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ABSTRACT

DEVELOPMENT OF ANALYTICAL SYSTEMS AND MONITORING
OF VOCS EMISSIONS DURING POLYMER PROCESSING

by

Qin Xiang

A method using direct flame ionization detector (FID) measurement was developed to

study total volatile organic compounds (VOCs) emissions during thermal degradation of

polymers. This was used to estimate organic emissions from both virgin polymer resins

and commingled plastics. The effects of process parameters, i. e., temperature, heating

rate and residence time, were also studied. Significant VOCs emissions were observed at

normal processing temperatures, particularly from recycled polymers. Each polymer

showed a distinct evolution pattern during its thermal degradation. Kinetics of VOCs

emissions were also studied using a non-isothermal technique. The kinetic parameters

were in agreement with data from the literature.

Polypropylene, as a commodity recyclable thermoplastic, was studied in this

research to evaluate the potential environmental impact resulting from VOCs emitted

during multiple melt reprocessing. Unstabilized and stabilized PP homopolymers,

referred to as U-PP and S-PP, were used to simulate recycled materials prone to

degradation. They were evaluated for total VOCs emissions generated during multiple

melt reprocessing by injection molding and extrusion respectively. Results show that the

maximum amount of total VOCs from each cycle (up to six cycles for extrusion and up to

ten for injection molding) did not significantly change, while the cumulative VOCs

increased with increasing processing cycle for both materials. A good correlation was

obtained between the cumulative VOCs increase and the Melt Flow Index increase for



the U-PP, and the MW decrease for the S-PP. Reprocessing in all cases was accompanied

by decreases in molecular weight and melt viscosity as a result of thermo-oxidative

degradation. Corresponding structural changes were investigated using FTIR, and the

data showed increases in carbonyl content and degree of unsaturation with the increase of

processing cycle number. At equivalent cycle numbers, degradation appeared to be more

severe for the extruded material in spite of the longer oxidative induction time of the "as

received" pellets used in extrusion. The onset and type of structural changes was shown

to depend on cycle number and reprocessing method. A simulation study was also

performed by multiple heating and cooling of a single U-PP sample under static

conditions, and under different gaseous atmospheres. The results indicate that the actual

reprocessing conditions generated emissions whose levels, and rate of generation were

closer to a mild thermo-oxidative degradation rather than a pure thermal one.

Continuous nonmethane organic carbon (C-NMOC) analysis was considered to be

a more accurate and on-line method for monitoring emissions during polymer processing.

An improved version of the C-NMOC system was developed in this research. A multi-

bed microtrap was developed to prevent the breakthrough of small molecules such as

propane and methanol. Two novel sampling configurations were also developed, and

were referred to as sequential valve with backflushed microtrap (SV-BM) and multi-

injection sequential valve with backflushed microtrap (MSV-BM). By combining the

multi-bed microtrap with the SV-BM and MSV-BM configurations, ideal performances

were obtained in terms of linearity, reproducibility of multiple injections and separation

of background gases. Both small molecules and large molecules could be effectively

collected and desorbed with the optimized microtrap.
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CHAPTER 1

INTRODUCTION

1.1 Importance of VOCs Measurement and Analysis

Volatile organic compounds (VOCs) include a variety of organic molecules with

different functional groups. Many of them are classified as hazardous air pollutants

(HAPs) by the United States Environmental Protection Agency (US EPA), and regulated

by the Clean Air Act Amendments (CAAA) of 1990. They can cause eye, nose, and

throat irritation, headaches, nausea, and damage to liver, kidney, and central nervous

system. Some VOCs, such as benzene, methylene chloride and perchloroethylene, are

known to cause cancer in animals and in humans [1]. Furthermore, VOCs cause serious

health problems by photochemical reactions that form ground-level ozone, which is the

principal component of smog [2]. Ozone pollution (smog) causes severe health and

environmental problems, such as respiratory problems, damaging crops and plants,

ruining the city landscape [3]. In addition, some VOCs play an important role in global

warming and in destruction of the stratospheric good ozone [4].

VOCs are encountered virtually everywhere. The consumer items, the energy

sources, and the drink water (because of the reaction between chlorine used for water

disinfection and organic matter in water) all increase human exposure to these

compounds [5,6]. The combination of ubiquitous exposure and possible serious health

effects has long been making VOCs a major public health issue. In 1997, the US

government approved strong new clean air standards for smog and soot, which could

prevent up to 15,000 premature deaths a year and improve the lives of millions of

Americans who suffer from respiratory illnesses [7]. To achieve this goal, the US EPA
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implemented emission factors and emission inventories as fundamental tools/concepts in

air quality management. These tools are important for developing emission control

strategies, determining the applicability of permitting and control programs, and

ascertaining the effects of sources and appropriate mitigation strategies [8]. Policies on

reduction of pollution can only be designed when the extent and identity of the pollutants

is known. Emissions can only be regulated based on accurate and reliable methods for

monitoring the emitted materials. Therefore, measurement and analysis of VOCs is the

cornerstone for protecting public health and the environment.

1.2 Developments in Sampling of VOCs from Air

VOCs are omnipresent, existing in air, water and soil. Extensive research and

developments in measuring and analyzing these VOCs have been performed by

environmental analytical and occupational health professionals [9]. In the last two

decades, major advances have been made, and these were partially summarized by

Clement, et al. [10] in their reviews. The measurements are necessary for exposure

assessment, and also to understand ozone-precursor relationships on urban and regional

scales. Moreover, there has been an increasing demand for improved air sampling and

analysis methods due to the: (1) increasing number of regulated sources and pollutants;

(2) recognition of toxicity for chemicals that were thought to be relatively harmless (e.g.

formaldehyde); (3) recognition of toxic effects of more chemicals at even lower

concentrations, and (4) increasing public awareness of both indoor and outdoor air

quality [11]. In recent years, novel sampling and analytical methods have been

developed, and applied to the characterization and analysis of toxic airborne pollutants
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(including VOCs). These include sampling (design, phase distribution, sector sampling,

and specific sampling devices), spectroscopy/chemometrics (optical spectroscopy, mass

spectrometry, postdata processing, and data interpretation algorithms), automated

analysis, faster and miniaturized instrumentation [10].

The collection of representative air samples for laboratory analysis remains as the

most challenging part in air monitoring and analysis [10]. Proper sampling and sample

storage procedures are essential to ensure that laboratory data are representative of the

sampling site and comply with applicable technologies and regulations.

1.2.1 Developments in the Conventional Methods

In 1984, the US EPA issued a compendium of methods for monitoring VOCs in ambient

air [12]. Prior to that, the National Institute for Occupational Safety and Health (NIOSH),

and the Occupational Safety and Health Administration (OSHA) published analytical

methods for monitoring volatiles in workplace [13,14]. These conventional methods

involve collecting a grab sample, transporting the sample to a laboratory, concentrating

the VOCs from a large enough quantity of air to obtain enough material to measure, and,

finally, separating and identifying the individual compounds using GC, GC/MS or other

analytical techniques.

Compared to the GC analysis of VOCs, which was clearly described in the

methods published by EPA and other regulatory agencies, sample collection and

concentration may be troublesome, and can be approached in several different ways. The

two most common methods use canister or sorbent sampling. EPA Method 18, TO-14

and TO-15 employ the canister sampling [12,15], whereas, EPA Method TO-1, TO-2,
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TO-3, and many NIOSH and OSHA methods use sorbent sampling [12,13,14]. The

respective advantages and limitations of these two techniques have been widely discussed

in the literature [16-25].

Both methods are still broadly applied to the analysis of VOCs in air [16,21, 25-

29]. Meanwhile, developments have also been made to these conventional methods. For

example, special canisters were developed in EPA Method TO-15 to analyze polar VOCs

[30]. They were used to study the analysis, stability and recovery of aldehydes and

terpenes [21]. Sorbent-based sampling methods have been developed as active samplers

(pumped sorbent tubes) and passive (diffusive) samplers. Active sampling is broadly

applied to the determination of VOCs in ambient air, especially after the Method TO-17

supplemented the US EPA Compendium of Methods for the Determination of Toxic

Volatile Organic Compounds in Ambient Air [12,31,32]. The development of 10-17 was

motivated by interest in the use of a new generation of thermal desorption systems as

well as the newest solid adsorbents that are available commercially. Shojania et al. [33]

reported on their sampling device, an inside needle capillary adsorption trap, and

examined the effects of sample volume in active sampling and exposure time in passive

sampling on the analyze adsorption. Passive samplers were originally developed to

estimate exposure of individuals to VOCs in the workplace. They were designed as

portable and noiseless devices without a power supply, suitable for measurement of

indoor air pollution. Although they are very simple and convenient to use compared to

the active samplers, passive samplers are only used occasionally for the measurement of

VOCs at ppbv or sub-ppbv levels in outdoor and indoor air [34]. There are two main

reasons for their low popularity in the ambient air VOCs monitoring programs. One is



their validation, which is required by the validation protocols but is very time consuming

and expensive to carry out. The other reason is the high cost of current passive samplers

[23,35].

Almost all canister and sorbent sampling applications need a cryogenic

preconcentration prior to separation and detection of the compounds. Thus, the cryogenic

technique itself has been developed to effectively collect VOCs in air. In this method, air

is passed through a loop immersed in liquid nitrogen (or oxygen, or argon) in order to

condense the VOCs. The sampling loop can be filled with glass beads in order to improve

the trapping efficiency [24]. The main difficulty with cryogenic sampling is the storage of

the samples until analysis. So nearly, all applications of cryogenical collection of samples

are followed by immediate analysis of the samples, e.g., by (automatically controlled) on-

line connections between the cryogenic sample trap and the analytical instrument [36]. In

addition, the cryogenic technique has to deal with water management interference, even

more so than the sorbent sampling technique. Because cryogenic preconcentration is

carried out at very low temperatures (less than —150 °C), water vapor can be trapped

quantitatively [23].

Sorbent sampling, canister sampling as well as cryogenic sampling enable the

effective determination of VOCs in ambient air. This fact, in itself, indicates that each of

them has its field of application. The selection of a sampling technique is primarily

governed by the objective of the analysis. When using sorbent sampling, attention must

be paid to avoid introduction of artifacts and contamination, e.g. during storage. In this

technique, breakthrough can be reduced by the use of multi-bed sorbent tubes. Also, in

the canister sampling method, the stability of the sample during storage must be taken
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into account, because of possible inner surface interactions. From this view, cryogenic

sampling is preferred since it avoids the storage step. However, as far as the

determination of VOCs at a remote site is concerned, the difficulty of storing cryogenic

samples can be a limitation for applicability of this sampling technique [24].

1.2.2 Sorbents for Air Sampling

A wide range of solid sorbents have been used in the measurement of VOCs in air

[23,37,38]. Nevertheless, research on the development of new types of sorbents has been

reported. Just as promoting the establishment of Method TO-17, the developments in new

adsorbents have greatly enlarged the application of sorbent-based sampling in air

analysis. An ideal sorbent needs to have four main properties, i.e. infinite breakthrough

volume (BTV) for the compounds to be sampled, complete desorption of the target

compounds at moderate temperatures, no generation of artifacts and no retention of water

vapor. Moreover, it must be possible to seal the sorbent completely from the atmosphere

so that contamination before and after sampling can be excluded [23]. No single available

sorbent material meets all of these criteria. There is a tendency to use multiple sorbents,

which allows one to focus on a wide range of VOCs [24,37].

In the meantime, new types of sorbents have been researched [37,38]. They

include porous carbon - the pyrolysis products of saccharose and cellulose (pyrolysis in

the presence of silica gel) [37], activated carbon manufactured from pith with a low ash

content, carbon molecular sieves made by dehydrohalogenation of poly(vinylidene

chloride), cleaned crosslinked styrene [38]. Simpson et al [39] synthesized and

characterized an emerging class of VOCs sorbents: Friedel-Crafts modified polystyrene.
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They aimed at identifying replacements for activated carbon in pollution control

applications, and to demonstrate the feasibility of using these polymer replacements in

VOCs recovery applications. A new graphitized carbon black adsorbent (Carbograph 5)

was characterized, and combined with other sorbents to form multi-layer cartridges to

quantitatively determine VOCs in air [40]. A novel material, mesoporous silicate MCM-

41, was developed and believed to have potential applications in adsorption, catalysis,

and nanotechnology [41]. It possesses hexagonally packed arrays of one-dimensional

cylindrical pores with large surface area and pore volume, so it was proposed as an

alternative adsorbent for VOCs abatement. The organophilicity of MCM-41 was studied

and compared with hydrophobic silicalite-1 using adsorption and temperature-

programmed desorption methods.

In contrast to an adsorption process, equilibrium sorptive enrichment is used to

concentrate VOCs in the air sample prior to analysis. This allows the use of a high-

inertness sorption material, such as polydimethylsiloxane (PDMS). PDMS is basically a

new type of sorbent since it is based on an absorptive process instead of an adsorption

process [10,23]. This polymer has some advantages when compared to the other

materials. First, water retention is low. Secondly, its degradation products are usually not

compounds that are to be detected in ambient air sampling. Thirdly, it provides an

analytical blank free from interference. Furthermore, since PDMS is a widely used

polymer in GC, information about sorption equilibrium can be gained from research work

done in the field of GC (e.g. Kovats indices as estimates for gas/polymer equilibrium

coefficients). The main limitation however in the development of PDMS as a sorbent

material is the mass transfer rate of the compounds from the air matrix to the polymer
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[23]. The use of new sampling media such as mesoporous carbons and a reversed-phase

packing material (C18-Silica) for airborne VOCs sampling was also evaluated against

criteria such as compatibility, reusability, and background interference in the GC analysis

[10].

In addition, financial considerations are taken into account during the

development of adsorbents. This can be achieved by deriving adsorbents from

inexpensive raw materials and chemical treatment. These raw materials include

saccharose and cellulose [37], activated coals [42], and even natural crab shell [28]. The

last one was evaluated as an adsorbent for preconcentrating airborne VOCs collected in a

canister. The by-product of fullerenes production, fullerenes-extracted soot, was also

applied as adsorbent to collecting VOCs in air [43]. This by-product results from

fullerenes extraction from soot generated by graphitized carbon evaporating under arc

discharge. Unlike graphite with regular lattice and graphitized carbon produced from

carbon blacks, the fullerenes-extracted soot is complex multicomponent mixture, which is

abundantly porous and has a large specific area.

1.2.3 Multi-bed Sorbent Trap

Although a number of sorbent materials have shown utility for trapping and thermal

desorption of organics [23,37,38], no single material can individually handle the

complete range of VOCs encountered in the environment. Thus, a combination of

sorbents is necessary. The best approach is to make sorbent tubes containing layers of

different materials to attain the desired collection and desorption efficiency. Sequential

trapping takes place in these so-called multi-bed sorbents, where the air sample passes



progressively through the weakest sorbent to the strongest. The materials would ideally

have the ability to stand up to repeated use and heating without changing their

characteristics and should additionally give a low background in the analysis. It is also

desirable that they would have a low affinity for water.

The use of multi-bed sorbent traps for VOCs sampling followed by thermal

desorption-GC/MS (TD-GC/MS) analysis has been popular since the introduction of the

Method TO-17 in 1996 [10]. It has been reported in scientific and commercial literature

that combination of carbon sorbents allows the sampling of a large variety of compounds

differing in polarity (non-polar/polar compounds) and volatility (C2-C15) at various

concentration levels [23-25,37,40,44]. Supelco Inc. (Supelco Park, PA) produces several

combinations of carbon sorbents in multi-bed adsorbent tubes. Many of these tubes have

2 to 4-mm I.D. and are used to refocus the analytes after thermal desorption without the

need of cryofocusing.

Since humidity affects the adsorption phenomena and/or the chromatography

(GC-MS), selection of the proper adsorbent with a lower affinity for water is very

important. Various approaches to selective removal of water from sampled air have been

developed, but these are connected with the losses of some components [23,37,40].

Supelco proposed a combination of graphitized carbon blacks (GCBs) with carbon

molecular sieves (CMS) for monitoring volatile and semi-volatile compounds as they

enable sampling in highly humid conditions, e.g., Carbotrap and Carbosieve S-III

[45,46]. There is, however, contradictory information in the literature in this regard, that

Carbosieve S-III would lead to enrichment of water [23,24].
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Compared to the commonly used adsorbents, such as Tenax, porous polymers and

graphitized carbons, carbon molecular sieves (CMS) are the most efficient adsorbents to

quantitatively trap the most volatile species due to their high adsorption capacity.

Simmonds et al. [44] found that the most efficient adsorbents for trapping

hydrohalocarbons were a CMS sold under the trade name of Carboxens (Supelco Inc.,

Bellafonte, PA). Helmig and Greenberg [47] also concluded that a multi-adsorbent trap

containing Carbotrap C, Carbotrap B and Carbosieve S-III gave the best results because

of the wide range of compounds that could be trapped without breakthrough. However,

Carbosieve S-III retains more water than Tenax [23,24]. The affinity of Carboxen 1000

for water vapor is also well known, and some decrease in capacity for the target vapors

was expected [48,49]. Therefore, to achieve the maximum efficiency in VOCs sampling,

optimal combinations of multiple sorbents should be chosen by carefully considering

their adsorption capacity for both interested analytes and moisture.

In this research, based on the breakthrough data and the effect of humility,

Carboxen 564, Carbopack B and Carbotrap C were chosen to construct a multi-bed

microtrap. This was done by sequentially packing the adsorbents into a small diameter

tubing. Due to its low thermal mass, the microtrap could be heated rapidly to generate a

sharp injection of the trapped VOCs into an analytical system. The performance of this

multi-bed sorbent was characterized with both large molecules (e.g., toluene) and small

molecules (e.g., propane, and methanol).



1.2.4 Solid Phase Microextraction (SPME)

Solid phase microextraction (SPME) is a recent development in sampling and sample

preparation for trace analysis. This technology uses a small, polymer-coated fiber to

extract analytes directly from an aqueous or gaseous phase. Hence, sampling, extraction

and concentration are accomplished in a single step. The adsorbed analytes can be easily

desorbed into an analytical instrument via the heated injection port. Thus, this technology

is fast, solvent-less, and offers the benefits of minimal sample loss, and maximum sample

utilization, since there is no dilution involved. The first SPME device was developed in

1989 and reported in 1990 by Pawliszyn [10,50]. Continued interest in SPME has been

fueled by its commercialization by Supelco (Bellefonte, PA) in 1993, and by the choice

of almost a dozen different fiber coatings, which allow the analyst to optimize the

extraction of various compound classes. The use of SPME has exploded in the last few

years. It can be considered a universal extraction method, as it can be used on gases,

liquids, and solids (the headspace above the solid is typically sampled). It has been

applied to the detection of diesel exhaust, gasoline in fire debris, solvent in water and

work space, odors in drinking water, volatile and semi-volatile pollutants in soil, flavor

and aroma volatiles in whole fruits [11,50-52].

Air monitoring is a relatively new application of SPME [10,11,51-53]. When the

SPME fiber is exposed to the air matrix, the analytes partition between the polymer

coating and the sample until equilibrium is reached. The equilibrium time varies from

seconds to hours. The amounts of analytes partitioned to the coating are proportional to

their initial concentrations in the matrix. As such, SPME is particularly suited for air

sampling, where the effects of partitioning on initial analyte air concentration are
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negligible. Analysis of SPME fibers usually consists of direct transfer of the SPME fibers

to a GC injector. In most cases, after desorption in a GC injector lasting from several

seconds to minutes, the SPME fiber is analyte-free, and the device may be immediately

deployed for another air sample. The SPME fibers are applicable for long-term and

occupational exposure sampling, and also applicable for non-equilibrium sampling and

very short sampling times. The flexibility of selection of a wide range of sampling times,

which is possible with a single SPME device, e.g., from less than 1 min to days, is not

currently achievable with conventional methods [11].

SPME can be easily coupled with GC, and requires no solvent. This makes it an

excellent sample preparation technique for field analyses, and is particularly well suited

to rapid response applications. There are many publications about this technique.

However, some aspects of SPME, including the fundamentals of how analytes interact

with the fiber coatings and the stabilities of analytes collected on a fiber, remain to be

addressed. In addition, obtaining accurate quantitation with SPME can be challenging.

One reason is that factors such as matrix composition, temperature, pH, and extraction

times, must be strictly controlled. The other is due to a limited amount of adsorbent that

can be coated on the surface of the SPME fiber [10]. A device similar to SPME, called an

inside needle capillary adsorption trap (INCAT), was reported to sample VOCs in air

actively and passively [33]. This INCAT device had an adsorbing carbon coating on the

interior surface of a hollow needle.

The development of an improved SPME method results in a relatively new

method — stir bar sorptive extraction (SBSE) [54]. In SBSE, a glass stir bar was coated

with poly(dimethylsiloxanes) (PDMS). It possessed up to 500x of loading capacity of a



13

typical SPME fiber, and was successfully applied for the sampling and quantitative

analysis of airborne VOCs and semi-VOCs. More applications of this new SBSE method

are expected in the future.

