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ABSTRACT

ON THE DATA HIDING THEORY AND MULTIMEDIA CONTENT
SECURITY APPLICATIONS

by
Litao Gang

This dissertation is a comprehensive study of digital steganography for multimedia
content protection.  With the increasing development of Internet technology,
protection and enforcement of multimedia property rights has become a great
concern to multimedia authors and distributors. Watermarking technologies provide
a possible solution for this problem.

The dissertation first briefly introduces the current watermarking schemes,
including their applications in video, image and audio. Most available embedding
schemes are based on direct Spread Sequence (SS) modulation. A small value pseudo
random signature sequence is embedded into the host signal and the information is
extracted via correlation. The correlation detection problem is discussed at the
beginning. It is concluded that the correlator is not optimum in oblivious detection.
The Maximum Likelihood detector is derived and some feasible suboptimal detectors
are also analyzed. Through the calculation of extraction Bit Error Rate (BER), it is
revealed that the SS scheme is not very efficient due to its poor host noise suppression.
The watermark domain selection problem is addressed subsequently. Some impli-
cations on hiding capacity and reliability are also studied. The last topic in SS
modulation scheme is the sequence selection. The relationship between sequence
bandwidth and synchronization requirement is detailed in the work. It is demon-
strated that the white sequence commonly used in watermarking may not really

boost watermark security.



To address the host noise suppression problem, the hidden communication is
modeled as a general hypothesis testing problem and a set partitioning scheme is
proposed. Simulation studies and mathematical analysis confirm that it outperforms
the SS schemes in host noise suppression. The proposed scheme demonstrates
improvement over the existing embedding schemes.

Data hiding in audio signals are explored next. The audio data hiding is
believed a more challenging task due to the human sensitivity to audio artifacts
and advanced feature of current compression techniques. The human psychoacoustic
model and human music understanding are also covered in the work. Then as a
typical audio perceptual compression scheme, the popular MP3 compression is visited
in some length. Several schemes, amplitude modulation, phase modulation and noise
substitution are presented together with some experimental results. As a case study, -
a music bitstream encryption scheme is proposed. In all these applications, human
psychoacoustic model plays a very important role. A more advanced audio analysis
model is introduced to reveal implications on music understanding. In the last part,

conclusions and future research are presented.
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CHAPTER 1

INTRODUCTION

1.1 Digital Steganography and its Application
With the rapid ever-growing Internet technology, multimedia content protection has
raised great concerns in multimedia creation and delivery community. The traditional
data encryption protection methods, such as RSA, DES [76, 80, 85] do not meet
all the requirements. Recent years have seen lots of research and application of
watermarking or steganography technology to address this issue.

Steganography is the art to embed some message in a host (or cover) signal
without noticeable perceptual degradation. The technologies provide a potential
solution to the content protection problem. The message could be copyright infor-
mation or product information, for ownership proof or copyright infringement
tracking.

Two basic requirements for staganography is transparency and robustness.
The former means the perceptual value of the cover signal should not degrade
after information embedding. Robustness implies the watermark should not be
removed easily. It is particularly important to achieve robustness against the
popular compression schemes because of their ubiquitous applications in network
transmission and storage. To provide a convincing proof for proprietary copyright,
the message should be smartly integrated with the content signal and sufficiently
robust against compressions and other signal processing (even malicious pirate
attacks). Watermark is supposed to be highly tamper-proof in these applications.

Based on the different application scenarios, steganography can be divided into
two categories, oblivious applications where the original cover signal is absent at the

information extraction, and escrow applications where decoding is performed with



the assistance of the original cover signal. Because the original cover signal is not
available in most scenarios, it is not strange to see that the current research and
development is focused on oblivious applications.

Watermarking for content protection is a specific application of hidden commu-
nication. Steganography is usually a more general term which refers to delivering
a message in a manner that the very existence of the message itself is kept secret.
Watermarking can be considered a subset of steganography [46]. In this dissertation,
“data hiding” refers to the general information embedding in the cover signal whereas
“watermarking” refers to the hiding with emphasis on robustness and security.

As a kind of digital steganography technology, watermarking is different
from data encryption. Omne prominent difference between data encryption and
steganography is that the latter does not prevent unauthorized access. Encryption,
on the other hand, does not permit unauthorized access to the contents. Once the
encrypted contents are correctly unscrambled, the protection is completely removed.
In contrast, a robust watermark is integrated with the content signal all the time
and is very difficult (if not impossible) to remove.

Steganography has long been modeled as a communication problem. Figure 1.1
and Figure 1.2 depict the channel models in escrow and oblivious applications. The
transmission channel noise is compression noise, or other noises incurred in signal

processing procedures.

Content : Watermarked [~ ""77 7" \ Received : Extracted
Embedding Channel ;

Signal X Signal X' ‘e-e----- Signal R’ Message M’
Message M Original Signal X

Figure 1.1 Escrow steganography

Watermarking used for ownership proof is often referred to as robust water-

marking which is aimed at copyright protection. Another form of watermark is called



Content : Watermarked [~ - """ 1 Received : Extracted
Embedding Channel
Signal X Signal X°  t‘-------- Signal R’ Message M’

Message M

Figure 1.2 Oblivious steganography

fragile watermarking (or semi-fragile watermarking) which targets at multimedia
authentication scenarios [25, 57, 66, 102]. In this application, a watermark is
embedded into a host signal as a signature of authentication for the content. If
the watermark can not be recovered correctly at the receiver side, that means this
content has been manipulated. A typical application is proposed to authenticate the
photo image in a digital filmless camera [26].

Besides authentication and copyright protection, data hiding also finds its way
in other applications. NEC, IBM and other companies have proposed and imple-
mented schemes for DVD copy (not copyright) protection control [8, 59, 60]. Lucent,
Philips ete. are deploying their watermarking product for broadcast monitoring.
Some companies, for example, RealPlayer plans to integrate data hiding into their
multimedia players.

In the digital steganography community, lots of attention is paid to image data
hiding. One of the earliest watermarking schemes is LSBM (Least Significant Bit
Manipulation). In this scheme, the LSB bits are modified according to a predefined
pattern to carry messages (for example, modify its parity). Obviously, this scheme
is quite crude and does not resist compression and other unintentional attacks, let
alone pirate attacks.

In current watermarking schemes, a most influential one is Spread Spectrum
(SS) modulation approach. The idea is borrowed from spread-spectrum radio
communications. Cox et al. [14, 16] are among the earliest to apply the scheme in

image watermarking. In one of his schemes, a Gaussian distributed PN sequence
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is inserted into the block DCT coefficients. This idea can be applied to different
watermark domains. Some work in the whole image DCT domain instead of block
DCT domain [15], Discrete Fourier Transform (DFT) phase domain [77], DFT
amplitude domain [78], wavelet domain [49, 96] etc. Various Human Visual System
(HVS) models are explored to minimize the visual artifacts. Some models work in
the pixel domain [90, 99], while many others work in transform domains [18, 92].

There are few publications on video watermarking applications. Most water-
marking schemes regard video as a consecutive sequence of still images. The image
steganography schemes could be applied to video, where embedding and detection is
done on a frame by frame basis. This is the direct extension of image watermarking
to the uncompressed (raw) video. An alternative is to embed information in the
compressed domain. Jordan et al. [24! proposed a scheme to embed the watermark
signature into the motion vectors. The author claims survivability to the MPEG
compressions. Hartung et al. [36, 37, 39] suggested a SS method extension in video.
The message extraction computation complexity in video should not be too high
due to the real-time processing requirement. Another requirement is the robustness
against MPEG-x compressions, frame dropping, frame averaging and other attacks.

There are even fewer publications on audio steganography which is regarded as
the more challenging task. Generally speaking, audio signals have much less samples
than video. Although this reduces the processing complexity, it limits the hiding
capacity.

It is believed that Human Audible System (HAS) is much more sensitive to the
artifacts than the Human Visual System (HVS). The embedding distortion inaudi-
bility is more difficult to control. The general audio signal can not be regarded
stationary (at most be assumed semi-stationary). Fortunately, through subjective
tests and theory studies, people have accumulated extensive knowledge on HAS

and human perception models. Several models have been explored and successfully



employed in perceptual compression, for instance MPEG-1 MP3 compression [44],
Dolby Audio Encoder AC-3 [19]. This knowledge should be employed in data hiding
to minimize artifacts.

In audio steganography, compression-resilience is also more difficult to achieve
as the current audio coding algorithms are more advanced. In image and video
compression, the algorithms are mainly based on waveform approximation. The
compression schemes usually target at MSE (Mean Square Error). i.e., maximizing
SNR (Signal-Noise Ratio). The popular compression schemes, SPIHT (Set Parti-
tioning Image Hierarchical Tree) [79], EZW (Embedded Zero Wavelet) [82] focus
on quantization and encoding technique after transform or subband filtering. It is
expected that the compression noise is not high, the compressed waveform is still close
to the uncompressed original signal. In the perceptual audio compression schemes,
the purpose is to minimize the perceptual degradation, not MSE. Since it is known
that human beings do not measure audio quality in MSE sense. The compression
noise could be much higher. In the more advanced audio parametric coding schemes,
such as MPEG-4 HILN [1] and the model proposed in [56, 94, 95], audio signal is
analyzed and some important parameters are extracted to “describe” the original
signal. The reconstructed output at decoder with these parameters may not be close
to the original signal. Compression quality can not measured in common sense SNR
(Signal-Noise Ratio).

In current audio data hiding schemes, some are the direct extension of the basic
SS scheme to audio signal. A random signature sequence is embedded in subband
domain [4, 42], cepstra domain [55] or time domain [6] etc. The human perceptual
model is explicitly used to shape the watermark signal spectrum according to the

masking curve [9]. This is an effective method in controlling the watermark audibility.



1.2  Organization of the Dissertation
In this research, steganography is studied as a general hidden communication
problem. In this dissertation, data hiding schemes are investigated from the
perspective of signal processing and new algorithms with improved performance
over the existing ones are studied. Other data hiding issues are also comprehensively
explored, with some concentration on audio applications. Other related topics in
multimedia watermarking application are alsc discussed.

In Chapter 2, the history and development of digital steganography is briefly
reviewed, some influential data hiding algorithms in still image, video and audio
signals are visited. In practice, the Spread Spectrum (SS) schemes are widely
employed. In Chapter 3. a thorough study of the current SS algorithms in data hiding
is presented. The hiding capacity is analyzed. The problem of watermark domain
selection and its impact on compression robustness is also addressed. Optimum
detection in oblivious applications is explored. It is found that the correlation
detector is not optimal in oblivious applications. A new scheme is derived and
its performance is compared with the existing ones. The random sequence security
and watermark signature generation is also covered in Chapter 3.

From the analytical and simulation results, it is concluded that the spread
spectrum modulation although effective in escrow applications, is not quite successful
in oblivious applications. In Chapter 4, a new scheme set partitioning is proposed
in oblivious applications. In the mathematical analysis and simulation studies,
improvement is demonstrated over the existing schemes, especially in very noisy
environment.

Chapter 5 is dedicated to the audio compression-resistant data hiding.
Initially several different audio compression schemes are visited, including waveform
approximation, perceptual coding and parametric coding. Because of the popular

deployment of MPEG-1 layer III (MP3) compression in Internet transmission and



storage, as an example, this compression and human perceptual psychoacoustic
model is briefly introduced. Based on this, three hiding schemes, amplitude
modulation, phase modulation and noise substitution are proposed. A music
encryption scheme is proposed. The last section in Chapter 5 is devoted to the
advanced audio analysis model and its impacts on audio watermarking. Chapter 6
covers some outstanding problems in watermarking and data hiding applications.

