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ABSTRACT

RENEGOTIATION BASED DYNAMIC BANDWIDTH
ALLOCATION FOR SELF-SIMILAR VBR TRAFFIC

by
Zafer Sahinoglu

The provision of QoS to applications traffic depends heavily on how different traffic
types are categorized and classified, and how the prioritization of these applications are
managed. Bandwidth is the most scarce network resource. Therefore, there 1s a need for a
method or system that distributes an available bandwidth in a network among different
applications in such a way that each class or type of traffic receives their constraint QoS
requirements.

In this dissertation, a new renegotiation based dynamic resource allocation method
for variable bit rate (VBR) traffic is presented. First, pros and cons of available off-line
methods that are used to estimate selfsimilarity level (represented by Hurst parameter) of
a VBR traffic trace are empirically investigated, and criteria to select measurement
parameters for online resource management are developed. It is shown that wavelet
analysis based methods are the strongest tools in estimation of Hurst parameter with their
low computational complexities, compared to the variance-time method and R/S pox
plot. Therefore, a temporal energy distribution of a traffic data arrival counting process
among different frequency sub-bands is considered as a traffic descriptor, and then a
robust traffic rate predictor is developed by using the Haar wavelet analysis. The
empirical results show that the new on-line dynamic bandwidth allocation scheme for

VBR traffic is superior to traditional dynamic bandwidth allocation methods that are



based on adaptive algorithms such as Least Mean Square, Recursive Least Square, and
Mean Square Error etc. in terms of high utilization and low queuing delay. Also a method
is developed to minimize the number of bandwidth renegotiations to decrease signaling
costs on traffic schedulers (e.g. WFQ) and networks (e.g. ATM). It is also quantified that
the introduced renegotiation based bandwidth management scheme decreases heavy-
tailedness of queue size distributions, which is an inherent impact of traffic self-
similarity.

The new design increases the achieved utilization levels in the literature, provisions
given queue size constraints and minimizes the number of renegotiations simultaneously.
This renegotiation-based design is online and practically embeddable into QoS
management blocks, edge routers and Digital Subscriber Lines Access Multiplexers

(DSLAM) and rate adaptive DSL modems.
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CHAPTER1

INTRODUCTION

Does any artist paint for the sake of the picture itself, without the hope of
offering some good? No, but for the sake of the viewers and the young who
will be drawn by it and freed from cares. Or does any potter hastily throw a
pot or a bowl without any thought of what it will hold? Does any calligrapher
write for the script alone without any regard for the reader?

Rumi

Broadband technology is an always-open gateway to a new world of Internet services
delivered at lightning-fast speeds to homes, offices and businesses. High speed
connections (e.g. DSL, Cable Modem, T1) open up a new world of multimedia
applications each with different traffic characteristics. Accurate modeling of the traffic
offered to the network or a component of the network will always be critical to provide
high quality of service (QoS) to the applications. The main objective in
telecommunications network engineering is to have as many happy users as possible. In
other words, a network engineer has to resolve the tradeoff between capacity and quality
of service (QoS) requirements. Realistic modeling of the offered traffic characteristics,
therefore, is the first step in optimizing resource allocation algorithms such that provision
of services complies with the quality of service constraints while maintaining maximum
capacity. In order to maintain the QoS provided to applications traffic, it is necessary to
regulate network resources dynamically depending on traffic descriptors (e.g. PLP, CBR,

delay, delay variation) and network characteristics (e.g. utilization).

In this dissertation, a complete solution is presented on how to dynamically
manage available resources for VBR traffic in networks which consist of network units

capable of renegotiating resources such as ATM switch complexes, Rate Adaptive Digital



Subscriber Line (RADSL) modems, and QoS routers. First, traffic bit arrival information
per unit time and time-variant energy distribution of a bit counting process are defined as
traffic descriptors, and utilization as a network characteristic.  Second, traffic
selfsimilarity is investigated, and drawbacks of selfsimilarity measurements in their
suitability for on-line dynamic resource management algorithms are explained. Methods
are suggested for proper parameter selection in the estimate of self-similarity level of a
traffic to ease linking of self-similarity measurements into on-line resource management
systems. Third, a bandwidth predictor that uses wavelet analysis of incoming traffic bit
counting process are designed. The output of the bandwidth predictor is optimized by
designing a bandwidth renegotiator unit which decides when and at what amount to
decrease or increase the bandwidth allocated for an applications traffic. The invented
renegotiator unit minimizes the number of bandwidth renegotiations in a network.

The contents of the sections in this chapter are as follows: Section I.1 gives the
statement of the problem. It starts with the definition of self-similarity, explains
difficulties in allocating network resources for VBR traffic sources exhibiting
selfsimilarity, and clearly states that asynchronous renegotiated resource management is
a proper solution for QoS provisioning for a selfsimilar VBR traffic. Section 1.2 presents
prior art studies on selfsimilar traffic, impacts of selfsimilarity on network performance,
and on dynamic resource allocation to such traffic sources. These studies include
congestion control strategies, bandwidth predictors and resource renegotiation methods.
Section 1.3 explains the dynamic resource management approach presented in this

dissertation to deal with VBR traffic.



1.1. Statement of the Problem

A number of studies have shown that for both local and wide area network traffic, the
distribution of packet inter-arrivals clearly differs from exponential [1, 2, 3]
Furthermore, investigations of high-resolution FEthernet Local Area Network (LAN)
traces [4, 5], Wide Area Network (WAN) traffic [6] and VBR video traffic [7, 8, 9] have
demonstrated that these traffic types exhibit self-similarity. In the case of stochastic
objects like time series, self-similarity is used in the distributional sense: when viewed at
varying time scales, the object’s relational structure remains unchanged. As a result, such
a time series exhibits bursts at a wide range of time scales. Self-similar traffic behaves
very differently from that predicted by traditional packet traffic models. For example in
[4], it is shown that the generally accepted argument for the “Poisson-like” nature of
aggregate traffic that aggregate traffic smoothes out as the number of aggregated traffic
sources increases does not reflect the reality. In fact, the burstiness of such traffic,
defined by the variance-to-mean ratio, peak rate and selfsimilarity level, typically
intensifies as the number of active traffic sources increases. There are different studies
advocating both the significance of impact of self-similarity on network performance
[10-13] and the irrelevance of the need for capturing self-similarity in traffic modeling
[14]. The questions that arise here are how prevalent such traffic patterns are and under
what conditions performance analysis is critically dependent on taking self-similarity into
account.

If sources exhibiting bursts at multiple time scales are allowed only a single
service rate to describe their behavior, they are faced with a series of poor choices. If the

service rate is chosen close to the long term average rate in order to maximize the



statistical multiplexing gain in the network, during sustained peaks, the source buffer fills
up at the peak rate and is drained at the service rate. If the peak rate is much higher than
the average rate, either the data buffer has to be very large, or the loss rate will be
unacceptably high. Provisioning of large buffers limits the loss rate. On the other hand, it
causes long delays. In recent years, as broadband multimedia services became popular
they necessitated new traffic models with self-similar characteristics.

A classical control approach for dynamic resource management exists in
monitoring the level of unused resources and in feeding back the measured levels to a
controller that adjusts the input traffic rates. The input rate control approach is known in
literature as rate-based [15]. Many rate-based algorithms can be found in literature.
However, none of these are completely satisfactory either for their complexity or for
lack of stability properties, as reported in [16]. In fact, due to transmission and
propagation delay most algorithms exhibit persistent oscillations. A static resource
allocation method for a VBR source or a self-similar traffic is away from the
maintaining the required QoS by those applications traffic, but a dynamic resource
allocation. However, allocating resources dynamically for a real-time VBR stream is a
challenging task. First, it necessitates a design of a proper traffic predictor. A one-step-
ahead predictor produces as many outputs as the number of traffic information samples
are. Therefore, an additional mechanism is required to process the predictor output, and
to decide if a bandwidth renegotiation is needed, and at what amount it can be
provisioned. A renegotiation control unit takes some network or application dependent
cost constraints such as a cost for each bandwidth unit and a cost for each renegotiation

as inputs and returns a decision. There are various bandwidth predictors and



renegotiation methods available in the literature. However, either most them are
designed for off-line systems, or they have high complexity and computational overload
that are not proper for on-line QoS provisioning. Therefore, there is a need for a robust
bandwidth predictor and a renegotiator especially in provisioning of QoS for bursty

VBR streams.

1.2. Prior Art and Motivation

1.2.1. Self-Similarity and Its Impacts on Network Performance
This sub-section presents a summary of the survey study about self-similarity and
network performance, and possible solutions offered to deal with this phenomenon.
Understanding the nature of network traffic is critical in order to properly design and
implement both wired and wireless networks. Since the paper published in 1993 by W.
Leland et. al.[4], there appeared many number of studies which reported a bursty traffic
pattern on different time scales of multimedia networks [11-13]. What exactly burstiness
means in terms of measurable traffic statistics has been a critical problem. In the
literature, traffic that is bursty on many or all time scales is described as self-similar.
When these traffics are viewed at varying scales, the data’s correlation structure remains
unchanged. Also, it is possible to see studies pointing out the impact of traffic self-
similarity on network performance that is basically expressed in terms of quality of
service (QoS) parameters like packet loss ratio (PLR), and delay and network resources
such as bandwidth and buffer sizes.

Research done by M. E. Crovella et.al. [17] revealed that the traffic generated by

the worldwide web (WWW) transfers showed self-similar characteristics. Comparing the



distributions of ON and OFF times, they found that the ON time distribution was heavier
tailed than the OFF time distribution. The distribution of file sizes in the WEB might be
the primary determiner of Web traffic self-similarity. In fact, the work presented by K.
Park etc. al. [10] showed that the transfer of files whose sizes were drawn from a heavy-
tailed distribution was sufficient to generate self-similarity in network traffic. The ON
and OFF periods do not need to have the same distribution. These results suggest that the
self-similarity of Web traffic is not a machine-induced artifact; in particular, changes in
protocol processing and document display are not likely to remove the self-similarity of
Web traffic [17].

In a realistic client/server network environment, the degree to which file sizes are
heavy tailed can directly determine the degree of traffic self-similarity at the link level
[10-12]. This causal relation is proven to be robust with respect to changes in network
resources (bottleneck bandwidth and buffer capacity), network topology, the influence of
cross traffic, and the distribution of packet inter-arrival times. Specifically, measuring
self-similarity via the Hurst parameter H and the file size distribution by its power law
exponent « , it has been shown that there is a linear relationship between / and o over a
wide range of network conditions. One practical effect of self-similarity is that the
buffers needed at switches and multiplexers must be bigger than those predicted by
traditional queuing analysis and simulations. These larger buffers create greater delays in
individual streams that are originally anticipated [12, 13]. The delay-bandwidth product
problem arising out of high-bandwidth networks and QoS issues stemming from support
of real-time multimedia communication have added further complexities to the problem

of optimizing the performance. How much the self-similarity affects the network



performance is modulated by the protocols acting at the transport/network layer. An
exponential trade-off relationship is observed between queuing delay & packet loss rate
[11].

It is assured that linear increase in buffer sizes will produce nearly exponential
decreases in packet loss and that an increase in buffer size will result in a proportional
increase in the effective use of transmission capacity. With self-similar traffic, these
assumptions do not hold. As can be seen from Fig.1.1, as H approaches 1.0, the queue
size diverges to infinity at lower utilization levels than when H is closer to 0.5. The
decrease in packet loss with buffer size is far less than expected. In other words, the
buffer requirements begin to explode at lower levels of utilization for higher degrees of
long-range dependence (Higher values of H).

Heyman etc. al. [14] showed that for sources with large Hurst parameter, Markov

chain models estimated the buffer occupancy well when the buffer sizes were not too

Queue Size
O = NN WHBOTDAD~NOOO

A D O N A D OO DA A AD 2N
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Utilization

Figure 1.1 Queue size- utilization trade-off as the self-similarity level,
which is measured by Hurst parameter H, changes [18].



large (no larger than 10ms for a single source) but these models might not estimate the
cell-loss rate and mean buffer size accurately for larger buffers. Also, [11] has shown that
queuing delay exhibited a super-linear dependence on self-similarity when buffer
capacity was large. The queue length distribution decayed more slowly for long-range
dependent sources than short-range dependent sources. Moreover, scale invariant
burstiness implies the existence of concentrated periods of high activity at a wide range
of time scales that adversely affects congestion control and it is an important correlation
structure that may be exploitable for congestion control purposes [13]. Network
performance as captured by throughput, packet loss rate and packet retransmission rate
degrades gradually with increasing heavy-tailedness. The degree to which heavy-
tailedness affects self-similarity is determined by how well congestion control is able to
shape its source traffic into an on-average constant output stream while conserving flow
[11].

A dynamic congestion control strategy is difficult to implement. Such a strategy is
based on measurement of recent traffic and can fail utterly to adapt to rapidly changing
conditions. Also, congestion prevention by appropriate sizing of switches and
multiplexers is difficult because data network traffic doesn't exhibit a predictable level of
busy traffic period; patterns can change over a period of days, weeks or months and
congestion occur unexpectedly with dramatic intensity. On the other hand, a predictive
congestion control was studied for improving network performance by Tsunyi Tuan et.
al. [12]. In their algorithm, information about the future is utilized to make traffic control
decisions. They called this Selective Aggressiveness Control (SAC) and it is aimed to be

robust, efficient and portable such that it can be easily incorporated into existing
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Figure 1.2 Tail behavior of the queue length distributions for
Markovian and LRD inputs to an infinite capacity queue in a single

server Note: f=2-2He(0,1)

congestion control schemes. SAC tries to aggressively soak up bandwidth if it predicts

the future network state to be "idle", adjusting the level of aggressiveness as a function of

the predicted idleness and its confidence. They showed that the performance gain due to

SAC is higher as the more self-similar the network traffic is. Although, in real life, the

perfect prediction of the future traffic congestion is not possible, SAC achieves the

highest throughput with perfect future information among other congestion control

algorithms such as the generic feedback congestion control.

A crucial performance indicator exhibiting a more sensitive dependence on self-

similarity is mean queue length and this concurs with the observation that queue length

distribution under self-similar traffic decays more slowly than with Poisson sources (Fig.

1.2). Increasing network resources such as link bandwidth & buffer space results in a
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super linear improvement in performance. Increasing link bandwidth, given a large buffer
capacity, has the effect of decreasing queuing delay much more drastically. Therefore,
high-bandwidth communication links (for multimedia network applications) should be
employed to alleviate the exponential trade-off relation between queuing delay & packet
loss (throughput) for supporting QoS sensitive traffic.

Based on the survey results, it is asserted that dynamic bandwidth allocation with
minimum number of renegotiations is a key solution to deal with self-similar traffic since
static resource allocation preserves the heavy-tailed queue sizes. This dissertation clearly
demonstrates the improvement in the queue size performance in a single server
environment after deployment of the invented dynamic bandwidth allocation method

compared with the static ones.

1.2.2. Bandwidth Prediction and Renegotiation

An efficient resource allocation comprises determining optimal buffer sizes, assigning
bandwidth and other resources either statically or dynamically in order to get the desired
QoS expressed in terms of parameters such as queuing delay, retransmission time, packet
loss probability, and bit error rate. In a static resource allocation, available resources are
set or assigned to the source traffic at service initialization and kept the same throughout
the life of the connection. A dynamic approach is classified into two groups as
synchronous and asynchronous (Fig. 1.3). In a synchronous method, resources are
modified periodically, at fixed time intervals, unlike the asynchronous in which the
allocated resources to the traffic are updated whenever a need is detected [22, 23, 26, 27,

29-31].
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Figure 1.3 Bandwidth allocation methods

The admission control and resource allocation problem is complicated when a
VBR multimedia source or communications device seeks access to the network and
requests a virtual circuit for streaming data. The complication is due to that the features,
which describe the variations in content of the multimedia, are generally imprecise. Thus,
it is difficult to predict what the requirements for network resources are. If the network
resource requirements are overestimated, the network will underutilize its capacity. On
the other hand, if the network resource requirements are underestimated, then the network
may become congested and packets traversing the network may be lost [19-21].

Bandwidth allocation and management for applications bit stream traffic is
generally done at the edge routers in a network. This alleviates the computational load on
the network switches. Off-line systems can determine the exact bandwidth characteristics
of a stream a-priori. However, on-line algorithms are needed in many real time
applications [22-28]. Online methods periodically renegotiate resources based on
predicted traffic behavior [29-33]. Conventional methods typically renegotiate resources
according to changes in bit stream level statistics as in [32]. Online methods have the
advantage of adjusting resource allocations with respect to a desired QoS. On the other

hand, most methods suffer from large number of renegotiations, and rely on very
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complex measurements and allocation algorithms. If renegotiations are too frequent,
signaling overhead increases. On the other hand, an infrequent number of renegotiations
causes coarse predictions.

