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ABSTRACT

ON THE DATA HIDING THEORY AND MULTIMEDIA CONTENT
SECURITY APPLICATIONS

by
Litao Gang

This dissertation is a comprehensive study of digital steganography for multimedia

content protection. With the increasing development of Internet technology,

protection and enforcement of multimedia property rights has become a great

concern to multimedia authors and distributors. Watermarking technologies provide

a possible solution for this problem.

The dissertation first briefly introduces the current watermarking schemes,

including their applications in video, image and audio. Most available embedding

schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo

random signature sequence is embedded into the host signal and the information is

extracted via correlation. The correlation detection problem is discussed at the

beginning. It is concluded that the correlator is not optimum in oblivious detection.

The Maximum Likelihood detector is derived and some feasible suboptimal detectors

are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is

revealed that the SS scheme is not very efficient due to its poor host noise suppression.

The watermark domain selection problem is addressed subsequently. Some impli-

cations on hiding capacity and reliability are also studied. The last topic in SS

modulation scheme is the sequence selection. The relationship between sequence

bandwidth and synchronization requirement is detailed in the work. It is demon-

strated that the white sequence commonly used in watermarking may not really

boost watermark security.



To address the host noise suppression problem, the hidden communication is

modeled as a general hypothesis testing problem and a set partitioning scheme is

proposed. Simulation studies and mathematical analysis confirm that it outperforms

the SS schemes in host noise suppression. The proposed scheme demonstrates

improvement over the existing embedding schemes.

Data hiding in audio signals are explored next. The audio data hiding is

believed a more challenging task due to the human sensitivity to audio artifacts

and advanced feature of current compression techniques. The human psychoacoustic

model and human music understanding are also covered in the work. Then as a

typical audio perceptual compression scheme, the popular MMP3 compression is visited

in some length. Several schemes, amplitude modulation, phase modulation and noise

substitution are presented together with some experimental reslIlts. As a case study,

a music bitstream encryption scheme is proposed. In all these applications, human

psychoacoustic model plays a very important role. A more advanced audio analysis

model is introduced to reveal implications on music understanding. In the last part,

conclusions and future research are presented.
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CHAPTER 1

INTRODUCTION

1.1 Digital Steganography and its Application

With the rapid ever-growing Internet technology, multimedia content protection has

raised great concerns in multimedia creation and delivery community. The traditional

data encryption protection methods, such as RSA, DES 76, 80, 85 do not meet

all the repuirements. Recent years have seen lots of research and application of

watermarking or steganography technology to address this issue.

Steganography is the art to embed some message in a host (or cover) signal

without noticeable perceptual degradation. The technologies provide a potential

solution to the content protection problem. The message could be copyright infor-

mation or product information, for ownership proof or copyright infringement

tracking.

Two basic requirements for Steganography is transparency and robustness.

The former means the perceptual value of the cover signal should not degrade

after information embedding. Robustness implies the watermark should not be

removed easily. It is particularly important to achieve robustness against the

popular compression schemes because of their ubiquitous applications in network

transmission and storage. To provide a convincing proof for proprietary copyright,

the message should be smartly integrated with the content signal and sufficiently

robust against compressions and other signal processing (even malicious pirate

attacks). Watermark is supposed to be highly tamper-proof in these applications.

Based on the different application scenarios, steganography can be divided into

two categories, oblivious applications where the original cover signal is absent at the

information extraction, and escrow applications where decoding is performed with

1
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the assistance of the original cover signal. Because the original cover signal is not

available in most scenarios, it is not strange to see that the current research and

development is focused on oblivious applications.

Watermarking for content protection is a specific application of hidden commu-

nication. Steganography is usually a more general term which refers to delivering

a message in a manner that the very existence of the message itself is kept secret.

Watermarking can be considered a subset of steganograpliy [46_. In this dissertation,

"data hiding" refers to the general information embedding in the cover signal whereas

"watermarking" refers to the hiding with emphasis on robustness and security.

As a kind of digital steganography technology, watermarking is different

from data encryption. One prominent difference between data encryption and

steganography is that the latter does not prevent unauthorized access. Encryption,

on the other hand, does not permit unauthorized access to the contents. Once the

encrypted contents are correctly unscrambled, the protection is completely removed.

In contrast, a robust watermark is integrated with the content signal all the time

and is very difficult (if not impossible) to remove.

Steganography has long been modeled as a communication problem. Figure 1.1

and Figure 1.2 depict the channel models in escrow and oblivious applications. The

transmission channel noise is compression noise, or other noises incurred in signal

processing procedures.

Content , 	 Watermarked	 Received

	

Embedding
	
	  Channel

Signal X 	 '	 Signal X'

Extracted

Message M'
Detection

Original Signal XMessage M

Signal R'

Figure 1.1 Escrow steganography

Watermarking used for ownership proof is often referred to as robust water-

marking which is aimed at copyright protection. Another form of watermark is called
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Content	 Watermarked
	

Received
	

Extracted
Embedding
	

Channel
	

Detection  -
Signal X 	 A 	 Signal A.   	 Signal R'

	
Message M'

Message M

Figure 1.2 Oblivious steganography

fragile 'watermarking (or semi-fragile 'watermarking) which targets at multimedia

authentication scenarios 25, 57, 66, 102]. In this application, a watermark is

embedded into a host signal as a signature of authentication for the content. If

the watermark can not be recovered correctly at the receiver side, that means this

content has been manipulated. A typical application is proposed to authenticate the

photo image in a digital filminess camera [26

Besides authentication and copyright protection, data hiding also rinds its way

in other applications. NEC, IBM and other companies have proposed and imple-

mented schemes for DVD copy (not copyright) protection control [8, 59, 601]. Lucent,

Philips etc. are deploying their watermarking product for broadcast monitoring.

Some companies, for example , RealPlayer plans to integrate data hiding into their

multimedia players.

In the digital steganography community, lots of attention is paid to image data

hiding. One of the earliest watermarking schemes is LSBM (Least Significant Bit

Manipulation). In this scheme, the LSB bits are modified according to a predefined

pattern to carry messages (for example, modify its parity). Obviously, this scheme

is puite crude and does not resist compression and other unintentional attacks, let

alone pirate attacks.

In current watermarking schemes, a most influential one is Spread Spectrum

(SS) modulation approach. The idea is borrowed from spread-spectrum radio

communications. Cox et al. 14, 16] are among the earliest to apply the scheme in

image watermarking. In one of his schemes, a Gaussian distributed PN sequence
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is inserted into the block DCT coefficients. This idea can be applied to different

watermark domains. Some work in the whole image DCT domain instead of block

DCT domain [15

amplitude domain

Discrete Fourier Transform (DFT) phase domain '77], DFT

8_, wavelet domain 49, 96] etc. Various Human Visual System

(HVS) models are explored to minimize the visual artifacts. Some models work in

the pixel domain 90, 99], while many others work in transform domains [18, 92].

There are few publications on video watermarking applications. Most water-

marking schemes regard video as a consecutive sequence of still images. The image

steganography schemes could be applied to video, where embedding and detection is

done on a frame by frame basis. This is the direct extension of image watermarking

to the uncompressed (raw) video. An alternative is to embed information in the

compressed domain. Jordan et al. 247 proposed a scheme to embed the watermark

signature into the motion vectors. The author claims survivability to the MPEG

compressions. Hartung et al. [36, 37, 39] suggested a SS method extension in video.

The message extraction computation complexity in video should not be too high

due to the real-time processing requirement. Another repuirement is the robustness

against MPEG compressions, frame dropping, frame averaging and other attacks.

There are even fewer publications on audio steganography which is regarded as

the more challenging task. Generally speaking, audio signals have much less samples

than video. Although this reduces the processing complexity, it limits the hiding

capacity.

It is believed that Human Audible System (HAS) is much more sensitive to the

artifacts than the Human Visual System (HVS). The embedding distortion inaudi-

bility is more difficult to control. The general audio signal can not be regarded

stationary (at most be assumed semi-stationary). Fortunately, through subjective

tests and theory studies, people have accumulated extensive knowledge on HAS

and human perception models. Several models have been explored and successfully
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employed in perceptual compression, for instance MPEG-i MPG compression [44],

Dolby Audio Encoder AC-3 _J9]. This knowledge should be employed in data hiding

to minimize artifacts.

In audio steganography, compression-resilience is also more difficult to achieve

as the current audio coding algorithms are more advanced. In image and video

compression, the algorithms are mainly based on waveform approximation. The

compression schemes usually target at MSE (Mean Spuare Error). i.e., maximizing

SNR (Signal-Koise Ratio). The popular compression schemes, SPIHT (Set Parti-

tioning Image Hierarchical Tree) [79], EZW (Embedded Zero Wavelet) 82 focus

on puantization and encoding technipue after transform or subband filtering. It is

expected that the compression noise is not high, the compressed waveform is still close

to the uncompressed original signal. In the perceptual audio compression schemes,

the purpose is to minimize the perceptual degradation, not VISE. Since it is known

that human beings do not measure audio puality in ISE sense. The compression

noise could be much higher. In the more advanced audio parametric coding schemes,

such as IPEG-4 HILN [J and the model proposed in [56, 94, 95 ,, audio signal is

analyzed and some important parameters are extracted to "describe" the original

signal. The reconstructed output at decoder with these parameters may not be close

to the original signal. Compression puality can not measured in common sense SIR

(Signal-Noise Ratio).

In current audio data hiding schemes, some are the direct extension of the basic

SS scheme to audio signal. A random signature sepuence is embedded in subband

domain [4, 42], cepstra domain [55] or time domain 6 etc. The human perceptual

model is explicitly used to shape the watermark signal spectrum according to the

masking curve 9 - . This is an effective method in controlling the watermark audibility.
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1.2 Organization of the Dissertation

In this research, steganographv is studied as a general hidden communication

problem. In this dissertation, data hiding schemes are investigated from the

perspective of signal processing and new algorithms with improved performance

over the existing ones are studied. Other data hiding issues are also comprehensively

explored, with some concentration on audio applications. Other related topics in

multimedia watermarking application are also discussed.

In Chapter 2, the history and development of digital steganography is briefly

reviewed , some influential data hiding algorithms in still image, video and audio

signals are visited. In practice, the Spread Spectrum (SS) schemes are widely

employed. In Chapter 3, a. thorough study of the current SS algorithms in data hiding

is presented. The hiding capacity is analyzed. The problem of watermark domain

selection and its impact on compression robustness is also addressed. Opti mum.

detection in oblivious applications is explored. It is found that the correlation

detector is not optimal in oblivious applications. A new scheme is derived and

its performance is compared with the existing ones. The random sepuence security

and watermark signature generation is also covered in Chapter 3.

From the analytical and simulation results, it is concluded that the spread

spectrum modulation although effective in escrow applications, is not quite successful

in oblivious applications. In Chapter 4, a new scheme set partitioning is proposed

in oblivious applications. In the mathematical analysis and simulation studies,

improvement is demonstrated over the existing schemes, especially in very noisy

environment.

Chapter 5 is dedicated to the audio compression-resistant data hiding.

Initially several different audio compression schemes are visited, including waveform

approximation, perceptual coding and parametric coding. Because of the popular

deployment of MPEG-1 layer III (MP3) compression in Internet transmission and
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storage, as an example, this compression and human perceptual psychoacoustic

model is briefly introduced. Based on this, three hiding schemes, amplitude

modulation, phase modulation and noise substitution are proposed. A music

encryption scheme is proposed. The last section in Chapter 5 is devoted to the

advanced audio analysis model and its impacts on audio watermarking. Chapter 6

covers some outstanding problems in watermarking and data hiding applications.

Conclusions are drawn and the future work is proposed.



CHAPTER 2

CURRENT TECHNIQUES AND STATUS

In this chapter, the existing technologies used in still image, video and audio content

signals are briefly visited.

2.1 Steganography Applications in Images

The first application of digital watermarking is on still images. One of the earliest

data hiding schemes embeds information in pixel's Least Significant Bits (LSB),

called LAB Manipulation (LSBI) [93, 98 . It is obvious that LSBM is not robust

against compression and other attacks. Spread Spectrum (SS) modulation algorithms

embed a small value PN sepuence in the selected components of the content signals

[7, 161]. It provides much improvement over LSBM on security and robustness.

Most of the current watermarking schemes are SS-based, including both escrow and

oblivious applications. These schemes can be put into two categories, spatial domain

embedding and transform domain embedding.

2.1.1 Pixel Domain Embedding

Bender et al. 7] propose a data hiding scheme called "Patchwork" . In this scheme,

pixel values ail and bibin a randomly selected two-pixel pair are increased and

decreased respectively by a very small value b . For an unmarked original image,

it can be assumed that the pixel value x i is a random variable with zero mean.

Therefore,

N -E (a il — b ib )	 O.
i=o

(2.1)

This makes intuitive sense since the number of times ail is greater than bib should

be offset by the number of times the reverse is true.

8



After watermarking, the detection output is

N - 1 	 N-1E [(ail 6) — (bib — )] = 26N	 (ail —
i = 0
	

i=0

In a watermarked image, the mathematical expectation value of (2.2) deviates

from 0. If the pixel pair number N is sufficiently large, a reliable decision based on

the statistical sum can be made

This method can be easily extended to data hiding. Embedding procedure is

= ail + 6, b = bib — 6; bit value 1 embedded
= ail — 6, bz = b ib + 6; bit value 0 embedded,

(2.3)

where a and bpi are the pixel values after bit embedding.

Detection is based on sum of these pixels,

9

(2.2)

= `2.4)
i=0

where Ai and 6i are the received pixel values after channel transmission. If

q > 0, the decision is bit value 1; Otherwise, the decision is bit value 0 instead.

Bender et al. 7 analyzed the extraction bit error probability and the impact

of different patch shapes on robustness. Pitas et al. [62 proposed a puite similar

method. Further extension can be found in 53, 54 The advantage of spatial domain

scheme is its efficiency and low computation cost. The shortcoming is that the pixel

number N should be sufficiently large which limits the hiding capacity.

To reduce the watermark visibility, extra work should be done to control the

visual artifacts. Macp et al. 20] proposed a scheme to make the watermark adaptive

to the Human Visual System (HVS). For a color image, it is well known that human

being are most insensitive to the blue component. Kutter et al. "50, 51] took use

of this property and embed information into the blue component. It is claimed that

the visible distortion is thus minimized.
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2.1.2 Transform Domain Embedding

Many Spread Spectrum modulation schemes are applied in transform domains. As

a case study, the approach proposed by Cox et al. 16] is revisited in the following

discussion.

Original Transform
WatermarkedTransfrom Embedding Inverse

Image Coefficients ImageTransform

Watermark
Signal

Figure 2.1 Transform domain embedding framework

After transform, some appropriate coefficients x i in this domain are selected.

They are usually the medium frequency coefficients to which humans are not so

sensitive. A randomly generated signature sepuence sib is embedded into x i ,

x i = x i + sib .	 (2.5)

I 16 , the signature sepuence used is Gaussian distributed due to its enhanced

security over the bipolar sepuence (--1 or +1 bi-value sepuence).

Denote the received sequence after channel transmission as r. With the

assistance of the original sequence x, the correlation detector output is

—

q =	 (rib— x i ) • sib =
	

(s i + n i ) • s i ,	 (2.6)
i=o

where nib is the channel noise.

Correlation detector is optimal only if nib is Gaussian distributed. It is worth

noting here that often the watermarking channel is far from Gaussian type. However,

correlation is a feasible method and mostly used in watermark verification due to its

simplicity.
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To control the artifacts introduced in this approach, several formulae are

suggested to determine the embedding extent [16],

= xi + aXi, (2.7)

= x2 (1 + (2.8)

= x (e (2.9)

where a is a scaling factor.

For different frequency bins, the value of a should be adaptive to the human

sensitivity. Very similar HVS model was suggested in [67 . The visual threshold

value may be obtained from a visual perceptual model or empirical experiments.

This principle is also applied in other transform domains. For example, 49, 101, 103

apply the wavelet domain embedding as a direct variation of this scheme.

In transform domain. steganography, the transform selection problem has not

been answered. An ideal watermark transform should be superior in performance

and low in computation complexity. This problem is addressed in Chapter 3.

2.1.3 DFT Domain Embedding

In image data hiding applications, it is important to achieve robustness against

geometric distortions, for example. translation, rotation, and scaling. Scanning

procedure can be modeled as a combination of these distortions. There does not exist

an ideal solution to countermeasure these attacks. A heuristic approach is to embed

a fixed pattern into images and at decoder try to estimate the values of rotation,

scaling and translation by pattern match and then compensate for these changes.

This is usually done via the simple brute force exhaustive search and therefore a

puite computation extensive procedure.

Ruanaidh et al. 78 proposed a novel scheme to hide information in DFT

amplitude domain. It is translation resistant because the spatial shift is only reflected
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in the DFT phase, which is not used in embedding. Its effectiveness has been demon-

strated in practice.

Another important feature of DFT amplitude embedding is that the DFT

amplitude is perceptually insignificant. It was pointed that the DFT phase contains

much more information than the DFT amplitude [64 . As the current popular

image compression schemes aim at waveform approximation, the compression noise

is relatively small. In the perceptually insignificant DFT amplitude domain, more

watermark energy is permitted without much visible artifacts. This results in relative

higher SKR. Ramkumar and Akansu 71, 73, 75 pointed out the advantage in DFT

domain embedding. Their simulation results demonstrate the robustness in face of

various compression schemes.

