymer et. al. the best moment to include this stimulus is at

approximately 330 mseconds after the onset of the exam. Their studies show that this

coincides with the onset of the EMG signal, which indicates the beginning of the spasm

muscle contraction. Rymer's studies indicate that the value for this torque should not

exceed 30 N-m and is usually lower with a value of about 10 N-m. [13, 22]
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In this model we also incorporated a manual switch in order to be able to activate

and deactivate the muscle torque. This is done by multiplying the torque by one (position

"on") or by zero (position "off') as needed.

Our model includes a number of Simulink scopes graphical outputs in order to

observe the effect of each model block. As a result, we are able to appreciate what is the

contribution of each model segment. The influence of added torque on the system is best

shown by the acceleration. This is included in each simulation. In the following set of

graphs the response display remains unchanged, from a pendular trajectory as additional

muscle torque, has not yet been added.

Figure 3.5. Underdamped Oscillator-Position-Second Order Differential Equation

(muscle contribution-switch OFF)



Figure 3.6. Underdamped Oscillator -Acceleration- Second Order
Differential Equation (muscle contribution-switch OFF)
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Figure 3.7. Torque Contribution- (muscle contribution-switch OFF)



Figure 3.8. Third Model - Muscle



Figure 3.9. Underdamped Oscillator-Position-Second Order Differential
Equation (muscle contribution-switch ON)
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Figure 3.10. Underdamped Oscillator -Acceleration- Second Order
Differential Equation (muscle contribution-switch ON)



Figure 3.11. Spasm Torque Contribution- (muscle contribution-switch ON)

The first set of figures (Figures # 3.5., 3.6., 3.7.) shows a normal Pendulum Knee

Drop Test response produced by the model. The second set of figures (Figures # 3.9.,

3.10., 3.11.) shows a simulated abnormal Pendulum Knee Drop Test. These figures

represent a mildly spastic patient who just had one solitary muscle contraction of the

quadriceps.

Notice the changes introduced in the response from the position (theta angle),

acceleration (theta double-dot) and the torque produced by the muscle contraction, from

the addition of a single torque of 20 Newtons with a short duration of 170 milliseconds.

A very important concept will be introduced in the next in order to provide a better

pathophysiological dimension.



Figure 3.12. Underdamped Oscillator -Position-Second Order Diff. Equation
(multiple muscle contribution-switch ON)

Figure 3.13. Underdamped Oscillator -Acceleration-Second Order Diff.
Equation (multiple muscle contribution-switch ON)
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Figure 3.14. Torque Contribution (Multiple muscle contribution-switch ON)

This particular model was found to be very useful in understanding the dynamics

of the model by introducing, in piecewise fashion, a series of torques, and analyzing their

effect. As can be anticipated, the additional torque will reach a point at which a

progressive intensity of force will drive the system to an unstable situation On the

contrary if the magnitude of the force is progressively diminished it will continue

damping the system. When constant value of torque is applied the system tends to find an

equilibrium point different from de gravitational vertical.



Figure 3.15. Third Models - Multiple Muscle Contribution-



Figure 3.16. Underdamped Oscillator -Position-Second Order Diff. Equation
(multiple muscle contribution-switch ON)

50

Figure 3.17. Underdamped Oscillator -Acceleration-Second Order Diff. Equation
(multiple muscle contribution-switch ON)



Figure 3.18. Torque Contribution (Multiple muscle contribution-switch ON)

Fourth Model - On/off switch. : Feldman introduced a very important concept, the

Lambda theory, which is now being slowly accepted by the experts. The essence of the

Lambda theory states that the activating feature does not depend exclusively on a fixed

value, but on a floating and resetable value. This theory might be explained by the fact

that the lost regulation of the stretch reflex, from the suprasegmental levels, produces a

different effect in the alpha and gamma motoneurons of the ventral horn in the spinal

cord. These changes mainly disturb the involuntary portion of the regulation of the stretch

reflex, the gamma motoneuron system. Thus it a model was created that uses a function

to trigger the spastic torque input



Figure 3.19. Fourth Model — Switch ON/OFF
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In this model a difference in CNS alpha and gamma signals switches on and off the

contribution that represents the spastic contraction.

Arbitrarily we set both alpha and gamma initially as 100%. Hence, their ratio will

render an absolute value of 1. Subsequently, it can be altered as needed to observe the

effect of this variation on the system. Gamma was the variable chosen to be altered. In

this way as the denominator diminishes the fraction will grow, and after it is subtracted

from a unit, we will find the Activating Factor (AF). Again, this AF (Activating Factor)

will vary in a non linear way.