Many descriptors of traffic are known such as peak rate, average rate etc.
However, these descriptors do not capture the traffic patterns over different time scales.
To overcome this, a deterministic bounding interval dependent traffic descriptor (D-
BIND) has been described by Knightly et. al. in [34]. D-BIND is a vector that includes a
maximum allowed arrival rate for various time intervals. The allocation algorithm stores
the currently reserved D-BIND parameters and calculates the D-BIND parameters for the
last M frames. A Renegotiation takes place whenever a difference occurs between the
reserved and measured D-BIND parameters. RED-VBR introduced in [32] is based on
the D-BIND model. RED-VBR does neither use nor measure the QoS for allocation. It
attempts to dynamically allocate bandwidth to provide zero losses. It allocates higher
bandwidth than arrival rates, and renegotiates more often to meet stringent loss
requirement. [28] presented another online renegotiation method called DSA+ (Dynamic
Search Algorithm). The goal of DSA+ is to adjust the server rate so as to provide the
desired cumulative cell/packet loss probability (CLP/PLP) as efficiently as possible with
few renegotiations. At each renegotiation point DSA+ adjusts the server rate according to

the following formula:

IJ Pn>Q1

2if B, <0 -0

K P
Hppy < p, +—log(="), a= {
a O

where P, is the CLP/PLP of the nth interval and (J;is the CLP/PLP desired by the user.

DSA+ requires initial renegotiation interval and constant K to be given by the application
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and updates the server rate 4, based on the observed CLP/PLP during the nth interval.
Also, in [35] renegotiation schedule is studied. They discuss simple measurement-based
admission control (MBAC) schemes suitable for RCBR (Renegotiated Constant Bit Rate)
sources. They show that a memory less scheme is not robust and history about the past
bandwidth allocations is needed to achieve satisfactory robustness. In their proposed

method, a constant cost ¢ per renegotiation and a cost y per allocated bandwidth are

assumed. The total cost is given by

N-1 N-1
$. 2. A=6Csi,s))+y 28 (1.2)
i=1 i=0
: L, x=y . :
with d(x,y) = o 0 For a given 7, the amount of data entering the queue
, O

during time slot i, and service rate s;, the optimal allocation minimizing the total cost is

found subject to the buffer constraint, 0 < b; < B for =0 where b, is the queue size at the

0, if i<0

. They solve this optimization
max{bi-»] +7; - S‘:,O}, i20

end of time slot i with &; :{

with a Viterbi-like algorithm [36]. This Viterbi-like algorithm cannot be used to
determine optimal renegotiation points for online interactive sources. For such sources,
causal heuristics have to be used to make decisions about requesting new rates. Such
heuristics predict the future bandwidth requirement based on some statistics collected in
the past. They introduce a heuristic based on a AR(1) bandwidth estimator and on buffer
thresholds. Three parameters have to be tuned: a high and a low buffer thresholds

By, and B, respectively and a time constant 7. The rate predictor used in [36] is simply

Foy = (=T + 77\ (7 + max{p; - B,,0}) (1.3)
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where 7;is the actual incoming rate during slot 7, and b;is the buffer size at the of time
slot i. The bandwidth necessary to flush the current buffer content within T is
compensated by the term T"l(ri + max{bi - B, ,O}). Which they have not included in [36]

and we would like to add to the cost function is the cost of inter-renegotiation interval. If
an inter-renegotiation interval were less than the processing time of the last renegotiation,
the new renegotiation request would have a high cost. Renegotiation is only feasible in
time scales of several seconds [37]. In [38], it is suggested that minimum of 1 sec and an
average of 5 seconds or more for renegotiation is a good compromise. It is crucial that
optimal number of bandwidth renegotiations must be performed under predetermined
cost constraints such as underutilization ratio and packet/cell transmission delay, inter-

renegotiation times.

1.3. Our Approach and Contributions

In this dissertation, the impacts of selfsimilarity on applications delay and jitter
performance are investigated, and a method consisting of a traffic smoother , a bandwidth
predictor and a resource renegotiation unit optimizing the bandwidth prediction amount
and time to allocate are invented. The dynamic resource allocation method develop in this
dissertation is deployable in QoS routers and switch fabrics, and networks with real time
response capability to the changing traffic and network conditions. A novel method that
minimizes the number of bandwidth renegotiations within a network is introduced.

The block diagram of the designed " Dynamic Resource Management and
Allocation" system is given in Fig. 1.4. The input to the S/P (serial-to-parallel

conversion) is traffic bit arrival information within each predetermined time interval. The
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Figure 1.4 Block diagram of the developed resource

management system.
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size of the S/P also sets the length of the traffic data to be analyzed, that is the length of

the time window that captures the data. The discrete wavelet transform (DWT) processes

the input from S/P and provides BDU with parameters needed to predict the new resource

demand of the VBR traffic for the next time slot. These parameters are the second order

statistical parameters of energy distribution of the traffic bit arrival counting process

among different frequency sub-bands. Based on the prediction result and the level of the
cost terms defined, the Renegotiation Control unit (RCU) decides the time of a resource
renegotiation and the amount of resources to allocate. The traffic scheduler manages the
available backbone capacity among traffic traces of different priority levels. The

scheduler implies a modified WRR or WFQ mechanisms in which the weight coefficients

of each input queue is updated dynamically.
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The new approach using a dynamic resource management complex with
bandwidth predictor and renegotiator units aims at the best use of traffic descriptors and
temporal network characteristics to provision required delay constraints to VBR traffic
and maximum achievable utilization of a network capacity. The measures and techniques
developed for renegotiation based dynamic bandwidth management should take into
account;

- Traffic descriptors (e.g. bit arrival rate, self-similarity level, CBR, PLP)

- Temporal network characteristics (e.g. utilization)

As a summary of the past review and discussion, it is concluded that decreasing
the impact of traffic self-similarity on queuing delays and packet/cell loss rates can only
be controlled by adaptive bandwidth allocation to a self-similar traffic. Queue length
distribution decays more slowly for long range dependent sources than short range
dependent sources. This heavy tailedness of the queue size distribution by a dynamic
bandwidth allocation can be decreased. Dynamic bandwidth allocation methods have
been used in a number of previous studies. However, most methods suffer from a large
number of renegotiations , and rely on a very complex measurement and allocation
algorithms. Simplicity of an algorithm is very crucial to decrease delay due to processing
time and to apply the changes in a timely manner. Motivated by these observations this
research study aims at:

- Establishing an experimental and analytical framework for the analysis of traffic
selfsimilarity and its measures by well-known methods. Evaluation of the

suitability of both these methods and information they return to real-time
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dynamic resource management units in terms of their complexities and
robustness.

Developing traffic descriptors such as second order temporal statistical properties
of the energy distribution of a traffic bit arrival counting process and unique
traffic related cost functions (e.g. under-utilization cost, cost of renegotiation and
buffering).

Applying these descriptors and functions in the context of a renegotiation-based

dynamic resource allocation for VBR streams.

The contributions in this dissertation are as follows:

I.

Empirical and analytical framework for linking the measure of selfsimilarity
and estimators of the measure to online resource management [47, 49, 50, 51].
Analytical expression of the computational complexities of the variance-time
method and the wavelet analysis in the estimate of the measure of traffic self-
similarity.

Investigation of the impact of a window size used to capture data to analyze on
temporal statistical traffic descriptors.

Determination of the frequency aliasing between neighboring frequency sub-
bands in multi-resolution analysis of a traffic trace, and its impacts on the
resulting energy distribution and the estimate of Hurst parameter for Haar and
Daubechies wavelets.

Variation in the estimate of Hurst parameter with use of the Haar and Daubechies
wavelets, and different number of sub-bands.

A new descriptor for dynamic bandwidth prediction [52]
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- The use of discrete wavelet transform (DWT) to reveal the energy distribution
information of traffic data.

- The use of energy distribution information and its second order statistical
properties to predict future bandwidth demand of a VBR source.

3. Design of a bandwidth renegotiation unit [53, 54].

- Introduction of robust cost functions in bandwidth allocation decisions.

- Improvement of the performance of bandwidth-predictor based dynamic
bandwidth allocation methods after the deployment of the renegotiation unit.

- Development of a method to minimize the number of bandwidth renegotiations.

- Achievement of higher utilization and less 0.99 queue size quantile by using less
number of renegotiations than other methods in the literature (e.g. MSE, RED-

VBR, PSN-TDNN).

1.4 Outline
In Chapter 2, the issue of how to estimate the measure of selfsimilarity in real time
applications is investigated. This involves the comparison of the computational
complexities of the available estimators. The variance-time and wavelet analysis methods
are tested and the impact of different wavelet filters and number of sub-band frequencies
in the estimate of Hurst parameter is studied. Frequency characteristic of a wavelet filter
affects the amount of aliasing between neighboring sub-band frequencies, and
accordingly amount of energies measured in each frequency sub-band. This creates offset
in the estimate of Hurst parameter. Chapter 3 starts with a definition of a new traffic

descriptor, energy distribution among sub-band frequencies, and explains a novel
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approach in the design of a bandwidth predictor that takes the new traffic descriptor into
an account. The new bandwidth predictor is compared with commonly used methods in
the literature. In Chapter 4, the design of a bandwidth renegotiator unit with newly
defined cost functions is presented. This renegotiator unit receives feedback from the
dynamic bandwidth allocation unit, which is explained in Chapter 3, and decides when
and at what amount to request a new bandwidth renegotiation by also keeping the number
of renegotiations at minimum. In Chapter 5, the entire RDBA system, in its integrity, is
applied to a WFQ scheduler with two priority levels to dynamically update weights

assigned to each priority queue. Chapter 6 presents concluding remarks and future work.



CHAPTER 2

REAL TIME MEASUREMENT OF SELF-SIMILARITY

With will, fire becomes sweet water; and without will, even water becomes

fire.

Rumi

In Chapter 1, the measure of self-similarity, Hurst parameter (H), is already defined, and
the common methods that have been used in the literature [4, 5, 8, 13] to determine the
self-similarity level of a given traffic bit arrival counting process are noted. It is pointed
out that increasing level of self-similarity has negative impacts on the performance of
networks and also degrades the QoS of individual applications. The difficulties in
dynamic resource allocation to a self-similar traffic in real time are due to the practical
limitations in information capturing at very small time scales (e.g. ms), and processing
delay, which is an obstacle to a timely response to a need for resource adjustment. The
correct determination of the self-similarity level and how much of the previous data
information will be used in that computation is, therefore, crucial.

In this chapter, the three commonly used methods for estimation of the Hurst
parameter are analyzed in terms of their computational complexities: i) Variance-time
plot, ii) R/S pox plot and iii) Wavelet decomposition. As a result of the analysis
performed, it is concluded that the use of wavelet decomposition is the most efficient in
dynamic resource reservation and allocation where traffic self-similarity must be taken
into account. A defined new traffic descriptor is an energy distribution of traffic bit
arrival information process among different frequency sub-bands. With measure of this

descriptor the frequency aliasing between neighboring frequency sub-bands and how the

20
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aliasing affects the estimate of H for different wavelet types are studied.
Recommendations are made for the selection of which wavelet type and length to use and
the number of sub-bands in frequency domain to decompose traffic data.

Section 2.1 gives short background information on variance-time plot, R/S pox
plot and wavelet methods. Section 2.2 reveals the computational complexities of the
methods and drawbacks of each method for real time deployments, and compares the
precisions of wavelet methods when different scaling and wavelet filters are used in the

measure of Hurst parameter. Section 2.3 discusses the simulation results.

2.1. Hurst Parameter Measurement Methods

Intuitively, in traffic data consisting of data arrival information per unit time, mean is
simply the average number of data units (e.g. cell, packet, bit) generated in periodic time
intervals, and the peak is defined to represent the highest rate generated (shown in Fig.
2.1). For example, in Fig. 2.1 the mean and the maximum value of the synthetically
generated VBR bit stream are 4.21Mbps and 5.98Mbps respectively. If the service rate is
equal to or higher than the peak rate, no buffering would be needed, and the PLR would
be zero. On the other hand, a service rate lower than the mean rate results in very large
delays and higher PLR.

Choosing the service rate equal to the peak data rate is wasteful because very
rarely does the source reach its peak. The effective bandwidth, or the optimal service rate,
is the minimal service rate that can serve a stream such that the desired QoS parameters
such as average packet delay and PLR are met. Optimal decisions on effective bandwidth

would have to be made to operate the network economically.
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Synthetic VBR stream
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Figure 2.1 [llustration of peak and mean values on a synthetic VBR
stream

The decision of how to set the effective bandwidth is a function of traffic burstiness that
is delineated by the notions of variance/mean ratio of the traffic data arrival counting
process, and the self-similarity level represented by Hurst parameter, H. Increase in the
variance/mean ratio and in the value of H is integrated with raising burstiness, and
accordingly the queuing performance is degraded. Therefore, finding and accurately
measuring parameters to express the burstiness carry great importance. Especially in
network systems that dynamically allocate network resources based on the measurement
of these parameters, computational efficiency and accuracy of the algorithms or methods
employed become significant.

This study, first of all, compares currently well-known and largely used three
methods that return H as an estimate of the burstiness of any traffic data. These methods

are: variance-time plot, rescaled-adjusted range statistics (R/S) plot and wavelet
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approach. Optimum aggregation levels to be used in first two methods are determined. It
is proven that there is a limit in choosing the level of maximum aggregation and this limit
depends on the length of the data directly. If it is larger than a certain threshold, the
resulting Hurst parameter gets affected. Also, in real time and dynamic measurements,
there is a need to define a window length. Any change in the size of the window causes
fluctuations in the value of H. In the wavelet approach, it is illustrated that the energy at
each stage and the related stage relation is linear after a certain scale index and also that
the length of the wavelet filters directly impacts the energy amount computed in each
sub-band due to varying degree of aliasing that decreases with an increase in filter

lengths.

2.1.1. Variance-Time Method

A stochastic time series X =[X] Xy X;... Xy ] is said to be self-similar if the process is

covariance stationary. It means the process has constant mean and finite constant
variance and the corresponding aggregate process has the same correlation structure as
the original process or follows asymptotically the correlation structure of the original
process over large intervals. Any aggregate series with block sizes of m is obtained by
summing the original series in X over non-overlapping blocks of size m. This aggregate
process is shown as X™. The most important feature of self-similar processes is that the
variance of the arithmetic mean, y, decreases more slowly than the reciprocal of the

sample size m as expressed in (2.1).

var/X™ ] ~am™P m - wand a>0 2.0
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Figure 2.2 Typical output of the variance-time plot

After taking logarithms of both sides, the equation takes the form
log(var(X ") ~ ¢ — Blog(m) (2.2)
The slope, £, is related to the Hurst parameter in a way that H=1- /2. The typical output

of the variance-time method after applying to a synthetic traffic trace is given in Fig. 2.2.

The detailed related reading can be found in [4-8, 17].

2.1.2. R/X Pox Plot

R/S analysis provides another method of estimating the Hurst parameter. In practice, it is
based on a heuristic graphical approach that tries to exploit as fully as possible the
information in a given record. Given an observation vector X of size N,

X =[X{ Xy X3...Xy], the entire sample is sub-divided into & non-overlapping blocks,
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and the rescaled adjusted range R(;,n)/S(t;.n) for each of the new starting points

satisfying #; —1+n < Nis computed. The function Sz(ti,n) is the sample variance of

[X; . X; 2 X, .3...X, .,,]. Hence, as many as k samples of R/S is obtained for a given
L4+ A +2 A3 t+n p

value of n. R(¢;,n) is computed by (2.3).

Lit+e ti+e
R(t;,n) = max [( 2 X;) = (¢ +Dplt;,m)] -—Omin (X X)) = (c+Dut.m] (2.3)
<csn i=t, sesn i=t
R/S Pox Plot
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Figure 2.3 Typical output of the R/S pox plot

Hurst [55] found that many naturally occurring time series were well represented by the

H

relation R(f;,n)/S(t;,n) ~ an'” as n— oo with H typically around 0.73. On the other hand,

if the observation X; comes from a short-range dependent process, H is around 0.5. It is

clearly shown that the slope of the log of R/S is related to A, and this relation is used to

estimate the value of H by R/S method for a given time series as illustrated in Fig. 2.3.
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2.1.3. Wavelet Energy Method

Intuitively, the discrete wavelet transform divides a signal into different frequency
components and analyzes each component with a resolution matched to its scale. By
fixing a given scale j and studying time series data X at that scale across time, an
information about the scaling behavior of X can be obtained as a function of j. On the
other hand, fixing a point #; in time and investigating the wavelet coefficients across finer
and finer scales results in powerful techniques to be able to investigate the nature of local
irregularities or singularities in signal X, as a function of #,.