The above conclusion seems to contradict the long-held view that the watermark

should be embedded into the perceptually significant components [14]. That is true

embedding in DFT amplitude is not tamper resistant. A smart attacker can also

use the property of DFT amplitude insignificance to inject more attack noise. The

DFT domain embedding just takes advantage of the current compression schemes.

Ruanaidh et al. [77 also suggested to embed information in the perceptually

significant DFT phase. It claims enhanced security against malicious attacks.

The pixel domain and transform domain selection have different impacts on the

robustness and complexity. Needless to say, the spatial domain embedding is less

computation extensive. Some studies show that the transform domain approaches

are more robust to geometric distortion.
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2.2 Video Steganography

2.2.1 Embedding in Raw Uncompressed Video

If a video signal is regarded as a continuous still image sequence, the image data

hiding scheme can be employed frame by frame to a video sepuence. In fact, most

of the current approaches are the direct extension of image embedding schemes.

Hartung et al. 37, 38, 39 directly extended the image data hiding in the

video signal. A pseudo-noise bipolar sepuence p (p i is either +1 or —1) is embedded

into the selected 8x8 DCT coefficients v i . In their approach, a random sepuence is

embedded into these coefficients.

vi (2.10)

where cxi is the locally adjustable amplitude factor which varies according to the

local properties of the video signal. The spatial and temporal masking phenomena

of HVS can be applied in embedding. The message is retrieved via correlation at

decoder. Their experiments demonstrate the typical hiding capacity is up to 50

bits sec.

Swanson et al. [89, 91 proposed a multi-scale watermarking method. First,

the video sepuence is segmented into scenes. Then a temporal wavelet transform

is applied to each video scene, and temporal low-pass and high-pass frames are

obtained. The watermark signal then is embedded into both frames. After inverse

transform the watermarked video is obtained. Note the watermark is also embedded

the low-frepuency components. To minimize artifacts visibility, a HVS model

is exploited in this approach. An efficient watermark embedding is "Millennium"

proposed by Digimarc, Philips and Macroyision 13] for DVD copy protection control.

Its advantage lies in simplicity and translation invariance.
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2.2.2 Embedding in Compressed Video

Instead of embedding directly in the raw video, data can also be embedded in the

compressed domain. In both of MPEG-i and MPEG-2 compression standards, the

block Discrete Cosine Transform (DCT) is used. The video sepuence is composed of

I, P, and B frames. In I (inter-coded) frames, the picture is split into 8x8 blocks.

Then the DCT coefficients are quantized, zig-zag reordered and Huffman encoded in

a similar fashion used in JPEG compression. In the inter-coded frames (P or B), the

pictures are encoded using forward or backward prediction. The motion vectors and

residual prediction error are puantized and encoded.

Hartung et al. also experimented their embedding scheme (2.10) in compressed

domain [39]. This procedure is applied to every frame, including I, P, B frames. For

each compressed frame, the watermark signal is added to the 8x8 DCT coefficients

in the video bitstream. Experimental results demonstrate its robustness against

standard signal processing.

Jordan et al. [24 suggested a very interesting approach to embed information

in the motion vectors in the compressed bitstream. As motion vectors are significant

perceptually, only areas with less activity are selected for embedding. The authors

claims artifact invisibility. The information is directly retrieved from the motion

vectors in the compress video. The greatest advantage of this scheme is its low

complexity.

2.3 Audio Steganography

In comparison, there are few publications on audio data hiding. Usually, the audio

steganography is assumed a more challenging task. One reason is the human beings

are more sensitive to watermark distortion. Another reason is the current audio

coding technique is much more advanced than the schemes used in image coding,

making the robustness to those compressions more difficult.
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2.3.1 Echo Hiding

Bender et al. [7 suggested an innovative scheme to hide information in audio. This

method adds a decayed version of the original signal to itself. The echo is determined

by three parameters: initial amplitude, decay rate, and offset (the delay when the

echo appears). Usually, the decaying curve used is exponential.

Informal tests show that with appropriate parameters, the echo added is

inaudible, only making the original "richer". The information bit can be embedded

by selecting different offset values. In Figure 2.2, to embed bit value 0, the offset

value is x while the offset value is x + 6 if bit value 1 is embedded.

Original signal
Zero

1) Initial amplitude

One Decay rate

x 6   

Offset	 Delta

Figure 2.2 Audio echo hiding

Data extraction is via measuring different offset delay value. First, the

cepstrum of the embedding output is calculated. Then the autocorrelation of the

ceptrum is obtained. With the echoes spaced periodically every x or x + (5, a peak

at x or x + 6 in the cepstrum can be obtained. The decision rule is to examine the

power level at x and x + 6 and choose whichever bit corresponds to a higher power

level.

2.3.2 Other Schemes

The SS modulation can be extended to audio applications. Pitas et al. [6] repeated

the PK sequence embedding in the time domain. Tewfik et al. 9] proposed an

embedding scheme in frequency domain. One contribution of the algorithm is
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that the explicit human psychoacoustic model is employed to shape the watermark

spectrum. The watermark distortion is kept under the masking for distortion inaudi-

bility. In embedding, a watermark signature spectrum is shaped by a filter which

is derived from the psychoacoustic model analysis. Some similar schemes were

proposed in 16 , 62]. The detail of the human psychoacoustic model is given in length

in Chapter 5.

There are some other SS versions in other domains. In [5 ], the embedding

and detection was performed in the cepstrum domain. The shortcoming is that in

that domain, distortion inaudibility is more difficult to control. Other approaches

include data hiding by time-domain modification [58 , or by compressed domain

manipulation. An example of the latter is the simple scheme modifying the scale

factors in NIP3 bitstream. 69].

2,4 Application and Product Deployment

Since 1996, the digital steganography technologies have attracted lots of attention

both in the industry and academia. Nowadays there are several commercial products

on market and some have been deployed in practice.

Digimarc Corp. is a leader in watermarking technology. Products it provides

include ImageBridge and MediaBridge for image watermarking. Besides,

Digimarc MarcSpider image tracking can crawl the World Wide Web searching for

digitally watermarked images to find illegal publications of copyright images. Some

corporations have already entered into contracts with the Digimarc company for the

use of PictureMarc and MarcSpider, to protect their interests in digital images.

Even Digimarc Corp. itself admits the watermark is vulnerable to common signal

processing attacks. There are some other companies providing similar steganography

products. For example, Signum Technologies offers SureSign watermark product for
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content protection. Their product works together with Adobe Photoshop. MediaSec

Technologies provides MediaLabel and SysCop products.

Cogn city Corp. provides audio watermarking product AudioKey. It claims

its robustness to all popular audio compression schemes. Up to 2 layer information

can be embedded, reaching total hiding rate of 62 bits per second. The watermark is

imperceptible due to the use of psychoacoustic models of human hearing. It also

claims robustness to music editing, format conversion (including D/A and A/D

conversions), compression, streaming, broadcast, etc. This product was adopted

to integrate with the AT& T perceptual audio encoder and RealPlayer's Producer

Plus G2 encoder.

Secure Digital Music Initiative (SDMI) is initiated by several label companies to

prevent illegal CD copying. They want to standardize the SDMI-cainpliant players

which can play unprotected music and new SDMI-protected music that has been

legitimately acpuired. A proposal by Aerance Corp., a company aiming exclu-

sively at audio watermarking, was adopted by SDI as Phase I standard. In DAD

copy protection applications , there exists two major proposals, one is Galaxy Group

proposed by Hitachi, IBM, NEC, Pioneer Electronic, and Sony, while Philips, Macro-

vision, Digimarc unify and offer their Millennium Group products. In the near future,

more products will be seen on the market together with more applications of data

hiding technology.



CHAPTER 3

SPREAD SPECTRUM MODULATION IN STEGANOGRAPHY

In the previous chapters, the Spread Spectrum (SS) modulation scheme in steganography

is reviewed. In this chapter, this technipue is discussed in detail, including its infor-

mation extraction and watermark domain selection. A new algorithm is proposed

and compared with the existing ones. Its effectiveness is demonstrated in the analysis

and simulation studies.

3.1 Hiding Capacity and Watermark Domain Selection

In the SS hiding schemes as indicated by (2.5) and (2.6), the principle is very simple,

viz , to superimpose a small value random sequence into the original coefficient

sepuence. This idea can be applied in different domains, wavelet domain. DUCT

or spatial domains. What decomposition should be used in watermarking? Which

transform, high Gird or low ETC  (Gain of Transform Coding) is more advantageous?

To be resilient to a specific compression, is it necessary to match the decomposition

used in the compression?

3.1.1 Hiding Capacity in Different Watermark Domains

In the following analysis, the simple superposition algorithm is studied,

x = sib + x i ,	 (3. 1)

where s is the watermark signal sequence.

In the SS modulation, it is obvious that escrow applications will reach higher

capacity than oblivious ones. Moulin et al. [61] pointed out at least in theory

oblivious application could achieve the same capacity as in escrow ones. Nevertheless

this is not realizable in practice.

18
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In escrow applications, if the attack noise w is Gaussian distributed, w

N(0, a 2 ). The hiding capacity on one coefficient is simply given by

C	 1log(1 + 
0_2 	

(3.2)

where a is the watermark signal energy. The capacity is achieved when s is

Gaussian distributed, s — N(0, s )

Besides processing attack noise, the cover signal itself is also regarded as noise

(host noise) in oblivious cases. This noise is much larger than the channel noise. Both

of these two noises should be considered in the capacity calculation. Host noise is

usually non-Gaussian distributed. Ramkumar and Akansu used an information

transformer to convert the noise to Gaussian distribution. The parallel channel model

depicted in Figure 3.1 is used in their capacity calculation.

Suppose a watermark signal coefficient s ib is embedded in the cover signal

coefficient x i , and the processing noise is p i . Assume all the noise is Gaussian

distributed. In the ith channel, the capacity is calculated as

2

Cif = 1—log(1 + 	psi 
2 )

2 	
2 	

ape
(3.3)

where o-pi is the channel noise variance, s ib 	N(0, asi) and x i 	V 0, ax2 i

Figure 3.1 Parallel channel model

Because a-xi > ape , the channel processing noise effect is neglected for simplicity

in the following capacity calculation.
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The total capacity is the sum of the capacities in these N parallel channels

C ti 2 E og(1 + 	 ).
axis

a3 .6)

For embedding in spatial (or time) domain, or other low GTc transform

domains, the parallel channel assumption may not be appropriate. "Parallel"

implies the noise x i is independent. Whereas in spatial or time domain, there

is strong correlation between x i and (for images, correlation coefficient p is

usually larger than 0.9). The correlation means that the host noise is, more or less,

"predictable". Therefore, the correlated channel is not as "harmful" as the parallel

channel. More information may be transmitted through the correlated channel. For

example, based on a3.3), if 0.1 bit can be hidden on one pixel, on a 256x256 image

more than 256x256x0.1 bits can be hidden,

In fact transform does not change the entropy of the host noise x. Suppose x

is Gaussian distributed, but not necessarily independent. Its entropy is

Hi (x) = —

where f ax) is the pdf of x,

f ax) =

f (x)log[f (x)]dx,	 a3.5)

exp(--
1

2 xTC -1x), 	 (3.6)
1

( 2 Br) N / 2 C 1/2

where C = varax) is the variance matrix of x.

If the transform kernel is A, transform output is obtained as y = Ax. The

variance matrix of y is

D = vary] = ACAT .	 a3.7)

The entropy of y is obtained as

H2 ay) = f g(y)log[g(y) dy,	 (3.8)

where gay) is the pdf of vector y

gay) = ( 2 7 ) N / 2

expo-- 1
2-y AD lye)

1

D 1/2 a3.9)
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After the transformation, it can be derived that g(y)dy = Jlf(x)dx where J

is the Jacobi matrix. In this linear transform, it is easy to see J = A, AA T = I,

therefore,

YTD_ly = (Ax)TaACAT)-1aAx) = xTC-1-x, a3.10)

Note C D , dz = du. Therefore,

H i(x) = 112(y)• a3.11)

The entropy conservativeness holds even for non-Gaussian pdf. Comparing

a3.5) and a3.8), it is easy to see g (Ax) = f (x) as long as AAT = I.

In oblivious watermarking, host signal is considered noise. The larger the noise

entropy, the more "harmful" the noise is. The negative effect of host noise can not

be reduced by taking a transform. intuitively, observing an image I in different

domain should give us same information. To embed an information source s in x is

epuivalent to embedding a source As in Ax where A is the transform kernel. Same

information is transmitted. This correlation should not be neglected in capacity

calculation, watermark embedding and detection. Depovere et al. 21 proposed a

better detection approach by whitening filter before correlation.

Taking transform should not affect the hiding capacity theoretically. Actually

hiding capacity calculation does not shed much light on the decomposition selection

in practice. Even the higher capacity does not guarantee more reliable information

transmission using the current hiding schemes. For example, it is believed Laplacian

channel is of higher capacity compared with the Gaussian channel aGaussian is

regarded as the "worst" noise). However, using the antipodal or Mary modulation,

signal transmission through Gaussian channel could be more reliable. The Bit Error

Rate aBER) is determined by the "tail" of the noise pdf curve. Gaussian pdf decreases

at the order of e -X2 , faster than the Laplacian pdf e -x. That results in more reliable

transmission through Gaussian channel at higher SNR.
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Transform selection is a subtle issue in practice. 	 In face of a specific

compression, is it favorable to match the decomposition used in the compression?

This question is addressed in the following section.

3.1.2 Decomposition Selection in Presence of Compression

The channel noise is mainly introduced in compression in escrow cases. The

compression noise is expressed as

Ai = xi — Q(xi),	 (3.12)

where Qa.) is the quantization operator.

The coefficient x i is approximately Laplacian distributed before quantization

operation. If data embedding and extraction is done in the same compression

transform domain, the compression noise is puite close to uniform distribution,

Ai 	U(-6/ 2, (5/2) where 6 is the quantization step size.

In a transform domain other than the compression domain, the compression

noise di is not uniformly distributed. Experiments reveal that it is close to Laplacian

distribution. It is reasonable to assume the noise is i.i.d. The SS modulation

approaches in both of these mismatch and match domains are epuivalent to PN

sepuence signal transmission through two channels, one is uniform channel and the

other is Laplacian channel. If the mostly used correlation is employed at receiver, it is

observed that the Bit Error Rate aBER) in the Laplacian channel is superior to that

in the uniform channel aFig. 3.2). In simulation the antipodal signal is transmitted

in channels with different noise statistic properties.

It is true that the correlation detection is not optimal in a uniform channel case.

Further analysis shows that the optimum detector needs to know the quantizer step

size which is usually unavailable in practice. Correlation, although not optimal, is

still widely used in practice. The noise energy is not changed in the Laplacian and
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uniform channels. Still a transform changes the channel noise property. Correlation

detection is more reliable in Laplacian channel than the uniform channel.

0.5 	

Figure 3.2 BER-SNR in Gaussian, Laplacian and Uniform channels

The SS scheme performance in oblivious applications in different GTc domains

is studied next. The following deep embedding scheme 16] is used in simulation,

xi + Wig

Xi — Wig

x•la, 	 to hide bit value 1
x i a, to hide bit value 0

(3.13)

where w is the random bipolar sepuence aw ig is +1 or —i) and a is the distortion

threshold ratio.

Given a received sepuence r, the decoder used is also of correlation type

{

N-1 	 N-1 	 N-1 	 N-

g 	 = 	 Wiwi 	 Wiwi

i=o 	 =o 	 i-o

a3.16)

If q > 0, bit value 1 is decided; Otherwise bit value 0 is decided instead.

First, the host coefficients in the time domain are generated. The cover signal

x is a highly correlated ARai) sepuence with correlation ratio p = 0.9. Second, the

embedding and extraction s repeated in the time and DUCT domain. The distortion
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ratio is selected as a = 0.1 in experiments. Simulation result in Figure 3.3 demon-

strates that time domain embedding is more reliable than that in the DUCT domain

embedding.

An intuitive explanation for the above result is that in time domain, the

coefficients, although highly correlated, is evenly distributed. Whereas in the DCT

domain, much energy goes to the low frequency coefficients. These high amplitude

host noise coefficients exert uch negative effect on the decoding. Further studies

demonstrate improvements if these coefficients are skipped in embedding.

0 	 120 	 130 	 140 	 150 	 160 	 170 	 180 	 190 	 200
Sequence Length (N)

Figure 3.3 Performance in DUCT and time domain embedding

The great concern in the oblivious case is host noise suppression. The linear SS

algorithms do not suppress the host noise very effectively. Some methods, such as set

partitioning [31, 27], Quantization Index Modulation [12_, etc. are more successful.

It is believed that a mismatched transform is more favorable in these schemes due

to the same reason.

3.1.3 Taking Advantage of Compression — an Example

From the above discussion, it is concluded that selecting higher GTo  transform does

riot increase capacity and matching compression transform ausually high G TE ) does
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not enhance its resilience to compression. Then how to select am advantageous

watermark domain?