Conclusions are drawn and the future work is proposed.



CHAPTER 2

CURRENT TECHNIQUES AND STATUS

In this chapter, the existing technologies used in still image, video and audio content

signals are briefly visited.

2.1 Steganography Applications in Images
The first application of digital watermarking is on still images. One of the earliest
data hiding schemes embeds information in pixel’s Least Significant Bits (LSB),
called LSB Manipulation (LSBM) [93, 98]. It is obvious that LSBM is not robust
against compression and other attacks. Spread Spectrum (SS) modulation algorithms
embed a small value PN sequence in the selected components of the content signals
(7, 16]. It provides much improvement over LSBM on security and robustness.
Most of the current watermarking schemes are SS-based, including both escrow and
oblivious applications. These schemes can be put into two categories, spatial domain

embedding and transform domain embedding.

2.1.1 Pixel Domain Embedding

Bender et al. [7] propose a data hiding scheme called “Patchwork”. In this scheme,
pixel values a; and b; in a randomly selected two-pixel pair are increased and
decreased respectively by a very small value . For an unmarked original image,
it can be assumed that the pixel value z; is a random variable with zero mean.

Therefore,

N —

(a; —b;) ~ 0. (2.1)

—

1=
This makes intuitive sense since the number of times a; is greater than b; should

be offset by the number of times the reverse is true.



After watermarking, the detection output is

S [as+8) = (b= )] = 2N+ 3 (as = by). (2.2)

In a watermarked image, the mathematical expectation value of (2.2) deviates
from 0. If the pixel pair number N is sufficiently large, a reliable decision based on
the statistical sum can be made.

This method can be easily extended to data hiding. Embedding procedure is

"= a; 5 = p — & it v
{ af =a; +0, b, =0, —0; bit value 1 embedded (23)

=a; — 90, b, =0;,+3; bit value 0 embedded,
where o] and ] are the pixel values after bit embedding.

Detection is based on sum of these pixels,
N-1 .
g=>_ (a:—b), (2.4)
i=0

where a; and ZAJQ; are the received pixel values after channel transmission. If
g > 0, the decision is bit value 1; Otherwise, the decision is bit value 0 instead.

Bender et al. [7] analyzed the extraction bit error probability and the impact
of different patch shapes on robustness. Pitas et al. [62] proposed a quite similar
method. Further extension can be found in [53, 54]. The advantage of spatial domain
scheme is its efficiency and low computation cost. The shortcoming is that the pixel
number N should be sufficiently large which limits the hiding capacity.

To reduce the watermark visibility, extra work should be done to control the
visual artifacts. Macq et al. [20] proposed a scheme to make the watermark adaptive
to the Human Visual System (HVS). For a color image, it is well known that human
being are most insensitive to the blue component. Kutter et al. [50, 51] took use
of this property and embed information into the blue component. It is claimed that

the visible distortion is thus minimized.
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2.1.2 Transform Domain Embedding
Many Spread Spectrum modulation schemes are applied in transform domains. As
a case study, the approach proposed by Cox et al. [16] is revisited in the following

discussion.

Transform

Original

Watermarked
Image

Inverse

Embedding Transform

Coefficients

Transfrom

Image

Watermark
Signal

Figure 2.1 Transform domain embedding framework

After transform, some appropriate coefficients x; in this domain are selected.
They are usually the medium frequency coefficients to which humans are not so

sensitive. A randomly generated signature sequence s; is embedded into z;,

In [16], the signature sequence used is Gaussian distributed due to its enhanced
security over the bipolar sequence (-1 or +1 bi-value sequence).
Denote the received sequence after channel transmission as r. With the

assistance of the original sequence x, the correlation detector output is

N-1 N-1
g=> (ri—z) s =Y (si+n)-si (2.6)
i=0 i=0

where n; is the channel noise.

Correlation detector is optimal only if n; is Gaussian distributed. It is worth
noting here that often the watermarking channel is far from Gaussian type. However,
correlation is a feasible method and mostly used in watermark verification due to its

simplicity.
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To control the artifacts introduced in this approach, several formulae are

suggested to determine the embedding extent [16],

T =1 + axy, (2.7)
= x;(1 + axy), (2.8)
i = zi(e"™), (2.9)

where « is a scaling factor.

For different frequency bins, the value of a should be adaptive to the human
sensitivity. Very similar HVS model was suggested in [67]. The visual threshold
value may be obtained from a visual perceptual model or empirical experiments.
This principle is also applied in other transform domains. For example, [49, 101, 103]
apply the wavelet domain embedding as a direct variation of this scheme.

In transform domain steganography, the transform selection problem has not
been answered. An ideal watermark transform should be superior in performance

and low in computation complexity. This problem is addressed in Chapter 3.

2.1.3 DFT Domain Embedding
In image data hiding applications, it is important to achieve robustness against
geometric distortions, for example, translation, rotation, and scaling. Scanning
procedure can be modeled as a combination of these distortions. There does not exist
an ideal solution to countermeasure these attacks. A heuristic approach is to embed
a fixed pattern into images and at decoder try to estimate the values of rotation,
scaling and translation by pattern match and then compensate for these changes.
This is usually done via the simple brute force exhaustive search and therefore a
quite computation extensive procedure.

Ruanaidh et al. [78] proposed a novel scheme to hide information in DFT

amplitude domain. It is translation resistant because the spatial shift is only reflected
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in the DFT phase, which is not used in embedding. Its effectiveness has been demon-
strated in practice.

Another important feature of DFT amplitude embedding is that the DFT
amplitude is perceptually insignificant. It was pointed that the DFT phase contains
much more information than the DFT amplitude [64]. As the current popular
image compression schemes aim at waveform approximation, the compression noise
is relatively small. In the perceptually insignificant DFT amplitude domain, more
watermark energy is permitted without much visible artifacts. This results in relative
higher SNR. Ramkumar and Akansu [71, 73, 75] pointed out the advantage in DFT
domain embedding. Their simulation results demonstrate the robustness in face of
various compression schemes.

The above conclusion seems to contradict the long-held view that the watermark
should be embedded into the perceptually significant components [14]. That is true
embedding in DFT amplitude is not tamper resistant. A smart attacker can also
use the property of DFT amplitude insignificance to inject more attack noise. The
DFT domain embedding just takes advantage of the current compression schemes.
Ruanaidh et al. [77] also suggested to embed information in the perceptually
significant DF'T phase. It claims enhanced security against malicious attacks.

The pixel domain and transform domain selection have different impacts on the
robustness and complexity. Needless to say, the spatial domain embedding is less
computation extensive. Some studies show that the transform domain approaches

are more robust to geometric distortion.
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2.2 Video Steganography

2.2.1 Embedding in Raw Uncompressed Video

If a video signal is regarded as a continuous still image sequence, the image data

hiding scheme can be employed frame by frame to a video sequence. In fact, most

of the current approaches are the direct extension of image embedding schemes.
Hartung et al. [37, 38, 39] directly extended the image data hiding in the

video signal. A pseudo-noise bipolar sequence p (p; is either +1 or —1) is embedded

into the selected 8x8 DCT coefficients v;. In their approach, a random sequence is

embedded into these coefficients.

L; = v; + pioy, (210)

where «; is the locally adjustable amplitude factor which varies according to the
local properties of the video signal. The spatial and temporal masking phenomena
of HVS can be applied in embedding. The message is retrieved via correlation at
decoder. Their experiments demonstrate the typical hiding capacity is up to 50
bits/sec.

Swanson et al. [89, 91] proposed a multi-scale watermarking method. First,
the video sequence is segmented into scenes. Then a temporal wavelet transform
is applied to each video scene, and temporal low-pass and high-pass frames are
obtained. The watermark signal then is embedded into both frames. After inverse
transform the watermarked video is obtained. Note the watermark is also embedded
in the low-frequency components. To minimize artifacts visibility, a HVS model
is exploited in this approach. An efficient watermark embedding is “Millennium”
proposed by Digimarc, Philips and Macrovision [13] for DVD copy protection control.

Its advantage lies in simplicity and translation invariance.
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2.2.2 Embedding in Compressed Video

Instead of embedding directly in the raw video, data can also be embedded in the
compressed domain. In both of MPEG-1 and MPEG-2 compression standards, the
block Discrete Cosine Transform (DCT) is used. The video sequence is composed of
I, P, and B frames. In I (Intra-coded) frames, the picture is split into 8x8 blocks.
Then the DCT coefficients are quantized, zig-zag reordered and Huffman encoded in
a similar fashion used in JPEG compression. In the inter-coded frames (P or B), the
pictures are encoded using forward or backward prediction. The motion vectors and
residual prediction error are quantized and encoded.

Hartung et al. also experimented their embedding scheme (2.10) in compressed
domain [39]. This procedure is applied to every frame, including I, P, B frames. For
each compressed frame, the watermark signal is added to the 8x8 DCT coeflicients
in the video bitstream. FExperimental results demonstrate its robustness against
standard signal processing.

Jordan et al. [24] suggested a very interesting approach to embed information
in the motion vectors in the compressed bitstream. As motion vectors are significant
perceptually, only areas with less activity are selected for embedding. The authors
claims artifact invisibility. The information is directly retrieved from the motion
vectors in the compress video. The greatest advantage of this scheme is its low

complexity.

2.3 Audio Steganography
In comparison, there are few publications on audio data hiding. Usually, the audio
steganography is assumed a more challenging task. One reason is the human beings
are more sensitive to watermark distortion. Another reason is the current audio
coding technique is much more advanced than the schemes used in image coding,

making the robustness to those compressions more difficult.
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2.3.1 Echo Hiding
Bender et al. [7] suggested an innovative scheme to hide information in audio. This
method adds a decayed version of the original signal to itself. The echo is determined
by three parameters: initial amplitude, decay rate, and offset (the delay when the
echo appears). Usually, the decaying curve used is exponential.

Informal tests show that with appropriate parameters, the echo added is
inaudible, only making the original “richer”. The information bit can be embedded
by selecting different offset values. In Figure 2.2, to embed bit value 0, the offset

value is z while the offset value is 2 + § if bit value 1 is embedded.

Zero
Initial amplitude

CP Original signal
{ One T Decay rate
1

X o

Offset Delta
Figure 2.2 Audio echo hiding

Data extraction is via measuring different offset delay value. First, the
cepstrum of the embedding output is calculated. Then the autocorrelation of the
ceptrum is obtained. With the echoes spaced periodically every = or z + ¢, a peak
at z or  + ¢ in the cepstrum can be obtained. The decision rule is to examine the
power level at z and x + § and choose whichever bit corresponds to a higher power

level.

2.3.2 Other Schemes
The SS modulation can be extended to audio applications. Pitas et al. [6] repeated
the PN sequence embedding in the time domain. Tewfik et al. [9] proposed an

embedding scheme in frequency domain. One contribution of the algorithm is
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that the explicit human psychoacoustic model is employed to shape the watermark
spectrum. The watermark distortion is kept under the masking for distortion inaudi-
bility. In embedding, a watermark signature spectrum is shaped by a filter which
is derived from the psychoacoustic model analysis. Some similar schemes were
proposed in [4, 42]. The detail of the human psychoacoustic model is given in length
in Chapter 5.