1.3 Developments in Detecting VOCs

Besides the recent developments in sampling, there are more trends in environmental

analysis. One is the implementation of faster analysis and more automation (e.g., direct

introduction MS, SPME coupled with GC). Another is the move towards miniaturization

of instrumentation (e.g., GC with acoustic wave detector, capillary

electrochromatography) and field portable instrumentation. The demand for faster time

responses has lead to a proliferation in essentially uncoupled detector-only instruments.

For example, the uncoupling of mass spectrometry from chromatographic stages using a

direct ionization or protonation of analytes in air is gaining in popularity [55,56].

1.3.1 Gas Chromatography (GC)

Given the high complexity and low abundance nature associated with ambient VOCs, the

chromatographic methods are preferred for their efficient separation and detection

capability over other analytical means. However, conventional GC analysis is slow in

separation. Additionally, the involvement of cryogenic sorbent traps for preconcentration

has inherent disadvantages. The logistical problems arising from cryogen supply also

renders this preconcentration method very undesirable for field analysis [57]. In recent

years, the demand for accurate, sensitive, faster and simple techniques for the monitoring

of low levels of VOCs in the atmosphere has increased tremendously. Responding to this,
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high-speed, high-resolution, automated and field portable GC systems have been

developed.

One technique is using dual sampling loop or trap as preconcentrator, coupled

with one or dual column to realize continuous, near-real-time analysis [57-61]. This

whole system allowed continuous measurement of VOCs without the use of cryogen for

preconcentration and oven cooling. It also substantially enhanced the number of

compounds that can be separated and detected simultaneously.

Another trend is using simultaneous detection by different detectors, or by

comparing retention times from GC columns of different polarity for validation. This

technique increases sensitivity because no effluent splitting is required. Meanwhile,

sample throughput is much enhanced since several items of information are obtained

simultaneously. Thus, misidentification due to overlapping peaks can be drastically

reduced [62]. Simultaneously used stationary phases include 100% PDMS (C1- to C10

-VOCs), Al2O3/KCl porous layer open tubular (PLOT) columns (C2- to C 5 -VOCs) and a

permethylated β-cyclodextrin column (C6- to C11-VOCs). The detectors used in these new

identification systems can be universal ones such as FID, less-specific ones such as ECD,

and specific ones such as mass spectrometry (MS) [24,62]. These detectors can be used

sequentially or simultaneously. The reported combinations include ECD/FID, either in

series [62] or in parallel [63], photoionization detector/electrolytic conductivity detector

(PID/ELCD) in parallel [64], Fourier transform infrared/mass spectrometric detector

(FTIR/MSD) in series [65], PID/FID/dry ELCD in series [11], PID/ECD/FID in series

and FID/MS in parallel [24].
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High-speed gas chromatography (HSGC) has become a more highly developed

technique in the past few years [56,59,66]. Its instrumentation utilizing narrow injection

pulses has led to separation times for mixtures of VOCs that are 10-60 times faster than

those of traditional GC techniques, with little or no loss of resolution. High-speed GC

analysis was also achieved with temperature programming and a constant (tuned)

junction-point pressure [61]. Moreover, a new detection technique, atomic emission

detection (AED), was very recently employed in GC analysis, due to its unique

selectivity and sensitivity [67,68].

1.3.2 Mass Spectrometry (MS)

Mass spectrometry (MS) has long been playing a prominent role in environmental

monitoring because of its high chemical specificity and exquisite sensitivity; molecular

weights and structural information are both available through the appropriate choice of

ionization methodology [69]. It has been extensively used in environmental analysis by

coupling with GC to provide sensitive and reliable measurements. However, many of its

applications are time-consuming and do not offer sufficiently rapid analytical methods

for reliable control of emissions. The demand for faster time responses leads to a rapid

increase in the development of direct introduction mass spectrometry (DIMS). In DIMS,

analytes from a sample are directly introduced into a mass spectrometer using a simple

interface with minimal sample preparation and no prior chromatographic separation [56].

The most common inlets for DIMS include capillary restrictors, membranes,

atmospheric pressure ionization (API) and atmospheric sampling glow discharge

ionization (ASGDI) [70]. The applications, advantages and limitations of these
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techniques have been widely reported in literature [55,69-74]. However, it is worthwhile

to be mentioned that only very recently, membrane inlet mass spectrometry (MIMS) is

widely developed and applied for the analysis of VOCs in air [69-74]. The major

disadvantages of MIMS include slower instrument response, temperature-dependent

performance, potential cross-contamination (memory effects), and membrane selectivity

between polar and nonpolar compounds. Sudden rupture of a membrane may also lead to

serious damage of the MS [55,70].

Proton transfer reaction mass spectrometry (PTR-MS) is a very recent

development. It allows MS for on-line measurements of trace VOCs with concentration

as low as a few pptv. Lindinger et al. [75] reported their PTR-MS system in 1998. The

advantage of this PTR-MS method is that ambient VOCs can be monitored

simultaneously and on-line down to the 10 pptv range without the need for

preconcentration or chromatography. An additional significant feature of the PTR-MS

instrument is that it can be operated for extended periods of time, e.g. days, weeks, and

even months at a time with little or no interruption except for calibrations [76]. This

technique has been applied to on-line analysis of VOCs emitted from trees [77,78], grass

[76], cutting and drying crops [79]. Since the PTR-MS is able to measure compounds

with a proton affinity higher than water with a high time resolution of 1 s per compound,

nearly all VOCs can be detected on-line [78]. This technique has many potential

applications in food research, medical and environmental analysis by measuring VOCs

emissions from various resources [75,80].
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1.3.3 High Performance Liquid Chromatography (HPLC)

HPLC is a powerful, practical, and hence, common separation technique used for analysis

of chemical and biochemical mixtures. The success of HPLC is due to the attention given

to developing column technology, establishing rigorous separation protocols, and

improving detection methods. Several on-line methods have been developed and shown

success either by providing selective information, such as m/z rations when interfacing

HPLC with MS, or by providing structural information when combined with NMR,

FTIR, Raman and Fluorescence Spectroscopy [71,81,82]. However, most of these

applications are for the analysis of SVOCs in water or bio-matrix.

In air analysis, HPLC is mainly developed with appropriate sampling for the

measurement of airborne oxygenated VOCs and SVOCs. With the development of 2,4-

dinitrophenylhydrazine (DNPH) cartridge sampling and in-situ derivatization, HPLC has

been employed to measure carbonyl compounds in ambient air [83,84], and those emitted

from motor vehicles [65], crops [79], and air filters of HVAC systems [85]. This DNPH

derivatization-HPLC method is very selective, sensitive, and reliable. However, the use

of HPLC can be cumbersome and the detector, usually UV detector, lacks the specificity

offered by a mass detector. In view of these requirements and taking advantage of the

state-of-the-art bench top GC/MS systems, those oxygenated VOCs and SVOCs have

been recently analyzed by using GC/MS with new sampling and sample preparation

methods [10].
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1.3.4 Sensors

Recent advances in both miniaturization and -micro" versions of traditional analytical

techniques drive the development of sensing systems. Typical sensors used in those

systems are quartz crystal microbalances (QCM), surface acoustic wave devices (SAW),

semiconductor gas sensors and conducting polymers [55,86]. The chemical-selectivity of

a sensor-based system is conferred via three approaches [87]. The "traditional" approach

uses a single sensor functionalized with a chemically sensitive material selective for the

analyte. The second approach is to separate analytes in time, space or the spectral

domain. The third approach, using sensor arrays, is the most recently developed

technology. One array can be composed of optical fibers, electrochemical sensors,

chemiresistors, metal oxides, and/or thermal devices. Designing a sensor array for a

particular application should include the evaluation of coatings from many categories:

metal films, ceramics, organic, organometallic, and inorganic semiconductors,

organometallic compounds and coordination complexes, organic oils and waxes, and a

vast collection of organic polymers [87]. Assuming a wide range of thin films is

available, there remain two difficult questions: How many sensors should comprise the

array, and which films should be selected?

Nakamura et al. [86] developed QCM odor sensors by choosing 24 sensing film

materials from GC stationary phases and lipids. These films were classified and evaluated

with 41 VOCs and odorants. Although metal oxides based semiconductor gas sensors are

commercially available, some researchers manufactured their own sensor arrays with 10

and 15 thin films of tin oxide [88,89]. These arrays were applied to the recognition and

quantification of VOCs in air. This kind of semiconductor gas sensors was also combined
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with QCM devices, electrochemical sensors and calorimetric sensors [90]. This hybrid

modular sensor system was used to quantitatively identify odors and flavors.

Furthermore, the use of mass sensitive devices on the basis of SAW have been

demonstrated for the analysis of volatile organic solvents, and for the determination of

complex organic vapor mixtures like odors [91]. Ricco, et al. [87] evaluated a number of

chemically sensitive interface materials for SAW. Their long-term goal is to assemble of

a - library" of chemically sensitive interfaces whose responses to a range of vapors and

gases are characterized, allowing selection of the best subset of materials for a particular

application scenario. An array of polymer-coated SAW sensors was used with vacuum-

outlet GC to perform high-speed analysis of complex indoor VOC mixtures. The entire

mixture of 42 VOCs and SVOCs was analyzed in about 400 seconds [61]. As stated by

Ricco et al. [87], the next generation of chemical sensor systems is likely to increase

discrimination capabilities while maintaining or shirking the number of sensor elements.

This can by realized by (1) the use of heterogeneous arrays, (2) measurement of multiple

physical parameters, e.g., mass and conductivity, for each chemically sensitive interface,

(3) measurement of response kinetics, and (4) measurement of controlled extrinsic

perturbation-dependent responses, e.g., temperature or wavelength dependence.

1.3.5 Non-methane Organic Carbon (NMOC) Analyzer

Non-methane organic carbon (NMOC) is a measure of total organic carbon except that

from methane. It is a convenient and useful way of expressing total VOCs in terms of

parts per million (or billion) of carbon (ppm c or ppbc), because methane is nontoxic and

non-reactive in the atmospheric photochemistry leading to smog formation. When
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speciation of the individual compound is not required, NMOC can be a fast and

inexpensive way of measuring VOCs in ambient air, or in an air emission. This

measurement also allows different emission sources to be compared in terms of total

carbon emissions irrespective of the specific compounds being emitted [92]. The

conventional NMOC analyzer, as described in EPA standard method 25, has its inherent

disadvantages, such as the interference from high concentrations of moisture and CO2,

relatively high detection limits, and the inability to do on-line monitoring [93].

To solve these problems, a microtrap based NMOC system (referred to as

C-NMOC) has been developed [94-97]. This instrument combines the microtrap with a

sampling valve and a conventional oxidation/reduction NMOC detector. Besides being an

on-line concentrator and injector, the microtrap serves as a separator that isolates NMOC

from H2O, CO, CO2, CH4 and other background gases. This novel system has been

successfully used to evaluate the performance of a laboratory scale catalytic incinerator,

and also field tested at an industrial site (a coatings facility in North Carolina) to evaluate

its viability as a continuous emission monitor (CEM) [92,98]. In this work, a new

combination of multiple sorbents was used to further improve the collection efficiency of

small molecules by the C-NMOC analyzer. In addition, novel sampling configurations

were developed with the multi-bed microtrap and the C-NMOC analyzer to meet various

analytical needs.
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1.4 Measurement of VOCs Emitted from Polymers

1.4.1 Origin of VOCs Emissions

Organic emissions can be generated biogenically and anthropogenically. On a global

scale, biogenic sources represent a more sizable contribution, accounting for about 80%

of the emissions [4]. The most abundant ambient VOCs vary both in concentration and

order depending on geography and year. The following VOCs appear on the top list:

monoterpenoids, isoprene, propane, toluene, isopentane and ethylene. The first two

compounds are naturally emitted by vegetation, and the others are produced mainly by

fossil fuel combustion and industrial processes [27,29,99]. In the USA, organic emissions

from anthropogenic sources are comparable in magnitude to those from biogenic sources

[4,99]. Among anthropogenic sources, industrial processes generate the highest amount

of VOC emissions (58%), followed by motor vehicles (37% of VOCs) and consumer

solvents (5% of VOCs) [3]. As the plastic processing industry has grown to its present

size, its emissions, consisting of volatiles and particulates, constitute 5% of the actual

tonnage of resins processed annually in the United States. There has been an increasing

interest on the part of government agencies that have regulatory responsibilities. The

EPA and the Occupational Safety and Health Administration (OSHA) have been

concerned with a number of potential problems related to emissions from the plastics

processing industry. Meanwhile, the Food and Drug Administration (FDA) is mostly

concerned with the suitability of plastics products for food and drug packaging and

consumer usage [100].

A wide range of VOCs are generated during extrusion, injection molding and

other polymer processing steps with concomitant potential environmental impacts.
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The types and the amounts of VOCs emitted depend upon the material used and the

operating parameters. Although most thermoplastics are processed well below their

decomposition temperatures, some resins may begin to decompose at the high end of the

processing temperatures. In addition, VOCs emissions may occur at fairly low

temperatures from volatile additives such as antioxidants, UV stabilizers and low-

molecular-weight plasticizers [100].

1.4.2 Conventional Approach: Thermal Analysis

Polymer degradation is ubiquitous in that it can occur at any stage of its lifetime, such as

during polymer formation, during recovery and processing, and in end-use period.

Degrading polymer molecules undergo a series of reactions. This leads to the formation

of monomeric molecules, oligomers, chain fragments, and new compounds [101]. The

thermal stability of polymers and features of the degradation processes are most

commonly investigated by means of thermo-analytical techniques. These include

thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential

scanning calorimetry (DSC).

TGA is a technique in which the mass of the sample is monitored against time (or

temperature) while the temperature of the sample is programmed in a specified

atmosphere. Whereas, in DTA, the difference in temperature between the sample and a

reference material is monitored, and in DSC, the difference in heat flow (power) to a

sample (pan) and to a reference (pan) is monitored. Careful distinction should be made

between the terms derivative and differential. Differential techniques involve the

measurement of a difference in the property between the sample and a reference.
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Derivative techniques imply the measurement or calculation of the mathematical first

derivative, usually with respect to time. For example, derivative thermogravimetry

(DTG) is the measurement of the rate of weight loss plotted against temperature [102].

DTG trace is frequently drawn only in order to enhance the steps in the

thermogravimetric curve.

Because of its simplicity and the information afforded from a simple thermogram,

TGA is widely used in the characterization of polymeric materials. These applications

include comparisons of the relative thermal stability, the effect of additives on the

thermal stability, moisture and additive contents, studies of degradation kinetics, direct

quantitative analysis of various copolymer systems, oxidation stability, and many others.

DTA and DSC are routinely used to measure glass transition temperatures, melting

points, degree of crystallinity, heats of fusion and/or crystallization, decomposition

temperature, and numerous other parameters [103]. The recent developments in these

traditional techniques not only advance the applications in polymer characterization, but

also in polymer thermal degradation. The most obvious thermal analysis unit to study

thermal degradation is TGA. It is extensively used to study thermal decomposition, to

determine moisture, volatiles and ash contents. One schematic diagram of TGA is shown

in Figure l.l. It was used for the pyrolysis of polypropylene in municipal solid waste, and

the effects of moisture were studied [104]. When the polymer degradation involves cross-

linking, it is generally observed as an exothermic process on DSC [105].

However, any single thermal method can not always give sufficient information to

tell what is occurring. For example, DTA and DSC curves can not differentiate



Figure 1.1 Schematic diagram of TGA used for pyrolysis of PP in MSW [104].
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a chemical reaction from a physical change, whereas TGA can not tell whether a mass

loss is due to the release of organic volatiles or inorganic volatiles. This restricts its use in

addressing the increasing environmental concerns about the potential impacts resulting

from harmful VOCs generated during polymer degradation. It is clear that combination of

several analytical methods is needed to give a better profile of the changes taking place.

Very nearly, every analytical method has been employed as a complementary technique

to a thermal method. Gases evolved during polymer degradation have been separated by

GC, dissolved and titrated, measured electrochemically and spectroscopically,

particularly by IR and by MS [105-107].

1.4.3 Characterization of VOCs Generated from Polymers

In light of the Clean Air Act Amendments (CAAA) of 1990, the reduction of various

pollutants released to the atmosphere became mandatory. An established permit program

requires processing plants (emission sources) to provide a baseline of their potential

emissions. This is aimed at an eventual reduction in emissions [108]. As recognized by

the US EPA, emission factors and emission inventories are fundamental tools to achieve

this aim. In response to these needs, some studies have been conducted to determine the

emission factors of some resins during processing. These resins include polyethylene

(PE), polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), ethylene-vinyl acetate

(EVA) and ethylene-methyl acrylate (EMA) [100,108-110]. The emitted VOCs were

classified and reported as hydrocarbons, aldehydes, ketones and organic acids. The

measurement of hydrocarbons involved the use of Summa canister and modified TO-14

method. Aldehydes/ketones were collected with DNPH tube followed by acetonitrile
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desorption, then analyzed with HPLC. For organic acids, KOH impregnated filter was

used for sampling. Then the filter was desorbed with dilute H2SO 4 , and the analysis was

done with ion exclusion chromatography/UV detector [108-110].

There is also growing concern regarding VOCs emitted during the usage of

polymer products. A chemical composition analysis was developed and applied to the

estimation of VOCs emission rates from hydrocarbon solvent-based polyurethane surface

coating materials [111]. The estimation was based on the assumption that the emission

rate of individual VOCs was proportional to its molar fraction in the evaporative mixture

at the time, its saturated pure vapor pressure and total remaining VOCs in the material.

The estimated total VOC emission rates were in good agreement with the results of

weight loss experiments.

Pyrolysis-GC is well established as a method for the analysis of polymers. More

specifically, pyrolysis-GC/MS has been used to analyze cured polyfunctional epoxy

resins, determine the sequence of phenol units and study mechanistic and kinetic aspects

of the thermal degradation of phenol-formaldehyde polycondensates [112]. In one study,

it was used to identify the major VOCs released during thermal decomposition of a

novolac resin (Plasti Flake 1105). Meanwhile, TGA was employed to produce

information on the quantity of volatiles and the temperatures at which these volatiles

evolved. These data were used to determine the basic operating parameters for the

pyrolysis experiments. The objective of this study was to model under laboratory

conditions, the production of volatiles, which are typical of metal pouring and casting.

Data produced from TGA and pyrolysis-GC/MS were compared to assess the VOCs

released during decomposition of the novolac resin. The comparison was performed to
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determine the compatibility of the techniques in terms of volatilization [112]. Ross et al.

coupled pyrolysis-GC with atomic emission detection (AED) for on-line analysis of

VOCs (C1-C8), evolved from a range of samples including coal, biomass, waste tyres and

plastics [67]. This analysis was performed using a tar trap, coupled to a thick film

column. For the analysis of high molecular weight material, pyrolysis-GC/AED was

carried out using direct transfer of pyrolysis products onto a thin film column. An off-line

method for VOC material was also developed, offering a degree of selectivity and sample

enrichment. Due to its unique selectivity and sensitivity to a wide range of elements,

AED has been developed as one of the most powerful detectors available for GC. The

potential application of pyrolysis-GC/AED system is high in many areas, including fuel

analysis, polymer characterization and forensic sciences [67].

Emissions of VOCs from different thermoplastics, flame retarded polymers used

in electrotechnical applications, were investigated using a purge and trap procedure. It

involved adsorption on Tenax GR, followed by thermal desorption GC/MS analysis. To

investigate the emission rate of volatiles from flame retardant polymers during the

operation of electronic appliances, test chamber experiments were suggested to be most

suitable. They were useful for obtaining an overview on the total emissions, although the

sampling time required was long. Results were compared to those for an operating TV

set monitored in a test chamber. Substances identified were monomers, volatile additives,

or related compounds [113].

Polyethylene (PE), as one of the most common plastics, is widely used in

industries involved in the packaging of items. Some of them, such as food and

pharmaceuticals, are sensitive to organoleptic contamination. Therefore, the formation of
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VOCs in PE is of great concern to these industries. Villberg et al. [114] analyzed the odor

and taste problems in high-density PE with GC-MS-SNIFF and GC-FTIR-SNIFF

systems. They also determined the off-odor compounds and VOCs in fumes from

extrusion coating of low-density PE [115]. Hodgson et al. [116] reviewed the analytical

methods for VOCs that originated from PE during its manufacture, processing, storage,

and service life. The following methods were discussed: (i) chromatographic techniques

and their associated sampling techniques, including the "hot-jar" method and dynamic

headspace sampling, (ii) sensory evaluation, GC-olfactory sensing, and artificial olfaction

or "electronic nose" technology.