Bender At al. [7] are among the first to point out, "The key to successful data

hiding is the finding of holes that are not suitable for exploitation by compression

algorithm". A good hiding scheme should take advantage of the compression. The

watermark domain is not necessarily a transform domain. Some authors argue the

message should be inserted in a domain which is compression-conservative. A novel

scheme [2] was proposed to hide information in the eigen vectors of the correlation

matrix of a subimage. Because these values are almost unchanged after compression.

Just as mentioned in Chapter 2, embedding in DFT amplitude domain provides some

advantages due to its perceptual insignificance [71, 73

In Chapter 5, a noise substitution algorithm in audio data hiding is proposed.

The well advanced audio model sinA + traWsiAWt + WoisA [56, 96, 95 is explicitly

used in this scheme. This scheme modifies the noisy components without changing

the noisy perception. More details can be found in Section 5.6. In this scheme,

matching the decomposition brings some benefits due to the compression coefficient

sign conservative property.

3.1.4 Summary

Decomposition used in compression is to dc-correlate the signal. High de-correlation

is desirable in compression, although may not be suitable in steganography. For

SS schemes application in oblivious cases, mismatch the decomposition used in

compression is more favorable. Different transform selection does not have any

effect on hiding capacity. The extra computation in high Gyve decomposition in

compressions may not be well justified in data hiding.

The decomposition selection is a complicated issue in practice. For example,

audio watermarking in frequency domain is advisable because the psychoacoustic
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model in transform domains can be conveniently used. In the design of a compression

resistant watermarking scheme, decomposition selection is related with embedding

scheme used. Mismatch decomposition is advisable in SS. For the noise substitution

scheme in audio data hiding, it is more favorable to match the compression decom-

position.

3.2 SS Modulation and Correlation Detection

Although the SS scheme is first introduced in escrow applications, it works in the

oblivious cases where the original content signal is not available. In the data hiding

scheme (3.13), sib and xi are independent. It is assumed that the first term in (3.16)

N-1

t = 	 szxi 	 O. 	 a3.15)
i=o

Compared with (2.6), the extra disturbing term degrades the detector

performance. It is true that t 0 if the sepuence length N is sufficiently large.

Obviously, this significantly reduces hiding capacity. In the following part, the

degradation is measured puantitatively 30].

3.2.1 Correlation Performance in SS Modulation

In the following discussion, the deep data hiding scheme mentioned in Section 3.1 is

studied. Its embedding and extraction is given by a3.13) and a3.16), respectively.

The host noise power is much larger than that of the channel noise in oblivious

cases. The channel noise is neglected for simplicity in the following discussion. Then

(3.16) is reduced to

N-1	 N-

iWi =
	 x i w i +	 a3.16)

i=o

Denote

pi = Wiwi  +
	

(3.17)
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	Because wig is either +1 or —1 p i = x i +	 i or pi = x i — xi Due to the

symmetry property of the pdf of x i , the statistical distribution of p i does not depend

on the value of wig. It has same mean value and variance as

	yid = xi + xi 	 a3.18)

Suppose the original coefficient x i is i.i.d. and Gaussian distributed, x i

0, ). The mathematical expectation of y id is

E Yid] = 2
00 x x2	2

A 2a2 Mx =
71

a3.19) 
27o-

The variation of yid is obtained as

ERA — E YiD 2 =E

	

o-ct	 .
, 2 ,

( 	 )

(3.20)

After some algebraic steps, the final result yields as

E (Yi - E [Y, 
)2]	 (i + (1 2

)7
2 . 	(3,2

The test statistic q (3.16) can be assumed a summation of random variables y id

(3.18). For a large value of N, the distribution of q is approximately Gaussian

q ti N(a- aN
	 N(1 + cy 2) u2)	 (3,22)

In a similar fashion, while the bit value 0 is embedded the distribution of the

test statistic is given as

q	 N(—o-aN -, Nai + G 2 )o- 2 ). 	 (3023)

If the decision threshold is selected 7 = 0, the Bit Error Rate

BER = Qa a3.26)

where Q(.) is the Gaussian pdf tail integral function.

This analytical result matches the simulation output aFigure 3.6). c is selected

as 0.1 in simulation. Figure 3.5 demonstrates the BER versus sequence length N.
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With sequence length N = 200, BER = 0.1308. To achieve the reliability BER <

10 -6 , the sepuence length should be N > 3700.
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Figure 3.4 Correlation performance in SS modulation

0

500 	 1000 	 1500 	 2000 	 2500 	 3000
	

35
	

4000
	

450
	

5000
Sequence Length (N)

-50

Figure 3.5 Analytical BER-N in SS modulation

3.3 Optimum Detection and Linear Modulation

The above results demonstrate that the performance of the SS modulation schemes

is not satisfactory. The SS modulation performance limit in oblivious applications is

analyzed in this section.



M(x) =

and

+i, x > 0
—1, x < 0

= 	

	

2( + a)b 	2ai	 a) b.

(3.29)

(3.30)

a3.31)
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3.3.1 Maximum Likelihood Detection

The correlation detector is only optimal in white Gaussian noise environment but

not in the SS modulation scheme discussed above.

With bit embedding scheme a3.13), decoding is a hypothesis testing problem

{Hid: rib= xi+ xi • kid, bit value 1 is embedded
HO: rib= xi— xi• kidbit value 0 is embedded

where k, = wia.

Given a received sepuence r, the Maximum Likelihood aML) ratio is

R = P(H1) 
P(HO

a3.25)

(3.26)

If R > i, the bit value 1 is decided; Otherwise bit value 0 is decided.

Assume the original coefficient xi is Gaussian distributed, its pdf  

1 	exp[ 	
-‘/Tco- (14-ki) 	 Lb(1+ki)2

-\7ro-(1—ki) 	 expo b(1—ki) 2
1 

'iTra  

f (rib H1) =

(rib > 0)

(rib< 0)

(rib = 0)

a3.27)    

In a similar fashion, f (r, HO) can be calculated.

Assume PaH0) = P(H1) and neglect the rare case where r ib = 0, the ML ratio

is

Pair,Pair,H1)

HO)
+kid
1+ki 

• exp[-fi • Mak,)ri
exp[+,3 • Mack,)

0)
0)

a3.28)

where Ma.) is the sign function
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If one bit is embedded in a sepuence x, the MLA ratio a3.26) is obtained as

IV-1 1 — kid 	 N-1

R 	 II 	 )s 	 • exp 	 —Mai ) Maki ) 	 ]. 	 (3.32)
o 1 +.k 	 i=o

The above is the NIL optimum detector in the oblivious case and it yields better

performance. Yet the computation is puite extensive. Secondly, the calculation of 3

involves the value of o-2 , which is usually unavailable in practice. Some approximation

is needed to derive a suboptimal detector applicable in practice.

In a white sepuence s, it is reasonable to assume it has the equal number of

+1 and —1. One obvious observation in a3.32) is that for sufficiently large sepuence

length N ,

1 1 — kivseri
I 	 k )o 1 1-

Under this approximation, a suboptimal detector is obtained as

a 3 . 3 3 )

--s(r) • rib • Makin). a 3.3 6 )
i=o

If q > 0, it is decided that the bit value is	 Otherwise the bit value 0 is

decided.

The suboptimal detector has a puite simple form and comparable complexity

as the correlation detector a3.16). Figure 3.6 shows the simulation result with visual

threshold ratio value a = 0.1. The suboptimal detector has lower BER compared

with correlation. Still it is inferior to the optimum detector due to the approximation

in a3.33).

The suboptimal detector (3.36) is in a form of variation difference distinction.

Any hiding scheme changes the statistical property of the original cover signal. From

the embedding operation (3.25), it is clear the main impact of hiding operation is

the change of variation of x. Intuitively, the detector based on the distinction of



0.4

0.35

o.
0
	

50 	 60 	 70 	 80
	

50
	

100
Aandom Sequence Length (N)

Figure 3.6 Correlation. suboptimal and optimum detection

variation outperforms the correlation detector where the decision is based on the

mean value.

The channel noise is not considered in the above discussion. Even taking it

into consideration, further simulation studies show the NIL and suboptimal detector

still outperforms the commonly used correlation detector.

3.3.2 Linear Modulation and Detection

It is demonstrated in simulation studies and mathematical analysis that the

suboptimal detector is inferior to the optimum detector. How can the performance

be further improved?

The data hiding procedure (3.13) can be slightly modified by removing the

absolute value operator. The data hiding hypotheses testing becomes
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H1:
HO:

rib = xi + xi -

Tic — xis xis
, to embed bit value 1

to embed bit value 0
(3.35)

where kid = Wilt (kid is either +a or — ).

After embedding, the variance is modified to

C) 1 (1 	 \) be- 
b (3.36)



32

or
(1	 ct)b (7b
	

(3.37)

In a way similar to the analysis in the last section, the ratio on rib is given by

ParisParis H1)
HO)

1— A,
	 ) • expo
1 + kid

N —1
—Makin

i = o

ribs -y a3.38)

And the final ML detector output is

N-1 Ba ri
R =

i= P(ri
HI)
HO) .

a3.39)

All the coefficients can be divided into 2 sets. The variances of xis in Set A

are increased while those in Set B are decreased.

Statistically, the coefficient number in these two sets is epual. The generation

of the white sepuence can be controlled so that the coefficient count of A, = a is

epual to the count of kid = —a. That yields

N-1 1 — Ai
11 1+ Az= 1. i=o

By simplifying a3.38), the detection test statistic is obtained as

N-1

q = 7 E 8aAi ) • ribs .
i=o

Remove the factor -y, the test statistic is

q =
ESet A 	 ESet B

(3.60)

(3.61)

(3.62)

If q' > 0, the bit value 1 is decoded; Otherwise, bit value 0 is decided instead.

That is the optimum detector in the linear embedding.

The performance can be further analyzed if only the host noise is considered.

Suppose ribin the Set A is Gaussian distributed with variance epuals to of a3.36);

While ribin Set B is distributed with variancecif,;a3.37).
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Denote

and

tic= Er
E Set A

bto =

riESet B

a3 .63)

O3 .66)

These two variables are spuare sum of Gaussian distributed random variables

which share the same probability property. It can be proved their distribution is of

1Ff= N/2 freedom degree F distribution [40].

f (tic

tic
i i1/1/b-1 	 T772

tic 	• C 
O3.6 5 )

•2m/2  • F(M/2

For notation simplicity, denote

A, = m 2AT/b • (211/ 2)e- i	 •

and

2ai4

Epuation (3.65) can be rewritten as

aa3,66)

O3. 6 7)

f aA,)
—1 A —o A"

• O3.68)

where n = K2 = N/6.

Suppose the bit value 1 is transmitted, the Bit Error Rate (BER) is

+40	to
BER = Pat < to) = Bo 	f ato)Mto • Bo f ati)Mti

f+°c fJo
Boto

A trill- 	Mt into • O3.69)

For an integer W, using

Mx
c-ax

[(axon , + W	 + WOW — i)aax)n -b +	 + W!]	 a3.50)
an+ 1
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— 2)! +

A o A 1 an 	 1)! -

Cif 	Co + 	 aCoCOn
a3.52)
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Figure 3.7 Performance comparison in the linear modulation

and

/ +DC 	 n!
o in c - ' Mx = 	 an+1

after some algebraic steps, the final result is obtained as
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a3.51)

The same result is obtained if bit value 0 is transmitted. Therefore, the average

Bit Error Rate (BER) is given by (3.52).

Equation (3.52) is the achievable performance in the linear modulation

approach. Figure 3.7 depicts BER calculated by (3.52) and the simulation output.

The distortion threshold ratio a is selected as 0.i and x i is Gaussian distributed with

a = 50. The analytical result is a perfect match of the simulation results. Compared

with the embedding and extraction scheme using absolute value operation, this

scheme achieves the same performance as the optimum detector and outperforms

the suboptimal detector. This detector is also easy to implement.
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It is assumed the original coefficient x i is Gaussian distributed in the above

discussion. In many cases x i is a transform coefficient whose pdf is approximately

Generalized Gaussian or Laplacian distribution. The above ML detector a3.62) is

not optimum in this case. However, it still outperforms the correlation detector

commonly used.

200 	 400 	 600 	 800 	 1000 	 1200 	 1400
	

1600 	 1800 	 2000
Aandom Sequence Length (N)

Figure 3.8 Analytical result in the linear modulation

The SS schemes are not puite effective in oblivious cases. Figure 3.8 depicts the

BER, at different sequence length with the distortion ratio a = 0.1 (corresponding

to —20MB distortion, very deep embedding). At sequence length N = 1000, BER  =

3.91 • 10 -6 . To achieve up to BER < 10-6 , the sequence length should be N > 1800.

Please note the performance is even poorer for correlation detection. This is the

limitation of SS schemes.

3.3.3 Image Data Hiding Experiments

The above linear detection scheme can replace the existing SS hiding and extraction

schemes. In practice, the value of the distortion ratio a could be obtained from

empirical experiments or some more accurate perceptual models. For example, the
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distortion threshold ratio in audio signals can be calculated from a psychoacoustic

model.

In the experiments with image data hiding applications, first the mage is

decomposed into 66 subtends Second, the medium tends are selected and the

hiding scheme in (3.35) is employed. At decoder side, a3.62) is used to extract the

information. In those experiments, 32 bit is embedded in a 256x256 image. All

bits are extracted error-free. Experiments also show its robustness against JPEG

compression and other attacks.

(a) Original Lena	 (b) Marked Lena

Figure 3.9 Lena image before and after embedding

3.4 Signature Sequence: Security and Synchronization

Similar to an encryption system, it is believed a mature watermark system should be

employed with a public algorithm and a private key. The key is the seed to generate

a random sequence. An attacker can try his best to "guess" a sepuence close to the

watermark sequence and remove it. This attack is referred to as "guessing" attack.

Besides security, another important factor is synchronization requirement on the PN

sepuence. Both the security of PN sepuence and its synchronization requirement are

investigated in this section. A random phase sepuence generation is proposed later.
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3.4.1 Security of Gaussian PN Sequence

White Gaussian Sequence

The white Gaussian sepuence is widely used in various watermarking schemes [7, 16].

The sepuence x is of white spectrum, x i Na0, x ) and x i is i.i.d. In a public scheme

scenario, an attacker knows the parameters a x and sepuence length N, only does not

know the random seed. In the guessing attack, a random sepuence y is generated.

The "closeness" between x and y is measured by correlation

=< x, y >= 	 xiyi• 	 a3.53)
i=o

If the correlation output is larger than a fixed threshold 7, the attacker assumes

that y is sufficiently close to x. By subtracting the sepuence y, a good proportion

of the watermark energy could be removed.

As a linear combination of y, the output q is Gaussian distributed

N-1
Nq 	(0, K2 E x:2).

i=o

The exact value of q is dependent on the individual signature sepuence x. For

a large value of sepuence length N,

q_ = 0,	 (3.55 )

a3. 6)

and

E [q 2 N o 4 . 	 (3.56)
i=0

The successful attack probability is

P aq > 7) = a	 2 ) .
	 (3. 57)

Some numerical result for white sepuences acorresponding to p = 0.0) is shown

in Table 3.i. It can be seen that the white sequences are puite secure against this

guessing attack. This conclusion is justified by the intuition that the white sepuence
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is the most "unpredictable". The white sepuence has a flat spectrum whereas most

cover signals are of low-pass type. Most high frepuency energy can be removed by

low-pass filtering. For example, in a typical audio signal, most energy is concentrated

between 0 - kHz. For an audio signal sampled at 68kHz, by suppressing frepuency

components over 6kHz, a smart attacker can remove 75% of the white watermark

signal energy without much noticeable distortion. The white sepuence although

secure, is less energy efficient.

Low-pass aLP) type random signature can keep most energy after low-pass

filtering attack. A simple colored PN sequence - AR(1) random process is analyzed

in the next paragraphs.

AR (1) PN Sequence

The first order AR(1) sequence x is expressed as

x i = pxi_i + Hui,	 a3.58)

where

E
P = 	 (3.59) 2Crux

and Hui
	 0, 	 Pb) e_,

	 u i is i.i.d.

The attacker tries to generate a matching sepuence y randomly tesed on the

same ARai) model asuppose the value of p is public). Correlation

measures the success of this attack. It can be easily shown that

E[V] =< x,y >, 0.

The variation of correlation output V is

ENV] = El(xoyo + xiyi +...+xi- i-1)

Using

E

and
ENxix

output a3.53)

a3.60)

(3.61)

a3.62)

(3.63)



After some algebraic steps,

e- = E V

ie final result is obtained as
N p 2 i	 2 	 i

	P 	 P2N 	 pb 	 ai 	 02)2 1 	 N. a3.65)
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Equation T3.61) is reduced to

E[V b ]= N + 2(L — 1)pb 2aL — 2)p4 	2pL-1.	 (3.66)

For a sufficiently large value of sepuence length N , the above can be further

expressed as
0-2 aN

where
2

=  	 1.K2

Similarly , the successful guessing attack probability yields as

T3.66)

(3.67)

= Q( 	fc—ti -Vcri2) '

Compared with the white sepuence, the Aft(1) sepuence length should be

increased by a factor lI to reach the same security level. For example, for the case

where p = 0.8, a = 6.56, a 656-coefficient ARTi) sepuence is of the same robustness

as a 100-coefficient white sepuence.