As stated above, the maximum accepted value for a quadriceps torque is of thirty

Newtons (30 N-m); therefore we will limit it to this value in this model with a saturation

block. Also a sustained final contraction (S F C) is simulated, as it will occur in a

severely spastic patient with a constant delivered anti-gravity torque.

Figure 3.20. Switch On/Off (Switch Off)- Position-



Figure 3.22. Switch On/Off (Switch On)- Acceleration-

54



55

As it is easy to appreciate that the muscle contribution, when activated by the

switch on/off alpha /gamma variable, also creates a pattern of exaggerated damping.

What is interesting to appreciate is that it is the relationship between the different torque

and damping oscillations, not their absolute values that will produce the desire effect.

Figure 3.23. Switch On/Off (Switch On)- Muscle Torque —

The next illustration corresponds to a switch activated simulation, but in this case

the last contraction is allowed to continue as permanent. The net effect produced, is a

new setting for a new equilibrium value. In patients, this corresponds to the cocontraction

phenomena that produce a final equilibrium point that is different from gravitational

neutral.



Figure 3.25. Switch On/Off (Switch On-Permanent End)—Acceleration
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Figure 3.26. Switch On/Off (Switch On-Permanent End)— Muscular Torque

Still there is a difference with the curve obtained from patients. In this model the

final damping is less effective than in patients that change their final resting point. It is

believed that this could be explained by the fact that in permanent contraction, the Actin

and Myosin interaction will increase the damping coefficient (B). The difference in

density between two different liquids is explained by the amount of attraction between

their molecules. The molecules of a dense liquid interact attracting themselves much

more. In a similar way the more existing binding sites between Actin and Myosin will act

as a more damping type of muscle. So now it is incorporated a damping increasing

function, as a function of time.



Figure 3.27. Fourth Model — Switch ON/OFF (increasing Damping Coefficient)



Figure 3.28. Switch On/Off (Increasing Damping Coefficient)-Position
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Figure 3.29. Switch On/Off (Increasing Damping Coefficient)-Acceleration-
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Figure 3.30. Switch On/Off (Increasing Damping Coefficient)-Torque

As shown, this particular model, once understood, allows one to implement and

analyze the torques needed to transform the "normal" underdamped oscillation into any

trajectory position of the spastic subjects.

It is very important to note that the best torque amplitude combination depicts a

fall along a gradually diminishing curve. This torque-diminishing curve represents an

exponential time dependent curve.

Before the introduction of the exponential time dependent exponential curve to

the model it is necessary to consider a special case. The case of severe spastic patient.

A severe spastic patient requires a detailed and independent analysis. This type of patient

exhibits a very different behavior. Characteristically they cannot achieve a complete

relaxation. Therefore, these patients present contracture of the muscles at the beginning
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and through the entire pendulum test. Their movement is very limited, the spastic energy

is very high and the resting point is shifted from the usual position.

An adequate way of representing these patients is a permanent torque throughout

the range of motion of it. The trajectory will find a new equilibrium point, usually very

near the starting position.

The fact that the muscle is permanently contracted will enhance the amount of

stiffness of the joint. In a similar way, as will happen when two tensors, at opposite ends

of a rod, are highly tensed. Also, the damping coefficient will increase with the amount of

interaction between the molecules of Actin and Myosin. This appears as if was dispensed

inside the damper or damping chamber. The main difference between the two liquids,

with dissimilar densities, is that the amount of inter-molecular attraction is larger in the

one with highest density. Therefore, if the amount of interaction between Actin and

Myosin is higher, when the muscle is contracted, the muscle will behave as having a

higher damping coefficient.

For this specific simulation we will assume: first, permanent muscle contraction,

since the beginning, which means a permanent torque. Second, an increasing damping

and spring coefficients as time of the exam progress. The result is an overall change from

an underdamped type to a critically damped or an overdamped type of behavior.



Figure 3.31.Severe Spasticity (Permanent Contraction)— Position
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Figure 3.32. Severe Spasticity (Permanent Contraction)— Torque



Figure 3.33. Fith Model — Severe Spasticity
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In summary, in this specific model several changes have been introduced: First, it

is assumed it is always contracted so no switch for On/Off position is needed. Second,

one an only one permanent torque replaces the previously used combination of different

torques. Third, as already explained, the damping (B) and spring (K) coefficients are

increasing as a function of time.