Wavelets with their built in scale localization are ideal tools to analyze the scaling
behavior of self-similar processes across wide range of time scales. An approximation of
a signal X at scale j, X; can be written as the sum of a coarser approximation X, ; at scale
J+1 and the detail D;., the difference between these two approximations (Fig. 2.4). This
procedure can be iterated for further scales. These coarse and fine approximations give
the multi-resolution analysis (MRA) of a signal. MRA guarantees the existence of a
scaling function ¢ (to express the approximation) and a wavelet @ (for the definition of

details) such that signal X can be written as
X=Y2<Xpjp >0k *2.2<X,0;4 >0 (24)
where
$ia =279 1k and ¢, (V=272 t-k)
The representation in (2.4) is called the wavelet decomposition of the signal X. The inner

product of X, d; ;, is referred to as the wavelet coefficients at scale j and time 2k. The

2
quantity fd j,k{ measures the amount of energy in X at that scale [39, 40]. If X is self-
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similar process with Hurst parameter He (1/2, 1), then the expectation of the energy E;

that lies within a given bandwidth 27 around frequency 274, is given by

EIE;] =.{%%}d » 2}:42‘1 %}MH 2.5)
J

N; denotes the number of coefficients at scale j and ¢ is a pre-factor that doesn’t depend

on j. Taking the logarithm of the both sides results in (2.6). The Hurst parameter can be
derived from the slope of the relation between log (E;) and scale index j.
log(E j) =[(2H —1)log(2)]j + const (2.6)
For an asymptotically self-similar signal, a linear relationship between the plot of

log (E;) and j will be apparent only for large times or scales (sec, min). This finding is

very crucial especially if the concern is dynamic resource allocation. Because, increasing
the number of scales or capturing low-resolution data introduces delay in computation of
applications resource needs. Therefore, determining minimum required number of
wavelet tree branches and feasible time scales to capture data directly impinge on the

performance of real time dynamic resource allocation algorithms.

o D)
c(1L,n) c(2,n)
i (D —

c(o,n) d (2,n)

HPF w@—.

LPF m@_» Scale 2
d(1,n)

v

v

Scale /

Figure 2.4 Illustration of the two level dyadic tree structure
(d(i,n):wavelet coefficients at scale 1)
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In the next chapter entitled “One-Step Ahead Bandwidth Predictor Design”, the
wavelet analysis is used not necessarily to compute self-similarity level and Hurst
parameter of the incoming traffic, but to compute temporal energy distribution in
different frequency sub-bands to predict the characteristic near future traffic behavior.

The wavelet approach in bandwidth prediction is explained elaborately in Chapter 3.

2.2. Empirical Studies and Results

2.2.1. Computational Efficiency of the Algorithms

Real time dynamic resource management systems involve buffering (windowing) certain
amount of traffic data to analyze temporal traffic characteristics, and certain decisions are
made based on the returned results. After each measurement the window is moved either
in overlapping or non-overlapping blocks of its size (WS). As illustrated in Fig. 2.5, the
size of the time window is directly related to the processing time of an algorithm. The
longer the window size, the larger the processing delay is. In order to capture long time
scale properties of a traffic trace, the window size should be enlarged accordingly.
However, in that case, the ability to track short time scale non-stationeries of the trace

becomes difficult.
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Figure 2.5 Illustration of windowing a traffic trace and
“window size”-“processing time” relation.

Processing complexities of variance time plot and wavelet methods used in
estimating Hurst parameter are compared at different trace lengths, aggregation levels
(only for the variance-time method) and number of scales in a dyadic tree. Assuming m is
the maximum aggregation level allowed in variance-time method and N the length of the

trace, in estimating the Hurst parameter the following number of arithmetical operations

(-1

1

is needed: In variance-time method at each aggregation level up to m, N addition

operations are needed where /=/,2..m. Mean at each aggregation level is the same and

therefore the total contribution is N due to the mean computation. Also, m different
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m
variance values are needed generating » 2N/i+2moperations. The total number of
=1

arithmetical operations f,,(m, N)needed in the variance time method is
71
foumN)y=NCQ Vi+m+1)+(2m-1) (2.7)
i=1
When the wavelet method is preferred (Haar wavelet and scaling filters) with »

representing the number of scales in a dyadic tree, the total number of operations

Jw(n,N)is

Fop(n,N) = (fw/zi) +3N —n 2.8)

i=1
This formula is valid only for Haar wavelet. Haar wavelet, due to its simplicity,
constitutes the lower bound compared with other wavelet types in terms of the number of
processing operations generated.

Figure 2.6 simulates the number of arithmetic operations needed in each method
when different length windows are deployed. It is obviously seen from the figure that
wavelet method needs less number of operations, and therefore is faster than variance
time method. In variance time method, the algorithmic run time linearly increases as the
number of window size and the determined maximum aggregation level increase.
However, in wavelet method increase in the length of the window has a linear effect on
the total number of operations performed, but not the number of scales has the similar

type of linear effect. f,,(n,N)is a function of the dyadic three level m such that

fiw(m,N) = K| (N)—K5(N)e™" where functions K;(N) and K>(N) are determined from

Fig. 2.6.
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Intuitively, for the same number of tree scales, f,,(n N)gets higher as N
increases. Marginal contribution of each scale to the computational complexity decreases

as 2" approaches the window length. As for R/S pox plot method, we have not done any
detailed computational time analysis. However, it creates, o(N°) arithmetic operations
that is quite more than those of variance-time and wavelet methods. Therefore, R/S pox

plot is not convenient to use for online computations.

2.2.2. Statistical Parameters and Their Dependence on Window Size
Depending on the size of analyzed data, statistical traffic descriptors may show temporal
variations. Therefore, correct pre-determination of the window size is non-trivial. Hurst
parameter is not a good representative of traffic characteristics such as burstiness. Two
time series with the same Hurst parameter might have quite different mean and variance.
Therefore, additional statistical measures are also needed and must be input to resource
management algorithms. Some of the parameters used as traffic descriptors in the
literature are:

Mean - Mean value of the time series generated in a given time interval.

Peak - The highest rate generated.

Variance/Mean - The ratio of variance to mean value.

Burst Length - The length of the burst. It is defined to be such that if a packet

inter-arrival time is greater than a time threshold, the burst ends.

Fig.2.7 illustrates two test arrays X; and X, with size 5 such that E[X{]=8 and
E[X5]=8, and max[X;] =18, max[X,]=15. In this example, X; has a higher standard

deviation. However, the peakedness of X, given by peak/mean is higher. The selection of
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1 2 3 4 5
index, n

Figure 2.7 Ilustration of two synthetic traces with the same
mean, but different burstiness and peakedness.

the arrays proves that a trace with higher standard deviation may not necessarily have the
higher peakedness. These parameters are used in the invented bandwidth prediction
method given in Chapter 3 as traffic descriptors, not in the time domain but in frequency
domain, to characterize energy distributions in different frequency sub-bands (e.g. mean
and variance of sub-band energies).

The statistical parameters such as Hurst parameter, mean and variance of bit
arrivals per unit time do not show stationary characteristics at different window sizes.
Selection of the window size as illustrated in Fig. 2.5 has a direct impact on the temporal
values of these parameters. A window size dependent variation in the burstiness
parameters is illustrated in Fig. 2.8. First, a synthetic time series of 1024 samples are
generated. Each sample of the synthetic trace represents the number of bits arrived within

a corresponding time slot. Second, a moving window function g(n) is defined, of which
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the size is 100 samples. Third, the statistical parameters of the data encapsulated by g(n)
is computed. These parameters are mean, peak/mean ratio, standard deviation and Hurst
parameter in time domain. Finally, the window is shifted in overlapping samples of size
10, and the computations are repeated. The results are compared with those of the
window size 300. The series of these values for each shift give the variability of the
parameters as a function of the windowing index.

From Fig. 2.8, it is concluded that although the Hurst parameter floated around
0.9, large-scale fluctuations for the mean and standard deviation of the data were
observed. Allocation of resources like effective bandwidth under the consideration of
only Hurst parameter would be misleading in this case and poor as well. Increase in the
mean value can be interpreted as the admission of new applications to the link or the
increase in transmit rate of currently available applications at that specific time. Although
with the window size of 100 samples, there is an increase and decrease in the mean rate,
when the window size is enlarged to 300 samples, the increase in the mean rate is not
observable. Similar inconsistencies are also apparent for standard deviation of the bit
arrival rate and peak to mean variability in each case as well. It is also clear that
depending on the size of the window the traffic statistics follow different trends.
Therefore, for real time resource allocation algorithms, optimum selection of the window
size is important to make decisions regarding at what amount to allocate network
resources to a single source or at what ratio to share the available resources among

multiple applications.
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2.2.3. Effect of Wavelet Filter Types and Filter Lengths on Energy Estimations

The effects of the number of filter taps in a dyadic tree in the estimation of Hurst
parameter are studied. Different length Daubechies wavelet filters are used in the
analysis. It is shown in [39] that there is a linear relation between the log of energy in
each frequency resolution and the related scale. The frequency spectrums of different tap
Daubechies low pass filters in Fig. 2.9 show that as the number of taps increases, the tail
of the frequency spectrum decays much steeper. 10-tap filter characteristic is closer to the
ideal rectangle frequency response than 4-tap filter is. This difference affects the alias
between sub band frequency spectrums and expectedly the resulting energy content in
each sub band. Explicitly in the high frequency sub-band, the energy content would be
less for 10-tap filter case than when the filter has 6 taps. Increasing the number of taps in

the deployed wavelet filter, based on the tail distribution of the frequency response as

15
o 1r
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=
o
g 10 taps
z 6 taps
o5t
4 taps
0 i Il i i i . SO &
0 0.5 1 1.5 2 25 3

wradian

Figure 2.9 Frequency response of Daubechies filter with 4,6 10
taps



37

shown in Fig. 2.9, introduces offset in energy content of each frequency sub-band. This
offset is less for the sub-band with highest scale index, that is the lowest frequency sub-
band in which most of the energy is available. The offset value can be illustrated by
applying the wavelet analysis to the first 8192 frames of MPEG-1 coded Star Wars trace
(40ms inter frame interval and 25 frame/sec). Fig. 2.10 exemplifies the energy offset due
to frequency aliasing. Intuitively, the energy offset is less between filter orders 2 and 5
than that between 4 and 5. The LMS fit returns Hurst parameters within the range
0.86+0.02 for wavelet orders of 2, 4 and 5. Two percent deviation in the estimate of H
due to different order wavelet filters is negligible. Considering the fact that deployment
of high order filters elevates the processing time and results in additional delay, low order
wavelet filters can be traded off in real time applications to the higher order wavelet

filters because the deviation in the estimate of H due to the number of taps is trivial.
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Figure 2.10 Impacts of the number of wavelet filter taps on signal energy
distribution among different sub-band scales.
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How does using a different type of wavelet filter affect the estimate of Hurst
parameter? This question is answered by comparing the estimates returned by Haar and
Daubechies wavelets.

Table 2.1 Wavelet Coefficients for Haar and Daubechies
n 0 1 2 3

Haar 0707  -0.707 - -

Daubechies 4-tap | -0./294 | -0.2241 | 0.8365 | -0.4830

Table 2.1 gives the wavelet coefficients for Haar wavelet and 4-tap Daubechies wavelet.
It is analytically proven that the energy content in the highest frequency sub-band varies
with the selection of the wavelet filter type, and that it is less in case of Haar wavelet than
that of Daubechies. The power spectrum of the self-similar signals asymptotically
follows a //w behavior where w=2xf, that is 1/|w’ |. In a linear system, having X(Z),
H(Z) and Y(Z) as the Z transforms of random input signal x(n), the transfer function h(n),
the output signal y(n) respectively, then

Y(Z) = X(Z)H(Z)H(Z ™) (2.9)
after substituting Z = /"

Y™y = X(e™)| He™) P (2.10)
For Haar and 4-tap Daubechies wavelet filters, the frequency responses A(n) from Table

2.1 are
Mpaar(n) = 0.7076(n) - 0.7076(n - 1) 21D
hyggup(n) = =0.12946(n) - 0.22415(n —1) + 0.83656(n — 2) - 0.48306(n —3)

(2.12)
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L - N « . .
where d(n—r) = {0 " r. In frequency domain, after substituting 1/| w” | into (2.10)
N

for both Haar and Daubechies wavelets, we have

T i /s i L.

[ Yiaar @™y = (w7 | 3 Bpgar (e ™ Paw (2.13)
0 4] i=0

3 . T 3 i 2

[ Yauun(@™) = (w7 | 3 by (De™™ Paw (2.14)
0 0 =0

v is related to the level of self-similarity and its relation to H is y=2H-1. For different y,
the comparison of the sub-band energies returned by Haar and Daubechies wavelet filters
are illustrated in Fig. 2.11. The offset in the high frequency sub-band energy computation
between two wavelet types increases as y goes larger. As explained before, Haar wavelet
analysis returns higher high frequency energy than Daubechies because its tail in

frequency domain decays slower than that of Daubechies.

High Frequency Energy Amounts in Haar and Daubechies Wavelets
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£ H H H : —ye zar
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E

Figure 2.11 High frequency energy estimation by the Haar and
4-tap Daubechies wavelet filters.
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Analysis of the Star-Wars trace also revealed the variation in energy estimation
between Haar and Daubechies wavelets with eight level filter bank. It is interesting to
note that, as illustrated in Fig. 2.12, throughout the first four scales the slope of the
energy curve is the same for each wavelet filter type. The resolution at scale 1 is 80ms,
that is twice the inter-frame intervals in Star Wars frame. The sampling frequency at the
fourth scale is 16 times smaller than the original due to 4 consecutive down-sampling
processes in the wavelet filter bank. The time resolution of the trace at scale four is,
therefore, 640 ms. This result suggests that either Haar or Daubechies wavelet filters can
be deployed in energy analysis as long as the number of scales is less than 4. Other
conditions to satisfy in choosing data vector size and number of wavelet filter bank scales

are discussed in the next section.

log(E |} vs Scale Index J For the Estimation of Hurst Parameter
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Figure 2.12 Comparison of the Hurst parameter estimate of Haar and
Daubechies wavelet analysis.
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2.3. Summary and Discussion of the Results

Taxonomy of techniques for real time detection and measurement of self-similarity in
network traffic is provided in this chapter. The pros and cons of the methods cited in the
literature are discussed in terms of the processing power they require to compute Hurst
parameter, and their applicability for online algorithms by using them on VBR traces are
demonstrated. The resolution at which traffic data is collected is seen to have a profound
impact on the estimation of the Hurst parameter, and on the performance of a
renegotiation based dynamic bandwidth management algorithms.

Assume s(?) is a bit counting process within the time interval (0, t]. Then, we can

express the increment process x(i) of s() in time slot 7 with length ¢such that
x; =s(t+i¢)—s(t+(i—-1)¢). Data vector X consisting of the latest M values of the

increments is X = [xyxy......x, /. X contains the data within time interval of length ¢M .

In dynamic resource allocation, we have to update vector X such that it might include
both new increments and some of the previous increments. If X does not include any
increment from its previous instant, it is called a non-overlapping vector, otherwise
overlapping data vector. Assuming a renegotiation is feasible in every a second, the
requirements in the following scenarios must be satisfied for effective online

renegotiation capability.
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Scenario A: If ¢M > aand we create vector X in non-overlapping fashion, we

lose the advantage of renegotiation capability. To generalize, lets have m present the
vector interval. If m>0, non-overlapping occurs as in Fig. 2.13. It takes (m + M )¢ time
unit to update vector X and fill it with all new samples. In such a case, it would be
difficult to follow high-frequency fluctuations with a period smaller than m¢ in a traffic

pattern and update allocated bandwidth to an application in a timely manner before

queue-size constraint is exceeded. On the other hand, increase in Mg introduces

additional processing delay to the completion of a renegotiation request.

1 M

% M+ M

time

me Mg
Figure 2.13 Illustration of the non-overlapping vector X of

traffic bit arrival counting incremental process with sample
size M

&

Scenario B: Assume k is the overlapping sample size in vector X (Fig. 2.14).
Inefficient use of renegotiation capability occurs when (M —k )¢ > a. Therefore one of
the conditions to satisfy is(M —k )¢ <a. Another condition is derived from DWT
processing delay. The vector X with sample size M can be fed into a wavelet filter bank

having log, M scales and (1 + logy M) frequency sub-bands. M must be a positive integer
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time
k¢ '+ (M—-k)é

Figure 2.14 Illustration of the overlapping vector X of traffic
bit arrival counting incremental process with sample size M

and a power of 2. A long vector size is a limitation due to increasing computation time in
DWT. Remembering the assumption that acceptable renegotiation interval is a seconds,

the sum of the processing time of DWT 7, and fill time 7 of vector X with new samples
must be less than a seconds.
Np+hy<a (2.15)

Itis known that 77 = (M — k)¢ . Therefore, 1, is derived from Fig. 2.6b such that

1, = K (M)~ Ky(M)e™] 2.16)
where n stands for the number of scales in wavelet filter bank, and ¢ is a constant
dependent on a CPU speed. After substituting » in (2.16) with log, M , the processing
time is

Ny =K (M) = Ky (M)e™ 82 M) (2.17)

The condition to satisfy in selection of £ and M is then,

e[ K\(M)=Ky(M)e 82 M J o (M -k )¢ <a (2.18)
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In its entirety, the comparative study reveals that the wavelet decomposition method 1s a

faster and more reliable method for real time analysis. The contributions in this chapter

are as follows:

The number of arithmetic operations required by the variance-time analysis is a
positive linear function of the maximum aggregation level determined to be one
eight of the trace size to have the enough number of samples in the variance
computation at the highest aggregation level.