There are some other SS versions in other domains. In [55], the embedding
and detection was performed in the cepstrum domain. The shortcoming is that in
that domain, distortion inaudibility is more difficult to control. Other approaches
include data hiding by time-domain modification [58], or by compressed domain
manipulation. An example of the latter is the simple scheme modifying the scale

factors in MP3 bitstream. [69].

2.4 Application and Product Deployment
Since 1994, the digital steganography technologies have attracted lots of attention
both in the industry and academia. Nowadays there are several commercial products
on market and some have been deployed in practice.

Digimarc Corp. is a leader in watermarking technology. Products it provides
include ImageBridge and MediaBridge for image watermarking. Besides,
Digimarc MarcSpider image tracking can crawl the World Wide Web searching for
digitally watermarked images to find illegal publications of copyright images. Some
corporations have already entered into contracts with the Digimarc company for the
use of PictureMarc and MarcSpider, to protect their interests in digital images.
Even Digimarc Corp. itself admits the watermark is vulnerable to common signal
processing attacks. There are some other companies providing similar steganography

products. For example, Signum Technologies offers SureSign watermark product for
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content protection. Their product works together with Adobe Photoshop. MediaSec
Technologies provides MediaLabel and SysCop products.

Cognicity Corp. provides audio watermarking product AudioKey. It claims
its robustness to all popular audio compression schemes. Up to 2 layer information
can be embedded, reaching total hiding rate of 42 bits per second. The watermark is
imperceptible due to the use of psychoacoustic models of human hearing. It also
claims robustness to music editing, format conversion (including D/A and A/D
conversions), compression, streaming, broadcast, etc. This product was adopted
to integrate with the AT& T perceptual audio encoder and RealPlayer’s Producer
Plus G2 encoder.

Secure Digital Music Initiative (SDMI) is initiated by several label companies to
prevent illegal CD copying. They want to standardize the SDMI-compliant players
which can play unprotected music and new SDMI-protected music that has been
legitimately acquired. A proposal by Verance Corp., a company aiming exclu-
sively at audio watermarking, was adopted by SDMI as Phase I standard. In DVD
copy protection applications, there exists two major proposals, one is Galazy Group
proposed by Hitachi, IBM, NEC, Pioneer Electronic, and Sony, while Philips, Macro-
vision, Digimarc unify and offer their Millennium Group products. In the near future,
more products will be seen on the market together with more applications of data

hiding technology.



CHAPTER 3

SPREAD SPECTRUM MODULATION IN STEGANOGRAPHY

In the previous chapters, the Spread Spectrum (SS) modulation scheme in steganography
is reviewed. In this chapter, this technique is discussed in detail, including its infor-
mation extraction and watermark domain selection. A new algorithm is proposed
and compared with the existing ones. Its effectiveness is demonstrated in the analysis

and simulation studies.

3.1 Hiding Capacity and Watermark Domain Selection
In the SS hiding schemes as indicated by (2.5) and (2.6), the principle is very simple,
viz , to superimpose a small value random sequence into the original coefficient
sequence. This idea can be applied in different domains, wavelet domain, DCT
or spatial domains. What decomposition should be used in watermarking? Which
transform, high Gpe or low Gpe (Gain of Transform Coding) is more advantageous?
To be resilient to a specific compression, is it necessary to match the decomposition

used in the compression?

3.1.1 Hiding Capacity in Different Watermark Domains

In the following analysis, the simple superposition algorithm is studied,
23; = s; +x, (31)
where s is the watermark signal sequence.
In the SS modulation, it is obvious that escrow applications will reach higher
capacity than oblivious ones. Moulin et al. [61] pointed out at least in theory

oblivious application could achieve the same capacity as in escrow ones. Nevertheless

this is not realizable in practice.

18
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In escrow applications, if the attack noise w is Gaussian distributed, w ~

N(0,0?%). The hiding capacity on one coefficient is simply given by

2

C= %log(l + g—;), (3.2)

where 02 is the watermark signal energy. The capacity is achieved when s is
Gaussian distributed, s ~ N(0, 0?).

Besides processing attack noise, the cover signal itself is also regarded as noise
(host noise) in oblivious cases. This noise is much larger than the channel noise. Both
of these two noises should be considered in the capacity calculation. Host noise is
usually non-Gaussian distributed. Ramkumar and Akansu [74] used an information
transformer to convert the noise to Gaussian distribution. The parallel channel model
depicted in Figure 3.1 is used in their capacity calculation.

Suppose a watermark signal coefficient s; is embedded in the cover signal
coefficient z;, and the processing noise is p;. Assume all the noise is Gaussian
distributed. In the ith channel, the capacity is calculated as

02

st 3.3
) (33)

. . . 2 2
where 0, is the channel noise variance, s; ~ N(0,0%) and z; ~ N(0,02,).

s,
T,
X
1
SN»!

Figure 3.1 Parallel channel model

Because 0,; > 0,,;, the channel processing noise effect is neglected for simplicity

in the following capacity calculation.
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The total capacity is the sum of the capacities in these N parallel channels

1,\ 1
Z log(1 + (3.4)
For embedding in spatial (or time) domain, or other low Grc transform
domains, the parallel channel assumption may not be appropriate. “Parallel”
implies the noise z; is independent. Whereas in spatial or time domain, there
is strong correlation between x; and z; ; (for images, correlation coefficient p is
usually larger than 0.9). The correlation means that the host noise is, more or less,
“predictable”. Therefore, the correlated channel is not as “harmful” as the parallel
channel. More information may be transmitted through the correlated channel. For
example, based on (3.3), if 0.1 bit can be hidden on one pixel, on a 256x256 image
more than 256x256x0.1 bits can be hidden.
In fact transform does not change the entropy of the host noise x. Suppose x

is Gaussian distributed, but not necessarily independent. Its entropy is

_ _/f(x)log[f(x)}dx, (3:5)
where f(x) is the pdf of x,

1 1
f(x) = WGXP(—‘Z“XTC_IX% (3.6)

where C = var(x) is the variance matrix of x.
If the transform kernel is A, transform output is obtained as y = Ax. The

variance matrix of y is
D = var[y] = ACAT. (3.7)
The entropy of y is obtained as

/g Jog[g(y)]dy, (3.8)

where g(y) is the pdf of vector y

1

gly) = Wexp(-%yl‘f)_ly} (3.9)
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After the transformation, it can be derived that g(y)dy = |J|f(x)dx where J
is the Jacobi matrix. In this linear transform, it is easy to see J = A, AAT =1,

therefore,
viD 'y = (Ax)T(ACAT) 1 (Ax) = xTCx, (3.10)

Note |C| = |D|, dz = du. Therefore,
Hi(x) = Ha(y). (3.11)

The entropy conservativeness holds even for non-Gaussian pdf. Comparing
(3.5) and (3.8), it is easy to see g(Az) = f(z) as long as AAT = I.

In oblivious watermarking, host signal is considered noise. The larger the noise
entropy, the more “harmful” the noise is. The negative effect of host noise can not
be reduced by taking a transform. Intuitively, observing an image I in different
domain should give us same information. To embed an information source s in x is
equivalent to embedding a source As in Ax where A is the transform kernel. Same
information is transmitted. This correlation should not be neglected in capacity
calculation, watermark embedding and detection. Depovere et al. [21] proposed a
better detection approach by whitening filter before correlation.

Taking transform should not affect the hiding capacity theoretically. Actually
hiding capacity calculation does not shed much light on the decomposition selection
in practice. Even the higher capacity does not guarantee more reliable information
transmission using the current hiding schemes. For example, it is believed Laplacian
channel is of higher capacity compared with the Gaussian channel (Gaussian is

‘

regarded as the “worst” noise). However, using the antipodal or M-ary modulation,
signal transmission through Gaussian channel could be more reliable. The Bit Error
Rate (BER) is determined by the “tail” of the noise pdf curve. Gaussian pdf decreases

at the order of e=*", faster than the Laplacian pdf e™*. That results in more reliable

transmission through Gaussian channel at higher SNR.
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Transform selection is a subtle issue in practice. In face of a specific
compression, is it favorable to match the decomposition used in the compression?

This question is addressed in the following section.

3.1.2 Decomposition Selection in Presence of Compression
The channel noise is mainly introduced in compression in escrow cases. The
compression noise is expressed as
e = x; — Q(z;), (3.12)
where (.) is the quantization operator.

The coefficient z; is approximately Laplacian distributed before quantization
operation. If data embedding and extraction is done in the same compression
transform domain, the compression noise is quite close to uniform distribution, i.e.
e; ~ U(—6/2,0/2) where ¢ is the quantization step size.

In a transform domain other than the compression domain, the compression
noise d; is not uniformly distributed. Experiments reveal that it is close to Laplacian
distribution. It is reasonable to assume the noise is i.i.d. The SS modulation
approaches in both of these mismatch and match domains are equivalent to PN
sequence signal transmission through two channels, one is uniform channel and the
other is Laplacian channel. If the mostly used correlation is employed at receiver, it is
observed that the Bit Error Rate (BER) in the Laplacian channel is superior to that
in the uniform channel (Fig. 3.2). In simulation the antipodal signal is transmitted
in channels with different noise statistic properties.

It is true that the correlation detection is not optimal in a uniform channel case.
Further analysis shows that the optimum detector needs to know the quantizer step
size 0 which is usually unavailable in practice. Correlation, although not optimal, is

still widely used in practice. The noise energy is not changed in the Laplacian and
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uniform channels. Still a transform changes the channel noise property. Correlation

detection is more reliable in Laplacian channel than the uniform channel.

05

0481

046+

<o
'S
kN

-~~~ Uniform Channel
—— Laplacian Channel

Bit Error Rate (BER)
°e o o 9
g 8 & =< &
T T T T

Q
W
[s)

e
w

L 1 !

"SR (Linaar Scale)
Figure 3.2 BER-SNR in Gaussian, Laplacian and Uniform channels
The SS scheme performance in oblivious applications in different G domains
is studied next. The following deep embedding scheme [16] is used in simulation,

. { x; +w;|z;la,  to hide bit value 1 (3.13)

T; — w;|z;|e,  to hide bit value 0
where w is the random bipolar sequence (w; is +1 or —1) and « is the distortion
threshold ratio.

Given a received sequence r, the decoder used is also of correlation type

N-1 N-1 N-1 N1
g= Y rawi= Yy w4+ Y mw; £ Y alr. (3.14)
=0 i=0 i=0 i=0

If ¢ > 0, bit value 1 is decided; Otherwise bit value 0 is decided instead.
First, the host coefficients in the time domain are generated. The cover signal
x is a highly correlated AR(1) sequence with correlation ratio p = 0.9. Second, the

embedding and extraction is repeated in the time and DCT domain. The distortion
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ratio is selected as o = 0.1 in experiments. Simulation result in Figure 3.3 demon-
strates that time domain embedding is more reliable than that in the DCT domain
embedding.

An intuitive explanation for the above result is that in time domain, the
coefficients, although highly correlated, is evenly distributed. Whereas in the DCT
domain, much energy goes to the low frequency coefficients. These high amplitude
host noise coefficients exert much negative effect on the decoding. Further studies

demonstrate improvements if these coefficients are skipped in embedding.
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Figure 3.3 Performance in DCT and time domain embedding

The great concern in the oblivious case is host noise suppression. The linear SS
algorithms do not suppress the host noise very effectively. Some methods, such as set
partitioning [31, 27], Quantization Index Modulation [12], etc. are more successful.
It is believed that a mismatched transform is more favorable in these schemes due

to the same reason.

