

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AN EVOLVING APPROACH TO LEARNING IN PROBLEM SOLVING AND
PROGRAM DEVELOPMENT: THE DISTRIBUTED LEARNING MODEL

by
Idania Espinosa

Technological advances are paving the way for improvements in many sectors of

society. The US education system needs to undergo a transformation of existing

pedagogical methods to maximize utilization of new technologies. Traditional

education has primarily been teacher driven, lectured-based in one location.

Advances in technology are challenging existing paradigms by developing tools

and educational environments that reach diverse learning styles and surpass the

boundaries of current teaching methods.

Distributed learning is an emerging paradigm today that has promise to

contribute significantly to learning and improve overall academic success. This

research first explores various systems that provide different modes of learning.

The problem domain of this research is the difficulty novice programmers' face

when learning to program. This paper proposes how distributed learning can be

used in a teaching environment to enrich learning and the impacts for the given

problem domain.

AN EVOLVING APPROACH TO LEARNING IN PROBLEM SOLVING AND
PROGRAM DEVELOPMENT: THE DISTRIBUTED LEARNING MODEL

by
Idania Espinosa

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

May 2002

APPROVAL PAGE

AN EVOLVING APPROACH TO LEARNING IN PROBLEM SOLVING AND
PROGRAM DEVELOPMENT: THE DISTRIBUTED LEARNING MODEL

Idania Espinosa

Dr. Fadi Deek, Dissertation Advisor 	 Date
Associate Dean, College of Computing Sciences and Associate Professor, NJIT

Dr. James McHugh, Committee Member 	 Date
Acting Chair, Computer Science Department and Associate Professor, NJIT

Dr. Qianhong Liu, Committee Member 	 Date
Assistant Professor, Computer Science Department, NJIT

BIOGRAPHICAL SKETCH

Author: 	 Idania Espinosa

Degree: 	 Master of Science

Date: 	 May 2002

Undergraduate and Graduate Education:

• Master of Science in Computer Science
New Jersey Institute of Technology, Newark NJ, 2002.

• Bachelor of Science in Computer Science
New Jersey Institute of Technology, Newark NJ, 1999.

Major: 	 Computer Science

This thesis is dedicated to my father. He instilled in me discipline and the desire

to achieve my goals. Cancer took his life when I was a junior in high school.

This event led me closer to God and to discover my eternal Father. I want to

thank God for my family, for all the events in my life, and for guiding me always in

the right path.

v

ACKNOWLEDGEMENT

I would like to express my deepest appreciation to my research advisor,

Dr. Fadi Deek, for his valuable support in providing resources, insight, and

professional advice during my research and throughout my undergraduate

career. I would like to express gratitude to Dr. James McHugh and Dr. Qianhong

Liu for serving as members of my review committee.

I would also like to acknowledge the Optical Networking Group of Lucent

Technologies for affording me the opportunity to pursue my Master's degree.

I would like to thank my family and friends for their continued support, love

and encouragement throughout the program. Finally, I would like to thank God

for with him all things are possible.

vi

Page

1

1

Chapter

1 INTRODUCTION

1.1 	 Objective

TABLE OF CONTENTS

1.2 	 Novice vs. Expert Programmer 	 2

1.3 Contrasting Teaching Methods and Learning Styles 	 4

1.3.1 Traditional Teaching Methods 	 5

1.3.2 Learning Styles 	 6

1.4 Programming Language Construct 	 8

1.4.1 Programming Abstractions. 	 9

1.4.2 Programming Syntax... 	 10

2 EXISTING APPROACHES TO AIDING NOVICE PROGRAMMERS 	 13

2.1 	 Collaborative Learning 	 13

2.1.1 History of Belvedere — Collaborative System 	 18

2.1.2 Example of Belvedere 21

	

2.1.3 Analysis of Belvedere... 23

2.2 	 Individual Cognitive System 24

2.2.1 History of Tinker 	 25

	

2.2.2 Example of Tinker. 26

2.2.3 Analysis of Tinker 	 28

2.3 The Natural Programming Project 	 30

2.3.1 History 	 30

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

	

2.3.2 Study 31

	

2.3.3 Analysis 35

	

2.4 	 Distance Learning 35

	

3 MOVING TOWARDS DISTRIBUTED LEARNING... 43

	

3.1 	 Difficulties of Distributed Learning 	 46

	

3.2 	 Collaborative Tools used in Distributed Learning 48

	

3.3 	 Programming in Distributed Learning 	 54

	

4 FUTURE WORK 59

	

REFERENCES 61

viii

LIST OF TABLES

Table 	 Page

2.1 Results of study 	 34

ix

LIST OF FIGURES

Figure 	 Page

2.1 	 Example of Belvedere GUI............ 20

2.2 Example of Belvedere Diagram on AIDS topic 22

2.3a Simplest Example 	 26

2.3b Complex Example. 26

2.4 Main Menu on Tinker 26

2.5 Snapshot Window 27

2.6 Recursively Moving Obstacle to a Table 28

2.7 Complex Example to Remove Obstacle Elements 28

3.1 Distribute Work within Group... 46

3.2 Communication Mechanisms for a Distributed Team 	 48

3.3 	 Interaction Activities of a Distributed Team 49

3.4 	 Interaction Modes of a Distributed Team 50

CHAPTER 1

INTRODUCTION

1.1 Objective

Novice programmers have difficulties in breaking down a given problem,

designing a working solution, and debugging a program. Different systems are

discussed that have attempted to assist and facilitate understanding of

programming. The systems that are discussed are collaborative, non-interactive,

distance learning, and natural programming. [12][1 3][141116]

Many programming environments, software applications, and teaching

tools have been developed over the years to address this issue. Along with the

advancement in information and communication technology, the method of

learning has also evolved with the times. Formal education accounts for only 19

percent of students' time. In order to achieve improvements in learning, the

scope of learning needs to be extended outside of the domain of traditional

schooling. Distributed learning among social educational environments (i.e.

family, work, schools, and extracurricular groups) can enhance students'

learning. This paper identifies the improvements in programming classrooms

resulting from the use of a distributed learning approach. It also identifies

existing issues that cannot be resolved with distributed learning.

1

2

1.2 Novice vs. Expert Programmer

Several factors play a role in developing problem solving skills and program

development in students. Achieving these skills are based on the internal

cognition of the individual, the instructor abilities, environmental factors and the

programming language. Why do novices have such a difficult time learning to

program? This question is answered from different angles: student, teacher, and

programming language.

Novice programmers normally find programming frustrating and difficult.

They may not have the sufficient preparation to grasp concepts that are abstract

and complex. Novices are not familiar with designing and testing logical

structures for solving problems by computer. They lack an adequate mental

model about the internals of a computer and how it operates. Novices tend to

program using real-world strategies and experiences. [46] They tend to

incorporate non-programming experiences in learning to program. For example,

in studies done to analyze students' programming, researchers found that

students use goal/plan-merging strategy (e.g. reusing variables in loop

statements). Although this is useful for conserving resources, skills are needed

to apply this in programming. Also, these models are sometimes inappropriate

because they do not take into account computer limitations. [10][16][17][21]

Students also have difficulties learning how to program because the

instructor drives the speed of teaching programming concepts. Therefore, if

students do not have a clear understanding, they tend to fall behind and find it

difficult to play catch up. Students may fail to understand a concept given in

3

textbooks because they failed to learn a previous concept correctly. When

examples in the text are based on previous examples, students have difficulty

understanding the concept because they failed to understand the previous

concept. [27]

The following barriers have been identified as obstacles to learning critical

thinking skills in science: lack of motivation, limited knowledge in science,

inability to understand abstract relationships from theory, and difficulty keeping

track of a complex discussion. [48]

When expert programmers encounter unexpected problems during

programming, they possess the skills necessary to resolve the possible causes

of errors. Experts think about problems in a more abstract manner. They have

the ability to visualize "commonalities and differences among various problems

and programs." [22] Novices often times are unable to proceed with the

necessary steps for debugging a problem. Their level of thinking remains at a

low-level in terms of individual statements, whereas an expert might think in

terms of high-level algorithms and devise an end-to-end solution.

These reasons prohibit the novice from learning the essential skills in

programming, such as developing a concrete mental model of how the computer

operates during program execution, debugging a problem, and finding

relationships between abstract programming concepts.

4

1.3 Contrasting Teaching Methods and Learning Styles

Inappropriate teaching methods used to teach programming are also a factor that

hinders students' ability to learn. In a study of college science instruction, Sheila

Tobias defines two tiers of entering college students. [231 The first group is

composed of those who go on to earn science degrees. The second group

includes those who have the initial intention to pursue science degrees and the

ability to do so but instead switch to non-science related fields.

Tobias's study concludes that the instruction in introductory science

courses is responsible for deterring many students in the second tier. Some of

the target areas include:

1. failure to motivate interest in science by not establishing its relevance to

the students' lives and personal interests

2. students passivity in the classroom

3. emphasis on competition for grades rather than cooperative learning

4. focus on algorithmic problem solving as opposed to conceptual

understanding.

The emphasis in introductory CS1 and CS2 courses has mainly been on

language construct and programming syntax. [12]118] The mentality has been

`programming-in-the-small' whereby small programming assignments were given

to teach computer concepts. Students mainly worked individually as a means to

gain fundamental understanding, which resulted in developing individualistic work

habits. Group assignments were given often times too late in the course to offset

these habits. [36] In the past, writing small programs was a viable means of

5

developing applications. This no longer is possible. Corporations require

software development teams to develop and maintain products. Introductory CS

curriculums need revisions to pass down the necessary programming skills for

today's fast paced market. This includes team-oriented assignments, early

exposure to large programs, focus on the software development process, and

software reusability.