The number of arithmetic operations generated in wavelet analysis asymptotically

follows K;— K,e ” curve where x is the number of levels in wavelet filter tree,

and K; and K are functions of window length N determined from Fig. 2.6b.

In wavelet analysis, the residual of the number of computations performed at two
consecutive scales is smaller as the scale index gets higher.

The size of the data windowed to analyze directly affects the values of statistical
parameters such as H, mean and variance of the traffic. Larger window size brings
about heavy computational load, and it also makes the tracking of the changes in
traffic characteristics difficult in real time resource management.

Deploying wavelet filters with large number of taps reduces the aliasing between
adjacent frequency sub-bands. On the other hand, small number of taps generates
positive offset value in energy amount in each sub-band due to increased aliasing.
Due to the //w behavior of selfsimilar signals and tail behaviors of the frequency
responses of filters deployed, the energy amount estimated by the Haar wavelet is
slightly higher within the first three sub-bands. However, this difference is

insignificant, and the Haar wavelet is preferred for its simplicity in computations.



CHAPTER I
A NOVEL ADAPTIVE BANDWIDTH ALLOCATOR
Sell your cleverness and buy bewilderment; Cleverness is mere opinion,
bewilderment is intuition.
Rumi

Traffic measurements are keys in the development of robust resource management and
scheduling algorithms. Bandwidth allocation methods are either static, or they adaptively
change the bandwidth assigned to applications. Adaptive algorithms predict the near
future behavior of a traffic based on its statistical properties such as average arrival rate
and peak to mean ratio and update bandwidth allocations.

The developed novel feedback mechanism uses wavelets, and measures the
energy of a bit counting process at the output of each dyadic sub band filter. Energy
information in each frequency band from fine to coarse scales in forecasting future traffic
arrivals is the key component. Specifically in VBR traffic, bandwidth requirements
usually change due to coding structures [8, 22, 23, 25, 29, 33]. For example, MPEG
introduces B frames and employs a group of pictures (GOP) structure that do not exist in
H.261. Each GOP starts with I frame followed by a P frame. B frames are smaller in size
(bits) than both P and I frames [22, 25, 45]. Traffic rate changes within a GOP can be
considered as short-term behavior. On the other hand, rate changes due to scene changes
can be considered as a long term traffic behavior. It is shown that short-term and long-
term fluctuations in the arrival pattern can be separated by wavelets. One can determine
dominance of either of these by looking into the energy distribution in respective

frequency bands. Finally, this information is used to update bandwidth allocation.

45
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3.1 An Optimum Bandwidth Allocation for Bit Arrivals
During Two Consecutive Time Slots

3.1.1 Aggregate Bandwidth Allocation Error

Assume x;is the number of bits arrived within time interval i and X;the allocated
service rate equal to the prediction of x;. The difference |x; —X; | results in either

buffering or capacity under-utilization. In traffic management systems where buffering
and under-utilization constraints are given, an adjustment in resource allocation may be
needed depending on the level of this difference. Assume that this threshold level is

denoted by r,,, ., and that arrival rates within » consecutive time slots are greater than

eg
their corresponding predictions, and an aggregate error up to interval n is e,, such that

[ X —x = ¢
| Xy —xp | +ep = ey
[X3—x3]|+ey = e3

The generalized form for the aggregate error in terms of each prediction error is
n -
S —xi ) |=e, 3.1
k=1

The probability that this aggregate error e, does not exceed a threshold level 7, is

given in (3.2).

Priey < tnag ) = Pt 31 (%4 = %) < Feg / (3.2)
k=1

The perfect solution to keep this probability at maximum is that Vk,(x; —x; ) =0. This

requirement actually involves a zero delay perfect rate predictor and a zero delay
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bandwidth allocation during each time slot. This solution is not practical. In bandwidth

allocations, if the aggregate error threshold is distributed among » allocations, and the

7 7
constraint that x; — 8 < % < xp +—% is satisfied for Vk , the probability in (3.2) can
n n

be also maximized.

3.1.2 Optimum Allocation

The main purpose in dynamic bandwidth allocation is to keep the queue size and under-
utilization levels below their constraints at minimal number of reallocations. To have a
gain in a number of bandwidth renegotiations, the starting point is at least to allocate a

fixed bandwidth r, during two consecutive time intervals (¢, 1+4) and (1+ 4, 1+24) as

illustrated in Fig. 3.1. If this is accomplished for each two consecutive time intervals in

non-overlapping fashion, the resulting number of bandwidth reallocations for a stream of

X]
e ql .................................. Jum e
ra
‘‘‘‘‘‘‘ : X + X7
X) L p 2
r, ittt T """""""""" |
t t+A t+2A time

Figure 3.1 An illustration of an optimum bandwidth
allocation for bit arrivals within two consecutive time slots

N samples would be N/2. To further decrease the number of renegotiations the same

approach is iterated over coarse time scales. Assume that x is the number of bits arrived

within interval (¢, 1+4), andx, within (1+ 4, t+24), and that r, is the service rate during
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each time interval such thatx, <r, <x;. Considering equal buffering and under-
utilization costs, the goal is to find the best possible 7, minimizing both costs
simultaneously. Under-utilization cost C,, can be expressed as in (3.3).
Cy=ra=—x|=r,—x| (3.3)
where the term | r, — xj | gives the buffering cost Cpwithin (7, t+4.). The best allocation
would be the one which keeps both costs at the same level, that is C,, = Cp, . After solving

this equality for 7,
(3.4)

X1 — X2

The difference operation gives the deviation from the optimum allocation

towards both x; and x,, thatis a = .

3.2  Multi-resolution Analysis and Energy Distribution
The new approach decomposes the time series traffic data, each element of which
consists of arrival rate information, into different frequency bands. This method separates
low and high frequency components in the arrival process. The energy distribution in
each sub-band frequency informs us of the contribution of these components to the main
traffic pattern. This information is used as a feedback parameter in prediction of the new

arrival rate. Assume a vector X, =/X(m M+1) X(n-M+2)...X(n} at any time instant »n

where £ is the time scale and M an integer. Each element X{(i) stands for the number of
bits received in time slot i. Any two consecutive bit arrival rate information can be

identified by their sum and difference. The difference operator reveals sharp changes in
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Figure 3.2 An illustration of the first scale filtering in
a dyadic tree structure with Haar wavelet coefficients.

the arrival rate. Arrival rate vector X, ,consisting of M consecutive time slots when

represented at time scale k+1/ is
Xy =1/2[X(n- M+ 1)+ X(n- M +2) Xpn- M +3)+ X(n- M +4).... X(n- 1D+ X(n)]
(3.5)
Difference of the arrivals between two consecutive time slots is denoted by vector

Y, . such that

Yy =12[X0n- M+ 1)= X(n- M +2) X(n- M +3)= X(n- M +4).... X(n-1)— X(n)]

(3.6)

It is easily seen that
Xy (0 =0.5(X 4 2i~1)+ X (20) 3.7
Vi) = 0.5(X 4 (2i 1) = X 1(20) (3.8)

The subject of interest is the dynamic behavior of the traffic that manifests itself through
the differences among neighboring samples. (3.7) and (3.8) imply the scaling and wavelet
transform coefficients of Haar wavelet at scale & with only difference being the value of

the constant multiplier. The scaling and wavelet coefficient vectors of the Haar wavelet

are ¢=[1/42 1/J2]and ¢ =[1//2 -1/y2] respectively (Fig. 3.2). It is true that for Vij,
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traffic bit arrival rate process is positive, that is all X;(j)=0. Wavelet domain modeling of
positive processes requires the constraint that a positive output is ensured. To guarantee
the constraint that the process is positive, the sufficient and necessary condition is
L}i ; O')t < X;(). The Haar wavelet provides this constraint, but not always Daubechies

does. The proof is easily seen by conforming (3.7) and (3.8) to the Haar wavelet

transform such that
X 2i-1)=2"2(X, ,(0+Y, () (3.9)

X 20) =22 (X y(0=Y gy () (3.10)
The Haar wavelet coefficients of a stationary signal will be identically distributed with
E[Y ()] =0for Vi. Passing the original traffic data X, through scaling and wavelet
filters in the dyadic tree returns the coarse component, X, _,, and, the details, ¥, ., of
the original trace. Therefore, using a discrete Haar wavelet transform on the measured
arrival rate data is a strong tool to reveal irregularities and sharp changes in traffic
behavior. Having R as the MxM wavelet transform matrix composed of parameters of
vectors ¢ and @, and X as the vector data with length A, the wavelet transform operation

can be expressed as W=XR [22, 29] where W is the wavelet transform vector with size

M. Energy of a stochastic process X at scale k can be found in (3.11).

2k 5
Ey = 2o G.11)

n=2%"147

where k: scale index andk =log, size( X )~k +1
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3.3  Self-similarity and Sub-band Energies
Let X denote a finite wide-sense stationary long-range dependent process with Hurst
parameter H where 1/2<H<]. The time series X=/X; X, ....X, ] is said to be self-
similar if the process is covariance stationary. It means the process has constant mean and
finite constant variance and the corresponding aggregate process has the same correlation
structure as the original process or follows asymptotically the correlation structure of the
original process over large intervals. The spectral density Sx(w) of X follows a power law

near the origin [4, 5].
Sy(w)ecdw > as woa (3.12)

where ¢ is a finite positive constant. For selfsimilar signals, with //w behavior, the

expectation of the energy within a given bandwidth 27 around frequency 27w is given by

ELE, ] = [Sx (w202 w ) dw (3.13)

where @(w)is the Fourier transform of ¢(n)[39]. It is also shown in [39] that

log, E[Ejjzlogz(%z Yj(n)fz):(i—zﬁ)ﬁ(: (3.14)

Jjon

N, stands for the number of elements in} jat filter-bank scale j. It is clear from (3.14)

that energy distribution at each scale is related to the level of selfsimilarity of the traffic
data. The higher the degree of selfsimilarity, from the perspective of queuing
performance, the longer buffer is needed [47 and references therein]. Energy distribution
in multi-resolution analysis provides information about the level of H. Therefore
consideration of energy contents of a signal at different time scales in dynamic bandwidth

allocation algorithms brings out a strong advantage over other methods to prevent the
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impacts of traffic selfsimilarity. Because of the drawbacks mentioned in Chapter 1 of the
wavelet transform when looked at the energy per scale and Hurst parameter relation,
usage of (3.14) is not feasible for real time resource prediction and management. It
requires a long traffic trace with enough sample size to be buffered for analysis within
more than 8 dyadic tree branches. Our approach therefore stays away from this drawback
by not directly looking at the energy distribution vs. Hurst parameter relation, but second

order statistical properties of the energy distribution of the analyzed trace.

3.4  Multi-Resolution Algorithm Design
3.4.1 General Theory and Basic Properties of the Energy Vector
In order for the multi-resolution algorithm to respond to sudden changes in traffic pattern,
window size with 8 samples is deployed. The area covered by each window is called X
and the vector output of the wavelet transform of X is a “wavelet unit”, W such that

W = RX = [wywywywywswewywg]| . The transform coefticients and their relation to the

multi-resolution scaling is presented in Fig. 3.3. Energy in each scale can be found by
applying (3.11) to the data vector . scale 1 reveals the highest frequency detail within
the original traffic data and the detail is expressed by four coefficients. The detail in scale
index 2 is assigned to only two coefficients. The first element in vector W stands for the
data content in coarsest scale. The sum of the energies in each frequency band is bounded
above by the total energy of original data X. Strong empirical evidence contends that the
wavelet coefficients from 1/f processes are weakly correlated both along and across the

scales. In [39] it is shown for the Haar wavelet, the variance progression of the wavelet

transform of Fractional Gaussian noise satisfies var(Wj (n)) oc 27¥(2#=1)  The ratio of the
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Figure 3.3 Wavelet transformed data
vector and transform coefficients at each
scale

energies in two subsequent scales can then be related to the Hurst parameter as

__var(Wi(n)) _52mH-1
var(Wii(n))

, [48]. The stability of the arrival rate is proportionally related
to the increase in this ratio.
Assume that X is a vector of size N of which each element represents bit arrival

rate in time slots (Fig. 3.4). We introduce the following properties for the Haar wavelet

transformed data vector which are used in dynamic bandwidth allocation.

)
Iy X,
b a X3 Xs
q’i X4 XN
& X
e 4
"=
RSN T A R S B ittt
b
<
2 3 4 5 N
time slots

Figure 3.4 Ilustration of the increments of packet counting
process.



54

Property-1

If for Vi, j, X(i)=X(j) where 0<i, j<N, i# and i, jeZ', energy content in each high
frequency band becomes zero and traffic is considered to be constant bit rate (CBR)
throughout the measurement interval. In this case the entire energy of the input data is
present within the lowest frequency band. The minimum bandwidth to allocate to this
traffic must be equal to X(i). We call this rate a DC source rate.

Property-I1

If X is heavy tailed according to a Pareto distribution with shape parameter @, and

location parameter s, a new process X ., generated by (X — X, ) also has the same

shape parameter where X ,,;, is the minimum of X.

Proof: Assume P{X <x} =1~»{~'IE J%. Let Y be a new random process such that Y=X-a
x

where a is a constant. P{Y<y}=P{X<y+a}. The cuamulative distribution function of V is

F(y)=FK( y+a)=1~(—£~)” . As a result, both X and Y has the same level of self-
y+a

similarity, however different bandwidth demands. This property is given to point out that
in wavelet transformation we use X-Xp as an input, and this constant subtracting from
the original data does not impact the self-similar characteristics of the original signal.
Property-111

If the elements of X show an increasing characteristic in time such that X(n)> X(n—-1)
where /<n< (N+1), the energy distribution in each frequency band increases from finest

to a coarser scale, being the lowest in the highest frequency region, £/ E ;] > E[E; ] .
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Property-1V
A decrease in the coarse scale energy while the fine scale energies are stable is an
indicator of a linear decrease in traffic volume.
Property-V
Assume that V; stands for the variance of the energies among & scales in time slot i, M, for
the mean value of energy contents, and U; for the utilization. The following statements
hold:
- Vi Viand M, <M, =U;<U;
(Representative of possibly approaching OFF interval or departing flows (in case
of an aggregate traffic))
- Vie;>Viand My > M, =U; > U,
(Representative of added flows to an aggregate traffic or an approaching ON
interval)
- Vi <Viand My <M, 22U <U;
(Representative of traffic getting smoother than its current pattern)
- Vi<Viand M;. > M; U, 1-> U,

(Representative of traffic getting smoother with increasing utilization)
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3.4.2 Bandwidth Decision Unit (BDU) & Four Different Decision Types
BDU is used to analyze the wavelet transformed traffic data. It takes the energy vector as
an input, and also some external feedback parameters such as momentary queue size (Fig.

3.5). BDU keeps track of the second order statistical properties of the energy vector and

Analyzer BDU
Decision M ;L Mechani
E ecision Making Mechanism Bandwidth
prediction

External feedback parameters
(e.g. momentary queue size)

Figure 3.5 Analyzer & Decision Making Mechanism (DMM) having
the energy in each scale as a feedback parameter and returning the
new bandwidth to allocate.

computes the new variance and mean value of energy distribution among all the
frequency sub-bands. The new values are compared with the previous values maintained
in a state table. Under the highlight of the properties of energy vector explained in the
previous section, one of the four modes are activated within the unit and a new bandwidth
decision is released to the renegotiation control unit (RCU) of which the functionality is

explained in the next chapter.
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Pseudecode representation of the decision mechanism after performing the wavelet

transformation is given below:

if View = pre
if Myey 2 M pre
{Perform method-1V}
else
{Perform method-11I}
end
else if M oy < M pye
{Perform method-1}
else
{Perform method-1II}
end

In Figure 3.6, the architectural diagram of these four methods using the signal energies in
each sub-band and momentary queue size as illustrated. The algorithm first filters out the
DC component in traffic measurements. This DC value is taken as the lower bound for
the bandwidth allocation in the next time slot to prevent the application from bandwidth
starvation. The signal at the output of the DC filter, X, consists of low and high
frequency components. The signal is fed into a filter bank in which high pass filter is
composed of Haar wavelet coefficients and low pass filter is of Haar wavelet scaling
coefficients. The signal X is analyzed by decomposing it into three high frequency sub-
bands based on the recommendation in Chapter 2.

