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ABSTRACT

RENEGOTIATION BASED DYNAMIC BANDWIDTH
ALLOCATION FOR SELF-SIMILAR VBR TRAFFIC

by
Zafer Sahinoglu

The provision of QoS to applications traffic depends heavily on how different traffic

types are categorized and classified, and how the prioritization of these applications are

managed. Bandwidth is the most scarce network resource. Therefore, there is a need for a

method or system that distributes an available bandwidth in a network among different

applications in such a way that each class or type of traffic receives their constraint QoS

requirements.

In this dissertation, a new renegotiation based dynamic resource allocation method

for variable bit rate (VBR) traffic is presented. First, pros and cons of available off-line

methods that are used to estimate selfsimilarity level (represented by Hurst parameter) of

a VBR traffic trace are empirically investigated, and criteria to select measurement

parameters for online resource management are developed. It is shown that wavelet

analysis based methods are the strongest tools in estimation of Hurst parameter with their

low computational complexities, compared to the variance-time method and R/S pox

plot. Therefore, a temporal energy distribution of a traffic data arrival counting process

among different frequency sub-bands is considered as a traffic descriptor, and then a

robust traffic rate predictor is developed by using the Haar wavelet analysis. The

empirical results show that the new on-line dynamic bandwidth allocation scheme for

VBR traffic is superior to traditional dynamic bandwidth allocation methods that are



based on adaptive algorithms such as Least Mean Square, Recursive Least Square, and

Mean Square Error etc. in terms of high utilization and low queuing delay. Also a method

is developed to minimize the number of bandwidth renegotiations to decrease signaling

costs on traffic schedulers (e.g. WFQ) and networks (e.g. ATM). It is also quantified that

the introduced renegotiation based bandwidth management scheme decreases heavy-

tailedness of queue size distributions, which is an inherent impact of traffic self-

similarity.

The new design increases the achieved utilization levels in the literature, provisions

given queue size constraints and minimizes the number of renegotiations simultaneously.

This renegotiation-based design is online and practically embeddable into QoS

management blocks, edge routers and Digital Subscriber Lines Access Multiplexers

(DSLAM) and rate adaptive DSL modems.
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AR -	 Auto-Regressive
ATM -	 Asynchronous Transfer Mode
BDU -	 Bandwidth Decision Unit
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. AC -	 Multi-scale Boundary Admission Control
MSE	 Mean Square Error

EG4 -	 Motion Pictures Engineering Group-4
Multi-resolution Analysis

PLP -	 Packet Loss Probability
PT -	 Processing Time
R/S -	 Resealed Adjusted Statistics
RADSL -	 Rate Adaptive Digital Subscriber Line
RCBR -	 Renegotiated Constant Bit Rate
RCU -	 Renegotiation Control Unit
RDBA -	 Renegotiated Dynamic Bandwidth Allocation
RED-VBR - Renegotiated Deterministic Variable Bit Rate Service
RS S -	 Renegotiation Step Size
SAC -	 Selective Aggressiveness Control
SBA -	 Static Bandwidth Allocation
S/P -	 Serial-to-Parallel Converter
VBR -	 Variable Bit Rate
VC -	 Virtual Connection
WAN -	 Wide Area Network

Q - 	 Weighted Fair Queuing
Weighted Round Robin

WS -	 Window Size in traffic analysis
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CHAPTER I

INTRODUCTION

Does any artist paint for the cake of the picture itself without the hope of
offering some good? No, but for the sake of the viewers and the young who
will be drawn by it and freed cares. Or does any potter hastily throw a
pot or a bowl without any thought of ii hat it will hold? Does any calligrapher
write for the script without any regard for the reader?

Rumi

Broadband technology is an always-open gateway to a new world of Internet services

delivered at lightning-fast speeds to homes, offices and businesses. High speed

connections (e.g. DSL, Cable Modem, T1) open up a new world of multimedia

applications each with different traffic characteristics. Accurate modeling of the traffic

offered to the network or a component of the network will always be critical to provide

high quality of service (QoS) to the applications. The main objective in

telecommunications network engineering is to have as many happy users as possible. In

other words, a network engineer has to resolve the tradeoff between capacity and quality

of service (QoS) requirements. Realistic modeling of the offered traffic characteristics,

therefore, is the first step in optimizing resource allocation algorithms such that provision

of services complies with the quality of service constraints while maintaining maximum

capacity. In order to maintain the QoS provided to applications traffic, it is necessary to

regulate network resources dynamically depending on traffic descriptors (e.g. PLP, CBR,

delay, delay variation) and network characteristics (e.g. utilization).

In this dissertation, a complete solution is presented on how to dynamically

manage available resources for VBR traffic in networks which consist of network units

capable of renegotiating resources such as ATM switch complexes, Rate Adaptive Digital
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Subscriber Line (RADSL) modems, and QoS routers. First, traffic bit arrival information

per unit time and time-variant energy distribution of a bit counting process are defined as

traffic descriptors, and utilization as a network characteristic. Second, traffic

selfsimilarity is investigated, and drawbacks of selfsimilarity measurements in their

suitability for on-line dynamic resource management algorithms are explained. Methods

are suggested for proper parameter selection in the estimate of self-similarity level of a

traffic to ease linking of self-similarity measurements into on-line resource management

systems. Third, a bandwidth predictor that uses wavelet analysis of incoming traffic bit

counting process are designed. The output of the bandwidth predictor is optimized by

designing a bandwidth renegotiator unit which decides when and at what amount to

decrease or increase the bandwidth allocated for an applications traffic. The invented

renegotiator unit minimizes the number of bandwidth renegotiations in a network.

The contents of the sections in this chapter are as follows: Section I.1 gives the

statement of the problem. It starts with the definition of self-similarity, explains

difficulties in allocating network resources for VBR traffic sources exhibiting

selfsimilarity, and clearly states that asynchronous renegotiated resource management is

a proper solution for QoS provisioning for a selfsimilar VBR traffic. Section 1.2 presents

prior art studies on selfsimilar traffic, impacts of selfsimilarity on network performance,

and on dynamic resource allocation to such traffic sources. These studies include

congestion control strategies, bandwidth predictors and resource renegotiation methods.

Section 1.3 explains the dynamic resource management approach presented in this

dissertation to deal with VBR traffic.



1.1. Statement of the Problem

A number of studies have shown that for both local and wide area network traffic, the

distribution of packet inter-arrivals clearly differs from exponential [1, 2, 3].

Furthermore. investigations of high-resolution Ethernet Local Area Network (LAN)

traces [4, 5], Wide Area Network (WAN) traffic [6] and VBR video traffic [7, 8, 9] have

demonstrated that these traffic types exhibit self-similarity. In the case of stochastic

objects like time series, self-similarity is used in the distributional sense: when viewed at

varying time scales, the object's relational structure remains unchanged. As a result, such

a time series exhibits bursts at a wide range of time scales. Self-similar traffic behaves

very differently from that predicted by traditional packet traffic models. For example in

[4], it is shown that the generally accepted argument for the "Poisson-like" nature of

aggregate traffic that aggregate traffic smoothes out as the number of aggregated traffic

sources increases does not reflect the reality. In fact, the burstiness of such traffic,

defined by the variance-to-mean ratio, peak rate and selfsimilarity level, typically

intensifie. be number of active traffic sources increases. There are different studies

advocating both the significance of impact of self-similarity on network performance

[10-13] and the irrelevance of the need for capturing self-similarity in traffic modeling

[14]. The questions that arise here are how prevalent such traffic patterns are and under

what conditions performance analysis is critically dependent on taking self-similarity into

account.

If sources exhibiting bursts at multiple time scales are allowed only a single

service rate to describe their behavior, they are faced with a series of poor choices. If the

service rate is chosen close to the long term average rate in order to maximize the
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statistical multiplexing gain in the network, during sustained peaks, the source buffer fills

n it the peak rate and is drained at the service rate. If the peak rate is much higher than

average rate, either the data buffer has to be very large, or the loss rate will be

unacceptably high. Provisioning of large buffers limits the loss rate. On the other hand, it

causes delays. In recent years, as broadband multimedia services became popular

they necessitated new traffic models with self-similar characteristics.

A classical control approach for dyn. ic resource management exists in

monitoring Ievel of unused resources and in feeding back the measured levels to a

controller that adjusts the input traffic rates. The input rate control approach is known in

literature as rate-based [15]. Many rate-based algorithms can be found in literature.

However, none of these are completely satisfactory either for their complexity or for

1,10, of stability properties, as reported in [16]. In fact, due to transmission and

propagation delay most algorithms exhibit persistent oscillations. A static resource

allocation method for a VBR source or a self-similar traffic is away from the

maintaining the required QoS by those applications traffic, but a dynamic resource

allocation. However, allocating resources dynamically for a real-time VBR stre. is a

challenging First. it nece a design of a proper traffic predictor. A one-step-

ahead predictor produces as many outputs as the number of traffic information s. pies

are. Therefore, an additional mechanism is required to process the predictor output, and

to decide if a bandwidth renegotiation is needed, and at what amount it can be

provisioned. A renegotiation control unit ttkti some network or application dependent

cost constraints such as a cost for each bandwidth unit and a cost for each renegotiation

as input , ,r11:1 returns a decision. are various bandwidth predictors and
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renegotiation methods available in the literature. However, either most them are

designed for off-line systems, or they have high complexity and computational overload

that not PI oper for on-line QoS provisioning. Therefore, there is a need for a robust

bandwidth predictor and a renegotiator especially in provisioning of QoS for bursty

VBR stre. s.

1.z. Prior Art and Motivation

1.2.1. Self-Similarity and Its Impacts on Network Performance

This sub-section presents a summary of the survey study about self-similarity and

network perfo ance, and possible solutions offered to deal. with this phenomenon.

Understanding the nature of network traffic is critical in order to properly design and

implement both wired and wireless networks. Since the paper published in 1993 by W.

Leland et.	 there appeared many number of studies which reported a bursty traffic

pattern on different time scales of multimedia networks [11-13]. 	 at exactly burstiness

means in terms of measurable traffi c statistics has been a critical problem. In the

literature, traffic that is bursty on many or all time scales is described as self-similar.

When these traffics are viewed at varying scales, the data's correlation structure remains

unchanged. Also, it is possible to see studies pointing out the impact of traffic self-

similarity on network performance that is basically expressed in terms of quality of

service (QoS) par. eters like packet loss ratio (PLR), and delay and network resources

such as bandwidth and buffer 	 .

Research done by M. E. Crovella eta!. [17] revealed that the traffic generated by

the worldwide web (WWW) transfers showed self-similar characteristics. Comparing the
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distributions of ON and OFF times, they found that the ON time distribution was heavier

tailed than the OFF time distribution. The distribution of file sizes in the WEB might be

the primary determiner of Web traffic self-similarity. In fact, the work presented by K.

Park etc. al . [10] showed that the transfer of files whose sizes were drawn from a heavy-

tailed distribution was sufficient to generate self-similarity in network traffic. The ON

and OFF periods do not need to have the same distribution. These results suggest that the

self-similarity of Web traffic is not a machine-induced artifact; in particular, changes in

protocol processing and document display are not likely to remove the self-similarity of

Web fie [17].

In a realistic client/server network environment, the degree to which file sizes are

heavy tailed can directly determine the degree of traffic self-similarity at the link level

[10-12]. This causal relation is proven to be robust with respect to changes in network

resources (bottleneck bandwidth and buffer capacity), network topology, the influence of

cross traffic, and the distribution of packet inter-. ival times. Specifically, measuring

self-similarity is the Hurst par. eter H and the file size distribution by its power law

exponent a, it has been shown that there is a linear relationship between H and a over a

wide range of network conditions. One practical effect of self-similarity is that the

buffers needed at switches and multiplexers must be bigger than those predicted by

traditional queuing analysis and simulations. These larger buffers create greater delays in

individual that are originally anticipated [12, 13]. The delay-bandwidth product

problem arising out of high-bandwidth networks 	 QoS issues stemming from support

of real-time multimedia co	 unication have added further complexities to the problem

of optimizing the performance. How much the self-similarity affects the network
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performance is modulated by the protocols acting at the transport/network layer. An

exponential trade-off relationship is observed  between queuing delay & packet loss rate

[11].

It is assured that linear increase in buffer sizes will produce nearly exponential

decreases in packet loss and that an increase in buffer size will result in a proportional

increase in the effective use of transmission capacity. With self-similar traffic, these

assumptions do not hold. As can be seen from Fig.1.1, as H approaches 1.0, the queue

size diverges to infinity at lower utilization levels than when H is closer to 0.5. The

decrease in packet loss with buffer size is far less than expected. In other words, the

buffer requirements begin to explode at lower levels of utilization for higher degrees of

long-range dependence (Higher values of H).

Heyman etc. al . [14] showed that for sources with large Hurst parameter, Markov

chain models estimated the buffer occupancy well when the buffer sizes were not too

Figure 1.1 Queue size- utilization trade-off as the self-similarity level,
which is measured by Hurst parameter H, changes [18].
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large (no larger than 10ms for a single source) but these models might not estimate the

cell-loss rate and mean buffer size accurately for larger buffers. Also, [11] has shown that

queuing delay exhibited a super-linear dependence on self-similarity when buffer

capacity was large. The queue length distribution decayed more slowly for long-range

dependent sources than short-range dependent sources. Moreover, scale invariant

burstiness implies the existence of concentrated periods of high activity at a wide range

of time scales that adversely affects congestion control and it is an important correlation

structure that may be exploitable for congestion control purposes [13]. Network

performance as captured by throughput, packet loss rate and packet retransmission rate

degrades gradually with increasing heavy-tailedness. The degree to which heavy-

tailedness affects self-similarity is determined by how well congestion control is able to

shape its source traffic into an on-average constant output stream while conserving flow

[11].

A dynamic congestion control strategy is difficult to implement. Such a strategy is

based on measurement of recent traffic and can fail utterly to adapt to rapidly changing

conditions. Also, congestion prevention by appropriate sizing of switches and

multiplexers is difficult because data network traffic doesn't exhibit a predictable level of

busy traffic period; patterns can change over a period of days, weeks or months and

congestion occur unexpectedly with dramatic intensity. On the other hand, a predictive

congestion control was studied for improving network performance by Tsunyi Tuan et.

al. [12]. In their algorithm, information about the future is utilized to make traffic control

decisions. They called this Selective Aggressiveness Control (SAC) and it is aimed to be

robust, efficient and portable such that it can be easily incorporated into existing
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Figure 1.2 Tail behavior of the queue length distributions for
Markovian and LRD inputs to an infinite capacity queue in a single
server Note: β=2-2H  Є(0, 1)

congestion control schemes. SAC tries to aggressively soak up bandwidth if it predicts

the future network state to be "idle", adjusting the level of aggressiveness as a function of

the predicted idleness and its confidence They showed that the performance gain due to

SAC is higher as the more self-similar tie network traffic is. Although, in real life, the

perfect prediction of the future traffic comes tion is not possible, SAC achieves the

highest throughput with perfect future information among other congestion control

algorithms such as the generic feedback congestion control.

A crucial performance indicator exhibiting a more sensitive dependence on self-

similarity is mean queue length and this concurs with the observation that queue length

distribution under self-similar traffic decays more slowly than with Poisson sources (Fig.

1.2). Increasing network resources such as link bandwidth & buffer space results in a
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super linear improvement in performance. Increasing link bandwidth, given a large buffer

capacity, has the effect of decreasing queuing delay much more drastically. Therefore,

high-bandwidth communication links (for multimedia network applications) should be

employed to alleviate the exponential trade-off relation between queuing delay & packet

loss (throughput) for supporting QoS sensitive traffic.