Figure 3.34. Severe Spasticity (Permanent Contraction)— Acceleration

Fifth Model -Basal Tone Contraction and Exponential Curve Regulation:

Now that the need for both final force components has been explained, they are

incorporated to the model in the final step. Several particular features of this model must
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be highlighted. As already discussed the torque of the muscle contraction is between 10-

30 N-m. Therefore, a saturating block was incorporated to limit the basal muscle

contraction.

Initially the alpha / gamma regulating function regulated only the torque

activation. Now the same activating function regulates the appearance and extent of the

basal muscle contractions well. Moreover, this same function regulates the power of the

exponential function. Overall, it simultaneously regulates the appearance of four

important parameters, and allows them to interfere with the passive movement when the

Alpha/ Gamma balance is lost. In summary, these are the additional muscular torque, the

exponential function that modifies the muscular torques intensity, the basal muscle

contraction and the increasing value of the damping coefficient as a function of time.

Sixth Model - Model Controlled Torque Activation: The muscle activation in

spasticity is significant non-linear. The spastic torque is zero except for specific instances

when it is triggered for relatively short durations. In the previous model the triggering of

this torque was not controlled by the model, but was specified by the experimenter. In

order to understand spasticity, it is important for the model to include a controlling

function, which determines the onset time and duration of spastic muscle contraction. As

previously suspected by many scientists, a relation between velocity, acceleration and

position is likely involved in the regulation of the triggering events of spastic muscle

contractions. These contractions provide intermittent additional torque to the system. The

relation between the cosine and the absolute value of the negative sine functions, of the

angle Theta, regulates the torque. We will refer relationship as the "Controlling

Function"(CF). The Cosine of theta is proportional to the velocity component in the
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vertical or gravitational direction, and the sine of theta is proportional to the acceleration

in the same direction, as well as displacement in the same direction.

Another important event is the variable permanent Basal Contraction (BC) of the

muscle. In the normal subject it is modeled as nonexistent. In the spastic subject it is

modeled as an increasing event, which is dependent upon the amount of uncoupling

between the alpha and the gamma motoneurons. The BC increases in a nonlinear fashion

in proportion to the alfa/gamma ratio and gradually replaces the intermittent muscle

torque contribution in its importance in severely spastic or rigid patients.

The CF is very significant at the mild to moderate degrees of spasticity, at high

levels of spasticity the more important factor is the permanent Basal Contraction (BC).

In conclusion two additional essential factors are finally added to the model that are the

CF (Controlling Function) and the BC (permanent Basal Contraction). They interrelate in

the dynamics of the system in such a way that one of them diminishes as the importance

of the other one grows.

This model was initially labeled as "-Cosine - Sine Controlled Torque

Activation". It is more appropriate to refer to it simply as the "Final Model" or

"Pendulum Knee Drop Test Model" (PKDT) or even will be referred as to the "model".



Figure 3.35. Sixth Model — Final Model- Pendulum Knee Drop Test
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The whole spectrum of results will be analyzed in then following chapter when

the results are analyzed. Some examples illustrate how this new model sufficiently

represents simulation of normal, mild and severe spasticity.

Figure 3.36. Final Model —Knee Drop Pendulum Test — Position- (No Spasticity)

The first graph shows a simulated normal subject. This graph includes no altered

response on the expected second order underdamped differential equation. The following

graph (fig. 3.37) shows a simulation of mild spasticity. Notice how the final cycles

disappear much faster than earlier models.



Figure 3.37. Final Model —Knee Drop Pendulum Test — Position- (Mild Spasticity)

Figure 3.38. Final Model —Knee Drop Pendulum Test — Position- (Moderate Spasticity)

Moderate Spasticity (fig. 3.38) is depicted by the first two cycle occurring before

the limb reaches the gravitational equilibrium and increases the accelerated damping in

the last cycles.



Figure 3.39. Final Model —Knee Drop Pendulum Test — Position- (Severe Spasticity)

In this figure (fig. 3.39) a great altered response is seen as reflected by the

smoothing of the first two cycles and a very accelerated damping process through the rest

of the trajectory. A mild elevation of the equilibrium point can be seen. In the last figure

of this section (fig.3.40) a very severely spastic patient is illustrated. Notice the absence

of an oscillatory pattern, changing from an underdamped pattern to a critically damped

pattern.