Energies in each sub band are used as representatives of the traffic volume within
the related frequency band. The traffic volume that generates the maximum energy is
added as the second component to the bandwidth allocation in the next time slot.
Because, it is the underestimation that may cause the buffer congestion while the

overestimation can only result in the underutilization of the available bandwidth, we take
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the contribution of maximum energy content in each adaptation interval for the
bandwidth allocation. Four different methods of bandwidth prediction decisions within
the DMM are as follows:

X is the data vector before low pass filtering, R the wavelet transformation matrix, and
W=XR is the wavelet transform coefficients vector. If the wavelet unit consists of M
samples where M=2 k>0 and e€Z’, the matrix R has the size MxM. The wavelet
transformation is performed over data vector X in moving blocks of size M with (M-])
overlapping samples. In Fig. 3.6 the new bandwidth allocation is based on

BW(n+1) = X pe(n) + Eygn) + quene_size(n) (3.15)

where # is the index of time slot. We modify the decision block in Fig. 3.6 such that the
queue size information is not needed for bandwidth renegotiation without degrading the
queuing performance and without increasing the capacity underutilization. Here we

introduce four additional wavelet-energy approaches and compare their performances.

Method-1
This method dismisses the queue size information from (3.15) and compensates the new
bandwidth allocation by including a component that provides bandwidth contribution

with energy equivalent to the superposition of all the energies.

K
BW(n+1)=X pe(n)+ | 3 E, (i) (3.16)
i=]

where K is the number of scales the data is decomposed into.

Note: E, (i): Energy in sub-band i at discrete time instant 7.
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Method-11
Being different from method-1, the bandwidth compensation is provided as the sum of K
components each of which is representing a bandwidth contribution such that the energy

of each component is the same as the energy in one of the sub-bands.
K
BW(n+1)=Xpc(m)+ 3 \E,(0) G-17)
i1

Method-111
It is illustrated before in Fig.3.6 that X'=X-Xpc. Let us denote w  as the wavelet
transform of k" block of X, and W, of the ¥” block of X, the data unit before DC

M
filtering. The first element of vector w, is W (I ):—jéw "X, (i), and similarly
j=]

1=

M
X)) It is easily shown that W, (1)=W,(1)- X pc-

W_k(l):i
M2

This method replaces Xpc in (3.16) with W, (1)which is the average of X in K"

block. The condition that w,(1)>Xp is always true. Therefore, it is clear that this

approach allocates more bandwidth in each renegotiation than method-I does. We
compare the percentage improvement in queue size performance by the marginal increase

in bandwidth reservation with method-1.

Method-1V

This method replaces Xpcin (3.17) with W, (1). It intuitively causes lower utilization than
method-I1I does.
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3.5  Results and Discussion

3.5.1 Comparison of Wavelet Analysis with RLS and LMS

In this section, the drawbacks of LMS and RLS based predictors are presented as
compared to the wavelet analysis. RLS algorithm’s main disadvantage is its
computational complexity. For real time applications, RLS is not proper to use. On the
other hand, LMS is an adaptive approach and it does not require prior knowledge of the
autocorrelation structure of predicted data. Therefore, it can be used as an online
algorithm. The algorithm starts with an initial estimation of the filter coefficients w(0).
However, when the LMS algorithm is applied on a test sequence shown in Fig. 3.7, the
finding has revealed that LMS fails to follow the level changes, and creates large spikes
in both falling and rising edge of the test pattern meaning that these large spikes maps
onto the over or underestimation of the traffic level in the next interval. Even though it
recovers the utilization level after a spike, the high value of the spike may force the
renegotiator unit to start a new renegotiation request and cycle, though it is not needed.
Because of this impact on the renegotiation requests, we hesitate to deploy LMS method
in real time bandwidth allocation system with bandwidth renegotiation capability. The
wavelet method does not create spikes, and further it follows the traffic level with a
smooth trend. Wavelet based algorithm has a similar transition performance as RLS.
However, when the computational complexities are subject to discuss, RLS is not

preferred.
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Traffic bit arrival information process at time interval n, X(n) is a positive

process and therefore, the prediction of X(n+1), X(n+1) must also be positive. As
illustrated in Fig. 3.8, RLS and LMS based predictors violate this property and returns a
negative prediction result. Negative predictions also cause RCU to malfunction and to
start a renegotiation cycle that may not be needed. These extra renegotiation requests
increase the number of granted renegotiations. To summarize, wavelet based method is
superior to RLS and LMS based predictors because of its simplicity and suitability for

positive signal constraint.

3.5.2 Queue Size Performance Results

First, the wavelet-energy method is compared to the other classic approaches under the
constraint that the number of renegotiations are kept the same, that is one renegotiation
every sec. The comparison is made in terms of average queue size and mean square
bandwidth allocation error. An infinite buffer is assumed, and therefore, no packet loss
due to a buffer overflow. In every time slot that maps onto a Is interval, the algorithm
returns a bandwidth prediction.

The subject input traffic is of heavy WEB browsing activities generated in the
OPNET environment with peak/mean 17.03. In Fig.3.9a the traffic is shown with vertical
axis representing the number of bits received and horizontal axis the time index with an
interval of 1s. Fig. 3.9b illustrates the simulation of the queuing performances of classic
previous, average, previos+average, and previous+queue size and wavelet-energy

bandwidth allocation methods.
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Figure 3.9 (@) A 5 min long synthetic WWW traffic trace with
peak/mean=17.03. (b) Queuing performance of different bandwidth
allocation algorithms.
The most conservative allocation method is to reserve bandwidth by the traffic's
peak rate, which would lead to the excessive use of transmission capacity with zero
buffer size. A real time peak rate algorithm would require an overestimation of the traffic

by a significant percentage. It also results in zero loss rates. Small but nonzero losses and

delays are acceptable for typical multimedia applications. The ability to manage delay
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requirements of applications together with effective use of network resources is
important. Therefore, the peak rate algorithm is not comparable to the other methods
mentioned in this paper.

Performance of average strictly depends on the number of past samples, which
are averaged to predict the bandwidth demand in the next time slot. Therefore, correct
determination of this parameter is a must. Recalculation of this parameter is needed for
different traffic traces with different characteristics, which makes this method inept. It is
quite clear in Fig. 3.9b that Previous+average outperforms previous. However, this
method involves the correct determination of two parameters: the number of samples to
average and the weight ratios between previous allocation and the result of averaging. A
large improvement in queuing performance by the deployment of wavelet-energy
information against other classic algorithms is observed. The wavelet-energy algorithm
converges faster than all others, results in less queue size, and accordingly smaller
queuing delays.

Average inefficiency, ¢a,b), in resource allocation within time interval /a,b/ can
be analytically given by the ratio of the area between the curves of x(7), the original
traffic data and y(?), the allocated bandwidth function, to the length of the time interval,
(b-a), (3.18).

N 5
© 2(W(i)=x(i))

|
b)=—i= 3.18
(_){9‘%(0, 4 N b—a ( )

where i is the index of each time slot and N the total number of time slots. This
performance metric has acceptance in the literature [35]. However, it is not a good

indicator of queue size performance of an algorithm. A method with higher ¢a b), may
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result in smaller queue sizes. Assuming the updating period, which is (b-a), is 1s, (3.18)

becomes the MSE of bandwidth allocation process. Table 3.1 denotes the mean square

bandwidth allocation error of each method.

Table 3.1 Mean Square Bandwidth Allocation Error (MSBAE)

Method MSBAE (kbits) Avg. Queue Size
Previous+queue size 362 1142Kb
Wavelet-energy 302 703Kb
Previous 239 1198Kb
Previous+average 203 1083Kb
Average 174 939Kb

The values in Table 3.1 are obtained by applying the methods to WWW traffic with self-

similarity parameter H=0.52. According to Table 3.1 wavelet-energy method is not the

best to have a minimum MSBAE. However, it results in the smallest queue size among

the others. The difference in MSBAESs of average and wavelet-energy is about 134kb,

that is twice less than the improvement in queue lengths gained by deployment of the

wavelet-energy method. Four different wavelet-energy decision types are also compared

in terms of their utilization and queue size performances. Table.3.2 below contains queue

size and utilization performances of these four wavelet methods for the same synthetic

trace.

Table 3.2 Statistical Properties of Bandwidth Utilization of
Four Different Wavelet Energy Methods.

Mean utilization Avg. Queue Size (Nrm) PMR
I 0.98 0.121 1.58
1l 0.84 0.051 1.51
1 0.75 0.022 1.41
1w 0.65 0.008 1.44

Note: PMR-Peak to Mean Ratio
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Assume BW;is a bandwidth amount allocated by wavelet method i where i=1,2,3.4.
Considering the fact that, from (16) and (17), BW, > BW3 > BW, > BW;, the highest

utilization and the highest queue size are expected from method-I, and the lowest
utilization and the lowest queue size from method-IV. As shown in Fig. 3.10 method-I has

the worst queuing performance and method-1V the best.

- x 10 Queue Size Pedformance of Different Wavelet-Energy Methods
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Figure 3.10 Queuing performances of four different wavelet-
energy approaches in dynamic bandwidth allocation to
applications traffic.

The wavelet methods are applied to VBR Star-Wars trace. Fig. 3.11 denotes the
utilizations and average queue sizes achieved by each method. Average utilization from
has a negative slope, being minimum for method-IV and maximum for method-1 as
expected. However, as going from method-I through method-1V the marginal gain in

average queue size is not linear. In a scenario such that the buffering cost is higher than

the under-utilization cost, and a low queue size is required, deployment of method-IV
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Figure 3.11 Utilization and queue size trade-off in the introduced wavelet-
energy methods when applied to Star-Wars trace.

would be preferred to the other methods. Similarly, if the capacity is required to be
highly utilized, method-I would perform better. If the costs are time variant, switching

from one method to another would increase the achievable utilization level and decrease

the queue size.

3.6 Summary
The wavelet-energy based bandwidth predictor is an easy to implement method, and
therefore suitable for online prediction based bandwidth allocations. Its basic purpose is

to split high frequency and low frequency fluctuations of input traffic, and compare the
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signal energy volumes in different frequency sub-bands by looking into the traffic energy
distribution. It does have neither the "negative prediction" drawbacks of LMS and RLS
methods, nor their computational complexities. On the other hand, it achieves low queue
sizes at the expense of relatively low utilization level when compared with traditional
bandwidth predictors such as average, previous, average-+previous, RLS, LMS. Even
though this resulting low utilization seems to be a disadvantage of the wavelet analysis,
the main purpose is to support bandwidth renegotiation unit with proper feedback
information. The determination of an actual bandwidth amount to allocate for VBR
traffic is performed by a Renegotiation Control Unit (RCU). The new RCU design
explained in Chapter 4 increases the utilization level returned by BDU, and also

maintains given queue size constraints.



CHAPTER IV

MINIMIZATION OF BANDWIDTH RENEGOTIATIONS

In this chapter, a new scheme is introduced for real time asynchronous bandwidth
renegotiation for variable bit rate (VBR) traffic. This new method presents a fine-tuning
functionality for the dynamic bandwidth allocation scheme designed in Chapter 3, and
determines the optimum bandwidth renegotiation time and bandwidth amount to allocate
to a VBR traffic source as illustrated in Figure 4.1 by minimizing predefined cost
functions. Unlike the bandwidth allocation with maximum number of renegotiations,
renegotiation-cost effective solution produces a step pattern. The Renegotiation Step Size
(RSS) and the Inter Renegotiation Interval (IRI) are traffic dependent time varying
parameters. The traffic rate predictor designed using wavelets in Chapter 3 provides a

feedback to the system. The results show that this new scheme minimizes both under-

Number of bits .. .
. Renegotiation-cost effective
transmitted BW allocation
0 BW allocation with maximum

/ R 3% number of renegotiations

RSS

-‘-utln.,l..
»

time

Figure 4.1 An illustration of renegotiated bandwidth allocation.
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utilization of the available capacity and queuing delays. The new method can be deployed
in Priority Queuing disciplines to dynamically manage the resources allotted to each
priority levels.

ATM networks provide connection-oriented services with guaranteed bandwidth.
in order to carry an IP datagram in such networks, a virtual circuit (VC) has to be setup
with an associated bandwidth requirement. Once a VC is setup, the adaptation layer has
to decide how long to keep the VC active with the initial bandwidth assignment. If the
rate of the incoming packets matches the specified bandwidth allocation, the VC is kept
active [26, 27, 41]. However, if packets arrive at a higher or lower rate, there is a need to
readjust the allocated resource or even to terminate the VC. Periodic algorithms adjust the
bandwidth allocation in fixed time intervals. On the other hand, adaptive algorithms
respond whenever a change is necessary as long as the updating process is not frequent.
Readjusting can be done in two different ways namely by either closing the existing VC
and setting-up a new one with new allocation and by changing the allocation of the
current VC in lieu of terminating it [26]. The latter option, if preferred, must be
supportable by the network. Indeed, the Q.2963 series of recommendations belongs to the
DSS 2 family of ITU-T Recommendations, and specifies the procedure of the
modification of traffic parameters of a call/connection in the active state.
Recommendation Q.2963.3 defines the procedure of the ATM Traffic Descriptor
modification with renegotiation that is equivalent to that specified in Recommendation
Q.2962. Therefore, it is assumed that network provides such a support that bandwidth

allocation can be updated without terminating a VC.
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Each renegotiation process involves a signaling between the network and the
source. The rate of renegotiation is a trade-off between signaling overhead and bandwidth
utilization. High renegotiation frequency loads the network with heavy overhead. On the
other hand, long inter-renegotiation intervals make the follow-up of the traffic bit rate
pattern difficult. Renegotiation is only feasible in time scales of several seconds [37]. In
[38], it is suggested that minimum of 1 sec and an average of 5 seconds or more for
renegotiation is a good compromise. It is crucial that optimal number of bandwidth
renegotiations must be performed under predetermined cost constraints such as
underutilization ratio and packet/cell transmission delay.

The new end-to-end design brings a solution to the real time dynamic resource
management problem. This system consists of two main parts: the Bandwidth Decision
Unit (BDU) and the Renegotiation Control Unit, RCU. The BDU, as explained in
Chapter 3, uses wavelets and signal energy distribution in frequency domain to compute
the bandwidth demand of a source for the next discrete time slot. This chapter elaborates
on the RCU.

The cost functions and strategies in determination of IR and RSS are explained in
Section 4.1. Performance results of the new optimized renegotiation method when
applied to synthetic VBR bit stream are given in Section 4.2, together with the
discussions. In Section 4.3, the RCU design is implemented to provision QoS to MPEG-1
Star-Wars traffic trace. The 0.99 queue size quantile and average utilization are compared

with static bandwidth allocation and other methods in the literature.
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4.1. Definitions of Cost Functions
In order to avoid either over-utilization (increasing queue size) or under-utilization, the
bandwidth allocation should be dynamically updated to follow-up the temporal variations
in the traffic pattern. However, each update (renegotiation) process involves a signaling
between a network and a traffic source. High renegotiation frequency loads the network
with heavy overhead. On the other hand, a long IRI decelerates the follow-up of the
traffic bit rate pattern. The new method takes three cost functions into consideration
together with the output of bandwidth prediction and allocation scheme given in Chapter
3. These three functions are (i) under utilization cost (ii) renegotiation cost and (i7i) buffer

size (delay) cost.

renegotiation control unit
rin) +—»{ RCU a(n+1) l""’*—“—i
71

Figure 4.2 Renegotiotion control unit (RCU)
with input and output parameters.

Let a(n) be the optimum renegotiated bandwidth, and r(n) be the traffic bit arrival
information where n represents a time index. An optimum bandwidth allocation a(n+1)
for real-time traffic for a future time slot n+/ is determined, given a traffic bit arrival
information r(n), allocated bandwidth a(n), and the prediction for the next time slot

F(n+1) which is provided by the BDU as in Fig. 4.2.
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In order to reach the optimum solution, a total cost function J is designed which
includes costs of under utilization wu(n), under allocation (buffering) b(n), and
renegotiation 7(n). Buffering and under-utilization events are illustrated in Fig.4.3. Total
cost function J is defined as

J = wpb(n)+ wyu(n)+1(n) (4.1)
The parameters wy, and w, represents the unit cost (cost weight) shaping functions for
under and over-utilization. If equal cost weight, w, is considered for both b(n) and u(n)
J =w(e(n))+T(n) “4.2)

where e(n) is the bandwidth error such that

e(n) =r(n+1)—a(n)+ ir(z‘) —a(i) (4.3)

i=0

buffering a(n

under usage

bit arrival rate

--------------------

time Bandwidth renegotiation

Figure 4.3 Areas of under-utilization and buffering with relation
to a(n) and r(n).
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The bandwidth error function e(n) is equal to u(n) in case of under-utilization, and equal
to b(n) in case of under-allocation. It also includes the predicted bandwidth error for time
n+1 to include the effect of keeping the same bandwidth allocation level. The total cost J
and its relation to the defined cost parameters are analytically represented in Fig. 4.4. It is
clearly seen that the new method satisfies hard buffer constraint and relevantly delay
requirement for an application via proper characterization of w(e(n)). The crossing point
of w(e(n)) with T(n) line maps onto the time instant to resume renegotiation process, and
therefore possible queue size exceeding the given buffer size constraint is avoided. Also,
the intersection point on the left side of the ./ axis limits the under-utilization level, and

the system starts a new renegotiation cycle.