3.1.3 Taking Advantage of Compression — an Example
From the above discussion, it is concluded that selecting higher Gr¢ transform does

not increase capacity and matching compression transform (usually high Gr¢) does
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not enhance its resilience to compression. Then how to select am advantageous
watermark domain?

Bender et al. [7] are among the first to point out, “The key to successful data
hiding is the finding of holes that are not suitable for exploitation by compression
algorithm”. A good hiding scheme should take advantage of the compression. The
watermark domain is not necessarily a transform domain. Some authors argue the
message should be inserted in a domain which is compression-conservative. A novel
scheme [2] was proposed to hide information in the eigen vectors of the correlation
matrix of a subimage. Because these values are almost unchanged after compression.
Just as mentioned in Chapter 2, embedding in DFT amplitude domain provides some
advantages due to its perceptual insignificance [71, 73].

In Chapter 5, a noise substitution algorithm in audio data hiding is proposed.
The well advanced audio model sine + transient + noise [56, 94, 95] is explicitly
used in this scheme. This scheme modifies the noisy components without changing
the noisy perception. More details can be found in Section 5.6. In this scheme,
matching the decomposition brings some benefits due to the compression coefficient

sign conservative property.

3.1.4 Summary
Decomposition used in compression is to de-correlate the signal. High de-correlation
is desirable in compression, although may not be suitable in steganography. For
SS schemes application in oblivious cases, mismatch the decomposition used in
compression is more favorable. Different transform selection does not have any
effect on hiding capacity. The extra computation in high Gpc decomposition in
compressions may not be well justified in data hiding.

The decomposition selection is a complicated issue in practice. For example,

audio watermarking in frequency domain is advisable because the psychoacoustic
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model in transform domains can be conveniently used. In the design of a compression
resistant watermarking scheme, decomposition selection is related with embedding
scheme used. Mismatch decomposition is advisable in SS. For the noise substitution
scheme in audio data hiding, it is more favorable to match the compression decom-

position.

3.2 SS Modulation and Correlation Detection
Although the SS scheme is first introduced in escrow applications, it works in the
oblivious cases where the original content signal is not available. In the data hiding

scheme (3.13), s; and z; are independent. It is assumed that the first term in (3.14)

N-1
1=0

Compared with (2.6), the extra disturbing term degrades the detector
performance. It is true that ¢t &~ 0 if the sequence length N is sufficiently large.
Obviously, this significantly reduces hiding capacity. In the following part, the

‘degradation is measured quantitatively [30].

3.2.1 Correlation Performance in SS Modulation

In the following discussion, the deep data hiding scheme mentioned in Section 3.1 is

studied. Its embedding and extraction is given by (3.13) and (3.14), respectively.
The host noise power is much larger than that of the channel noise in oblivious

cases. The channel noise is neglected for simplicity in the following discussion. Then

(3.14) is reduced to

N-1 N-1
g= > rw; =Y (zw;+alz)). (3.16)
1=0 1=0

Denote

Pi = Tw; + ol (3.17)



27

Because w; is either +1 or —1, p, = z; + «a|z;| or p; = x; — alz;]. Due to the
symmetry property of the pdf of z;, the statistical distribution of p; does not depend

on the value of w;. It has same mean value and variance as

Suppose the original coefficient z; is i.i.d. and Gaussian distributed, z; ~

N(0,0?). The mathematical expectation of y; is

g 2
T ewrde = Zoa (3.19)
2ro s

Ely] = 204/000

The variation of y; is obtained as

El(yi = Elyi])*] = El(yi — | Zoa)?]. (3.20)

After some algebraic steps, the final result yields as

E(y; — E[y)?] = (1 + o*)o>. (3.21)

The test statistic ¢ (3.16) can be assumed a summation of random variables y;

(3.18). For a large value of NV, the distribution of ¢ is approximately Gaussian

2
g~ N(oaNy/ =, N(1 +a?)o?). (3.22)
T
In a similar fashion, while the bit value 0 is embedded the distribution of the

test statistic is given as

2
g~ N(—U&N\/;, N(1 4+ a?)o?). (3.23)
If the decision threshold is selected v = 0, the Bit Error Rate

2N

), (3.24)

where @(.) is the Gaussian pdf tail integral function.
This analytical result matches the simulation output (Figure 3.4). « is selected

as 0.1 in simulation. Figure 3.5 demonstrates the BER versus sequence length N.
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With sequence length N = 200, BER = 0.1308. To achieve the reliability BER <

1076, the sequence length should be N > 3700.
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Figure 3.5 Analytical BER-N in SS modulation

3.3 Optimum Detection and Linear Modulation

The above results demonstrate that the performance of the SS modulation schemes

is not satisfactory. The SS modulation performance limit in oblivious applications is

analyzed in this section.
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3.3.1 Maximum Likelihood Detection

The correlation detector is only optimal in white Gaussian noise environment but

not in the SS modulation scheme discussed above.

18

With bit embedding scheme (3.13), decoding is a hypothesis testing problem

H1: 7=, + |z - ki, bit value 1 is embedded (3.25)
HO:  r; =a; — |z;| - k; , bit value 0 is embedded 9
where k; = w;a.
Given a received sequence r, the Maximum Likelihood (ML) ratio is
P(H1]r)
R= 3.26
P(HO|r) ( )
If R > 1, the bit value 1 is decided; Otherwise bit value 0 is decided.
Assume the original coeflicient r; is Gaussian distributed, its pdf
\/27021%%;‘) ’ eXp[Q(lgkil)QGQ]’ (Ti >0
frilH1) = 2177021%1') -epru:&zﬁ)%z], (r; < 0) (3.27)
Tono! (ri =0

In a similar fashion, f(r;|H0) can be calculated.

Assume P(HO0) = P(H1) and neglect the rare case where r; = 0, the ML ratio

P(ri|H1) (%—;—’%) exp[—8 - s(k)r?], (r; > 0)
P(ri|HO) { (ER) - expl - sk, (r, <) (3:28)

s(x) = { +1, #>0 (3.29)

and

=7 (3.30)

(3.31)




30

If one bit is embedded in a sequence x, the ML ratio (3.26) is obtained as

N-—1 1 — k‘i ) N-1
R=1] (———f)““) cexp[ > —s(ri) - s(ki) - 24l (3.32)
I i=0

The above is the ML optimum detector in the oblivious case and it yields better
performance. Yet the computation is quite extensive. Secondly, the calculation of /3
involves the value of 0%, which is usually unavailable in practice. Some approximation
is needed to derive a suboptimal detector applicable in practice.

In a white sequence s, it is reasonable to assume it has the equal number of

+1 and —1. One obvious observation in (3.32) is that for sufficiently large sequence

length N,
N~-1
1— ks
[ ()5 ~ 1. (3.33)
Sk

Under this approximation, a suboptimal detector is obtained as
q="7 Z —-s(ry) - ri? - s(ka). (3.34)

If ¢ > 0, it is decided that the bit value is 1; Otherwise the bit value 0 is
decided.

The suboptimal detector has a quite simple form and comparable complexity
as the correlation detector (3.14). Figure 3.6 shows the simulation result with visual
threshold ratio value @ = 0.1. The suboptimal detector has lower BER compared
with correlation. Still it is inferior to the optimum detector due to the approximation

in (3.33).

The suboptimal detector (3.34) is in a form of variation difference distinction.
Any hiding scheme changes the statistical property of the original cover signal. From
the embedding operation (3.25), it is clear the main impact of hiding operation is

the change of variation of z. Intuitively, the detector based on the distinction of
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variation outperforms the correlation detector where the decision is based on the

mean value.

The channel noise is not considered in the above discussion. Even taking it

into consideration, further simulation studies show the ML and suboptimal detector

still outperforms the commonly used correlation detector.

3.3.2 Linear Modulation and Detection

It is demonstrated in simulation studies and mathematical analysis that the

suboptimal detector is inferior to the optimum detector. How can the performance

be further improved?

The data hiding procedure (3.13) can be slightly modified by removing the

absolute value operator. The data hiding hypotheses testing becomes

Hi: r;,=ux;+x;-k;, toembed bit value 1
HO: r,=2;—x;-k;, toembed bit value 0

where k; = w;«v (k; is either +« or —a).
After embedding, the variance is modified to

Uf =(1+ a)2(72,

(3.35)

(3.36)
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or
ot = (1 — )’ (3.37)

In a way similar to the analysis in the last section, the ratio on r; is given by

?EZ;Z&; - @ ; ;/j> 'exp[g —s(ky) i) (3.38)

And the final ML detector output is

(3.39)

All the coefficients can be divided into 2 sets. The variances of z;’s in Set A
are increased while those in Set B are decreased.

Statistically, the coefficient number in these two sets is equal. The generation
of the white sequence can be controlled so that the coefficient count of k; = « is

equal to the count of k; = —a. That yields

N—-1

11—k .
II -1 (3.40)
o L+ ks

By simplifying (3.38), the detection test statistic is obtained as
N-1
g=7 > s(k)-r (3.41)
i=0
Remove the factor v, the test statistic is
= > "= > (3.42)
TiGSet A T‘z‘GSet B
If ¢ > 0, the bit value 1 is decoded; Otherwise, bit value 0 is decided instead.
That is the optimum detector in the linear embedding.
The performance can be further analyzed if only the host noise is considered.

Suppose 7; in the Set A is Gaussian distributed with variance equals to o7 (3.36);

While 7; in Set B is distributed with variance o2 (3.37).
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(3.43)

(3.44)

These two variables are square sum of Gaussian distributed random variables

which share the same probability property. It can be proved their distribution is of

M = N/2 freedom degree I" distribution [40].

t
_ )
QM/Z Lo 2

f(tl> = U{w LOM/2 . F(j\/[/Q)

For notation simplicity, denote

A = :
CT M QM2 T (M)2)
and
1
C; = —
202

Equation (3.45) can be rewritten as

ft) = A -trl e Gt

where n = M/2 = N/4.

Suppose the bit value 1 is transmitted, the Bit Error Rate (BER) is

BER = P(t, <t :/Om f(to)dto~/0t0f(t1)dt1

+0oo to c
= fg(to) / Alt?“le“ ltldtldto‘
0 0

For an integer n, using

670..’1,'

an+1

/x”e’”d:c = — [lax)” + nlaz)" " + nln — Daz)" ™ + ... +nl]

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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and
Ry 3.51
/0 etemMdr = —o, (3.51)
after some algebraic steps, the final result is obtained as

1 ‘ CO
e

"“A()Al A()Al{(n - 1)’}2
Co + CP" (CoCy)m
(3.52)

=)

BER:[(1+-g— 2n — 2 '+i
1 i=2

The same result is obtained if bit value 0 is transmitted. Therefore, the average
Bit Error Rate (BER) is given by (3.52).

Equation (3.52) is the achievable performance in the linear modulation
approach. Figure 3.7 depicts BER calculated by (3.52) and the simulation output.
The distortion threshold ratio « is selected as 0.1 and z; is Gaussian distributed with
o = 50. The analytical result is a perfect match of the simulation results. Compared
with the embedding and extraction scheme using absolute value operation, this
scheme achieves the same performance as the optimum detector and outperforms

the suboptimal detector. This detector is also easy to implement.
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Figure 3.7 Performance comparison in the linear modulation
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It is assumed the original coefficient z; is Gaussian distributed in the above
discussion. In many cases x; is a transform coefficient whose pdf is approximately
Generalized Gaussian or Laplacian distribution. The above ML detector (3.42) is
not optimum in this case. However, it still outperforms the correlation detector

commonly used.