More comprehensive reviews [100,117] presented information related to the types

of volatiles emitted during the processing of commodity thermoplastics and reinforced

thermosets. They were PE, PP, polystyrene, polyvinyl chloride, and other miscellaneous

plastics. The analytical methods used for the VOCs measurement included GC/FID,

GC/flame-photometric detector, GC/ECD, head-space GC, GC/MS, pyrolyzer-GC/MS,

time-of-flight MS, HPLC, IR, TGA-GC-IR-MS, polarography and colorimetry. Those

complex analyses have been made faster and easier by the advances in gas and liquid

chromatography. It also attributes to the availability of new detectors and packing

materials, combined with computerized data acquisition and statistical analysis methods

[100].

With the development of recycling technologies, more and more waste plastics

are being re-processed. On what basis should virgin or recycled plastics be chosen as a

feed material is an important question. Besides economic and material considerations,

environmental impact such as VOCs emissions must be taken into consideration.



29

Therefore, a simple and fast method is needed to evaluate the potential VOCs emissions

during polymer processing. The conventional thermo-analytical techniques, such as TGA,

DTA and DSC, can not provide an accurate measure of VOCs. In contrast, the

chromatographic and spectroscopic techniques are powerful to characterize VOCs

generated from polymers, but they are time consuming. In this research, an analytical

system was developed, and a direct flame ionization detector (FID) was used to measure

the emissions during non-isothermal polymer degradation. This direct FID measurement

was a fast, sensitive and inexpensive method for determining total VOCs. It was also

applied to studying the generation kinetics of these VOCs [118].

1.5 On-line, Real-time Monitoring of VOCs

A significant trend in analytical chemistry today is away from the use of laboratory-based

methods and instrumentation towards on-line, in-situ methods. The latter provide faster

information, are less expensive and often more reliable than conventional techniques

[69,119-121]. A top priority in the environmental field is real-time analysis. This can be

achieved by moving a laboratory to the field, or by using field-portable instrumentation to

perform the measurement directly on site. Moving a laboratory is not an easy option. So

the latter option is more desirable, especially since more and more technologies are

available for on-site analysis. Seventeen of these technologies are covered in a manual of

field methods entitled Current Protocols in Field Analytical Chemistry (CPFC, V. Lopez-

Avila, Editor-in-Chief) [55]. Those for VOCs analysis include GC, GC/MS, DIMS,

microsensor devices, infrared/near infrared (IR/NIR) spectroscopy, reagent chemistry,

immunoassays, fiber optic sensors, etc.
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GC is generally considered to be slow for continuous, on-line monitoring [59].

However, in the cases when continuous data is required to be reported on an hourly or

every few minutes, GC is sufficiently fast. The further development of GC in real, or near

real-time monitoring includes application of on-line sampling, injection technologies, and

faster column separation.

To combine preconcentration and injection, a sorbent trap is placed in an on-line

position with the subsequent GC analysis [23]. One such technique is the combination of

microtrap systems with GC [94-97,122-124]. The microtrap is a small dimension tubing

packed with one or more adsorbents. Due to its low thermal mass, it can be heated rapidly

and allows immediate on-line injection of the trapped VOCs into a GC. These microtrap

systems function not only as on-line injectors, but also as separator and concentrator.

Membrane has been combined with a microtrap system to enable continuous GC

monitoring of air and water [125-128]. Measurements in these studies were taken every

5-10 minutes, necessitated by sampling and separation times. In a field air analysis,

SPME has been combined with fast portable GC to reduce the sampling and analysis time

to less than 15 minutes [11].

With recent developments, GC analysis has become more and more rapid (high

speed), selective (high resolution), automated and field-portable. Therefore, GC is being

employed nowadays in continuous on-site monitoring systems. This is achieved by using

different techniques. Dual sampling loop or trap, coupled with dual GC columns, realizes

near-real-time analysis [11,57-61,66]. Sensitivity, sample throughput and identification of

overlapping peaks can be dramatically enhanced by simultaneous use of different types of

column stationary phases and different types of detectors [11,62-65,68,129].
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Miniaturization of instrumentation drives the development of micro(chip)-GC, and

sensors as detectors [55,61,66,129]. This makes GC systems not only more field-portable,

but also faster. It was reported that only a few seconds were needed for the analysis of

both VOCs and SVOCs by GC/SAW systems [55].

Until 1995, on-line monitoring with an MS was not considered an important

technique [69,121]. However, with the demand for faster responses and more automation,

direct introduction mass spectrometry (DIMS) has become a popular technique for rapid

measurement of VOCs in air, water and soil samples [55,69,70]. Among DIMS,

membrane inlet mass spectrometry (MIMS) gains more attention in development and

applications. It possesses the apparent merits of being simple, fast, sensitive, and free of

matrix effects. So MIMS is well suited for on-line, real-time analysis. It has been applied

to the analysis of VOCs and SVOCs in various matrixes [10,23,71-74]. Sorbent trap

followed by thermal desorption (ST/TD) has been used as direct sampling interface for

MS in continuous emission monitors [130]. With this interface, detection limits of low

pptv are possible. Sampling times vary from under one minute to several minutes

depending on the detection level required by the application. Meanwhile, this ST/TD-MS

system can provide real-time data with a sampling frequency on the order of 1 second.

Detection limits have been reported in the low ppbv range. A microtrap was also reported

to function as the interface for MS in the on-line monitoring of air emissions [131]. A

recent development, proton transfer reaction mass spectroscopy (PTR-MS) allows MS for

on-line measurements of trace VOCs with concentration as low as a few pptv [75-80].

This technique has many potential applications.
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Optical instruments such as UV, IR, and laser spectroscopy, have been developed

to obtain real-time data. Modern instrumentation, e.g., Fourier transform infrared

spectroscopy (FT-IR), is capable of generating massive amounts of data which can be

stored in low-cost storage devices. With this massive amount of data and many data

interpretation tools, one can increase not only the confidence of unknown identification

but also data quality. Multi-beam, real-time optical remote sensing has been used to

monitor toxic emissions around a petroleum refinery [10]. This remote sensing is usually

done by FT-IR, differential optical absorption spectroscopy (DOAS), and tunable diode

laser spectroscopy (TDL). Infrared, especially remote FT-IR and open-path FTIR. has

been popular for detection of hazardous gas pollutants with up to ppb sensitivity. The

advantages of infrared gas monitoring include sensitivity, consistency and specificity.

Two commercial, portable IR analyzers were employed to monitor low-level

hydrocarbon emissions. With a sampling cycle of approximately 1 min, the IR analyzers

were able to produce a near-real-time distribution of the hydrocarbon vapors in the test

site emissions [132].

The near real-time analytical information can be used to facilitate chemical hazard

assessments and to take mitigative actions during: (a) emergency responses to chemical

spills; (b) remedial investigations and feasibility studies of hazardous waste sites; (c)

removal operations at hazardous waste sites; (d) special investigative operations such as

drum and tank head-space analysis; (e) soil gas analysis and fence line monitoring; (f)

point source emission monitoring; and (g) fugitive emission monitoring. Therefore,

fieldable instruments, procedures, and sampling methods should have the analytical,

operational and value-added characteristics as outlined by Overton et al. [129].
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The increasing demand for faster responses has lead to a proliferation in

"detector-only" instruments. Besides the above mentioned DIMS techniques, a variety of

sensing systems have been developed, as detector-only instruments, to provide on-site,

real-time monitoring [55,86-91]. C-NMOC analyzer is a detector-only technique. It can

be used under harsher conditions than DIMS and sensors. When speciation of the

individual compound is not required, C-NMOC can be a fast and inexpensive way of

continuously monitoring VOCs in ambient air, or in an air emission [94,95]. In this

research, further improvements of the C-NMOC analyzer were achieved by using a

multi-bed microtrap and novel sampling configurations.



CHAPTER 2

RESEARCH OBJECTIVE

The focus of this research is two-fold:

• Develop a fast and sensitive analytical system to study the VOCs emissions generated

during polymer processing

• Improve the continuous non-methane organic carbon (C-NMOC) system

The objective of the first project was to study total VOCs emissions generated

during thermal degradation of polymers. The potential environmental impact, resulting

from these organic emissions, was evaluated for both virgin resins and commingled

plastics. The effects of process parameters, i. e., temperature, heating rate and residence

time, were studied. The kinetics and characteristics of VOCs emissions were also studied

using the developed analytical system under non-isothermal conditions.

In addition, the VOCs emissions from polypropylene (PP) after multiple melt

reprocessing via injection molding and extrusion were studied. The variations in

emissions were correlated to the changes in chemical structure, and rheological

properties. The effects of material type and reprocessing conditions on emissions and

structural/rheological changes were also explored. To provide a better understanding of

the extent of thermal degradation, a simulation was performed by multiple heating and

cooling of a single PP sample under static conditions, and under different gaseous

atmospheres.

Continuous non-methane organic carbon (C-NMOC) analysis was considered to

be more accurate and on-line for the VOCs emissions during polymer processing. In the

34
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current C-NMOC system, breakthrough of low-molecular-weight compounds is a serious

problem, which can be a source of error. In this research, a backflushed multi-bed

microtrap was developed to reduce breakthrough of small molecules. Meanwhile, novel

sampling configurations were developed to meet various analytical needs. The

performance of the improved C-NMOC system was evaluated in terms of the capabilities

to adsorb small molecules, desorb large molecules, and to separate NMOC from

background gases, etc.



CHAPTER 3

EVOLUTION AND KINETICS OF VOCS GENERATED DURING
LOW TEMPERATURE POLYMER DEGRADATION

3.1 Introduction

A wide range of VOCs are generated during extrusion, injection molding and other

polymer processing steps with concomitant potential environmental impacts. The types

and the amounts of VOCs emitted depend upon the material used and the operating

parameters. Although most thermoplastics are processed well below their decomposition

temperatures, some resins may begin to decompose at the high end of the processing

temperatures. In addition, VOCs emissions may occur at fairly low temperatures from

volatile additives such as antioxidants, UV stabilizers and low-molecular-weight

plasticizers [100]. Meanwhile, with the increasing cost of landfill disposal, and due to the

growing concern about resource utilization, plastic recycling is receiving much attention

[133]. Since commingled waste plastics contain many contaminants, the air emissions

are expected to be significantly higher during the recycling process. Therefore, the VOCs

emission potential of these polymers should be evaluated.

To address such environmental issues, the Society of the Plastics Industry, Inc.

conducted a study to measure the emission factors for resins, such as polyethylene (PE)

[109], polypropylene (PP) [108], acrylonitrile-butadiene-styrene (ABS) [100], ethylene-

vinyl acetate (EVA) and ethylene-methyl acrylate (EMA) [110]. Two recent reviews

[100,117] reported the analytical methods, and listed the volatiles emitted from injection

molding machines and extruders. Kinetic studies on thermal degradation of virgin

polymer resins such as PE, PP, polystyrene (PS), styrene-butadiene rubber (SBR), and

polyethylene terephthalate (PET) have been carried out by several research groups

36
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[104,134-141]. The majority of these studies deal with high temperature pyrolysis and the

use of thermogravimetric analysis (TGA) as the tool. Little work has been reported on

direct measurement of VOCs emissions and the kinetics of their generation from

polymers at normal processing temperatures.

The objective of this research was to estimate the thermally generated total VOCs

from pure resins and from recycled polymers. An analytical system was developed, and a

direct flame ionization detector (FID) was used to measure the emissions during non-

isothermal polymer degradation. This direct FID measurement is a simple, fast and

inexpensive method for determining total VOCs when the identification of individual

components is not required. It is routinely used in industry (EPA Method 25 A) to

estimate the total organics in air emissions [142]. Two techniques namely,

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are most

commonly used in the thermal analysis of polymers. TGA measures the total weight loss,

whereas DSC measures heat flux while the polymer is heated [104,134,135,139-141].

Since FID does not respond to H 2O, CO and CO2 , this approach provides a more accurate

measure of organic emissions. Another advantage of this system is that the FID has a low

detection limit for organics.

Another goal of this project was to study the kinetics of VOCs emissions.

Reaction kinetics is normally studied under isothermal conditions. However, during

irreversible thermal polymer degradation, the reactions may be initiated even before the

sample is heated to the desired temperature [141,143-144]. Therefore, a non-isothermal

method was applied in this work to study the polymer degradation kinetics. Another
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advantage of this method is that the entire temperature range can be studied in one

experimental run.

Kinetic Model for VOCs Evolution from Polymers: Thermal degradation of polymers

is usually studied by the change in a measured parameter as a function of time.

Frequently, the derivative form of the selected parameter is proportional to the reaction

rate. Weight loss (for TGA) and heat flux (for DSC) have been the most commonly

studied parameters during polymer degradation. In this study, the rate of VOCs evolution

is used as the measuring quantity, and their kinetics is investigated under non-isothermal

conditions.

The rate of VOCs evolution with respect to temperature (dV/dT) is given as [143-

1441:

• for a first order reaction:

• for a reaction with order n:

where, dV/dT = VOCs evolution rate with respect to temperature, T = temperature (K), ko

= frequency factor (min-1cm3 (1-n) ), Ea = apparent activation energy (kJ moi l ), V 0 = total

volume of VOCs released (cm3 g -1 ), m = rate of heating (dT/dt) (K min -1 ), t = time (min),

R = gas constant (kcal mol l K -1 ).

Based on the assumptions that there is no back reaction, and the time derivative of

the peaks equals zero at the temperature corresponding to the maximum in the evolution

profile, Equation 3.2 can be differentiated to obtain a simple equation independent of the

reaction order:
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In (T, 2 / m) = (Ea/RTm) + In (Ea/ko) 	 (3.3)

where T,,, is the peak temperature at which the volatile evolution rate reaches a maximum

for each peak. Thus, when In (Tm2 / m) is plotted against 1/Tm , a straight line is obtained.

From its slope and intercept, the apparent activation energy (E a), and the frequency factor

(1(0) can be determined.

3.2 Experimental

Materials:	 Commercial-grade low-density and high-density polyethylene (LDPE,

HDPE), PP, PS and PET were used in this study. The recycled polymers used were auto

shredder residue (ASR), recycled carpet residue and post-consumer PET. ASR was the

refined polymeric fraction (after separation from wood and metal) which was the left-

over when all useful materials including large polymer parts and metals had been

recovered from an auto shredder. It was obtained from a major auto recycler. It contained

approximately 75% vulcanized rubber and miscellaneous polymers along with organic

impurities [145]. Carpet residue was obtained from Honeywell Corp. (developmental Q

product) as dark-colored brittle flakes, containing 63-65% calcium carbonate, 15-18% PP

and 12-15% SBR by weight. It was the depolymerization byproduct of Nylon 6. Carpet

residue/LDPE composite was produced in-house by compounding carpet residue with

LDPE at a ratio of 80/20 by weight in a twin screw extruder. Typical operating conditions

were screw speed of 200 rpm, barrel zone temperature of 150 °C, die temperature of 180-

190 °C, and die pressure of 3.5-7 MPa. Simultaneous devolatilization was performed

during this compounding process [146]. Post-consumer PET comprised of recycled
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pellets, nominal I.V. (intrinsic viscosity) of 0.7. All virgin and recycled polymers were

used after grinding and screening as a —30 +35 mesh fraction.

Analytical System and Procedures: A schematic diagram of the analytical system is

shown in Figure 3.l. The reactor was 5" long and 1/4" (OD) stainless steel tubing packed

with glass fiber on both ends. About 2.0 mg of the polymer was placed in the reactor in a

N2 flow of 30ml/min. The reactor was heated in a temperature-controlled oven from room

temperature to a predetermined final value. For the estimation of maximum. VOCs

emissions, the sample was heated at a fixed ramp rate of 40 °C/min, and was held at the

final temperature for over 60 minutes. The kinetic studies were carried out by heating the

polymers at different ramp rates of 1°C/min, 5 °C/min, 10 °C/min, 15 °C/min, 20 °C/min

and 40 °C/min. The majority of the previously reported polymer degradation studies were

carried out under pyrolysis conditions at high-temperature (typically over 400 °C)

[104,134-141]. Since the transition and processing temperatures of most common

polymers are significantly lower (less than 300°C) [147], this study is focused on the

kinetics of VOCs emissions at normal processing temperatures.

The VOCs evolution as a function of time/temperature is referred to as the

evolution profile, which can be integrated at different time periods to obtain the

cumulative VOCs emissions as a function of time. Quantitation was done with a propane

standard (balance, N 2). The standard flow rate was the same as for the reactor gas while

the reactor was heated to the same temperature as the polymer samples. Blank runs were

performed for both the standard and the polymer samples. The reactor was cleaned as

follows. First, the fiber glass and sample residue were removed, and the tubing was

heated at 550 °C for 2 hours. After cooling, the tubing was blown with compressed air,



Figure 3.1 Schematic diagram of the analytical system.
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then stored in a dry place. Before each run, the system was cleaned by heating the

precleaned reactor to a high temperature in a flow of carrier gas, and the blank was

monitored by the FID.

3.3 Results and Discussion

3.3.1 VOCs Evolution Profiles and Total VOCs Emissions as a Function of Time

Figure 3.2 shows the evolution profiles and the total VOCs emissions from two mixed

waste streams, namely carpet residue and ASR as a function of time. For both streams,

the VOCs evolution rates were negligible during the first 3 minutes, when they were

heated at 40 °C/min from 36°C to 150 °C. A temperature of 150 °C is close to the extrusion

temperature reported for the melt processing of LDPE samples containing these streams

[146]. After that, the VOCs evolution rates increased rapidly to their maximum before

decreasing slowly as the sample in the reactor was consumed. After a certain point, the

VOCs evolution continued at a reduced rate. The initiation of VOCs evolution occurred

at a higher temperature for ASR, and it generated significantly more VOCs than the

recycled carpet residue.

The curves in Figure 3.2, representing the cumulative VOCs, show that no signal

from VOCs was detected at room temperature, or during the first 3 minutes of heating.

However, significant emissions were observed at the processing temperature of 150 °C.

With the extension of heating time, cumulative VOCs increased although their rate

decreased. In addition, the ASR generated more VOCs than the recycled carpet residue.

Since the carpet residue contained a significant amount of smaller molecular weight

products (degraded PP and SBR, during the depolymerization of Nylon 6),



Figure 3.2 VOCs evolution profile, and the cumulative VOCs emissions from recycled carpet residue
and ASR at 150°C,
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the VOCs evolution was initiated at a lower temperature and increased rapidly within a

shorter time period. For instance, within 3 minutes after the temperature reached 150 °C,

the total VOCs emitted from the recycled carpet residue were about 0.08% by weight, but

only 0.04% from ASR. Three minutes may be considered to be characteristic thermal

exposure during polymer processing. However, as the thermal exposure of the polymers

increased to over 30 min (by far exceeding typical residence times in extruders), the total

VOCs emissions from ASR increased to a value as high as 0.5%. while those from the

recycled carpet residue were about 0.2%. Some of these emissions could be

decomposition products generated during the long heating period.

3.3.2 VOCs Emissions as a Function of Temperature

VOCs emissions as a polymer weight fraction at different temperatures for 60 min are

presented in Figure 3.3. It is seen that as the temperature increases beyond 50 °C, the

maximum emissions increase exponentially from a few ppm to 1% at 200 °C for the

recycled carpet residue. This demonstrates that the operating temperature has a

significant influence on VOCs emissions during polymer processing. The effect was

more pronounced for ASR. Although in real-world processing, the emissions are

influenced by several other factors [100,108], this experiment may be used to

approximate the effect of temperature.

Table 3.l presents the VOCs generated from different polymers at different

temperatures, with an exaggerated thermal exposure of 60 minutes. It is seen that the

emissions vary widely. For example, over 0.6% ASR was emitted as VOCs at 150 °C,

whereas the carpet residue produced half of that. Contaminants such as auto fluids could

contribute to the high emissions from ASR. As expected, the VOCs emitted from virgin



Figure 3.3 VOCs emissions for two recycled streams at different temperatures when held for 60 minutes.
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Table 3.1 Comparison of the VOCs emissions thermally generated from different
polymers at different temperatures for 60 minutes

Polymer Temperature (°C) VOCs emissions as weight
percentage (%) or ppmw *

Auto Shredder Residue
(ASR)

50 ( 63 ± 18) ppmw *

100 (0.11 ± 0.01)%

150 (0.67 ± 0.05)%

Recycled Carpet Residue

50 (8.3 ± 2.2) ppmw *

100 (734 ± 96) ppmw *

150 (0.32 ± 0.04)%

200 (1.00 ± 0.23)%
Recycled Carpet Residue

/LDPE Composite (80/20)
150 (0.31 ± 0.01)%

LDPE 150 (0.09 ± 0.01)%

PET (virgin resin) 275 (0.51 ± 0.07)%

PET (post-consumer) 275 (0.39 ± 0.16)%

Note: *: 1% = 104 ppmw
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low-density polyethylene (LDPE) resin were much lower than those from recycled

polymers. The VOCs from LDPE were possibly due to the volatilization of additives as

well as degradation of the LDPE itself (the melt temperature of LDPE is around 110 °C).