1.3.1 Traditional Teaching Methods

There also exists the debate between proponents of reform teaching and those in

favor of traditional teaching methods. "Our vision would replace a future based

around lectures, seminars, tutorials and personal tutoring by a high tech/high-

touch future based around the Internet, action learning and large group

workshops". [5][12] Traditional methods often involve lecture-based classes. It

has been found that when instructors lecture, it is easy to disconnect and lose

interest in the material after an extended period of time.

Some of the weaknesses and disadvantages of lecture-based classrooms

are provided below. [50]

1. Lectures hinder learning by placing students in a passive role.

2. Lectures require an effective speaker.

3. Lectures are not suited for complex, detailed or abstract material.

4. Lectures fail to teach students where and how to find new material,

5. Lectures fail to teach students how to solve problems through content

application.

6

If abstract scientific concepts are not taught in a manner that will allow

students to think and understand, they will not develop these cognitive skills.

Student surveys find instructors teaching in a repetitive manner and their learning

too passive. Students reported spending a lot of time note-taking in class rather

than learning the material. Also, much study time was spent memorizing rather

than in activities such as analysis, application, and evaluation. [50]

The materials and tools used in classrooms also play a role in the

effectiveness of learning. Jeff Salvage, author of "The C++ Coach", notes that in

his experience teaching introductory programming course for information

systems students, they were "intimidated by the hard-core approach previously

taken to teach C++." [41] He found that even though he incorporated real life

system examples and fun examples that students could follow, students

complained about the manner and complexity in which textbooks were designed.

1.3.2 Learning Styles

Educational research shows that students have different styles of learning.

These learning styles can be identified based on the type of information students

prefer to receive: sensory or intuitive, visual or verbal, inductive or deductive,

actively or reflectively, and sequentially or globally. [2] Instructors should mold

their teaching styles to that of students' learning styles in order to effectively

maximize learning in classroom.

Sensing learners tend to retain information like facts and observations.

They process information more effectively through sights, sounds, and physical

sensations. They are detailed oriented and prefer solving problems using well-

7

defined steps. They are practical and complain when information is not related to

the real world. Intuitive individuals, on the other hands, are more imaginative and

thus prefer abstract concepts and information that is open to interpretation. They

rely on memory, ideas, and their own insights. Sensing learners tend to get

lower grades than intuitive learners do on lectured courses.

Visual learners retain information through images more so than verbally.

They perceive information more effectively via diagrams. If a lecture does not

incorporate some visual representation of a concept, visual learners have the

tendency to forget the material. Research shows that most students in science

classes are visual learners. [2] Lectures are mostly verbal with abstract

concepts, formulas, and few diagrams. Verbal learners learn based on written

and spoken words.

Inductive learners learn based on first specific scenarios and then more

general principles. Students tend to use given facts and observations to infer

principles. Deductive learners, on the other hand, prefer general principles first

and then deduce consequences. Research shows that inductive learning

promotes a deeper understanding and retention of information. Classrooms tend

to use deductive approach. [43]

Active learners prefer group discussions and exchanging ideas with

others. Reflective learners tend to think things through and then experiment.

They prefer individual work or in pairs. In a lectured course, both groups are

actually neglected and enforce a passive approach to learning. Studies show

8

that students in an active environment excel in comprehension, memory

retention, and problem solving. [29]

Sequential learners gain an understanding of information in small,

connected pieces. They solve problems efficiently, but may lack an

understanding of the larger problem domain. Global learners' approach is all-or-

nothing. Initially, they may appear to be slow students, but once they grasp the

larger picture, they can make connections that sequential learners do not identify.

1A Programming Language Construct

Another hypothesis for the difficulties that beginner programmers experience is

that programming solutions are expressed in ways not familiar or natural to the

novice. Research shows that "programming languages make the task more

difficult than necessary because they have been designed without careful

attention to human-computer interaction issues." [37] The way in which

programmers formulate algorithms and manipulate data is not the same as that

of every day life situations. Modern programming language paradigms do not

associate with the natural tendencies of solving a problem. "The mismatch

between the way programmers think about a solution and the way it must be

expressed in the programming language makes it more difficult not only for

beginners to learn how to program, but also for people to carry out their

programming tasks even after they become more experienced." [37]

In the fields of Psychology of Programming and Empirical Studies of

Programmers, programming is classified as, "a process of transforming a mental

9

plan that is in familiar terms into one that is compatible with the computer." This

process of transformation has not been carefully analyzed and so existing

programming languages today contain flaws that make it difficult to learn. Hoc

and Nguyen-Xuan have determined that many difficulties and bugs are created

because the distance between the mental plan and the computer's interpretation

of this plan is too large. This concept has been labeled as closeness of mapping:

"The closer the programming world is to the problem world, the easier the

problem-solving ought to be ... Conventional textual languages are a long way

from that goal." (25]

1.4.1 Programming Abstractions

Deficiencies in problem solving are a problematic area for novice programmers.

Payne observed that mental models are generated for daily encounters with

computers. Unlike this belief, programming language designers have developed

languages, such a Scheme or SML, based on mathematical abstraction alone.

Students who are learning these languages develop their own metaphors for

understanding purposes. The advantage is that once they have a mental model,

they can visualize the behavior and attributes clearly.

When programmers begin a project, they drive off of a set of requirements

that define the behavior of the program. They may understand the required

graphical interface and external devices necessary, but may not have an

understanding of the abstract modeling that make up the program. This phase is

the analysis and design steps. This consists of creating and transforming

abstract models into conceptual tools. Class diagrams, sequence diagrams, and

10

other visual tools have been deemed useful in understanding the problem

domain.

These abstract problems need to be analyzed in a manner that novice

programmers can understand and solve across different levels of abstractions.

Scientist and mathematicians have analyzed the experience of creativity and

have concluded that people tend to form "mental images as a way of relating a

new problem in an unstructured domain to [an] existing experience." [4]

Kaufmann shows that individuals' imaginations and visual creativity are related to

one's ability for interpretation. He also notes the importance of the role language

plays in manipulating familiar concepts and the role images play in manipulating

unfamiliar ones.

1.4.2 Programming Syntax

The syntax of a language plays a role in a programmer's ability to use the

language. Just like the English language has rules of grammar to formalize

written communication, computer languages too have a set of grammar rules.

This has evolved in the past couple of decades from a few specialists

understanding zeros and ones of computers to people interfacing to computers in

a reasonable manner.

The following describes some of the usability issues in today's

programming languages. [34] Designing a programming language has resulted

in providing various ways of performing the same operation. This added

flexibility of programming choices has led to many problems. C programming

11

language has 16 levels of precedence, some are left associative and others are

right associative. (e.g. a=b--=c=+d*e+++f=-g=h++).

As mentioned earlier, instead of providing an interface closer to the user's

language, computer scientists had to learn the bits and bytes of a computer. The

learning curve was much longer than presently. Yet, further advancements in

programming language design are still necessary until users have minimal

problems in communicating with computers. Currently, C++ uses "void" to mean

nothing, "char to mean a byte, and a `+' to mean many things. Arrays begin at

zero, but people tend to begin counting from one. The following is a more

extensive list of ambiguities of a language.

• "==" used for equality vs. "=" used for assignment.

• 3/4 should evaluate to .75, but it evaluates to zero.

• In PERL, variables, arrays, hashes, and functions are allowed to all have

the same name: loo(©foo[$foo])'.

• Object oriented programming is a hard way to think for many people.

It is important to be consistent in a language. In C++, the word static

signifies at least three different things. In some cases, C++ declarations end with

";" and in other cases it ends with ",". In function calls, parameters can be

passed by value, reference, and name. Some types are automatically type-

casted (e.g. int to float) while others are not. Java has a completely different way

of handling data based on whether variable types are reference types or primitive

types. See the following example. [34]

MyRecordType x = new MyRecordType(); // valid to use "new" operator

12

x.removePhone();

x=x+ 1;

int z = new int(2);

int y = 3;

y=y+ 4;

y.add(5);

11 valid to call member method of object//

 illegal to use primitive operations on objects

11 illegal to use the "new" operation on primitives

// have to use direct assignment to create values

// valid to use primitive operations to modify value

// illegal, primitives do not have member methods

Today, the manner in which programming languages are constructed

results in error-prone coding. C and C++ do not have any error checking for out

of bound array assignments or incorrect pointer arithmetic. Typographical errors,

not detecting by the compiler, result in the program behaving incorrectly e.g., "="

for "==", "x+=7" vs. "x=+7". Giving the responsibility to the programmer to

perform memory management in C and C++ results in memory leaks problems.

Interpreted languages detect problems only at run time.

These inconsistencies and ambiguities in programming languages today

play a negative impact in programmers' ability to learn the language with ease.

CHAPTER 2

EXISTING APPROACHES TO AIDING NOVICE PROGRAMMERS

There are endless proposals, software packages, development tools, and

learning environments that exist today that attempt to provide a solution to aiding

novice programmers in problem solving and program development. [11][15] The

following sections describe and analyze various learning systems and serve as a

microcosm for each specific domain. The systems for discussion include a

collaborative environment, an individual cognitive system, the natural

programming project, and distance learning.

2.1 Collaborative Learning

Collaborative learning is a term used today that has come to signify a wide

variety of things. In order to understand the cognitive effects of collaborative

learning, one must understand the context of usage. Many terms and definitions

exist today that blur the definitions. Among the many terminologies are

cooperative learning, problem-based learning, and team learning. Cuseo,

Smithand, and MacGregor attempt to distinguish these terms. [7][44] The

general definition of collaborative learning is a situation in which two or more

people learn or attempt to learn something. [19]

The broadness of meaning allows for exploration of the dimensions of

learning based on group size, time, and level of interaction. Examples of variety

of scales range from a small number of students working on a project together

(face-to-face interactions) for a semester to a group of professionals developing

13

14

an entire software system (face-to-face meetings, videoconferencing, email) for a

period of years. Much research has been done on the effectiveness of

collaborative learning for small-scale groups between two to five people.