Based on the survey results, it is asserted that dynamic bandwidth allocation with

minimum number of renegotiations is a key solution to deal with self-similar traffic since

static resource allocation preserves the heavy-tailed queue sizes. This dissertation clearly

demonstrates the improvement in queue size performance in a single server

environment after deployment of the invented dynamic bandwidth allocation method

compared with the static ones.

1.2.2. Bandwidth Prediction and Renegotiation

An efficient resource allocation comprises determining optimal buffer sizes, assigning

bandwidth and other resources either statically or dynamically in order to get the desired

QoS expressed in terms of parameters such as queuing delay, retransmission time, packet

loss probability, and bit error rate. In a static resource allocation, available resources are

set or assigned to the source traffic at service initialization and kept the same throughout

the life of the connection. A dyn. ic approach is classified into two groups as

synchronous and asynchronous (Fig. 1.3). In a synchronous method, resources are

modified periodically, at fixed time intervals, unlike the asynchronous in which the

allocated resources to the traffic are updated whenever a need is detected [22, 23, 26, 27,

29-31].
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Figure 1.3 Bandwidth allocation methods

The admission control and resource allocation problem is complicated when a

VBR multimedia source or communications device seeks access to the network and

requests a virtual circuit for streaming data. The complication is due to that the features,

which describe the variations in content of the multimedia, are generally imprecise. Thus,

it is difficult to predict what the requirements for network resources are. If the network

resource requirements are overestimated, the network will underutilize its capacity. On

the other hand, if the network resource requirements are underestimated, then the network

may become congested and packets traversing the network may be lost [19-21].

Bandwidth allocation and management for applications bit stream traffic is

generally done at the edge routers in a network. This alleviates the computational load on

the network switches Offline systems ca determine the exact bandwidth characteristics

of a stre. a-priori. However, on-line algorithms u needed in many real time

applications [22-28]. Online methods periodically renegotiate resources based on

predicted traffic behavior [29-33]. Conventional methods typically renegotiate resources

according to changes in bit stream n level statistics as in [32]. Online methods have the

advantage of adjusting resource allocations with respect to a desired QoS. On the other

hand, most methods suffer from large n ber of renegotiations, and rely on very
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complex measurements and allocation algorithms. If renegotiations are too frequent,

signaling overhead increases. On the other hand. an infrequent number of renegotiations

causes coarse predictions.

Many descriptors of traffic are known such as peak rate, average rate etc.

However, these descriptors do not capture the traffic patterns over different time scales.

To overcome this, a deterministic bounding interval dependent traffic descriptor (D-

BIND) has been described by Knightly et. al. in [34]. D-BIND is a vector that includes a

maximum allowed arrival rate for various time intervals. The allocation algorithm stores

the currently reserved D-BIND parameters and calculates the D-BIND parameters for the

last M frames. A Renegotiation takes place whenever a difference occurs between the

reserved and measured D-BIND parameters. RED-VBR introduced in [32] is based on

the D-BIND model. RED-VBR does neither use nor measure the QoS for allocation. It

attempts to dynamically allocate bandwidth to provide zero losses. It allocates higher

bandwidth than arrival rates, and renegotiates more often to meet stringent loss

requirement. 128] presented another online renegotiation method called DSA+ (Dynamic

Search Algorithm). The goal of DSA+ is to adjust the server rate so as to provide the

desired cumulative cell/packet loss probability (CLP/PLP) as efficiently as possible with

few renegotiations. At each renegotiation point DSA+ adjusts the server rate according to

the following formula:

where I 	 the CLP/PLP of the nth interval and Q1  is the CLP/PLP desired by the user.

DSA+ requires initial renegotiation interval and constant K to be given by the application
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and updates the server rate du n based on the observed CLP/PLP during the nth interval.

Also, in [35] renegotiation schedule is studied. They discuss simple measurement-based

admission control (MBAC) schemes suitable for RCBR (Renegotiated Constant Bit Rate)

sources. They show that a memory less scheme is not robust and history about the past

bandwidth allocations is needed to achieve satisfactory robustness. In their proposed

method, a constant cost 0 per renegotiation and a cost y per allocated bandwidth are

assumed. The total cost is given by

during time slot i, and service rate si , the optimal allocation minimizing the total cost is

found subject to the buffer constraint, 0	 B for i 0 where b1 is the queue size at the

with a Viterbi-like algorithm [36]. [his Viterbi-like algorithm cannot be used to

determine optimal renegotiation points for online interactive sources. For such sources,

causal heuristics have to be used to make decisions about requesting new rates. Such

heuristics predict the future bandwidth requirement based on some statistics collected in

the past. They introduce a heuristic based on a AR(1) bandwidth estimator and on buffer

thresholds. Three parameters have to be tuned: a high and a low buffer thresholds

B12 and B1 respectively and a time constant T. The rate predictor used in [36] is simply
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where ri is the actual incoming rate during slot i, and bi is the buffer size at the of time

slot I. The bandwidth necessary to flush the current buffer content within T is

compensated by the term T -1(ri + max{bi — I? 01). Which they have not included in [36]

and we would like to add to the cost function is the cost of inter-renegotiation interval. If

an inter-renegotiation interval were than the processing time of the last renegotiation,

the new renegotiation request would have a high cost. Renegotiation is only feasible in

time scales of several seconds [37]. In [38], it is suggested that minimum of 1 sec and an

average of 5 seconds or more for in -tiation is a good compromise. It is crucial that

optimal number of bandwidth renegotiations must be performed under predetermined

cost constraints such as underutilization ratio and packet/cell transmission delay, inter-

renegotiation times.

1.3. Our Approach and Contributions

In this dissertation, the impacts of selfsimilarity on applications delay and jitter

perfo ance are investigated, and a method consisting of a traffic smoother , a bandwidth

predictor and a resource renegotiation unit optimizing the bandwidth prediction amount

and time to allocate are invented„ The dynamic resource allocation method develop in this

dissertation is deployable in QoS routers and switch fabrics, and networks with real time

response capability to the changing traffic and network conditions. A novel method that

minimizes the number of bandwidth renegotiations within a network is introduced.

diagram of the designed " Dynamic Resource Management and

Allocation" s> stem is given in Fig. 1.4. The input to the S/P (serial-to-parallel

conversion) is traffic bit arrival information within each predetermined time interval. The
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Figure 1.4 Block diagram of the developed resource
management system.

size of the S/P also sets the length of the traffic data to be analyzed, that is the length of

the time window that captures the data. The discrete wavelet transform (DWT) processes

the input from S/P and provides BDU with parameters needed to predict the new resource

demand of the VBR traffic for the next time slot. These parameters are the second order

statistical par. eters of energy distribution of the traffic bit arrival counting process

. ong different frequency sub-bands. Based on the prediction result and the level of the

cost terms defined, the Renegotiation Control unit (RCU) decides the time of a resource

renegotiation and the amount of resources to allocate. The traffic scheduler manages the

available backbone capacity among traffic traces of different priority levels. The

scheduler implies a modified WRR or WFQ mechanisms in which the weight coefficients

of each input ou	 's updated dyn. ically.
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The new approach using a dynamic resource management complex with

bandwidth predictor and renegotiator units aims at the best use of traffic descriptors and

temporal network characteristics to provision required delay constraints to VBR traffic

and maximum achievable utilization of a network capacity. The measures and techniques

developed for renegotiation based dynamic bandwidth management should take into

account;

- Traffic descriptors (e.g. bit arrival rate, self-similarity level, CBR, PLP)

- Temporal network characteristics (e.g. utilization)

As a su ary the past review and discussion, it is concluded that decreasing

the impact of traffic self-similarity on queuing delays and packet/cell loss rates can only

be controlled by adaptive bandwidth allocation to a self-similar traffic. Queue length

distribution decays more slowly for long range dependent sources than short range

dependent sources. This heavy tailedness of the queue size distribution by a dynamic

bandwidth allocation can be decreased. Dynamic bandwidth allocation methods have

been used in a number of previous studies. However, most methods suffer from a large

number of renegotiations , rely on a very complex measurement and allocation

algorithms. Simplicity of an algorithm is very crucial to decrease delay due to processing

time and to apply the changes in a timely manner. Motivated by these observations this

research study aims at:

Establishing an experimental and analytical framework for the analysis of traffic

selfsimilarity and its measures by well-known methods. Evaluation of the

suitability of both these methods and information they return to real-time
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dynamic resource management units in terms of their complexities and

robustness.

- Developing traffic descriptors such as second order temporal statistical properties

of the energy distribution of a traffic bit arrival counting process and unique

traffic related cost functions (e.g. under-utilization cost, cost of renegotiation and

buffering).

- Applying these descriptors and functions in the context of a renegotiation-based

dynamic resource allocation for VBR streams.

The contributions in this dissertation are as follows:

1.	 Empirical and analytical framework for linking the measure of selfsimilarity

and estimators of the measure to online resource management [47, 49, 50, 51].

- Analytical expression of the computational complexities of the variance-time

method and the wavelet analysis in the estimate of the measure of traffic self-

similarity.

- Investigation of the impact of a window size used to capture data to analyze on

temporal statistical traffic descriptors.

- Determination of the frequency aliasing between neighboring frequency sub-

bands in multi-resolution analysis of a traffic trace, and its impacts on the

resulting energy distribution and the estimate of Hurst parameter for Haar and

Daubechies wavelets.

- Variation in the estimate of Hurst parameter with use of the Haar and Daubechies

wavelets, and different number of sub-bands.

2. A new descriptor for dyn ic bandwidth prediction [52]
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- The use of discrete wavelet transform (DWT) to reveal the energy distribution

information of traffic data.

- The use of energy distribution information and its second order statistical

properties to predict future bandwidth demand of a VBR source.

3. Design of a bandwidth renegotiation unit [53, 54].

- Introduction of robust cost functions in bandwidth allocation decisions.

- Improvement of the performance of bandwidth-predictor based dynamic

bandwidth allocation methods after the deployment of the renegotiation unit.

- Development of a method to minimize the number of bandwidth renegotiations.

- Achievement of higher utilization and less 0.99 queue size quantile by using less

number of renegotiations than other methods in the literature (e.g. MSE, RED-

VBR, PSN-TDNN).

1.4 Outline

In Chapter 2, the issue of how to estimate the measure of selfsimilarity in real time

applications is investigated. This involves the comparison of the computational

complexities of the available estimators. The variance-time and wavelet analysis methods

are tested and the impact of different wavelet filters and number of sub-band frequencies

in the estimate of Hurst parameter is studied. Frequency characteristic of a wavelet filter

affects the amount of aliasing between neighboring sub-band frequencies, and

accordingly amount of energies measured in each frequency sub-band. This creates offset

in the estimate of Hurst parameter. Chapter 3 starts with a definition of a new traffic

descriptor, energy distribution among sub-band frequencies, and explains a novel
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approach in the design of a bandwidth predictor that takes the new traffic descriptor into

an account. Th 71;w bandwidth predictor is compared with commonly used methods in

the literature T1 Chapter 4, the design of a bandwidth renegotiator unit with newly

defined cost functions is presented. This renegotiator unit receives feedback from the

dynamic bandwidth allocation unit, which is explained in Chapter 3, and decides when

and at what amount to request a new bandwidth renegotiation by also keeping the number

of renegotiations at minimum. In Chapter  5, the entire RDBA system, in its integrity, is

applied to a WFQ scheduler with two priority levels to dynamically update weights

assign to each priority queue. Chapter 6 presents concluding remarks and future work.



CHAPTER 2

REAL TIME MEASUREMENT OF SELF-SIMILARITY

With will, fire becomes sweet water; and without will, even water becomes
fire.

Rumi

In Chapter 1, the measure of self-similarity, Hurst parameter (H), is already defined, and

the common methods that have been used in the literature [4, 5, 8, 13] to determine the

self-similarity level of a given traffic bit arrival counting process are noted. It is pointed

out that increasing level of self-similarity has negative impacts on the performance of

networks and also degrades the QoS of individual applications. The difficulties in

dynamic resource allocation to a self-similar traffic in real time are due to the practical

limitations in information capturing at very small time scales (e.g. ms), and processing

delay, which is an obstacle to a timely response to a need for resource adjustment. The

correct determination of the self-similarity level and how much of the previous data

information will be used in that computation is, therefore, crucial.

In this chapter, the three commonly used methods for estimation of the Hurst

parameter are analyzed in terms of their computational complexities: i) Variance-time

plot, R/S pox plot and iii) Wavelet decomposition. As a result of the analysis

performed, it is concluded that the use of wavelet decomposition is the most efficient in

dynamic resource reservation and allocation where traffic self-similarity must be taken

into account. A defined new traffic descriptor is an energy distribution of traffic bit

arrival information process among different frequency sub-bands. With measure of this

descriptor the frequency aliasing between neighboring frequency sub-bands and how the

20
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aliasing affects the estimate of H for different wavelet types are studied.

Recommendations are made for the selection of which wavelet type and length to use and

the number of - tds in frequency domain H, decompose traffic data.

Section 2.1 gives short background information on variance-time plot, R/S pox

plot and wavelet methods. Sect 2.2 reveals the computational complexities of the

methods and drawbacks of each method for real time deployments, and compares the

precisions of wavelet methods when different scaling and wavelet filters are used in the

measure of Hurst parameter. Section 2.3 discusses the simulation results.

2.1. V; _ P er Measurement Methods

Intuitively, in traffic data consisting of data arrival information per unit time, mean is

simply the average number of data units (e.g. cell, packet, bit) generated in periodic time

intervals, and the peak is defined to represent the highest rate generated (shown in Fig.

2.1). For ex. pie, in Fig. 2.1 the mean and the maximum value of the synthetically

generated VBR bit stream are 4.21Mbps md 5.98Mbps respectively. If the service rate is

equal to or hit- - ie re - nie, no buffering would be needed, and the PLR would

be zero. On the other hand, a service rate lower than the mean rate results in very large

delays and higher PLR.

Choosing the service rate equal to the peak data rate is wasteful because very

rarely does the source reach its peak. The effective bandwidth, or the optimal service rate,

is the minimal service rate that can serve earn such that the desired QoS parameters

such as average packet delay and PLR are met. Optimal decisions on effective bandwidth

would have to be made to operate  the network economically.
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Figure 2.1 Illustration of peak and mean values on a synthetic VBR
stream

The decision of how to set the effective bandwidth is a function of traffic burstiness that

is delineated by the notions of variance/mean ratio of the traffic data  arrival counting

process, and the self-similarity level represented by Hurst parameter, H. Increase in the

variance/mean ratio and in the value of H is integrated with raising burstiness, and

accordingly the queuing perfo ance is degraded. Therefore, finding and accurately

measuring parameters to express the burstiness carry great importance. Especially in

network systems that dyn. ically allocate n etwork resources based on the measurement

of these par. eters, computational efficiency and accuracy of the algorithms or methods

employed become significant.

This study, first of all, compares currently well-known and largely used three

methods that return H as an estimate of the burstiness of any traffic data. These methods

are: variance-time plot, rescaled-adjusted range statistics (R/S) plot and wavelet
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approach. Optimum aggregation levels to be used in first two methods are determined. It

is proven that there is a limit in choosing the level of maximum aggregation and this limit

depends on the length of the Jit directly. If it is larger than a certain threshold, the

resulting Hurst par. eter gets affected. Also, in real time and dynamic measurements,

there is a need to define a window length. Any change in the size of the window causes

fluctuations in th value of H. In the wavelet approach, it is illustrated that the energy at

ch stage and the related stage relation is linear after a certain scale index and also that

the length of the wavelet filters directly impacts the energy amount computed in each

sub-band due to varying degree of aliasing that decreases with an increase in filter

lengths.