Figure 3.40. Final Model —Knee Drop Pendulum Test—Position- (Very severe Spasticity)

Also notice, the elevation of the final equilibrium point above gravitational

vertical as an indication of limited motion of the limb during the exam.



CHAPTER 4

RESULTS

The final model described in the previous section allows us to conduct simulations of

various types of subjects. Varying only the relationship between gamma and alpha

motoneurons, we are able to produce simulations ranging from no spasticity to very

severe spasticity.

This variation is made exclusively in the gamma motoneurons value in a

decremented fashion, at intervals of 10, starting at a 100 (100%) and ending at 1 (1%).

For each simulation the recorded position, velocity, acceleration and spastic torque input

are analyzed. The behavior of each regulating function and reason why it was included in

is also discussed.

First Simulation- normal subject-: This is expected to behave as an underdamped

oscillator system, with a pseudo-periodic pattern.

Figure 4.1. Normal Subject- Position

72
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As expected, the trajectory fulfils the criteria found in the literature describing a

normal position, velocity and acceleration pattern of behavior in a Pendulum Knee Drop

Test. No additional torque comes from the muscles.

Figure 4.3. Normal Subject- Acceleration



Figure 4.4. Normal Subject- Muscle Torque

Second Simulation- Gamma 90 % -:

Figure 4.5. Gamma 90 % - Position

As a result of the input from the muscle torque a distortion is starting to appear in

the trajectory. Notice the influence on the first two cycles, characterized deviations from

the expected pendular motion. Also notice the exaggerated damping of the last cycles.
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Figure 4.6. Gamma 90 % - Velocity

Under the influence of the muscular torque, the trajectory of the initial one and a

half cycles has an altered appearance. In the acceleration graph it is easy to observe the

torque influence (fig. 4.7) on the system. The amount of basal muscle tone starts to

increase with a scarcely noticeable, a value of 0.1 units (fig. 4.9)

Figure 4.7. Gamma 90 % - Acceleration



Figure 4.8. Gamma 90 % Muscle Torque
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Figure 4.9. Gamma 90 % Basal tone



Third Simulation-Gamma 80:
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Figure 4.10. Gamma 80 % Position

Figure 4.11. Gamma 80 % Velocity

Figure 4.12. Gamma 80 % Acceleration



Figure 4.13. Gamma 80 % Muscle torque
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Figure 4.14. Basal tone

The progressive intermittent muscle torque influence, in the initial segment of the

exam, is now very notorious, even though, the absolute amount of the torque exerted by

the isolated muscle contraction is diminishing. The basal muscular tone continues to

increase in an exponential form reaching a value of approximately 0.3 units at this stage.

The basal muscular tone does not appear to influence much the results at this stage.



Fourth Simulation Gamma 70%
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Figure 4.15. Fourth Simulation Gamma 70%-Position

Figure 4.16. Fourth Simulation Gamma 70%-Velocity

Figure 4.17. Fourth Simulation Gamma 70%-Acceleration



Figure 4.19. Fourth Simulation Gamma 70%-Basal

The whole influence is still governed by the muscle torque, but each time, it is

more evident that the behavior of the system trends to loose its dependency from these

isolated torque influence, and tries to find a new equilibrium point dependant from the

basal muscle contraction.



Fifth Simulation Gamma 60 %
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Figure 4.20. Fifth Simulation Gamma 60 % Position

Figure 4.21. Fifth Simulation Gamma 60% Velocity

Figure 4.22. Fifth Simulation Gamma 60% Acceleration
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As it is evident on the acceleration graph, that there is still considerable input from the

muscular contraction. Never the less there is just one single spike remaining in the initial

part of the event. The basal muscular tone value is now above a half unit.

Figure 4.23. Fifth Simulation Gamma 60% Torque

Figure 4.24. Fifth Simulation Gamma 60% Basal Tone



Sixth Simulation Gamma 50 %
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Figure 4.25. Sixth Simulation Gamma 50 %Position

Figure 4.26. Sixth Simulation Velocity

Figure 4.27. Sixth Simulation Acceleration



Figure 4.28. Sixth Simulation Gamma 50% Torque

84

Figure 4.29. Sixth Simulation Gamma 50% Torque Basal Tone

The interaction between the muscle contraction and the basal tone shapes the

appearance of the trajectory. The basal tone has acquired the value of 1 unit and begins to

dominate the trajectory. The muscle contraction provides less influence as the basal tone

increases.