Bit Error Rate (log(BER))
&

1 . |

L 1 s . L I : L 1
200 400 600 800 1000 1200 1400 1600 1800 2000
Random Sequence Length (N)

Figure 3.8 Analytical result in the linear modulation
The SS schemes are not quite effective in oblivious cases. Figure 3.8 depicts the
BER at different sequence length with the distortion ratio @ = 0.1 (corresponding
to —20dB distortion, very deep embedding). At sequence length N = 1000, BER =
3.91-107°. To achieve up to BER < 107, the sequence length should be N > 1800.
Please note the performance is even poorer for correlation detection. This is the

limitation of SS schemes.

3.3.3 Image Data Hiding Experiments
The above linear detection scheme can replace the existing SS hiding and extraction
schemes. In practice, the value of the distortion ratio « could be obtained from

empirical experiments or some more accurate perceptual models. For example, the
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distortion threshold ratio in audio signals can be calculated from a psychoacoustic
model.

In the experiments with image data hiding applications, first the image is
decomposed into 64 subbands. Second, the medium bands are selected and the
hiding scheme in (3.35) is employed. At decoder side, (3.42) is used to extract the
information. In those experiments, 32 bit is embedded in a 256x256 image. All
bits are extracted error-free. Experiments also show its robustness against JPEG

compression and other attacks.

(a) Original Lena (b) Marked Lena

Figure 3.9 Lena image before and after embedding

3.4 Signature Sequence: Security and Synchronization
Similar to an encryption system, it is believed a mature watermark system should be
employed with a public algorithm and a private key. The key is the seed to generate
a random sequence. An attacker can try his best to “guess” a sequence close to the
watermark sequence and remove it. This attack is referred to as “guessing” attack.
Besides security, another important factor is synchronization requirement on the PN
sequence. Both the security of PN sequence and its synchronization requirement are

investigated in this section. A random phase sequence generation is proposed later.
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3.4.1 Security of Gaussian PN Sequence

White Gaussian Sequence

The white Gaussian sequence is widely used in various watermarking schemes [7, 16].
The sequence x is of white spectrum, z; ~ N(0,02) and x; is i.i.d. In a public scheme
scenario, an attacker knows the parameters o, and sequence length N, only does not
know the random seed. In the guessing attack, a random sequence y is generated.

The “closeness” between x and y is measured by correlation

N-1

¢=<Xy>= ) iy (3.53)
i=0

If the correlation output is larger than a fixed threshold v, the attacker assumes
that y is sufficiently close to x. By subtracting the sequence y, a good proportion
of the watermark energy could be removed.

As a linear combination of y, the output ¢ is Gaussian distributed

N-1

g~ N(,07> 7). (3.54)

=0

The exact value of ¢ is dependent on the individual signature sequence x. For

a large value of sequence length N,

Elq) =0, (3.55)
and
N-1
El¢’] =0* Y a? =~ No,*. (3.56)

1=

The successful attack probability is

Plg>7)= Q(\/%] =) (3.57)

Some numerical result for white sequences (corresponding to p = 0.0) is shown
in Table 3.1. It can be seen that the white sequences are quite secure against this

guessing attack. This conclusion is justified by the intuition that the white sequence
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is the most “unpredictable”. The white sequence has a flat spectrum whereas most
cover signals are of low-pass type. Most high frequency energy can be removed by
low-pass filtering. For example, in a typical audio signal, most energy is concentrated
between 0 — 6kHz. For an audio signal sampled at 48kHz, by suppressing frequency
components over 6kHz, a smart attacker can remove 75% of the white watermark
signal energy without much noticeable distortion. The white sequence although
secure, is less energy efficient.

Low-pass (LP) type random signature can keep most energy after low-pass
filtering attack. A simple colored PN sequence — AR(1) random process is analyzed
in the next paragraphs.

AR (1) PN Sequence

The first order AR(1) sequence x is expressed as

T = pTi-1 + Uy, (358)
where -
E T -
p - ——————-—-——————-[ 02 1J, (309)

and u; ~ N(0, (1 — p*)o,?), u; is i.i.d.

The attacker tries to generate a matching sequence y randomly based on the
same AR(1) model (suppose the value of p is public). Correlation output (3.53)
measures the success of this attack. It can be easily shown that

Elg =<x,y >=0. (3.60)

The variation of correlation output ¢ is

El¢°] = E[(zoyo + z1y1 + ... + TN_1Yn-1)°] (3.61)
Using
Elyiyi-y) = %0/ (3.62)

and
Bz j] = o, (3.63)
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Equation (3.61) is reduced to

El¢* ] =N+2(L—1)p*+2(L - 2)p" + ...+ 2p"". (3.64)
After some algebraic steps, the final result is obtained as
N — 2N 2 N
o2 = Elg?] =2—L - L TP N (3.65)

For a sufficiently large value of sequence length N, the above can be further

expressed as

O’g ~ aN (3.66)
where 5
ov=-—=1. (3.67)
1= p?
Similarly, the successful guessing attack probability yields as
g v ..
Plg>7v) =Q(=)=Q( ). (3.68)

Oq \/af]_V‘U% ’

Compared with the white sequence, the AR(1) sequence length should be

increased by a factor « to reach the same security level. For example, for the case

where p = 0.8, @ = 4.56, a 456-coeflicient AR(1) sequence is of the same robustness
as a 100-coeflicient white sequence.

Table 3.1 shows the successful attack probability for different p and N values.

The result reveals that the LP type signal is more vulnerable to the guessing attack

due to the correlation between z;. However, it has some desirable properties, one is

the relaxed synchronization requirement at decoder.

N=30 N=100 N=400
p=001]216-10"8]7.62-10>* | 2.75-10~%
p=0.5]398-107*|4.57-10710 | 8.66 - 10~
p=08|100-10"2] 1.10-107> | 1.08 - 1077

Table 3.1 Sequence security comparison (y = No
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3.4.2 Synchronization Effect on Detection
In SS modulation, it is well known the decoder is extremely sensitive to synchro-
nization [87]. As it will be seen, the LP type sequence is less sensitive to synchro-
nization, which is often a desirable property in practice.

White Gaussian Sequence

Suppose a signal x is transmitted through a Gaussian channel,

T =T+, (3.69)

where z; is the channel noise, z; ~ N(0, 0?).
If the sequence is perfectly matched, the decoder output SNR can be shown to
be

S? (2331‘2)2 No?

If the received sequence r and x is not perfectly matched, SNR ~ 0. The
watermark verification completely fails.

AR(1) Random Sequence

For an AR(1) sequence generated by (3.59), although the output SN R degrades
if r and x are not perfectly synchronized, there is some signal energy residue in the
correlation detector output. If x and r is synchronized, AR(1) sequence performs as
well as the white sequence. In the case where it is misaligned by M sample slip shift,

the filter output SNR is given by

(N = M)*o;p*

2
No*

SNRy = (3.71)

Figure 3.10 depicts the SNR output value versus misalignment. The parameters
selected are N = 100, p = 0.8, 0, = g,. Obliviously, the AR(1) sequence is less

sensitive to synchronization than the white sequence.
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Figure 3.10 AR(1) correlation output vs. misalignment

3.4.3 Sequence Spectrum Shaping
The white sequence and LP type sequence are studied above. The AR(1) sequence
1s just a special case of a colored sequence. A more general colored sequence can be

generated by an AR(M) model

M
T; = Z hjll?i‘j -+ Wi, (372)

=1

where w; is white Gaussian noise and z; is Gaussian distributed, independent
with w;. The above AR(M) colored sequence can be interpreted as the white sequence
shaped by a LP filter.

Although the white sequence is more secure than a LP type sequence, this is
only true when no attack is present. The low-pass filtering attack can remove the
watermark energy in high frequency bands without much artifacts. A smart attacker
may combine the low-pass filtering and guessing attack therefore compromise its
security down to the level in the LP sequence. The watermarking energy spanning
the whole spectrum is not well spent, resulting in energy inefficiency.

It is pointed out in the face of Wiener filtering, the spectrum of the watermark

signal should be proportional to that of the cover signal [86]. In this case, the
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filtering is nothing but a scaling operation. This implies no gains achieved in this
attack. Actually, watermark signal power spectrum X (w) need not to be exactly
proportional to the cover signal spectrum N(w), but should be close to N(w). Since

the cover signal spectrum N(w) is public, the randomness mainly lies in the phase.

- Cover Signal Spactrum
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Figure 3.11 Watermark spectrum againsi Wiener filtering

3.4.4 Random Phase Sequence

The random phese sequernce can be easily generated in DFT domain. ‘Suppose the
N-point DFT transform of the watermark signal x(n) is [ X (k)l. A random phase
sequence 0; is generated by a private key. 6; is iid. 6; ~ U(0,27) and satisfies the

odd symmetry property

Dorm k:O,—];%
D =< B k=1,2.5-1 (3.73)
b k=5+15+2 . N-1

The embedding and extraction operations may be in time or DFT domain.

The watermark sequence in FFT domain is generated as
r(k) = exp(jb). (3.74)

In the security analysis against the guessing attack, the cover signal spectrum

is assumed brick-shape for simplicity (Figure 3.12).
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s

0 M N/2 N-M N k

Figure 3.12 Brick-shape LP watermark spectrum

Suppose the attacker randomly generates a phase sequence [, the correlation

between these two vectors are

M—1 M—1
k=0 k=0

Both 6 and . are uniformly distributed in the range [0, 27). The mathematical

expectation of tp = cos(f — #y) is
2m 1
E[tk] = / COS([?/C — Hk)—*dﬁk = 0. (376)
0 27

The deviation of ¢ is

27 . 1
B} = [ cos (- Hk)%d,ﬁk -5 (3.77)

For a large number of M, ¢ is approximately Gaussian distributed. Its distri-
bution can be shown to be ¢ ~ N(0, M). The successful guessing attack probability

18

Plg>7) = Q(\/—%ﬁ)- (3.78)

For different values of M=30, 60 and 100, with the threshold value selected
as v = 2M, the successful attack probabilities are 2.16 x 1078, 4.74 x 107 and

7.62 x 107%*, respectively.
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The signal component in the correlation detection output is 2M without
misalignment. The mathematical analysis shows that with p(p # 0) sample shift,

the correlation output is

cosZ2(M — 1) — cosZL M
2rp ‘
N

yp =1+ (3.79)

1 — cos

Figure 3.13 shows the output vs. misalignment. The sequence length is M = 30

and N = 200.
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Figure 3.13 Correlation output vs. misalignment

The sequence length N and sequence bandwidth (indicated by M) are two
important parameters in sequence generation. Larger N implies enhanced security
against guessing attack; while smaller M lowers the security level and relaxes the
synchronization requirement. Compared with Gaussian sequence, this signature
provides a trade-off between security and synchronization requirement.

In the random phase sequence, the sequence frequency shape is fixed, only the
phase is random. Every sequence has exactly the same energy. In practice, it may
not be necessary to keep the sequence spectrum strictly brick-shape. Various visual

models could be applied to control the distortion visibility.
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3.4.5 Summary

The security and synchronization of the white and colored sequence is analyzed in
this section. Although white sequence is often used in the literature, the colored
sequence is superior to a white sequence due to its energy efficiency. The wider the
bandwidth of the sequence, the more secure it is against guessing attack and more
sensitive to synchronization. The random phase sequence whose security lies in its

DF'T phase is robust against Wiener filtering attacks.