Table 3.1 shows the successful attack protebility for different p and N values.

The result reveals that the LP type signal is more vulnerable to the guessing attack

due to the correlation between x i . However has some desirable properties, one is

the relaxed synchronization repuirement at decoder.

N=30 N=600 N=600
p = 0.0 2.16 • 10 -8 7.62 • 10 -24 2.75 • 10 -86

p = 0.5 3.98 • 10-24 6.57 • 10-17 8.66 • 10-5

p = 0.8 1.00 • 10 -b 1.10 • 10-8 1.08 • 10-17

Table 3.1 Sepuence security comparison 	 =

PTV > 7) = Q( (3.68)



40

3.4.2 Synchronization Effect on Detection

In SS modulation, it is well known the decoder is extremely sensitive to synchro-

nization [87]. As it will be seen. the LP type sepuence is less sensitive to synchro-

nization, which is often a desirable property in practice.

White Gaussian Sequence

Suppose a signal x is transmitted through a Gaussian channel,

Fri= xi +	 a3.69)

where zip is the channel noise, zip 	N(0, o-zb).

If the sepuence is perfectly matched, the decoder output SNR can be shown to

be

(3.70)

If the received sequence r and x is not perfectly matched, SATR 	 0. The

watermark verification completely fails.

AR(1) Random Sequence

For an ARa1) sepuence generated by a3.59), although the output SNR degrades

if r and x are not perfectly synchronized, there is some signal energy residue in the

correlation detector output. If x and r is synchronized, ARai) sepuence performs as

well as the white sepuence. In the case where it is misaligned by M sample slip shift,

the filter output SNR is given by

SNR =
N-M)

No

2 2
x (3.71) 

Figure 3.10 depicts the SNR output value versus misalignment. The parameters

selected are N = 100, p = 0.8, ax = Hz . Obliviously, the AR(1) sequence is less

sensitive to synchronization than the white sequence.
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Figure 3.10 ART1) correlation output vs. misalignment

3.4.3 Sequence Spectrum Shaping

The white sepuence and LP type sepuence are studied above. The ARa1) sepuence

is just a special case of a colored sepuence. A more general colored sequence can be

generated by an AR(M) model

Al

Xi = hiXi_i wig, (3.72)
i=i

where wig is white Gaussian noise and x i is Gaussian distributed, independent

with wig. The above ARaM) colored sepuence can be interpreted as the white sepuence

shaped by a LP filter.

Although the white sequence is more secure than a LP type sepuence, this is

only true when no attack is present. The low-pass filtering attack can remove the

watermark energy in high frequency tends without much artifacts. A smart attacker

may combine the low-pass filtering and guessing attack therefore compromise its

security down to the level in the LP sequence. The watermarking energy spanning

the whole spectrum is not well spent, resulting in energy inefficiency.

It is pointed out in the face of Wiener filtering, the spectrum of the watermark

signal should be proportional to that of the cover signal N86]. In this case, the

41
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filtering is nothing but a scaling operation. This implies no gains achieved in this

attack. Actually, watermark signal power spectrum XaH) need not to be exactly

proportional to the cover signal spectrum NTH), but should be close to NaH). Since

the cover signal spectrum N(H) is public, the randomness mainly lies in the phase.

Cover Signal Spectrum

Frequency

Figure 3.11 Watermark spectrum against' iener filter i g

3.44 Random Phase Sequence

The random pfiee sepuence can be easily generated in DUI domain. '_Sup se (no

Appoint DFT transfer m of the watermark signal ..Tan) is, I ETA' A rand Wm phase

sequence Oil is generated by a private key. O il is i.i d. ei~ U(O, 270) and satisfies the

odd symmetry property

Lk =

O or Tic	 k = 0,
Lk 	k = 1, 2, 	 — 1

i 1 i +2—LA- V/b 	 2 	 2 	 '''' 
N —

(3.73)  

The embedding and extraction operations may be in time or DFT domain.

The watermark sepuence in FFT domain is generated as

x(k) = expaj0k). 	 (3.76)

In the security analysis against the guessing attack, the cover signal spectrum

is assumed brick-shape for simplicity (Figure 3.12).
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Figure 3.12 Brick-shape LP watermark spectrum

Suppose the attacker randomly generates a phase sequence ,13, the correlation

between these two vectors are

M-1 Lk
V = E	 -oak)

A=o
A 	 - 0 k )

M-1
= 2 12 cosT/3A — LAB),

A=o
(3.75)

27r	 1
COS aai3A - 8k )	 = -

27r	2

Both °A and	 are uniformly distributed in the range

expectation of t A = coM (,3A — LAB) is

27r
EN	 coM (OAF — Ok

The deviation of tA is

E[t2 —

0, 27). The mathematical

(3,77)

For a large number of Al, V is approximately Gaussian distributed. Its distri-

bution can be shown to be V — N(0, M). The successful guessing attack probability

is

P(4> 7) C 2 T 077  
T3.78)

For different values of M=30, 60 and 1O0, with the threshold value selected

as = 2M, the successful attack protebilities are 2.16 x 1O -8 6.76 x 1O -18 and

7.62 x 10 -24 , respectively.
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The signal component in the correlation detection output is 2M without

misalignment. The mathematical analysis shows that with p(p O) sample shift,

the correlation output is

Bp = ±
coM 2P  TII	 1) 	 coM 27TNP 111

(3.79)
1 — cos 2M

Figure 3.13 shows the output vs. misalignment. The sequence length is M = 3O

and N = 2O0.

-20
-40 	 -30 	 -20 	 -20 	 0 	 20 	 20 	 30 	 40

Misalignments)

Figure 3.13 Correlation output vs. misalignment

The sepuence length N and sepuence tendwidth Tindicated by M) are two

important parameters in sepuence generation. Larger N implies enhanced security

against guessing attack; while smaller M lowers the security level and relaxes the

synchronization requirement. Compared with Gaussian sepuence, this signature

provides a trade-off between security and synchronization repuirement.

In the random phase sepuence, the sepuence frepuency shape is fixed, only the

phase is random. Every sepuence has exactly the same energy. In practice, it may

riot be necessary to keep the sequence spectrum strictly brick-shape. Aarious visual

models could be applied to control the distortion visibility.
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3.4.5 Summary

The security and synchronization of the white and colored sepuence is analyzed in

this section. Although white sepuence is often used in the literature, the colored

sequence is superior to a white sepuence due to its energy efficiency. The wider the

tendwidth of the sepuence, the more secure it is against guessing attack and more

sensitive to synchronization. The random phase sepuence whose security lies in its

DFT phase is robust against Wiener filtering attacks.



CHAPTER 4

NONLINEAR MODULATION IN OBLIVIOUS STEGANOGRAPHY

In Chapter 3, it is concluded that the Spread Spectrum modulation algorithms have

limitations in oblivious applications due to its poor host noise suppression. In this

chapter some nonlinear embedding schemes are investigated N27, 29, 31 . These

schemes are more effective in oblivious cases.

4.1 Set Partitioning in Oblivious Data Hiding

4.1.1 Hypothesis Testing and Set Partitioning

Watermark is motivated to verify the disputed copyright ownership. Given a

multimedia content cover signal, the decoder needs to answer the puestion Yes/No

awatermarked or original) or bit value 1/O depending on a set of received coefficients.

It is a hypothesis testing problem in essence.

Suppose c is an original coefficient in some watermark domain, 1 bit is

embedded in c. The received coefficient is denoted as r. Two hypotheses are

{HOB: bit value O is embedded in r
H1: bit value 1 is embedded in r

T6. 1)

Obviously, HO and Hi have different statistical properties. Any steganography

scheme modifies the original signal properties in one way or another. Based on the

property distinction, the decoder decides whether the bit value is 1 or O.

A good watermarking (data hiding) algorithm should modify the statistical

property of a cover signal without much perceptual degradation. There are several

approaches to modify the statistical property. Ramkumar and Akansu et al. N7O

proposed an innovative approach to flip the signs of some small value coefficients

in an image. Statistically speaking, an unmarked original image has approximately

epual number of positive and negative coefficients, while the watermarked image has
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noticeable count difference between positive and negative coefficients. The decision

is made based on this difference. Patchwork 7, 16 and many other schemes change

other statistical properties.

To answer the above hypothesis testing problem, a natural question is, how

can the decoder make a reliable decision Hl/HO merely on a given r? Begin with

the simplest case where no noise exists, answer is simple and straightforward, make

HO and H1 have no element in common. Thus, decoder can always make a correct

decision.

This embedding works well in a noise-free scenario. Yet in a practical noisy

environment, detection is not as reliable as in noise-free cases. To increase its

robustness to noise, the element in HO and H1 should he simply kept some distance

apart_ That is the simplest way to "separate' them.

This simple idea is extended to the following heuristic data hiding scheme It

is simple yet effective. Two separate sets are constructed on the real axis TFigure

6.1). The embedded coefficient value x should be kept in a set according to the bit

value to be hidden. To embed bit value 1, the output coefficient x should be kept in

set 1. If the original value c is already in set 1, no modification needed. Otherwise

it is replaced by the nearest element in set 1. Similarly after embedding bit value O,

x should be kept in set O.

Set 0
	

Set I	 Set 0	 Set I	 Set 0	 Set 1

di 	 d

Figure 4.1 Set partitioning scheme

To enhance embedding and extraction reliability, usually one bit information

is embedded in a coefficient sepuence c. To do that, it is need to define a deter-
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ministic pattern to represent bit values, For example, to embed 1 bit in a 5-coefficient

sepuence, patterns similar to antipodal signaling can be defined as

Pattern	 A (bit 1): [set 1, set 0, set 1, set O, set 1
Pattern	 -A abit O): Nset O, set 1, set O, set 1, set O]

a6.2)

To hide an information bit, the modified sepuence x should comply with Pattern

A ato hide bit 1) or Pattern -A Tto hide bit O). For example, to hide bit value 1,

after embedding the output coefficients should be

xo Eset 1, xiEset O,x2 Eset 1,x3 Eset O and x4E set 1.

This method is named sAt partitioning. It does not hide a specific watermark

signal in a cover signal, but try to modify its statistical property to facilitate the

detection at decoder. Watermarking is a game played between robustness and

distortion. The more distortion it introduces, the more reliable it could be.

4.1.2 Average Distortion

In the calculation of the distortion energy, for simplicity, it is assumed the original

coefficient c is uniformly distributed in the region a—a, a). This assumption is true

for the data in spatial or time domains, although may not accurate for coefficients

in transform domains. It is reported the coefficients are approximately Laplacian

distributed 5 Simulation studies show that distortion difference due to the pdf is

negligible.

Denote the error introduced in embedding as A = x — c. As depicted in Figure

6.2, suppose the bit value 1 is to be embedded, consider the typical region AD:

If c is in the range AB, no modification needed, A = O.

If c is in the range BD, e is uniformly distributed in (—M — M1K2,M + d1/2).

The corresponding conditional protebilities can be expressed as

P(c E AB c E AD) =
Ml 

a6.3)
2M1 + 2M



and

2d + d1
Pac E BD/c E AD) =

9d1 + 2M .

Therefore, the average distortion energy introduced is
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T6.6)

D =  (2M
 + dl) (2d + dl) b

a2d1 + 2d)	 12

1  (2d + d1) 3 

12 T2d + 2d1) .

a6.5)

In a similar fashion, the distortion calculation yields the same result if bit value

O is embedded. Th average is just given by (6.5).

Set 1 Set 0	 Scl I Set  Scat I          

1— di
d      

A C 	 D 

Figure 4.2 Average distortion calculation

4.1.3 Hard Decision Detection

In one bit per coefficient embedding, the hard decision is based on the distance

between the received coefficient r and the two sets ahere distance is defined as the

minimum distance between r and any element in the set, it is zero if r belongs to

the set).

In practice, it is rare to embed one bit in one coefficient. Consider the case

where 1 bit is embedded in an I-coefficient sequence c. The simplest detection is

majority vote. This is the hard decision based on individual coefficient. Real axis

is divided into two decision regions TFigure 6.3). If the received coefficient r falls in

Region 1, it is decided the transmitting signal x comes from set 1. Otherwise it is

assumed it comes from set O. In the example discussed in Section 6.1.1, if a received

sequence pattern is set 0, set O, set 1, set O, set O], which is more similar to pattern

A (2 coefficient difference) than to Pattern -A a3 coefficient difference), the decision

is made in favor of bit value 1.



	

Set 1
	

Seto

	 Region 1
	

Regi on 1	 Region 1

	

Region 0
	

Reeion 0

Detection Region for Set I 	 Detection Region for Sel 0

Figure 4.3 Hard decision region

4.1.4 Maximum Likelihood Detection

The above simple detector makes decision tesed on the individual coefficients.

Detection reliability can be enhanced using a soft-decision detector.

Denote r as the received coefficient after Gaussian channel transmission, noise

n	 N(0, crab). The NIL likelihood ratio 68

P ax E set 1
R

P (x E set O

In hose two sets, there are infinite transmitting signals. Denote any element

in these two sets as (set 1) and T (set O), and rewrite the above epuation,

E t 1 PO)R _  ease 
ETasetOPerA).

Using

P(e) f P	 = 	 f (A)

and

PDT PDT) f DA T) 
f aA)

Epuation (6.6) becomes

Set 1 Set 0 Sett

50    

A)

r)
(4.6)

(6.7)

(6.8)

(6.9)

R 	PeaseE 	 t 1 P(e) f (A

ETEset 0 P(7)f T)
D6.1O)

Gaussian noise probability density function is

1	 A — ) A,
Pre) =    expN 	 A-

-\/27ro-	 90-b a 6.11)
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The original coefficient c is uniformly distributed, its probability density

function fac) c U(-a, a). After embedding information bit value 1, the

calculation of the probability of the transmitting signal Pee) is depicted in Figure

6.6. Note the protebility pulses at the end points. They are transmitted with

greater protebility because any c out of the set 1 is replaced by the end points.

E P(e)ier"e)
Baset 1

1	 M + d1/2	 111-bd-3d1 
	1 	2r)2,2 	 ,

970- 	2a
	A 2 	

ba 111-bd-3d1 v 	 Ab„ 	 2° 	 d + •• •

1 Br- /1 	 1 
ba Jr-I1-d1 boa 	 2a2

a6.12)

Figure 4.4 Calculation of ML ratio

In the similar manner, Teset 0 PaT)fTr T) can be calculated and yields a result

similar to (6.12). Still a closed-form result of ML ratio can not be obtained. The ML

detector is also too computation expensive. Besides, the detector needs the value

of the noise power o-b , which is usually unavailable at decoder. The ML optimum

detector is infeasible in practice.

The challenge in the decoding is that the transmitting signals could be any value

belonging to these two sets. The ML ratio calculation thus involves all elements in

set 1 and set 0. A way to simplify detection is to assume transmitting signals finite.

In the following suboptimal methods, the transmitting signals are assumed discrete

instead of continuous.
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4.1.5 Suboptimal Detection

In the first suboptimal detection, the transmitted signals are simply assumed at the

center of the continuous segments, the signaling is a pattern like xoxo as depicted in

Figure 4.5. Signal points x and o are transmitted with epual protebility.

After approximation, the NIL ratio can be expressed as:

P(x E set 1r)
R =	 (4.13)

P(x E set 0 r)

Still there are many x and o points to be considered.

Simulation studies demonstrate that it can be further simplified by merely

considering the nearest x and o points (See the Section 4.2). Thus, (4.13) reduces to

R =
P(rx u) 
PaA x = v)'	 aa4.14)

where n/v is the nearest transmitting points x o in set 1 and set O.

No-v the suboptimal detector s in a form of minimum distance detector. Only

the nearest transmitting points are considered due to their higher transmitting prote-

bilities.

Some other assumptions result in a different form of suboptimal detectors. In

Figure 6.6, it is observed that the endpoints are transmitted with higher prote-

bilities because those original coefficients not in the two sets are replaced by the

end points. Another easonable approximation assumes the transmitted signals have

xxoo pattern as shown in Figure 4.6.

In that case, it is reasonable to assume that only the nearest end points are

considered as transmitting signals, that yields the same results as (4.14).

Set I
	

Set 0	 Set I	 Set 0	 Set 1

e 	
Suboptimal Detection 1

Figure 4.5 Suboptimal detection 1
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Set 1
	

Set 0	 Set 1
	

Seto	 Set 1

k 

Suboptimal Detection 2

Figure 4.6 Suboptimal detection 2

In the example mentioned in Section 4.1.1, suppose a 5-coefficient sepuence r

is received. The nearest x and o points to ri are located and denoted as nib (in Set

1) and v i (in Set 0). According to the given patterns (A and -A), two corresponding

sequence candidates are constructed,

Pattern A type:a = NEno, v1, nb, v3, n4
Pattern -A type: b = vo , nib, v2, U31 v4

a4.15)

If r — a 1< r — 131 , the received sepuence is more similar to the Pattern A,

bit value 1 is decided; Otherwise, bit value 0 is decided.

The two suboptimal detectors demonstrate different performance.