Contrary to this, little research has been done on computer-supported

collaborative learning (CSCL), which normally averages 40 people for a period of

a year. Evolving research shows the notion of 'scale' changes. A group can be

viewed as a unit and an individual can be seen as a group. According to Minsky,

distributed cognition treats a group as a single cognitive system; the individual is

seen as the distributed system. [31] Piaget, Mead, and Vygostky believe the

notion that thinking is a result of dialogues with oneself. (19] According to Hoppe

and Ploetzner, collaborative learning is encouraged in CSCL by identifying

subgroups. Learners are matched based on different criteria (e.g. skills/

knowledge complement each other).

Learning includes any collaborative activity performed within an

educational context. It includes activities such as studying, working on

assignments, problem solving and brainstorming. One study shows the activity

to be problem solving where learning is actually the side effect of problem

solving. Another situation involves learning based on acquiring or gaining

experience from a professional community for a period of time.

Collaborative learning should not be viewed as a single means for

learning. Just as individuals learn because they perform activities such as

reading, thinking and answering questions, collaborative cognitive systems learn

because they perform activities together such as explaining information, arguing,

15

and answering each other's questions. Individual cognition is not suppressed

during peer interactions. In fact, these extra activities triggered by interactions

would cause internal cognitive processing.

The field of collaborative learning studies these activities that trigger

learning among subjects. At the present, there is no guarantee that these

learning mechanisms occur in collaborative interactions. Schools today enforce

group work by providing constraints such as limiting group size, giving common

grade for group work, etc. This does not necessarily constitute collaboration

because there is no guarantee that the instructions set forth by instructors will be

adhered to or that groups of learners will contribute to the end solution.

Four categories have been identified to increase group interactions. [19]

1. Set up pre-conditions

2. Define the collaboration agreement with a scenario based on roles

3. Define interaction rules in the group

4. Monitor interactions

The first category involves the initial setup. This includes identifying group

size, gender, common and differing viewpoints of group members. In order to

effectively cause interactions, the criteria for selecting groups need to be defined.

Some research has already begun to study and find results to set up these pre-

conditions; findings show complexity in combining factors and base this on the

vastness of differing projects. [20]

The second category defines specific roles to group members. This

includes grouping individuals that will trigger a conflict or compliment learner's

16

knowledge. The third category increases interactions by defining rules (e.g.

everyone must provide his/her input). Lastly, a facilitator needs to monitor and

assist interactions. His purpose is to direct groups in a productive direction and

ensure that everyone is adhering to pre-conditions, rules, and participating in

discussions, etc.

Collaboration is classified into three aspects of learning: a situation, an

interaction, and a learning mechanism. [19] By situation, collaboration occurs

between people that are at the same level. Their skill set should be comparative

and workload should be divided evenly. A teacher/student relationship is not

considered collaborative.

The second aspect of collaboration is interaction. It is effective based on

the degree to which the interactions influence the peers' cognitive thinking. If a

group has simply divided the work evenly, each working on his part, and then

come together to combine their work, no additional cognitive thinking has

developed. The work was based on individual cognition alone. Collaborative

learning therefore involves synchronous communication. In terms of

communication tools, a chat room and instant messenger is considered

synchronous. E-mail is considered asynchronous. Another factor in peer

collaboration is negotiating. Many times there is someone in the group who

imposes his viewpoint without allowing others to contribute. This can hinder

learning and lead to frustration and dissatisfaction. The negotiation process is a

means for peers to develop a shared solution or mutual understanding. In

addition, peers may misunderstand each other due to differences in opinions,

17

language barriers, and miscommunication. This should not be eliminated from a

collaborative environment because it leads to learning through explaining one's

views and reformulating one's statements. 'Explanation-based learning' is

viewed as very important in cognitive science because individuals reinforce their

views by elaborating explanations and proof on their views. [32][52] At an

extreme, when misunderstanding is high among group members, learning is not

possible.

The third aspect of collaboration is learning mechanisms. The

mechanisms specific to individual cognition are extended to group interactions

since individuals are a component of group interactions. One common

mechanism is induction — the process of deriving general principles from

particular facts or instances. Groups would integrate models developed by

individuals into a common abstract representation. [49] Another mechanism is

cognitive load, which means that collaboration involves a horizontal division of

labor that reduces the processing performed by each member. On the other

hand, cognitive load of group members increases as they interact with each other

by explaining ideas. This balance is necessary for optimal learning.

Internalization and appropriation are characteristics specific to

collaborative situations. Internalization is the process of transferring "tools from

the social plane (interactions with others) to the inner plane (reasoning)..." [19]

One general case is of a child learning from an adult. The adult performs a task

with the child and the child later understands and performs the same task. Few

studies have been performed for symmetric situations and so it is unclear how

18

this process is fully achieved. Appropriation is another learning mechanism

whereby an individual "reinterprets his own action or utterance under the light of

what his partner does or says next." [19] This involves reformulating a previously

defined concept with the influences of a peer.

2.1.1 History of Belvedere — Collaborative System

Belvedere started off as a project designed to support critical thinking skills with

the use of hypertext systems and graphical user interfaces (GUI) for young

students. The focus of the Belvedere system was to develop the cognitive and

motivational limitations of beginners as found by psychological studies and

testing with 12-15 years olds and in 10 th grade classrooms in city public high

school.

Belvedere addresses some of students' limitations in problem resolution.

It uses diagrams to represent abstract relationships that enable users, who

normally would have difficulty recognizing these abstractions in scientific theory,

to obtain a concrete understanding. The diagrams (box-and-link representation)

help users identify different kinds of relations. An online advisor is used to assist

users who find it difficult to focus on important aspects of a complex problem.

The advisor highlights an area of the diagram that may require more attention.

To address the issue of students' lack of motivation and limited knowledge

domain, such as in science, Belvedere is designed to support group work. The

aim is to provide peer motivation. [48]

One of the key objectives of the Belvedere system is to learn critical

inquiry skills. This is achieved by gaining understanding in the area of study,

19

identifying the problem domain, identifying possible solutions and evidence to

support the solution, drawing conclusions, getting feedback from outside

individuals, and evaluating the results of the feedback. [47]

Belvedere is a knowledge-based educational software that enables

collaboration between users and represents educational materials shareable

between different applications across the Internet. The software is designed so

that resources reside on servers. Netscape and Java technology are the means

to deliver the user interface. Belvedere has a database that students can access

simultaneously. This inquiry database contains problem statement, proposed

hypotheses, and material for and against the hypothesis. This database has a

Java GUI for students to access. The database is also accessible via HTML

based interfaces and represents records in tabular format.

Belvedere software enables separate computers to display the same

document. Students are not able to modify an object that another person is

working on. A lock mechanism is put in place so that when a user starts to

modify the object, no one else can modify it. When the user is done editing the

object, the lock is released and others' screens are refreshed.

Belvedere was designed with the aim of providing a user-friendly

environment. The learning curve in using Belvedere is very small. The interface

resembles a drawing program whereby many of the tools are automated. For

example, shapes are created with a default size. Objects and their associated

links retain their connection if the object is moved. The automated advisor also

provides additional information to the user. Colors are available to represent

20

different viewpoints. Line thickness can be altered to represent the importance of

a relation.

The Belvedere GUI allows for multiple users to view the same screen.

See diagram below.

Figure 2.1 Example of Belvedere GUI.

The screen contains the statements and lines to represent relationships

between statements. The GUI also has a chat window so users can

communicate and exchange ideas. A dialog box, known as the "Coach", is

located on the lower right corner of the diagram and provides assistance to

students, if needed. It is triggered based on students' demand. When the

"Coach" needs to provide critical advice, a light bulb begins to flash. The

"Coach" also offers hints based on principles, such as consistency, maximizing a

theory, and alternative theories. [48] The inquiry diagram is another part of the

21

Belvedere GUI that contains the problem statement. The user can add, delete,

or modify statements (hypothesis and evidence used to prove/disprove

hypothesis). The user can also add and remove relationships between

statements. Belvedere also has the capability to go to the Internet for information

retrieval purposes. Students can type text into their diagrams or copy information

from the Internet.

2.1.2 Example of Belvedere

A study of the Belvedere system was conducted to 10 th grade students in an

urban high school. The area of discussion was whether HIV is the cause of

AIDS. Teachers along with developers of the software developed a database for

theories of the cause of AIDS. Eight sessions were conducted with teams of two

to three students who worked on their own computers. Although everyone had

their own computer, they were sitting close enough to see the team member's

monitor.

The following diagram is representative of two thirty-minute sessions.

22

Figure 2.2 Example of Belvedere Diagram on AIDS topic.

The study showed that most of the students created diagrams regarding

information on the subject matter. They were able to incorporate ideas into their

diagrams. They used information based on knowledge and personal experience,

in addition to online material. When discussing this issue with the teacher, they

were able to present their opinions.

It was also observed that collaborative work aids in developing many

hypotheses. In contrast to a lecture approach where only one perspective is

discussed, peer work allowed for multiple ideas to be explored and discussed.

23

They typically found that more verbal proposals were made rather than entered

into the Belvedere software. Peer coaching was also found to be helpful when

students persisted on an issue for an extended period of time. Also, students

were observed to have complemented each other on their responses. [47]

Working in a social environment also proved to be negative. In a team,

one of the members wished to focus on a single hypothesis and prove it true,

while another member suggested to brainstorm and find many hypotheses. The

latter member at one point got frustrated and challenged the other member's

argument. This suggests that a cooperative group may not make the most out of

an individual's knowledge and experiences.