Although the results from the recycled carpet residue and its LDPE composite

(80% carpet residue/ 20% LDPE) were not that different, they were not comparable since

the composite had experienced an additional thermal exposure during its production.

Similarly, the results from pure PET and the post-consumer PET were not directly

comparable because the sources of the recycled PET and the virgin resin were not the

same. Therefore, each polymer needs to be evaluated individually for its potential

environmental impact, and the results may not be extrapolated to other polymers unless

source, composition and thermal history are known.

3.3.3 Effects of Heating Rate on Evolution Profile and Cumulative VOCs Emissions

Figures 3.4(a) and 3.4(b) are the VOCs evolution profiles from the recycled carpet

residue/LDPE composite (80/20) as a function of time and temperature respectively,

when the samples were heated from 36°C to 200°C at ramp rates of 5 °C/min, 10 °C/min,

20 °C/min and 40 °C/min. In each run, the sample was kept at 36 °C for 10 minutes to

reach a stable initial temperature. Thus, in Figures 3.4(a) and 3.4(b), initiation of heating

was at 10 minutes. With increasing ramp rate, the VOCs evolution rate in Figure 3.4(a)

reached its maximum (the peak temperature is referred as to TO in a shorter time period.

The absolute value of this maximum evolution rate also increased and moved to a higher

temperature with increasing ramp rate (as shown in Figure 3.4(b)). However, since the

time required to reach the given temperature (200 °C) is shorter at higher heating rate,

smaller amounts of VOCs were emitted from the polymer when this temperature was



Figure 3.4(a) Effect of temperature ramp rate on the VOCs evolution profiles for the
recycled carpet residue / LDPE composite (80/20) as a function of time.
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Figure 3.4(b) Effect of temperature ramp rate on Tm  for the recycled carpet
residue/LDPE composite (80/20).
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reached. This can be seen from the integration of the VOCs evolution profiles in Figure

3.4(a), which shows that higher the ramp rate, the lower is the integrated area (i.e., lower

VOCs emissions).

The effects of temperature ramp rate were more obvious on the VOCs evolution

profiles from the virgin PET, as shown in Figures 3.5(a) and (b). As the same as above,

the samples were heated at ramp rate of 5 °C/min, 10 °C/min, 15 °C/min and 20 °C/min. It

can be seen that all the profiles had three distinguishable peaks, representing three

degradation stages. With the increase of ramp rate, the profiles in Figure 3.5(a) moved to

the left (shorter time period) and became narrower. For the first and third degradation

stages, the integrated area of the corresponding peaks decreased with increasing the ramp

rate, whereas, the second degradation stage became more obvious, and the corresponding

peak area increased with heating rate. However, the second and the third stages were very

close and dependent on the heating rate. By considering them together, it can be found

that the total integrated area of these two stages decreased with increasing heating rate, as

the first stage did.

This observation was also obtained from the other studied polymers. It is

consistent with data from literature [104], where the thermal degradation of PP was

studied with TGA. The results showed lower residual mass fractions at lower heating

rates. Data from virgin LDPE, recycled carpet residue and its LDPE composite showed

similar trends. As shown in column A of Table 3.2, while the samples were heated from

36 °C to 200 °C, three to four times more VOCs were generated at 1° C/min than at

40 °C/min. However, after the polymers were held at 200 °C for an additional 10 minutes,

the cumulative VOCs emitted at different heating rates were the same for each polymer



Figure 3.5(a) Effect of temperature ramp rate on the VOCs evolution profiles for the
virgin PET (The initiation of heating was at 0 minute).
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Figure 3.5(b) Effect of temperature ramp rate on Tm for the virgin PET.



Table 3.2 Effects of temperature ramp rate on the cumulative VOCs emissions generated from different polymers
(heated from 36 °C to 200°C)
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(column B, Table 3.2). Since the typical thermal exposure period of polymers during

processing is less than 3 minutes, the results here indicate that VOCs emissions would

decrease, if the polymers are heated rapidly to their desired processing temperature, and

the processing time is shortened. In addition, the data showed that under similar

conditions, the amounts of VOCs emitted from the carpet residue, and its LDPE

composite were close to each other, but much higher than those from the virgin LDPE

resin.

3.3.4 Kinetics of VOCs Emissions

LDPE, PP, Carpet Residue and its 80/20 LDPE Composite

The VOCs evolution profiles in Figures 3.6(a) and (b) refer to four different polymers at

the ramp rate of 10 °C/min. The virgin LDPE and PP produced smoother profiles and

lower VOCs emissions compared to the relatively complex recycled polymers (or their

composite). The carpet residue and its 80/20 LDPE composite generated similar VOCs

evolution profiles. However, compared to the recycled carpet, the VOCs emissions from

its composite were higher in the low temperature range, but decreased around the

processing temperature of 180-200 °C. This may be due to the additional thermal

exposure of the composite during its production at 180 °C, as the longer thermal exposure

causes more degradation. However, exposure to higher temperatures did not enhance

VOCs evolution from the composite. On the contrary, the compounding of carpet residue

with virgin LDPE resulted in lower VOCs emissions.

The VOCs evolution profiles also show that at temperatures below 200 °C, there

were two degradation stages for the recycled carpet residue and its LDPE composite,

whereas there was only one for LDPE and PP. Each stage showed a peak temperature Tm



Figure 3.6(a) VOCs evolution profiles of PP, LDPE, recycled carpet residue and its
LDPE composite (80/20) at the ramp rate of 10 °C/min (arrows indicate Tm).
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Figure 3.6(b) Magnified profiles in Figure 3.6(a) to show Tm (indicated with arrows) from
the first degradation stage in lower temperature range or in lower scale of FID response.
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at which the VOCs evolution rate reached a maximum. For the recycled carpet residue

and its LDPE composite, the first stage overlapped with the second resulting in -a

shoulder". The VOCs evolution from the composite was initiated at a lower temperature

than the 100% carpet residue. To for the first maximum was also lower for the

composite, but T m2 for the second maximum was close to that from the recycled carpet

residue. As mentioned earlier, the additional thermal exposure of the composite caused

VOCs emissions to occur at a lower temperature, but this effect was less pronounced

when the actual processing temperature was approached. In the studied temperature

range, PP produced a degradation peak while the LDPE profile showed only a shoulder at

a relatively low Tm (as shown in Figure 3.6(b)).

As shown in Figures 3.4(b) and 3.6(a), the second degradation stage was between

110°C and 200 °C for the recycled carpet residue/LDPE composite (80/20). The evolution

profile in Figure 3.4(b) shifted to the right as the heating rate increased; Tm of the second

stage also shifted to the right (higher temperature). This right-shifting of T„ was applied

to study the kinetics of the VOCs emissions. Table 3.3 lists the Tm for four different

polymers at different ramp rates. For each degradation stage, Tm shifted to a higher

temperature when the heating rate was increased. For the recycled carpet residue, Tm

values for the two stages were higher than those of its LDPE composite. The maximum

corresponding to the first stage degradation of PP occurred at a relatively higher

temperature than LDPE. This may be due to the higher melting point of PP, as emissions

from additives and polymer are facilitated by melting the polymer. Other factors such as

the interactions between additives, polymer and contaminants may also contribute to the

difference in Tm.



Table 3.3 I'm of the VOCs evolution profiles at different temperature ramp rate for different polymers
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As per equation 3.3, In (Tm2 / m) was plotted against 1/Tm, and straight lines were

obtained as shown in Figure 3.7. From the slope and intercept of these lines, the

activation energy (E a) and the frequency factor (k o) were calculated, and are listed in

Table 3.4. As mentioned before, this work focused on processing temperatures < 300 °C,

and the kinetic parameters were computed in that range. Most published kinetic data are

at temperatures higher than 400 °C; only PP was studied at high temperatures so that the

results of the present study could be compared to those from the literature.

Due to the nature of polydispersity, the kinetics of polymer degradation is quite

complicated. The mechanisms are influenced by several factors, such as the initial

molecular weight, stereoregularity, the presence of additives (stabilizers, plasticizers,

antioxidants, etc.) and residuals (monomers, catalysts, solvents and moisture), and

experimental conditions such as temperature range, and the atmosphere in which the

reaction is carried out (nitrogen, oxygen, vacuum or moisture) [104,134-141,148] .

Moreover, data acquisition is affected by the particular analytical method (different

instruments and kinetic models, isothermal or dynamic condition). Therefore, the

literature data on the kinetics of thermal and/or oxidative degradation of PP vary widely

[104,134-136,149,150]. For example, during high temperature (>400 °C) pyrolysis of PP,

the activation energy was reported to be in the range of 171-327 kJ/mol, while the

frequency factor was between 7.2xl0 "-1.4x1024 (min -1 ) (Table 3.4) [134-136]. The

pyrolysis in the presence of H 2O gave a lower Ea (145 kJ/mol) and l(0 (1.0x10 1° min -1 )

[104]. In this study, for PP, Ea was 258 kJ/mol, while 1( 0 was l.6xl0 16 (min -1 ). These

results are in good agreement with those from literature data. Ea and ko are greater in the

higher temperature range than those in the lower temperature range. At high temperature,



Figure 3.7 ln (Tm2 / m) vs. 1/Tm from recycled carpet residue / LDPE composite (80/20).



Table 3.4 Comparison of the kinetic parameters in this work with those in literature
(temperature range( °C), Ea (kJ/mol) and l(0 (min-1))



Table 3.4 Comparison of the kinetic parameters in this work with those in literature
(temperature range( °C), Ea (kJ/mol) and l(0 (min-1 )) (Continued)
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more energy is required for the random scission, which results in polymer decomposition

throughout the polymer matrix. Whereas, at low temperature, less energy is needed to

break the weak links among residuals, low molecular fragments and their degradation

products, from which the emissions mainly originate. Therefore, as expected, the overall

activation energy is higher for the high-temperature decomposition.

The values of the kinetic parameters were quite low for the recycled polymers.

Since the recycled polymers usually contain some low molecular weight contaminants,

more VOCs are generated at low temperatures. Furthermore, the low parameters from the

first and second degradation stages of the recycled polymers corresponded very well with

the data from virgin resins (in Table 3.4), i.e. PP, LDPE in this study, and SBR in

literature [139-141]. The decrease in the values of these parameters is attributed to aging,

long thermal exposure, interactions between polymer components and presence of

contaminants in the recycled polymers. Interestingly, the kinetic parameters for the

recycled carpet residue were relatively lower than those from its LDPE composite. This

may have resulted from the additional stabilization of PP (15-18% of the recycled carpet

residue) by compounding with LDPE [151], as the thermally labile tertiary alkyl radicals

of PP are diluted by the LDPE domains.

ASR, HDPE, PS, PET and Post-consumer PET

Figures 3.8(a), (b) and (c) represent the VOCs evolution profiles from the five polymers

at the heating rate of 10 °C/min. It can be seen that the recycled ASR gave out the highest

VOCs evolution rate and the highest cumulative emissions (based on the integrated area

under the profile). Contaminants such as auto fluids, could contribute to this high



Figure 3.8(a) VOCs evolution profiles as a function of temperature at the ramp rate of
10°C/min.

Figure 3.8(b) and (c) Magnified profiles in Figure 3.8(a) to show Tm in lower scale of
FID response.
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emissions from ASR. Its profile also showed two distinct degradation stages in the

temperature range of around 130 °C and 280 °C. The virgin resin PS was ranked the

second in terms of VOCs evolution rate and cumulative amount. But its profile

demonstrated a more complex degradation mechanism with at least four stages (Figures

3.8(a) and (b)). For HDPE, the onset temperature of VOCs evolution was the lowest

(around 85 °C). This was possibly due to the lowest melt temperature of HDPE. After this

onset point, complex interactions took place throughout the HDPE matrix, which resulted

in a non-smooth profile and only gave a relatively obvious peak around 135 °C (Figure

3.8(b)).

Interestingly, the post-consumer PET as well as the virgin PET gave out the

lowest VOCs evolution rate and cumulative emissions. Their profiles (as shown in Figure

3.8(c)) were very similar to each other. Whereas, the virgin PET indicated three

distinguishable degradation stages; for the recycled PET, except the first stage, other

stages were quite complicated and showed more "shoulders". In addition, in some

temperature ranges, the evolution rate from the post-consumer PET was even lower than

that from the virgin PET. Below the processing temperature (290 °C), the cumulative

emissions from the recycled PET seemed fewer than those from the virgin PET. This

agreed very well with the previous static experimental results. However, exactly after the

processing temperature (290°C), the VOCs evolution rate from the post-consumer PET

increased rapidly, which could be resulted from the presence of contaminants, aging and

longer thermal exposure of the recycled resins.

Similar to the results from the previous four polymers, the right-shifting of peak

temperatures (TO was also observed from these five polymers, e.g., virgin PET as shown
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in Figures 3.5 (a) and (b). The activation energy and the frequency factor were also

calculated, based on this right-shifting of For the virgin PET, there were three

degradation stages. The calculated kinetic parameters were 36 kJ/mol, 63.7 min t at 122-

182 °C (the first stage); 58 kJ/mol, l.7x10 3 min -1 at 214-265 °C (the second stage); and 67

kJ/mol, l.2xl04 min -1 at 231-278 °C (the third stage). In literature, there are reports about

the existence of three or four stages in the high-temperature decomposition or burning

process of PET [152]. For each stage, the reported apparent E a based on TGA or DSC

varies widely from tens kJ/mol (or even a few kJ/mol for the last stage) to over 290

kJ/mol. This wide variation is due to the difference in the chosen kinetic model, the

isothermal or dynamic condition, the heating rate, degree of conversion, the presence of

catalysts or additives, different atmosphere (1\12, air or vacuum), etc. In the low

temperature range of 270 °C to 370°C, the reported E a of PET degradation is between 94-

287 kJ/mol in N2, 72-249 kJ/mol in air and 159 kJ/mol under vacuum. Compared with

these widely scattering literature data, the results here corresponded very well with the

experimental conditions (at even lower temperature, 122-278 °C).

The PS showed four degradation stages in the studied temperature range. The

kinetic parameters from the fourth stage (106 kJ/mol, 6.3xl0 6 min t at 311-345 °C) were

in very close agreement with Jellinek's data (103 kJ/mol at 250-340 °C) [153]. Amelin et

al. [154] noted that there were two stages for the thermal degradation of PS, and

attributed the relatively low E a of 84-146kJ/mol in the first stage to weak bonds. While in

this work, the values of E a for the first three stages were between 46-88 kJ/mol at a lower

temperature range (103-245 °C), resulting from the weakest bonds in the polymer matrix.
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Similarly, the E a was agreeably low from the low-temperature HDPE degradation (56

kJ/mol at 122-154 °C).

For the recycled polymers, ASR had a very low E a from the first degradation

stage (29 kJ/mol at 111-172 °C) due to the weak links among the miscellaneous polymer

and organic impurities. Whereas, the E a was higher (62 kJ/mol) from the second stage

which occurred at a much higher temperature range (260-317 °C). As noted before, the

post-consumer PET showed a more complicated degradation profile, so only the E a from

the first stage was estimated to be 21 kJ/mol. It is much lower than the corresponding

value from the virgin PET.

3.4 Summary

The evolution profile, the cumulative amounts, and the kinetics of thermally generated

VOCs emissions from virgin and recycled polymers were estimated. The data illustrated

that processing parameters, such as temperature, heating rate and residence time, strongly

influenced the evolution profile and the cumulative VOCs emissions. More VOCs were

generated from recycled waste streams than from virgin polymers. The kinetic studies

showed that below the processing temperature (<200 °C), virgin PP and LDPE had one

degradation stage, while the recycled carpet residue and its LDPE composite had two.

The other five polymers had more complicated degradation processes. The kinetic

parameters were in good agreement with those from the literature.



CHAPTER 4

VOLATILE EMISSIONS AND STRUCTURAL/RHEOLOGICAL CHANGES
DURING MULTIPLE MELT PROCESSING OF POLYPROPYLENE

4.1 Introduction

Polypropylene (PP) is widely used in commodity as well as engineering applications, in

unfilled and reinforced versions. With increasing costs of landfill space and with the

growing interest in waste minimization, a variety of techniques for recycling /reusing

waste PP as a single resin or in combination with other plastics are being developed

[133,155]. La Mantia and Capizzi [155] reported the recycling of compatibilized and

uncompatibilized nylon/PP blends. Wyser, et al. [156] studied recycled multilayer

PP/PET/SiOx films. Other combinations, such as PP/acrylonitrile-butadiene-styrene

(ABS) and PP/polyethylene [157], long glass fiber reinforced polypropylene [158], and

PP from lead/acid batteries [159], have also been recycled and/or investigated. A number

of technical issues must be resolved if recycled plastics are to be used with any degree of

confidence in new or demanding applications. Usually, cleaning and separation need to

be done for post-consumer plastic wastes, which are expensive. However, recent studies

show that these plastic wastes may not need to be cleaned before recycling as they retain

their properties despite the impurities in the material [160]. This would provide favorable

economic considerations for recycling. Compatibilization is crucial in composites of

recycled polymer matrix [157,161], while re-stabilization is the only chance to stop or to

slow the degradation and then the deterioration of the mechanical properties of recycled

polymers [162]. Radiation treatment and electron beam surface modifications also found

their way in reinforcing and recycling of polymers [161,163].

65
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Selection of recyclable feedstock and recycling method should be based on the

mechanical and rheological properties of the polymer, and on the environmental impacts

of the process. Given the large quantities of PP used in a variety of applications, melt

reprocessing by extrusion or injection molding appears to be the methods of choice. With

respect to recycling by reprocessing, environmental problems related to emissions have

been of concern to the Environmental Protection Agency (EPA) and the Occupational

Safety and Health Administration (OSHA). Emissions generated during processing can

be as high as 5% of the annual tonnage of resins processed in the U.S., [100]. Among the

different species generated during reprocessing, volatile organic compounds (VOCs)

have received the most scrutiny. They originate from devolatilization and degradation of

additives (plasticizers, stabilizers, antioxidants) and resins. Many of these VOCs are

hazardous air pollutants that are also involved in photochemical reactions to form smog

and ground-level ozone. Therefore, the Clean Air Act Amendments (CAAA) of 1990

regulate these VOCs, and the Title V of this Act established a permit program for their

eventual reduction [108].

Reprocessing of scrap plastics may generate a significantly higher amount of

VOCs emissions than virgin resins because they have had long thermal and mechanical

exposure in oxidizing environments. Types and amounts of these emissions depend upon

the material and the operating parameters. Degradation mechanisms are complicated and

depend on the processing atmosphere. A general mechanism of thermal degradation of

unstabilized PP adapted from Refs [164] and [165] is shown in Figure 4.1. Polymer

molecules (RH), through thermal energy, mechanical stress and promoted by catalyst

residues, produce free radicals (R•) via hydrogen abstraction occurring mostly at the



Figure 4.1 Schematic of thermal/oxidative degradation of polyolefine.
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labile tertiary carbon atom. Usually, oxygen is trapped between powder particles or

pellets during the feeding step in extruders or injection molders, and this begins the

autooxidation cycle. The macroradicals react with the trapped oxygen to form peroxy

radicals (ROO.), which interact with polymer molecules to generate hydroperoxides

(ROOH) and more macroradicals (R.). The unstable hydroperoxides (ROOH) easily

decompose into hydroxyl (•OH) and propoxyl (RO.) radicals. The hydroxyl radicals

(•OH) may abstract hydrogen from the polymer molecules to form water and more free

radicals (R.). Whereas, the propoxyl radicals (RO.) further decompose through chain

scission to generate smaller molecules containing carbonyl groups and new free radicals

with lower molecular weight. Termination may occur by deactivation of the free

radicals, which can take place at any part of the cycle in the presence of primary

stabilizers acting as "radical scavengers - , or secondary stabilizers known as

"hydroperoxide decomposers". In the absence of oxygen, the free radicals [165] undergo

chain scission to produce smaller molecules containing unsaturated (C=C) and smaller

macroradicals. As either of the above cycles continues, the cascading degradation

generates more and more free radicals. The polymer molecules are consumed and

decomposed into smaller free radicals and small molecules. The VOC emissions are

associated with these small molecules.

A variety of species have been identified under laboratory conditions or in the

vicinity of actual extrusion equipment. Depending on the PP grade, they include a series

of low molecular weight aldehydes, ketones, alcohols and carboxylic acids (mostly

aliphatic), lower olefins, cyclic ethers, esters, water and carbon monoxide. For PP, the

onset of the CO evolution has been reported to occur at about 200 °C [117].
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The above thermooxidative degradation processes have resulted in structural

changes with concomitant effects on properties. [133,166-168]. Consequently, the

recycling of polymers is very difficult because the properties of the resulting secondary

material are quite poor. In order to solve this problem, stabilization /re-stabilization plays

an important role and gains much attention [162,169,170]. In literature, the degradation

of stabilized and unstabilized PP grades was extensively studied during their multiple

melt reprocessing. These studies mainly focused on chain scission, and the corresponding

changes in molecular weight, rheology, chemical structure, microstructure (morphology,

gas transportation properties) and mechanical properties [100,133,164-174] . However,

the effects of multiple melt reprocessing on VOCs evolution and its relationship to

structural changes of polyolefines have not been reported. This research examines the

total VOCs emissions from unstabilized and stabilized PPs processed several times by

injection molding and twin-screw extrusion, respectively. It focused particularly on the

effect of stabilizer and type of processing conditions on the evolution of volatiles and the

concomitant structural changes. In addition, the changes in chemical structure as a result

of the reactive degradation were analyzed with Fourier Transform Infrared (FTIR)

spectrometer. They were correlated with melt viscosity and molecular weight changes.