4.1.6 Experiments and Results

To evaluate this set partitioning scheme, the extracted Bit Error Rate (BER) in

Gaussian noise environment versus the distortion introduced is measured. The

Signal-Noise Ratio (SNR) is redefined as the ratio of the distortion energy S over

the noise power a b .

SNR = —s
	

(4.16)

The three detectors are compared One information bit is embedded into an

11-coefficient sepuence (Fig. 4.7). The ratio is selected d/dl = 1. The result shows

that suboptimal detector 2 outperforms suboptimal detector 1. Further simulation

shows decoding performance in suboptimal detector 2 is almost the same as the

ML optimum detector. Both suboptimal methods far outperform the hard decision

decoder.
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It is observed that BER-SNR is different for different M and Ml values. The

determining factor is the ratio d/dl, not individual values of d or dl. Figure 4.8 is

the result of embedding 1 bit in an 8-coefficient sepuence.

In practice, an accurate prediction of the channel noise property may not be

known in advance. However, data hiding seldom works at higher SIR, usually

SNR < 1. Embedding distortion is not expected to be larger than the moderate or

severe compression distortion. Therefore, smaller d/dl is more favorable in appli-

cations. That implies the smaller d/dl is more reliable in noisy scenarios.

Figure 4.7 Detection performance comparison

0.25 	 0.45 	 0.6 	 0.8 	 1.2 	 .4 	 1.6 	 1.8 	 2
SNA (Linear Scale)

Figure 4.8 Performance with different d/dl
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The set partitioning scheme may be used in place of the SS modulation in

various watermark domains. It shows great advantage in host noise suppression. In

image data hiding experiments, information bits are embedded in the DFT amplitude

domain. A pattern is embedded in the medium frequency coefficients. Total 64 bits

are hidden in a 256x256 images. Experiments demonstrates its robustness against

common compression and other attacks.

4.2 QIM Embedding and Detection

Chen and Wornell At al. [12, 11] applied dither modulation technipue as a special

case of Quantization Index Modulation aQIM) for oblivious watermarking. It can

achieve more reliable extraction without referring to the original cover signal.

4.2.1 QIM in Oblivious Data Hiding

In the SS modulation schemes, a fixed watermark signal is superimposed on the

original signal. The set partitioning scheme modifies a coefficient only when necessary

thus minimizing the distortion. There are several approaches to hiding information

in the oblivious applications. The greatest challenge is that the original signal is

unknown. If a good estimate of the original signal is obtained, the detection reliability

will be boosted.

Given a received coefficient 'r , what is the original value? It is reasonable to

assume the original value must be close to r. A good estimate of the unknown

original is its quantized version Q(x, 5) where b is the quantization step size. The

difference between the "estimated cover signal" and the received coefficient x is the

small value signal embedded which could be extracted as

M = Q(x,(5)— x. 	 (4.17)
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After fixing the signal extraction method, the corresponding invertible embedding

operator is not difficult to find as

x = Qac + 8,6) — M,	 a4.18)

where c is the original coefficient, x is the marked coefficient after embedding

and M is the watermark signal.

The invertibility of encoding and decoding can be demonstrated by the

following example. Suppose an antipodal signal M or —M is to be embedded

to hide information bit value 1 or O. If the original value c = 26.40, quanti-

zation step size 6 = 1.0 and watermark signal M = 0.25, the marked coefficient

x = Q(c + M, (5) — M = Qa26.65, 1.0) — 0.25 = 26.75. In a noise-free scenario, the

extracted signal is again M' = Q(x, (5) — x = 27.00 — 26.75 = 0.25.

4.2.2 Maximum Likelihood Detection in QIM

The embedding operator (4.18) and extraction operator (4.17) are invertible in noise

free scenario. The final decision could be tesed on the correlation value of the

extracted signal and the watermark signal. Yet it is far from optimum in noisy case.

Continue with the above example, suppose the bit value 1 is embedded, the

marked coefficient x = 26.75. After noise channel, if received value Al = 26.51,

the extracted signal M' = Q(rl, 6) — Al = 0.49. If r2 = 26.49 is received instead,

M' = QaA2, 6) — A2 = —0.49! TO and r2 are puite close, nevertheless results in two

totally different extracted signals. The reason is that the quantization operation is

nonlinear and has discontinuity around the points xxx.50.

The quantization operator is not necessary. In this scheme, it is needed to

decide a received coefficient r comes from x points or from o points. The Maximum

Likelihood (ML) ratio is 481
P (x E Set 1 r)

R = 
P E Set 00'

If R > 1, the bit value 1 is decided; Otherwise bit value 0 is decided.

a4.19)
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The protebility calculation is a little complicated. There exist many signal

points corresponding to one information bit. On a received coefficient A, it is known

that the transmitted signal x could be xxx.75 or xxx.25. Suppose A = 6.30 is received,

all the possible transmitted signals can be divided into two sets.

{Seat 1 :
Set 0 :

{6.75, 5.75, 7.75, 8.75, 4.75, ...}
{6.25, 7.25, 5.25, 8.25, 4.25, ...}

E4.20)

Set 1 represents information bit value 1; Set 0 represents bit value 0.

If the noise is Gaussian distributed, its pdf is
21

f Ex) = 	 expE 
—X
	).

27o- 	2a2

The protebility PEx E set 1, A) can be calculated as

E4.21)

PEx E set 1 A)PEA) = P(A = 6.301x = 6.75)PEx = 6.75)
+PEA = 6.30x = 7.75)PEx = 7.75)
+PEA = 6.30 x = 5.75)PEx = 5.75)
+...

(4.22)

PEx E set OA)P(r) can be obtained as well.

Assume the probabilities for all transmitting signals are epual

PEx = 6.75) -= PEx -= 6.25) = Pax = 5.75) =-
	

E4.23)

Epuation E4.19) can be reduced to

R —

	 = 6.30

PEA = 6.30

x = 6.75) + PEA = 6.30

x = 6.25) + PEA = 6.30

x = 5.75) +

x = 7.25) +
E4.24)

The above epuation involves many terms, no closed-form result can be obtained.

The dominating element in each set is defined as lAader. In the above example, the

leaders in Set 1 and Set 0 are n = 6.75 and v = 6.25. They are the most likely

candidates. If all the remaining terms are neglected, the ML ratio E4.24) becomes

R
	PEA n)	 expN -(r2 )2 ]

PEr v)	 eXPNN (7'2,2 )2 1
E4.25)
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Simulation shows the above is a good approximation for Gaussian noise

environment. The result is similar to that obtained above in set partitioning

calculation.

In fact, the idea of AIM has long been used in some watermarking algorithms.

It is similar to the parity manipulation schemes. Some schemes in this category

modify the parity of an integer coefficient c. For example, c can be modified to

an even number to embed bit value 1, or to an odd number to embed bit value 0

N2]. In fragile watermarking, the DUCT coefficients are modified in a similar way for

image authentication N100]. Its embedding procedure is, in essence, the same as AIMS

scheme. The detection used usually is hard decision detector, i e. a majority vote.

In the above example, if even integers out-count odd ones, bit value 1 is decided;

Otherwise it is decided O. It is inferior to the above soft decision suboptimal detector.

Figure 4.9 depicts the comparison results of the detectors: majority vote

detector, correlation using puantization operation and soft decision detector. The

original coefficient c if is Gaussian generated with variance a = 80. The soft decision

detector yields the better result over the other two.

Figure 4.9 Detection performance in QIN4
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4.2.3 Performance Analysis

From the above analysis, it is found that the AIM scheme is superior to the SS

modulation in oblivious applications. Chen et al. N11, 12] pointed out that BER in

AIM is calculated as

BEAR= QE2a). 	 E4.26)

where M is the distance between the x and o points, a is the noise variance

value.

The analyzed BER value is the same as the non-periodic antipodal commu-

nications cases. This is true only when the SIRE value is very large. In most data

hiding applications where SIR is usually low, this periodic scheme is far from the

non-periodic scheme. BER in the non-periodic antipodal case is simply given by

(4.26).

The BER in AIM case is the shadowed area in Figure 4.10,

BER= f 	 1 	
c1/2)2dx +

d 
2a2

bd 	 1 ALEX -I- C1/2) 2  Mx
07ru 	2a2

E4.27)

(a) Periodic Signaling
	

(b) Non-periodic Signaling

Figure 4.10 BER calculation in AIM and antipodal case

The gap between AIM and antipodal cases is depicted in Figure 4.11. In the

antipodal case, the transmitting signals are fixed, M or —s. While in the AIM case,

there exist many transmitting signals, the decoder never knows for sure which is

the transmitted signal and has to "guess" one Ethe nearest one in the suboptimal

detectors). The performance degradation can be regarded as a price paid for the

"uncertainty" at decoder.
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Figure 4.11 BER in periodic and non-periodic signaling

4.2.4 Comparison With Set Partitioning

The AIM scheme can be viewed as a special case of the proposed set partiioning

scheme in Section 4.1. The latter provides the flexibility to choose different d and dl

values. The ratio value M/dl has different implications in practice. The performance

with different M/dl ratio values is compared with the QINI scheme EFigure 4.12 and

Figure 4.13).

Figure 4.12 Performance at lower SNR

Observe the BER-SKR curves for M/dl = 1, at lower SNR where most data

hiding applications are employed the improvement over AIM is noticeable. One may
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notice that with fixed average distortion energy, the set partitioning scheme has

larger maximum distortion amplitude. Even considering this, at a given maximum

distortion Ethat implies higher distortion energy in AIM), simulation studies show

the set partitioning scheme is still superior to the AIM. This is a puite effective

oblivious hiding scheme.

Figure 4.13 Performance at higher SNR

Note that at different SNR the comparison result is different. Figure 4.12 and

Figure 4.13 show that the smaller d/dl performs better at lower SNR. At higher

SIR, larger d/d1 is more advantageous.

4.3 Limitations of Set Partitioning

As seen above, the set partitioning scheme is powerful in oblivious data hiding. The

AIM periodic scheme can be regarded as a special case of this approach. Nevertheless,

it has several limitations in watermarking applications. The latter just divides the

data into two sets and there is no other constraint for the set signaling. For example,

usually the relative distortion is much more important than the absolute distortion

for human perception. The set can be design with more distortion at the high value

end.
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Both the encoder and decoder know- the set signaling. Once the signaling of

the two sets is known, it is not difficult to remove the watermark. To enhance the

security, the signaling scheme should be kept secret. Ramkumar and Akansu et al.

72] proposed a QINI like scheme with a known signaling and a random transform.

Without knowing the transform, it is more difficult to remove the watermark. One

side effect is that in a random transform domain, it is difficult Eif not impossible) to

control the artifacts.

An alternative is to introduce randomness into the signaling by shifting the

set signaling. For example, instead of modifying the original coefficient c to comply

with a set pattern, the value of c p can be modified so that it complies with the

same pattern where p is a random variable. This may in some degree enhance its

robustness against attacks.

Even with the suitable transform, it is still a little difficult to control the

artifacts. In the cases where the signaling is adaptive to some perception control afor

audio signals, the permitted distortion in every subband is different), the decoder

should know the signaling change as well. Since the encoder has no way to notify

the change, the decoder has to "guess" the signaling used at encoder. This greatly

increases the computation complexity at decoder. A more severe problem is that

after sever compression, the signaling scheme estimated by decoder may be different

from the one used in data embedding. The message extraction is sensitive to this

"set signaling error".



CHAPTER 5

CONTENT PROTECTION IN AUDIO SIGNALS

In the previous chapters, multimedia data hiding in general is studied. In this

chapter, data hiding applications in audio signals are explored, and several algorithms

for compression-resistant hiding schemes are investigated.

5.1 Introduction to Audio Compression

In compression resistant data hiding design, it is important to understand the

compression algorithms. Better understanding of the compression can lead to a more

robust and effective scheme. In this section, popular audio compression schemes are

reviewed. The current multimedia compression methods can be roughly categorized

into three groups, wavAform approximation, perceptual coding and paramAtric coding.

5.1.1 Waveform Approximation Coding

The goal of the waveform approximation is to construct a compressed version closest

to the original waveform at a given bit rate. In other word, it aims at the highest SNR.

Usually, none or only very little perceptual knowledge is employed. One example is

the Adaptive Differential Pulse Code Modulation EADPCM). Other examples include

speech type narrow-band audio signal compression G.721 and G.723.

The schemes are also used in image compression where most schemes are after

the highest SNR. In current popular schemes, wavelet, sub-band or other various

filtering technipues are exploited to reduce the redundancy without much consid-

eration of the Human Aisual System EHAS). Lots of research is focused on puanti-

zation procedure after filtering. Zerotree 82 , SPIRT 79] are some of the recent

achievements. In JPEG compression, tesic human perpetual knowledge (human

eyes are more sensitive to low frepuency components than to the high frequency

ones) is considered in A-table design. Still it is very simple and crude.

63
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This kind of compression is based on information rate-distortion theory.

MPEG-i and MPEG-2 video compression and various image compressions fall into

this category. The compression noise introduced is usually not very large.

5.1.2 Perceptual Coding

Perceptual coding is widely used in well-advanced audio compression. An outstanding

example is the advanced audio compression MPG which is ubipuitously used in

Internet transmission and storage.

It was realized that the waveform approximation coding schemes were not

successful in audio applications. The reason is multi-fold. The audio signal is "hard"

to compress. It is a kind of non-stationary signal, or at most a guazi-stationary signal.

Secondly, people do not measure "audio puality" by "square error" and Human Audio

System EHAS) is much more sensitive than the Human Aisual System EHAS).

To obtain high coding gain, popular audio compression schemes such as MP3,

MPEG-2 AAC-2, and Dolby AC-3, NTT Twin-VA, etc., all explicitly make full use

of the human psychoacoustic model. There have already existed several effective

psychoacoustic models. These models which are best described in transform domain

are used in puantization operation to shape the compression noise. Compared with

the waveform approximation, the compression in this group is much more efficient.

Although compression in this group is tesed on human perception, it uses quanti-

zation error as a distortion measure. In contrast, paramAtric coding does not use the

error as a puality benchmark.

5.1.3 Parametric Coding

Parametric coding is a complicated technique in audio compression. Some schemes

of this kind are standardized, for instance, in MPEG-4 parametric coding 1]. The

compression might achieve very high compression rate.
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The tesic principle in the compression is not to "encode" a signal but to

"describe" the signal. The original signal is analyzed and the parameters describing

the signal are extracted. These parameters are then encoded and transmitted. At the

decoder side, the audio signal is reconstructed with these parameters. Its waveform

may not be close to the original, and SIR may be very low. Still it presents the

same perceptual effects as the original.

ReconstructedSignal Analysis
and

Parameter Extraction

Parametric
Encoding

Signal
Synthesis Signal

(a) Parametric Encoder	 (b) Decoder

Figure 5.1 Audio parametric coding

The encoder is composed of two parts, parameter extraction and parameter

encoding. The most complicated part is model-tesed parameter estimation. There

are several models underlying the compressions.

In the audio analysis, several different models are studied for parameter

estimation. In MPEG-4 parametric coding 1], the Harmonic and Individual Lines

plus Koise EHILN) tool is adopted for audio parametric coding. In this model, signal

is regarded as a combination of harmonic component Eone fundamental frepuency and

a couple of harmonic components), individual frequency lines and noise component.

It is claimed suitable for less complicated audio signals. An advanced audio signal

is modeled as 56, 94, 95

Audio=Sines + Transients + Noise

The sinusoidal waves are the most significant components in the audio signals.

The transients are broadband signals that do not have tonal peaks. They are also

referred to as attacks in audio compression. The last significant component is noise.

It is claimed this compression achieves the same perceptual effect at same bit rate

compared with most complicated perceptual coder MPEG-2 AAC. This model will

be revisited in some length in Section 5.7.
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5.2 MP3: A Typical Perceptual Audio Compression

MP3 EEMPEG-i Layer III) is a widely used audio compression algorithm. It has

become the standard in audio signal transmission and storage.

As a typical perceptual coding scheme, MP3 is composed of several blocks

TFigure 5.2). The time-domain waveform is transformed to the subtend domain

to remove the redundancy. The input signal also goes through psychoacoustic

analysis. The output is used to shape the quantization noise according to the masking

threshold curve. The final stage is bitstream formation.

PCM Input Time-Frequency

Filter Mapping

Quantization

Bit Control

Bitstream

Packing

Encoded

Bitstream

Puchoacoustic
Model Calculation

Figure 5.2 A typical audio perceptual compression block

5.2.1 Sub-band Filtering and MDCT

The MPEG-i layer III is an extension of the MPEG-1 layer I and II. In the layer I

and II , a polyphase filter bank is employed for time-frepuency mapping. The filter

tenk is composed of 32 filters, each with equal bandwidth. In Layer III, each output

channel is further subdivided into 18 tends via a windowed Modified Discrete Cosine

Transform EMDCT) for a better frepuency resolution.

A fine frepuency resolution is preferred for signal redundancy reduction, which

favors the long transform length selection. On the other hand, for the attack

signals Ttransients), quantization using long transform length tends to produce some

"spreading" effect in time domain. This makes the attack signal not so "crisp".