2.1.3 Analysis of Belvedere

The Belvedere system is a collaborative tool used for the development of critical

thinking skills of students by engaging them in discussions. There are many

advantages to the system. Peer motivation, the capability to chat with others via

a chat interface, access to online materials, and the "Coach" interface are all

benefits of the system. The ease of use of creating diagrams and documenting

relationships between statements allow users to develop more concrete

representations of abstract concepts. It also assists in identifying new ways to

support or negate an argument. Students are able to switch between joint and

independent work without losing track of discussions is another benefit.

In the past, to promote collaborative learning, students sometimes had to

share a single computer. This was problematic because not everyone had the

24

chance to interact with the computer, therefore making them a passive learner.

Belvedere software enables separate computers to display the same document.

Interoperability and reusability is another key issue that the Belvedere

system has addressed. This system has been enhanced to support client

platforms on Mac OS, Solaris, and different versions of Windows. It has also

been enhanced to have a Java GUI. The Belvedere system has been modeled

to add components without affecting existing modules.

Some of the disadvantages that were found in the Belvedere system

include the manner in which the shared information is displayed and the content

of the shared material. The diagram formations are useful in showing certain

relationships between arguments, but the current system is not able to represent

mathematical and scientific models for discussion. This cannot fit into the

existing text-based diagrams. Another disadvantage is that the "Coach" cannot

answer specific questions. The intervention of a professor or moderator is

necessary to address users' concerns. This makes the software not entirely

stand-alone. This system can be used only for small-scale groups in a

classroom setting. It is not scalable.

2.2 Individual Cognitive System

Learning in classrooms has traditionally been individualistic where the focus is on

individual performance. Grades are primary based on individual factors such as

homework assignments, examinations, and projects. The norm has been to work

25

alone. The academic community has not modeled teamwork in the educational

process. The following system models learning for the individual.

2.2.1 History of Tinker

Tinker is an example-oriented environment for beginner programmers. The idea

for developing this software was based on the principle of human learning.

Teaching is said to be a learning experience not only for the student, but also the

teacher. The lesson can be successfully achieved when abstract knowledge and

concrete examples are intertwined. Concrete examples allow both the student

and teacher to test their understanding and reduce the reliance of short-term

memory. In the same manner that students learn by examples from teachers,

the machine should learn by demonstrated examples based on the programmer.

This differs from the idea that programming involves the machine to follow a

systematic sequence of abstract rules as implemented by the programmer. The

immediate goal is achieved when Tinker formulates a generic program based on

the given examples, and the programmer in turn attains an understanding of the

program based on provided examples. The intent of the software is to achieve

the same benefits as in teaching via examples in programming. [8]

Tinker reacts much like a slow student, starting by remembering the

examples shown and the steps the programmer performs. Since it does not

have a student's capacity to decide for itself what is useful from one example that

may be important for future examples, the programmer must decide. At this

point, Tinker can create a function for handling such instances.

26

2.2.2 Example of Tinker

The following example shows how a novice programmer uses Tinker for learning.

[8] The student will show Tinker how to build a stack of elements. It is assumed

a function exists to move an element onto another element. The simplest

example is moving element 1 on top of element 2. Another example is moving

element 1 on top of element 2, but there exists element 3 on top of element 1.

Figure 2.3a Simplest Example. Figure 2.3b Complex Example.

Tinker is useful for creating functions. Based on examples, it generates a

set of actions. If arguments are given, the set of actions can do something

different based on the input. The menu used by programmers is seen below.

Figure 2.4 Main Menu on Tinker.

The programmer is able to perform the above operations. The first two

menu items are used to add new Lisp expressions into the Snapshot window.

The third menu item provides a new example to an existing function. The other

27

operations modify existing operations. The Snapshot window is used to interface

with the programmer. See illustration below.

Figure 2.5 Snapshot Window.

Elements A corresponds to the FROM argument of the function. Element

B corresponds to the TO argument of the function. The basic operation that is

relied upon is Move-Block that simply moves one block on top of another. When

the programmer inputs Move-Block and selects the first two lines, the result is

Block-A is moved on top of Block-B. Internally, Tinker does "Result: Move-Block

FROM TO".

In the more complicated case where element 3 is blocking element 1 to

move to element 2, the programmer must show Tinker how to remove the

obstacle in a way that it can develop a general program to satisfy this condition.

It does this by finding a relationship with the obstacle element and the other

elements. The programmer would enter Result: #,(1 'block :name ' 3), Code:

(Above From). The function "Above" returns either the element above it or NULL

if nothing exists. Therefore, for this case, two steps are needs to reach the end

result. Tinker can create a recursive function to handle the case where there

28

exists many elements on top of the FROM element. This is based on the above

two examples.

Figure 2.6 Recursively Moving Obstacle to a Table.

Once this has been achieved, Tinker has a complete program to solve the

complicated case of moving Element 1 on top of Element 4 even with the other

elements being on top.

Figure 2.7 Complex Example to Remove Obstacle Elements.

2.2.3 Analysis of Tinker

Tinker is a teaching tool for individuals through the use of examples for building

understanding and skills in programming. One of the main benefits of the

software is that it allows for beginners to learn the basic concepts of functions,

recursion, conditional statements, and loops in incremental steps. The use of

examples allows novice programmers to develop their minds to deriving different

29

cases for a particular program. Unlike current programming today where

students learn only sunny-day scenarios, different examples can include also

failure cases so that Tinker can develop a generic program.

One of the difficulties beginners experience is programming complex

expressions involving nested functions. Tinker assists in this problem by

allowing beginners to incrementally build up a complicated expression. The

programmer can know the result of sub-expressions before using it as part of a

larger expression. Another benefit of Tinker is that it constructs conditionals

based on examples. Therefore, there is no untested code in the final program.

Tinker also does not make any inferences. In case it finds any ambiguities based

on input, it would prompt the user.

On the other hand, Tinker is not a potent teaching tool because its

programming language is Lisp, which has primarily been used for Artificial

Intelligence applications and not commercial applications. Also, the belief that

just as teachers gain a deeper understanding while teaching students does not

carry over to the programming world. Tinker relies on good examples to

formulate generic functions. These examples are based on the novice's ability to

provide good examples. Unless novice programmers have a clear understanding

of the problem in question, the examples that are fed into Tinker may not be

clear.

Individual cognitive systems have not proven to be sufficient for resolving

the problems and limitations discussed in Chapter 1. Individual limitations

continue to exist in solving complex problems and achieving an understanding of

30

abstract concepts. Learning mechanisms such as induction, deduction, and

debates with oneself result from the individual. These mechanisms could

potentially not reach the same capacity of learning as systems that involve group

learning.

2.3 The Natural Programming Project

2.3.1 History

The Natural Programming Project began in the Human-Computer Interaction

Institute at Carnegie Mellon University. Its goals are to develop principles,

methods and language designs that would reduce the learning curve for non-

professionals (novices) in programming. To achieve this, the project studied how

non-programmers reasoned and understood programming language concepts.

The project performed studies to identify how people naturally express

programming concepts. It concluded with a set of guidelines for the design of

future programming languages. The domains that are targeted to use these

guidelines include new programming languages for children (educational

software), "tailorable systems" configurable by users, creation of CGI scripts for

web pages development, multimedia authoring, robot controllers, and more. The

ultimate goal is to provide all computer users with the capability to automate their

tasks through scripting. [331

31

2.3.2 Study

Studies have been performed to obtain the natural expressions and thinking

process of a general audience on a broad range of problem scenarios. One

study examined children's solutions to a set of scenarios necessary to program a

computer game. [37] Fourteen fifth graders were given tasks to solve using

diagrams and text. Beforehand, they were taught some essential programming

methods, such as variables, assignments, comparison of values, boolean logic,

arithmetic, selection and iterations, and searching.

A set of nine scenarios from a PacMan game was chosen. Graphical

depictions included images, animations and textual data. Their responses were

based on the following criteria. [37]

1. an overall summary of the game

2. how the user controls PacMan's actions

3. PacMan's behavior in the presence and absence of other objects such as

walls

4. what should happen when PacMan encounters a monster under various

conditions

5. what happens when PacMan eats a power pill

6. scorekeeping

7. the appearance and disappearance of fruit in the game

8. the completion of one level and the start of the next

9. maintenance of the high score list

32

The study found that participants answered questions in an event-based

manner. This suggests that an imperative language may not be the most natural

choice. A characteristic of imperative languages is explicit control over program

flow. Participants responded in a more reactive manner, without attention to the

flow control of the game.

The study found that beginners sometimes confused their role while

developing a program. Instead of thinking from the programmer's perspective,

they took the role of the end-user. A large percentage responded, "When I push

the left arrow PacMan goes left." Another discovery made was that the majority

of the participants drew pictures when deriving their solutions. Sixty-seven

percent included at least one picture.

Another conclusion that can be drawn is that most popular languages

today require iterative operations on objects. Participants strongly preferred to

use set and subset expressions to specify the operations in aggregate form.

Ninety-five percent of the responses indicated a preference to using set and

subset specifications. (e.g. "When PacMan gets all the dots, he goes to the next

level."). Loops have been known as a problem area for novice programmers.

Loops express, in a complicated way, operations that participants express easily

using set operations. (e.g. "d5 moves down to d6, d6 moves to d7, etc., until d10

which is kicked off the high score list.") In the study, the raters found that all of

the mathematical operations were expressed in a natural language form rather

than mathematical notation.

33

In terms of data structures and data manipulation, participants inserted

and deleted data elements without considering issues of storage space. Memory

management is considered a problem area in many programming languages

today, such as C and C++. Also, participants expected sorting to be a basic

operation that can be used as part of their solutions.