CHAPTER 4

NONLINEAR MODULATION IN OBLIVIOUS STEGANOGRAPHY

In Chapter 3, it is concluded that the Spread Spectrum modulation algorithms have
limitations in oblivious applications due to its poor host noise suppression. In this
chapter some nonlinear embedding schemes are investigated [27, 29, 31]. These

schemes are more effective in oblivious cases.

4.1 Set Partitioning in Oblivious Data Hiding

4.1.1 Hypothesis Testing and Set Partitioning
Watermark is motivated to verify the disputed copyright ownership. Given a
multimedia content cover signal, the decoder needs to answer the question Yes/No
(watermarked or original) or bit value 1/0 depending on a set of received coefficients.
It is a hypothesis testing problem in essence.

Suppose ¢ is an original coefficient in some watermark domain, 1 bit is

embedded in ¢. The received coefficient is denoted as r. Two hypotheses are

{ HO:  bit value 0 is embedded in r (4.1)

H1: bit value 1 is embedded in r

Obviously, HO and H1 have different statistical properties. Any steganography
scheme modifies the original signal properties in one way or another. Based on the
property distinction, the decoder decides whether the bit value is 1 or 0.

A good watermarking (data hiding) algorithm should modify the statistical
property of a cover signal without much perceptual degradation. There are several
approaches to modify the statistical property. Ramkumar and Akansu et al. [70]
proposed an innovative approach to flip the signs of some small value coefficients
in an image. Statistically speaking, an unmarked original image has approximately

equal number of positive and negative coefficients, while the watermarked image has

46
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noticeable count difference between positive and negative coefficients. The decision
is made based on this difference. Patchwork [7, 16] and many other schemes change
other statistical properties.

To answer the above hypothesis testing problem, a natural question is, how
can the decoder make a reliable decision H1/HO merely on a given 7?7 Begin with
the simplest case where no noise exists, answer is simple and straightforward, make
HO and H1 have no element in common. Thus, decoder can always make a correct
decision.

This embedding works well in a noise-free scenario. Yet in a practical noisy
environment, detection is not as reliable as in noise-free cases. To increase its
robustness to noise, the element in HO and H1 should be simply kept some distance
apart. That is the simplest way to “separate” them.

This simple idea is extended to the following heuristic data hiding scheme. It
1s simple yet effective. Two separate sets are constructed on the real axis (Figure
4.1). The embedded coefficient value = should be kept in a set according to the bit
value to be hidden. To embed bit value 1, the output coefficient = should be kept in
set 1. If the original value c is already in set 1, no modification needed. Otherwise
it is replaced by the nearest element in set 1. Similarly after embedding bit value 0,

x should be kept in set 0.

Set 0 Set 1 Set0 Set 1 Set0 Set |

o b —{ d =

Figure 4.1 Set partitioning scheme

To enhance embedding and extraction reliability, usually one bit information

is embedded in a coeflicient sequence c. To do that, it is need to define a deter-
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ministic pattern to represent bit values. For example, to embed 1 bit in a 5-coefficient

sequence, patterns similar to antipodal signaling can be defined as

{ Pattern A (bit 1): [set 1, set 0, set 1, set 0, set 1] (4.2)

Pattern -A (bit 0): [set 0, set 1, set 0, set 1, set 0]

To hide an information bit, the modified sequence x should comply with Pattern

A (to hide bit 1) or Pattern -A (to hide bit 0). For example, to hide bit value 1,
after embedding the output coefficients should be

ro €set 1, zy €set 0, 29 € set 1, x3 € set 0 and x4 € set 1.

This method is named set partitioning. It does not hide a specific watermark
signal in a cover signal, but try to modify its statistical property to facilitate the
detection at decoder. Watermarking is a game played between robustness and

distortion. The more distortion it introduces, the more reliable it could be.

4.1.2 Average Distortion
In the calculation of the distortion energy, for simplicity, it is assumed the original
coefficient ¢ is uniformly distributed in the region (—a,a). This assumption is true
for the data in spatial or time domains, although may not accurate for coefficients
in transform domains. It is reported the coefficients are approximately Laplacian
distributed [5]. Simulation studies show that distortion difference due to the pdf is
negligible.

Denote the error introduced in embedding as e = x — ¢. As depicted in Figure
4.2, suppose the bit value 1 is to be embedded, consider the typical region AD:

If ¢ is in the range AB, no modification needed, e = 0.

If ¢ is in the range BD, e is uniformly distributed in (—d — d1/2,d + d1/2).

The corresponding conditional probabilities can be expressed as

dl

P(CEAB{CEAD):M

(4.3)
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and
2d + d1
e AD) = ———. 4.4
P(c € BD|c € AD) a1 < 2d (4.4)
Therefore, the average distortion energy introduced is
(2d+dl) (2d+d1)* 1 (2d+d1)® (15)

(2d1 + 2d) 12 12 (2d + 2d1)’

In a similar fashion, the distortion calculation yields the same result if bit value

0 is embedded. Th average is just given by (4.5).

Set 1 Set 0 Set | Set 0 Set 1
]-ﬁ»» di ~——+- ¢ —+—v m—wag
A B C D

Figure 4.2 Average distortion calculation

4.1.3 Hard Decision Detection

In one bit per coefficient embedding, the hard decision is based on the distance
between the received coefficient r and the two sets (here distance is defined as the
minimum distance between r and any element in the set, it is zero if  belongs to
the set).

In practice, it is rare to embed one bit in one coefficient. Consider the case
where 1 bit is embedded in an N-coefficient sequence ¢. The simplest detection is
majority vote. This is the hard decision based on individual coefficient. Real axis
is divided into two decision regions (Figure 4.3). If the received coefficient r falls in
Region 1, it is decided the transmitting signal x comes from set 1. Otherwise it is
assumed it comes from set 0. In the example discussed in Section 4.1.1, if a received
sequence pattern is [set 0, set 0, set 1, set 0, set 0], which is more similar to pattern
A (2 coefficient difference) than to Pattern -A (3 coefficient difference), the decision

is made in favor of bit value 1.
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Set | Set0 Set 1 Set0 Set |
Region 1 Region | Region 1
Region ( Region 0
Detection Region for Set |~ Delection Region for Set 0

Figure 4.3 Hard decision region

4.1.4 Maximum Likelihood Detection
The above simple detector makes decision based on the individual coefficients.
Detection reliability can be enhanced using a soft-decision detector.

Denote r as the received coefficient after Gaussian channel transmission, noise
n ~ N(0,07%). The ML likelihood ratio [48] is

Pz €set 1r) (4.6)
~ Pz €set Ofr) ‘

In those two sets, there are infinite transmitting signals. Denote any element

in these two sets as £ (set 1) and 7 (set 0), and rewrite the above equation,

_ Zfseset 1P(f|7’)

B S et 0 P o
Using
PO
and
_ P(r)f(r|7)
P(r|r) = TR (4.9)
Equation (4.6) becomes
Peeset 1 PE)F(r]E)
R — eese . .
S eset 0 POVTC) 10
Gaussian noise probability density function is
F0r1) = —— - exp =28 (411)

202
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The original coefficient ¢ is uniformly distributed, its probability density

function f(c) = i, ¢ ~ U(—a,a). After embedding information bit value 1, the

calculation of the probability of the transmitting signal P(&) is depicted in Figure

4.4. Note the probability pulses at the end points. They are transmitted with

greater probability because any ¢ out of the set 1 is replaced by the end points.

~(-r)?
2. PO 3 o e dE
ceset 1
1 d+d1/2 -4 o
+m 2a e +’213 flll1 2251 32ddl1 \/217 207 dE+ . (4.12)

d+d1/2

Figure 4.4 Calculation of ML ratio

In the similar manner, 3°__cot o P(7)f(r|7) can be calculated and yields a result
similar to (4.12). Still a closed-form result of ML ratio can not be obtained. The ML
detector is also too computation expensive. Besides, the detector needs the value
of the noise power o2, which is usually unavailable at decoder. The ML optimum
detector is infeasible in practice.

The challenge in the decoding is that the transmitting signals could be any value
belonging to these two sets. The ML ratio calculation thus involves all elements in
set 1 and set 0. A way to simplify detection is to assume transmitting signals finite.
In the following suboptimal methods, the transmitting signals are assumed discrete

instead of continuous.
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4.1.5 Suboptimal Detection
In the first suboptimal detection, the transmitted signals are simply assumed at the
center of the continuous segments, the signaling is a pattern like xoxo as depicted in
Figure 4.5. Signal points x and o are transmitted with equal probability.

After approximation, the ML ratio can be expressed as:

P(x € set 1|r)

It= P(z € set Olr)

(4.13)

Still there are many x and o points to be considered.
Simulation studies demonstrate that it can be further simplified by merely
considering the nearest x and o points (See the Section 4.2). Thus, (4.13) reduces to

P(rlx = u)

p=-_Tr=4
P(rlz =v)’

(4.14)

where /v is the nearest transmitting points x/o in set 1 and set 0.

Now the suboptimal detector is in a form of minimum distance detector. Only
the nearest transmitting points are considered due to their higher transmitting proba-
bilities.

Some other assumptions result in a different form of suboptimal detectors. In
Figure 4.4, it is observed that the endpoints are transmitted with higher proba-
bilities because those original coefficients not in the two sets are replaced by the
end points. Another reasonable approximation assumes the transmitted signals have
xx00 pattern as shown in Figure 4.6.

In that case, it is reasonable to assume that only the nearest end points are

considered as transmitting signals, that yields the same results as (4.14).

Set 1 Set 0 Set 1 Set 0 Set 1

Suboptimal Detection 1

Figure 4.5 Suboptimal detection 1
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Set 1 Set 0 Set 1 Set 0 Set |

Suboptimal Detection 2

Figure 4.6 Suboptimal detection 2

In the example mentioned in Section 4.1.1, suppose a 5-coefficient sequence r
is received. The nearest x and o points to r; are located and denoted as u; (in Set
1) and v; (in Set 0). According to the given patterns (A and -A), two corresponding

sequence candidates are constructed,

{ Pattern A type:  a = [ug, v1, us, v3, Uy (4.15)

Pattern -A type: b = [vg, uy, v, uz, v4]
If ||[r — a]| < [|r — b]|, the received sequence is more similar to the Pattern A,
bit value 1 is decided; Otherwise, bit value 0 is decided.

The two suboptimal detectors demonstrate different performance.

4.1.6 Experiments and Results

To evaluate this set partitioning scheme, the extracted Bit Error Rate (BER) in
Gaussian noise environment versus the distortion introduced is measured. The
Signal-Noise Ratio (SNR) is redefined as the ratio of the distortion energy S over

the noise power o?.

SNR =2 (4.16)

o2

The three detectors are compared. One information bit is embedded into an
11-coefficient sequence (Fig. 4.7). The ratio is selected d/dl = 1. The result shows
that suboptimal detector 2 outperforms suboptimal detector 1. Further simulation
shows decoding performance in suboptimal detector 2 is almost the same as the
ML optimum detector. Both suboptimal methods far outperform the hard decision

decoder.



54

It is observed that BER-SNR is different for different d and d1 values. The
determining factor is the ratio d/d1, not individual values of d or d1. Figure 4.8 is
the result of embedding 1 bit in an 8-coefficient sequence.