VOCs measurements were carried out with an analytical system based on non-

isothermal heating of the polymers followed by direct emission analysis with a flame

ionization detector (FID). Since FID does not respond to H2O, CO and CO2, this method

provided an accurate measure of the VOCs emitted from polymers, which could be

related to the environmental impacts of repeated polymer recycling. Another advantage

of this system is its low detection limit and high sensitivity compared to traditional
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thermal analysis [118]. The total VOCs emissions from unstabilized PP that was injection

molded several times were compared with those from a multiple heating/cooling

simulation of a single PP sample in the presence and in the absence of oxygen. This was

to study the degradation in the absence of shear, and to differentiate between the

emissions of predissolved VOCs and those generated by thermal degradation during

measurement.

4.2 Experimental

Materials/Processing: A commercial polypropylene grade (Profax 6501, Montell,

USA) in powder form was injection molded up to 10 cycles in a Toyo Ti-90G injection

molder equipped with a standard mold for ASTM mechanical properties. The

polypropylene was assumed to be minimally stabilized without antioxidants and process

stabilizers, and was referred below as U-PP. Experimental molding conditions included

barrel temperature profile from 240 to 220 °C, nozzle temperature of 240 °C and mold

temperature of 25 °C. Packing pressure and cooling cycle depended upon the cycle

number. The first cycle was carried out with the virgin powder polymer, and the

remaining 9 cycles with granules produced by grinding ASTM specimens (-20 mesh)

obtained in the subsequent injection molding steps. Thus, for the injection molding part

of this research, cycle number corresponds to the respective process pass.

A commercial PP homopolymer in pellet form (H306, OPP Petroquimica SA,

Brazil) was reprocessed up to five times in a ZSK-30 W&P twin screw extruder,

equipped with a K-tron feeder and two 3 mm rod dies [166]. The PP was considered as a

stabilized grade and was referred below as S-PP. Two screw configurations (as shown in
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Figure 4.2) were used: a mild one consisting of only conveying elements (CON) and a

more aggressive one consisting of conveying plus 45 ° kneading blocks (KB). Extrusion

conditions were barrel temperature profile as 215-230-240-250-240-235 °C, feed rate of

5kg/hr and screw speed of 100 rpm with an open vent. The water-cooled extrudate was

pelletized and reprocessed [166]. The as received pellets, which were previously extruded

by the manufacturer, corresponded to the U-PP after the first reprocessing cycle. Thus the

n-cycle of the S-PP corresponded to the (n+1) cycle of the U-PP.

Total VOCs Measurement: The analytical system used for VOCs measurement is

shown in Figure 3.1 and described in Section 3.2. About 2.5 mg of ground PP sample

from the selected processing cycle was placed in the reactor. After the system reached a

steady state in a 30ml/min flow of N2 . the reactor was heated in a temperature-controlled

oven from 36 °C to 180°C (approximately 15 °C above the melting temperature of PP), at a

ramp rate of 40 °C/min. To estimate the maximum possible VOCs emissions, the sample

was kept at the final temperature for three additional minutes. The VOCs emissions were

measured with the FID as an evolution profile, whose area could be determined by

integrating different time segments. This area was proportional to the total VOCs emitted

from the polymer. The FID was calibrated with certified propane standard gas.

The multiple processing of PP was simulated by placing 5-6 mg of virgin U-PP in

the reactor in Figure 3.1 and by subjecting it through repeated heating and cooling. After

the system reached a steady state in a flow of N2, the reactor was heated from 36 °C to the

predetermined final temperature at a fixed ramp rate (40-50 °C/min). After holding at the

final temperature for a certain period of time, the reactor tubing was quenched by dipping

in icy water to cool it quickly. When the system reached the initial steady state,



Figure 4.2 Screw configurations used for stabilized PP [166].
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the sample was heated up to the same temperature under the same conditions as before. It

was again cooled with icy water, and the cycle was repeated several times on the same

sample. Besides nitrogen, air was also used as carrier gas to study the effect of oxygen

on polymer degradation.

For the injection molding part of this study, cycle numbers correspond to the

respective process pass. Thus, all results on the unprocessed U-PP powder are related to

cycle 0; the results from the U-PP granules after one injection molding pass are referred

to as cycle l, after two passes as cycle 2, and so on. However, in the simulation part, the

first heating cycle corresponds to cycle 0 of the multiple molding process since the

unprocessed PP powder was used. The second heating cycle corresponds to cycle l, and

so on.

Differential Scanning Calorimetry (DSC): Experiments with a Perkin-Elmer

Differential Scanning Calorimeter DSC-7 were conducted to determine the oxidative

induction time (OIT) of the as received U-PP powder and ground S-PP pellets, which was

related to their degree of stabilization. The multiple heating process of a single U-PP

sample under extreme degradative conditions in a 100% oxygen atmosphere was also

simulated in DSC. For the OIT measurements, about 4-7 mg PP powder was weighed

accurately to 0.001 mg with a microbalance, and then placed into the sample pan of the

DSC without the lid. The sample was first heated under nitrogen from 36 °C to 180 °C at

a rate of 72 °C /min, and kept at this temperature for an additional 0.5 minutes. Then the

system was switched to oxygen, and the data were collected under isothermal conditions.

The time for the onset of oxidative degradation, and the accompanying heat flow were

monitored.
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Multiple heating/cooling experiments under pure oxygen were conducted on U-

PP powder placed in an open sample pan under conditions similar to those used in the

molding simulation carried out in air with direct FID measurements (heating from 36 to

180°C at a ramp rate of 40°C/min, holding for 3 minutes followed by cooling to 36 °C at

200°C/min). Once the system cooled to 36 °C, the sample pan was taken out and weighed

accurately to 0.001 mg. It was then placed back, and the cycle was repeated 10 times. For

each cycle, the heat flow curves were recorded, and the weight change of the sample was

measured with the microbalance.

FTIR Analysis: Polypropylene films from each injection molding cycle and selected

extrusion cycles were prepared by compression molding at 210°C under a force of 2200

kg. The thickness of the films ranged from 100 to 125 !dm. A Perkin-Elmer Spectrum

One FT-IR Spectrometer was used to obtain the IR spectra of the films in the range of

4000-400 cm-1 . The resolution was 4 cm -1 and 25 scans were averaged.

Melt Flow Index (MFI)/Molecular Weight: MFI, expressed in g/10 min, was

measured in a Tinius Olsen Extrusion Plastometer under conditions that were standard for

PP (2.16 kg, 230 °C). Ground U-PP samples from each injection molding cycle was used.

Additional antioxidant (Irganox 1010) was used to prevent further polymer degradation

in the Plastometer barrel. Molecular weight changes of the S-PP were measured by size

exclusion chromatography (Waters GPC 150 CV in 1,2,4-trichlorobenzene at 140 °C in

the presence of antioxidant [166].
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4.3 Results and Discussion

4.3.1 Effects of Melt Reprocessing on VOCs Emissions from U-PP

4.3.1.1 Multiple Injection Molding

Processing Characteristics / Rheology

Injection molded samples became progressively darker and more brittle as cycle number

increased, an indication of thermooxidative degradation. Average tensile elongation at

break decreased from 73% for the material from the first cycle to about 20% for the

material from the 10 th cycle. Increased brittleness made regrinding easier for the samples

obtained from the fifth cycle onwards. These results were as expected because a very

short OIT value of about 0.96 minutes was observed. This indicated the absence of

stabilizers. In comparison, OIT value of the S-PP grade was about 8.2 minutes.

To facilitate easy removal of samples from the mold, the typical cooling time of

15 seconds employed for material from cycle 1 was increased in the subsequent cycles.

The maximum applied hydraulic pressure decreased exponentially with increasing

processing cycle from about 5220 kPa for the first cycle to 2950 kPa for the 10 th cycle.

Similarly, the total energy consumption measured by the attached transducers indicated a

gradual decrease with increasing cycle number. All these observations indicated reduced

melt viscosity, lower molecular weight and a tendency towards further degradation. This

is seen in Figure 4.3, where Melt Flow Index (MFI) is shown to increase rapidly with

increasing cycle number.

VOCs Emissions from Molded Samples

Figure 4.4 shows the thermally generated VOCs emissions from U-PP samples, i.e., the

st , 3 rd , 4 th , 6 th , nth
6 and 1 0 th processing cycles. The two sets of data basedvirgin resin (0),



Figure 4.3 Melt Flow Index (MFI) of U-PP after multiple injection molding.



Figure 4.4 Effect of multiple injection molding on the VOCs emissions generated from U-PP when heated from
36°C to 1800C at 400C/min in nitrogen, and held at 1800C for three additional minutes.
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on 3 to 6 replicates represent the emissions obtained when the sample was heated from

36°C to 180°C at a rate of 40°C/min, and then held at 180 °C for three additional minutes.

For both sets of data (within the range of standard deviation), the average value of total

emissions did not vary significantly from cycle to cycle. Standard deviations appeared to

increase after the first two cycles, (0 and 1), with the highest values for the 10 th cycle.

This may be attributed to equipment contamination that occurred during the intervals

between the multiple reprocessing and grinding steps. The trends shown in Figure 4.4 are

as expected, since the data obtained here correspond to the maximum VOCs generated at

those particular experimental conditions. These values may not be equal to the VOCs

generated during each processing cycle. VOCs may have been completely vented out

during molding, or partly retained in the molded specimens. In addition, the heating times

in the reactor (in the absence of shear) are different from the residence times in the

injection molder (under shear). For example, it took 3.6 min to heat the sample from 36 ° C

to 180°C at 40°C/min, whereas in real injection molding, the heating rate was higher, the

heating time was shorter and the processing temperature was higher (240 °C).

The data in Figure 4.4 represent the maximum possible VOCs independent of the

cycle number. By contrast, Figure 4.5 presents the cumulative VOCs emissions as a

function of processing cycle based on the subtotal of all the previous cycles. This shows a

linear increase of the maximum VOCs with increasing number of cycles. The data can be

also plotted as cumulative VOCs emissions versus total heating time (Figure 4.6). In this

plot, heating time represents the total time in the oven in the absence of shear (under a

nitrogen atmosphere) plus an estimated three minutes residence time in the injection

molder for each pass (in the presence of entrapped oxygen). Open circles correspond



Figure 4.5 Cumulative VOCs emissions from U-PP as a function of processing cycles.



Figure 4.6 Cumulative VOCs emissions of injection molded U-PP samples as a function of total heating time.
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sequentially to 0,l,3,4,6,8 and 10 passes, and reflect heating time to 180 °C plus the

residence time in injection molder. Percentage of total time spent in a pure nitrogen

atmosphere, which would favor only thermal degradation, decreases from 100% for cycle

0, to 11% for the 10th pass. Black circles corresponding to the same number of passes

are shifted to the right to take into account the additional three minutes in the oven at

180 °C. As before, percentage of time spent in the injection molder atmosphere which

would favor thermooxidative degradation increased from 0% for cycle 0, to 82% for the

10th pass. As expected, the cumulative maximum VOCs also increased linearly with the

total heating time. This trend was similar to increasing the cycle number (Figure 4.5).

4.3.1.2 Simulation by Multiple Heating and Cooling. As shown in Figure 4.4, the

total VOCs emissions did not vary as a function of injection molding cycles. The melt

processing is assumed to be carried out in the presence of entrapped air that would favor

thermooxidative degradation. Subsequent measurements of VOCs emissions in a

nitrogen atmosphere would involve mostly thermal degradation plus the release of

dissolved/entrapped volatiles. To provide a better understanding of the extent of thermal

degradation under different atmospheres, a single U-PP powder sample was repeatedly

heated and cooled for several cycles and emissions were monitored.

It should be noted that there are certain inherent differences in the reprocessing

and simulation studies presented here. During the multiple processing, milligram level

subsamples were taken from a kilogram level starting U-PP. However, the simulation was

done using a single milligram level U-PP sample. Also, the U-PP was under shear during

molding, something it did not experience in the oven. The molten U-PP in the barrel of
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the injection molding machine served as a solvent for the evolving VOCs. This resulted

in some of the degraded organics that could not be vented out during the molding cycle to

be readsorbed in the sample. When processed U-PP was heated in the reactor in Figure

3.l, the readsorbed organics were reemitted. However, during the simulation

experiments, there was no scope of VOCs readsorption, and the FID reading was a true

measure of emissions.

Total VOCs in Nitrogen - Comparison with Injection Molded Samples

Data obtained with the FID using nitrogen as a carrier gas under three different heating

conditions are shown in Figure 4.7. Only for cycle 0, the long heating time at 180 °C of

condition A had a more significant effect on the VOCs. When the heating cycle number

increased, the results from all three conditions showed not only lower VOCs, but also

little difference between the three conditions. The data suggest that if the U-PP was to

experience only thermal degradation, multiple reprocessing in the injection molder and

more severe reprocessing conditions (e.g., longer heating time, and higher temperature)

would not generate more VOCs.

The weight percent VOCs emitted in Figure 4.7 are lower than those in Figure

4.4, where the injection molded samples encountered more severe thermal, mechanical

and oxidative degradation. Partial dissolution of volatiles in the U-PP being processed,

and external contamination also affected VOCs. Such conditions would contribute to the

generation of more emissions from each cycle (around 0.1 % by wt.) under a heating

protocol similar to that of A. This possibly resulted in the same amounts of maximum

emissions among cycles (as observed in Figure 4.4). Thus, the cumulative VOCs from



Figure 4.7 VOCs emissions from each cycle during simulation by multiple heating/cooling of a single U-PP sample
in nitrogen (FID measurement).
Heating profiles: A. 8.6 min (3.6 min from 36°C to 180°C, then 5 additional min at 180°C)

B. 3 min (2.5 min from 50°C to 180°C, then 0.5 additional min at 180°C)
C. 3 min (from 50°C to 204°C)
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injection molded samples ought to increase faster than those from the simulated multiple

heating/cooling in nitrogen. This is clearly demonstrated by the difference in the slopes of

the two lines in Figure 4.8, (solid circle data from Figure 4.6 and open square data from

Figure 4.7), where cumulative VOCs are plotted against the total heating time.

Total Volatiles in Oxidative Environment - Comparison with Injection Molded Samples

To better simulate degradation in the presence of air (exaggerated injection molding

conditions, still in the absence of shear), data were obtained with air as the carrier gas and

the FID as the detector. As shown in Figure 4.9, the amount of VOCs decreased from

0.043% in cycle 0 to 0.008% in cycle 1, increasing rapidly thereafter and reaching a

plateau after about cycle 7. DSC data under pure oxygen are also shown in Figure 4.9,

where percentage of total volatiles (including organics and inorganics) was calculated

from weight changes during multiple heating/cooling. The combined data clearly showed

that there was an oxidative induction period during cycles 0-2 prior to rapid degradation.

This was seen as the weight increase accompanying oxidative reactions in DSC

experiments corresponding to reducing VOCs in FID measurements. The data also

showed that VOCs in the FID measurements, or weight loss in the DSC experiments

reached their maximum after a certain number of reprocessing cycles. This explained

why the maximum amount of VOCs did not change among cycles in Figure 4.4.

Additionally, as shown in Figure 4.10, the DSC heat flow vs. temperature heating curves

under oxygen clearly showed a reduction in overall crystallinity, and a decrease in the

maximum melting temperature as a result of degradation.



Figure 4.8 Comparison of the cumulative emissions (VOCs for FID or weight loss for DSC) at different conditions
as a function of total heating time.
Note: The negative values indicate weight increase instead of generation of volatiles.
The box shows the exploded view of the first ten data points.



Figure 4.9 Emissions from each cycle of multiple heating/cooling of a single U-PP sample in air
(VOCs, FID detector) and oxygen (weight loss, DSC).
For each cycle, total heating time was 6.6 min (3.6 min from 36°C to 180°C, then 3 additional min at 180°C).
Note: The negative values indicate weight increase instead of generation of volatiles.

The box shows the exploded view of the first two data points in air.



Figure 4.10 DSC heating curves (heat flow vs. temperature) from U-PP after multiple heating/cooling
under oxygen.
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The cumulative VOCs as a function of heating time from the FID measurements

and the cumulative weight loss from the DSC experiments are compared in Figure 4.8. In

summary, multiple heating in nitrogen did not increase the cumulative VOCs noticeably,

whereas multiple heating in air or oxygen required a certain amount of time before

oxidative degradation began, after which the cumulative VOCs or weight loss increased

linearly with time at a higher rate (note the difference in slopes). By contrast, during

injection molding followed by oven heating in nitrogen, VOCs increased linearly from

the first pass (cycle 0). In addition, the slopes of these lines increased as follows:

simulation in nitrogen < real reprocessing + oven heating in nitrogen < simulation in air

or oxygen.

4.3.2 Effects of Material Type and Reprocessing Conditions

4.3.2.1 Effects of Stabilizer and Reprocessing Conditions on VOCs Emissions. The

data in Figures 4.11 and 4.12 includes averages of 3-6 replicates and standard deviation.

They represent the emissions obtained from U-PP samples processed up to 10 times and

S-PP samples processed up to 5 times. The samples were heated from 36 °C to 180°C at

the rate of 40 °C/min (Figure 4.11), and held at 180 °C for three additional minutes under

nitrogen (Figure 4.12). It is clear that the length of heating time strongly influences the

amount of total VOCs. As shown in Figure 4.12, when the samples were held at 180 °C

(approximately 15 degrees above the melting temperature of the PP) for three additional

minutes, the VOC emissions increased more than three times.

As observed from U-PP and explained in the previous section, the average value

of total emissions from S-PP did not vary significantly among cycles, either. The large



Figure 4.11 VOC emissions generated from multiple processed PP when heated from 36°C to 1800C at 400C/min.



Figure 4.12 VOC emissions generated from multiple processed PP when heated from 36°C to 180°C at 40°C/min
and held at 180°C for additional 3 min.
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standard deviations do not allow differentiation between the two screw configurations in

the S-PP data.

Experimental oxidative induction times of the PPs confirmed that the 6501 resin

powder (U-PP) is virtually unstabilized (OIT about 1 min). Whereas, the H306 resin

pellets (S-PP) is much less susceptible to thermooxidative degradation (OIT about 8

minutes), presumably as a result of the stabilizers presence. Thus, it is of interest to note

the higher values of the VOCs emissions of the extruder reprocessed stabilized material

versus those of the injection molded unstabilized grade, particularly in Figure 4.11. The

additional heating in Figure 4.12 appears to promote some data overlapping. However, it

is clear that the expected effects of the stabilizers were overcome by the effects of

reprocessing method (Injection molding vs. extrusion, grinding vs. pelletizing) and the

accompanying differences. These differences included shear level (higher in extrusion),

processes conditions, possibility of venting/wash out of antioxidants during

extrusion/pelletizing, etc.

4.3.2.2 Correlation between VOCs Emissions and MFI/M w. Figures 4.13 and 4.14

present the melt flow index (MFI) of U-PP, and the weight average molecular weight

(Mw) of S-PP respectively as a function of processing cycle. They also include the

cumulative VOCs emissions based on the subtotal of all the previous cycles. As the data

in Figures 4.11 and 4.12 represent the possible maximum amount of VOCs independent

of the cycle number, The data points in Figures 4.13 and 4.14 stand for the cumulative

maximum VOCs. They show an increasing tendency with increasing cycle number. This

trend of cumulative maximum VOCs versus cycle number is clearly related to a similar



Figure 4.13 Cumulative VOC emissions (when heated from 36°C to 180°C and held at 180°C for 3 min),
and melt flow index (MFI) of U-PP after multiple injection molding.



Figure 4.14 Cumulative VOC emissions (when heated from 36 °C to 180°C and held at 180°C for 3 min),
and weight average molecule weight (M w) of S-PP after multiple extrusion.
Note: Mw data were adopted from Ref. 166.
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trend of increasing MFI with cycle number as shown in Figure 4.13, and decreasing M,

with cycle number as shown in Figure 4.14.

With increasing number of cycles, the increase in MFI of the U-PP indicated a

decrease in melt viscosity, a corresponding reduction in molecular weight and a tendency

towards further degradation. Figure 4.13 shows that both cumulative VOCs, and the

extent of degradation increased linearly up to the 6th cycle, and more rapidly thereafter.