The study concluded that programming languages used today contain

many gaps. Novice programmers thus have difficulties when transferring their

knowledge to the actual language. The constructs and features of a language do

not match with the programmer's natural strategies. [37] The table below

provides a more exhaustive list of conclusions discovered in the study.

34

Table 2.1 Results of study
1. Overall Structure

Programming style

54% Production rules/events
18% Constraints
16% Other (declarative)
12% Imperative

Perspective

45% player or end-user
34% programmer
20% other (third-person)

Use Pictures : 67% Yes

Modifying state

61% Behaviors built into
objects
20% Direct modification
18% Other

2. Use of Keywords
AND

67% Boolean conjunction
29% Sequencing

OR

63% Boolean disjunction
24% To clarify or restate a
prior item
8% "Otherwise"
5% Other

THEN

66% Sequencing
32% "Consequently" or "in that
case"

3. Control Structures
Operations on multiple
objects

95% Set/subset specification
5% Loops or iteration

Complex conditionals

37% Set of mutually exclusive
rules
27% General case, with
exceptions
23% Complex boolean
expression
14% Other (additional uses of
exceptions)

Looping constructs

73% Implicit
20% Explicit
7% Other

4. Computation
Remembering state

56% Present tense for past
event
19% "After"
11% State variable
6% Discuss future events
5% Past tense for past event

Arithmetic operations

59% Natural language style —
incomplete
40% Natural language style —
complete

Insertion into a data
structure
48% Insert first then
reposition others
26% Insert without making
space
17% Make space then insert
8% Other

Tracking progress

85% Implicit
14% Maintain a state

Randomness

47% Precision
20% Uncertainty without using
"random"
18% Precision with hedging
15% Other

Sorted insertion

43% Incorrect method
28% Correct non-general
method
18% Correct general method

35

2.3.3 Analysis

The Natural Programming project is beneficial for the future of new programming

language designs. The consideration for human interaction and human

processing would greatly benefit programmers in the future to learn with ease.

There are many advantages if the guidelines of the study are applied to language

designs. The most positive achievement would be that average computer users

may one-day use programming languages to customize applications for their own

personal use. If languages are simplified for all to quickly grasp and learn, then

programming environments, collaborative and distributed learning systems could

be used as a means of learning skills in problem solving and program

development.

The Natural Programming Project would not achieve solving complex and

abstract programming problems. Rather, it facilitates and simplifies the learning

process of a language. This method of learning would not be the end-to-end

solution for novices. A mechanism is still needed to break down problems and

expand programmers' knowledge of a software solution.

2.4 Distance Learning

Online, web-based communication is a key technological advancement that has

made distance learning possible today. Information technology is paving the way

for a renaissance in learning. Distance education is becoming a common way of

teaching using technology-based delivery methods to reach wider audiences. It

is believed that the interest in distance learning reflects the many calls for change

36

in higher education and learning. According to educational consultant and author

Vicky Phillips, the number of distance learning students has jumped from

100,000 in 1990 to over one million students today. In 2000, over 5,000

accredited courses were offered over the Web. [26] According to the U.S.

Department of Education, Web-Based Education Commission, more than 2

million students are expected to enroll in 2002 via distance learning. With the

speedy growth of web technology, the reinvention and design of educational

courses lags far behind.

Distance learning is a form of education that breaks the mold of the

traditional classroom where the student and teacher are not in the same place.

Students learn across the following various media: live broadcasts, two-way

interactive videos, videotapes, wireless transmissions, fiber optic cable, and over

the Internet. With today's technological advancements, it is possible for

education to come to students with disregard to location barriers. This type of

learning is becoming both a reality and a vision for future education.

The Internet and web-technology have increased the potential for a new

and improved means of transmitting knowledge to students. These are not the

only factors that have influenced the growth of distance learning today.

According to [26], other factors include:

• Decrease in government subsidies of public institutions of higher

education

• Increase in costs of higher education at public and private institutions

• Reductions in secure, long-term jobs

37

• Increases in credential requirements for entry to and continuing work in

many jobs

• Rapid changes in information technologies

• Increases in online business

• Increases in attention to lifelong education

There are two aspects of distance learning: timing and medium of delivery.

Timing can be synchronous or asynchronous. Synchronous communication

means communication occurring at the same time. Examples of the media of

delivery for synchronous learning are teleconferencing and video classrooms

where the teacher can broadcast to students at multiple locations live. The

advantage is the immediate interaction between student and teacher (just like

traditional teaching). Students can ask questions using microphones. The

disadvantage is the inconvenience for students to attend video classrooms.

Since transmission speeds are still not adequate for quality video imaging, real-

time video over the Internet has not been used for distance learning purposes.

In asynchronous learning, students learn at their own pace via the Internet

or videotapes. Learning includes videotapes, exercises, and online exams.

Access to the instructor is done through email. The obvious advantage is

flexibility. The disadvantage in the case of online delivery is slowness of

downloading materials (e.g. large files). Also, another disadvantage is having no

access or limited access to an instructor.

Distance learning offers an array of benefits, including convenience,

flexibility, and availability, regardless of the barriers of time, place or pace of

38

learning. [3] It provides convenient locations for students and professors. With

technologies such as the Internet and videotapes, students can easily obtain

access to classroom materials from home. Videoconferencing is another source

of learning that is distributed from a single point to multiple remote sites.

Students have the flexibility to participate whenever they want, and at their pace

(e.g. view a videotape at night, answer questions via email in the morning).

Research studies have found that distance learning is equally or more

effective than traditional classroom learning when technologies are used

correctly for teaching purposes, when there is student-to-student interaction, and

when feedback from teachers is given in a timely fashion. A study was

conducted on several hundred undergraduate college students taking an

introductory economics course at the University of California to compare the

performance of online and traditional learners. [35] The distance learning course

had CD-ROM based lectures, an electronic bulletin board, and an online

discussion board. The study found that online learners performed as well as, or

even better than, traditional learners regardless of race, gender, academic

background, or computer knowledge. [35] Another study, conducted at California

State University, found that students who participated in an online course had

higher test scores than students who took the course in a traditional classroom

setting. [3]

Another key benefit of distance learning is the variety of learning styles

and teaching materials used for learning, which can offer students combinations

of interaction and media. Students who prefer visual learning can focus on the

39

video aspect of DL, whereas students who have better listening skills can focus

on the audio conferencing aspect of DL. For introverted students, DL could

increase the level of interaction with other students via email or chat groups. A

study found that the choice of preference for online students was individual work

mainly because of their tight schedules. Many online students said they learned

best by studying and researching alone; this was followed by participating in

group discussions. One student commented, "Independent work gets the

knowledge available, the discussions implant it." A small number indicated that

their primary learning style was through group work. This group of learners can

be seen as team players or socially outgoing.

The primary beneficiaries of distance learning are the nontraditional

students. This group includes professionals who need to upgrade certifications

or are preparing for a new career. People who have families or employment

responsibilities and are unable to follow rigid course schedule on campus.

Working mothers are furthering their education online and adding a "third shift' to

their responsibilities, according to a study. A report by the American Association

of University Women (AAUW) Educational Foundation has found that women

make up the majority of students who pursue careers via distance learning. Sixty

percent of these nontraditional learners are female and over 25 years of age. [26]

The average distance learning student is 34 years old, employed part-time, has

some college education and is female. Students who are most suited for DL are

highly motivated, independent, active learners with good organizational and time

management skills.

40

The possibilities of distance learning are innumerable. Currently, many

higher education programs are working with their state to upgrade existing wide-

area networks to serve primary and secondary schools and also public libraries.

States are also assisting by helping to overcome geographic barriers. In Georgia

and Kentucky, teachers, students, and staff members can connect to educational

networks from anywhere in the state without incurring long distance charges.

[28]

Disadvantages to distance learning also exist. Since DL involves access

to educational resources, people's limited access to technology is an ongoing

problem among certain areas in the U.S. and could potentially restrict these

groups of people from participating in distance learning. Teachers also need to

adjust to new learning styles to serve the needs of students. The need to mentor

students from a distance can also be a challenge for both the student and the

teacher. New courses offered via DL need to be accountable for following

current standards of quality. [6]

The college community is currently facing issues on incorporating

information technology (IT) in their programs. IT used in higher education will

require decisions on how best to apply it. Society is changing whereby "students

can build an additive degree program by taking courses either at different

institutions or at the different campuses of one institution." [1] Sandra Weiss,

former chair of the University System's Academic Council, defines this as course

articulation — regarding this as important because individual universities are now

becoming part of a 'global academic village'. Weiss explains that for DL courses,

41

"we need to identify comparable content across courses that would be

acceptable for transfer and also grapple with our expectations regarding

traditional 'face to face contact' between professor and student and among

student themselves." [1] In the past, universities developed their curriculums

independent of one another. In the case where a student is attaining a degree at

one school, this would not matter. However, when a student is attaining a

degree from among many schools, the schools need to have some commonality.

This is known as ontological standardization — separate organizations in a given

institutional area are required to uniform the most fundamental categories of their

internal workings.

In the past, it has been common to transfer courses from community

colleges to four-year colleges or across four-year colleges when switching

majors. This is easier with online courses, where it is becoming possible for

students to assemble their college education from different college programs. If

proper standards are not but in place, the material students are learning across

different schools are not equivalent, and intellectual diversity may be hindered.

Standardization would be needed so that course content, grade, course materials

can be similar across schools.

Standardization would have serious side effects. The curriculum may shift

from faculty to accredited organizations or university administrators. Educational

decentralizations and diversity, which have been established by geographic

limitations in the US, now are threatened by the use of DL. Educators need to

42

weigh the benefits and consequences of standardization with that of educational

diversity.