In practice, an accurate prediction of the channel noise property may not be
known in advance. However, data hiding seldom works at higher SNR, usually
SNR < 1. Embedding distortion is not expected to be larger than the moderate or
severe compression distortion. Therefore, smaller d/d1 is more favorable in appli-

cations. That implies the smaller d/d1 is more reliable in noisy scenarios.
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The set partitioning scheme may be used in place of the SS modulation in
various watermark domains. It shows great advantage in host noise suppression. In
image data hiding experiments, information bits are embedded in the DFT amplitude
domain. A pattern is embedded in the medium frequency coefficients. Total 64 bits
are hidden in a 256x256 images. Experiments demonstrates its robustness against

common compression and other attacks.

4.2 QIM Embedding and Detection
Chen and Wornell et al. [12, 11] applied dither modulation technique as a special
case of Quantization Index Modulation (QIM) for oblivious watermarking. It can

achieve more reliable extraction without referring to the original cover signal.

4.2.1 QIM in Oblivious Data Hiding

In the SS modulation schemes, a fixed watermark signal is superimposed on the
original signal. The set partitioning scheme modifies a coefficient only when necessary
thus minimizing the distortion. There are several approaches to hiding information
in the oblivious applications. The greatest challenge is that the original signal is
unknown. If a good estimate of the original signal is obtained, the detection reliability
will be boosted.

Given a received coefficient r, what is the original value? It is reasonable to
assume the original value must be close to r. A good estimate of the unknown
original is its quantized version Q(z,d) where 4 is the quantization step size. The
difference between the “estimated cover signal” and the received coefficient = is the

small value signal embedded which could be extracted as

s=Q(z,9) — x. (4.17)
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After fixing the signal extraction method, the corresponding invertible embedding
operator is not difficult to find as
r=Q(c+s,0)—s, (4.18)
where c is the original coefficient, x is the marked coefficient after embedding
and s is the watermark signal.

The invertibility of encoding and decoding can be demonstrated by the
following example. Suppose an antipodal signal s or —s is to be embedded
to hide information bit value 1 or 0. If the original value ¢ = 26.40, quanti-
zation step size 0 = 1.0 and watermark signal s = 0.25, the marked coefficient
r = Qc+s,0) —s = ((26.65,1.0) — 0.25 = 26.75. In a noise-free scenario, the
extracted signal is again s’ = Q(z,d) — x = 27.00 — 26.75 = 0.25.

4.2.2 Maximum Likelihood Detection in QIM
The embedding operator (4.18) and extraction operator (4.17) are invertible in noise
free scenario. The final decision could be based on the correlation value of the
extracted signal and the watermark signal. Yet it is far from optimum in noisy case.
Continue with the above example, suppose the bit value 1 is embedded, the
marked coefficient x = 26.75. After noise channel, if received value r1 = 26.51,
the extracted signal ' = Q(r1,d) — r1 = 0.49. If r2 = 26.49 is received instead,
s = Q(r2,0) —r2 = —0.49! r1 and r2 are quite close, nevertheless results in two
totally different extracted signals. The reason is that the quantization operation is
nonlinear and has discontinuity around the points xxx.50.
The quantization operator is not necessary. In this scheme, it is needed to
decide a received coefficient r comes from x points or from o points. The Maximum

Likelihood (ML) ratio is [48]
_ P(z € Set 1|r)
~ P(z € Set 0]r)’

(4.19)

If R > 1, the bit value 1 is decided; Otherwise bit value 0 is decided.
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The probability calculation is a little complicated. There exist many signal
points corresponding to one information bit. On a received coefficient r, it is known
that the transmitted signal = could be xxx.75 or xxx.25. Suppose r = 6.30 is received,

all the possible transmitted signals can be divided into two sets.

Set 1: {6.75,5.75,7.75,8.75,4.75, ...} (4.20)
Set 0: {6.25,7.25,5.25,8.25,4.25, ...} '
Set 1 represents information bit value 1; Set 0 represents bit value 0.
If the noise is Gaussian distributed, its pdf is
1(0) = —A—exp(55) (4.21)
T) = . .
QWanp 207
The probability P(x € set 1,7) can be calculated as
P(x € set 1jr)P(r) = P(r =6.30jz = 6.75)P(z = 6.75)
+P(r = 6.30|x = 7.75)P(x = 7.75) (4.22)
+P(r = 6.30|x = 5.75)P(z = 5.75) V=
+...
P(z € set 0|r)P(r) can be obtained as well.
Assume the probabilities for all transmitting signals are equal
Pz =6.75) = P(x = 6.25) = P(x = 5.75) = ... (4.23)
Equation (4.19) can be reduced to
P(r=6. = 6.75 P(r =6. = 5.7
5 Plr=6.30lc = 6.75) + P(r = 6.30[c = 5.75) + (4.24)

P(r =6.30lx = 6.25) + P(r = 6.30|z = 7.25) + ...

The above equation involves many terms, no closed-form result can be obtained.

The dominating element in each set is defined as leader. In the above example, the
leaders in Set 1 and Set 0 are u = 6.75 and v = 6.25. They are the most likely

candidates. If all the remaining terms are neglected, the ML ratio (4.24) becomes

o Plriu) _ ep[Z50)
P(rlv)  exp[==2l]

o
202

(4.25)
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Simulation shows the above is a good approximation for Gaussian noise
environment.  The result is similar to that obtained above in set partitioning
calculation.

In fact, the idea of QIM has long been used in some watermarking algorithms.
It is similar to the parity manipulation schemes. Some schemes in this category
modify the parity of an integer coefficient ¢. For example, ¢ can be modified to
an even number to embed bit value 1, or to an odd number to embed bit value 0
[2]. In fragile watermarking, the DCT coefficients are modified in a similar way for
image authentication [100]. Its embedding procedure is, in essence, the same as QIM
scheme. The detection used usually is hard decision detector, i.e. a majority vote.
In the above example, if even integers out-count odd ones, bit value 1 is decided;
Otherwise it is decided 0. It is inferior to the above soft decision suboptimal detector.

Figure 4.9 depicts the comparison results of the detectors: majority vote
detector, correlation using quantization operation and soft decision detector. The
original coefficient ¢; is Gaussian generated with variance o = 80. The soft decision

detector yields the better result over the other two.
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Figure 4.9 Detection performance in QIM
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4.2.3 Performance Analysis
From the above analysis, it is found that the QIM scheme is superior to the SS
modulation in oblivious applications. Chen et al. [11, 12] pointed out that BER in

QIM is calculated as

BER = Q(%)‘ (4.26)

where d is the distance between the x and o points, o is the noise variance
value.

The analyzed BER value is the same as the non-periodic antipodal commu-
nications cases. This is true only when the SNR value is very large. In most data
hiding applications where SNR is usually low, this periodic scheme is far from the
non-periodic scheme. BER in the non-periodic antipodal case is simply given by
(4.26).

The BER in QIM case is the shadowed area in Figure 4.10,

1 (z+d/2)? 21 (z+d/2)?
e dx + e
Vool 20 ¢ Voo 20

X

do+ ... (4.27)

0
BER = /
—d

y
Z
4

(a) Periodic Signaling (b) Non-periodic Signaling

Figure 4.10 BER calculation in QIM and antipodal case

The gap between QIM and antipodal cases is depicted in Figure 4.11. In the
antipodal case, the transmitting signals are fixed, s or —s. While in the QIM case,
there exist many transmitting signals, the decoder never knows for sure which is
the transmitted signal and has to “guess” one (the nearest one in the suboptimal
detectors). The performance degradation can be regarded as a price paid for the

“uncertainty” at decoder.



60

04t B

o

w

53
T

o
w
T

QIM case

Bit Error Rate (BER)
o
o
w
T

o
N
T

o
[
T

Antipodal Case

2
8NR {linear scale)
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4.2.4 Comparison With Set Partitioning

The QIM scheme can be viewed as a special case of the proposed set partitioning
scheme in Section 4.1. The latter provides the flexibility to choose different d and d1
values. The ratio value d/d1 has different implications in practice. The performance
with different d/d1 ratio values is compared with the QIM scheme (Figure 4.12 and

Figure 4.13).
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Figure 4.12 Performance at lower SNR
Observe the BER-SNR curves for d/dl = 1, at lower SNR where most data

hiding applications are employed the improvement over QIM is noticeable. One may
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notice that with fixed average distortion energy, the set partitioning scheme has
larger maximum distortion amplitude. Even considering this, at a given maximum
distortion (that implies higher distortion energy in QIM), simulation studies show
the set partitioning scheme is still superior to the QIM. This is a quite effective

oblivious hiding scheme.
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Figure 4.13 Performance at higher SNR
Note that at different SNR the comparison result is different. Figure 4.12 and
Figure 4.13 show that the smaller d/dl performs better at lower SNR. At higher

SNR, larger d/d1 is more advantageous.

4.3 Limitations of Set Partitioning
As seen above, the set partitioning scheme is powerful in oblivious data hiding. The
QIM periodic scheme can be regarded as a special case of this approach. Nevertheless,
it has several limitations in watermarking applications. The latter just divides the
data into two sets and there is no other constraint for the set signaling. For example,
usually the relative distortion is much more important than the absolute distortion
for human perception. The set can be design with more distortion at the high value

end.
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Both the encoder and decoder know the set signaling. Once the signaling of
the two sets is known, it is not difficult to remove the watermark. To enhance the
security, the signaling scheme should be kept secret. Ramkumar and Akansu et al.
[72] proposed a QIM like scheme with a known signaling and a random transform.
Without knowing the transform, it is more difficult to remove the watermark. One
side effect is that in a random transform domain, it is difficult (if not impossible) to
control the artifacts.

An alternative is to introduce randomness into the signaling by shifting the
set signaling. For example, instead of modifying the original coefficient ¢ to comply
with a set pattern, the value of ¢ + p can be modified so that it complies with the
same pattern where p is a random variable. This may in some degree enhance its
robustness against attacks.

Even with the suitable transform, it is still a little difficult to control the
artifacts. In the cases where the signaling is adaptive to some perception control (for
audio signals, the permitted distortion in every subband is different), the decoder
should know the signaling change as well. Since the encoder has no way to notify
the change, the decoder has to “guess” the signaling used at encoder. This greatly
increases the computation complexity at decoder. A more severe problem is that
after sever compression, the signaling scheme estimated by decoder may be different
from the one used in data embedding. The message extraction is sensitive to this

“set signaling error”.



CHAPTER 5

CONTENT PROTECTION IN AUDIO SIGNALS

In the previous chapters, multimedia data hiding in general is studied. In this
chapter, data hiding applications in audio signals are explored, and several algorithms

for compression-resistant hiding schemes are investigated.

5.1 Introduction to Audio Compression
In compression resistant data hiding design, it is important to understand the
compression algorithms. Better understanding of the compression can lead to a more
robust and effective scheme. In this section, popular audio compression schemes are
reviewed. The current multimedia compression methods can be roughly categorized

into three groups, waveform approzimation, perceptual coding and parametric coding.

5.1.1 Waveform Approximation Coding

The goal of the waveform approximation is to construct a compressed version closest
to the original waveform at a given bit rate. In other word, it aims at the highest SNR.
Usually, none or only very little perceptual knowledge is employed. One example is
the Adaptive Differential Pulse Code Modulation (ADPCM). Other examples include
speech type narrow-band audio signal compression G.721 and G.723.