These increases after the 7 th cycle may be attributed to several factors including higher

probability of contamination of molding and grinding equipment, and adjustments in

molding conditions required to accommodate materials with increasingly lower melt

viscosity. For the S-PP, after multiple extrusions as shown in Figure 4.14, the increasing

tendency of the cumulative VOCs vs. cycle number corresponded very well to the

decreasing tendency of molecular weight change. Material reprocessed under more

severe shear (KB) appeared to produce more volatiles with concomitant fast reduction of

Mw as cycle number increased. Thus it appears that decreasing M„, results in higher

fraction of small molecules, which generate more VOCs.

4.3.2.3 Determination of Structural Changes by FTIR Analysis

FTIR Spectroscopy

Figure 4.15 shows the FTIR spectra (wavenumber 2000-1500 cm -1 ) of films obtained

from reprocessed U-PP. With increasing cycle number, the absorption increased between

1800 and 1675 cm -1 , which is the region where carbonyl group (>C=O) has a strong

absorption band. The appearance of carbonyl group indicated that oxidative thermal

degradation took place during multiple injection molding. However, the oxidative process



Figure 4.15 Comparison of the FTIR spectra of U-PP after different injection molding cycles.



96

became more prominent after the 7th cycle, and a large increase in the carbonyl

absorption was seen at the 8 th cycle. This is evident in Figure 4.17, where the spectra

were processed using the one from 0 cycle as the background to eliminate the effect of

film thickness (sample concentration). The pronounced increase in carbonyl

concentration indicated enhanced oxidation, and this correlated with the rapid increase in

the VOCs emission and the MFI after the 7 th cycle. This sudden increase also agreed with

the observations from simulations in air and oxygen that significant degradation occurred

only after a certain number of cycles.

The FTIR spectra of films obtained from S-PP after different extrusion cycles

were subtracted by the spectrum of the film of as received pellets. The differences are

included in Figure 4.16. It is shown that for the CON samples (cycles 2,4,6), the

concentrations of carbonyl groups in their representative region (1675-1800 cm -I ) were

lower than those in the corresponding KB samples. This means the more aggressive

configuration (KB45) did cause higher extent of thermal/oxidative degradation. It is also

shown that with increasing cycle number, both screw configurations promoted more

degradation corresponding to a proportional increase in the carbonyl group

concentrations. These observations are in relatively good agreement with the cycle

number versus absolute VOCs, cumulative VOCs, and Mw of Figures 4.11, 4.12 and 4.14.

With respect to degradation, it appears that the second extrusion cycle with the KB45

configuration was equivalent to the fourth cycle with the CON configuration, and the

fourth cycle with KB45 was equivalent to the sixth cycle with CON. It is of interest to

note that the multiple reprocessing resulted in an increasing concentration of



Figure 4.16 Comparison of the carbonyl group of S-PP after different extrusion cycles
with two extruder screw configurations (spectrum of as received PP pellets subtracted).



Figure 4.17 Comparison of the carbonyl group of U-PP and S-PP after different processing cycles
(spectra of as received PPs subtracted).



99

unsaturation. This was shown by the increasing absorbance of the peak at 1645 cm -1 ,

which corresponded to C=C double bonds [167].

Comparison of the carbonyl group concentration of U-PP and S-PP was

performed. After subtracting the spectra of the "as received" pellets or powder, the

normalized spectra at different processing cycles are shown in Figure 4.17. For U-PP, the

carbonyl absorption after the 7 th cycle increased significantly. Moreover, the location of

the dominant carbonyl group absorption shifted to a higher wavenumber. Till the 8th

cycle, the carbonyl group showed a relatively strong absorption at 1722 cm -1 , after that

the absorption at 1736 cm -1 increased rapidly. The absorption bands at 1725-1715 cm -1

were assigned to aldehyde and ketone, and those at 1745-1735 cm -1 were due to the ester

group [167]. It appeared that further oxidative degradation occurred after the 8 th cycle

accompanied by the formation of the new functional groups. This probably affected the

measured MFI and VOCs emissions. In addition, the concentration of unsaturated bands

increased gradually as shown from the increasing intensity of the C=C peak at 1645 cm -I .

By contrast, for S-PP, the carbonyl group at 1722 cm -1 (aldehyde and ketone) was still the

dominant group with the ester group appearing as a weak shoulder in all spectra of Figure

4.16 and Figure 4.17. Figure 4.16 also shows that the double bonds at 1645 cm -1 appeared

as early as at cycle 2 (CON-2 and KB-2). The concentration increased with cycle number,

and was more pronounced with the KB45 screw configuration.

Carbonyl Index and Unsaturation Index

A carbonyl index (CI) can be defined as the ratio of the peak area of the absorption in the

carbonyl region (1800-1675 cm -1 ) to the area under a reference band. The former area



100

stands for the total carbonyl concentration. CI can also be calculated as the ratio of the

peak height of the individual ketone (1725-1715 cm -1) band or ester (1735-1745 cm -1 )

band, and the peak height of a reference band. They are referred to as CI_area and

CI_height, respectively. Similarly, an unsaturation index can be defined as the ratio of the

area or height of the 1650-1645 cm' peak over that of a reference peak, and referred to as

UnsI area or UnsI height, respectively. In the literature, different bands were chosen as

internal standards (reference) for PP to account for differences in the thickness of the

samples. For example, the 974-970 cm -1 band which is indicative of a methyl rocking

vibration [175-177], the 1470 cm -1 band (CH3 ) [178], and the 2730-2720 cm -1 band

corresponding to stretching vibrations of the aliphatic CH and CH 3 groups [166,179]. In

this study, the 2722 cm -1 band was used as reference to normalize the absorption of

carbonyl and carbon-carbon unsaturation bands. They were represented by the typical

peaks at 1722 cm -1 (aldehydes and ketones) and 1645 cm -1 (C=C), respectively.

The absolute values of the indices were obtained as the average of three replicate

samples. The relative standard deviations (RSD%) of the triplicates were less than 10%

for CI and less than 3% for UnsI. This demonstrated very good precision during sample

preparation, measurement and calculation. Interestingly, for each corresponding cycle up

to cycle 6, the absolute value of CI from U-PP was lower than that from S-PP under both

configurations, while the opposite was observed in the case of UnsI. This indicated that

up to cycle 6, S-PP samples contained higher concentration of carbonyl groups with

lower amount of carbon-carbon double bonds. However, after cycle 6, the situation

became complicated because in U-PP, the carbonyl groups increased rapidly while the

amount of C=C bonds changed little.
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In order to compare the increasing tendency of the indices between U-PP and S-

PP, relative indices were calculated by subtracting the values of the as received virgin

resins. The results were shown as a function of cycle number in Figures 4.18 - 4.21. It is

interesting to note that the indices expressed in ratio of area were almost twice of that in

peak height, i.e., Figure 4.18 vs. Figure 4.19, Figure 4.20 vs. Figure 4.21. However, the

trends in the change of the indices with increasing cycle number were correspondingly

consistent.

As shown in Figures 4.18 and 4.19, the CI from U-PP increased very slowly in the

first 7 molding cycles, followed by a sharp increase in the 8 th cycle. This excellently

corresponded to the observations from the FTIR spectra, the MFI and VOCs data. By

contrast, the S-PP had a higher and more linear increase within the six extrusion cycles.

The higher shear level from KB 45 also made a significant difference from CON.

Compared to CI, the increase in UnsI was much smaller for both S-PP and U-PP.

However, the similar linear increase and similar effects of shear level were observed from

S-PP (Figures 4.20 and 4.21). For U-PP, the unsaturation indices did not change

noticeably among cycles, as observed from their absolute values. However, Hinsken et al

[167] reported a remarkable increase in the absorption of C=C double bonds (even higher

than carbonyl groups) during multiple extrusion of unstabilized PP. It appeared that it

was the processing method (extrusion), not the presence of stabilizers, that promoted the

generation of more C=C bonds. According to the reactions in Figure 4.1 and Ref. [167],

the formation of C=C bonds during extrusion can be explained by the breakdown of

peroxy radicals. Since oxygen deficient conditions exist in an extruder,

disproportionation reactions of alkyl radicals contribute to the total yield of C=C bonds.



Figure 4.18 Carbonyl indices as total area (CI_area) obtained from U-PP and S-PP
after multiple reprocessing.

Figure 4.19 Carbonyl indices as height at 1722 cm -1 (CI height) obtained from U-
PP and S-PP after multiple reprocessing.



Figure 4.20 Comparison of the unsaturation indices as area (UnsI_area) between
U-PP and S-PP as a function of cycle number.

103

Figure 4.21 Comparison of the unsaturation indices as height (UnsI_height)
between U-PP and S-PP as a function of cycle number.
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Additionally, the increase in UnsI from the S-PP under CON configuration was within

the similar range as the U-PP. This also indicated that processing conditions played an

important role in the formation of C=C bonds. These observations were in consistence

with those in VOCs variations from S-PP and U-PP, i.e., the effects of reprocessing

method and the accompanying difference overcame the expected effects of the stabilizers.

4.4 Summary

Unstabilized and stabilized PP homopolymers were evaluated for total VOCs emissions

generated during multiple melt reprocessing by injection molding and extrusion. Results

show that the maximum amount of total VOCs from each cycle (up to six cycles for the

extruded S-PP and up to ten for the injection molded U-PP) did not change significantly,

while the cumulative VOCs increased with increasing processing cycle for both

materials. Simulation of multiple heating/cooling of single U-PP samples in nitrogen, and

in air/oxygen atmospheres provided limits for mildest and most severe processing

conditions in the absence of shear induced mechanical degradation. The results indicate

that the actual reprocessing conditions generated emissions whose levels, and rate of

generation were closer to the mild thermooxidative process rather than pure thermal

degradation.

A good correlation between cumulative VOCs increases and Melt Flow Index

(MFI) increase for the U-PP and M w decrease for the S-PP were obtained. Reprocessing

was accompanied by thermooxidative degradation in all cases. FTIR data considering

increases in carbonyl content and degree of unsaturation suggest that, at equivalent cycle

numbers, degradation appeared to be more severe for the extruded material, in spite of the
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longer OIT of the as received pellets. The onset of such structural changes was shown to

depend on cycle number and reprocessing method. This was also consistent with the

observations from the VOCs measurement, i.e., the effects of processing conditions

overcame the expected ones of stabilizers.



CHAPTER 5

IMPROVEMENT OF CONTINUOUS NONMETHANE ORGANIC CARBON
(C-NMOC) SYSTEM TO MEASURE SMALL ORGANIC MOLECULES

5.1 Introduction

Nonmethane organic carbon (NMOC) is a measure of total organic carbon except that

from methane. It is a convenient and useful way of expressing total VOCs in terms of

parts per million (or billion) of carbon (ppm c or ppb c ), because methane is nontoxic and

non-reactive in the atmospheric photochemistry leading to smog formation. When

speciation of the individual compound is not required, NMOC can be a fast and

inexpensive way of measuring VOCs in ambient air, or in an air emission. This

measurement also allows different emission sources to be compared in terms of total

carbon emissions irrespective of the specific compounds being emitted [92].

NMOC is a more accurate measure of total VOCs, compared to the direct FID

measurement presented in the previous Chapters. One reason is that the direct FID has

different response factors for different compounds. Consequently possible inaccuracies

exist in the measurement of a mixture of different compounds. Another limitation is that

FID also responds to methane, which is neither toxic nor is it involved in tropospheric

ozone formation [93]. So the measurement of VOCs in a high methane background may

not truly reflect the environmental impact of the emission source. In contrast, the variable

response factors associated with FID are eliminated in the NMOC measurements.

Moreover, methane is not counted to the total organic carbon. Therefore, NMOC

measurement is a more reliable technique for the measurement of VOCs [92,93]. It can

be used for on-line monitoring of VOCs during polymer processing.

106
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A conventional NMOC analyzer is described in EPA method 25 [93]. Here, gas

samples are collected through a heated filter and a condensate trap (chilled by dry ice) by

means of an evacuated sample tank. After completion of sampling, the NMOC is

determined by combining the analytical results from the condensate trap and the sample

tank. A portion of the air sample is injected into a GC column, the NMOC in the sample

is separated from permanent gases such as CO, CO2, and CH4. The NMOC is measured

using an FID in-line with two catalytic reactors. First, the organics are catalytically

oxidized to CO 2 , then reduced to CH4 for measurement by an FID. This method provides

a response proportional to the total carbon. The conventional method is composed of field

sampling followed by laboratory analysis. A challenge here is that when sample contains

high concentrations of CO2 and H2O, the resolution in the GC column degrades and

quantitation is difficult. Also, CO 2 gas bubbles are trapped inside the ice formed in the

chilled condensate trap during air sampling. It is more difficult to purge out the CO2 prior

to recovery of the condensed NMOC. Another major problem is that the detection limits

are high, as there is no preconcentration, and the injection volume is small to obtain good

column resolution [94,95]. Furthermore, this conventional method is not designed for

continuous on-line monitoring.

5.1.1 Continuous NMOC (C-NMOC) Analyzer

Continuous, on-line monitoring can eliminate, or minimize the errors due to sample

handling and transportation. It also provides real-time information as there is no delay

between sampling and analysis. Therefore, the major component for an on-line analyzer

is the sampling and injection device.
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On-line injection devices based on microtrap technology have been developed for

continuous monitoring of VOCs [96,97,122]. The microtrap is a small diameter tubing

packed with one or more sorbents. As a gas sample continuously passes through the

microtrap, the organics are selectively trapped by the adsorbent while permanent gases

pass through. The trapped organics are injected into the analytical system by thermal

desorption. Since the thermal mass of microtrap is very small, this thermal desorption is

very rapid and serves as an injection for GC separation, or MS analysis.

The development of instrumentation for continuous NMOC monitoring has been

reported [94,95]. This instrument, referred to as the C-NMOC analyzer, combines the

microtrap with a sampling valve and a conventional oxidation/reduction NMOC detector.

Besides being an on-line concentrator and injector, the microtrap serves as a separator

that isolates NMOC from H2O, CO, CO2, CH4 and other background gases. This novel

system has been successfully used to evaluate the performance of a laboratory scale

catalytic incinerator, and also field tested at an industrial site (a coatings facility in North

Carolina) to evaluate its viability as a continuous emission monitor (CEM) [92,98]. The

field test was a collaborative effort between US EPA, Mid-west Research Institute, and

Research Triangle Institute.

5.1.2 Microtrap Sampling and Injection Systems

The microtrap is the key part of the C-NMOC analyzer and other continuous monitoring

techniques developed in this research group [92,94-98,122,125,131]. The microtrap can

be designed with different adsorbents, and can be combined with other sampling

techniques, such as valve and membrane. The goal is to obtain high sensitivity,
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selectivity, complete separation, and to eliminate interferences. However, due to the

small dimension of the microtrap, breakthrough of analytes should be carefully dealt

with.

5.1.2.1 Adsorbent. Adsorption was first observed by C. W. Scheele in 1773 for gases,

and subsequently for solutions by Lowitz in 1785 [180]. Since the 1960s, characterization

of adsorbents has been greatly improved due to the use of gas-solid chromatography

(GSC) as a tool. This improvement promoted the application of solid sorbents in the field

of environmental monitoring, specifically in airborne contaminant sampling for industrial

workplace and ambient air. Meanwhile, considerable attention was given to the

development of sorbents with physical and chemical properties that enable them to be

used in both GSC and sample enrichment [181].

Classification of Adsorbents

The typical sorbents for sample enrichment are: activated silica gels, porous polymers,

and carbonaceous sorbents. Kiselev [182] first categorized the adsorbents into three types

(Table 5.l). Type I adsorbents are those that interact non-specifically with the four

groups of adsorbates (groups A, B, C, D), while Type II and III adsorbents interact both

non-specifically (i.e., London forces, van der Waals forces) and specifically (i.e., strong

dipole-dipole interactions) (Table 5.2) [37,183]. However, only Type I adsorbents

interact non-specifically with all groups of adsorbates. Examples of the four groups of

adsorbates are: group A — n-alkanes; group B — aromatic hydrocarbons, chlorinated
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Table 5.1 Classification of adsorbents

Type Adsorbent Surface

Type I Graphitized carbon black Graphitic carbon
(no ions or active groups)

Type II Activated silica gel Oxides of silica gel
(localized positive charges)

Type III

Activated charcoal Oxides of amorphous carbon
(localized negative charges)

Porous polymers Organic "plastics"
(weak — strong Type III)

Carbon molecular sieves Amorphous carbon
(weak Type III, can approach Type I)

Table 5.2 Classification of adsorbates

Group Molecules Adsorbents
Type I Type II and III

A - Spherically symmetrical shells
- a-bonds

Nonspecific
interaction

Nonspecific
+

specific
interaction

B - Electron density concentrated on bonds/links
- π-bonds

C - (+) charge on peripheral links

D - Concentrated electron densities
- (+) charge on peripheral links
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hydrocarbons; group C — organometallic compounds; and group D — primary alcohols,

organic acids, organic bases.

Nowadays, sampling and preparation involves not only enrichment of the analytes,

but also isolation of the analytes from the matrix and removal of interfering compounds.

Besides a broad spectrum of sorbents, materials with selective sorption properties (e.g.,

tailored sorbents) are also being utilized to a large extent. Some carbonaceous sorbents

belong to the group of tailored sorbents, which allow optimal solution to specific

problems. The main advantage of carbon sorbents is their high chemical inertness and

thermal stability. In contrast to sorbents with a SiO 2 matrix (silica gel, porous glass), their

use is not limited by pH, and compared to organic polymer sorbents, they withstand much

higher temperatures. Sorbents with a carbon matrix may also serve as carriers for various

functional groups.

Carbonaceous sorbents

Various kinds of carbon sorbent are available and are already used in air sampling and

analysis. They can be divided into four types: activated carbon, carbon molecular sieves

(CMS), graphitized carbon black (GCB), and porous graphitic carbon (PGC). They differ

in their physicochemical characteristics, such as pore size and shape, particle size,

surface area, functionality of surface and chemical inertness. Consequently, the kinetics

and thermodynamics of sorption process are different, and so are properties such as

breakthrough volumes, and adsorption isotherms [37,183]. The properties of carbon

sorbents can be related to the source of starting material, procedure chosen for
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preparation of the product, and conditions under which the adsorbent is used. Table 5.3

lists some of these factors.

Matisova, et al. [37] discussed both advantages and disadvantages of these carbon

sorbents, and their use in trace analysis of organic pollutants. The recently developed,

thermally modified carbon blacks, carbon molecular sieves and porous carbons, are

superior in performance over traditional activated charcoal and porous polymers (e.g.,

Tenax). The application of the novel adsorbents has minimized the problems of

contamination from artifact formation. Hence, they are suitable for the sampling of VOCs

and preconcentration/isolation of semi-volatile organics. Betz et al. extensively studied

the characterization of carbon-based adsorbents, and utilized them in air sampling [183-

186].

Choice of the proper sorbent

The choice of carbon sorbents depends upon the application, as well as the techniques

used. The choice is made by considering the nature and concentration of the chemicals to

be sampled, the external conditions (temperature and humidity), and the type of sampling

and analytical equipment available [38,187]. One must consider a wide range of physical

and chemical properties of both the adsorbent and the analytes. In order to get the best

adsorption/desorption efficiencies for the analytes, adsorbents are selected based on their

collection efficiency, and desorption efficiency, i.e., the ability to quickly release the

trapped compounds. The general physico-chemical characteristics taken into account for

the evaluation of sorbents are functionality, particle size/shape, surface area, pore size,

and chemical inertness [37]. Dewulf and Langenhove [24] summarized four criteria for
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Table 5.3 Comparison of the carbonaceous adsorbents

Type Starting material Producing process Surface structure

Activated
carbon

Biomass materials,
fossilized plant,
synthetic polymers

A two-step process of
carbonization and then
activation by partial
gasification

Highly porous, complex
surface structure
containing a wide range
of functional groups

Carbon
molecular

sieves
(CMS)

Suitable polymeric
materials (e.g.
polyvinylchloride)
or petroleum pitch
materials

Controlled pyrolysis at
temperatures usually
above 400 °C

Highly porous structure
with almost uniform
micropores, very small
crystallites crosslinked
to yield a disordered
cavity-aperture structure

Graphitize
d carbon

black
(GCB)

Ordinary carbon
blacks

Heating to about 3000 °C
in an inert gas atmosphere

Homogeneous surface
without micropores, free
of functional groups

Porous
graphitic
carbon
(PGC)

Suitable silica gel
or another porous
template with a
phenol-
formaldehyde
resin mixture,
phenol hexamine
mixture, or
saccharose, etc.

After polymerization,
heating in an inert
atmosphere to about
1000°C. Then removing
the template by alkali to
give PGC. Finally, firing
in an inert atmosphere at
2000-2800°C to produce
some degree of
graphitization

Homogeneous
hydrophobic surface;
surface chemistry is
determined by the final
heat treatment, and any
subsequent chemical
treatment.
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the choice of sorbent. First, breakthrough of the analytes has to be avoided. Second, the

sorbent itself may not produce any artifacts. The sorbents must be kept free of

contamination before and after sampling. Finally, the retention of water on the sorbent

material has to be low, so that negative interferences in GC/MS analysis, and the

blockage of cryogenic traps may be avoided.