2.1.1. Variance-Time Method

A stochastic time series X = [X i X2 X3 ... XN] is said to be self-similar if the process is

covariance stationary. It means the process has constant mean and finite constant

variance and the corresponding 2 ,-- ;-;. g,2 12,71. ,: process has the same correlation structure

the original process or follows asymptotically the correlation structure of the original

process over 	intervals. Any	 aggregate series with block sizes of m is obtained by

su	 ing the original series in X over non-overlapping blocks of size m. This aggregate

p1 s shown as X(m). The most import feature of self-similar processes is that the

variance of the arithmetic mean, ,u, decreases more slowly than the reciprocal of the

s. pie size m as expressed in (2.1).



Figure 2.2 Typical output of the variance-time plot

After taking logarithms of both sides, the equation takes the form

The slope, β, is related to the Hurst parameter in a way that H=1-β/2. The typical output

of the variance-time method after applying to a synthetic traffic trace is given in Fig. 2.2.

The detailed related reading can be found in [4-8, 17].

2.1.2. R/X Pox Plot

R/S analysis provides another method of estimating the Hurst parameter. In practice, it is

based on a heuristic graphical approach that tries to exploit as fully as possible the

info ation in a given record. Given an observation vector X of size N,

24
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and the resealed adjusted range R(ti,n)/ S(ti ,n) for each of the new starting points 1,

satisfying t i —1+ n N is computed. The function S 2 (ti ,n) is the sample variance of

[Xti +1 X 2 Xti +3 Xti ±n ]. Hence, as many as k samples of R/S is obtained for a given

value of n. o n) is computed by (2.3).

Figure 2.3 Typical output of the R/S pox plot

Hurst [55] found that many naturally occurring time series were well represented by the

relation R(ti,n)/S(ti ,n) an' as n-4 so with H typically around 0.73. On the other hand,

if the observation X, comes from a short-range dependent process, H is around 0.5. It is

clearly shown that the slope of the log of R/S is related to H, and this relation is used to

estimate the value of H by R/S method for a given time series as illustrated in Fig. 2.3.
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2.1.3. Wavelet Energy Method

Intuitively, the discrete wavelet transorm divides a signal into different frequency

components and analyzes each component with a resolution matched to its scale. By

fixing a given scale j and studying time series data X at that scale across time, an

info ation about the scaling behavior of X can be obtained as a function of j. On the

other hand, fixing a point to in time and investigating the wavelet coefficients across finer

and finer scales results in powerful techni ques to be able to investigate the nature of local

irregularities or singularities in signal X. as a function of to .

Wavelets with their built in scale localization are ideal tools to analyze the scaling

behavior of self-similar processes across wide range of time scales. An approximation of

a signal X at scale], X, can be written as the sum of a coarser approximation X +1 at scale

j+ .1 and the detail p1 _1, the difference between these two approximations (Fig. 2.4). This

procedure can be iterated for further scales. These coarse and fine approximations give

the multi-resolution analysis (MRA) of a signal. MRA guarantees the existence of a

scaling function 0 (to express the approximation ) and a wavelet φ (for the definition of

details) such that signal X can be written as

The representation in (2.4) is called the wavelet decomposition of the signal X. The inner

product of X dj,k, is referred to as the wavelet coefficients at scale j and time 24. The
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similar process with Hurst parameter HE (1/2, 1), then the expectation of the energy E1

that lies within given bandwid th 2' around frequency 2'2 is given by

Nj denotes the number of coefficients at scale j and c is a pre-factor that doesn't depend

on j. Taking the logarithm of t both sides results in (2.6). The Hurst parameter can be

derived from the slope of the relation between log (Et) and scale index j.

For an asymptotically self-similar signal, a linear relationship between the plot of

log (E) and j will be apparent only for large times or scales  (sec, min). This finding is

very crucial especially if the concern is dynamic resource allocation. Because, increasing

the number of scales or capturing low-resolution data introduces delay in computation of

applications resource needs. Therefore, determining minimum required number of

wavelet tree branches and feasible time scales to capture data directly impinge on the

performance of real time dynamic resource allocation algorithms.

Figure2.4 Illustartion of the. two level dyadic tree structure
(1( ii) 	 coefficients at scale i)
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In the next chapter entitled "One-Step Ahead Bandwidth Predictor Design", the

wavelet analysis is used not necessarily to compute self-similarity level and Hurst

par. eter of the incoming traffic but to compute temporal energy distribution in

different frequency sub-bands to predict the characteristic near future traffic behavior.

The wavelet approach in bandwidth prediction is explained elaborately in Chapter 3.

2.2.	 Empirical Studies and Results

2.2.1. Computational  Efficiency of the Algorithms

Real time dynamic resource management systems involve buffering (windowing) certain

amount of traffic data to analyze temporal traffic characteristics, and certain decisions are

made based on the returned results. After each measurement the window is moved either

in overlapping or non-overlapping blocks of its size (WS). As illustrated in Fig. 2.5, the

size of the time window is directly related to the processing time of an algorithm. The

longer the window size, the larger the processing delay is. In order to capture long time

scale properties of a traffic trace, the window size should be enlarged accordingly.

However, in that case, the ability to track short time scale non-stationeries of the trace

becomes difficult.
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Figure 2.5 Illustration of windowing a traffic trace and
"window size"-"processing time" relation.

Processing complexities of variance time plot and wavelet methods used in

estimating Hurst parameter are compared at different trace lengths, aggregation levels

(only for the variance-time method) and number of scales in a dyadic tree. Assuming m is

the maximum aggregation level allowed in variance-time method and N the length of the

trace, in estimating the Hurst parameter the following number of arithmetical operations

(i —1)
is needed: In variance-time method at each aggregation level up to m, 	 N addition

operations are needed where i=1,2..m. Mean at each aggregation level is the same and

therefore the total contribution is A/ due to the mean computation. Also, in different



arithmetical operations fvt (m, N) needed in the variance time method is

When the wavelet method is preferred (H.. wavelet and scaling filters) with n

representing the number of scales in a dyadic tree, the total number of operations

fw (n,N) is

This formula is valid only for Haar wavelet. Haar wavelet, due to its simplicity,

constitutes the lower bound compared with other wavelet types in terms of the number of

processing operations generated.

Figure 2.6 simulates the number of arithmetic operations needed in each method

when different length windows are deployed. It is obviously seen from the figure that

wavelet method needs less number of operations, and therefore is faster than variance

time method. In variance time method, the algorithmic run time linearly increases as the

number of window size and the determined maximum aggregation level increase.

However, in wavelet method increase in the length of the window has a linear effect on

the total number of operations performed, but not the number of scales has the similar

type of linear effect. f (n „V ) is a function of the dyadic three level m such that

30

Fig. 2.6.



Figure 2.6 Variability of algorithmic complexities in (a) the
variance-time method (b) the wavelet method.
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Intuitively, for the same number of tree scales, fw (n,N) gets higher as N

increases. Marginal contribution of each scale to the computational complexity decreases

as 2" approaches the window length. As for R/S pox plot method, we have not done any

detailed computational time analysis. However, it creates, o(N2) arithmetic operations

that is quite more than those of variance-time and wavelet methods. Therefore, R/S pox

plot is not convenient to use for online computations.

2.2.2. Statistical Parameters and Their Dependence on Window Size

Depending on the size of analyzed data, statistical traffic descriptors may show temporal

variations. Therefore, correct pre-determination of the window size is non-trivial. Hurst

parameter is not a good representative of traffic characteristics such as burstiness. Two

time series with the same Hurst parameter might have quite different mean and variance.

Therefore, additional statistical measures are also needed and must be input to resource

management algorithms. Some of the parameters used as traffic descriptors in the

literature are:

Mean - Mean value of the time series generated in a given time interval.

Peak - The highest rate generated.

Variance/Mean - The ratio of variance to mean value.

Burst Length - The length of the burst. It is defined to be such that if a packet

inter-arrival time is greater than a time threshold, the burst ends.

Fig.2.7 illustrates two test arrays Xi and X2 with size 5 such that E[X1 ] = 8 and

E[X2 ] = 8. and max[X 1 ] = 18, max[X2] = 15. In this example, X1 has a higher standard

deviation. However, the peakedness of X2 given by peak/mean is higher. The selection of
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Figure 2.7 Illustration of two synthetic traces with the same
mean, but different burstiness and peakedness.

the arrays proves that a trace with higher standard deviation may not necessarily have the

higher peakedness. These parameters are used in the invented bandwidth prediction

method given in Chapter 3 as traffic descriptors, not in the time domain but in frequency

domain, to characterize energy distributions in different frequency sub-bands (e.g. mean

and variance of sub-band energies).

The statistical parameters such as Hurst parameter, mean and variance of bit

arrivals per unit time do not show stationary characteristics at different window sizes.

Selection of the window size as illustrated in Fig. 2.5 has a direct impact on the temporal

values of these parameters. A window size dependent variation in the burstiness

parameters is illustrated in Fig. 2.8. First, a synthetic time series of 1024 samples are

generated. Each sample of the synthetic trace represents the number of bits arrived within

a corresponding time slot. Second, a moving window function g(n) is defined, of which
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the size is 100 samples. Third, the statistical parameters of the data encapsulated by g(n)

is computed. These parameters are mean. peak/mean ratio, standard deviation and Hurst

parameter in time domain. Finally, the window is shifted in overlapping samples of size

10, and the computations are repeated. The results are compared with those of the

window size 300. The series of these values for each shift give the variability of the

parameters as a function of the windowing index.

From Fig. 2.8, it is concluded that although the Hurst parameter floated around

0.9, large-scale fluctuations for the mean and standard deviation of the data were

observed. Allocation of resources like effective bandwidth under the consideration of

only Hurst parameter would be misleading in this case and poor as well. Increase in the

mean value can be interpreted as the admission of new applications to the link or the

increase in transmit rate of currently available applications at that specific time. Although

with the window size of 100 samples, there is an increase and decrease in the mean rate,

when the window size is enlarged to 300 samples, the increase in the mean rate is not

observable. Similar inconsistencies are also apparent for standard deviation of the bit

arrival rate and peak to mean variability in each case as well. It is also clear that

depending on the size of the window the traffic statistics follow different trends.

Therefore, for real time resource allocation algorithms, optimum selection of the window

size is important to make decisions regarding at what amount to allocate network

resources to a single source or at what ratio to share the available resources among

multiple applications.



Figure 2.8 Temporal variations of traffic statistics depending on the time
window size (a) window size: 100 samples (b) 300 samples.
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2.2.3. Effect of Wavelet Filter Types and Filter Lengths on Energy Estimations

The effects of the number of filter taps in a dyadic tree in the estimation of Hurst

parameter are studied. Different length Do Daubechies wavelet filters are used in the

analysis. It is shown in [39] that there is a linear relation between the log of energy in

each frequency resolution and the related scale. The frequency spectrums of different tap

Daubechies low pass filters in Fig. 2.9 show that as the number of taps increases, the tail

of the frequency spectrum decays much steeper. 10-tap filter characteristic is closer to the

ideal rectangle frequency response than 4-tap filter is. This difference affects the alias

between sub band frequency spectrums and expectedly the resulting energy content in

sub band Explicitly in the high frequency sub-band, the energy content would be

less for 10-tap filter case than when the filter has 6 taps. Increasing the number of taps in

the deployed wavelet filter, based on the tail distribution of the frequency response as

2.9 Frequency response of Daubechies filter with 4,6 10
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shown in Fig. 2.9, introduces offset in energy content of each frequency sub-band. This

offset is less for the sub-band with highest scale index, that is the lowest frequency sub-

band in which most of the energy is available. The offset value can be illustrated by

applying the wavelet analysis to the first 8192 frames of MPEG-1 coded Star Wars trace

(40ms inter frame interval and 25 frame/sec). Fig. 2.10 exemplifies the energy offset due

to frequency aliasing. Intuitively, the energy offset is less between filter orders 2 and 5

than that between 4 and 5. The LMS fit returns Hurst parameters within the range

0.86+0.02 for wavelet orders of 2, 4 and 5. Two percept deviation in the estimate of H

due to different order wavelet filters is negligible. Considering the fact that deployment

of high order filters elevates the processing time and results in additional delay, low order

wavelet filters can be traded off in real time applications to the higher order wavelet

filters because the deviation in the estimate of H due to the number of taps is trivial.

Figure 2.10 Impacts of the number of wavelet filter taps on signal energy
distribution . ong different sub-band scales.
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How does using a different type of wavelet filter affect the estimate of Hurst

par. eter? This question is answered by comparing the estimates returned by Haar and

Daubechics elets.

Table 2.! Wavelet Coefficients for H.. and Daubechies

Table 2.1 gives the wavelet coefficients for Haar wavelet and 4—tap Daubechies wavelet.

It is analytically proven that the energy content in the highest frequency sub-band varieswith

 the selection of the wavelet filter type, and that it is less in case of Haar wavelet than

that of Daubechies. 	 The power spectrum of the self-similar signals asymptotically

follows a 1/w behavior where w=2πf, that is 1/ w7 . In a linear system, having X(Z),

H(Z) and Y(Z) as the Z transfo s of random input signal x(n), the transfer function h(n),

the output signal y(n) respectively, then

after substituting Z = ejw

For Haar and 4-tap Daubechies 	 let filters, the frequency responses h(n) from Table

2.1 are
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y is related to the level of self-similarity and its relation to His 1=2H-1. For different 7,

the comparison of the sub-band energies returned by Haar and Daubechies wavelet filters

are illustrated in Fig. 2.11. The offset in the high frequency sub-band energy computation

between two wavelet types increases as y goes larger. As explained before, Haar wavelet

analysis returns higher high frequency energy than Daubechies because its tail in

frequency domain decays slower than that of Daubechies.

Figure 2.11 High frequency energy estimation by the Haar and
4-tap Daubechies wavehet filters.
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Analysis of the Star-Wars trace also revealed the variation in energy estimation

between Ha:: Daubechies wavelets with eight level filter bank. It is interesting to

note that, as illustrated in H 2.12. throughout the first four scales the slope of the

energy curve is the s. e for each wavelet filter type. The resolution at scale 1 is 80ms,

that is twice the inter-frame intervals in r Tars frame. The sampling frequency at the

fourth scale is 16 times smaller than the original due to 4 consecutive down-sampling

processes in the wavelet filter ban!. The time resolution of the trace at scale four is,

t therefore, 640 ms. This result suggests that either Haar or Daubechies wavelet filters can

be deployed in energy analysis as long as the number of scales is less than 4. Other

conditions t , ) nsfy in choosing data vector size and number of wavelet filter bank scales

are discussed in the next section.

Figure 2.12 Comparison of the Hurst parameter estimate of Haar and
Daubechies wavelet ,!rah
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2.3. Summary and Discussion of the Results

Taxonomy of techniques for real time detection and measurement of self-similarity in

network traffic is provided in this chapter. The pros and cons of the methods cited in the

literature are discussed in terms of the processing power they require to compute Hurst

parameter, and their applicability for online algorithms by using them on VBR traces are

demonstrated. The resolution at which traffic data is collected is seen to have a profound

impact on the estimation of the Hurst parameter, and on the performance of a

renegotiation based dynamic bandwidth management algorithms.

Assume s(t) is a bit counting process within the time interval (0, t]. Then, we can

express the increment process x(i) of s(t) in time slot i with length 0 such that

xi = s(t +10)—s(t+(i-1)0). Data vector X consisting of the latest M vahues of the

increments is X = . X contains the data within time interval of length ØM.