Seventh Simulation Gamma 40%
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Figure 4.30. Seventh Simulation Gamma 40% position

Figure 4.31. Seventh Simulation Gamma 40% Velocity

Figure 4.32. Seventh Simulation Gamma 40% Acceleration



Figure 4.33. Seventh Simulation Gamma 40% Torque
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Figure 4.34. Seventh Simulation Gamma 40% Basal Tone

The value of the basal tone is going to increment in a very rapid way. As you can

see, it is now fifty percent greater than in the previous stage. The value of the torque

starts to disappear.



Eighth Simulation Gamma 30 %
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Figure 4.35. Eighth Simulation Gamma 30 % Position

Figure 4.36. Eighth Simulation Gamma 30 % Velocity

Figure 4.37. Eighth Simulation Gamma 30 % Acceleration



Figure 4.38. Eighth Simulation Gamma 30 % Torque

Figure 4.39. Eighth Simulation Gamma 30 % Basal Tone

The amplitude of the muscle torque is less than 1 N-m. The dominating influence

has become the interaction between the basal tone and the gravitational force.



Ninth Simulation Gamma 20 %
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Figure 4.40. Ninth Simulation Gamma 20 % Position

Figure 4.41. Ninth Simulation Gamma 20 % Velocity

Figure 4.42. Ninth Simulation Gamma 20 % Acceleration



Figure 4.43. Ninth Simulation Gamma 20 % Torque
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Figure 4.44. Ninth Simulation Gamma 20 % Basal Tone



Ninth Simulation Gamma 10 %
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Figure 4.45. Ninth Simulation Gamma 10 % Position

Figure 4.46. Ninth Simulation Gamma 10 % Velocity

Figure 4.47. Ninth Simulation Gamma 10 % Acceleration



Figure 4.48. Ninth Simulation Gamma 10 % Torque
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Figure 4.49 Ninth Simulation Gamma 10 % Basal Tone

The influence from the isolated muscular contraction has finally disappeared.

The basal tone contraction shifts the final resting point of equilibrium as explained in

a previous chapter.



Tenth Simulation Gamma 1 %
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Figure 4.50. Tenth Simulation Gamma 1 % Position

Figure 4.51. Tenth Simulation Gamma 1 % Velocity

Figure 4.52.Tenth Simulation Gamma 1 % Acceleration



Figure 4.53.Tenth Simulation Gamma 1 % Torque
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Figure 4.54.Tenth Simulation Gamma 1 % Basal Tone

The exponential growth of the basal tone contraction has now reached a value that

maintains the system with limited mobility. The basal tone balances the torque produced

by gravity at a non-zero angle.

The simulations allow identification of the influence of the torque exerted by the

muscle contraction. Two main components have been identified so far: The intermittent

isolated muscle contraction and the basal tone of muscle. As seen in the model this is a

direct consequence of the interaction between alpha and gamma motoneurons. In the next

chapter another factor, related to increased damping coefficient is discussed.
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The model in this thesis could not be developed without a modern computer

programming environment. The lack of such modeling tools has posed a great difficulty

in previous interpretations of the Pendulum Knee Drop Test. In the next Chapter, we will

discuss the significance of these results.

This thesis shows the models ranging from normal, through mild, moderate and

severe spasticity progressing from underdamped dynamics to a critically damped, and

finally to an overdamped system. However, this is not accomplished just by the merely

altering the damping coefficient. It is accomplished by a complex interaction of the

parameters

The model includes several non-linear contributing elements that can be

controllers as a function of our hypothesized functions alpha/gamma imbalance.

Figure 4.55. Alpha/Gamma activating function



Figure 4.56. Decremented function of gamma

Graph showing a decremented function of gamma with a slope of one, as used in

the simulation

Figure 4.57. Alpha /Gamma relation as a function of severity of the spasticity

Graph corresponding to the Alpha /Gamma relation as a function of severity of

the spasticity, showing clearly an exponential relation. Note starting point at a value of 1.



Figure 4.58. Activating factor as a function of severity of the spasticity

Graph showing the values of the activating factor, depicting an exponential curve

starting at a value of zero.

The beta gain function is a very complex function to analyze. Overall it is

expected to be increase as the muscle contraction increases. Additionally, there is a need

for dissipation of the additional delivered energy.