T
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Under-usage: e(n)<(  Buffering: e(n)>0
Figure 4.4 Analytic representation of the predefined cost functions.
Using separate cost terms for under-utilization and under-allocation enables us to

adapt the optimization method for various types of platforms: Weighted Fair Queuing

(WFQ) algorithms, ATM switches, etc. In a WFQ scheduler, weights assigned to delay
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2 | Bandwidth allocated
0 Over-utilization level
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(a) time
Bandwidth allocated

]
kS L

} Under-utilization level

Figure 4.5 Illustration of the application dependent error
controlling term suitable for WFQ (a) over-utilization
level for FTP (b) under-utilization for video streaming.

sensitive applications (i.e. video streaming) might be controlled by under-utilization error
term, while service weights for low priority applications such as FTP might be controlled
by over-utilization error term as illustrated in Fig. 4.5. An under-allocation happens if the
allocated bandwidth is not enough to handle the bit arrivals. In case of an under-
allocation, the excess bits are buffered. The buffered bits are sent when the arrival bit rate
is less than the allocated bandwidth, thus, there is available bandwidth to forward bits
from buffer. An under-utilization u(n) occurs, when the allocated bandwidth is greater
than the bit arrival rate, and the buffer is empty. Therefore, the allocated bandwidth is not
fully utilized.

One cost term can be given a higher weight than the others with respect to the

changing network conditions, i.e. buffer cost can have nonlinear dependence on the
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current queue size, cost of bandwidth can be alternating at the certain times of the day.
The vectors uand b of size M consisting of the last M values of under-utilization and
over-utilization levels are orthogonal to each other, that is u L 5, because either of them
occurs at a given time slot. Therefore, each moment of the total cost function .J indeed
contains only one of them in addition to the renegotiation cost term. Obviously, the
bandwidth cost w(e(n)) corresponds to the under allocation cost if e(n) is greater than
zero, and under utilization cost otherwise.

Optimization of J outputs information about the next RSS and the time of
activation. Assume that a renegotiation is needed for time slot n+/. RSS would be equal
to [fa(m+1)-a(n+1-k)] where k is the number of time slots since the last renegotiation.
Afterwards, a(n+1) which minimizes the cost function is computed.

a(n+1) = argmin(J) = argmin{w(e(n)) + T (n)] (4.4)

To understand the properties of minimization, let us investigate the impact of each
cost term on J. It is worthwhile to realize that the renegotiation cost 7(n) should be high if
there was another bandwidth renegotiation which occurred prior to time instant », that is
at time instant equal to (n— &) where d'is a small interval. An increase in the value of &
means a long IRI since the last renegotiation time. Increasingd lowers the cost of
renegotiation, because renegotiation becomes more affordable. Therefore, the time
difference & between the current time and the last renegotiation time determines the
magnitude of the cost function 7(n). Let ¢ be a fixed renegotiation cost per unit time.
After a renegotiation process is complete, the cost to resume a new renegotiation in the

next time slot would be maximum, 7},,,, . However, the cost would be decremented by¢g

per time slot until a breaking point is reached. The “breaking or the crossing point” is
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defined as the time at which renegotiation cost function and w(e(n)) intersects. Since
there would be k time slots passed after the last granted renegotiation request, the

lessening in the renegotiation cost from time (n+1/-k) to n+1 is expressed as

n+l
T(n)=Tnax =9l 2.6(a(i)—ai-D)] (4.5)
i=n—k+1
I, m=0 . . e
where o6(m) = {0 0 Changes in queue size and under-utilizations costs after
, m#

each renegotiation process are illustrated in Fig. 4.6. In this example, a renegotiation is

requested because of increasing queue-size. After the renegotiation at time instant 7, If

the bandwidth cost function w(e(n)) becomes larger than renegotiation cost 7(n) for the
predicted traffic, it becomes advantageous to renegotiate to prevent w(e(n) from getting

larger. If a time varying dynamic renegotiation cost function is not used, but a constant

T(t), renegotiation cost

Queue size cost Queue size cost
before renegotiation after renegotiation
T e TR / Underutilization cost

4] ) t, time
’< IRI 4

Figure 4.6 Queue size and underutilization costs with relation to
renegotiation cost function and renegotiation times.
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one such that 7(n)=const. regardless of », the number of renegotiations may multiply
when the newly allocated bandwidth is incapable of reducing the under-allocation or
under-utilization costs quickly, because .J starts to fluctuate close to the decision
boundary. Each time bandwidth cost function becomes higher than the renegotiation cost,
a new renegotiation has to be resumed. This drives the system into instability. w(e(n)) is
formulated as a combination of exponential components with different exponents K and

L.

K on)>0
= 4.6
wle(n)) {eEE(n)Li o(n)<0 (4.6)

K and L take their values depending on whether a strict control would be used for queue

size or for under-utilization. The QoS parameter with higher priority would have a higher

« 10t Effect of K on the Characteristic Curve of w(e(n))

|
PR Y —

e(n), Kb

Figure 4.7 lllustration of the effect of exponent K on the characteristic of an
under-allocation curve.
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exponent (i.e. if queuing cost is higher than the cost of underutilizing a link, then K>1).
The exponent K controls the asymptotical behavior of w(e(n)) to the right of J axis, while
L to the left. Fig. 4.7 shows the effect of the selection of K on the characteristic of w(e(n))
for two different values of K, 0.0011 and 0.0010. As can be seen in the figure, there are
two crossing points with 7(n) line: 4 and B. For the same buffer constraint (e(n)=90),
w(e(n)) with smaller K initiates a renegotiation at point 4. On the other hand, as K gets
smaller w(e(n)) reaches the crossing point with 7(»n)) axis after exceeding the given buffer
constraint. Therefore, it is crucial to select the exponents of w(e(n)) such that w(e(n))
does not exceed the buffer constraint before it crosses the renegotiation cost line in order
to provide an applications traffic with strict buffer size and delay requirements. The
same analogy applies to the selection of exponent L in order to limit under-utilization
level.

After proper selection of K and L, renegotiation decision points are generalized as
illustrated in Fig. 4.8 when w(e(n))>7(n). At times e(n)>0, incoming bits are started to be
buffered. When the cost due to buffering exceeds a current renegotiation cost, the RCU
starts a new renegotiation, and increases the allocated bandwidth, that is a(n+1)>a(n). As
soon as the renegotiation is approved by the network (i.e. ATM networks) or WFQ
scheduler (i.e. embedded in DSL modems), renegotiation cost is raised to its highest level
again. If e(n) gets less than 0, it is the sign of resource under-utilization. In this case,
exceeding of the total allowable under-utilization cost higher than the current
renegotiation cost is the crossing point to resume a new renegotiation cycle. The allocated
bandwidth is decreased upon approval of the renegotiation request and 7(n) is set to its

maximum again. Fig. 4.9 illustrates the behavior of the RCU when w(e(mn))<T(n).
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Basically, as long as the costs due to under-utilization and buffering do not exceed the

current level of T(n), there would be no need to resume a renegotiation request. However,

the previous allocated bandwidth amount is maintained, and the renegotiation cost is

f —>»
w(e(n)) < T(n)

I(n)
‘__W( e(n)

\

NE

1) Don’t renegotiate: a(n+1)=a(n)
2) Decrease renegotiation cost T

Figure 4.9 Bandwidth allocation decision regions when w(e(n)) <T(n) .
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decreased by lowering the 7(n) level. In a case with hard buffer size constraint (i.e. no
buffer overloading permitted), w(e(n)) asymptotically diverges to infinity at e(n)=p
where [ is the buffer size constraint. The architecture of the solver of the cost
minimization problem with inputs a(n), r(n) and 7(n)where 7(n)is the predicted value

returned by the introduced bandwidth predictor is given in Appendix B.

4.2  Simulation Results
Sample simulation results for a synthetic VBR trace are presented in Fig. 4.10 in which
(a) shows the original bit arrivals and the renegotiated bandwidth allocation. The
algorithm is run in real-time. The computation time of the bandwidth renegotiation
method is negligible, and it is assumed that renegotiation takes place after the request

with no delay. The scenario with hard buffer constraint that does not permit overshoot of

y10° Corparison of Bandwidth Decisions of BDU and RCU
T T

1 T T T I
' ' ' 5

hits

tirme slot index, n

Figure 4.10 Comparison of bandwidth decisions of BDU and RCU. Note:
BDU provides feedback to the RCU.
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the queue size is simulated. For different severity degrees of the renegotiation cost

(Tinax and its decrement), and under-utilization and buffering costs, achieved minimum

queue size and maximum utilization levels are recorded. It is evident from Fig. 4.11 that
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the RCU is more generous in allocating bandwidth than the BDU alone. Intuitively, this
diminishes average queue size. On the other hand, the number of renegotiations falls

down, being controlled by parameters 7),,.andT,, . Fig. 4.11 presents an example
output when 7, is kept fixed at 1.5Mb and set 7, to first 10Kb and then 100Kb.
T4 =100Kb means that the renegotiation cost decreases 10 times faster than when

740 =10Kb ,and therefore more number of renegotiations occurs. The rate of increase in

the number of renegotiations for this specific example is 4.5. The change in the number
of renegotiations is not a linear function of the ratio 7,,,,/T,, . It is clear in Fig. 4.11
that increasing 7,, 10 times improves the average utilization from 0.87 to 0.92 at the
expense of increase in the average queue size from 311Kb to 694Kb. This trade off can
be fully controlled in favor of queue size performance rather than utilization level by
changing the set values for K, L in (4.6), and 7, , 7 4, -

Table 4.1 presents the simulations results to reveal the impact of renegotiation
cost terms 7,,,and7,,,on queue size, average utilization and the number of
renegotiations. The synthetic trace has 6.4Mbps peak value. It is a common observation
from Table 4.1 that increase in7y, extends the IRI and lowers the number of
renegotiations causing both 0.99 queue size quantile and average utilization to decrease.
Lowering 7, also increases the probability of having a renegotiation. This high
probability reflects on the utilization level and 0.99 queue size quantile as an increase.

K/L is 'queue size to under-utilization cost" weight ratio. If K<L, K/L<1 meaning

that underutilization cost is higher than buffering cost. In this case, the RCU becomes

more strict to keep under-utilization level as minimum as possible than when K/L=1. A
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comparison of the first four and the last four rows in Table 4.1 gives the variations in
0.99 queue size quantile and average utilization levels for K/L=0.5 and 1, when

T =1.5Mb. It is clear that increase in L escalates the utilization level by allowing 0.99

queue size quantile to raise from 433Kb to 712Kb.

Table 4.1 Impact of Renegotiation Cost on QoS Parameters

7T Average | 0.99 Queue | Number of K/L
max> ! det Utilization | Size Quantile | Renegotiations
1.5Mb,100Kb 0.91 433Kb 248 1
1.5Mb,10Kb 0.82 189Kb 94 1
1.5Mb,1Kb 0.79 114Kb 47 1
1.5Mb,0.1Kb 0.77 90Kb 36 1
1 Mb,100Kb 0.93 486Kb 391 1
1Mb,10Kb 0.89 369Kb 244 1
IMb,1Kb 0.87 314Kb 200 1
1Mb,0.1Kb 0.86 304Kb 196 1
0.5Mb.100Kb 0.96 519Kb 615 1
0.5Mb,10Kb 0.94 492Kb 502 1
0.5Mb,1Kb 0.93 489Kb 484 1
0.5Mb,0.1Kb 0.92 483Kb 483 1
1.5Mb,100Kb 0.92 712Kb 126 0.5
1.5Mb,10Kb 0.87 391Kb 28 0.5
1.5Mb,1Kb 0.81 146KDb 9 0.5
1.5Mb,0.1Kb 0.78 140Kb 5 0.5

4.3. Performance of the RDBA for MPEG-I Star-Wars Movie Trace
To be able to compare the performance of the new RDBA design with other approaches
in the literature under realistic scenearios, MPEG-1 coded Star-Wars movie trace is used.
MPEG-1 has three frame types: I, P, and B. I frames use intra-frame coding, P frames
intra-frame coding and motion compensation based on previous frames, and B frames
motion compensation based on previous and future frames. A periodic frame pattern used

by the encoder is called a Group of Pictures(GOP).
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4.3.1 Comparison of the RDBA with Static Bandwidth Allocations (SBA)
First, the performance of the RDBA design is compared with both static bandwidth
allocations (SBA), and dynamic bandwidth allocations (DBA) returned by the BDU. The
Star-Wars trace is sent through a single buffer served by a single server at a fixed bit rate.
The time resolution for the computations is 40msec which is an inter-frame interval. At
different service rates, average queue size, average bandwidth allocation and number of
bandwidth renegotiations are computed. The results are illustrated in Fig. 4.12.

It is clearly seen in Fig. 4.12 that both the DBA and the RDBA perform better
than any static bandwidth allocation. Average bandwidth that the DBA allocates to the

Star-Wars trace is 494Kbps. On the other hand, the RDBA allocates 525Kbps. As far as

q Queue Size Performance of MPEG-1 Coded Star-Wars Movie Trace

Bandwidth, hits/sec X 1{]5

Figure 4.12 Queue size performance of MPEG-1 coded Star-Wars movie trace
when serviced by static bandwidth allocation (SBA), only DBA and
RDBA(BDU+RCU)



87

the queue size is concerned, the RDBA outperforms both the SBA and the DBA, and
results in 85Kb 0.99 queue size quantile. It is important to note that the RDBA uses less
number of renegotiations than the DBA, since the DBA creates as many number of
renegotiations as the data samples. It is worth noting that the BDU is designed only to

support the RDBA with feedback information for renegotiation decisions.

4.3.2 Comparison of the RDBA with MSE , RED-VBR and PSN-TDNN

A. M. Adas [29] developed a dynamic bandwidth allocation strategy to support VBR
video traffic. This strategy predicts the bandwidth requirements for future frames using
adaptive linear prediction that minimizes the mean square error. It is designed for VBR
traffic and based on the predicted rate of the next GOP. According to the MSE algorithm,
to reduce the number of renegotiations it divides the predicted rate by a where 0< a <1.
Hence, more bandwidth is requested than the predicted. This approach is poor because of
the possibility that the predicted rate may already be higher than the true arrival rate.
Further increasing the requested bandwidth drastically decreases momentary utilization.
They also use the approach that the difference between the predicted rate and reserved
rate is passed to the averaging filter, and the output of the averaging filter is then
compared to the threshold values. This helps to ensure that renegotiation is done only
when there is an actual change of rate of the VBR video and not just a spike. Table 4.2

gives the comparison of our results with those in [29].



Table 4.2 Performance Comparison of MSE in [29] with RDBA
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Parameter MSE Tmax T, det Tmax ’ Tdez T max- T, det
(230Kb,10Kb) | (230Kb,50Kb) | (230Kb,70Kb)
N 152 435 762 156 472 593
0.99 Quantile | 269Kb | 304Kb | 320Kb 68Kb 84Kb 86Kb
Avg.
Utilization 0.64 0.81 0.88 0.67 0.83 0.85

The value pairs of 7,,,,and 7}, are set such that the same number of renegotiations are

obtained with the MSE. Therefore, a common denominator is acquired to compare the
resulting queue length quantile and average utilization in each method. Table 4.2 clearly
shows that the RDBA returns smaller queue sizes (approximately 1/4™) at the same
number of renegotiations than the MSE-based does. Average utilization levels in the
MSE and the RDBA vary within 3% range. RDBA achieves 3% higher utilization than
the MSE (0.64, 0.67) after renegotiating 2% more than the MSE (152, 156). On the other
hand, the MSE returns 88% utilization, while the RDBA achieves 85% utilization with
38% less renegotiations than the MSE, (762, 472).

RED-VBR, a renegotiation based approach to support delay sensitive VBR traffic,
is developed in [32]. It is. based on deterministic guarantees with client controlled
renegotiation of traffic and QoS parameters. RCBR [35] published in parallel with the
RED-VBR is closely related to the RED-VBR service. The difference is that the RED-
VBR builds the renegotiation service on top of a deterministic variable bit rate (D-VBR)
service with the D-BIND traffic model, while the RCBR builds a renegotiation service on
top of a constant bit rate service. D-VBR is a more efficient service in that it can achieve
a higher network utilization than a CBR service for the same level of QoS, because it
models traffic burstiness. Consequently, the RED-VBR requires less number of

renegotiations than the RCBR for the same level of utilization. The heuristic online RED-
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VBR algorithm maintains the reserved D-BIND parameters and dynamically computes
the D-BIND parameters of the previous P frames. If any rate in the measured D-BIND
curve exceeds the corresponding rate in the reserved D-BIND curve, a renegotiation
immediately takes place. The algorithmic structures of RED-VBR and D-BIND are also
shown in Appendix B.

A Pi-Sigma Network (PSN) time delay neural network (TDNN) approach is
introduced in [23]. It is a high degree polynomial prediction method. The PSN
architecture consists of a single hidden layer of L linear summing units per output, and
M+1 output product units. The purpose of the approach is to find an approximate A
degree relationship between input data vector and the desired output vector. The
architectural diagram of the PSN-TDNN method is given in Appendix B. Comparison of
the RBDA with the RED-VBR and the PSN-TDNN when applied to Star-Wars trace has
revealed the results in Table 4.3.