In dynamic resource allocation, we have to update vector X such that it might include

both new increments and some of the previous increments. If X does not include any

increment from its previous instant, it is called a non-overlapping vector, otherwise

overlapping data vector. Assuming a renegotiation is feasible in every a second, the

requirements in the following scenarios must be satisfied for effective online

renegotiation capability.



Scenario A.• If OM > a and we create vector X in non-overlapping fashion, we

lose the ad van of renegotiation capability . To generalize, lets have m present the

vector interval. If m>0, non-overlapping occurs as in Fig. 2.13. It takes (m + M)0 time

unit to update vector X and fill it with all new samples. In such a case, it would be

difficult to follow high-frequency fluctuations with a period smaller than m0 in a traffic

pattern and update allocated bandwidth to an application in a timely manner before

queue-size constraint is exceeded. On the other hand, increase in MO introduces

additional processing delay to the completion of a renegotiation request.

Figure 2.13 Illustration of the non-overlapping vector X of
traffic bit arrival counting incremental process with sample
size 114

Scenario B: Assume k is the overlapping sample size in vector X (Fig. 2.14).

Inefficient use of renegotiation capabil ity occurs when (M — k)Ø > a. Therefore one of

the conditions to satisfy is(M — k)0 < a . Another condition is derived from DWT

processing delay. The vector X with sample size M can be fed into a wavelet filter bank

having log2 Al scales and (1 + log 2 Al) frequency sub-bands. M must be a positive integer



Figure 2.1 4 lfl a-,11 ;It ion of the overlapping vector X of traffic
bit arrival counting incremental process with sample size M

and a power of 2. A long vector size is a limitation due to increasing computation time in

DWT. Remembering the assumption that acceptable renegotiation interval is a seconds,

the sum of the processing time of DWT ηp and fill time of vector X with new samples

must be less than a seconds.

It is known that ηf = (M-k)φ. Therefore, 71p is derived from Fig. 2.6b such that

where n stands for the number of scales in wavelet filter bank, and c is a constant

dependent on a CPU speed. After substituting n in (2.16) with log2 M, the processing

time is

The condition to satisfy in selection of k and M is then,



In its entirety, the comparative study reveals that the wavelet decomposition method is a

faster and more reliable method for real tune analysis. The contributions in this chapter

are as follows:

- The number of arithmetic operations required by the variance-time analysis is a

positive linear function of the maximum aggregation level determined to be one

eight of the trace size to have the enough number of samples in the variance

computation at the highest aggregation level.

- The number of  arithmetic operations generated in wavelet analysis asymptotically

follows K 1 — K2e curve where x is the number of levels in wavelet filter tree,

and K1 and K2 are functions of window length N determined from Fig. 2.6b.

- In wavelet analysis, the residual of the number of computations performed at two

consecutive scales is smaller as the scale index gets higher.

- The size of the data windowed to analyze directly affects the values of statistical

parameters such as H. mean and variance of the traffic. Larger window size brings

about heavy computational load, and it also makes the tracking of the changes in

traffic characteristics difficult in real time resource management.

- Deplc n, filters with large number of taps reduces the aliasing between

adjacent frequency sub-bands. On the other hand, small number of taps generates

positive offset value in energy amount in each sub-band due to increased aliasing.

- Due to the 1/w behavior of selfsimilar signals and tail behaviors of the frequency

response ,, of 171,2r 7 deployed, the energy amount estimated by the Haar wavelet is

slightly higher within the first three sub-bands. However, this difference is

wavelet is preferred for its simplicity in computations.insignificant, and the H



CHAPTER III

A NOVEL ADAPTIVE BANDWIDTH ALLOCATOR

Sell your cleverness and buy bewilderment; Cleverness is mere opinion,
bewilderment is intuition.

Rumi

Traffic measurements are keys in the development of robust resource management and

scheduling algorithms. Bandwidth allocation methods are either static, or they adaptively

change the bandwidth assigned to applications. Adaptive algorithms predict the near

future behavior of a traffic based o. properties such as average arrival rate

and peak to mean ratio and update bandwidth allocations.

The	 doped novel feedback mechanism uses wavelets, and measures the

energy of a bit counting process at the output of each dyadic sub band filter. Energy

information in each frequency band from fine to coarse scales in forecasting future traffic

arrivals is the key component. Specifically in VBR traffic, bandwidth requirements

usually change due to coding structures [8, 22, 23, 25, 29, 33]. For example, I'EG

introduces frames and employs a group of pictures (GOP) structure that do not exist in

H.261. Each GOP starts with I frame followed by a P frame. B frames are smaller in size

(bits) than both P and I fl ames [22, 25, 45]. Traffic rate changes within a GOP can be

considered as short-term behavior. On the other hand, rate changes due to scene changes

can he considered as a long term traffic behavior. It is shown that short-term and long-

term	 fluctuations in the arrival pattern can be separated by wavelets. One can determine

dominance of either of these by looking into the energy distribution in respective

bands. Finally, this information is used to update bandwidth allocation.

45
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3.1	 An Optimum Bandwidth Allocation for Bit Arrivals
During Two Consecutive Time Slots

3.1.1 Aggregate Bandwidth Allocation Error

Assume x i is the number of bits arrived within time interval i, and xi the allocated

service rate equal to the prediction of x. The difference x i —i j results in either

buffering or capacity under-utilization. In traffic management systems where buffering

and under-utilization constraints are given, an adjustment in resource allocation may be

needed depending on the level of this difference. Assume that this threshold level is

denoted by rneg, and that arrival rates within n consecutive time slots are greater than

their corresponding predictions, and an aggregate error up to interval n is en such that

The generalized form for the aggregate error in terms of each prediction error is

The probability that this aggregate error en does not exceed a threshold level rneg is

given in (3.2).

The perfect solution to keep this probability at maximum is that Vk,(xk  — xk ) = 0. This

requirement actually involves a zero delay perfect rate predictor and a zero delay
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bandwidth allocation during each time slot. This solution is not practical. In bandwidth

allocations, if the aggregate error threshold is distributed among n allocations, and the

is satisfied for Vk , the probability in (3.2) can

be also maximized.

3.1.2 Optimum Allocation

The main purpose in dynamic bandwidth allocation is to keep the queue size and under-

utilization levels below their constraints at minimal number of reallocations. To have a

gain in a number of bandwidth renegotiations, the starting point is at least to allocate a

fixed bandwidth ra during two consecutive time intervahs (t, t+4) and (t+ 4, 1+24) as

illustrated in Fig. 3.1. If this is accomplished for each two consecutive time intervals in

non-overlapping fashion, the resulting number of bandwidth reallocations for a stream of

Figure 3.1 An illustration of an optimum bandwidth
allocation for bit arrivals within two consecutive time slots

N samples would be N/2. To further decrease the number of renegotiations the same

approach is iterated over coarse time scales. Assume that x i is the number of bits arrived

within interval (t, t+4), m1,11-2 within (t+ 4, t+24), and that ra is the service rate during
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each time interval such that x2 < ra <x 1 . Considering equal buffering and under-

utilization costs, the goal is to 1ni. ihc Rst possible ra minimizing both costs

simultaneously. Under-utilization cost C1 , be expressed as in (3.3).

where the term |ra-x1| gives the buffering cost Ch within (t, t+4.). The best allocation

would be the one which keeps both costs at the same level, that is Cu = Ch . After solving

this equality for ra

The difference operation (x1-x2)/2 gives the deviation from the optimum allocation
2

towards both x1 and x2 , that is a = β .

3.2	 Multi-resolution Analysis and Energy Distribution

The new approach decomposes the time series traffic data, each element of which

consists of arrival rate info ation, into different frequency bands. This method separates

low and high frequency components in the arrival process. The energy distribution in

each sub-band frequency informs us of the contribution of these components to the main

traffic pattern. This information is used as a feedback parameter in prediction of the new

arrival rate. Assume a vector X k = [X(n- Al + I) X(n- Au + 2) ....X(n) at any time instant n

where k is the time scale and M an integer. Each element X(i) stands for the number of

bits received in time slot i. Any two consecutive bit arrival rate information can be

identified by their sum and difference. The difference operator reveals sharp changes in
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Figure 3.2 An illustration of the first scale filtering in
a dyadic tree structure with Haar wavelet coefficients.

the arrival rate. Arrival rate vector X k+1 consisting of M consecutive time slots when

represented at time scale k+1 is

Difference of the arrivals is between two consecutive time slots is denoted by vector

Y k+1 such that

It is easily seen that

-ubject of interest is the dynamic behavior of the traffic that manifests if through

the differences . ong neighboring samples. (3.7) and (3.8) imply the scaling and wavelet

transform coefficients of Haar wavelet at scale k with only difference being the value of

the constant multiplier. The scaling and wavelet coefficient vectors of the Haar wavelet
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traffic bit arrival rate process is positive, that all X10)?_O. Wavelet domain modeling of

positive processes requires the constraint 	 a positive output is ensured. To guarantee

the constraint that the process is positive, the sufficient and necessary condition is

i 0)1 X 1 Ø). The Haar wavelet provides this constraint, but not always Daubechies

does. The proof is easily seen by conforming (3.7) and (3.8) to the Haar wavelet

transform such that

The Haar wavelet coefficients of a stationary signal will be identically distributed with

E[Y i (j)] = 0 for Vi. Passing the original traffic data X k through scaling and wavelet

filters in the dyad', tree returns the coarse component, X k+1, and, the details, Yk+1, of

the original trace. Therefore, using a discrete Haar wavelet transform on the measured

arrival rate data is a strong tool to reveal irregularities and sharp changes in traffic

behavior. Having R as the wavelet transform matrix composed of parameters of

vectors 0 and co. and X as the vector data with length /14, the wavelet transform operation

can be expressed a W=X.R [22, 29] where W is the wavelet transform vector with size

M. Energy of a storhatic process X at scale k can be found in (3.11).
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3.3 Self-similarity and Sub-band Energies

Let X denote a finite wide-sense stationary long-range dependent process with Hurst

parameter H where 1/2<H<1. The time series X=[X1 , X2 , .....Xn J is said to be self-

similar if the process is covariance stationary. It means the process has constant mean and

finite constant variance and the corresponding aggregate process has the same correlation

structure as the original process or follows asymptotically the correlation structure of the

original process over large intervals. The spectral density Sx(w) of X follows a power law

near the origin [4, 5].

where c is a finite positive constant. For selfsimilar signals, with 1/w behavior, the

expectation of the energy within a given bandwidth 2' around frequency 21w is given by

where φ(w ) is the Fourier transform of On) [39]. It is also shown in [39] that

Nk stands for the number of elements in Y j  at filter-bank scale j. It is clear from (3.14)

that energy distribution at each scale is related to the level of selfsimilarity of the traffic

data The higher the degree of selfsimilarity, from the perspective of queuing

performance, the longer buffer is needed [47 and references therein]. Energy distribution

in multi-resolution analysis provides information about the level of H Therefore

consideration of energy contents of a signal at different time scales in dynamic bandwidth

alhocation algorithms brings out a strong advantage over other methods to prevent the



52

impacts of traffic selfsimilarity. Because of the drawbacks mentioned in Chapter 1 of the

wavelet transform when looked at the energy per scale and Hurst parameter relation,

usage of (3.14) is not feasible for real time resource prediction and management. It

requires a long traffic trace with enough s. pie size to be buffered for analysis within

more than 8 dyadic tree branches. Our approach therefore stays away from this drawback

by not directly looking at the energy distribution vs. Hurst parameter relation, but second

order statistical properties of the energy distribution of the analyzed trace.

3.4 Multi-Resolution Algorithm Design

3.4.1 General Theory and Basic Properties of the Energy Vector

In order for the multi-resolution algorithm to respond to sudden changes in traffic pattern,

window size with 8 samples is deployed. The area covered by each window is called X

and the vector output of the wavelet transform of X is a "wavelet unit", W such that

W RX = [w1w2w3w4w5w6w7w8]  . The transform coefficients and their relation to the

multi-resolution scaling is presented in Fig. 3.3. Energy in each scale can be found by

applying (3.11) to the data vector W scale 1 reveals the highest frequency detail within

the original traffic data and the detail is expressed by four coefficients. The detail in scale

index 2 is assigned to only two coefficients. The first element in vector W stands for the

data content in coarsest scale. The sum of the energies in each frequency band is bounded

above by the total energy of original data X Strong empirical evidence contends that the

wavelet coefficients from 1/f processes are weakly correlated both along and across the

scales. In [39] it is shown for the Haar wavelet, the variance progression of the wavelet

2H 1)transform of Fractional Gaussian noise satisfies var(Wk(n)) OC 2 	 The ratio of the



Figure 3.3 Wavelet transformed data
vector and transfo coefficients at each

scale

energies in two subsequent scales can 	 be related to the Hurst parameter as

to the increase in this ratio.

Assume	 a vector of size N of which each element represents bit arrival

rate in time slots (Fig. 3.4). We introduce the following properties for the Haar wavelet

transformed 	 data vector which are used in dynamic bandwidth allocation.

Figure 3.4 Illustration of the increments of packet counting
process.
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Property-I

If for Vi, j, X(i)=X(j) where 0<i, j<N, 	 and i, Er, energy content in each high

frequency band becomes zero and traffic k considered to be constant bit rate (CBR)

throughout the measurement interval. In this case the entire energy of the input data is

present within the lowest frequency band. The minimum bandwidth to allocate to this

traffic must be equal to X0). We call this rate a DC source rate.

Property-II

If X is heavy tailed according to a Pareto distribution with shape parameter a, and

location parameter s, a new process X. generated by ( X — X ) also has the same

shape parameter LT:: X min is the minim of X

Proof Assume Pp( <x) =1—( 1--(-1. Let Y be a new random process such that Y=X-a

where a is a constant. litYy)---P{X<y+a). The cumulative distribution function of Y is

Fy(y)=F 	
k.,(y+a)=1—( 	 )a . As a result, both X and Y has the same level of self-

y+a

similarity, however different bandwidth demands. This property is given to point out that

in wavelet 	 transformation we use X-XDC as an input, and this constant subtracting from

the original data does not impact the self-similar characteristics of the original signal.

Property-III

If the elements of X show an increasing characteristic in time such that X(n)>X(n— I)

where 1 <n< (N+ I), the energy distribution in each frequency band increases from finest

to a coarser scale, the lowest in the highest frequency region, E[Ej+1]>E[Ej].
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Property-IV

A decrease in the coarse scale energy while the fine scale energies are stable is an

indicator of a	 decrease in traffic volume.

Property- V

Assume that V, stands for the variance of the energies among k scales in time slot i, M. for

the mean value of energy contents, and U, for the utilization. The following statements

hold:

(Representative of possibly approaching OFF interval or departing flows (in case

of an aggregate traffic))

(Representative of added flows to an aggregate traffic or an approaching ON

interval)

(Representative of traffic getting smoother than its current pattern)

(Representative of traffic getting smoother with increasing utilization)
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3.4.2 Bandwidth Decion Unit (BDU) & Four Different Decision Types

BDU is used to analyze the wavelet transformed traffic data. It takes the energy vector as

an input, and also some external feedback parameters such as momentary queue size (Fig.