During normal simulation it varies in a coordinated fashion with the velocity of

theta being a fourth of its magnitude. However as the nonlinear activation intervenes and

as the dynamics of the system grows in complexity, the variation also grows in

complexity. The model takes the previously explained exponential function from

alpha/gamma relation and multiplies it as a function of time creating a higher order
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activation of the beta gain. The final response from the beta gain is related to and

dependent upon velocity. This creates a surprisingly slow incremental function of beta in

relation to velocity.

Preserving its parallel curve with velocity, its proportion will increase the beta

gain as the gamma decreases. Starting from velocity/beta gain relation of 4/1 with a

gamma at 100%. When gamma is at its 50% value the ratio velocity/beta gain is

2/1.When the gamma is at its 10% the beta gain value is larger than the velocity value

with a relation of 1.2/1.5 and finally when gamma is at its 10% the velocity/beta gain

ratio is inverted to a value of 0.2/1.2. As expected this increment is necessary when a

change from an underdamped to a damped situation is encountered.

As the values of alpha/gamma vary, the relative contribution to the system from

the two types of force input from the muscle varies in an inverse proportion.

Figure 4.59. Muscle intermittent isolated torque contribution as function of alpha/gamma

variation

As previously discussed, the main contribution from these intermittent isolated

muscle activations is at the mild cases of spasticity. Contrasting to the advanced cases

where a permanent augmented Basal Tone contribution is expected.
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Figure 4.60. Muscle basal tone contribution as function of alpha/gamma variation

As a final consideration the graphs obtained by the model are going to be visually

compared with some patient examples. The first is of a normal subject (fig. 4.61)

compare it with the following figure of a normal model (fig. 4.62). In simulation graph it

is well recognized the normal pattern.

Figure 4.61. Normal Patient



Figure 4.62. Normal Simulation

Figure 4.63. Mildly spastic patient

A previously discussed, the pattern of the spastic patient is determined not only by

the amount of torque but also but the specific rate and time of muscle contraction onset.

These two factors create a large variety of patterns. Even though, the next mild spastic

patient illustrated in figure 4.63 has some common features with figure 4.64 as an

example of a mild spastic simulation.
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Figure 4.64. Mildly spastic simulation

The drop in the amplitude after the first half cycle is the most characteristic event

in these type of patients due to the presence of an isolated muscle contraction of the

quadriceps.

The next example, Figures 4.65 and 4.66, corresponds to a moderate to severe

case of spasticity.

Figure 4.65. Moderate to severe spastic patient
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Figure 4.66. Moderate to severe spastic simulation

In figures 4.65 from a patient file and figure 4.66 from the model simulation, the

most important aspect is that both have the morphology described for a critically damped

system. Just one oscillation after the pendulum has been released. Notice the elevation of

the equilibrium resting point from the normal gravitational vertical in both figures.

Figure 4.67. Severe spastic patient

Our last set of comparison will be done between a graph from a severely spastic

patient and a graph from the model representing a similar condition. As seen on figures
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4.67 and 4.68, now the system has acquired the characteristics of an overdamped system.

No oscillation is perceived, and, the range of motion is very limited. The final resting

eauilibrium point is very displaced from the normal vertical gravitational.

Figure 4.68. Severe spastic simulation

As it was explained earlier, the first set of graphs showing mild spaticity is the

result of predominantly few isolated muscle contractions occurring at the beginning of

the test. On the contrary, the last set of figures show a permanent force that impedes any

type of displacement through the entire test. This permanent force is the result of a

permanent muscle contraction that is clinically appreciable as a permanent hypertonic

muscle.



CHAPTER 5

DISCUSSION

A starting point is very simple phrase for a huge concept. It implies that initial conditions

and initial parameters are identified and described. This means that from these exact

points onwards, the system behavior is predictable according to known limitations and

boundaries. It is also implied that all or most of the unimportant factors have been

disregarded.

Whenever a specific problem is to be analyzed there must be asset of initial

conditions. There are different ways of accomplishing this task. Computer modeling has

great advantages over some traditional approaches.

The model presented in this thesis deals with the analysis of the motor response,

torque distribution, timing of the onset, duration, number and quality of the torques,

grade of absorption and dissipation of the energy in a normal and a spastic subject during

the implementation of a Pendulum Knee Drop Test.

Normally, as the inferior limb is released from the horizontal, gravity force will

drive it to an equilibrium point define by gravitational vertical. As the limb has a joint at

the knee it will behave as a pendulum. The muscle, and into a minor extent, the joint,

ligaments, connective tissue and skin will gradually absorb the energy acting as a

damper. The muscle and tendon also have recognized elastic properties by which they
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store energy, but in a less comparative extent than its damping capacity. It is accepted

that the system normally behaves as an underdamped oscillator.