5.1.2.2 Breakthrough of Microtrap. The three most significant parameters of a sorbent

trap are sample capacity, desorption efficiency, and storage stability [20,38,188]. Sample

capacity is often given in terms of the breakthrough of a constant concentration through

the sorbent bed. As stated above, the breakthrough of analytes is the first criterion for

choosing a sorbent.

Definition

Normally, breakthrough is defined as the volume in liters required for the outlet

concentration to reach 5 percent of the (constant) concentration being sampled (5% Vb),

and this has been shown to be effectively independent of the flow rate in the region of

normal use. A more practical definition might be the recovery of 5 percent of total sample

from the back-up section, but these definitions are not interchangeable [20,38,188]. Lu

and Zellers [189] set a higher ratio of outlet to inlet concentration. They defined

breakthrough volume (BTV) as the sample volume required for the vapor concentration

downstream from their preconcentrator to reach 10% of inlet concentration (i.e., C o/Cx =

10).
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Breakthrough volume (BTV) has also been approximated as the retention volume

(VR) [EPA Method TO-l, and References 190-192] and specific retention volume (Vg t )

[183,184,190]. So, BTV can also be defined as the calculated volume of carrier gas per

gram of adsorbent which causes the analyte molecules to migrate from the front of the

adsorbent bed to the back of the adsorbent bed [183,190].

Determination of breakthrough

Breakthrough volume (BTV) characterizes the adsorption capacity of an adsorbent

towards a given compound. It depends on numerous factors, such as the temperature, the

concentration of the compound being studied, the chemical composition of the gaseous

mixture, the relative humidity, the flow-rate and linear velocity of the carrier gas, the

dimensions of the trap, and a number parameters relating to the adsorbent such as mass,

granulometry, pore diameter and specific surface area, repeated re-use and thermal

pretreatment. However, it appears that the adsorption temperature and the concentration

of the adsorbed compound are the main parameters affecting the BTV value [193]. The

relationships between these two parameters and BTV are used to determine the BTV

value [44,194,192,193].

Since adsorption is an exothermic phenomenon, the effect of temperature on BTV

can be expressed by the Van't Hoff-type equation:

where ΔHad is the adsorption enthalpy, R is the gas constant, and T is the absolute

temperature. Considering ΔHad as a constant, Eq. (5.l) can be expressed as
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So, 131 V can be experimentally determined by injection of analytes onto the adsorbent

bed at temperatures higher than the trapping temperature. Linear regression analysis was

then used to calculate BTV values at different (subambient) temperatures [44,184,192].

This method requires a large extrapolation to obtain BTV at ambient and subambient

temperatures.

The variation of BTV as a function of analyte concentration is consistent with the

expression of an adsorbent isotherm satisfying Freundlich's equation [193]:

where C is the analyte concentration. The BTV can be determined by passing the analyte

through a sorbent bed. By varying the analyte concentration and the trapping time, it is

possible to pass different volumes of gas and different amounts of analyte through the

bed. The trapped analyte is subsequently desorbed and analyzed. The masses of the

adsorbed analyte are plotted against sample volumes. Then the BTV is defined as the

sampled volume corresponding to the end of the linear domain. The extreme value of the

linear domain is evaluated by calculation of the intersection between linear and non-

linear domains. The linear calibration equation y = ax is calculated by the least-squares

method. Data in the non-linear domain are fitted by a power law, y = cx d. The parameters

c and d are obtained by the least-squares method. Such a mathematical method to

determine the BTV was preferred to the statistical method developed by Liteanu et al

[194].
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Many other equations, proposed and fit to equilibrium adsorption isotherm data,

can also be used to fit breakthrough data. Four of the simplest ones, containing only two

adjustable curve fit parameters, are as follows [195]:

The Freundlich isotherm equation:

The Langmuir adsorption isotherm equation:

The Dubinin/Radushkevich (D/R) isotherm equation:

The Hacskaylo/LeVan (H/L) isotherm equation:

where W e = adsorption capacity (g/gc)

Co = inlet concentration (g/cm 3 )

a, n = two adjustable curve fit parameters

Wmax = the upper limit to capacity at very high vapor concentrations

KH = Henry's law constant

Wv =volume capacity = We/ρL (PL = density of condensed liquid in micropores)

Wvsat = volume capacity at saturation vapor pressure, Psat

T = absolute temperature

P/P sat = relative vapor pressure = Co/Csat

R = ideal gas constant (P = CoRT)



118

K = carbon structural constant

[3 = affinity (similarity) coefficient

A', B' C' = Antoine constants

0 = fraction of saturation capacity = W e /Wsat

P = equilibrium pressure = C oRT)

b' = constant of linear variation of heat of adsorption with loading

Eq. (5.4) and (5.5) show a relationship between adsorption capacity (related to

BTV) and concentration, whereas Eq. (5.6) and (5.7) indicate the correlation of BTV with

the vapor pressure of an analyte. Both relationships have been applied to the

determination of BTV data [44,193,195-197].

As most commonly used in predicting service life of an air-purifying respirator

(APR) [195-197], breakthrough time (t b) is also frequently applied to characterize the

performance of an adsorbent. The most simple equation is derived from the Freundlich

isotherm:

where C = concentration (ppm), a = constant for a given set of conditions, and b =

constant (<1).

Another common equation for determining tb is from the modified Wheeler

model, which is derived from a mass balance between vapor entering, retained within,

and exiting the bed [189,195].

where ρb = adsorbent bed density (g/cm 3 )
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T = Wb/(ρbQ), bed residence time (min)

Q = volumetric flow rate (cm 3 /min)

Wb = bed mass (g)

Kv = kinetic rate constant (min -1 )

Co, Cx = inlet, out concentration (g/cm 3 )

The variables W e and kv vary directly with Co and can be determined by a number of

different approaches.

Although tb determinations are important, such as in air-purifying respirators

(APR) and preconcentrator development [189,195-198], the adsorbent performance

parameter of more general interest is the BTV. Via the modified Wheeler equation, it can

be expressed as follows:

This equation relates several important design and performance parameters to the vapor

breakthrough volume of an adsorbent bed under a continuous vapor challenge [189]. The

term We Wb/C o represents the volume of air containing vapor at C o that would be required

to reach thermodynamic equilibrium, V t . Since the adsorption efficiency, 1-ln(Co/Cx)/kvτ,

is generally 1, BTV is V t . The quantity ln(Co/Cx)/kvτ  represents the fractional unused

bed capacity. The decrease in BTV as C o increases is partially offset by an increase in We

with Co . But since We typically exhibits a Langmuir, or similar, dependence on

concentration, this compensation effect diminishes with increasing C o .

Obviously, increasing the mass of adsorbent, or decreasing the flow rate

maximizes the BTV. However, increasing the adsorbent mass increases the pressure drop
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across the bed and may also increase the desorption bandwidth due to heat transfer

limitations, increased dead volume, and residual adsorptive interactions of desorbing

vapors as they are swept through the bed. Slow heat transfer through the bed cross section

may then become a limiting factor, but simply stopping the flow during the initial phase

of the heating cycle should minimize band spreading from this factor. Backflushing

reduces band spreading due to residual vapor-adsorbent interactions at high temperature.

Therefore, Eq. (5.10) provides a useful framework for considering the effects of various

design and operating options on the adsorbent bed residence times and consequent

breakthrough volumes.

Direct Measurement of Breakthrough

Based on Eq. (5.2) and (5.3), BTV of analytes on a sorbent trap can be determined.

However, large extrapolation is required to estimate BTV values at lower temperatures or

lower concentrations. Two direct methods can be used to obtain the BTV value in a

single injection [44,199]. They are frontal analysis and GC injection method. In frontal

analysis, an analyte standard of known concentration is passed continuously at a flow rate

through the adsorbent bed, maintained at a constant temperature. Sample breakthrough is

monitored by a flame ionization detector (FID). The direct BTV is determined by

measuring the time passing between the disappearance of the analyte signal due to the

adsorption of the organics in the trap and the inflexion point of the curve when the BTV

has been attained. In GC injection method, the sorbent trap is connected to the injection

and detection ports of a conventional GC with FID. A conventional injection is made and

the effluent is monitored by FID. Multiplying the retention time of the analyte by the
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flow rate through the trap produces the retention volume [200]. These two direct methods

agree with each other for the light compounds, but not for the heavier compounds [199].

Generally, frontal analysis correlates well with the indirect method based on Eq. (5. 2),

while the indirect method tends to underestimate the actual BTV by a factor of —2 for the

worse case [44].

Two methods have been studied previously to measure the breakthrough of the

microtrap [122,201-203]. They are the t-method and the pulse interval method. In the t-

method a series of pulses are first made to remove all organics from the microtrap, while

the sample continues to flow through the trap. Then a pulse is made to desorb the retained

substances. First, a desorption peak is seen. This is followed by a negative peak. The

duration of the negative peak is the breakthrough time (tb). In the pulse interval method,

the sample stream continuously flows through the microtrp. For each interval, an

electrical pulse is applied to release the analyte from the microtrap. The peak area is

recorded for each pulse. A plot of peak area against pulse interval is made. The time at

the point of inflexion within the curve is the breakthrough time (tb). The breakthrough

and desorption characteristics of the microtrap have been studied with different sorbents:

Tenax-TA, Anasorb 747, Carbopack C, Carbopack B and Carbosieve SIII [204].

Safe Sampling Volume (SSV)

It is clear that the BTV is a volume threshold value above which the sampling operation

is no longer quantitative. It is generally recommended to remain well below this value

during sampling. A safe sampling volume (SSV) has been defined for this purpose,

corresponding to a certain percentage of the actual BTV value. In earlier research, SSV
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was set as high as 80% of BTV [192,205]. However, this only ensured 99% sampling

efficiency. So, lower percentage of BTV was suggested by other researchers, such as two

thirds of BTV [20,38,188,190,193], 70% of BTV [206], or even as low as 50% to ensure

no sample loss [200].

Multi-bed Adsorbent trap

Since no single material can individually handle the complete range of VOCs

encountered in the environment, a combination of sorbents is necessary. The best

approach is to make sorbent tubes containing layers of different materials to attain the

desired collection and desorption efficiency [38,199,200]. Sequential trapping takes place

in these so-called multi-bed sorbents, where the air sample passes progressively through

the weakest sorbent to the strongest. The materials would ideally have the ability to stand

up to repeated use and heating without changing their characteristics and should

additionally give a low background on the analysis. It is also desirable that they would

have a low affinity for water.

In recent years, various combinations of carbonaceous and non-carbonaceous

sorbents for trapping organic pollutants from air and other environmental samples are

reported [24,38,44,125,199,202]. It was shown in scientific and commercial literature that

combination of carbon sorbents allows the sampling of a large variety of compounds

differing in polarity (non-polar/polar compounds) and volatility (C2-C 15 ) at various

concentration levels.

Since humidity affects the adsorption phenomena and/or the chromatography

(GC-MS), selection of the proper adsorbent with a lower affinity for water is very
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important [23.24,38,199,202]. Betz et al. [183] systematically evaluated nine molecular

sieves and activated charcoal. The largest water breakthrough volume was noted for

activated charcoal. Whereas, the hydrophobic properties of the sieves were a function of

the pyrolysis temperature used to prepare them and of the subsequent non-specific

surface interactions. For example, compared to Carbosieve S-III and Carboxen-563,

Carboxen-569 and Carboxen-564 possessed the smallest breakthrough volumes for water.

The hydrophobic properties of these sieves are, therefore, a function of the tailorability of

the CMS, as stated by Matisova and Skrabakova [37].

In a previous study [123], a two-stage microtrap was developed for making sharp

injections while increasing the breakthrough volume. The first stage comprised a large

retention trap containing more sorbent, and the small second stage was used to achieve a

narrow injection band. A multi-bed microtrap was also made with Carbotrap C,

Carbotrap and Carbosieve S-III. The effect of delay time on its trapping efficiency was

studied for methanol, acetone, hexane, dichloromethane, ethylbenzene and chlorobenzene

[203]. This multi-bed microtrap was also applied to the C-NMOC analyzer for the on-line

monitoring of air emissions [94]. Due to the small thermal mass, this kind of multi-bed

microtrap would allow rapid heating of the sorbent and immediate on-line injection of the

trapped VOCs into an analytical system [94,96-98,122,131].

5.1.2.3 Configuration of the Microtrap Systems. Microtrap can be used stood alone or

in combination with other sampling techniques, such as valve or membrane. The

combination is chosen to obtain high sensitivity, selectivity, complete separation, and to

minimize/eliminate interferences [92,94-98,125-128,131]. Previously studied
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configurations, on-line microtrap (OLMT), sequential sampling valve/microtrap

combinations (SVM), and on-line microtrap in backflush mode (OLMT-BF), are

compared in Table 5.4. It is clear that each of the three configurations has specific

advantages and limitations.

5.1.3 Research Objective

The NMOC is an ideal technique for monitoring total organic emissions during polymer

processing. It can be put on-line to a wide range of equipment (e.g., extruder, injection

molder) and for a variety of polymers. Emissions from different polymers can be directly

compared based on their total carbon emissions. With this in mind, an improved version

of the C-NMOC analyzer was developed.

Two new configurations of microtrap system were developed to meet different

practical sampling needs. In the first one, a sampling loop and a backflushed microtrap

were sequentially connected with two valves. The sampling valve can inject a fixed

volume of sample for multiple times to the microtrap before the thermal desorption.

Thus, this system is referred to as multi-injection sequential valve with backflushed

microtrap (MSV-BM) shown in Figure 5.7. It combines the advantages of SVM and

OLMT-BF. Not only can the microtrap be backflushed, the total sampling volume can

also be fixed. The latter is important when two or more sources are monitored using one

instrument; or, when emission stream flow rates are very high and unstable. However,

due to the use of two valves, the MSV-BM is a complicated set-up. So, another novel

configuration was also developed with one ten-port valve, to which both a sampling loop

and a microtrap are connected. Thus, the flow directions inside the loop and the microtrap



Table 5.4 Comparison of the microtrap systems

Microtrap system Feature Advantages Disadvantages Ref.

• Sample matrix is not separated
from analytical systems;

• Difficulty in switching between 122,
On-line microtrap Microtrap directly placed • Preconcentration ability, different sampling lines; 96,

(OLMT) in a sample stream sensitive and selective device; • Pressurized sample or pump 97,
• Continuous monitoring needed; 203

.

• Analyte breakthrough may
contribute to the baseline of
detection.

• Large injection volume (up to
40 ml), so lower detection

• Effects of sample matrix due to
large volume injection;

Sequential Valve
microtrap (SVM)

Microtrap combined with
sampling valve

limit;
• Sample stream isolated from

analytical system

• No information during
microtrap injections;

• Lower sensitivity than OLMT
in a fixed injection cycle time.

96,
203

• Sample stream is completely
isolated from the analytical
system;

On-line microtrap
with backflush

desorption
(OLMT-BF)

Microtrap replacing the
loop of a gas sampling
valve

• Some interferences
eliminated;

• High sensitivity and
selectivity;

• No information during
injections

94,
199,
124

• Backflush mode allowing the
use of multi-bed microtrap

1,
1
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are switched simultaneously. This configuration is referred to as sequential valve with

backflushed microtrap (SV-BM).

In addition, selection of a proper adsorbent is critical in improving the

performance of a microtrap sampling system. Given the lack of a universal sorbent,

multi-bed microtrap is the best approach to collect organics with various volatilities and

polarities [37,38,44]. Considering the BTV value from the literature results and the effect

of humidity (as listed in Table 5.5), Carboxen 564, instead of the common Carbosieve S-

III which has high affinity to moisture, was chosen. Then, a multi-bed microtrap was

constructed with a combination of Carboxen 564, Carbotrap C and Carbopack B. This

multi-bed microtrap and the two new sampling configurations were applied to the

C-NMOC analyzer. The corresponding breakthrough and characteristics of these systems

were studied with the highly volatile (i.e., propane) and polar (i.e., methanol) organic

molecules. Because of their polarity and high volatility, propane and methanol are

difficult to trap on most common sorbents, especially Carbotrap C.

Methanol is also designed as a pollutant to be regulated by the Title III of the

1990 Clean Air Act Amendments (CAAA) [59]. Whereas, propane is on the top list of

anthropogenically generated VOCs. It is mainly produced by fossil fuel combustion and

industrial processes [27,29,99]. In this study, both methanol and propane were chosen as

the probe molecules to study breakthrough on the multi-bed microtrap during C-NMOC

analysis.



Table 5.5 Physical characteristics of several most common adsorbents
[37,46,183,184,200]
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Note: BTV: breakthrough volume at 20 °C (ml/g).
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5.2 Experimental

C-NMOC Analyzer: The schematic diagram of the microtrap based C-NMOC system

is shown in Figure 5.l. The sampling and injection systems were developed with a

backflushed multi-bed microtrap. The oxidizing unit in the NMOC analyzer was an about

5 inch long, l/8 inch diameter stainless steel tubing packed with 1.0 g 80/100 mesh 19

wt% Chrome supported with γ-Al2O3 (Engelhard, Iselin, NJ). The oxidizing unit was put

in a furnace at 650 °C (Lindbergh, Watertown, WI). The reducing unit was a 2 inch long,

1/4 inch diameter stainless steel tubing packed with l.0 g 80/100 mesh pure nickel. The

reducing unit was installed in a GC injection port and heated to 360 °C. All transfer lines

were heated to 110 °C to prevent the condensation of analytes. The temperatures were

monitored with K-type thermocouples. A flame ionization detector (FID) from a Hewlett

Parkard 5890 Series II gas chromatograph (Hewlett Packard, Avondale, PA) was used as

the final detector.

Nitrogen (zero dry, Matheson Gas Co., East Rutherford, NJ) was used as the

carrier gas to elute and inject the air sample from the microtrap sampling systems into the

NMOC analyzer. The deactivation of the oxidizing and reducing catalysts was tested with

110 ppm CH4 and 99 ppm CO2 (certified standard gases, Matheson Gas Co., East

Rutherford, NJ).

Multi-bed Microtrap: 3.3 mg Carbotrap C, 22.7mg Carbopack B and 64.5 mg

Carboxen 564 (Supelco Inc., Bellefonte, PA) were packed into a 10 cm long, l.3 mm I.D.

thin wall stainless steel tubing (HTX-16TW, Small Parts Inc., Miami Lakes, FL).

Silanized fiberglass was used to hold these adsorbents in place. The adsorbents were



Figure 5.1 Schematic diagram of C-NMOC system.
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arranged in order of increasing affinity to organics, as shown in Figure 5.2. Thus, the

smallest molecules went through the weakest sorbent and were trapped on the stronger

sorbents. It is important that during sample collection, the sample stream enters the

microtrap at the least active layer and leave through the most tenacious layer. Whereas,

the flow should be reversed during desorption to backflush the multi-bed sorbent trap.

This also keeps the heat energy needed for volatilization to a minimum, as each

component is trapped on a sorbent from which it is easily released.

The microtrap was conditioned by flowing a high purity carrier gas (nitrogen)

while it was heated at a ramp rate of 7 °C/min to 350 °C. It was kept at 350°C for 3 hours

with nitrogen on. Then the trap was cooled to room temperature, and sealed for use.

Microtrap Configurations: The multi-bed microtrap was configured in several ways

with a six-port and a ten-port gas sampling valves (Valco Instruments Co. Inc., Houston,

TX). These sampling systems were combined with the C-NMOC analyzer to study the

breakthrough of propane and methanol. The performances of these systems were also

evaluated with propane, methanol and high level background gases (8% CO2 + 120ppm

CH4, balanced in air).

In all modes, the organic components were selectively retained by the adsorbents

packed inside the microtrap. Then desorption and injection was performed by heating the

microtrap with a pulse of electric current. Seven to ten amperes of current was supplied

using a Varian. A microprocessor-based timer was used to control the current at a short

pulse time of 4 seconds. Each electric pulse generated an analyte concentration pulse that

was analyzed with the NMOC analyzer.



Figure 5. 2 Schematic diagram of multi-bed microtrap.
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Analytes and Standards: The breakthrough studies were carried out with 8.l ppm

propane, 106 ppm propane, 231 ppm methanol and a mixture (5.5 ppm propane + 4.8

ppm methanol). The methanol was a calibrated sample. All other gases were certified

standards from Matheson Gas Co., East Rutherford, NJ.

The C-NMOC analyzer was tested to see its ability to separate background gases

from NMOC. This was done using methanol and a mixture (8% CO2 + 120 ppm CH4,

balanced in air, Matheson Gas Co.). In addition, the new sampling systems were tested to

trap both small molecules (e.g., methanol) and large molecules (e.g., toluene).