3.5). BDU keeps track of the second order statistical properties of the energy vector and

Figure 3.5 Analyzer & Decision Making Mechanism (DMM) having
the energy in each scale as a feedback parameter and returning the
new bandwidth to allocate.

computes the new variance and mean value of energy distribution among all the

frequency sub-bands. The new values are compared with the previous values maintained

in a state table. Under the highlight of the properties of energy vector explained in the

previous section, one of the four modes are activated within the unit and a new bandwidth

decision is released to the renegotiation control unit (RCU) of which the functionality is

explained in the next chapter.
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Pseudecode representation of the decision mechanism after performing the wavelet

transformation is given below:

In Figure 3.6, the architectural diagram of these four methods using the signal energies in

each sub-band and momentary queue size as illustrated. The algorithm first filters out the

DC component in traffic measurements. This DC value is taken as the lower bound for

the bandwidth allocation in the next time slot to prevent the application from bandwidth

starvation. The signal at the output of the DC filter, X-, consists of low and high

frequency components. The signal is fed into a filter bank in which high pass filter is

composed of Haar wavelet coefficients and low pass filter is of Haar wavelet scaling

coefficients. The signal )C is analyzed by decomposing it into three high frequency sub-

bands based on the recommendation in Chapter 2.

Energies in each sub band are used as representatives of the traffic volume within

the related frequency band. The traffic volume that generates the maximum energy is

added as the second component to the bandwidth allocation in the next time slot.

Because, it is the underestimation that may cause the buffer congestion while the

overestimation can only result in the underutilization of the available bandwidth, we take
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the contribution of maximum energy content in each adaptation interval for the

bandwidth allocation. Four different meth( ),N, of bandwidth prediction decisions within

the DMM are as follows:

X is the data vector before low pass filtering, R the wavelet transformation matrix, and

W=X.R is the wavelet transfo	 coefficients vector. If the wavelet unit consists of M

samples where	 k>0 and ЄZ + , the matrix R has the size MxM The wavelet

tranformation is performed over data vector X in moving blocks of size M with (M-1)

overlapping s. pies. In Fig. 3.6 the new bandwidth allocation is based on

where n is the index of time slot. We modify the decision block in Fig. 3.6 such that the

queue size information is not needed for bandwidth renegotiation without degrading the

queuing performance and without increasing the capacity underutilization. Here we

introduce four additional wavelet-energy approaches and compare their performances.

Method-I

This method dismisses the queue site information from (3.15) and compensates the new

bandwidth allocation by including a component that provides bandwidth contribution

with energy equivalent to the superposition superposition o 01 the energies.

where K is the number of scales the di is decomposed into.

Note:	 Energy in su 	 and i at discrete time instant n.



Figure 3.6 Block diagram of the wavelet
decomposition technique in dynamic bandwidth
allocation

59
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Method-II

Being different from method-I, the bandwidth compensation is provided as the sum of K

components each of which is representing a bandwidth contribution such that the energy

of each component is the same as the energy in one of the sub-bands.

Method-III

It is illustrated before in Fig.3.6 that X=X-XDC Let us denote W k- as the wavelet

transform of kth block of X, and w k of the kth block of X, the data unit before DC

This method replaces XDC in (3.16) with Wk(1)which is the average of X in kth

block. The condition that Wk(1)>XDC  is always true. Therefore, it is clear that this

approach allocates more bandwidth in each renegotiation than method-I does. We

compare the percentage improvement in queue size performance by the marginah increase

in bandwidth reservation with method-I.

Method-IV

This method replaces XDC in (3.17) with Wk (1). It intuitively causes lower utilization than

method-II does.
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3.5	 Results and Discussion

3.5.1 Comparison of Wavelet Analysis with RLS and LMS

In this section, the drawbacks of LMS and RLS based predictors are presented as

compared to the wavelet analysis. RLS algorithm's main disadvantage is its

computational complexity. For real time applications, RLS is not proper to use. On the

other hand, LMS is an adaptive approach and it does not require prior knowledge of the

autocorrelation structure of predicted data. Therefore, it can be used as an online

algorithm. The algorithm starts with an initial estimation of the filter coefficients w(0).

However, when the LMS algorithm is applied on a test sequence shown in Fig. 3.7, the

finding has revealed that LMS fails to follow the level changes, and creates large spikes

in both falling and rising edge of the test pattern meaning that these large spikes maps

onto the over or underestimation of the traffic level in the next interval. Even though it

recovers the utilization level after a spike, the high value of the spike may force the

renegotiator unit to start a new renegotiation request and cycle, though it is not needed.

Because of this impact on the renegotiation requests, we hesitate to deploy LMS method

in real time bandwidth allocation system with bandwidth renegotiation capability. The

wavelet method does not create spikes, and further it follows the traffic level with a

smooth trend. Wavelet based algorithm has a similar transition performance as RLS.

However, when the computational complexities are subject to discuss, RLS is not

preferred.



Figure 3.7 Predictability performance of wavelet, LMS and
RLS based algorithms.
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Figure 3.8 Zero crossing effect in LMS and RLS based algorithms
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Traffic bit arrival information process at time interval n, X(n) is a positive

process and therefore, the prediction of X(n+1)n +1) must also be positive. As

illustrated in Fig. 3.8, RLS and LMS based predictors violate this property 

negative prediction result. Negative predictions ahso cause RCU to malfunction and to

start a renegotiation cycle that may not be needed. These extra renegotiation requests

increase the number of granted renegotiations. To summarize, wavelet based method is

superior to RLS and LMS based predictors because of its simplicity and suitability for

positive signal constraint.

3.5.2 Queue Size Performance Results

First, the wavele-energy is compared o the other classic approaches under the

constraint that the number of renegotiations are kept the same, that is one renegotiation

every sec. The comparison is made in term of average queue size and mean square

bandwidth allocation error. An infinite buffer is assumed, and therefore, no packet loss

due to a buffer overflow. In every time slot that maps onto a is interval, the algorithm

returns a bandwidth prediction.

The subject input traffic is of heavy WEB browsing activities generated in the

OPNET enviro ent with peak/mean3. in Fig.3.9a the traffic is shown with vertical

axis representing the number ,its received and horizontal axis the time index with an

interval of 1 s. Fig. 3.9b illustrates the simulation of the queuing performances of classic

previous, average, previos+average, and previous+queue size and wavelet-energy

bandwidth allocation methods.



Figure 3.9 (a) A 5 min long synthetic WWW traffic trace with
peak/mean=17.03. (b) Queuing performance of different bandwidth
allocation algorithms.

The most conservative allocation method is to reserve bandwidth by the traffic's

peak rate, which would lead to the excessive use of transmission capacity with zero

buffer size. A real time peak rate algorithm would require an overestimation of the traffic

by a significant percentage. It also results in zero loss rates. Small but nonzero losses and

delays are acceptable for typical multimedia applications. The ability to manage delay
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requirements of applications together with effective use of network resources is

important. Therefore, the peak rate algorithm is not comparable to the other methods

mentioned in this paper.

Performance rage strictly depends on the number of past samples, which

are averaged to bandwidth demand in the next time slot. Therefore, correct

determination of this parameter. Recalculation of this parameter is needed for

different traffic traces with different characteristics, which makes this method inept. It is

quite clear in Fig. 3.9b that  Pre vious+averageoutperformsprevious.However, this

method involves the correct determination of two parameters: the number of samples to

average and the weight ratios between previous allocation and the result of averaging. A

large improvement in queuing performance by the deployment of wavelet-energy

information against other classic algorithms is observed. The wavelet-energy algorithm

converges faster than all others, results in less queue size, and accordingly smaller

queuing delays.

inefficiency, ,v(,7 O), in resource allocation within time interval fa, b] can

be analytically given by the ratio of the area between the curves of x(t), the original

traffic data and y(t), the allocated bandwidth function, to the length of the time interval,

where i is the index of each time slot and N the total number of time slots. This

perfomance	 metric has acacceptance in the literature [35]. However, it is not a good

indicator of	 perfo ance of an algorithm. A method with higher φ (a,b), may
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result in smaller queue sizes. Assuming the updating period, which is (b-a), is is, (3.18)

becomes the MSE of bandwidth allocation process. Table 3.1 denotes the mean square

bandwidth allocation error of each method.

The values in Table 3.1 are obtained by applying the methods to WWW traffic with self-

similarity parameter 11=0.52. According toTable 3.1 wavelet-energy method is not the

best to have a minimum MSBAE. However, it results in the smallest queue size among

the others. The difference in MSBAEs of average and wavelet-energy is about 134kb,

that is twice less than the improvement in queue lengths gained by deployment of the

wavelet-energy method. Four different wavelet-energy decision types are also compared

in terms of their utilization  and queue size performances. Table.3.2 below contains queue

id utilization performances of these four wavelet methods for the s. e synthetic

trace.
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Assume BWi is a bandwidth amount allocated by wavelet method i where i=1,2,3.4.

that, from (16) and (17), BW4 > BW3 > BW2 > BW1 , the highest

utilization and the highast queue i1c 3;'. expected from method-I, and the lowest

utilization and the lowest queue size from method-IV. As shown in Fig. 3.10 method-I has

the w orst queuing perfo ance and method-IV the best.

Figure 3.10 Queuing perfo ances of four different wavelet-
energy approaches in dynamic bandwidth allocation to
applications traffic.

The wavelet methods are applied to VBR Star-Wars trace. Fig. 3.11 denotes the

utilizations and average queue sizes achieved by each method. Average utilization from

ha a negative slope, being minimum for method-IV and maximum for method-1 as

expected. However, as going from method-I through method-IV the marginal gain in

average queue size is not linear. In a scenario such that the buffering cost is higher than

the under-utilization cost and a low queue size is required, deployment ofmethod-IV



Figure .1 1 Utilization and queue size trade-off in the introduced wavelet-
energy methods when applied to Star-Wars trace.

would be preferred to the other methods. Similarly, if the capacity is required to be

highly utilized, method-I would perform better. If the costs are time variant, switching

from one method to another would increase the achievable utilization level and decrease

the queue size.

3.6 Summary

The wavelet-energy based bandwidth predictor is an easy to implement method, and

therefore suitable for online prediction based bandwidth allocations. Its basic purpose is

to split high frequency and low frequency fluctuations of input traffic, and compare the



69

signal energy volumes in different frequency sub-bands by looking into the traffic energy

distribution. It does have neither the "negative prediction" drawbacks of LMS and RLS

methods, nor their computational comphexities. On the other hand, it achieves low queue

sizes at the expense of relatively low utilization level when compared with traditional

bandwidth predictors such as average, previous, average+previous, RLS, LMS. Even

though this resulting low utilization seems to be a disadvantage of the wavelet analysis,

the main purpose is to support bandwidth renegotiation unit with proper feedback

information. The determination of an actual bandwidth amount to allocate for VBR

traffic is performed by a Renegotiation Control Unit (RCU). The new RCU design

explained in Chapter 4 increases the utilization level returned by BDU, and also

maintains given queue size constraints.



CH APT At. IV

MINIMIZATION OF BANDWIDTH RENEGOTIATIONS

In this chapter, a new scheme is introduced for real time asynchronous bandwidth

renegotiation for variable bit rate (VBR) traffic. This new method presents a fine-tuning

functionality for the dynamic bandwidth allocation scheme designed in Chapter 3, and

determines the optimum bandwidth renegotiation time and bandwidth amount to allocate

to a VBR traffic source as illustrated in Figure 4.1 by minimizing predefined cost

functions. Unlike the bandwidth allocation with maximum number of renegotiations,

renegotiation-cost effective solution produces a step pattern. The Renegotiation Step Size

(RSS) and the Inter Renegotiation Interval (IRI) are traffic dependent time varying

par. eters. The traffic rate predictor designed using wavelets in Chapter 3 provides a

feedback to the system. The results show that this new scheme minimizes both under-

Figure 4.1 An illustration of renegotiated bandwidth allocation.

70



71

utilization of the available capacity and queuing delays. The new method can be deployed

in Priority Queuing disciplines to dynamically manage the resources allotted to each

priority levels.

ATM networks provide connection-oriented services with guaranteed bandwidth.

in order to c. an IP datagram in such networks, a virtual circuit (VC) has to be setup

with an associated bandwidth requirement. Once a VC is setup, the adaptation layer has

to decide how long to keep the VC active with the initial bandwidth assignment. If the

rate of the incoming packets matches the specified bandwidth allocation, the VC is kept

active [26, 27, 411. However, if packets arrive at a higher or lower rate, there is a need to

readjust the allocated resource or even to terminate the VC. Periodic algorithms adjust the

bandwidth allocation in fixed time intervals. On the other hand, adaptive algorithms

respond whenever a change is necessary as long as the updating process is not frequent.

Readjusting can be done in two different ways namely by either closing the existing VC

and setting-up a new one with new allocation and by changing the allocation of the

current VC lieu of terminating it [26]. The latter option, if preferred, must be

supportable by the network. Indeed, the Q.2963 series of recommendations belongs to the

DSS 2 f. ily of ITU-T Recommendations, and specifies the procedure of the

modification of traffic par. eters of a call/connection in the active state.

Recommendation Q.2963.3 defines the procedure of the ATM Traffic Descriptor

modification with renegotiation that is equivalent to that specified in Recommendation

Q.2962. Therefore, it is assumed ir network provides such a support that bandwidth

allocation can be updated without terminating a VC.



72

Each renegotiation process involves a signaling between the network and the

source. The rate of renegotiation is a trade-off between signaling overhead and bandwidth

utilization. High renegotiation frequency loads the network with heavy overhead. On the

other hand, long inter-renegotiation intervals make the follow-up of the traffic bit rate

pattern difficult. Renegotiation is only feasible in time scales of several seconds [371. In

[38], it is suggested that minimum of 1 sec and an average of 5 seconds or more for

renegotiation is a good compromise. It is crucial that optimal number of bandwidth

renegotiations must be performed unde r predetermined cost constraints such as

underutilization ratio and packet/cell transmission delay.

end-to-end design brings a solution to the real time dynamic resource

management problem. This system consists of two main parts: the Bandwidth Decision

Unit (BDU) and the Renegotiation Control Unit, RCU. The BDU, as explained in

Chapter 3, uses wavelets and signal energy distribution in frequency domain to compute

the bandwidth demand of a source for the next discrete time slot. This chapter elaborates

on the RCU.

The cost functions and strategies in determination of IRI and RSS are explained in

Section 4.1. Performance results of the new optimized renegotiation method when

applied to synthetic VBR bit stream ,1;', ',given in Section 4.2, together with the

discussions. In Section 4.3, the RCU design is implemented to provision QoS to MPEG-1

Star-Wars traffic trace. The 0.99 queue size quantile and average utilization are compared

with static bandwidth allocation and other methods in the literature.
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4.1. Definitions of Cost Functions

In order to avoid either over-utilization (increasing queue size) or under-utilization, the

bandwidth allocation should be dynamically updated to follow-up the temporal variations

in the traffic pattern. However, each update (renegotiation) process involves a signaling

between a network and a traffic source. High renegotiation frequency loads the network

with heavy overhead. On the other hand, a long IRI decelerates the follow-up of the

traffic bit rate pattern. The new method takes three cost functions into consideration

together with the output of bandwidth prediction and allocation scheme given in Chapter

3. These three functions are (i) under utilization cost (ii) renegotiation cost and (iii) buffer

size (delay) cost.

Figure4.2Renegotiotion control unit (RCU)
with input and output parameters.

Let a(n) be the optimum renegotiated bandwidth, and r(n) be the traffic bit arrival

info ation where n represents a time index. An optimum bandwidth allocation a(n+1)

for real-time traffic for a future time slot n+ 1 is determined, given a traffic bit a rrival

information r(n), allocated bandwidth a(n), and the prediction for the next time slot

r(n+ 1) which is provided by the BDU as in Fig. 4.2.
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In order to reach the optimum solution, a total cost function J is designed which

includes costs of under utilization u(n), under allocation (buffering) b(n), and

renegotiation T(n). Buffering and under-utilization events are illustrated in Fig.4.3. Total

cost function J is defined as

The parameters wb and wu represents the unit cost (cost weight) shaping functions for

under and over-utilization. If equal cost weight, w, is considered for both b(n) and u(n)

where e(n) is the bandwidth error such that

Figure 4.3 Areas of under-utilization and buffering with relation
to a(n) and r(n).