It is well known that the fine time resolution and frequency resolution can not be

achieved simultaneously. The transform length should be adaptive. For a stationary
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signal segment, long block is used. If an attack is present, short block should be

used instead. The decision to switch between long and short transform is tesed on

perceptual entropy first proposed in 47

Figure 5.3 Subbing filtering and MDT

5.2.2 Frequency Masking

Human psychoacoustic model plays a very important part in perceptual coding.

The psychoacoustic studies have made significant progress in characterizing human

auditory perception and several perceptual models have been developed and applied

in audio coding.

Both subjective experiments and studies show that human ears perceive the

audio signal within an interval of time. The perception procedure is analogous to

the short-time spectral analysis. Distinctive regions in the cochlea perceive different

frequency components. These frequency partitions are called critical bands.

People tend to "mix" the effect of the frepuency components in one critical

tend. The subjective response to the components out of the critical band is abruptly

changed. Empirical work shows the human audible frepuency range is divided into

23 27 critical bands, each with different bandwidths. The critical bandwidths

are increasing towards the high frequency end. The distance of 1 critical band is
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referred to as 1 bark, which is a nonlinear measure scale used in psychoacoustics. An

empirical formula to convert from Hz to Bark scale is

zEf) = 13 • arctaWE0.00076f) + 3.5 • arctaWNENE 	 )2] (Bark)
7 f5 00

a5.i)

Human frepuency masking takes place for inter-bands and intra-tends. Simply

put, a component Emasker) can "mask off" another component Emaskee), rendering it

less audible. Above some threshold value, the masker completely masks the maskee,

making it inaudible. The audibility masking value is called masking threMhold, which

is not only related to the loudness of the masker, but also to the "tonality" of the

masker. Psychoacoustic experiments reveal that the SMR ESignal-to-Mask Ratio) of

pure sinusoids is much larger than that of the white noise signal. In other words, a

noisy component is a better masker than a tonal component. If the compression noise

is completely under the "masking threshold curve" , it is inaudible. The

psychoacoustics output is used to control the puantization procedure.

Frequency (Hz)

Figure 5.4 Frequency masking effect

The psychoacoustics analysis in IP3 compression is a puite complicated

procedure. The Hann-windowed FFT complex spectrum of the input signal

is calculated. Then the unpredictability, which is a rough tonality measure is

calculated. The frequency bins are grouped into threshold calculation partitionM



69

which are approximately one-third Bark band scale. The signal energy in each

partition is summed-up. With the obtained unpredictability measure, the parti-

tioned energy is convolved with the spreading function which models the natural

excitation spreading along the basilar membrane in the cochlea. Subsepuently, the

actual energy threshold in one band is calculated and spread over all FFT lines.

Considering absolute thresholds, the final energy threshold of audibility is obtained.

Regrouping the threshold values into Mcale factor bandM Efrepuency bins in a same

tend share a same scale factor, resulting in an epual puantization resolution), and

the distortion threshold ratio is therefore obtained.

allowed distortion energy
r = 	

scale-factor band energy
E5. 2)

Figure 5.5 is a psychoacoustic analysis output in one granule. It is used in the

subsepuent puantization and puantization iteration processing.

Figure 5.5 Scale-factor tend distortion ratio

5.2.3 Temporal Masking

Temporal masking is the masking effect taking place in the time domain. HAS

system perceives the audio signal in an interval of time. The perceived effect is a

"sum-up" effect during the interval. The masker has both pre-echo and post-echo

effects in the time domain as depicted in Figure 5.6. The masker masks off the signal

whose londness is under the audibility threshold curve.
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Please note the masking effect is different in pre-masking and post-masking

regions. The pre-masking only lasts half a dozen milliseconds while post-masking

can extend to 50 300 milliseconds depending on the londness and duration of the

masker. Usually, only "pre-echo" effect is considered in compression.

(dB)
Maskee

60
Audibility

Threshold 40

20

-50	 0	 50	 100 150 0	 50 100 150 200	 T (ms)

Figure 5.6 Temporal masking effect

The temporal masking effect is studied in audio coding to address the so-called

"re-echo" problem. Although the compression noise in frepuency domain can be

well shaped by employing the frepuency masking property, it is difficult to control

the puantization noise in time domain. In the transform coding the quantization

noise spreads in the time domain within the transform block, which could result

in audible compression noise. This only happens at attack Etransient) signals, for

instance, a castanet, or the beginning when a key is stricken. Based on temporal

masking property, the common remedy is the selection of sufficiently short transform.

MPG adopts transform length switch to solve the problem. The transform in MPG is

adaptive to the signal property. Most of the time the signal is regarded as stationary.

Long transform length is used for fine frepuency resolution Ethus higher coding gain).

At the time of the signal abrupt change Etransients), a short transform length should

be used to prevent pre-echo artifacts. The switch decision depends on perceptual

entropy [47] and it must be gradual for the perfect reconstruction purpose 44
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5.2.4 Quantization and Distortion Control

The MDCT coefficients are small floating-point numbers. All is multiplied by a

glotel gain. Besides, every MDCT coefficient in one scale factor band is multiplied

by a common scale factor. The MP3 puantization procedure is composed of two

loops -- - inner loop for bit rate control and outer loop for distortion control.

• Inner Iteration Loop: After quantization, the coefficient values are Huffman-

coded. If the bit consumption is larger than the bits available, the global gain

is decreased by one step size so that puantization noise is increased and the

bit consumption is decreased. The operation repeats several times until the bit

consumption is less than the bits available.

• Outer Iteration, Loop: After the inner loops, the puantization noise is calculated

in each scale factor tend. If the noise is larger than the permitted distortion

obtained out of the psychoacoust c analysis, this scale factor in this band

is increased, resulting in finer puantization and less distortion. The re-

quantization goes on until the noise is completely masked off.

This quantization operation is puite complicated. Usually, it takes 12-17 loops

to finish it. It is possible that the rate and distortion repuirements might not be met

at the same time. The iteration should be terminated according to other conditions,

for example, after a given maximum loops. The coding bits needed are not the same

for different segments in an audio signal. To absorb bit consumption imbalance, "bit

reservoir" technipue is employed. The current frame is permitted to "borrow" bits

saved from past frames, if necessary.

Figure 5.7 depicts the flow chart of NIP compression. The real compression

operation is quite complicated and is composed of the block and window length

switches and other algorithms for effective stereo signal coding. For more detailed

description on MP3, refer to Ni0, 23, 65
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Figure 5.7 MPG encoding flow chart

5.3 Amplitude Modulation Data Hiding

The spread spectrum modulation can be extended to audio applications as well [28].

In this section, this technipue in audio data hiding is employed and some results are

presented.

5.3.1 Hiding and Extraction

The data hiding scheme is the direct extension of the SS modulation widely used in

image and video applications. A small valued PN sepuence is embedded in the
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original signal. Suppose one information bit is to be embedded in a coefficient

sepuence x. The embedding procedure used is deep embedding

xi+ wix i+
Xi -

CYO I , to embed bit value 1
ail , to embed bit value 0

E5.G)

where w is a random bipolar sepuence Ewi is either -i or +i) and a i is the

threshold ratio.

The watermark domain could be the subband domain or other transform

domains. It is advised that the watermark domain should facilitate distortion

control. If the subband domain is used, the same psychoacoustic model used in MPG

compression can be applied in the artifact control.

The output of the psychoacoustic model analysis is the energy threshold ratio

rib in one scale factor band. The amplitude threshold ratio should satisfy

a, <1 \ffi 	E5.4)

It is realized that the psychoacoustic model used in the compression is not quite

accurate in data hiding. The energy distortion control does not imply that artifact

is inaudible as long as the energy in the critical band is unchanged. Although people

tend to "mix" the frepuency components in one critical tend, distortion may still

be perceived. That means the amplitude modification must be sufficiently small. In

practice, the selection of the value ai should be smaller than IF,. In the sensitive

low frepuency range, ai should be further tuned.

Given the random seed, the decoder generates the random sepuence w. The

correlation detector output is

i- 	 N- 	 i-

V =	 iwi =	 xiwi 	 xin,	 E5.5)
i = o
	

i=o
	

i o
	

i = o

where ri is the received coefficient and ni is the channel noise. If V > 0, the

decision is bit value i; Otherwise bit value 0 is decided instead.
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It should be noted that the watermark domain selection is not limited to the

subtend decomposition used in MPG. The same principle could be applied in DFT

domain or other transform domains, for instance, the transforms used in MPEG-2

AAC or Dolby AC-G.

(a) Original Signal

(b) Signal After Embedding

(c) Watermark Signal

_i__ 	
0.2 	 0.4 	 0.6 	 0.9 	 1 	 1 2

Time (second)

Figure 5.8 Amplitude modulation data hiding

5.3.2 Experimental Results

Mono music clips sampled at 44.ikHz are used in the experiments. The information

bit is embedded into the MDCT coefficients from scale factor tends 6 to 18 which

correspond to frequency range from kHz to 10kHz. To decrease the artifacts, the

threshold ail is selected smaller than jib  in the same scale factor band. In the

sensitive bands from kHz to GkHz, ail is further tuned to reduce artifacts.

Given a received coefficient r, the normalized detection output is obtained as

< r, w >
V = E5.6) 

r

One information bit is embedded every granule a576 samples) of a mono audio

clip. Figure 5.9 depicts the different V distribution after embedding bit value 1 and

0. The message extraction may not be sufficiently reliable due to the host noise

interference. Some ECC code can be used to enhance its reliability.

—1

—2
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The main advantage of this scheme is that the psychoacoustic model can be

explicitly employed to control the artifact.

(a) Before 64kbits/s MP3 compression 	 (b) After 64kbits/s MP3 compression

Figure 5.9 Normalized detector output distribution, in amplitude modulation

5.4 Phase Modulation Data Hiding

In music signal perception, it is well known that human ears are more sensitive to the

amplitude than to the phase. The most significant components are signal frepuencies

and amplitudes. The signal amplitude spectrum contains more significant infor-

mation than the phase spectrum. Data can be hidden in phases with less artifacts

28

5.4.1 Hiding and Extraction

Bender et al. N7] proposed a scheme to hide information into the DFT phase. First,

the audio signal is divided into frames and Discrete Fourier Transform EDFT) is

applied to each frame. Second , the DFT phases in the first frame are modified while

the phases in the following frames are modified, respectively. Ievertheless, the phase

difference (relative phase) is kept unchanged. This procedure is repeated on the audio

stream.
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Although the phase is believed to be less significant perceptually, people are

still sensitive to the phase continuity between frames. In the above scheme, the frame

continuity is destroyed when the next bit is to be embedded. This may result in a beat

pattern. The abrupt phase change modifies the signal spectrum. Informal listening

tests show that small modifications in DFT phase are inaudible. This property is

exploited for data embedding.

To directly employ SS modulation in the phase domain is not successful as the

original host noise is puite large. The nonlinear schemes discussed in Chapter 4 are

more effective. For instance, the Quantization Index Modulation EQIM) Ni2

applied in phase domain. Figure 5.10 depicts the phase QIM signaling.

can be 

Figure 5.10 AIMin phase modulation 

In this scheme, the original DFT phase value Oi at one frepuency bin is replaced

by the nearest x point Eto hide bit 1) or the nearest o points (to hide bit 0) on the

unit circle. To embed one bit in a phase sepuence, deterministic patterns are defined

to represent bit values. For example, for a 4-coefficient sequence embedding, two

patterns similar to antipodal signaling can be defined:

Pattern	 A:
Pattern -A:

x o x o], represent bit value 1
o x o x_, represent bit value 0

E5.7)

To hide a bit, 0i is modified to comply with pattern A or -A.

Obviously, the DFT phase noise is much larger if the corresponding amplitude

is smaller. A simple suboptimal detector is a weighted minimum distance detector.

Denote the received DFT amplitude and phase as r and 0,, respectively. Find the
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nearest x and o points ail and Nib to i and construct two sepuences according to these

two patterns:

fileK2,/32_
= all 32 , "21

E5.8)

If E r i Ect i — o i ) 2 < E Fri 	—	 b, decision is bit value i; Otherwise bit value 0

is decided.

The distortion introduced is determined by the phase difference d between x

and o points. Smaller value of d is selected at the sensitive frepuency bands while

larger value of d may be used at high frequency bands. After embedding, the DFT

phases are fixed at x or o points. To introduce randomness, the value of O il + ail is

replaced by the x or o points where ail is a random shift value.

Figure 5.11 Normalized output distribution in phase modulation

5.4.2 Experimental Results

In the experiments, DFT length is 512 and the DFT phases from kHz to 8kHz

are changed. The value of di varies from 70/12 to 70/4. To measure the embedding

performance, the normalized correlation output is defined as

< r, u — 2 >
E5.9)   
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where w is the received phase sepuence and u and v are given by E5.8).

The above can be regarded as the normalized distance detector. The statistical

distribution of V is shown in Figure 5.11. Experimental results indicate that this

scheme is effective in oblivious applications. The audio puality is preserved at

relatively lower SNR than that in amplitude modulation. The main disadvantage is

that accurate distortion is difficult.

5.5 Noise Substitution Data Hiding

Message can also be hidden in the noisy component in audio signals [28, 3Gj

5.5.1 Perception of Noise Components

The audio signal I , ad long been regarded as combination of pine waves in the computer

music studies. X. Sierra 84 was among the first to introduce noise component in

computer music. Lack of noise component makes the music "unnatural" (A good

example of noise is the breathiness of a flute). Noise component is also perceptually

significant.

In the advanced audio analysis model, noise component is indispensable. In

the HILN model 1], signal is modeled as harmonic-Findividual sines+noise.

Another nfluential model is sines+transients+n ise [56 . Some studies argue

that for noise components, what is significant is not the fine frepuency structure in

noisy bands, but the noise energy shape. The noise energy shape can be described

by its DCT coefficients [i] or by a source filter model. A commonly used model is

the Linear Predictor ELP) filter.

Goodwin et al. 35 proposed the Epuivalent Rectangular Band aERB) noise

modeling. The authors claimed that the energy in ERB is more important than the

noise spectral shape. People do not resolve the fine frequency structure in a noisy

tend, only a "mixing effect" is felt.
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Recently, Levine et al. N56 and Aerma At al. N94 proposed a similar approach

Bark Band Noise Modeling. In noisy bark bands, only the noise energy gain is coded

and transmitted. The reconstructed noise spectrum is flat over the frepuency range

of each bark band. The authors claimed higher puality compared with DCT spectral

envelope and LPC-smoothed representations.

This idea can also be used in audio compression. Fine spectral structure in

noisy bands need not to be encoded. The noise energy gain is adequate. In MPG,

all the vIDCT coefficients are encoded, including the higher frequency ones. This

property can be employed to embed messages in these noisy bands. This is noise

substitution.

5.5.2 Experimental Results

The noisy components can be modified in message embedding, while the energy

gain in noisy bands is kept constant. There are many approaches meeting this

repuirement. One simplest method changes the sign of those coefficients x i 's in noisy

bands by a random pattern. The hiding procedure is

pi xi
—p i x i

to hide bit value 1
to hide bit value 0

E5.10 )

where p is a bipolar random sequence and p i is either —i or +i.

The information bit is extracted via correlation. Given a received sequence r,

the decoder output statistic is

i - 1

V 	 riPi•	 E5 , 1 )
i=o

If V > 0, the extracted bit value is i; Otherwise bit value 0 is decided.

To accurately distinguish the noisy bands from non-noisy ones is not an easy

job. Not all high frepuency coefficients are noisy, some may be the high frequency

components of a transient signal. It is reported that over 80% of the high frepuency

coefficients are non-edged". Several complicated algorithms are proposed in [81] to
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make a distinction between noisy and non-noisy bands. In experiments, for simplicity,

the frepuency bands over 5kHz are regarded as noisy. Informal listening test shows

it is a reasonable assumption.

This method could be applied in different watermark domains. It is advan-

tageous to match the compression decomposition. Because in compression

quantization procedure, a small value coefficient might be puantized to zero, nevertheless it

never inverts its sign. This sign conservative property promises its robustness against

the very compression.

The noise substitution is not robust against low-pass filtering, and it may

not survive the next-generation compression where noise substitution technipue is

used. Nevertheless it survives current perceptual compression schemes, such as

MPG. Experiments show those methods can reach around 20 — 60 bits/second

hiding capacity.

5.6 MP3 Compression and Encryption

Besides watermarking, encryption is also widely studied and deployed in multimedia

protection. It is often used in multimedia email, teleconference to prevent unauthorized

access to the multimedia contents. Multimedia signal scrambling is different from

the general data encryption that involves extensive computation N22, 63]. Two

important considerations are AfficiAncy and security. The former repuires real-time

operation of the decryption process. This is different from the data unscrambling

where off-line operation is acceptable. The security repuirement is not as rigorous as

that in data encryption. Feasible solutions are trade-offs considering these factors.

Current media encryption algorithms fall into two categories. One integrates

scrambling with source coding, viz., to scramble media content before quantization

and coding. The other scrambles compressed bitstream. Usually, it is desired that

the encrypted output is bitstream syntax compatible. Some algorithms have been
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proposed and applied in video and image scenarios N68, 83]. In this section the

encryption schemes 32 in audio signals are discussed.

5.6.1 Encryption Integrated with Source Coding

In this approach, the encryption is performed before puantization and encoding. A

widely used signal scrambling method is time-frepuency permutation 17].