5.3 Results and Discussion

5.3.1 Importance of Backflushing

In this research, a ten-port valve was configured with a backflushed microtrap. This

configuration allows the use of a multi-bed trap, where small molecules can be adsorbed

efficiently whereas large molecules can be desorbed quantitatively. At the same time,

background gases such as CO2, CO and H 2O can be eliminated or separated. One

backflushed configuration developed here is shown in Figure 5.3. It uses a ten-port valve

and a multi-bed microtrap. The diagrams of this valve in loading and injection positions

are illustrated in Figure 5.3. In the loading position, the sample loop filled with the air

sample while the carrier gas, nitrogen, flowed through the multi-bed microtrap. The flow

is from the stronger sorbent (Carboxen-564) to the weaker one (Carbotrap C). During this

period, the microtrap was heated to desorb/inject the organics into the analyzer. This

ensures that no irreversible adsorption takes place. Then the ten-port valve was switched

to its injection position, where nitrogen carried the sample out of the loop, and injected it

into the microtrap from the Carbotrap C end. So heavier compounds were trapped by the



A: Loading of sample into the valve and desorption of microtrap

B. Injection of sample into the microtrap

Figure 5.3 Schematic diagram of the SV-BM mode with a ten-port valve.
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weaker sorbent, while the light compounds went through to the stronger sorbents. The

switching of the flow direction allowed the trap to be backflused. This configuration is

referred to as sequential valve with backflushed microtrap (SV-BM). It was combined

with the C-NMOC analyzer (as shown in Figure 5.l) to analyze both small and large

molecules.

Trapping of small molecules and desorption of large molecules

Figure 5.4 represents the C-NMOC response in the SV-BM mode of a mixture of 99 ppm

CH4 and 231 ppm methanol in N2. The excellent reproducibility in peak height showed

that the SV-BM system could effectively trap small polar molecule such as methanol.

Similar results were obtained using propane as a probe molecule. In previous studies

where the trap was not backflushed, both methanol and propane had broken through.

Quantitative desorption of toluene was studied. The C-NMOC responses of 16.6

ppm toluene, 8.1 ppm and 106 ppm propane were illustrated in Figure 5.5. Their

concentrations respectively corresponded to 116.2 ppmc, 24.3 ppm c and 318 ppmc . The

linear responses, as shown in the box in Figure 5.5, showed that the SV-BM/C-NMOC

system not only effectively trapped small molecules (propane), but also quantitatively

desorbed large molecules (toluene).

It should be noted that in the microtrap used here, only a small amount of

Carbotrap C (3.3mg) was used. Since the toluene was to be retained in this sorbent,

careful attention was given to ensure that there was no breakthrough. In this experiment,

the optimal time period at injection position, where the toluene sample was injected from

the sample loop to the microtrap, was found to be 25-30 seconds. After the valve was



Figure 5.4 Adsorption of small molecules with the SV-BM mode
(Sampling loop: 5 ml. Based on Figure 5.3, load position 2 min ad injection position 2 min.)



Figure 5.5 Desorption of large molecules with the S\/-BM mode.
(Sampling loop: 1ml. Based on Figure 5.3, load position 2 min, injection position 1 min for propane and 25 sec for toluene)
The box shows the linear response (peak area) from propane and toluene at different concentrations (ppmC).
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switched to the load position for desorption, the microtrap was heated with only one

second delay (this delay was for purging the trap). Larger amount of Carbotrap C would

be needed if the breakthrough time of toluene on it is to be increased. Since the

brakthrough volume of methanol and propane was relatively high on this multi-bed

microtrap, the amount of carboxen 564 could be reduced. For example, 40mg of

Carboxen 564, 20 mg of Carbopack B and 30 mg of Carbotrap C may efficiently analyze

both small and large molecules. Optimization of these quantities may be done based on

the application of interest.

Separation of background gases from NMOC

In a previous study [94], NMOC monitoring with SVM and OLMT-BF modes

demonstrated good separation of NMOC from the background gases such as CO2, CO

and CH4. As noted in Figure 5.4, the novel multi-bed microtrap with SV-BM mode could

also separate NMOC from background gases. It could actually handle the background

gases as high as (8% CO2 + 120 ppm CH 4). This is clearly shown in Figure 5.6.

These high concentration background gases needed time to elute completely from

the microtrap. In addition, hating the microtrap at the "load" position of the ten-port valve

(see Figure 5.3) backflushes the microtrap. The separation of background gases from the

NMOC is optimized by adjusting the load/injection time of the valve. For example, in

Figure 5.6A, the time at the injection position was set as 9 min. During this period, the

background gases and the NMOC were injected into the multi-bed microtrap at the

direction from the weak to the stronger sorbents. The NMOC were selectively trapped,

while the background gases eluted and it took about 7 minutes for their complete elution.
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Figure 5.6 Separation of NMOC from background gases with SV-BM system
(sampling loop: 1 ml, NMOC: 231 ppm methanol, Background gases: 8% CO2 + 120
ppm CH4 , balanced in air).
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In Figure 5.6B, the time for injection was set as 1 min, while that for load was 9 min. At

the load position (for 9 min), the microtrap was backflushed. It took about 6 minutes for

the background gases to elute out of the multi-bed microtrap. In the latter time settings,

not only the elution of the background gases became faster by one minute, but also the

peaks from both NMOC and the background gases became higher and sharper. This

meant that higher sensitivity was obtained from the C-NMOC system. This optimization

is of significance for the situations when estimation of the background gases is needed,

e.g., monitoring emissions from vehicle exhaust and polymer processing.

The background gases could be completely eliminated using another valve in

series with the ten-port one. This configuration is shown in Figure 5.7, and is referred to

as MSV-BM (multi-injection sequential valve with backflushed microtrap) mode. Its

capability and the importance of performing multi-injection are discussed later. The two

valves in the MSV-BM system were arranged in such a way that when the loop was in

sampling position, the microtrap was in injection position, or vice versa, i.e., when the

loop was in the injection position, the microtrap was in the sampling position. Thus in

each cycle, a fixed volume of air sample was injected into the microtrap from the loop

first, the organics were selectively preconcentrated by the microtrap. Then the microtrap

was heated to desorb/inject the trapped organics (backflushed). Figure 5.8 shows that this

MSV-BM mode could completely eliminate background gases in C-NMOC analysis. In

this case, the MSV-BM had the same function as the OLMT-BF mode. However, the

advantage of MSV-BM mode was that the total sampling volume could be fixed during

each injection. This is important when two emission sources are compared directly with

the analyzer response; or, when emission stream flow rates are high or unstable.



Figure 5.7. Multi-injection sequential valve with backflushed microtrap (MSV-BM).



Figure 5.8 Elimination of background gases with the MSV-BM system (sampling loop: l ml,
load position for 9 min, injection position for 1 min).
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Compared to the SV-BM, the SVM mode can also separate and quantify

background gases [203]. However, a multi-bed microtrap could not be used since there

was no provision for back flushing. In contrast, the OLMT-BF and MSV-BM modes vent

the background gases out of the analytical system. So in some cases, the capabilities to be

backflushed and to quantify background gases are major advantages of the SV-BM

system.

5.3.2 Calibration Curves

Calibration characteristics were studied with the SV-BM and MSV-BM modes. Figure

5.9 presents the calibration curves obtained from different analytes at the lower mass

range (less than 1 14) with these two sampling configurations. The asterisks stand for the

responses from the mixture standard of 5.5 ppm propane+4.8 ppm methanol (21.3 ppmc)

after multiple injections with the MSV-BM configuration. The other two curves were

obtained with the MSV-BM and SV-BM modes from the three standards: 8.1 ppm

propane (24.3 ppmc, multiple injected), the mixture standard (multiple injected) and 106

ppm propane (318 ppmc). The results showed that these two modes gave similar

responses, without regarding the composition of the standards. This meant that the SV-

BM and the MSV-BM modes had identical calibration characteristics.

Two other configurations, OLMT and OLMT-BF (as shown in Figure 5.10), were

also studied for their calibration characteristics. For the small molecules studied here, the

OLMT mode demonstrated the similar performance as the OLMT-BF mode, except that

the OLMT-BF system had better reproducibility. That was because the microtrap in the

backflush mode was isolated from the sample stream during its heating. Whereas, in the



Figure 5.9 Calibration curves with different sampling configurations (sample volume per injection: 5 ml).



Figure 5.10 Configurations of on-line microtrap (OLMT)
and on-line microtrap backflushed (OLMT-BF).
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OLMT mode, the gas sample flowed continuously through the microtrap. After the trap

was heated to desorb and inject the trapped materials, it could not quantitatively trap the

analytes in the first few seconds due to the increased temperature. So as expected, the

OLMT mode gave lower and less reproducible responses. In addition, it must be pointed

out that multi-bed microtraps can not be effectively used in the OLMT system, because

irreversible adsorption of heavier compounds may take place on the strong sorbents.

Thus, tailing and incomplete desorption (or re-adsorption) are common problems for the

OLMT system when organics with a wide range of volatility are encountered.

5.3.3 Multi-injection

Owing to their sampling loop configurations, both MSV-BM and SV-BM modes can be

used to make multiple injections. This is of practical significance as by increasing the

injection volume, the detection limits can be lowered. Multiple injections are also needed

in the situations when higher concentration standards are required but not available for

on-site immediate data. In Figure 5.1lA, the C-NMOC response is presented as a

function of number of injections. Linear increase in response with number of injection

(proportional to sample volume) was observed in both MSV-BM and SV-BM modes.

The results show some differences depending upon the mode. This was more obvious

when the curves were expressed as mole number of carbon as shown in Figure 5.1lB. It

can be seen that the C-NMOC responses depended upon the mode. For example, the

MSV-BM mode yielded the same results using standards with different composition and

concentration. Whereas, the SV-BM mode gave a lower and lower response with the

increase of injection number, compared to the MSV-BM mode with the same standard.



146

Figure 5.11 Comparison of multiple injection with different sampling configurations
(sample volume per injection: 5 ml).
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The MSV-BM appears to have higher sensitivity than the SV-BM mode. In the

MSV-BM mode, the second valve for the microtrap was kept in the "load" position,

while the first valve with the sample loop was switched several times from "load" to

"inject" to make multiple injections. Then the valve for the microtrap was switched to

"inject" position, while the microtrap was heated to release all the analytes. In contrast, in

the SV-BM mode, only one 10-port valve was used. In order to make multiple injections,

this valve was repeatedly switched from "load" to "inject" position. Simultaneously, the

microtrap was repeatedly loaded with sample then backflushed by the carrier gas. The

trapped analytes were partially blown out of the microtrap by the backflushing carrier

gas. So, fewer analytes were trapped after multiple injections. With the increase of

injection number, more analytes were blown out of the microtrap. Thus, decrease in the

detector response (peak area) became more significant, as seen in Figure 5.11. Therefore,

the MSV-BM mode is found to be more suited for multiple injections.

5.3.4 Breakthrough Characteristics of the Microtrap

The OLMT-BF and OLMT configurations (see Figure 5.10) were used to study the

breakthrough volume of small molecules on the multi-bed microtrap. The adsorption

curves for propane and methanol on the multi-bed microtrap were obtained at different

concentrations and at different sampling temperature. The amount trapped as a function

of sampling volume is shown in Figures 5.12A-D. According to Simon et al [193], BTV

is defined as the sampled volume corresponding to the end of the linear domain. It can be

seen that breakthrough volume depended on the analyte, its concentration and the

sampling temperature of the sorbent. For instance, at 24 °C, 8.1 ppm propane started to



Figure 5.12 Adsorption curves from different analytes at different sampling temperatures.
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break through at a sampling volume of 850 ml, while the same for 106 ppm propane was

220 ml. At 105 °C, the BTV for the 106 ppm propane dropped to 150 ml. According to

the Figures 5.12C and D, the standard mixture containing 5.5 ppm propane and 4.8 ppm

methanol showed that, at 105 °C, the breakthrough started around a sampling volume of

800 ml. Whereas, the BTV for 231 ppm methanol at 105 °C was around 300 ml. It is

evident that the BTV decreased with the increase in sample concentration and sampling

temperature.

These breakthrough volumes were consistent with those for propane and methanol

in literature (as seen in Table 5-5). It is safe to estimate that the multi-bed microtrap was

able to trap these small molecules efficiently. First, the concentration level studied here

(ppm levels) was at the high end of what is encountered in real environmental analysis.

BTV values increase with the decrease of analyte concentration (Eq. 5-10). Second, only

a few milliliters of the gas sample are necessary for ppb level detection limits, which is

significantly lower than the corresponding BTV value. Third, the retention time of these

small molecules on the microtrap was reasonably long, and no sample loss was expected.

For instance, the breakthrough data in this study were obtained under a relatively high

sampling rate, 75 ml/min. For the breakthrough volume of 850 ml (for 8.1 ppm propane),

the multi-bed microtrap could retain it for as long as 11 minutes. These results were

comparable to those reported in previous study [94].

As expected, the higher the analyte concentration, the lower was the breakthrough

volume. For example, when the analyte concentration, expressed in total ppmc, increased

from 21.3 ppmc (5.5 ppm propane+4.8 ppm methanol) to 24.3 ppmc (8.1 ppm propane),
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the BTV decreased from 850 ml to 800 ml. For a similar increase from 231 ppm c

(methanol) to 318 ppm c (106 ppm propane), the BTV decreased from 300 ml to 150 ml.

Figure 5.12B shows that sampling temperature had a noticeable effect on the

adsorption of analyte on the multi-bed microtrap. The high sampling temperature

changed the properties of sorbents (such as surface area, pore size) and the

adsorbent/adsorbate interactions (e.g., mass transfer rate, diffusion rate, affinity between

gas and solid phases, etc.). Consequently, the sorption mechanisms also might have

changed, and less propane was trapped by the multi-bed microtrap at higher temperature.

The decrease in BTV agreed well with the Eq. (5.l) and (5.2).

The adsorption curves were compared as a function of sampling volume and mole

of analyte. These are shown in Figure 5.13-5.14. In order to accommodate the sampling

volumes in such a wide range, a logarithm scale was used in Figure 5.13. These curves

approximately paralleled to each other. As expected, at the same sample volume, higher

concentration (ppmc) gave a higher peak area. In Figure 5.14, the peak area was plotted

as a function of adsorbate amount (expressed in IA mole carbon). It is evident that

identical response for the same number of moles of carbon was observed from these

analytes irrespective of their chemical structure. That was because the NMOC detector

generated a response directly proportional to the number of carbon atoms. Consequently,

the curves in Figure 5.14 could not show a difference in breakthrough associated with

different concentrations and components. It would be much clearer to express

breakthrough using sampling volume. This allowed direct comparison of various analytes

at different concentrations. It would also facilitate the process of choosing adsorbent and

operational conditions for sampling. Additionally, sampling volume could be easily



Figure 5.14 Comparison of the adsorption curves from different adsorbates
as a function of the quantity of adsorbate (expressed in µmol carbon).
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controlled by adjusting flow rate and/or sampling time. Therefore, breakthrough data in

volume is of more importance in practice than other parameters such as retention time,

number of moles, or mass of adsorbate.

5.4 Summary

The multi-bed microtrap, constructed with the first combination of Carboxen-564,

Carbotrap C and Carbopack B, demonstrated adequate sorption capacity for small

molecules such as propane and methanol. By combining this microtrap with the

developed SV-BM and MSV-BM configurations, ideal performances were obtained in

terms of linearity, multiple injection and separation of background gases. Both small

molecules and large molecules could be effectively collected and desorbed with optimal

amount of these adsorbents.



CHAPTER 6

CONCLUSIONS

In this study, analytical methods were developed for VOCs monitoring. The first method

was based on direct flame ionization detector (FID) measurement. It was used to evaluate

the potential environmental impact resulting from VOCs emissions during polymer

processing and recycling. Compared to the conventional thermal analytical techniques,

this direct FID method provided a more sensitive and accurate measure of VOCs.

Both virgin polymer resins and commingled post-consumer streams were studied.

Significant VOCs emissions were observed around polymer processing temperatures,

especially from recycled streams. For example, the total VOCs emissions from auto

shredder residue were over 0.6% at 150°C for an hour. The processing parameters

strongly influenced the amount of emissions, e.g., the increase in processing temperature

and residence time remarkably promoted more emissions, whereas, the increase in

heating rate decreased the total emissions.

Owing to the high sensitivity of the FID, the VOCs evolution traces were obtained

from all the studied polymers during low temperature degradation. Each polymer showed

unique VOCs evolution characteristics, including onset temperature, evolution rate, peak

shape and peak temperature (Tm), etc. With the combination of this direct FID method

and non-isothermal technique, the generation kinetics of these emissions was studied.

Since the polymer degradation was focused at low temperature range in this research,

correspondingly, lower values of kinetic parameters (E a, ko) were obtained. This was due

to the presence of weak bonds in polymer matrix, particularly, in recycled polymers.

153



154

Consequently, less energy was needed to break these weak links, from which the

emissions mainly originated. The results here were consistent with data from literature.

The direct FID method was also employed to study the total VOCs emitted from

polypropylene (PP) during multiple melt reprocessing. The effects of stabilizer and

processing conditions were examined by measuring VOCs generated from unstabilized

PP (U-PP) after multiple injection molding, and stabilized PP (S-PP) after multiple

extrusion. The results demonstrated that the effects of processing methods overcame the

expected ones of stabilizers on the total VOCs. For both U-PP and S-PP, the maximum

VOCs from each cycle did not change significantly. However, the cumulative emissions

increased with the increase in number of processing cycle. The variations in the

cumulative total VOCs agreed well with the changes in chemical structure and

rheological properties. For U-PP, significant oxidative degradation was observed after the

7 th injection molding cycle, as evidenced by a rapid increase in carbonyl concentration

and formation of new functional group. This was also accompanied by a rapid increase in

Melt Flow Index and cumulative VOCs. For S-PP, predominant oxidative degradation

was observed after the 4 th extrusion cycle, as evidenced by increase in carbonyl group

strength and VOCs, and by decrease in M. The two screw configurations of extrusion

(CON vs. KB45) did not result in much difference in VOCs generation. However, the

FTIR results showed that the higher shear level in KB45 caused higher carbonyl

concentration, standing for more oxidative degradation. Similarly, at the equivalent cycle

number, the S-PP after multiple extrusion (with higher shear level) demonstrated more

oxidative degradation than the injection molded U-PP.
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To better understand the extent of polymer degradation at different gaseous

atmospheres, simulation was performed by multiple heating/cooling of a single U-PP

sample. The total VOCs emissions (with FID) or weight loss (with DSC) were measured

in different atmospheres (nitrogen, air and oxygen). The results indicated that the

emissions generated during actual reprocessing conditions were closer to those produced

from a mild thermo-oxidative process rather than a pure thermal degradation.

The continuous non-methane organic carbon (C-NMOC) analysis is an excellent

technique for monitoring organic emissions during polymer processing. First, the variable

response factors associated with FID are eliminated. Second, methane, which is neither

toxic nor is it involved in tropospheric ozone formation, is not counted to the total

organic carbon in the NMOC measurements. This allows the comparison of different

emission sources in terms of total carbon. Third, it can be connected on-line to a wide

range of equipment (e.g., extruder, injection molder, etc) and for a variety of polymers. In

this research, the C-NMOC system was further improved by combining a multi-bed

microtrap with two novel sampling configurations (SV-BM and MSV-BM). Carboxen-

564, Carbotrap C and Carbopack B were chosen to develop the multi-bed microtrap.

With its backflushed mode, SV-BM and MSV-BM demonstrated excellent figures of

merit. i.e., both small molecules and large molecules could be effectively collected and

desorbed. Background gases could be completely separated or eliminated.

The major advantages of MSV-BM system are as follows: l) it could be used for

multiple sample injections; 2) the exact sampling volume was known; 3) the carrier gases

for the two valves could be adjusted independently to get optimal performance. For

example, the carrier gas of the first valve containing the sampling loop could be low in
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order to avoid breakthrough of analytes. Whereas, the carrier of the second valve (for the

trap) could be set higher to ensure complete desorption of the analytes from the trap.

Both the MSV-BM and SV-BM systems could separate background gases such as

CO, CO 2 and CH4, from the NMOC. However, only the SV-BM system could quantify

these background gases as total carbon, while the MSV-BM configuration eluted them

out of the system. When the background gases needed to be separated and quantified, the

SV-BM system was the configuration of choice.

Future Studies

Nearly all polymers used in practice contain some kind of stabilizers in different

concentrations. During polymer recycling, these stabilizers play an important role to

retain the desired mechanical and rheological properties. However, they may also have

complicated effects on the total VOCs emissions. In future, these effects can be further

studied to correlate the VOCs emissions, structural/rheological properties and multiple

processing. Furthermore, the improved C-NMOC system can be used in collecting and

desorbing both small and large molecules generated during polymer processing. It will be

of great interest to attach this system on-line to polymer processing equipment, so that

real-time data can be generated for effective pollution prevention and control.
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