CHAPTER 3

MOVING TOWARDS DISTRIBUTED LEARNING

The systems that have been researched and analyzed in the previous chapter

present a model of learning that is individual based, collaborative based, and

distance learning based. Each system having advantages and disadvantages. A

new model of learning has emerged which collectively brings together these

models. This is distributed learning. This section describes this model of

learning and also describes the solutions to existing problems in programming.

According to Syllabus Magazine in 1995, "Distributed learning is not just a

new term to replace the other DL,' distance learning. Rather, it comes from the

concept of distributed resources. Distributed learning is an instructional model

that allows instructors, students, and content to be located in different, non-

centralized locations so that instruction and learning occur independent of time

and place. The distributed learning model can be used in combination with

traditional classroom-based courses, with traditional distance learning courses,

or it can be used to create wholly virtual classrooms." [40]

Distributed learning is leading to a new instructional paradigm based on

the needs of learners and the electronic tools offered today. The following four

models are shaping distributed learning: [9]

1. knowledge webs used to complement teachers, texts, libraries as sources

of information

2. interactions in virtual communities used to complement face-to-face

relationships in classrooms

43

44

3. virtual worlds used to extend learning-by-doing in real-world settings

4. sensory immersion techniques such as visualization used to help learners

understand through illusion

Knowledge webs enable access to information that is distributed across

the World Wide Web. Information retrieval is no longer restricted to barriers of

distance, conflicting scheduling, and time. Educators and students are able to

join distributed conferences that provide immediate network of contacts with

expertise and responses to questions. Groupware tools are also used to

enhance collaboration.

Knowledge webs provide an abundant source of information. When used

in a correct manner, it can expand students' knowledge. The problem lies when

this link between data and personal knowledge is missing. Raw information that

is readily available does not mean that learners create a framework of ideas. In

order to gain skills and master concepts, they need to generate mental models.

Teachers need to facilitate this transformation. Saturating the student with

information will not achieve learning. Rather, students will continue to memorize

and regurgitate information and not gain the necessary skills.

Virtual communities provide a means to get to know people by exchanging

ideas and experiences without the face-to-face interaction. [9] Educators can

improve learning by developing new teaching methods for use with this

infrastructure. Learning involves both the intellect and social aspects.

Individuals who normally feel isolated because of their lack of social ability can

open up and learn from others through chat groups, email or other forums. An

45

individual who cannot move forward with tackling a complex problem has the

ability to inquire with others and share information. The possibility of developing

virtual parent-teacher conferences would encourage parent involvement. Peer

tutoring is another example of distributed learning used for virtual communities.

Virtual interactions, enforced with GroupWare tools, can enable student-to-

student relationships.

A virtual world is another feature for enhancing distributed learning. It

adds to the experiences encountered in real life by providing a means of learning

hands-on. Currently, the US Department of Defense is using virtual simulation to

create virtual battlefields for developing military skills of new recruits. Distributed

simulation can empower a broad range of educational uses. It continues to

evolve based on users collaborative interactions.

Finally, sensory immersion in virtual reality is another attribute in

distributed learning. It involves the user to feel as though he/she is within the

synthetic environment. The following analogy can be used to describe virtual

reality: a user dives into an aquarium window rather than looking into it. The use

of sensory immersion is a powerful means to gain insight into abstract and

intangible forms. [9] Visualization tools such as x-ray machine used by doctors

and weather-detection systems used by meteorologist assist to recognize

relationships that would otherwise be difficult. This needs to be carried over to

the programming world to simplify abstract models and deepen learners'

motivation.

46

3.1 Difficulties of Distributed Learning

Research has found that it is difficult to work effectively when confidence in team

members' participation is lacking. This results when members do not get to know

one another. This problem is escalated further when teams are distributed.

Many times what ends up happening is that the team is not working as one but

rather as a web of individuals. The figure below depicts the decrease in the

ability for members of a distributed group to divide and execute their work over

time. [51]

Figure 3.1 Distribute Work within Group.

Current tools are designed to support certain interactive communication

such as conversations, disagreements, and graphs. The problem lies that these

technologies are very narrow in the scope and so do not perform well in

interactions not related to that scope. Achieving a task requires different types of

interactions and therefore requires an environment to adjust to the needs of the

constantly changing tasks.

47

As with collaborative learning, distributed learning does not guarantee

learning among groups. It is based on the level of group interactions that trigger

learning mechanisms. In order to increase the rate that interactions occur,

careful design of the initial conditions is needed. This includes identifying the

optimal group size, group grading policy, level of development experience among

individuals, etc. Due to varying forms of interactions, it is difficult to set up

conditions that guarantee the effectiveness of learning.

The instructor also serves a role in distributed learning. He/she is

responsible for redirecting group work in the productive way and monitor

members' activities. The goal is not for the teacher to provide the correct

answers, but rather to intervene and provide guidance as to the direction

students should take. Tools are currently being devised to manage group

collaborative interactions.

Technology-based modes of learning, such as distributed learning,

provide many advantages when technology is used appropriately to develop

skills and maximize students' learning. Alternatively, if goals are shifted away

from the student, results can be disastrous. For example, technology if misused

to minimize costs, could lead to classes where lessons, notes, and assignments

could be published on the web, video could replace lectures, and teaching

assistants could answer students' questions. In essence, courses could become

completely automated and not provide students with the proper skills.

48

3.2 Collaborative Tools used in Distributed Learning

An important factor in the effectiveness of a distributed team is the tools used to

communicate between team members. These channels are necessary to

facilitate people interacting at a distance and with time constraints.

The following diagram describes the collaborative tools used to

communicate by a distributed team. [51] Based on the type of interaction

needed, appropriate mechanisms are used. For example, if a student wants a

written record of the information that is transmitted and does not necessitate

immediate responses, a thread discussion would be the choice of interaction.

Distributed Interaction Mechanisms Mapping
• E-Mail

o Asynchronous/Unstructured/Intentional/Non-committal
• Threaded Discussion

o Asynchronous/Structured/Intentional/Non-committal
• Web Repository

o Asynchronous/Structured/Intentional/Non-committal
• Channel (Push Technology)

o Asynchronous/Structured/Intentional/Non-committal
• Buddy List

o Asynchronous/Structured/Unintentional/Non-committal
• Chat

o Synchronous/Unstructured/Intentional/Medium-commitment
• AudioNideo Conferencing

o Synchronous/Unstructured/IntentionaVMedium-commitment

Figure 3.2 Communication Mechanisms for a Distributed Team

The following figure provides group interaction activities used to maximize

group effectiveness. [51] It is possible for members not to benefit from groups if

each individual works independently. Each member may develop skills by

49

applying various interaction activities throughout the duration of the project (i.e.

participation of group discussions and brainstorming sessions).

Group Interaction Activities
• Information Dissemination

o Course Handouts, Readings, and Video Materials
• Design/Knowledge Building

o Lectures, Group Discussions, and Brainstorming Sessions
• Group Co-ordination

o Meeting Notifications, Agreements, and Responsibilities
• Group Cohesion

o Social interaction to Create Shared Understanding
• Decision Making

o Mechanism to Reach a Shared Vision, Goal or Direction
Figure 3.3 Interaction Activities of a Distributed Team

Interaction modes are used to characterize collaborative tools. Depending

on the stage of the project, the mode of interaction changes. In the beginning of

a project, frequent face-to-face meetings are necessary. As the project

progresses, members can interact asynchronously via email or discussion

groups. It is important that the technology matches the diverse dimensions of

interaction.

Figure 3.4 Interaction Modes of a Distributed Team

Virtual environments today are developed from the notion of physical

world environments. Examples include a conversation, a meeting, a

presentation, a collection of information, etc. The success of these virtual

environments depends on how well it facilitates and supports individuals in

completing their tasks. The environment needs to adapt to different situations

based on individual's work style, background, social and organizational roles.

The environment includes the physical and virtual space, the tools, and

support structure necessary to learn. A setting is necessary for information to be

processed individually and collectively. In the physical realm, the challenge is

designing such a system that balances flexibility of work and adaptability of

individual work styles with structured interactions. Flexibility, adaptability, and

structure are achieved by the services offered by the system, by the different

levels of interaction, and by the different modes of interaction relative to time and

51

space. In the virtual realm, this same challenge continues to exist. Software

applications, conferencing, messaging, and Web technology are actually

modeled based on physical space.

In distributed learning, collaborative systems are used. They have been

classified into four groups: session-centric or meeting-centric, document-centric,

place-based and hybrid systems. [24] Session-centric systems are generally not

persistent. They are based on a model that structures today's casual conversion

or presentation. These tools support synchronous collaboration. When the

session is over, there is no documentation saved on the collaboration.

Information is lost for someone who may join the interaction later. Based on this

model, factors such as interaction, floor control, and response time are taken into

consideration. Some known applications that have integrated synchronous,

meeting-focused tools for audio, video, and data conferencing and follow the

model described above are Microsoft NetMeeting [30], desktop video

teleconferencing, PlaceWare Auditorium [39], and MIT's CAIRO [38].

Document-centric systems are persistent. They model real-life information

retrieval systems. It supports primarily asynchronous communication (with some

tools for synchronous communication). Information is saved for future retrieval,

but they fail to support real-time collaboration. Examples of such applications are

messaging systems like electronic mail, bulletin board systems, Lotus Notes, and

online forums.

The third category is place-based systems. The following properties are

taken from physical space and are used to distinguish place-based systems from

52

other systems. They are persistent. Messages and information remain between

logged sessions regardless of someone being present. They support a degree of

peripheral vision, whereby a user has the ability or control to detect the presence

of others. In real life, people who work together have a sense of awareness as to

their team members' activities. In virtual space, a user can filter this out, yet

monitor activities occurring in his/her surroundings. Another property is state.

Stateful means that a user has the ability to modify the state of the environment

(e.g. modify, add, remove a document in a room or interact with others).