75

The bandwidth error function 07) is equal to u(n) in case of under-utilization, and equal

to b(n) in case of under-allocation. It also includes the predicted bandwidth error for time

n+1 to include the effect of keeping t1' bandwidth allocation level. The total cost J

and its relation to the defined cost parameters are analytically represented in Fig. 4.4. It is

clearly seen that the new method satisfies hard buffer constraint and relevantly delay

requirement for an application via proper characterization of w(e(n)). The crossing point

of w(e(n)) T(n) line maps onto the time instant to resume renegotiation process, and

therefore possible queue size exceeding the given buffer size constraint is avoided. Also,

the intersection point on the left side of the J axis limits the under-utilization level, and

the system starts a new renegotiation cycle.

Figure 4.4 Analytic representation of the predefined cost functions.

Using separate cost terms for under-utilization and under-allocation enables us to

adapt the optimization method for various types of platforms: Weighted Fair Queuing

(WFQ) algorithms, ATM switches, etc. In a WFQ scheduler, weights assigned to delay
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Figure 4.5 Illustration of the application dependent error
controlling term suitable for WFQ (a) over-utilization
level for FTP (b) under-utilization for video streaming.

sensitive applications (i.e. video streaming) might be controlled by under-utilization error

while service weights for low priority applications such as FTP might be controlled

by over-utilization error term illustrated in Fig. 4.5. An under-allocation happens if the

allocated bandwidth is not enough to handle the bit arrivals. In case of an under-

allocation, the excess bits are buffered. The buffered bits are sent when the arrival bit rate

is less than the allocated bandwidth, thus, there is available bandwidth to forward bits

from buffer. An under-utilization u(n) occurs, when the allocated bandwidth is greater

than the bit arrival rate, and the buffer is empty . Therefore, the allocated bandwidth is not

fully utilized.

One cost term	 can be given a higher weight than the others with respect to the

changing network conditions, i.e. buffer cost can have nonlinear dependence on the
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current queue size, cost of bandwidth can be althernating at the certain times of the day.

The vectors 1:,[(1,! b of size M consisting of the last M values of under-utilization and

over-utilization levels are orthogonal to each other, that is u I b, because either of them

occurs at a given time slot. Therefore, each moment of the total cost function J indeed

contains only one of them in addition to the renegotiation cost term. Obviously, the

w(e( n i) corresponds	 to the under allocation cost if e(n) is greater than

zero, and under utilization cost otherwise.

Optimization of J outputs information about the next RSS and the time of

activation. Assume is needed for time slot n+1. RSS would be equal

to [a(n+1)-a(n+ I -k)] where k is the n ber of time slots since the last renegotiation.

Afterwards. a(n+1) which minimizes the cost function is computed.

To understand the properties of minimization, let us investigate the impact of each

cost term on J. It is worthwhile to realize that the renegotiation cost T(n) should be high if

then_	 710 r bandwidth renegotiation which occurred prior to time instant n, that is

at time ins t in 	 to (n — ) where 8 is a small interval. An increase in the value of 8

means a long IRI since the last renegotiation time. Increasing δ lowers the cost of

renegotiation, because renegotiation becomes more affordable. Therefore, the time

di fference 8 betty nn the current time and the last renegotiation time determines the

magnitude of the cost function T(n). Let 0 be a fixed renegotiation cost per unit time.

After a renegotiation process is complete, the cost to resume a new renegotiation in the

next time ,dot v. OU J De maximum, Tmax . However, the cost would be decremented by φ

per time slot until a breaking point is reached. The "breaking or the crossing point" is
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defined as the time at which renegotiation cost function and w(e(n)) intersects. Since

there would be k time slots passed after the last granted renegotiation request, the

lessening in the renegotiation cost from time (n+ 1-k) to n+1 is expressed as

each renegotiation process are illustrated in Fig. 4.6. In this example, a renegotiation is

requested because of increasing queue-size. After the renegotiation at time instant t 2 If

the bandwidth cost function w(e(n)) becomes larger than renegotiation cost T(n) for the

predicted traffic, it becomes advantageous to renegotiate to prevent w(e(n) from getting

larger. If a time varying dynamic renegotiation cost function is not used, but a constant

Figure 4.6 Queue size and underutilization costs with relation to
renegotiation cost function and renegotiation times.
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one such that T(n)=const. regardless of n, the number of renegotiations may multiply

when the newly allocated bandwidth is incapable of reducing the under-allocation or

under-utilization costs quickly, because J starts to fluctuate close to the decision

boundary. Each time bandwidth cost function becomes higher than the renegotiation cost,

a new renegotiation has to be resumed. This drives the system into instability. w(e(n)) is

formulated as a combination of exponential components with different exponents K and

K and L take their values depending on whether a strict control would be used for queue

size or for under-utilization. The QoS parameter with higher priority would have a higher

Figure 4.7 Ilhustration of the effect of exponent K on the characteristic of an
under-allocation curve.
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exponent (i.e. if queuing cost is higher I than the cost of underutilizing a link, then K>L).

The exponent K controls the asymptotical behavior of w(e(n)) to the right of axis, while

L to the left. Fig. 4.7 shows the effect of tits:- sel ection of K on the characteristic of w(e(n))

for two different values of K, 0.0011 and 0.0010. As can be seen in the figure, there are

two crossing points with T(n) line: A and B. For the same buffer constraint (e(n)=90),

w(e(n)) with smaller K initiates a renegotiation at point A. On the other hand, as K gets

smaller w(e(n)) reaches the crossing point with T(n)) axis after exceeding the given buffer

constraint. Therefore, it is crucial to select the exponents of w(e(n)) such that w(e(n))

does not exceed the buffer constraint before it crosses the renegotiation cost line in order

to provide an applications traffic with strict buffer size and delay requirements. The

s e anaion applies to the selection of exponent L in order to limit under-utilization

level.

After proper selection of K and L, renegotiation decision points are generalized as

illustrated in Fig. 4.8 when w(e(n))>T(n). At times e(n)>0, incoming bits are started to be

buff, j. the cost due to buffering exceeds a current renegotiation cost, the RCU

starts a new renegotiation, and increases  the allocated bandwidth, that is a(n+1)>a(n). As

soon as the renegotiation is pproved by the network (i.e. ATM networks) or WFQ

scheduler (i.e. embedded in DSL modems), renegotiation cost is raised to its highest level

again. If e(n) gets less than 0, it is the sign of resource under-utilization. In this case,

exceeding of total allowable under-utilization cost higher than the current

renegotiation cost is the crossing point to resume a new renegotiation cycle. The allocated

bandwidth is decreased upon approval of the renegotiation request and T(n) is set to its

maximum again. Fig. 4.9 illustrates the behavior of the RCU when w(e(n))<T(n).
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Figure 4.8 Bandwidth allocation decision regions when w(e(n)) > T(n) .

Basically, as long as the costs due to under-utilization and buffering do not exceed the

current level of T(n), there would be no need to resume a renegotiation request. However,

the previous allocated bandwidth . ount is maintained, and the renegotiation cost is

Figure 4.9 Bandwidth allocation decision regions when w(e(n)) < T(n) .
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decreased by lowering the T(n) leveh. In a case with hard buffer size constraint (i.e. no

buffer overloading permitted), w(e(n)) asymptotically diverges to infinity at e(n)=β

where is the buffer size constraint. The architecture of the solver of the cost

minimization problem with inputs a(n), r(n) and r(n) where r(n) is the predicted value

returned by the introduced bandwidth predictor is given in Appendix B.

4.2 Simulation Results

Sample simulation results for a synthetic VBR trace are presented in Fig. 4.10 in which

(a) shows the original bit arrivals and the renegotiated bandwidth allocation. The

algorithm is run in real-time. The computation time of the bandwidth renegotiation

method is neghigible, and it is assumed that renegotiation takes place after the request

with no delay. The scenario with hard buffer constraint that does not permit overshoot of

Figure 4.10 Comparison of bandwidth decisions of BDU and RCU. Note:
BDU provides feedback to the RCU.



the queue size is simulated. For different severity degrees of the renegotiation cost

(Tmax and its decrement), and under-utilization and buffering costs, achieved minimum

queue size and maximum utilization levels recorded. It is evident from Fig. 4.11 that

Figure 4.11 The effect of Tm0 	 !7',, on renegotiated bandwidth allocation and

QoS
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the RCU is more generous in allocating bandwidth than the BDU alone. Intuitively, this

queue size. On the other hand, the number of renegotiations falls

down, being controlled by parameters Tmax and Tdet . Fig. 4.11 presents an example

output when T 1  is kept fixed at 1.5Mb and set Tdet to first 10Kb and then 100Kb.

100Kb means 01,1: the renegotiation cost decreases 10 times faster than when

=10Kb ,and therefore more number of renegotiations occurs. The rate of increase in

the number of renegotiations for this specific example is 4.5. The change in the number

of renegotiations is not a linear function of the ratio Tmax/Tdet . It is clear in Fig. 4.11

that increasing Tdet 10 times improves the average utilization from 0.87 to 0.92 at the

expense of increase in the average	 queue  size from 311Kb to 694Kb. This trade off can

be fully controlled in favor of queue size performance rather than utilization level by

changing the set values for f1 L in (4.6), and T max, Tdet

Table 4.1 presents the simulations results to reveal the impact of renegotiation

cost terms Tmax andTdeton queue size, average utilization and the number of

renegotiations. The synthetic trace has 6.4Mbps peak value. It is a common observation

from Table 4.1 that increase in T extends the IRI and lowers the number of

renegotiations causing both 0.99 queue size quantile and average utilization to decrease.

Lowering Tmax also increases the probability of having a renegotiation. This high

probability reflects on t he utilization level and 0.99 queue size quantile as an increase.

K/L is 'queue size to under-utilization cost" weight ratio. If K<L, K/L<1 meaning

undertilization cost is higher than buffering cost. In this case, the RCU becomes

more strict to keep under-utilization level as minimum as possible than when K1=1. A
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comparison of the first four and the last four rows in Table 4.1 gives the variations in

0.99 queue size quantile and average utilization levels for K/L=0.5 and 1, when

Tmax =1.5Mb. It is clear that increase in escalates the utilization level by allowing 0.99

queue size quantile to raise from 433Kb to 712Kb.

4.3. Perform nee of the iZEBA for MPEG-I Star-Wars Movie Trace

To be able to compare the perfo ance of the new RDBA design with other approaches

in the literature under realistic scenearios. MPEG-1 coded Star-Wars movie trace is used.

MPEG-1 has three frame types: I. P. and B. I frames use intra-frame coding, P frames

intra-frame coding and motion compensation based on previous frames, and B frames

motion cjii rsation biscd on previous and future frames. A periodic frame pattern used

by the encoder is called a Group of Pictures(GOP).
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4.3.1 Comparison of the I BA with Static Bandwidth Allocations (SBA)

First, the performance of the RDBA design is compared with both static bandwidth

allocations (SBA), and dynamic bandwidth allocations (DBA) returned by the BDU. The

Star-Wars trace is sent through a single buffer served by a single server at a fixed bit rate.

The time resolution for the computations is 40msec which is an inter-frame interval. At

different service rates, average queue size, average bandwidth allocation and number of

bandwidth renegotiations are computed. The results are illustrated in Fig. 4.12.

It is clearly seen in Fig. 4.12 that both the DBA and the RDBA perform better

than any static bandwidth allocation. Average bandwidth that the DBA allocates to the

Star-Wars trace is 494Kbps. On the other hand, the RDBA allocates 525Kbps. As far as

Figure 4.12 Queue size performance of MPEG-1 coded Star-Wars movie trace
when serviced by static bandwidth allocation (SBA), only DBA and
RDBA(BDU+RCU)
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the queue size is concerned, the RDBA outperforms both the SBA and the DBA, and

results in 85Kb 0.99 queue size quantile. it is important to note that the RDBA uses less

number of renegotiations than the DBA, since the DBA creates as many number of

renegotiations as the data samples. It is worth noting that the BDU is designed only to

support the RDBA with feedback information for renegotiation decisions.

4.3.2 Comparison a r the I BA with MSE , RED-VBR and PSN-TDNN

A. M. Adas [29] developed a dynamic bandwidth allocation strategy to support VBR

video traffic. This strategy predicts the bandwidth requirements for future frames using

adaptive linear prediction that minimizes the mean square error. It is designed for VBR

traffic and based on the predicted rate of the next GOP. According to the MSE algorithm,

to reduce the number of renegotiations it divides the predicted rate by a where 0< a <1.

Hence, more bandwidth is requested than the predicted. This approach is poor because of

the possibility that the predicted rate may already be higher than the true arrival rate.

Further increasing the requested bandwidth drastically decreases momentary utilization.

They also use the approach that the difference between the predicted rate and reserved

rate is passed to the averaging filter, and the output of the averaging filter is then

compared to the threshold values. This helps to ensure that renegotiation is done only

when there is an actual change of rate of the VBR video and not just a spike. Table 4.2

gives the comparison of our results with those in [29].
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The value pairs of T max and Tdet are set such that the same number of renegotiations are

obtained with the Therefore, a co on denominator is acquired to compare the

resulting queue length quantile and average utilization in each method. Table 4.2 clearly

shows that the RDBA, returns smaller queue sizes (approximately 1/4 th) at the same

number of renegotiations than the MSE-based does. Average utilization levels in the

MSE and the RDBA vary within ±3%© range. RDBA achieves 3% higher utilization than

the MSE (0.64, 0.67) after renegotiating 2% more than the MSE (152, 156). On the other

hand, the MSE returns 88% utilization, while the RDBA achieves 85% utilization with

38% less renegotiations than the MSE, (762, 472).

RED-VBR, a renegotiation based approach to support delay sensitive VBR traffic,

is developed in [32]. It is. on deterministic guarantees with client controlled

renegotiation of traffic and QoS parameters. RCBR [35] published in parallel with the

RED-VBR is closely related to the RED-VBR service. The difference is that the RED-

VBR builds the renegotiation service on top of a deterministic variable bit rate (D-VBR)

service with the D-BIND traffic model, while the RCBR builds a renegotiation service on

top of a constant bit rate service. D-VBR is a more efficient service in that it can achieve

a higher network utilization than a CBR service for the same level of QoS, because it

models traffic burstiness. Consequently, the RED-VBR requires less number of

renegotiations than RCBR for the same level of utilization. The heuristic online RED-



VBR algorithm maintains the reserved D-B I ND parameters and dynamically computes

the D-BIND parameters of the previous P rrames. If any rate in the measured D-BIND

curve exceed , the corresponding rate in the reserved D-BIND curve, a renegotiation

immediately takes place. The algorithmic structures of RED-VBR and D-BIND are also

shown in Appendix B.

A Pi-Sigma Network (PSN) time delay neural network (TD ) approach is

introduced in [23). It is a high degree polynomial prediction method. The PSN

architecture  consists of a single hidden layer of L linear summing units per output, and

M+ 1 output product units. The purpose of the approach is to find an approximate L ill

relationship between input data vector and the desired output vector. The

architectural diagram of the PSN-TD 	 method is given in Appendix B. Comparison of

the RBDA with the RED-VBR and the PSN-TD	 when applied to Star-Wars trace has

revealed the results in Table 4.3.