Encryption (at Encoder Side)

Figure 5.12 Time-frepuency permutation

Figure 5.12 shows the block diagram. PEz) is a permutation function and its

inverse function is P EEz)-1  . Its effectiveness has been proved in practice and can be

applied directly in the MPG MDCT domain. The side effect is that the random

permutation changes the coefficient distribution property and renders the Huffman

table non-optimal. The scrambling also destroys the correlation between contiguous

granules. These result in lower compression rate.

There does not exist an easy solution. A possible remedy to enhance Huffman

coding efficiency is to divide the frequency range into several tends, only permute

coefficients within a band. It keeps the coefficient distribution property to some

degree at the price of compromised security.

In addition, for a stereo signal, the coefficients in one granule can be further

permuted between two channels. For most music materials, it is reported that the

left and right channels in a stereo source have little correlation N411]. Thus, swapping   

(z )

G (z)

G 2 ( )                                

	 G(z) 

Decryption (at Decoder Side)
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the data in these channels completely destroys the content. This increases encoding

Edecoding) latency and memory repuirement.

L- I R- I 	 L-2 R-2 L-2 Len R-n                

(A) Original Granule Order                              

R-n R-2 L-2 R-i L- I L-2 •

(B) Granule Order After Shuffle

Figure 5.13 Stereo signal granule shuffle

5.6.2 MP3 Bitstream Syntax

In MPG compression, the sign and amplitude of MP3 MDCT coefficients are coded

separately. The total coefficients are divided into 3 regions: big-value region, small-

value region and zero region. The big value region at low frepuency end is further

divided into 3 sub-regions where different Huffman tables are used. The small-value

region is composed of coefficient values of +i, —i or 0. Each codeword represents a

pairs of contiguous coefficients in the big-value region or 4 coefficients Equadruple) in

the small-value region. The remaining coefficients are implicitly set to zeros (Figure

5.14).

1	 1	 I	 I	 I I ••• I   	Frquency
\_____\,..____-- ss___.sv________,, •-„.„...., .____\,__, \_____\,_. bin

sub-region o 	 sub-region I 	 sub-region 2 small-values zero-value
\  	 ..- 	 region 	 region

big-value region

Figure 5.14 Partitioning of MDCT coefficients
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An MP3 frame is an independent decoding unit. Its header() specifies

important parameters for decoding operation, bit rate, sampling frepuency, coding

mode, etc. The encryption should not change these fields.

audio_data()

main_data_begin

for (gr=O; gr<2; gr++)
for (ch=0; ch<nch; ch++)

part2_3_length[gr] [chi]
big_values[gr] [chi]
global_gain[gr][ch]
scalefac_compress[gr][ch]
window_switching_flag[gr][ch]
if(window_switching_flag[gr][ch])

block_type[gr][ch]
mixed_block_flag[gr][ch]
for (region=0; region<2; region++) {

table_select[gr] [ch] [region]
for (window=0; window<3; window++)

subblock_gain[gr] [chi] [region]
} else {

for (region=0; region<3; region++)
table_select[gr] [ch] [region]

regionO_count[gr][ch]
regionl_count[gr][ch]

1
preflag[gr][ch]
scalefac_scale[gr][ch]
count 1 table select[gr] [ch]

1 
ma n data()

Figure 5.15 Side information in MPH syntax

The audio_dataO field provides the decoding control parameters and MDT

data Emain-dataE)). The first half of audio_data() specifies the side information

and main_dataO() is composed of the codewords and signs of the MDCT coefficients

EFigure 5.15).



84

Although the length of a frame is constant at a given bit rate, bit consumption

for samples in one granule E576 samples) is variable. The "bit reservoir" technipue

permits the current frame to "borrow" bits saved from past frames to absorb the

imbalance. The current frame data may locate in previous frames. The location

where the main_dataE) begins is determined by main_data_begin, a 9-bit offset value.

5.6.3 Encryption in Compressed Domain

In this section, discussion is focused on encryption directly on an MPG bitstream. To

avoid confusing the decoder, the encrypted bitstream should comply with the MPG

bitstream syntax. According to different sensitivity repuirements, three different

protection levels are provided: i) slight protection, where the encrypted bitstream

presents a satisfactory music puality for a casual listener, although not good enough

for Hi-Fi reproduction. This can be used to generate different music versions for

casual users and professionals; 2) moderatA protAction, where the scrambled content

is meaningful and the main music features are kept with obvious degradation. This

can be used for customer evaluation. After test listening, customers could pay and

obtain a decryption key to recover the puality. G) maximum protAction, where the

music content is completely destroyed, rendering the MP3 bitstream meaningless.

To be MPG syntax compatible, the bitstream can not be simply scrambled, since this

generates an invalid bitstream and confuses decoder. And the file size should be kept

unchanged.

The selected Huffman table should not be changed. The minimum unit that

can be manipulated is a codeword Eof a pair of coefficients in the big-value region or

quadruple of 4 coefficients in the small-value region). The encryption can work at the

following levels: codeword level, sub-region level and granule level. The scrambling

is one or combination of these strategies.
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At the codeword level, because the coefficient amplitudes and signs are

separately encoded, the codes can be permuted and Eor) the signs be flipped by

a random pattern. While sign flipping can happen on any non-zero coefficient, the

permutation should be limited to codes using the same Huffman table for syntax

compatibility. For the coefficients whose amplitudes are greater than 15, the linbitM

field can be scrambled without any constraints. At the sub-region level, the sub-

regions can be permuted. Respective permutation is also repuired for related side

information parameters, such as code counts and Huffman table index. At the

granule level, the granules inside a frame can be reordered randomly. The corre-

sponding parameters, such as part2_3_length, etc. should be shuffled for the integrity

of the granule. For different applications, special attention should be taken to meet

the degradation repuirements.

Encryption with Slight Distortion

In the MPG time-frequency decomposition, a fine frepuency resolution is applied

at low and high frepuency bands. At high frepuency end, it is not quite necessary.

That gives us some room for manipulation. The noise perception property should

be used in scrambling. For example, the signs of the MDCT coefficients over 5kHz

can be flipped. The frepuency shape in a critical band is unchanged. In addition,

these coefficients within one scale factor band can be permuted as the noise energy

gain is still kept. The modification is almost transparent for a casual listener. If

more distortion is permitted, the lower frepuency coefficients can even be permuted

or sign-flipping. This operation can be further tuned for specific repuirements.

Encryption with Moderate Degradation

It is believed the frequency amplitude is more important than phase in audio

signal. However, sign-flipping of the non-noisy coefficients introduces obvious degra-

dation. The permutation and sign-flipping can be used in this case. To scramble

medium frepuency coefficients introduces obvious degradation. The audio signal
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spectrum has a wide dynamic range. To keep features of music clips, the large value

coefficients should be skipped, and only the relatively smaller ones are manipulated.

Experiments reveal that the components under GkHz are perceptually significant and

should not be manipulated much.

Encryption with Maximum Protection

To provide maximum protection, it is desired to completely destroy the audio

content while keeping the bitstream syntax. Sign-flipping and codeword permutation

can be employed at codeword level. The order can be shuffled at the sub-region

level. The side information parameters, such as Huffman table index table_MelAct,

codeword count region_count EFigure 5.15) etc. should also be permuted accordingly.

The permutation can also happen at higher level. For instance, in a stereo signal,

two granules in each channel can be shuffled in one ha me. To abide by the syntax,

the order of the side information parameters should be changed respectively.

5.7 Music Perception and Audio Model Analysis

In this section, the music perception and audio parametric coding is revisited.

Discussion is focused on audio spectral model analysis and how music phenomenon

is explained and described by the model.

5.7.1 Audio Signal Models

In parametric coding, sound signal is analyzed and a parametric representation is

constructed. Different models can be used to describe a sound signal. There are three

kinds of models to describe the sound signal. One is abstract model. For example,

FM modulation 97 approach represents sound signal as

yEt) = AMinEcEt) + [I MiWEMEt))1, E5.12)

where A is the peak amplitude, c(t) is varying carrier frepuency, I is modulation

index and illEt) is the modulated signal. A general audio waveform is approximated
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by an FM modulated signal, although this model does not have apparent physical

interpretation.

PhyMical model is tesed on source modeling. The parametric representation

describes the mechanical and acoustic behavior of a music instrument. The

parameters are different for different instruments. Some instrument physical models

have been studied extensively 88

A very powerful tool in audio analysis is based on spectrum model. Human

psychoacoustic studies reveal the signal short time spectrum is extremely important

for human perception procedure. The perceptual difference is negligible as long as the

short time spectrum of the reconstructed signal is sufficiently close to the spectrum

of the original signal.

Some models have been developed in signal spectrum "description" . The model

individual sineM+harmonic sines+noise is used in N'IPEG-4 parametric coding I In

this model, spectrum is described by some individual sines, harmonic sines and noise

component. Some algorithms just describe signals by harmonic components and

noisy component N43

Much of the computer music generation is based on the spectrum model. Music

has long been regarded as combination of sines. Sierra 84] is among the first to

introduce noisA component in it. All the above audio analysis algorithms model music

signal as a combination of deterministic part and stochastic parts. The following part

describes the influential model proposed i 56, 95

5.7.2 Spectral Model: Transient+Sines+Noise

The most significant part perceptually is the sines in a piece of music. Earlier music

models decompose music into sinusoids and stochastic component noise. Model

analysis extracts the time-varying parameters of amplitude, phase, and frepuency to

describe sinusoids.
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Audio analysis is usually done frame by frame. In each frame, most perceptually

significant uusually those with larger amplitude) sines are picked up and parameters

are estimated to describe them. These parameters include amplitude, frequency

and initial phase. Therefore, suppose in the lth frame, R 1 sinusoids are picked and

extracted. The signal is thus represented as a combination of these sines.

sum) E Ad icon [TnHo + 	 E5.13)
r=1

The rth sinusoid is described by a triple

It is natural to find these parameters are different from frame to frame. Further

studies reveal that although those sines are changing, most sines in the current frame

are close to one of those sines in the next frame. So it is reasonable to assume the

sines in the next frame are the continuation of the sines in the previous frame. The

sinusoids are not interpreted as individual sines, but as a sinusoid evolving slowly

from frame to frame. The evolution of the evolving sine is called a tAack.
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Figure 5.16 Track of sinusoid
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Further analysis demonstrates it is reasonable to assume the frequency and

amplitude of those sinusoids are evolving linearly. What people feel is the changing

sinusoids. In a track, the initial phase is not significant and not encoded. At decoder

side, an arbitrary phase is used. Humans may perceive the phase discontinuity at

frame borders. Figure 5.16 shows the evolution of a typical sinusoids. It is seen

that the track gives birth in Frame i, and "dies" in Frame 7. Sinusoidal modeling is

not sufficient to represent audio signals as this model can not track non-stationary

Erapid-changing) signals. The rapid-changing signals are referred as "attacks" in the

previous discussion.

In a clip of music generated by an instrument, the phenomenon usually

match the pattern Attack-Decay-Sustain-Release [45 . Figure 5.17 shows the music

waveform envelope when a key is stricken.

Amplitude

Attack Decay
	

Sustain
	

Release

Figure 5.17 Attack-Decay-Sustain-Release pattern

The attack phase which is a rapid-changing part shows non-stationary property

of the signal. It is the most difficult part for coding. In MP3, lots of complexity is

involved dealing with attacks. In audio model analysis, analysis and experimental

studies proved it is not appropriate to model the attack as the sum of sinusoids.

Basically, transients are broadband signals that can not be well represented by

sinusoids.
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After subtracting the sum of sinusoids from the original signal, the error residue

is analyzed to determine whether transients are present. If so, the attack is described

by transform coefficients N56] or by other methods 94 . . Subsequently, the remaining

parts are stochastic which can be modeled using an appropriate noise models NG4,

35, 56, 941. In Section 5.5, noise perception is covered. The audio parameters are

perceptually significant, to be robust against the parametric compression, data hiding

should modify these parameters in a transparent way. It is a very challenging task.



CHAPTER 6

CONCLUDING REMARKS AND FUTURE RESEARCH

In this research work, some watermarking topics have been covered. The detection

in data hiding is studied and new algorithms are proposed. Much of the focus is

on audio data hiding and human psychoacoustic model. The effectiveness of the

algorithms proposed has been demonstrated in the analytical work and applications.

It is important to achieve watermark compression resilience while meeting

transparency repuirement. Compression reduces the redundancy in the signal

without losing perceptual value Etransparency). Its function is to remove the percep-

tually insignificant components, while the steganography embeds some perceptually

insignificant information. Note that it does not mean information can not be

embedded in the perceptual significant components. Nevertheless, watermark should

be insignificant to meet the transparency repuirements. Obviously ; compression and

steganography are in a kind of "arms race" N52]. Petitcolas et al. [G] pointed out,

steganography is almost impossible to survive ideal compression.

The above conclusion is easy to understand. In a signal space, perceptually

epual signal points should be compressed to one point by an ideal compression.

If two different points in the space are of same perceptual value, that implies the

compression is not efficient enough Ethus not ideal). Ideal compression does not

exist in reality. It can be concluded that a more efficient compression scheme makes

data hiding more difficult. Some researchers suggest to integrate watermarking

with compression design. This makes the watermarking robust to this compression,

although not guarantee of its survival against other compression algorithms. Wang At

al. presented a watermarking scheme in their proposal to JPEG 2000 _96 . Recently,

Cognicity Corp. has already integrated their hiding technology AudioKey with

Lucent Perceptual Audio Coder EPAC).
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It is desired to take advantage of the compression in data hiding 7 . Some

factors addressed in compression such as puantization and coding, need not to be

considered in steganography. However , today's compression robust scheme may not

survive the more advanced compression of the next generation.

In order to verify multimedia copyright ownership, watermarking must be

compression and tamper resistant. In the SS modulation scheme, the decoder has

a very rigorous repuirement on synchronization. The watermark verification fails

if the synchronization can not be kept. In image and video applications, water-

marking should be robust against geometric distortions, rotation, and translation.

In audio applications, it should survive the more advanced parametric compression

and model-tesed compression. An even more challenging task is to be robust against

timescaie modification and pitch-scale modification.

Many watermarking problems are still unresolved. The ongoing research work

will focus on audio data hiding, especially on study of the hiding schemes resistant

to MPEG-4 compression. Future research topic is the design of compression with

content protection features. A more accurate psychoacoustic model should be

developed for steganography applications based on music signal perception and

understanding.



REFERENCES

1. ISO/IEC FDIS 14496-G Sec 2. "Information technology-Coding of audio-visual
objects, Part 3:Audio, Section 2: Parametric audio coding". 1999.

2. Masoud Aighoniemy and A. H. Tewfik. "Progressive puantized projection
watermarking scheme". 	 Proc. 7th ACM International Multimedia
ConferAncA, pages 295-298, Iov. 1999.

3. Ross J. Anderson and Fabien A. P. Petitcolas. 	 "On the limits of
steganography". IEEE Trans. Journal of Selected Areas in Commu-
nications, 16E4):474-481, May 1998.

4. Michael Arnold and Setestian Kanka. "MP3 robust audio watermarking" .
Proc. DFG V1ID1I Watermarking Workshop's, Erlangen, Germany,
1999.

5. M Barni, F. Bartolini, and F. Rigacci. "Statistical modelling of full frame
dct coefficients". Proc. EUSIPCO 98, 9th European Signal Processing
ConfArencA, 6(8-11):1512-1516 Sept. 1998.

6. P. Bassia and I. Pitas. "Robust audio watermarking in the time domain". Proc.
EUSIPCO'98, 9th European Signal ProcAssing Conference, pages 25-28,

Sept. 1998.

7. C. Bender, D. Gruhi, I. Morimoto, and A. Lu. "Technipue for data hiding"
IBM System Journal, 35aG-4):313-336,1996.

8. J A. Bloom, I. J. Cox, T. Kalker J-P. Linnartz, M. L. Miller, and B. Traw.
"Copy protection for DAD video" . Proc. IEEE Special IssuA on IdAntifi-
cation and Protection of Multimedia Information, 87E7):1267-1276,1999.

9. L. Boney, A. H. Tewfik, and K. N. Hamdy. "Digital watermarks for
audio signals" . Proc. IEEE International ConfArence on Multimedia
Computing and Systems, pages 473-480, June 1996.

10. Karlheinz Brandenburg and Gerhard Stoll. "ISO-MPEG-1 Audio: A generic
standard for coding of high-quantity digital audio". Journal Audio
Engeering Society, 42(10):780-792, Oct. 1994.

11. B. Chen and G. C. Cornell. "Digital watermarking and information
embedding using dither modulation". Proc. of IEEE 2nd Workshop on
MultimAdia Signal Processing'98, pages 273-278 Dec. 1998.

12. B. Chen and G. C. Cornell. "Dither modulation: A new approach to digital
watermarking and information embedding". Proc. of SPICE: SAcurity and
WatArmarking of Multimedia Contents, 3657:344-353, Jan. 1999.

93



94

13. Digimarc Corp., Macrovision Corp., and Philips Research. "The Millennium
Group: DAD copy-protection system, A Technical overview". Aug. 1999.

14. I. Cox and M. L. Miller. "A review of watermarking and the importance of
perceptual modeling". Proceeding of Electronic Imaging, Feb. 1997.