Place-based systems provide a familiar environment where users can

behave in a natural way with gestures when they communicate. This

characteristic is known as behavioral framing. They support both synchronous

and asynchronous communications. They are location independent, which

means they can be accessed independent of one's location. They are location

transparent, which means that interactions can occur without knowing anyone's

physical location. These characteristics are actually an integrated framework of

both session-centric and document-centric systems. Examples of such systems

include MOO, MITRE's CVW, and Jupiter XeroxPARC.

Hybrid systems combine both the physical and virtual realm. Essentially,

both physical and virtual space is intertwined. Something that was developed in

a virtual space is projected onto physical and vice versa. Examples of this are

Jupiter XeroxPARC and MITRE's CVW. These systems are assembled from

existing tools such as MUDs, email, and desktop videoconferencing. In the case

of place-based systems, MUD clients began to extend the command line

53

interface to GUI based interface. Other services combined the physical context

(i.e. shared video and audio conferencing) with virtual context (i.e. representation

of people, objects, and places in space).

In the past, tools were developed in modular components, satisfying one

type of communication or one category (e.g. synchronous vs. asynchronous).

The problem with this is the design and development of individual capabilities

rather than an integrated toolset. This is necessary to satisfy the evolution of an

end-to-end solution. As people are working through the various stages of

software development cycle, the team evolves (changes in roles within a group)

and the tools used change as well. Moving information between tools is time

consuming and inefficient as individuals need to learn and transfer data across

tools.

A Collaborative Virtual Workspace (CVW) is an integrated, object-oriented

framework that supports multiple users. It can be considered a building with

floors and rooms. People exchange information and interact with each other in a

shared virtual space, using both synchronous and asynchronous tools.

It is designed to support dispersed team members by providing services

for document sharing, audio, video and textual communications. The following

are some of the services it offers: creates and maintains groups; retrieves

documents, users, and rooms; notifies users of events occurring in environments.

It also controls documents and provides locking rooms capabilities. The virtual

workspace is persistent with people and documents that potentially existing in

rooms, floors, and buildings. People can interact in rooms via audio or chat

54

boxes. Communication sessions (e.g. audio, video, and text) are established

automatically regardless of others having the capability of being involved in

session. Users are able to communicate privately by locking rooms. Users can

add/remove documents of different types in rooms. Persistence is achieved

through a database that stores documents for each room in virtual workspace.

Only an authorized person has capability to delete documents. A check-in and

checkout method is used to enforce modification of a document one user at a

time. Users editing documents are also tracked. Freeware is used to provide the

basic applications, such as audio, video, chat rooms, and whiteboard. This is

done so that all users can access applications.

3.3 Programming in Distributed learning

Programming using distributed learning model serves as microcosm of the future

of learning whereby learning can take place both inside and outside of

classrooms. The boundaries have been removed and interactions with people

from different locations and different times are possible. The use of distributed

learning in computer classrooms provides a new direction for teaching. It

resolves the many difficulties that have been observed by novice programmers in

learning software development. Below is a summary of difficulties encountered

by students and the provisions needed along with a distributed learning

environment to resolve these issues.

I. Lack a mental model to visualize abstract relationships

55

2. Instructors in traditional learning hold an important role in transferring

knowledge. If instructor is lacking social skills necessary for interacting

with students, technical ability, or effective speaking, an impediment for

learning results

3. Students fall behind in classrooms and miss fundamental concepts.

4. Lack of motivation

5. Limited knowledge in a scientific area which may result in difficulty in

interacting and following complex discussions

6. Students passivity in class

7. Small programming assignments which tend to lead to individualistic

work habits

8. Deficiencies with traditional teaching methods, esp. lectured-based

teaching

9. Emphasis on competition for grades rather than learning

10. Programming language paradigms do not associate with natural

tendencies of problem solving.

The difficulty of mentally representing abstract concepts is overcome by

the use of visual modeling tools. Sensory immersion devices assist in visualizing

abstract concepts. These devices have been successful in areas of science and

medicine. Once this is extended to the computer world, novices will be better

able to model abstractions.

Distributed learning provides alternate means of learning than traditional

teaching methods. By allowing students to engage in collaborative learning

56

exercises and to use visual modeling tools, they can spread their depth of

learning. The goal is to provide a more enriched curriculum that can guide

students to achieve maximum learning potential. Interacting with students could

enhance cognitive skills and complement individual cognition.

Distributed learning offers a solution to the third difficulty described

whereby students fall behind in class. Virtual classrooms can provide additive

means of learning, such as discussion forums, so in the event that a student falls

behind, other sources of information are readily available to bring students up to

speed on misunderstood materials. For students who prefer learning at their own

pace, distance learning course can facilitate this.

Learning in groups stimulates members to achieve maximum potential and

increase motivation levels. In addition to individual cognition, groups provide a

balance for optimal learning when members interact with each other by

explaining and exchanging ideas. Group work, when done correctly, can result in

team members working efficiently together. This could minimize levels of

competition by providing a better environment focused on group learning.

The fifth difficulty encountered by novice programmers is nearly eliminated

with the advent of the Internet. Information becomes available at one's footsteps.

In addition to existing sources, such as books and journals, distributing learning

in the classroom offers a collective way of transferring this raw information into

knowledge. On a different note, individuals who shy away from face-to-face

discussions due to their limited knowledge in an area may openly ask questions

57

in an unthreatening environment such as online forums, threaded discussion, or

email.

Distributed learning offers diverse tools targeted towards different learning

types (i.e. sensory, inductive, active learners). By offering sensory immersion

devices, sensory, visual, and intuitive learners could achieve a higher level of

learning. Verbal learners continue learning based on reading materials and

written communication with other students. Nevertheless, instructors need to

continue to provide diversified teaching methods to reduce the passivity while

teaching in traditional classrooms and virtual classrooms.

The seventh problem affecting novice programmers is not resolved with

distributed learning. Revisions need to be made to CS curriculum to enhance

programming skills for today's fast paced market. Enhancements include

offering team-oriented assignments focused on the software development life

cycle process and decomposing complex problems into subcomponents. These

collaborative work assignments should be enforced and represent real-world

work projects.

Distributed learning resolves the many problems faced with traditional

teaching methods, esp. lectured based approach. Distributed learning offers an

array of tools for these learners. This includes sensory immersion devices that

facilitate visualizing abstract concepts. Distributed learning largely benefits

active learners; they prefer group discussions and exchanging ideas. This is

achieved via email, chat rooms, instant messaging, and through the use of virtual

58

classrooms. The same technologies are also effective for the reflective learner

who first thinks through a concept and then interacts with others.

One problem that continues to exist in programming that distributed

learning does not resolve is programming language design. Languages do not

associate with natural tendencies of problem solving. Therefore, novices will

continue to take longer to understand the fundamentals of computer internals.

CHAPTER 4

FUTURE WORK

Distributed learning has great potential to be the wave of the future in academic

development. Learning without boundaries to time and distance. It offers a

wider spectrum of instructors, advisors, and collaborators than in any single

educational institution. It provides a means of attaining skills from remote

sources and collaborating with dispersed team members. Technology provides

the essential tools for establishing interactions, but these tools, if misused, could

lead to adverse effects. A balance is necessary between virtual and direct

communication within group members in order to develop and sustain a sense of

community. Interactions based on phone conversations alone lack the vibrancy

of face-to-face. Also, while technology-mediated communication (i.e.

teleconferencing, digital and video) will open the doors of virtual interactions over

various information mediums, it will not completely replace personal contact. In

order to optimize the use of the distributed learning model, provisions must be

made and new inventions devised which provide the best of both worlds for

learning.

The future of distributed learning is via collaborative virtual workspaces

and sensory immersion devices. [42] Further studies are necessary to measure

the performance of dispersed team members using CVW. More research is also

needed in the area of sensory immersion to study the impacts of these devices in

the (virtual) classroom. High performance computing will gradually enable virtual

59

60

communities to make possible face-to-face interactions and sensory immersion

to be an integrated part of everyday life.

Collaborative learning, in theory, allows students to stimulate each other in

the learning process. Provisions are needed to ensure that maximum learning is

achieved and that theory turns to practice. A quality audit of the curriculum (i.e.

in Computer Science) is necessary to evaluate existing practices and reform

existing standards. The provisions made forth should be based on evaluations of

the role of the instructor, group formation, course grading, and teaching

practices, among other areas of a curriculum.

REFERENCES

1. P. E. Agre, "Information Technology in Higher Education: The 'Global
Academic Village' and Intellectual Standardization," On The Horizon?
vol. 5, pp. 8-11, 1999.

2. W. B. Barbe and M. N. Milone, "What We Know About Modality Strengths,"
Educational Leadership, vol. 38, pp. 378-380, February 1981.

3. A. Barron, "A Teacher's Guide To Distance Learning," Florida Center for
Instructional Technology, 1998. Retrieved November 9, 2001 from the
World Wide Web:
http://fcit.coedu. usf.edu/distance/default . htm

4. A. F. Blackwell, "Metaphor or Analogy: How Should We See Programming
Abstractions?" Proceedings of the 8 th Annual Workshop of the
Psychology of Programming Interest Group, pp. 105-113, April 1996.

5. T. Bourner and S. Flowers, "Teaching and Learning Methods in Higher
Education: A Glimpse of the Future," Reflections on Higher Education
(A Journal of the Higher Education Foundation), vol. 9, pp. 77-102,
1997.

6. T. Collins and S. Dewees, "Distance Education: Taking classes to the
students," The Rural South: Preparing for the Challenges of the 21 st

Century, no. 17, Feb. 2001. Retrieved October 5, 2001 from the World
Wide Web:
http://srdc.msstate.edu/publications/distance_education.pdf

7. J. Cuseo, "Collaborative & cooperative learning in higher education: A
proposed taxonomy," Cooperative Learning and College Teaching, vol.
2, pp. 2-5, 1992.