When the normal neural regulation is lost, the spinal cord still exerts some

incomplete and primitive type of control. This new way of functioning is incompletely

understood. Nevertheless, certain facts are comprehended all based on the Sherrington's

work on the stretch reflex.

The initial contribution towards understanding and measuring spasticity came

from a clinician, Dr. Wartenberg. He made a very important observation regarding the

pendular behavior of the leg, which is in fact the real starting point of this thesis.

Wartenberg's work was primarily descriptive.

Biomedical engineering offers numerous attempts reported in the literature that

address and analyzes, but few of them go deeply into causes of the muscle torques. This

analysis is accomplished in the present study.

A computerized model gives us a great advantage in the process of understanding

and implementing new strategies to quantify spasticity. When creating a model numerous

possible parameters are identified. The challenge of modeling consists in the selection of

the most representative of them.

A computerized model also allows to manipulate the different parameters even in

extreme situations, usually impossible to achieve in real life. Moreover, it is possible to

watch and study the progression and development of a system that is impossible to

observe in a human environment.

By developing this model in a step-by-step approximation, we have identified

three principal parameters that influence the spasticity seen in the pendulum knee drop
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test. First, is that which increases the muscle contraction in an intermittent fashion,

triggered by a complex relation between position, acceleration and velocity. The second

is the one that establishes a continuously growing permanent muscle contraction or

contractions, usually referred as "hypertonic muscle " by the physicians, and a third

changes the intrinsic physical muscle behavior, as a consequence of the interaction

between their protein molecules, shifting it to a more energy absorbing structure.

As shown in the results chapter, the only way of achieving the full simulation of

the different degrees of spasticity is by a complex interrelation among these three forces.

These interactions are shown to have non-linear, exponential relationships

The first and most important results from the modeling of an unbalanced

relationship between alpha and gamma motoneurons activation. The second, who is

derived from the first and involves the basal muscle tone that increases as gamma value

decreases. The third is the influence that the intermittent isolated muscle contraction

forces plays on at the beginning of the unbalanced relation between alpha and gamma, as

well as how it decreases in importance as the severity of spasticity increases. It also

regulates the amplitude of the spastic contraction in a decaying exponential delivery of

the torque force as a function of time.
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Figure 5.1. Basal tone regulating function
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Figure 5.2. Intermittent muscle contraction regulating function

By having all three in conjunction, the entire muscle torque is regulated. But the

timing, which is important mainly in the non-severe cases of spasticity where the muscle

contraction is not permanent, and is regulated by an interaction between the values of the

cosine of theta and the absolute values of a negative sine of theta. As it has been already

explained, the change in the Pendulum Knee Drop Test dynamics resides in the way these

forces are delivered and transferred.
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Figure 5.3. Integrated muscle switch regulation

The figure 5.4 shows the way the Activation Factor (AF) increases as the gamma

function decreases as already described in an exponential way. This AF will influence the

force production and force transference to the system



Figure 5.4. Activation factor as a function of gamma decrement
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Figure 5.5. Isolated muscle activation as a function of gamma decrement
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Up to the present no model has described the spastic dynamics of the Pendulum

Knee Drop Test using the imbalance between the alpha and gamma signals.

The model makes a contribution by opening new possibilities in terms of

spasticity and development of an index of severity. The fact that energy expenditure (i.e.

opposite contractions torque) is accomplished by the addition of the additional torque and

simulates mild to a severe spasticity, focuses the attention on both muscle torque

components and on the parameters that trigger those intermittent torque. Nevertheless,

the change on the damping coefficient cannot be forgotten or overlooked. Conversely, the

increment on the spring —elastic- coefficient, although present, does not seem to be very

important in the evolving dynamics.

One way of accurate measuring the spasticity is measuring the added energy or

force and compared to the normal values.