Table 4.3 Performance Comparison of the RDBA with RED-VBR
and PSN-TDNN for Star-Wars Trace

RDBA (H Zhang el Cll., 1995) (S Chong et. al,]995)
0.99 Queue Size 84Kb 126kb 79Kb
Quantile
Number of 472 457 494
Renegotiations
Average utilization 0.83 0.69 0.64

It is shown in Table 4.3 that the transmission efficiency of the RDBA is better than both
the RED-VBR and the PSN-TDNN. The utilization achieved by the PSN-TDNN is 64%
after 494 renegotiations. On the other hand, RDBA reaches 83% utilization with 472

renegotiations. The queuing performance of the RDBA scheme is also better than those
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of the RED-VBR and the PSN-TDNN. By renegotiating 3.2% less than the RED-VBR,

the RDBA results in 33% less queue size than the RED-VBR does.

4.3.3 Improvement in Heavy Tailedness of Queue Sizes with the RDBA
One of the impacts of self-similarity on queuing performance is that heavy-tailedness of

queue size distributions increase together with traffic selfsimilarity level. Unlike static or
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Figure 4.13 Impact of renegotiation frequency on the heavy-tailedness of
queue size distribution

synchronous dynamic bandwidth allocations, asynchronous dynamic bandwidth
allocation schemes can deal with this impact. At different renegotiation frequencies
which are controlled by varying renegotiation cost parameters in the RDBA scheme,
queue size distribution of the Star-Wars trace is computed. The results are presented in

Fig. 4.13. It is clearly shown in the figure that an increase in the ratio 7},,,, /T4, reduces
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the number of renegotiations. As the number of renegotiations increases, the heavy-
tailednes of the resulting queue size decreases. In other words, the queue size

performance can be improved by decreasing renegotiation costs.

4.4. Discussion
In this chapter, a method is developed for dynamic renegotiated bandwidth allocation for
VBR traffic bit streams. The renegotiation parameters include buffering cost, under-
utilization cost, and renegotiation cost. The aim of the design is to provide the required
QoS to an applications traffic (i.e. VBR source) under given cost constraints with
minimal number of bandwidth renegotiations. The new RDBA unit gets a feedback from
the BDU that uses wavelet analysis to predict the next bandwidth demand of a subject
traffic stream. An error term is defined as a function of three cost parameters: buffering
cost, under-utilization cost, and renegotiation cost. Whenever the error exceeds the cost
threshold either due to underutilization or excessive buffering, a renegotiation request is
resumed, and next the time and amount of bandwidth to allocate is computed. The

renegotiation cost is defined as a joint function of two parameters: 7, and7 ;. Ty,
presents the maximum renegotiation cost which takes its peak at a time slot which is after
each completed renegotiation. As time passes, the cost of renegotiation decreases in
discrete steps controlled by 7y,,,. By proper selection of 7, and7y, , flexibility is
achieved in controlling the frequency of renegotiations, queue size quantile and average
utilization. As shown in Table 4.1, an increase in 7,,,,/7,, decreases the frequency of

renegotiations. As a result, both 99 percentile queue size and average utilization decrease.

The RDBA approach outperforms SBA in all QoS provisions regardless of the bandwidth
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amount used in SBA. After testing the performance of the RDBA against the MSE which
is introduced in [29], it is proven that the RDBA outperforms the MSE method. It
achieves better 0.99 queue size quantile and average utilization by requesting quite less
number of renegotiations than the MSE (Table 4.2). On the other hand, the comparison of
the RDBA with the RED-VBR shows that with 3% more number of renegotiations than
the RED-VBR, the RDBA can achieve 20% higher utilization and 33% smaller queue
size.

To summarize, the new method RDBA outperforms the well-known MSE and the
RED-VBR methods. It also has a better queue size and transmission performances than
the PSN-TDNN. The only difficulty in the deployment of the RDBA comes from a-priori

determination of7),,.and 7, . because selection of these two parameters are crucial to

achieve required QoS constraints. The RDBA, due to its suitability for real-time resource
management, is deployable in QoS routers, rate adaptive DSL modems, and in ATM
switch complexes. The delay in processing renegotiation requests, and its impact on the
performance of the RDBA is not studied in this dissertation. This would be one of the

topics of further studies in the area.



CHAPTER V

PRACTICAL IMPLEMENTATIONS OF THE RDBA

The provision of QoS guarantees such as bandwidth, delay, jitter, and loss ratio to
applications of widely different characteristics is a primary objective in current high-
speed networks. In order to properly multiplex traffic in such networks, packet
scheduling disciplines are deployed to satisfy the QoS requirements of delay-sensitive
applications, and ensure that real-time traffic (e.g. VBR video) and best effort traffic can
coexist on the same network infrastructure.

Existing priority based scheduling disciplines basically fall into one of three main
categories: delay-based, loss-based, or delay-and-loss-based [56]. In those methods, the
performance trade off can be managed from the space or time perspective. For instance,
in Earliest Due Date discipline (EDD), [57], a real time packet is allowed to precede non-
real time packets arriving not prior to a duration of certain number of time slots. On the
other hand, as an illustration of the space based approach, the precedence can be given to
real time packets only when the number of non-real time packets exceeds a preset
threshold. The success of such disciplines centers on the effective determination of the
thresholds.

Packet Fair Queuing (PFQ) algorithms have been extensively studied for
provision of Quality of Service guarantees in Integrated Services Networks. Because of a
fixed weight assignment, the inherent PFQ delay-bandwidth coupling imposes limitations
on the range of QoS that can be supported. A generalized processor sharing (GPS) server
assumes a fluid flow model, and is approximated by a PFQ algorithm which has the

notion of "virtual time" or "system potential". GPS operates at a fixed rate » and is work-
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conserving. In the worst case, the minimum guaranteed rate g; given to session i is
N

gi =r¢;/ 2. ¢; where N is the number of backlogged queues. The excess bandwidth
j=1

available from sessions not using their reserved service rate is distributed at each instant

among all backlogged sessions in proportion to their individual service rates. To

overcome the performance limitations caused by the delay-bandwidth coupling of GPS, a

time-varying assignment of weights is suggested.

In this chapter, the RDBA system is embedded into WFQ (packetized GPS)
traffic scheduler with two priority levels, and the improvement in delay performance of
the applications entering each priority level is quantified. Static weight assignment might
drive low priority traffic into starvation of bandwidth and cause queuing delays to
diverge infinity. It is proven that the RDBA increases the statistical multiplexing gain
provided by any static bandwidth allocation, or static weight assignment. The delay in the
network derives from several causes. The largest delay component is due to the
propagation of the packet. The second one is the delay in transmission at the switch or
router nodes. Each packet spends some time in switch or routers' service queues and the
amount of this type of delay is variable from packet to packet. This variation (delay jitter)
must be minimized to achieve adequate real time service. It is shown that the delay

variation in each priority sub-queue is decreased by deployment of the RDBA.
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5.1 Static Weighted Fair Queuing Scheduler

WFQ is a generic service discipline, and it is widely applied to QoS routers. In WFQ, the
scheduler serves flows or classes at the ratio of their assigned weights. The weights of a
class can be determined by its QoS parameters such as delay or service rate. The WFQ
scheduler isolates each traffic source from one another, by providing a flow with a
specified share of the total available bandwidth determined by their weight ratios under
load.

Suppose that a network provides N service classes, and they share a link of

capacity C. The share of class i is represented by parameter ¢. The relation between the

reserved bandwidth C; for class i and ¢ is such that

}f" C>C; (5.1
Z}cﬂ%

Let Wi, t+1) the amount of session i traffic served within the interval (7, 1+7). For any

two queues 7, j that are backlogged during (7, 1+17) (5.2) holds.

Witt+7) _ ¢

5.2
Wj(l‘,l"%*’[) ¢] ( )

Each fair queuing (FQ) algorithm maintains a global variable called system virtual time
V(). In addition, a virtual start time VS() and virtual finish time VF() are associated with

each session. ¥'S(,) and VF() of k" packet of session 7 are
Sk = max(vEF v ik ) (5.3)

k
vk —ysk + z{;m (5.4)
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where tl-k is the arrival time and L{? the length of the k" packet. The packets/cells are

further scheduled based on their timestamps. The delay and the fairness properties of a
Fair Queuing policy depend on the virtual time function. In FQ algorithms, complexities
come in both sorting the time stamps to select the packets to schedule and the
implementation of the selected virtual time functions. Some of the well-known virtual
time functions are
e SFTF (smallest finishing time first): packets are scheduled in the
increasing order of virtual finishing times.
e SSTF (smallest starting time first): packets are scheduled in the increasing
order of virtual starting times.
o SEFF (smallest eligible finishing time first). Eligible packets are with

virtual start times less than or equal to the system virtual time.

5.2 Drawbacks Due to Dynamic Weight Adjustment in WFQ
In [58], a proportional delay differentiation service based on dynamic WFQ is presented,
assuming infinite buffer. Their algorithm adjusts the weight of each class dynamically in
a synchronous manner so that the delay differences between different priority traffic can
be controlled. The weight adjustment is done periodically according to the packet arrival
rate and buffer occupancy. The measurement period of packet arrival, the measurement
period of backlog in priority queues, and the adjustment period of the weights in WFQ
scheduler are configuration parameters in [58]. In this dissertation, for the design of a
dynamic WFQ, an asynchronous method is used as explained in Chapter 4. This new

asynchronous method takes buffer occupancy, bit arrival information, utilization and a
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renegotiation cost as input parameters. A synchronous dynamic weight assignment has a
poor performance when bursty traffic arrives between two consecutive weight updates.
It is clear from (5.3) and (5.4) that both VS() and VF() in a class are inversely

proportional to the bandwidth share of that class. Assume for class i that at the arrival

times of kth and (k+1I)st packets the bandwidth share has values ¢, and
@; i+ respectively such that ¢, ;.| = ag; , where a is a constant. If a>1, (k+1)st packet

would have smaller VS() and VF() than the kth packet. In such a case, even though the
arrival time of (k+1)st packet is after that of itk packet, it would be served before the kth
packet. Therefore, the packet scheduling table in WFQ scheduler would need to be
updated whenever a bandwidth share for any class is changed. This introduces a signaling
load proportional to the frequency of a bandwidth renegotiation, and a need for packet
reordering at a network destination. In the simulations, a WFQ scheduler with SFTF is
used after modifying the scheduler algorithm to support dynamic asynchronous weight
allocation such that upon changing a bandwidth share for any class, VF()s of all the

packets currently waiting to be served in all the queues are recomputed.

5.3 Traffic Generation
The implemented WFQ has two priority levels. The high priority queue is fed with
MPEG-1 coded Star-Wars movie trace and the low priority queue with data traffic of
heavy web browsing and fip generated by OPNET™ simulation tools. The traffic types
used in the real time simulation is presented in Fig. 5.2 and their statistical properties of

are given in Table 5.1.
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Figure 5.1 MPEG-1 coded Star-wars VBR trace and synthetic data traffic entered
into WFQ scheduler at 40ms time resolution.

Table 5.1 Statistical Properties of High and Low Priority
Traffic Data Used in the Simulations of WFQ with the RDBA
Star-wars trace (Kbps) | Data traffic (Kbps)

Standard deviation 355 410
Mean 262 855
Min 10.6 0

Max 3450 2742
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Figure 5.2 Architecture of the implemented WFQ scheduler with RDBA.

In emulating dynamic asynchronous WFQ, the incoming aggregate traffic consisting of
both data traffic and Star-wars trace is split into two separate queues as shown in Fig. 5.2
The RDBA unit takes instantaneous measures of each traffic type, and updates the

bandwidth share of each queue (¢;.¢,) based on the cost constraints defined in the

previous chapter. Available server bandwidth at the output of the WFQ scheduler is

selected to be 1.5Mbps which is equal to the capacity of a T1 link.

5.4 Results
5.4.1 Static Weight Assignment
Static bandwidth allocation, if it is close to the peak traffic rate, produces small queue
sizes at the expense of low utilization. On the other hand, insufficient bandwidth share
given to an applications traffic generates queue sizes diverging to infinity. This can be
called as bandwidth starvation. In static WFQ, improper selection of queue weights might

cause especially low priority queues to starve from bandwidth.
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Queue Size for Star-Wars Trace Due to Static Bandwidth Allocation
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Figure 5.3 An illustration of bandwidth starvation of a low priority queue in case of
static weight assignment in WFQ scheduler linked with T1 capacity.

In Fig. 5.3 an illustration of a bandwidth starvation of a low priority queue in the case of
static weight assignment in a WFQ scheduler with T1 link capacity is given. The
available 1.5Mbps bandwidth is equally shared between high priority Star-wars trace and
low priority data traffic. It is shown in Fig. 5.3 that infinite queue size builds in the low
priority queue. Static WFQ has the disadvantage that depending on the characteristics of
a traffic entering each queue, correct weight assignment has to be made to prevent
streams from bandwidth starvation. This is practically difficult. Because, VBR traffic
shows time varying fluctuations and any static WFQ scheduler is away from providing
the required QoS constraints. RDBA approach without any user control updates the

bandwidth share coefficients for each stream.
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5.4.2 Weight Control by RDBA in WFQ

Traffic schedulers are classified into two groups: work conserving and non work-
conserving. Once bandwidth shares for each priority queue is determined, in work
conserving type idle bandwidth of a queue is used by other backlogged queues. On the
other hand, in non work-conserving mode, even if one of the queues are empty and it is

not using its allocated bandwidth, other queues are still served at their initial bandwidth
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Figure 5.4 Illustration of bandwidth allocation for high priority Star-Wars
trace and low priority data traffic in a non-work conserving scheduler.
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shares and do not make use of the idle bandwidth assigned to the empty queue. Dynamic
weight control by RDBA produces superior queue performance compared with static
WFQ schedulers in both non work-conserving and work conserving mode.

In Fig. 5.4, how a non-work conserving traffic scheduler with RDBA distributes
available bandwidth between high priority and low priority traffic is illustrated with time

resolution of 40ms. In a non-work conserving scheduler, it is clear that once a certain
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Figure 5.5 Queuing performance of a dynamic WFQ scheduler with embedded
RDBA scheme.
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share of bandwidth is assigned to the high priority traffic, the low priority traffic is only
allowed to use the remaining bandwidth of the link capacity, even though at times the
high priority queue does not use its entire bandwidth share allocated. In Fig 5.5, the
queuing performance of a dynamic WFQ with embedded RDBA mechanism is given.
The queue size of low priority traffic which diverges to infinity after static weight
assignment in non work-conserving mode is controlled with the use of RDBA. The queue
size does not exceed 37Mb , and within the time interval (570s, 1600s) is upper bounded
by 10Mb. In work conserving mode, maximum low priority queue size can be constraint
down to 0.5Mb. This proves that the use of RDBA maintains the delay QoS required by
VBR traffic served in a high priority queue and also increases the statistical multiplexing
gain for data traffic entering the low priority queue, that is larger number of data streams

can be supported in dynamic WFQ than that in static WFQ.

5.5 Summary
The practical applications of the new renegotiation based dynamic bandwidth allocation
scheme is simulated. The simulations consist of two prioritized traffic streams. Star-Wars
movie trace is entered into a traffic scheduler as a high priority traffic trace, and data
traffic synthetically generated in OPNET environment as a low priority traffic.
Bandwidth share of the high priority traffic is asynchronously computed within the RCU,
and the remaining bandwidth of the link capacity is assigned to the low priority traffic.
Work conserving usage of the shared resources is an inherent feature of WFQ schedulers.
On the other hand, non-work conserving usage is seen in ATM networks. ATM networks

provide connection-oriented services with guaranteed bandwidth. In order to carry an IP
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datagram in such networks, a virtual circuit (VC) has to be setup with an associated
bandwidth requirement. Once a VC is setup, the adaptation layer has to decide how long
to keep the VC active with the initial bandwidth assignment. Any idle portion of the
bandwidth allocated for a VC is not shared among other VCs, unless it is distributed as a
result of a renegotiation request. Asynchronous bandwidth renegotiation in ATM
networks, and also asynchronous weight update in WFQ based traffic schedulers are not
studied well in the literature. The RDBA offers a solution to these open issues. The
simulations of the RDBA in both work-conserving and non-work conserving modes in
two priority level traffic schedulers prove that the queue-size performance of a low
priority traffic can be improved without degrading the QoS constraints of a high priority
traffic. Static bandwidth share among high and low priority traffic streams may drive low
priority traffic into bandwidth starvation, resulting in an infinite queue-size. A dynamic
allocation with RDBA, on the other hand, prevents low priority queue from bandwidth
starvation. Intuitively, in a work-conserving mode, the queue-size performance

improvement is higher than that in a non-work conserving mode.