8. A. Cypher, Watch What I Do: Programming by Demonstration, MIT Press,
Cambridge, Massachusetts, 1993.

9. C. Dede, "Distance Learning to Distribute Learning: Making the Transition,"
Learning & Leading with Technology ISTE (International Society for
Technology in Education), vol. 23, no. 7, pp. 25-30, 1996.

10. F. P. Deek, "A Framework for an Automated Problem Solving and Program
Development Environment," Journal of Integrated Design and Process
Science, vol. 3, no. 3, pp. 1-13, December 1999.

61

62

11. F. P. Deek, K. Ho, and H. Ramadhan, "A Critical Analysis and Evaluation of
Web-Based Environments for Program Development," Journal of
Internet and Higher Education, vol. 3, no. 4, pp. 223-269, August 2001.

12. F. P. Deek, H. Kimmel, and J. McHugh, "Pedagogical Changes in the
Delivery of .the First Course in Computer Science: Problem Solving
Then Programming," Journal of Engineering Education, vol. 87, no. 3,
pp. 313-320, July 1998.

13. F. P. Deek and J. McHugh, "Problem Solving and the Development of
Critical Thinking Skills," Journal of Computer Science Education —
ISTE SIGCS, vol. 14, no. 1/2, pp. 6-12, April 2000.

14. F. P. Deek and J. McHugh, "Prototype Software Development Tools for
Beginning Programming," Journal of Computer Science Education —
ISTE SIGCS, vol. 14, no 3/4, pp. 14-20, April 2001.

15. F. P. Deek and J. McHugh, "SOLVEIT: An Experimental Environment for
Problem Solving and Program Development," Journal of Applied
Systems Studies, vol. 2, no. 2, 2001.

16. F. P. Deek and J. McHugh, "A Survey and Critical Analysis of Tools for
Learning Programming," Journal of Computer Science Education, vol.
8, no. 2, pp. 130-178, August 1998.

17. F. P. Deek, J. McHugh, and S.R. Hiltz, "Methodology and Technology for
Learning Programming," Journal of Systems and Information
Technology, vol. 4, no. 1, pp. 25-37, June-July 2000.

18. F. P. Deek, M. Turoff, and J. McHugh, "A Common Model for Problem
Solving and Program Development," Journal of the IEEE Transactions
on Education, vol. 42, no. 4, pp. 331-336, November 1999.

19. P. Dillenbourg, Collaborative-learning: Cognitive and Computational
Approaches, Pergamon Press, Oxford, England, 1999.

20. P. Dillenbourg, M. Baker, A. Blaye, and C. O'Malley, "The evolution of
research on collaborative learning," In E. Spada & P. Reiman (Eds.)
Learning in Humans and Machine: Towards an interdisciplinary
learning science. Oxford, England, 1995.

21. D. Du Boulay, T. O'Shea, and J. Monk, "The black box inside the glass box:
Presenting computing concepts to novices," International Journal of
Man-Machine Studies, vol. 1, pp. 133-161, 1981.

63

22. K. Ehrlich and E. Soloway, "An empirical investigation of the tacit knowledge
in programming," Human Factors in Computing, Norwood NJ, pp. 113-
133, 1985.

23. R. Felder, "Reaching the Second Tier: Learning and Teaching Styles in
College Science Education," Journal of College Science Teaching, vol.
23, no. 5, pp. 286-290, 1993.

24. T. Gallemore, "What is Space? (In Collaborative Virtual WorkSpace)," MIT-
SPORG Research Group and the MITRE Corporation of Bedford MA,
September 21, 1998. Retrieved November 9, 2001 from the World
Wide Web:
http://www.designformation.com/estudio/What_Use_ls_Space.pdf

25. T. R. Green and M. Petre, "Usability analysis of visual programming
environments: a 'cognitive dimensions' framework," Journal of Visual
Languages and Computing, vol. 7, pp. 131-174, 1996.

26. C. Kramarae, The Third Shift: Women Learning Online, AAUW Publications,
Washington D.C., 2001.

27. B. W. Liffick and R. Aiken, "A Novice Programmer's Support Environment,"
Proceedings of the SIGCSE/SIGCUE Conference on Integrating
Technology into Computer Science Education, Barcelona, Spain, June
1996. Retrieved November 9, 2001 from the World Wide Web:
http://cs.millersv.edu/-liffick/sigcse/sigcse.html

28. J. B. Mathews, "Statewide Educational Networking: Trends and Issues
Highlighted," Southern Regional Education Board, Atlanta, GA, April,
1998. Retrieved October 5, 2001 from the World Wide Web:
http://www.sreb.org/programs/EdTech/pubs/98WAN.asp

29. W. J. McKeachie, Teaching Tips: A Guidebook for the Beginning College
Teacher, 8 th Edition, Lexington, Massachusetts, 1996.

30. Microsoft Windows Technology: Windows NetMeeting, 2001. Retrieved
November 9, 2001 from the World Wide Web:
http://www.microsoft.com/netmeeting

31. M. Minsky, The Society of Mind, William Heinemann Ltd., London, England,
1987.

32. T. M. Mitchell, R. M. Keller, and S. T. Kedar-Cabelli, "Explanation-Based
Generalization: A Unifying View," Machine Learning, vol. 1, no. 1, pp.
47-80, 1986.

64

33. B. A. Myers, Natural Programming: Project Overview and Proposal, January
1998. Retrieved September 21, 2001 from the World Wide Web:
http://www.cs.cmu.edu/-NatuProg/projectoverview.html

34. B. A. Myers, Usability Issues in Programming Languages, 1999. Retrieved
September 21, 2001 from the World Wide Web:
http://www-2.cs.cmu.edu/-NatProg/langeval.html

35. P. Navarro and J. Shoemaker, "Performance and Perceptions of Distance
Learners in Cyberspace," The American Journal of Distance
Education, vol. 14, no. 2, pp. 15-35, August 2000.

36. S. R. Oliver and J. Dalbey, "A Software Development Process Laboratory
for CS1 and CS2," Proceedings of the SIGSCE, Phoenix, Arizona, vol.
26, no. 1, pp. 169-173, March 1994.

37. J. F. Pane, C. A. Ratanamahatana, and B. A. Myers, "Studying the
Language and Structure in Non-Programmers' Solutions to
Programming Problems," International Journal of Human-Computer
Studies, vol. 54, no. 2, pp. 237-264, February 2001.

38. F. Peňa-Mora, K. Hussein, S. Vadhavkar, and K. Benjamin, "CAIRO: A
Concurrent Engineering Environment for Virtual Design Teams,"
Artificial Intelligence in Engineering, vol. 14, no. 3, pp. 203-219, 2000.

39. PlaceWare WebConferencing, 2001. Retrieved November 9, 2001 from the
World Wide Web:
http://www.placeware.com

40. S. Saltzberg and S. Polyson, Distributed learning on the World Wide Web.
Syllabus, September 1995. Retrieved December 8, 2001 from the
World Wide Web:
http://www.syllabus.com/archive/Sy1195/07_sept95/DistrLrngWWWeb.t
xt

41. J. Salvage, The C++ Coach, Essentials for Introductory Programming,
Addison Wesley, New York, 2000.

42. M. C. Salzman, C. Dede, and B. Loftin, "ScienceSpace: Virtual realities for
learning complex and abstract scientific concepts," Proceedings of
IEEE Virtual Reality Annual International Symposium, New York, pp.
246-253, 1996.

43. L. K. Silverman and R. M. Felder, "Learning and Teaching Styles in
Engineering Education," Engineering Education, vol. 78, no. 7, pp.
674-681, April 1988.

65

44. B. L. Smith and J. T. MacGregor, What is collaborative learning? In A. S.
Goodsell, M. R. Maher, B. L. Smith, and J. MacGregor, (Eds),
Collaborative Learning: A Sourcebook for Higher Education, University
Park, PA, 1992.

45. P. J. Spellman, J. N. Mosier, et al., Collaborative Virtual Workspace, 1997.
Retrieved December 8, 2001 from the World Wide Web:
http://www.mitre.org

46. J. C. Spencer, E. Soloway, and E. Pope, "Where the bugs are," SIGCHI
Proceedings of the CHI '85 Conference on Human Factors in
Computing Systems, San Francisco, CA. pp. 47-53, 1985.

47. D. Suthers and D. Jones, "An Architecture for Intelligent Collaborative
Educational Systems," Proceedings of AIED '97, 8th World Conference
on Artificial Intelligence in Education, Kobe, Japan, pp. 55-62, August
1997.

48. D. Suthers and A. Weiner, "Groupware for Developing Critical Discussion
Skills," Computer Supported Cooperative Learning, October 1995.

49. D. L. Swartz, "The Emergence of Abstract Dyad Representations in Dyad
Problem Solving," The Journal of the Learning Sciences, vol. 4 no. 3,
pp. 321-354, 1995.

50. G. H. Turnwald, K.S. Bull, and D.C. Seeler, "From Teaching to Learning:
Part II. Traditional Teaching Methodology," Journal of Veterinary
Medical Education, vol. 20, no. 3, pp. 148-156, 1993.

51. S. Vadhavkar and F. Peňa-Mora, "Geographically Distributed Team
Interaction Space", Proceedings of the Eighth International Conference
(ICCCBE - VIII), vol. 1, pp. 373-379, August 2000.

52. K. Vanlehn, R. M. Jones, and M. T. H Chi, "A Model of the Self-Explanation
Effect," Journal of The Learning Sciences, vol. 1, pp. 1-59, 1992.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Existing Approaches to Aiding Novice Programmers
	Chapter 3: Moving Towards Distributed Learning
	Chapter 4: Future Work
	References

	List of Tables
	List of Figures