Table 4.3 Perform 	 Comparison of the RDBA with RED-VBR
and PSN-TDNN for Star-Wars Trace

RDBA
RED-VBR
(H. Zhang et. al., 1995)

PSN-TD
S. Chong et. al., 1995 )

0.99 Queue Size
Quantile

84Kb 126kb 79Kb

Number o
Renegotiations 472 457 494

Average utilization 0.83 0.69 0.64

It is shown in Table 4.3 that the transmission efficiency of the RDBA is better than both

the RED-VBR and the PSN-TDNN. tic utilization achieved by the PSN-TD is 64%

after 494 renegotiations. On the other hand, RDBA reaches 83% utilization with 472

renegotiations. queuing performance of the RDBA scheme is also better than those
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of the RED-VBR and the PSN-TDNN. By renegotiating 3.2% less than the RED-VBR,

the RDBA results in 33% less queue size than the RED-VBR does.

4.3.3 Improvement in Heavy Tailedness of Queue Sizes with the RDBA

One of the impacts of self-similarity on queuing performance is that heavy-tailedness of

queue size distributions increase together with traffic selfsimilarity level. Unlike static or

Figure 4.13 Impact of renegotiation frequency on the heavy-tailedness of
queue size distribution

synchronous dynamic bandwidth allocations, asynchronous dynamic bandwidth

allocation schemes can deal with this impact. At different renegotiation frequencies

which are controlled by varying renegotiation cost parameters in the RDBA scheme,

queue size distribution of the Star-Wars trace is computed. The results are presented in

Fig. 4.13. It is clearly shown in the figure that an increase in the ratio Tmax  / T (let reduces
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the number of renegotiations. As the number of renegotiations increases, the heavy-

tailednes of the resulting queue size decreases. In other words, the queue size

performance can be improved by decreasing renegotiation costs.

4.4. Discussion

In this chapter, a method is developed for dynamic renegotiated bandwidth allocation for

VBR traffic bit streams. The renegotiation parameters include buffering cost, under-

utilization cost, and renegotiation cost. The aim of the design is to provide the required

QoS to an applications traffic (i.e. VBR source) under given cost constraints with

minimal number of bandwidth renegotiations. The new RDBA unit gets a feedback from

the BDU that uses wavelet analysis to predict the next bandwidth demand of a subject

traffic stream. An error term is defined as a function of three cost parameters: buffering

cost, under-utilization cost, and renegotiation cost. Whenever the error exceeds the cost

threshold either due to underutilization or excessive buffering, a renegotiation request is

resumed, and next the time and amount of bandwidth to allocate is computed. The

renegotiation cost is defined as a joint function of two parameters: Tmax and Tdet. Tmax

presents the maximum renegotiation cost which takes its peak at a time slot which is after

each completed renegotiation. As time passes, the cost of renegotiation decreases in

discrete steps controlled by Tdet . By proper selection of Tmax and Tdet , flexibility is

achieved in controlling the frequency of renegotiations, queue size quantile and average

utilization. As shown in Table 4.1, an increase in Tmax /Tdet decreases the frequency of

renegotiations. As a result, both 99 percentile queue size and average utilization decrease.

The RDBA approach outperforms SBA in all QoS provisions regardless of the bandwidth
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amount used in SBA. After testing the performance of the RDBA against the MSE which

is introduced in [29], it is proven 111,1t the RDBA outperforms the MSE method. It

achieves better 0.99 queue size quantile and average utilization by requesting quite less

number of renegotiations than the MSE (Table 4.2). On the other hand, the comparison of

the RDBA with the RED-VBR shows that with 3% more number of renegotiations than

the RED-VBR, the RDBA can achieve 20% higher utilization and 33% smaller queue

size.

To summarize, the new method RDBA outperforms the well-known MSE and the

RED-VBR methods. It also has a better queue size and transmission performances than

the PSN-TDNN. The only difficulty in the deployment of the RDBA comes from a-priori

determination of Tmax  and Tdet , because selection of these two parameters are crucial to

achieve required QoS constraints. The RDBA, due to its suitability for real-time resource

management, is deployable in QoS routers, rate adaptive DSL modems, and in ATM

switch complexes. The delay in processing renegotiation requests, and its impact on the

performance of the RDBA is not studied in this dissertation. This would be one of the

topics of further studies in



CHAPTER V

PRACTICAL IMPLEMENTATIONS OF THE RDBA

The provision of QoS guarantees such as bandwidth, delay, jitter, and loss ratio to

applications of widely different characteristics is a primary objective in current high-

speed networks In order to properly multiplex traffic in such networks, packet

scheduling disciplines are deployed to satisfy the QoS requirements of delay-sensitive

applications, and ensure that real-time traffic (e.g. VBR video) and best effort traffic can

coexist on the same network infrastructure.

Exist; ti priority based scheduling disciplines basically fall into one of three main

categories: delay-based, loss-based, or delay-and-loss-based [56]. In those methods, the

performance trade off can be managed from the space or time perspective. For instance,

in Earliest Due Date discipline (T DD), [57], a real time packet is allowed to precede non-

real time packets arriving not prior to a duration of certain number of time slots. On the

other hand, as an illustration of the space based approach, the precedence can be given to

real time only when the number of non-real time packets exceeds a preset

threshold. The success of such disciplines centers on the effective determination of the

thresholds.

Packet Fair Queuing (PFQ) algorithms have been extensively studied for

provision of Quality of Service 	 antees in Integrated Services Networks. Because of a

fixed weight assignment, the inherent PFQ delay-bandwidth coupling imposes limitations

on the range of QoS that can be supported. A generalized processor sharing (GPS) server

assumes a fluid flow model, 	 13 approximated by a PFQ algorithm which has the

notion of "virtual time" or "system potential 	 GPS operates at a fixed rate r and is work-
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conserving. In the worst case, the minimum guaranteed rate gi given to session i is

where N is the number of backlogged queues. The excess bandwidth

available from sessions not using their reserved service rate is distributed at each instant

among all backlogged sessions in proportion to their individual service rates. To

overcome the performance limitations caused by the delay-bandwidth coupling of GPS, a

time-varying assignment of weights is suggested.

In this chapter, the RDBA system is embedded into WFQ (packetized GPS)

traffic scheduler with two priority levels, and the improvement in delay performance of

the applications entering each priority level is quantified. Static weight assignment might

drive low priority traffic into starvation of bandwidth and cause queuing delays to

diverge infinity. It is proven that the RDBA increases the statistical multiplexing gain

provided by any static bandwidth allocation, or static weight assignment. The delay in the

network derives from several causes. The largest delay component is due to the

propagation of the packet. The second one is the delay in transmission at the switch or

router nodes. Each packet spends some time in switch or routers' service queues and the

amount of this type of delay is variable from packet to packet. This variation (delay jitter)

must be minimized to achieve adequate real time service. It is shown that the delay

variation in each priority sub-queue is decreased by deployment of the RDBA.
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5.1 Static Weighted Fair Queuing Scheduler

Q is a generic service discipline, and it is widely applied to QoS routers. In WFQ, the

scheduler serves flows or classes at the ratio of their assigned weights. The weights of a

class can be determined by its QoS parameters such as delay or service rate. The WFQ

scheduler isolates each traffic source from one another, by providing a flow with a

specified share of the total available bandwidth determined by their weight ratios under

load.

Suppose that a network provides N service classes, and they share a link of

capacity C. T %are of class i is represented by parameter 0. The relation between the

reserved bandwidth C, for class i and (1), is such that

Let Wi(t, t+ r) the amount of session 1 traffic served within the interval (t, t+ z). For any

two queues i, j that are backlogged during (t, t+ r) (5.2) holds.

Each fair queuing (FQ) algorithm maintains a global variable called system virtual time

V(). In addition, a virtual start time VS() and virtual finish time VF() are associated with

each session. VS() and VF() of kth packet of session i are
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where t is the arrival time and Lik the length of the kth packet. The packets/cells are

further scheduled based on their timestamps. The delay and the fairness properties of a

Fair Queuing policy depend on the virtual time function. In FQ algorithms, complexities

come in both sorting the time stamps to select the packets to schedule and the

implementation of the selected virtual time functions. Some of the well-known virtual

time functions are

SFTF (smallest finishing time first): packets are scheduled in the

increasing order of virtual finishing times.

• SSTF (smallest starting time first): packets are scheduled in the increasing

ord c r virtual starting times.

• SEFF (smallest eligible finishing time first): Eligible packets are with

virtual start times less than or equal to the system virtual time.

5.2 Drawbacks Due to Dynamic Weight Adjustment in WFQ

In [58], a proportional delay differentiation service based on dynamic 	 WFQ is presented,

assuming infinite buffer. 111,1 algorithm adjusts the weight of each class dyn. ically in

a synchronous manner so that the delay differences between different priority traffic can

be controlled. The	 adjustment is done periodically according to the packet arrival

rate and buffer occupancy. The measurement period of packet arrival, the measurement

period of backlog in priority queues, and the adjustment period of the weights in WFQ

scheduler are configuration  parameters in [58]. In this dissertation, for the design of a

dynamic WFQ, an asynchronous method is used as explained in Chapter 4. This newasynchronous

 method takes buffer occupancy, bit arrival information, utilization and a
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renegotiation cost as input parameters. A 	 synchronous dynamic weight assignment has a

poor perf 	 when bursty traffic arrives between two consecutive weight updates.

It is clear from (5.3) and (5.4) that both VS() and VF() in a class are inversely

proportional to the bandwidth share of that class. Assume for class i that at the arrival

times of kth and (k+ 1)st packets the bandwidth share has values 01k and

φi,k+1 respectively such that a01k where a is a constant. If a>.1, (k+ 1)st packet

would have smaller VS() and VF() than the kth packet. In such a case, even though the

arrival time of (k+ 1)st packet is after that of kth packet, it would be served before the kth

packet. Therefore, the packet scheduling table in WFQ scheduler would need to be

updated whenever a	 bandwidth share for any class is changed. This introduces a signaling

load proportional to the frequency of bandwidth  renegotiation, and a need for packet

reordering at a network destination. In the simulations, a WFQ scheduler with SFTF is

used after modifying the scheduler algorithm to support dynamic asynchronous weight

allocation such that upon changing a bandwidth share for any class, VF(.)s of all

pc	 currently waiting to be served in all the queues are recomputed.

5.3 Traffic Generation

The implemented WFQ has two  priority levels. The high priority queue is fed with

MPEG-1 coded Star-Wars movie trace and the low priority queue with data traffic of

heavy web browsing and ftp generated by OPNET ™  simulation tools. The traffic types

used in the real time simulation is presented in Fig. 5.2 and their statistical properties of

arc ;n Table 5.1.



Figure 5.1 MPEG-1 coded Star-wars VBR trace and synthetic data traffic entered
into WFO scheduler at 40ms time resolution.

98



99

Figure 5.2Architecture of the implemented WFQ scheduler with RDBA.

In emulating dynamic asynchronous WFQ, the incoming aggregate traffic consisting of

both data traffic and Star-wars trace is split into two separate queues as shown in Fig. 5.2

The RDBA unit takes instantaneous measures of each traffic type, and updates the

bandwidth share of each queue (01 , Ø) based on the cost constraints defined in the

previous chapter. Available server bandwidth at the output of the WFQ scheduler is

selected to be 1.5Mbps which is equal to the capacity of a Ti link.

5.4 Results

5.4.1 Static Weight Assignment

Static bandwidth allocation, if it is close to the peak traffic rate, produces small queue

sizes at the expense of low utilization. On the other hand, insufficient bandwidth share

given to an applications traffic generates queue sizes diverging to infinity. This can be

calhed as bandwidth starvation. In static WFQ, improper selection of queue weights might

cause especially how priority queues to starve from bandwidth.
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Figure 5.3 An illustration of bandwidth starvation of a low priority queue in case of
static weight assignment in WFQ scheduler linked with Ti capacity.

In Fig. 5.3 an illustration of a bandwidth starvation of a low priority queue in the case of

static weight assignment in a WFQ scheduler with Ti link capacity is given. The

available 1.5 Mbps bandwidth is equally shared between high priority Star-wars trace and

low priority data traffic. It is shown in Fig. 5.3 that infinite queue size builds in the low

priority queue. Static Q has the disadvantage that depending on the characteristics of

a traffic queue, correct weight assignment has to be made to prevent

streams from bandwidth st. ation. This is practically difficult. Because, VBR traffic

shows time v. mi fluctuations and any static WFQ scheduler is away from providing

the required QoS constraints. RDBA approach without any user control updates the

bandwidth share coefficients for each steam.
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5.4.2 Wb Control by RDBA in WFQ

Traffic schedulers are classified into two groups: work conserving and non work-

conserving. Once bandwidth shares for each priority queue is determined, in work

conserving type idle bandwidth of a queue is used by other backlogged queues. On the

other hand, in non work-conserving mode, even if one of the queues are empty and it is

not using its allocated bandwidth, other queues are still served at their initial bandwidth

Figure  5.4 Illustration	 bandwidth allocation for high priority Star-Wars
trace and low priority data 	 traffic 	 in a non-work conserving scheduler.
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shares and do not make use of the idle  bandwidth assigned to the empty queue. Dynamic

weight control by RDBA produces . superior queue performance compared with static

WFQ schedulers in both non work-conserving and work conserving mode.

In Fig. 5.4, how a non-work conserving traffic scheduler with RDBA distributes

available bandwidth between high priority and low priority traffic is illustrated with time

resolution of 40ms. In a non-work conserving scheduler, it is clear that once a certain

Figure .5.5 Queuing performance of a dynamic WFQ scheduler with embedded
RDBA scheme.
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share of bandwidth is assigned to the high priority traffic, the low priority traffic is only

allowed to use the remaining bandwidth of the link capacity, even though at times the

high priority queue does not use its entire bandwidth share allocated. In Fig 5.5, the

queuing performance of a dynamic WFQ with embedded RDBA mechanism is given.

The queue size of low priority traffic which diverges to infinity after static weight

assignment in non work-conserving mode is controlled with the use of RDBA. The queue

size does not exceed 37Mb , and within the time interval (570s, 1600s) is upper bounded

by 10Mb. In work conserving mode, maximum low priority queue size can be constraint

down to 0.5Mb. This proves that the use of RDBA maintains the delay QoS required by

VBR traffic served in a high priority queue and also increases the statistical multiplexing

gain for data traffic entering the low priority queue, that is larger number of data streams

can be supported in dynamic WFQ than that in static WFQ.

5.5 Summary

The practical applications of the new renegotiation based dynamic bandwidth allocation

scheme is simulated. The simulations consist of two prioritized traffic streams. Star-Wars

movie trace is entered into a traffic scheduler as a high priority traffic trace, and data

traffic synthetically generated in OPNET environment as a low priority traffic.

Bandwidth share of the high priority traffic is asynchronously computed within the RCU,

and the remaining bandwidth of the link capacity is assigned to the low priority traffic.

Work conserving usage of the shared resources is an inherent feature of WFQ schedulers.