15. I. J. Cox, J. Kilian, T. Leighton, and T. Shainoon. "Secure spread spectrum
watermarking for images, audio, and video". NEC Research Technical
Report, 10,1995.

16. I. J. Cox, Joe Kilian, Tom Leighton, and Talal Shamoon. "A Secure, robust
watermark for multimedia". Workshop on Information Hiding'96, May
1996

17. Charles D. Creusere and Sanjit K. Mitra. "Efficient image scrambling using
polyphase filter tenks". Proc. IGIP'94, 2:81-85, 1994.

18. B. L. Yeo D. Benham, N. Memon and M. Yeung. "Fast watermarking of DCT-
based compressed images". Proc. International Conference on Image
SciAnce, Systems, and Technology (CISST'97), Las Vagas, pages 243—
253, June 1997.

19 grant A. Davidson, Louis D. Fielder, and Brian D. Link and.
"Parametric hit allocation in a perceptual audio coder".
http://www.dolby.com/tech/highqual.html.

20. J. F. Delaigel, D. De Aleeschouwer, and B. Macp. "Low cost perceptive digital
picture watermarking method". Proc. ECMAST'97, Milan, Italy, pages
153-167, May 1997.

21. Geert Depovere, Ton Kalker, and Jean-Paul Linnartz. "Improved watermark
detection reliability using filtering before correlation". Proc. IGIP'94,
i:430-434, 1998.

22. C. Diffie and M. E. Hellman. "New directions in cryptography". IEEE Trans.
on Information ThAory, 22:644-654, Nov. 1976.

23. E. Eberlein, H. Popp, B. Grill, and J. Herre. "Layer III a flexible coding
standard". Audio EnginAering Society preprint 3498, 9th ConvAntion,
Berlin, GArmany, March 1993.

24. M. Kutter F. Jordan and T. Ebrahimi. "Proposal of a watermarking technipue
for hiding/retrieving data in compressed and decompressed video".
ISO/IEC Doc. JTC1/SC29/1/VG11/MPEG97/M2281, June 1997.

25. J. Fridrich. "Image watermarking for tamper detection". Proc. ICIP'98, 2:404—
408, Oct. 1998.



95

26. G. Friedman. "The trustworthy digital camera: Restoring credibility to the
photographicimage . IEEE Trans. Consumer ElActronics, 39:905-910,

Nov. 1993.

27. Litao Gang, Ali N. Akansu, and Mahalingam Ramkumar. "Periodic signaling
scheme in oblivious data hiding". Proc. 34th Asilomar Conference on
Signals, Systems, and ComputArs 2000, pages 1851-1855, Iovember
2000.

28. Litao Gang, Ali N. Akansu, and Mahalingam Ramkumar. "MPG resistant
oblivious steganography". Proc. ICASSP'2001, pages 0000-0000, May
2001

29. Litao Gang, Ali N. Akansu, and Mahalingam Ramkumar. "Ionlinear
modulation in oblivious steganography". Accepted in Proc. IEEE-
ER UASIPNon-linear Signal and Image Processing'2001 pages 0000--
0000, June 2001.

30. Litao Gang, Ali N. Akansu, and Mahalingam Ramkumar. "Performance

	

analysis of spread spectrum modulation in data hiding". 	 Proc.
SPIE'2001, California, pages 0000-0000, July 2001.

31. Litao Gang, Ali N. Akansu, and Mahalingam Ramkumar. "Set partitioning
in oblivious data hiding". Pro. ICASSP'2001, pages 0000-0000 May
2001

32. Litao Gang, Ali N. Akansu, Mahalingam Ramkumar, and Xuelei Xie. "On-line
music protection and MP3 compression". Proc. International Symposium
on Intelligent Signal Informaton Multimedia Processing'2001, Hongkong,
pages 13-16, May 2001.

33. Litao Gang, Ali I. Akansu, and Taha H. Sencar. "Transform selection in
steganography". Proc. Annual Conference on Information Sciences and
Systems, Maryland, March 2001.

34. M. Goodwin. "Residual modeling in music analysis-synthesis". Proc.
ICASSP'96, 1996.

35. M. Goodwin. "Adaptive signal models: Theory, algorithms, and audio appli-
cations". Ph.D. thesis, University of California, Berkley, 1997.

36. F. Hartung and B. Girod. "Digital watermarking of raw and compressed
video". Proc. EuropAan EOS/SPIE Symposium on Advanced Imaging
and Network Technologies, Berlin, Germany, Oct. 1996.

37. F. Hartung and B. Girod. "Fast public-key watermarking of compressed video".
Proc. IEEE ICIP'97, Santa Barbara, CA, Oct. 1997.



96

38. F. Hartung and B. Girod. "Digital watermarking of uncompressed and
compressed video". 	 Trans. of Signal Processing 	  Special Issue
on Copyright Protection and Access Control for Multimedia SArvicAs,
66EG):283-301, 1998.

39. F. Hartung and B. Girod. "Watermarking of uncompressed and compressed
video". Signal Processing, 66EG):283-301, May 1998.

40. C. C. Heistrom. 	 "Protebility and Stochastic Processes for Engineers".
Macmillan, New YorA, 1991.

41. Jurgen Herre, Ernst Eberlein, and Karlheinz Brandenburg. "Combined stereo
coding". AES preprint 3369, 93rd Convention, Calif USA, Oct. 1992.

42. Mikio Ikeda, Kazuya Takeda, and Fumitada Itakura. "Audio data hiding by
use of band-limited random sequences". Proc. ICASSP'99, 4:231S-2318,
1999.

43. Rafael Angel Irizarry. 	 "Statistics and, Music: Fitting a Local Harmonic
Model to Music Sound. Signals". PhD. Thesis, University of California,
Berkeley, 1998.

44. ISO/IEC. "IS 11172-G: Coding of moving pictures and associated audio for
digital storage media at up to about 1.SMbits/s". ISO/IEC, 1993.

45. Crystal Semiconductor Corp. Jim Heckroth. "Tutorial on MIDI and music
synthesis". http://hom,e.earthlinA.net/ mma/Tutorial/Tutor.htm.

46. Neil F. Johnson and Sushil Jajedia. "Steganalysis of images created using
current steganography software".

47. J. D. Johnston. "Transform coding of audio signals using perceptual noise
criteria". IEEE Trans. Journal of SelActed Areas in Communications,
6:314-323, Feb. 1988.

48. Steven M. Kay. "Fundamentals of Statistical Signal Processing" VolumA 2,
Prentice-Hall PTR, 1993.

49. D. Kundur and D. Hatzinakos. "Digital watermarking using multiresolution
wavelet decomposition". Proc. ICASP'98, S:2969-2972, May 1998.

50. M. Kutter, F. Jordan, and F. Bossen. "Digital signature of color images using
amplitude modulation". Proc. Electronic Image'97, San JosA, CA, May
1997

51. M. Kutter, F. Jordan, and F. Bossen. "Digital signature of color images using
amplitude modulation". Journal of ElActronic Imaging, 7E2):326-332,
April 1998.



97

52. Jack Lacy, Schuyler R. Auackenbush, Amy R. Reibman, and James H. Snyder.
"Intellectual property protection systems and digital watermarking".
Optics ExprAss, 3Ei2), Dec. 1998.

53. C. Langelaar, J. C. A. yen der Lubbe, and R. L. Lagendijk. "Robust labeling
methods for copy protection of images". Proc. ElActronic Irnaging'97,
San Jose, CA. 3022 . 298-309, Feb. 1997.

54. G C. Langelaar, J. C. A. van der Lubbe, and J. Biemond. "Copy protection
for multimedia data tesed on labeling technipues". Proc. 7th Symposium
IWformation Theory in Benelux, Enschede, The Netherlands, May 1996.

55. Sang-Kwang Lee and Yo-Sung Ho. "Digital audio watermarking in the
cepstrum domain" . IEEE Trans. Consumer ElActronics, 46EG):334-335,
Aug. 2000.

56. S. Levine. "Audio representations for data compression and compressed domain
processing" . Ph.D. thesis, StanfoAd University, 1998.

57. Eug e T. Lin and Edward J. Delp. "A review of fragile image watermark".
Proc. ACM Multimedia, IVPaltimcdia and Content Security Workshop,
pages 2S-29, Oct. 1999.

. Marisour and A. Tewfik. "Audio watermarking by time-scale modification".
Proc. ICASSP'2000, May 2001.

59. M. L. Miller, I. J. Cox, and J. A. Bloom. "Catermarking in the real world:
An application to DAD". Proc. 33rd Asilomar Conference on Signals,
SystAms, and ComputArs, pages 1496-1S02, 1999.

60. Nourishing Morimoto. "Digital watermarking technology with practical appli-
cations". Informing Science (Special Issue on MultimAdia Informing
Technologies), 2(4):107-111, 1999.

61. Pierre Moulin and Joseph A. O'Sullivan. "Information-theoretic analysis of
watermarking". Proc. ICASSP'2000, Istanbul, S:3630-3633, Jun. 2000.

62. N. Nikolaidis and I. Pitas. "Copyright protection of images using robust digital
signatures". Proc. ICASSP'96, Atlanta, GA, 4:2168-2171, May 1996.

63. National Institute of Standards and Technology ENIST). "FIPS Publication
46-i: Data Encryption Standard" . Jan. 1998.

64. A. A. Oppenheim and J. S. Lim. "The importance of phase in signals". IEEE
processing, 69ES):Si2-S41, May 1981.

6S. Davis Pan.	 "A tutorial on MPEG/audio compression". IEEE Trans.
Multimedia Journal. 199S.



98

66. S. Pankanti and M. Yeung. "Aerification watermarks on fingerprint recog-
nition and retrieval". Proc. ISCT/SPIE ConferAnce on Security and
WatArmarking of Multimedia Contents, pages 67-78, Jan. 1999.

67. A. Piva, M. Barni, E. Bartoloni, and A. Cappellini. "DCT-based watermarking
recovering without resorting to the uncorrupted original image". Proc.
ICIP'97, Santa Barbara, CA, i:520-523,1997.

68. Lintian Qiao and Kiara Nahrstedt. "A new algorithm for MPEG video
encryption". 	 Proc. International ConferencA on Imaging SciAncA,
SystAms, and Technology (c1ISST'97), Las Vegas, pages 21-29,1997.

69. Lintian Qiao and Kiara Iahrstedt. "Ion-invertible watermarking methods
for MPEG encoded audio". Proc. SPIE ConferAnce on Security and
WatArmarking of Multimedia Contents, 3657:194-202, Jan. 1999.

70. 1. Ramkumar and A. N. Akansu. "A robust scheme for oblivious detection
of watermarks/data hiding in still images". Proc. SPIE, Symposium on
Voice, Video and Data Communication, 3528:474-481, Nov. 1998.

71. M. Ramkumar and A. N. Akansu. "Self-noise suppression schemes for blind
image steganographv". SPIE SpAcial Session on Image SAcurity, 384S,
Sept. 1999.

72. M. Ramkumar and A. N. Akaiisu. "Some design issues for robust data hiding
systems". Proc. 33rd Asilomar ConferAncA on Signals, SystAms, and
Computers, Oct. 1999.

73. M. Ramkumar, A. N. Akansu, and A. A. Alatan. "A robust data hiding scheme
for digital images using DAFT". Proc. ICIP'97, II:211-215, Oct. 1999.

74. M. Ramkumar, A. N. Akansu, and A. A. Alatan. "On the choice of transforms
for data hiding in compressed video". Proc. ICASSP'99, AI:3049-3052,
March 1999.

75. Aaha1ingam Ramkumar. "Data Hiding in Multimedia - Theory and Appli-
cations". Ph.D. Thesis, New Jersey Institute of Technology, Jan. 2000.

76. R. L. Rivest, A. Shamir, and L. M. Adleman. "A method for obtaining digital
signatures and public-key cryptosystems". Communications of the ACM,
21E2):120-126, Feb. 1978.

77. J. J. K. Ruanaidh, C. J. Dowling, and F. M. Boland. "Phase watermarking
of digital images". Proc. ICIP'97, pages 239-242, Sept. 1996.

78. J. J. K. Ruanaidh and T. Pun. "Rotation, scale and translation invariant
spread spectrum digital image watermarking". Signal Processing,
66EG):303-317, May 1998.



99

79. A. Said and C. A. Pearlman. "A new fast and ellicient implementation of
an image codec tesed on set partitioning in hierarchical trees". IEEE
Trans. Circuits and SystAms for Video Technology, 6EG):243-250, June
1996.

80. B. Schneier. "Applied Cryptography". New York: Wiley, 1996.

81. D. Schulz. "Improving audio codecs by noise substitution . Journal Audio
EnginAAriWg Society., 44E7/8):593-598, Jul./Aug. 1996.

82. . Shapiro. "Embedded image coding using zerotrees of wavelet coeffi-
cients". IEEE Trans. Signal ProcAssing, 41Ei2):3445-3462,1993.

83. Changgui Shi and Bharat Bhargava. 	 "A fast MPEG video encryption
algorithm". Proc. ACM MultimAdia '98, Bristol, UK, pages 81-88,1998.

84. X. Sierra and J. Smith. "Musical sound modeling with sinusoids plus noise".
Webpage http://www.iva.upf.es/ sums/.

85. D. Stinson. "Cryptography Theory and Practice". Boca Raton, FL: CRC
Press, 1995.

86. J. K. Su and B. Girod. "Power-spectrum condition for energy-efficient water-
marking". Proc. ICIP'99, Oct. 1999.

87. J. K. Su, F. Hartung, and B. Girod. "A channel model for a watermark
attack". 	 Proc. SPIE, Security and Watermarking of MultimAdia
Contents, Electronic Imaging '99, San Jose, CA, 3657:159-170, Jan.
1999

88. C. R. Sullivan. "Extending the Karplus-Strong filter to synthesize electric
guitar timbres with distortion and feedback". ComputAr Music Journal,
14:G, 26 37.

89. M. Swanson, B. Zhu, and A. H. Tewfik. "Data hiding for video- -video". Proc.
ICIP'99, Santa Barbara, CA, 2:676-679, Oct. 1997.

90. M. D. Swanson, B. Zhu, and A. H. Tewfik. "Robust data hiding for images".
Proc. IEEE Digital Signal ProcAssing Workshop, pages 37-40, Sept.
1996.

91.I. D. Swanson, B. Zhu, and A. H. Tewfik. "Multiresolution scene-based
video watermarking using perceptual models". IEEE Trans. Journal
on Selected Area in Communications, 16E4):540-550, May 1998.

92. M. D. Swanson, Bin Zhu, and A. H. Tewfik. "Transparent robust image water-
marking". Proc. ICIP'96, Sept. 1996.



100

93. R. G. van Schyndel, A. Z. Tirkel, and C. F. Osborne. "A digital watermark".
Proc. ICIP'96, 2:86-90, 1994.

94. T. Aerma. "A perceptually based audio signal model with application to
scalable audio compression". Ph.D. ThAsis, Stanford University, 2000.

95. T. Aerma, S. Levine, and T. Meng. "Transient modeling synthesis: a flexible
transient analysis synthesis tool for transient signals". Proc. of Interna-
tional Computer Music ConferencA, pages 164-167, Sept. 1997.

96. Houng-Jyh Cang, Yi-Liang Bao, C-C. Kuo, and Homer H. Chen. "Multi-
threshold wavelet codec EEMTCC), Document Ko. WG1N805, Geneva,
Switzerland". http://costard. Esc. du/ cckuo/, March 1998.

97. B. Winduratna. "FM analysis/synthesis based audio coding" AES 104th
Convention, Preprint 6966„ May 1998.

98. R. B. Wolfgang and E. J. Delp. "A watermark for digital images". Proc.
ICIP'98, pages 219-222, Sept. 1996.

99. RayMond B. Wolfgang, Christine I. Podilchuk, and Edward J. Delp.
"Perceptual watermarks for digital images and video". Proceedings of
IEEE, 7:1108-1126, July 1999.

100. M. Wu and B. Liu. "Watermarking for image authentication". Proc. ICIP'96,
Chicago, 1998.

101. X. Xia, C. Boncelet, and G. Arced. "A multiresolution watermark for digital
images". Proc. ICIP'97, Santa Barbara, CA, i:548-551, Oct. 1997.

102. M. Yeung and F. Mintzer. "Invisible watermarking for image verification".
Journal of ElActronic Imaging, 7:578-591, July 1998.

103. C. Zhu, Z. Xiong, and Y. Q. Zhang. "Multiresolution watermarking for images
and video: a unilied approach". Proc. ICIP'96, Chicago, Illinois, i:465—
468,1998.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract Page (1 of 2)
	Abstract Page (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication Page
	Acknowledgment Page
	Table Of Contents (1 of 4)
	Table Of Contents (2 of 4)
	Table Of Contents (3 of 4)
	Table Of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Current Techniques And Status
	Chapter 3: Spread Spectrum Modulation In Steganography
	Chapter 4: NonLinear Modulation In Oblivious Steganography
	Chapter 5: Content Protection In Audio Signals
	Chapter 6: Concluding Remarks And Future Research
	References

	List Of Tables
	List Of Figures (1 of 2)
	List Of Figures (2 of 2)