CHAPTER 6

FINAL CONSIDERATIONS

Numerous definitions of spasticity are found that come from an exclusively medical point

of view:

"Spasticity is a change in the normal dance between muscles that usually work

together or work in opposition to make limbs smooth," Dr. Juan De Lecuona,

Medical College of Georgia neurologist and psychiatrist. [27]

"As mentioned previously, Spasticity is defined as increased resistive force for a

particular muscle group to passive movement." [2]

"Spasticity is a motor disorder characterized by a velocity-dependent increase in

tonic stretch reflexes with exaggerated tendon jerks, resulting from

hyperexcitability of the stretch reflex, as one component of the upper motor

neuron syndrome." [29]

From a combined physiological and engineering perspective this thesis proposes

that spasticity can be defined as a system resulting from an uncoupled disharmonic

alpha/gamma motor control that creates a very inefficient and diminished movement with

a high force delivery. In this definition, a high energy transfer is implied.

To date medicine and allied disciplines have approached their normal and altered

patients by the semiological and regular procedure of inspection, palpation and

auscultation.
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After, the information is gathered by these three different senses, it integrated into

a cognitive model describing the actual patient condition. The physician compares this

image with other models they have experienced.

In order to remove the subjectivity associated with these models, medical science

has sought various reference frames. Among these are observational scales that are of

limited use since they are merely descriptive. However questions arise: Are they

accurate? Are they reproducible? Are they even comparable between two different

examiners? Are they able to measure all that is important? Are the sensitive enough to

identify the parameters that define the outcome?

Spasticity is not a static parameter and simple measures such as the Ashworth

Scale do not fully describe its dynamic nature. This study has addressed the study of

spasticity using engineering non-linear models and powerful dynamic modeling software.

The contributions of this work are:

1) A new definition for spasticity from a dynamics point of view.

2) Anew computer model for studying and simulating spasticity

3) Selection and definition of parameters that will explain better the spastic

phenomena.

4) Explanation of the dynamics of the energy transfer that provides active damping

to passive the system.

5) Identification of fundamental parameters for a systematized and standardized

approach to the measurement of spasticity.

6) Use these parameters to propose a way to measure and quantify it.
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7) Demonstration of the measurement and quantifying of spasticity using these

parameters.

When using a computer model we do not need to find strict numerical solutions in

order to simulate a non linear system. We have identified the inclusion of a higher energy

input, derived not from the usual gravity influence that normally drives the system, but

delivered by the spastic muscle contraction. This is a very important event in with mild

spasticity. So, by measuring acceleration it will allow us to measure the muscle energy

contribution in non-severe cases.

From a dynamics point of view, we can be define spasticity as a phenomenon

resulting from an uncoupled, disharmonic alpha/gamma motor control that creates a very

inefficient and diminished movement with a high force delivery. In this definition, it is

implied a high energy transfer. Regardless of the underlying etiology of the spastic

phenomenon, it creates an alteration of the motor control mechanism. This alteration is

reflected in an improper movement pattern.

This movement pattern is characterized by a considerable amount of muscle

energy. The intended movement is non- harmonic, unbalanced and exuberant, and,

inefficient as a result of the cocontraction of antagonist pairs.

In summary, there is a very high amount of energy invested and yet a very little

amount of movement is achieved. Obviously it is implied that the main cause is an

underlying altered neuro- control mechanism. In this way we make a difference between

the impaired motion caused by other type of lesions like arthritis, or arthrodesis or

muscle retractions or muscle fibrosis.
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As a consequence, any spasticity study must focus in the amount of energy

delivered by the muscle and in the amount of movement achieved. In this model it has

been identified that the energy delivered by the spastic muscle results in three outcomes.

Isolated intermittent muscle contraction is predominantly influences the dynamics

changes in the pendular trajectory in the less severe cases of spasticity where the

permanent muscle contraction is insignificant.

Basal tone muscular contraction results in a permanent or nearly permanent

contracture altering the equilibrium point from the normally expected gravitational

vertical and occurs predominantly in more severe cases.

And as a consequence of this muscle contraction the muscle fiber proteins slide

inside each other so they have more "cohesive force", as a result they have a larger

damping coefficient. Thus the damping coefficient changes during spastic muscle

contraction.

Being these parameters identified, there is needed a way to quantify them. The

amount of energy delivered by the muscle is essentially delivered as force In normal

people this energy will be transduced into acceleration and velocity. We have modeled

each of these contributions in the final model.

This work has deal only with computer models of hypothetical person whose

alpha/gamma imbalance can be changed to observe the potential deviation in this

pendular trajectory of the leg. These trajectories have been subjectively compared with

trajectories of subjects with no, mild, moderate and severe spasticity. Additional work

should include the study of specific individuals and use this model to produce their

alpha/gamma ratio based upon their experimental measured limb trajectories.
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