On the other hand, non-work conserving usage is seen in ATM networks. ATM networks

provide connection-oriented services with guaranteed bandwidth. In order to carry an IP
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datagram in such networks, a virtual circuit (VC) has to be setup with an associated

bandwidth requirement. Once a VC is setup the adaptation layer has to decide how long

to keep the VC active with the initial bandwidth assignment. Any idle portion of the

bandwidth allocated for a VC is not shared  among other VCs, unless it is distributed as a

result of a renegotiation requt. Asynchronous bandwidth renegotiation in ATM

networks, and also asynchronous ncsht update in WFQ based traffic schedulers are not

studied well in the literature. The RDBA offers a solution to these open issues. The

simulations of the RDBA in both work-conserving and non-work conserving modes in

two priority level traffic schedulers prove that the queue-size performance of a low

priority e improved degrading the QoS constraints of a high priority

traffic. Static bandvuh uc . ong high and low priority traffic streams may drive low

priority traffic into bandwidth star ,N On, resulting in an infinite queue-size. A A dynamic

allocation RDBA, on the  other hand, prevents low priority queue from bandwidth

starvation. Intuitively, in a work-conserving mode, the queue-size performance

than iui. in a non-work conserving mode.



CHAPTER 6

CONCLUSION

This dissertation defends the thesis that cost effective renegotiation based dynamic

bandwidth allocations for VBR traffic satisfies the constraints for link utilization and

packet delay, while eliminating the heavy-tailedness of the queue size distributions due to

self-similarity. It is proven that energy distribution of a traffic segment among multiple

frequency sub-bands is a readily available means to asymptotically predict traffic patterns

especially for real time resource management.

First, analytical framework for measurement of traffic self-similarity under the

constraints of processing time and computational load for real time QoS provisioning is

presented. Comparison of the wavelet and variance-time plots that are used to measure

Hurst parameter of a traffic trace reveals that the wavelet method is more suitable for

online QoS provisioning because of its simplicity and 16+0.67 times less processing load

than the variance -time method, especially if more than three scales in the wavelet filter

bank is used, and the data vector size is greater than 1024 samples. The ratio of the

increase in the size of a data vector proportionally affects processing load at a given

number of scales. In the wavelet method, Hurst parameter is determined by the relation

between signal energies within sub-bands of a wavelet filter bank and the index of each

scale. Signal energy  distribution among different frequency sub-bands presents low and

high frequency components of applications traffic and their volume ratio in each time

fr. e of a measure. This energy information can be used to predict future traffic behavior

and to minimize the n ber of proper bandwidth adjustments.
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It is proven that deployment of wavelet filters with large number of taps reduces

the aliasing between adjacent frequency sub-bands. On the other hand, small number of

taps generates positive offset value in energy amount in each sub-band. LMS fit applied

to the energy vs. scale index curves returns Hurst parameters within the range of

0.86±0.02 for wavelet orders of 2, 4, 5 when tested on Star-Wars video trace. Two

percent deviation in the estimate of H due to different filter lengths is negligible.

Considering the fact that high order filters elevate the processing time and result in

additional delays, low order filters are preferred in real time applications to the higher

orders. Also, it is illustrated that the Haar and Daubechies wavelets return slightly

different estimate of the sub-band energies. However, this difference is insignificant for

online resource allocation decisions. The comparison of the Haar wavelet with 4 tap

Daubechies results in that the offset in the high frequency sub-band energy between the

two wavelet types increases as the source self-similarity level related to y, the power

component of the heavy-tailed frequency spectrum of the source, decreases. The offset

interval is (0.012, 0.056) for values of 0.2<y<1. Therefore, the Haar wavelet is preferred

to the Daubechies from simplicity point of view; in addition to that it provides the

positive signal constraint in wavelet analysis.

Based on the analytical derivations, suggestions are made regarding the selection

of the number of scales in a wavelet filter bank, the window size to capture data for each

analysis, and overlapping size of consecutive windows to provide cost-effective

bandwidth renegotiation. Finally, it is shown that Hurst parameter itself is not a good

representative  of traffic burstiness, and must be accompanied by other measures such as

mean and peak traffic bit rate, and standard deviation of the bit arrivals per unit time.
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A novel bandwidth predictor that uses wavelet analysis in computation of sub-

band signal energies as traffic descriptors is presented. Input traffic information is a

periodic bit counting process and its increments. Specifically in VBR traffic, bandwidth

requirements vary in time due to scene changes and coding structures. Therefore,

dominance of either low or high frequency fluctuations in a traffic pattern can be inferred

by looking at the sub-band energies. Based on the predefined properties and second order

statistical parameters of a temporal energy vector, bandwidth prediction is returned. The

comparison of wavelet based bandwidth predictor with Linear Mean Square (LMS) and

Recursive Least Square (RLS) predictors proves that the wavelet approach outperforms

the latter two. It is possible for LMS and RSL methods to return negative predictions

(zero crossing effect), and to mislead a renegotiation unit. Because of its positive signal

characteristics, the Haar wavelet analysis always returns a positive prediction. It is also

shown that the wavelet based approach returns smaller queue sizes than AR(1) and AR(N)

based prediction models at the expense of lower utilization. Smaller queue sizes are

achieved by over-predicting bandwidth demand. However, this over-prediction increases

the performance measure Mean Square Bandwidth Allocation Error (MSBAE) for the

wavelet method about 25-45%. This low utilization cost is compensated successfully by

design of bandwidth renegotiation unit presented in Chapter 4.

A new bandwidth renegotiation method is presented. Renegotiation capability,

when deployed at ATM switches, QoS routers or traffic schedulers such as Weighted

Round Robin (WRR) and Weighted Fair Queuing (WFQ), increases the

muitiplexing gain by making it possible to dynamically distribute available resources

ong different applications. The nw method assumes different priority applications
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sharing a fixed bandwidth capacity. The method is designed to be online and applicable

to DSL networks in which the rate of Rate Adaptive Digital Subscriber Line Modems

(RDSLs) is controlled by the central office, to WFQ to dynamically update bandwidth

share of each priority traffic, to ATM switches in which bandwidth allocation to each

active VC connection is updated without terminating the VCs and setting-up new ones.

The method considers three cost functions: i) renegotiation cost ii) buffering (under-

allocation) cost iii) bandwidth (over-utilization) cost. An error function is defined which

combines the three defined cost functions and decision boundaries for renegotiation

requests are determined. The method takes as inputs the predicted bandwidth from the

BDU, momentary queue size and actual traffic bit arrival information, and determines the

time instants of renegotiation requests and bandwidth amount to allocate providing

minimum number of renegotiations for given QoS constraints. Performance comparison

of Renegotiated Dynamic Bandwidth Allocation (RDBA) with Static Bandwidth

Allocation (SBA), Mean Square Error (MSE) based methods and RED-VBR and PSN-

TD reveals that the new method accomplishes higher utilization and less queue-sizes

than these four. Also, it requests less number of renegotiations than MSE and RED-VBR

and PSN-TD . However, there is an open issue that is not looked into and may be a

subject of further studies: impact of delays (between the start time of a renegotiation

request and the time the request is granted) on the performance of the RDBA. This delay

is assumed to be zero in this dissertation. Also, in the literature no satisfactory work is

done to address this open issue.

Finally, the RDBA is applied to a WFQ scheduler with two priority levels to

dyne ically change bandwidth shares of each level. High priority queue is provided with



the Star-Wars trace and low priority with synthetic data traffic. It is observed that static

weight assignment may result in bandwidth starvation of low priority traffic. Dynamic

weight assignment, on the other hand, eliminates this problem without degrading the QoS

requirements of high priority traffic. One drawback in dynamic WFQ is that a packet

entering a queue upon readjusting the priority weights might be given an earlier virtual

finish time than a packet arrived before, because virtual finish and end times are

functions of priority weights. In such a case, virtual finish times of all the packets in

queues have to be updated according to new changes. This creates a heavy signaling load

on traffic schedulers. Alternative solutions to this problem may be also investigated in

future studies.



APPENDIX A

BANDWIDTH PREDICTION METHODS

There are several different strategies in predicting the future bandwidth demand of traffic

for dynamic bandwidth allocation. Each update (new allocation) consists of a prediction

and a correction term based on previous updates. General structure of the dynamic

bandwidth allocation algorithms can be written as

new estimate= old estimate + correction

The weighting of the correction and the old estimate, and how they are updated

depend on the algorithms used. The following is a list of approaches in dynamic

bandwidth ahlocation:

a. Peak-Rate

Overall peak rate is determined and assigned as the new bandwidth to traffic each time

the updating occurs. Peak-rate based bandwidth reallocation results in minimum number

of updates compared to other available methods. However, it suffers from low utilization

and inefficient usage of available capacity [23].

b. Previous

Allocated service rate at time slot n+1 depends on the arrival rate the same time instant

[26]. However, the arrival rate is not known a priori. In this method, X(n +1), the

prediction of the traffic arrival rate in time slot n+1, is set to the arrival rate in the

previous interval, X(n).
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c. Average

The new bandwidth allocation to the traffic is determined depending on the average

arrival rate in the past. This is a special case of AR-M model where M is the number of

samples averaged [26]. This feedback algorithm is unable to follow rapid changes in the

traffic condition and might cause building queuing delays.

d. Combination of Previous and Average

This method combines the previous two approaches. Each approach is assigned a weight

and the superposition is taken. For instance, having X(n) as the arrival rate at discrete

time instant n and assuming that X is the average of last m values of X such that

where 0<p<1. The performance of this method is highly dependent on the selection of

parameters m andp.This method has a poor queue size and utilization performance in

case of VBR, bursty traffic.

e. Combination of Previous and Queue Size

New allocation in time slot (n+1) is determined such that
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The term	 (X(n)— X(n)) is the actual queue size at the end of interval n. Assuming the

same arrival rate	 in the new interval. (m+1), as in the interval n, the prediction also

contains X(n) and flushes the queue contents left from interval n.

f Minimum Mean Square Error Linear and LMS Predictors

A pth-order k-step linear predictor has the form

where w(j) are the prediction filter coefficients.

The error term 	 is

The optimality of the predictor in the inn square sense requires minimization of the

mean square error , where

The vector w that minimizes can be found by taking the gradient. The result is set to

zero, and is solved for w.

Taking expectation and writing it in matrix form results in

where R, = E{x T x} and r(k) = E{xx(n + k)} . The solutions of the linear equations in

(A.7) require the knowledge of the autocorrelation of x, and it also assumes wide sense

stationarity, i.e. the mean, variance, and auto-covariance of x(n) do not change with time.
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Therefore, MMSE linear predictor is not a good  choice if real time resource management,

bandwidth allocation, is subject to provision. It cannot be used as an online algori for

forecasting bandwidth. In [25], they studied adaptive least mean square error linear

predictor. The LMS is an adaptive approach and it does not require prior knowledge of

the autocorrelation structure of x Therefor, it can be used as an online algori . The

algorithm starts with an initial estimation of the filter coefficients w(0). For each data

point, the coefficients are updated according to the following recursive equation:

where ,u is called a step size and a constant. In [23] they analyze low and high frequency

characteristics of traffic trace and allocate available resources accordingly. Their work is

the closest in its nature to our approach. They describe VBR traffic in frequency domain

being inspired from the fact, especially for VBR video traffic, that the low frequency

signal captures the slow-time variation of consecutive scene changes and that the high

frequency signal exhibits the feature of strong frame autocorrelations.

g. Adaptive TT' Prediction

In [22] the concept of using wavelets in dynamic bandwidth allocation for video traffic is

brought up. In Fig.A.1, the block diagram of their approach is given. The use of wavelet

transfo in adaptive filtering has also been proposed in [45, 46]. It is very analogous to

the DFT based adaptive filtering. On the other hand, it has the advantages of wavelet

analysis over Fourier analysis when. a weighted sum of sinusoids does not adequately

represent the time-varying ncJ s of the signals involved. Even though the reduction in

eigen-value spread by use of wavelet transform Their method also involves the
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Figure A.1 The block diagram of the
wavelet predictor proposed in [22]

computation of the autocorrelation function of the input trace as in MMSE. The reduction

is due to that the wavelet transforms and a class of discrete orthogonal transforms create

approximately diagonal autocorrelation matrix of the input data.

In the literature one of the most common metric of the performance measure of

the dynamic bandwidth predictors is Q.

Another metric must be the number of renegotiations (RN). The requirement in the

dynamic bandwidth allocation is to get minimum Q at minimum RN.



APPENDIX B

BANDWIDTH RENEGOTIATION METHODS

The RCU is developed as an alternative method to the RED-VBR and PSN-TDNN

schemes. Algorithmic structures of these approaches are given in the following sections.

D-BIND

The key components of the D-BIND model are that it is bounding and interval dependent

[34]. Bounding is required to provide deterministic QoS guarantees. On the other hand,

interval-dependency allows for a higher utilization by capturing important burstiness

properties of traffic. D-BIND model is defines via rate-interval pairs

(Rk , lk)1 k =1,2,..K . Each rate Rk is an upper bound on the rate every interval of length

lk. Assume a traffic constraint function b(t) which bounds the traffic rate for an interval

of length'', • The constraint function b(t) is piece-wise linear within (Rk, 'k)

as in (B.1) where K is the number of intervals.

k = 1,2,..K

17) RED-VBR

RED-VBR is based on deterministic guarantees with client controlled renegotiation of

traffic. QoS parameters and graceful adaptation during overload periods. RED-VBR

algorithm decides when to allocate more/less resources for VBR traffic and at what

amount. The policy decisions are based on the two sets of D-BIND parameters. To

control the policies, two control parameters a and ,5 are defined such that 13 > a
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and a, β>= 1. If any rate in the measured D-BIND curve exceeds the corresponding rate in

the reserved D-BIND curve, a renegotiation takes place. The new bandwidth amount is

chosen such that each Rk is a times its current value. An online RED-VBR based

renegotiation algorithm for a VBR video sequence given below is quoted from [32].

*****----1--****************

initialize current allocation RI];

LastRenegIndex-0;

for (i=0;i< • FP 1 fr;S;i++)(

compute R[1:1)] bscd on previous M frames;

if ( Rk>current_allocation_R[k] for any 0

for (k=1;k5_P;k++)

current allocation R[k] = a *max(curren(allocationR[k], R k );

LastRenegIndex=i;

Renegotiated;

)elseif ( Rp <β * current _ allocation _R[ P ] AND

(i-LastRenegIndex>=MIN RENEG_INTERVAL)){
for (A.

current_allocation_R[k]+ Rk/2;

LastRenegIndex=i;Renegotiate();

*************************
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c)	 PSN-TDNN

Fig. B.1 shows a TD	 based on Lth degree PSN with (N+1) inputs and (M+1) outputs.

The PSN architecture	 consists of a single hidden layer of L(M+1) linear summing units

and output layer of (M+1) product units [23]. The output from each unit passes through a

sigmoid activation function defined by a(x) = 	I
	

. The weights from the hidden
1 + e'

to the output layers are fixed at 1.

Figure B.1 An L th degree PSN-TD architecture.

The purpose of this network is to find an approximate L th degree relationship

between the inputs xL (n),xL (n-1),...,xL (n—N) and the desired outputs

xL (n+D),xL (n+D+1),...,x L (n+D+M). Input vector e(n), desired output vector

and estimated output vector y(n) are defined as follows:



The MSE objective is given by

where p denotes the number of training patterns.

d) 	 RCU

The flow architecture of the decision mechanism developed for the renegotiation control

unit given in Chapter 4 is shown in Fig. B.2. It takes three input parameters from other

units: current allocated bandwidth a(n), last arrival rate r(n) and the prediction of the

bandwidth requirement for the next time slot. Depending on instantaneous queue size and

utilization values, the algorithm first computes the buffering and under-utilization costs

with the assumption that the actual arrival rate within the next time slot is equal to the

predicted value, and the bandwidth is kept the same in time slot (n+1) as in n, that is

a(n)-----a(n--E - 1). New decision is made after comparison of the renegotiation cost T(n) with

buffering and under-utilization cost e(n).



Figure 3.2 Algorithmic structure of the Renegotiation Control Unit (RCU).
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