CHAPTER 6

CONCLUSION

This dissertation defends the thesis that cost effective renegotiation based dynamic
bandwidth allocations for VBR traffic satisfies the constraints for link utilization and
packet delay, while eliminating the heavy-tailedness of the queue size distributions due to
self-similarity. It is proven that energy distribution of a traffic segment among multiple
frequency sub-bands is a readily available means to asymptotically predict traffic patterns
especially for real time resource management.

First, an analytical framework for measurement of traffic self-similarity under the
constraints of processing time and computational load for real time QoS provisioning is
presented. Comparison of the wavelet and variance-time plots that are used to measure
Hurst parameter of a traffic trace reveals that the wavelet method is more suitable for
online QoS provisioning because of its simplicity and 164+0.67 times less processing load
than the variance-time method, especially if more than three scales in the wavelet filter
bank is used, and the data vector size is greater than 1024 samples. The ratio of the
increase in the size of a data vector proportionally affects processing load at a given
number of scales. In the wavelet method, Hurst parameter is determined by the relation
between signal energies within sub-bands of a wavelet filter bank and the index of each
scale. Signal energy distribution among different frequency sub-bands presents low and
high frequency components of applications traffic and their volume ratio in each time
frame of a measure. This energy information can be used to predict future traffic behavior

and to minimize the number of proper bandwidth adjustments.
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It is proven that deployment of wavelet filters with large number of taps reduces
the aliasing between adjacent frequency sub-bands. On the other hand, small number of
taps generates positive offset value in energy amount in each sub-band. LMS fit applied
to the energy vs. scale index curves returns Hurst parameters within the range of
0.86+0.02 for wavelet orders of 2, 4, 5 when tested on Star-Wars video trace. Two
percent deviation in the estimate of H due to different filter lengths is negligible.
Considering the fact that high order filters elevate the processing time and result in
additional delays, low order filters are preferred in real time applications to the higher
orders. Also, it is illustrated that the Haar and Daubechies wavelets return slightly
different estimate of the sub-band energies. However, this difference is insignificant for
online resource allocation decisions. The comparison of the Haar wavelet with 4 tap
Daubechies results in that the offset in the high frequency sub-band energy between the
two wavelet types increases as the source self-similarity level related to vy, the power
component of the heavy-tailed frequency spectrum of the source, decreases. The offset
interval is (0.012, 0.056) for values of 0.2<y<1. Therefore, the Haar wavelet is preferred
to the Daubechies from simplicity point of view; in addition to that it provides the
positive signal constraint in wavelet analysis.

Based on the analytical derivations, suggestions are made regarding the selection
of the number of scales in a wavelet filter bank, the window size to capture data for each
analysis, and overlapping size of consecutive windows to provide cost-effective
bandwidth renegotiation. Finally, it is shown that Hurst parameter itself is not a good
representative of traffic burstiness, and must be accompanied by other measures such as

mean and peak traffic bit rate, and standard deviation of the bit arrivals per unit time.
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A novel bandwidth predictor that uses wavelet analysis in computation of sub-
band signal energies as traffic descriptors is presented. Input traffic information is a
periodic bit counting process and its increments. Specifically in VBR traffic, bandwidth
requirements vary in time due to scene changes and coding structures. Therefore,
dominance of either low or high frequency fluctuations in a traffic pattern can be inferred
by looking at the sub-band energies. Based on the predefined properties and second order
statistical parameters of a temporal energy vector, bandwidth prediction is returned. The
comparison of wavelet based bandwidth predictor with Linear Mean Square (LMS) and
Recursive Least Square (RLS) predictors proves that the wavelet approach outperforms
the latter two. It is possible for LMS and RSL methods to return negative predictions
(zero crossing effect), and to mislead a renegotiation unit. Because of its positive signal
characteristics, the Haar wavelet analysis always returns a positive prediction. It is also
shown that the wavelet based approach returns smaller queue sizes than AR(/) and AR(N)
based prediction models at the expense of lower utilization. Smaller queue sizes are
achieved by over-predicting bandwidth demand. However, this over-prediction increases
the performance measure Mean Square Bandwidth Allocation Error (MSBAE) for the
wavelet method about 25-45%. This low utilization cost is compensated successfully by
design of bandwidth renegotiation unit presented in Chapter 4.

A new bandwidth renegotiation method is presented. Renegotiation capability,
when deployed at ATM switches, QoS routers or traffic schedulers such as Weighted
Round Robin (WRR) and Weighted Fair Queuing (WFQ), increases the statistical
multiplexing gain by making it possible to dynamically distribute available resources

among different applications. The new method assumes different priority applications
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sharing a fixed bandwidth capacity. The method is designed to be online and applicable
to DSL networks in which the rate of Rate Adaptive Digital Subscriber Line Modems
(RDSLs) is controlled by the central office, to WFQ to dynamically update bandwidth
share of each priority traffic, to ATM switches in which bandwidth allocation to each
active VC connection is updated without terminating the VCs and setting-up new ones.
The method considers three cost functions: i) renegotiation cost 7i) buffering (under-
allocation) cost iii) bandwidth (over-utilization) cost. An error function is defined which
combines the three defined cost functions and decision boundaries for renegotiation
requests are determined. The method takes as inputs the predicted bandwidth from the
BDU, momentary queue size and actual traffic bit arrival information, and determines the
time instants of renegotiation requests and bandwidth amount to allocate providing
minimum number of renegotiations for given QoS constraints. Performance comparison
of Renegotiated Dynamic Bandwidth Allocation (RDBA) with Static Bandwidth
Allocation (SBA), Mean Square Error (MSE) based methods and RED-VBR and PSN-
TDNN reveals that the new method accomplishes higher utilization and less queue-sizes
than these four. Also, it requests less number of renegotiations than MSE and RED-VBR
and PSN-TDNN. However, there is an open issue that is not looked into and may be a
subject of further studies: impact of delays (between the start time of a renegotiation
request and the time the request is granted) on the performance of the RDBA. This delay
is assumed to be zero in this dissertation. Also, in the literature no satisfactory work is
done to address this open issue.

Finally, the RDBA 1is applied to a WFQ scheduler with two priority levels to

dynamically change bandwidth shares of each level. High priority queue is provided with
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the Star-Wars trace and low priority with synthetic data traffic. It is observed that static
weight assignment may result in bandwidth starvation of low priority traffic. Dynamic
weight assignment, on the other hand, eliminates this problem without degrading the QoS
requirements of high priority traffic. One drawback in dynamic WFQ is that a packet
entering a queue upon readjusting the priority weights might be given an earlier virtual
finish time than a packet arrived before, because virtual finish and end times are
functions of priority weights. In such a case, virtual finish times of all the packets in
queues have to be updated according to new changes. This creates a heavy signaling load
on traffic schedulers. Alternative solutions to this problem may be also investigated in

future studies.



APPENDIX A

BANDWIDTH PREDICTION METHODS

There are several different strategies in predicting the future bandwidth demand of traftic
for dynamic bandwidth allocation. Each update (new allocation) consists of a prediction
and a correction term based on previous updates. General structure of the dynamic
bandwidth allocation algorithms can be written as
new_estimate= old estimate + correction
The weighting of the correction and the old estimate, and how they are updated
depend on the algorithms used. The following is a list of approaches in dynamic

bandwidth allocation:

a. Peak-Rate

Overall peak rate is determined and assigned as the new bandwidth to traffic each time
the updating occurs. Peak-rate based bandwidth reallocation results in minimum number
of updates compared to other available methods. However, it suffers from low utilization

and inefficient usage of available capacity [23].

b. Previous

Allocated service rate at time slot n+1 depends on the arrival rate at the same time instant
[26]. However, the arrival rate is not known a priori. In this method, X (n+1), the

prediction of the traffic arrival rate in time slot n+/, is set to the arrival rate in the

previous interval, X(n).
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c. Average

The new bandwidth allocation to the traffic is determined depending on the average
arrival rate in the past. This is a special case of AR-M model where M is the number of
samples averaged [26]. This feedback algorithm is unable to follow rapid changes in the

traffic condition and might cause building queuing delays.

d. Combination of Previous and Average

This method combines the previous two approaches. Each approach is assigned a weight
and the superposition is taken. For instance, having X(n) as the arrival rate at discrete
time instant » and assuming that X is the average of last m values of X such that

X(n)+X(n—-1)+.. .+ X(n-m)
m

X(n)= where m is a positive integer, the predicted bandwidth

in time slot (n+1) is given as
Xn+1)=(1- pX + pX(n) (A.1)
where 0<p<I. The performance of this method is highly dependent on the selection of

parameters m and p. This method has a poor queue size and utilization performance in

case of VBR, bursty traffic.

e. Combination of Previous and Queue Size

New allocation in time slot (r+1) is determined such that

X(n+1)=max(X(n)—X(n)0)+ X(n) (A.2)
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The term (X(n)- X(n))is the actual queue size at the end of interval n. Assuming the
same arrival rate in the new interval, (n+/), as in the interval n, the prediction also

contains X(n) and flushes the queue contents left from interval n.

[ Minimum Mean Square Error Linear and LMS Predictors

A pth-order k-step linear predictor has the form

p-1
Xntk)= Yw(j)x(n=-j) (A.3)

Jj=0

where w(j)are the prediction filter coefficients.
The error term is

e(n)=x(n+k)-x(n+k) (A.4)
The optimality of the predictor in the mean square sense requires minimization of the
mean square error &, where

& = B’ (n)} = E{(x(n+k) - w' %)%} (A.5)
The vector w that minimizes £ can be found by taking the gradient. The result is set to
zero, and is solved for w.

VE = -2E{e(n)x(n)} =0 = 2E{(x(n+ k) - w' x)x} (A.6)

Taking expectation and writing it in matrix form results in

Ryw =r(k) (A7)
where R, = E{_Jngg} and r(k) = E{xx(n+k)}. The solutions of the linear equations in

(A.7) require the knowledge of the autocorrelation of x, and it also assumes wide sense

stationarity, i.e. the mean, variance, and auto-covariance of x(n) do not change with time.
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Therefore, MMSE linear predictor is not a good choice if real time resource management,
bandwidth allocation, is subject to provision. It cannot be used as an online algorithm for
forecasting bandwidth. In [25], they studied adaptive least mean square error linear
predictor. The LMS is an adaptive approach and it does not require prior knowledge of

the autocorrelation structure of x. Therefore, it can be used as an online algorithm. The
algorithm starts with an initial estimation of the filter coefficients w(0). For each data
point, the coefficients are updated according to the following recursive equation:
w(n+1) = w(n)+ pe(n)yx(n) (A.8)

where u is called a step size and a constant. In [23] they analyze low and high frequency
characteristics of traffic trace and allocate available resources accordingly. Their work is
the closest in its nature to our approach. They describe VBR traffic in frequency domain
being inspired from the fact, especially for VBR video traffic, that the low frequency
signal captures the slow-time variation of consecutive scene changes and that the high

frequency signal exhibits the feature of strong frame autocorrelations.

g Adaptive Wavelet Prediction

In [22] the concept of using wavelets in dynamic bandwidth allocation for video traffic is
brought up. In Fig.A.1, the block diagram of their approach is given. The use of wavelet
transform in adaptive filtering has also been proposed in [45, 46]. It is very analogous to
the DFT based adaptive filtering. On the other hand, it has the advantages of wavelet
analysis over Fourier analysis when a weighted sum of sinusoids does not adequately
represent the time-varying modes of the signals involved. Even though the reduction in

eigen-value spread by use of wavelet transform Their method also involves the
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Figure A.1 The block diagram of the
wavelet predictor proposed in [22]

computation of the autocorrelation function of the input trace as in MMSE. The reduction
is due to that the wavelet transforms and a class of discrete orthogonal transforms create
approximately diagonal autocorrelation matrix of the input data.

In the literature one of the most common metric of the performance measure of

the dynamic bandwidth predictors is Q.

0 =Y’/ Tx*(n) (A9)
Another metric must be the number of renegotiations (RN). The requirement in the

dynamic bandwidth allocation is to get minimum Q at minimum RN.



APPENDIX B

BANDWIDTH RENEGOTIATION METHODS

The RCU is developed as an alternative method to the RED-VBR and PSN-TDNN

schemes. Algorithmic structures of these approaches are given in the following sections.

a) D-BIND

The key components of the D-BIND model are that it is bounding and interval dependent
[34]. Bounding is required to provide deterministic QoS guarantees. On the other hand,
interval-dependency allows for a higher utilization by capturing important burstiness
properties of traffic. D-BIND model 1is defines via rate-interval pairs

(Ri, Iy )| k=12,.K.Each rate R; isan upper bound on the rate every interval of length
1}, . Assume a traffic constraint function h(z) which bounds the traffic rate for an interval
of length /; . The constraint function b(#) is piece-wise linear within (R, /[ )|k =12,.K

as in (B.1) where K is the number of intervals.

b(t) = Rkl"; ‘R}’f“i’k"i (1= 1)+ Relys oy <1 <1, (B.1)
k™ 4k-1

b) RED-VBR

RED-VBR is based on deterministic guarantees with client controlled renegotiation of
traffic, QoS parameters and graceful adaptation during overload periods. RED-VBR
algorithm decides when to allocate more/less resources for VBR traffic and at what
amount. The policy decisions are based on the two sets of D-BIND parameters. To

control the policies, two control parameters « and g are defined such that f>a
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andea, # > 1. If any rate in the measured D-BIND curve exceeds the corresponding rate in
the reserved D-BIND curve, a renegotiation takes place. The new bandwidth amount is

chosen such that each R is « times its current value. An online RED-VBR based

renegotiation algorithm for a VBR video sequence given below is quoted from [32].

e sk ok ok ok sk ook ok ok ok sk ook o ok ok ok ok R skeokok ok

initialize current allocation R{];
LastRenegindex=0,
for (i=0;i<MAX FRAMES;i++){
compute R/1:P] based on previous M frames;
if (R >current_allocation_R[k] for any 0<k<P{
for (k=1;k<Pk++)
current_allocation R[k]=a *max(current_allocation R[k], Ry );

LastReneglndex=i;

Renegotiate(),

Jelseif (Rp < f* current _allocation R[ P ] AND
(i-LastRenegindex = MIN RENEG INTERVAL)){

for (k=1k<Pk++)
current_allocation Rfk]=current allocation R[k]+ Ry /2;

LastReneglndex=i;
Renegotiate(),

/

}

st s ke s e s sk o e o s ot sk o sk sk e ok sk sk sk ok ook ok
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c) PSN-TDNN
Fig. B.1 shows a TDNN based on L"” degree PSN with (N+1) inputs and (M+1) outputs.
The PSN architecture consists of a single hidden layer of L(M+1) linear summing units

and output layer of (M+1) product units [23]. The output from each unit passes through a

The weights from the hidden

sigmoid activation function defined by o(x) = —

I+e
layer to the output layers are fixed at 1.
+ +
xp(n+D) ? - xL(M’? )
output layer O
(product units) \__J ~ TTTTTTTTTTTTTTTmm

adjustable
weights

O

input layer Bias unit

xi(n) X (n-N)

Figure B.1 An L degree PSN-TDNN architecture.

The purpose of this network is to find an approximate L” degree relationship

between the inputs x;(n)xp(n—1)..x;(n—N) and the desired outputs
xp(n+D)xp(n+D+1),...x;(n+D+M). Input vector é(n), desired output vector

and estimated output vector y(n)are defined as follows:
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é(n)=[Lxp(n)x(n-1)..., x;(n=N)J (B.2)
d(n)=[x;(n+D)x;(n+D+1),....x;(n+D+M)] (B.3)
V(n)=[%(n+D)% (n+D+1),.. % (n+D+M)] (B.4)

Assume v"i)f,- be the weight vector for the /” hidden unit of the I output where /=0, 1,....M

and j=0,1,...,L-1. The I output y;(n)at time n is then expressed as

L-1 N+l

ni(n) = cr[n #el ()] =l TLC T wy ex(n)+wy )] (B.5)
j=0 k=l
The MSE objective is given by
1 -l )
S = T Ld(n) =y (n)]* =01 M (B.6)
n=0

where p denotes the number of training patterns.

d) RCU

The flow architecture of the decision mechanism developed for the renegotiation control
unit given in Chapter 4 is shown in Fig. B.2. It takes three input parameters from other
units: current allocated bandwidth a(n), last arrival rate r(n) and the prediction of the
bandwidth requirement for the next time slot. Depending on instantaneous queue size and
utilization values, the algorithm first computes the buffering and under-utilization costs
with the assumption that the actual arrival rate within the next time slot is equal to the
predicted value, and the bandwidth is kept the same in time slot (n+1/) as in n, that is
a(n)=a(n+1). New decision is made after comparison of the renegotiation cost 7(n) with

buffering and under-utilization cost e(n).
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Compute
w(e(n))
] Y N
e(n)
T+ 1)=Toax Tt D=T(n)-Tge,

oo !
v \ 4 v
la(n+1) = max(r(n).F(n+1))|  [a(n+1)=min(r(n).F(n+1)]  [a(n+1)=a(n)]

»
bandwidth decision

Figure B.2 Algorithmic structure of the Renegotiation Control Unit (RCU).
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