The schemes are also used in image compression where most schemes are after
the highest SNR. In current popular schemes, wavelet, sub-band or other various
filtering techniques are exploited to reduce the redundancy without much consid-
eration of the Human Visual System (HVS). Lots of research is focused on quanti-
zation procedure after filtering. Zerotree [82], SPTHT [79] are some of the recent
achievements. In JPEG compression, basic human perpetual knowledge (human
eyes are more sensitive to low frequency components than to the high frequency

ones) is considered in Q-table design. Still it is very simple and crude.

63
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This kind of compression is based on information rate-distortion theory.
MPEG-1 and MPEG-2 video compression and various image compressions fall into

this category. The compression noise introduced is usually not very large.

5.1.2 Perceptual Coding

Perceptual coding is widely used in well-advanced audio compression. An outstanding
example is the advanced audio compression MP3 which is ubiquitously used in
Internet transmission and storage.

It was realized that the waveform approximation coding schemes were not
successful in audio applications. The reason is multi-fold. The audio signal is “hard”
to compress. It is a kind of non-stationary signal, or at most a quazi-stationary signal.
Secondly, people do not measure “audio quality” by “square error” and Human Audio
System (HAS) is much more sensitive than the Human Visual System (HVS).

To obtain high coding gain, popular audio compression schemes such as MP3,
MPEG-2 AAC-2, and Dolby AC-3, NTT Twin-VQ, etc., all explicitly make full use
of the human psychoacoustic model. There have already existed several effective
psychoacoustic models. These models which are best described in transform domain
are used in quantization operation to shape the compression noise. Compared with
the waveform approximation, the compression in this group is much more efficient.
Although compression in this group is based on human perception, it uses quanti-
zation error as a distortion measure. In contrast, parametric coding does not use the

error as a quality benchmark.

5.1.3 Parametric Coding
Parametric coding is a complicated technique in audio compression. Some schemes
of this kind are standardized, for instance, in MPEG-4 parametric coding [1]. The

compression might achieve very high compression rate.



65

The basic principle in the compression is not to “encode” a signal but to
“describe” the signal. The original signal is analyzed and the parameters describing
the signal are extracted. These parameters are then encoded and transmitted. At the
decoder side, the audio signal is reconstructed with these parameters. Its waveform
may not be close to the original, and SNR may be very low. Still it presents the

same perceptual effects as the original.

Signal /?jnalysis Parametric Signal Reconstructed
an . . .
Parameter Extraction Encoding Synthesis Signal

(a) Parametric Encoder (b) Decoder

Figure 5.1 Audio parametric coding

The encoder is composed of two parts, parameter extraction and parameter
encoding. The most complicated part is model-based parameter estimation. There
are several models underlying the compressions.

In the audio analysis, several different models are studied for parameter
estimation. In MPEG-4 parametric coding [1], the Harmonic and Individual Lines
plus Noise (HILN) tool is adopted for audio parametric coding. In this model, signal
is regarded as a combination of harmonic component (one fundamental frequency and
a couple of harmonic components), individual frequency lines and noise component.
It is claimed suitable for less complicated audio signals. An advanced audio signal

is modeled as [56, 94, 95]
Audio=Sines + Transients + Noise

The sinusoidal waves are the most significant components in the audio signals.
The transients are broadband signals that do not have tonal peaks. They are also
referred to as attacks in audio compression. The last significant component is noise.
It is claimed this compression achieves the same perceptual effect at same bit rate
compared with most complicated perceptual coder MPEG-2 AAC. This model will

be revisited in some length in Section 5.7.



66

5.2 MP3: A Typical Perceptual Audio Compression
MP3 (MPEG-1 Layer III) is a widely used audio compression algorithm. It has
become the standard in audio signal transmission and storage.

As a typical perceptual coding scheme, MP3 is composed of several blocks
(Figure 5.2). The time-domain waveform is transformed to the subband domain
to remove the redundancy. The input signal also goes through psychoacoustic
analysis. The output is used to shape the quantization noise according to the masking

threshold curve. The final stage is bitstream formation.

PCM Input Time-Frequency Quantization Bitstream Encoded
Filter Mapping Bit Control Packing Bitstream
Psychoacoustic
Model Calculation

Figure 5.2 A typical audio perceptual compression block

5.2.1 Sub-band Filtering and MDCT

The MPEG-1 layer III is an extension of the MPEG-1 layer I and II. In the layer I
and II, a polyphase filter bank is employed for time-frequency mapping. The filter
bank is composed of 32 filters, each with equal bandwidth. In Layer III, each output
channel is further subdivided into 18 bands via a windowed Modified Discrete Cosine
Transform (MDCT) for a better frequency resolution.

A fine frequency resolution is preferred for signal redundancy reduction, which
favors the long transform length selection. On the other hand, for the attack
signals (transients), quantization using long transform length tends to produce some
“spreading” effect in time domain. This makes the attack signal not so “crisp”.
It is well known that the fine time resolution and frequency resolution can not be

achieved simultaneously. The transform length should be adaptive. For a stationary
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signal segment, long block is used. If an attack is present, short block should be
used instead. The decision to switch between long and short transform is based on

perceptual entropy first proposed in [47].

subband 0 MDCT 18
Poly-
Phase subband 1 MDCT 18
Fﬂter subb:amd 2 MDCT 18
Bank ) .
subband 31 MDCT 18

Figure 5.3 Subband filtering and MDCT

5.2.2 Frequency Masking

Human psychoacoustic model plays a very important part in perceptual coding.
The psychoacoustic studies have made significant progress in characterizing human
auditory perception and several perceptual models have been developed and applied
in audio coding.

Both subjective experiments and studies show that human ears perceive the
audio signal within an interval of time. The perception procedure is analogous to
the short-time spectral analysis. Distinctive regions in the cochlea perceive different
frequency components. These frequency partitions are called critical bands.

People tend to “mix” the effect of the frequency components in one critical
band. The subjective response to the components out of the critical band is abruptly
changed. Empirical work shows the human audible frequency range is divided into
23 ~ 27 critical bands, each with different bandwidths. The critical bandwidths

are increasing towards the high frequency end. The distance of 1 critical band is
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referred to as 1 bark, which is a nonlinear measure scale used in psychoacoustics. An

empirical formula to convert from Hz to Bark scale is

z(f) =13 - arctan(0.00076 f) + 3.5 - arctan|( )?] (Bark) (5.1)

7500

Human frequency masking takes place for inter-bands and intra-bands. Simply
put, a component (masker) can “mask oft” another component (maskee), rendering it
less audible. Above some threshold value, the masker completely masks the maskee,
making it inaudible. The audibility masking value is called masking threshold, which
is not only related to the loudness of the masker, but also to the “tonality” of the
masker. Psychoacoustic experiments reveal that the SMR (Signal-to-Mask Ratio) of
pure sinusoids is much larger than that of the white noise signal. In other words, a
noisy component is a better masker than a tonal component. If the compression noise
is completely under the “masking threshold curve”, it is inaudible. The psychoa-
coustic output is used to control the quantization procedure.

Masker

Absolute
Threshold

s

Sound Pressure Level (dB)

Frequency (Hz)

Figure 5.4 Frequency masking effect

The psychoacoustics analysis in MP3 compression is a quite complicated
procedure.  The Hann-windowed FFT complex spectrum of the input signal
is calculated. Then the unpredictability, which is a rough tonality measure is

calculated. The frequency bins are grouped into threshold calculation partitions
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which are approximately one-third Bark band scale. The signal energy in each
partition is summed-up. With the obtained unpredictability measure, the parti-
tioned energy is convolved with the spreading function which models the natural
excitation spreading along the basilar membrane in the cochlea. Subsequently, the
actual energy threshold in one band is calculated and spread over all FFT lines.
Considering absolute thresholds, the final energy threshold of audibility is obtained.
Regrouping the threshold values into scale factor bands (frequency bins in a same
band share a same scale factor, resulting in an equal quantization resolution), and

the distortion threshold ratio is therefore obtained.

allowed distortion energy
r= : (5.2)
scale-factor band energy

Figure 5.5 is a psychoacoustic analysis output in one granule. It is used in the

subsequent quantization and quantization iteration processing.
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Figure 5.5 Scale-factor band distortion ratio

5.2.3 Temporal Masking

Temporal masking is the masking effect taking place in the time domain. HAS
system perceives the audio signal in an interval of time. The perceived effect is a
“sum-up” effect during the interval. The masker has both pre-echo and post-echo
effects in the time domain as depicted in Figure 5.6. The masker masks off the signal

whose londness is under the audibility threshold curve.
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Please note the masking effect is different in pre-masking and post-masking
regions. The pre-masking only lasts half a dozen milliseconds while post-masking
can extend to 50 ~ 300 milliseconds depending on the londness and duration of the

masker. Usually, only “pre-echo” effect is considered in compression.
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Maskee 60
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Masker
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Figure 5.6 Temporal masking effect

The temporal masking effect is studied in audio coding to address the so-called
“pre-echo” problem. Although the compression noise in frequency domain can be
well shaped by employing the frequency masking property, it is difficult to control
the quantization noise in time domain. In the transform coding the quantization
noise spreads in the time domain within the transform block, which could result
in audible compression noise. This only happens at attack (transient) signals, for
instance, a castanet, or the beginning when a key is stricken. Based on temporal
masking property, the common remedy is the selection of sufficiently short transform.
MP3 adopts transform length switch to solve the problem. The transform in MP3 is
adaptive to the signal property. Most of the time the signal is regarded as stationary.
Long transform length is used for fine frequency resolution (thus higher coding gain).
At the time of the signal abrupt change (transients), a short transform length should
be used to prevent pre-echo artifacts. The switch decision depends on perceptual

entropy [47] and it must be gradual for the perfect reconstruction purpose [44].
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5.2.4 Quantization and Distortion Control

The MDCT coefficients are small floating-point numbers. All is multiplied by a
global gain. Besides, every MDCT coefficient in one scale factor band is multiplied
by a common scale factor. The MP3 quantization procedure is composed of two

loops ——- inner loop for bit rate control and outer loop for distortion control.

o Inner Iteration Loop: After quantization, the coefficient values are Huffman-
coded. If the bit consumption is larger than the bits available, the global gain
is decreased by one step size so that quantization noise is increased and the
bit consumption is decreased. The operation repeats several times until the bit

consumption is less than the bits available.

o Outer Iteration Loop: After the inner loops, the quantization noise is calculated
in each scale factor band. If the noise is larger than the permitted distortion
obtained out of the psychoacoustic analysis, this scale factor in this band
is increased, resulting in finer quantization and less distortion. The re-

quantization goes on until the noise is completely masked off.

This quantization operation is quite complicated. Usually, it takes 12-17 loops
to finish it. It is possible that the rate and distortion requirements might not be met
at the same time. The iteration should be terminated according to other conditions,
for example, after a given maximum loops. The coding bits needed are not the same
for different segments in an audio signal. To absorb bit consumption imbalance, “bit
reservoir” technique is employed. The current frame is permitted to “borrow” bits
saved from past frames, if necessary.

Figure 5.7 depicts the flow chart of MP3 compression. The real compression
operation is quite complicated and is composed of the block and window length
switches and other algorithms for effective stereo signal coding. For more detailed

description on MP3, refer to [10, 23, 65].



PCM Input

' !
PolyPhase Hann-Window
Subband Filter FFT Analysis

Windowed Block Psycho-
MDCT Switch Acoustics

Outer Loop Begin

Quantization

Huffman Coding

Coarser
Q Stepsize

? —

Modify scaleband
with more than

allowed distortion

Distortion allowe
in all bands ?

BitStream
Formatting

Bit budget
< Available bit -
- N

Quantization
Iteration

Figure 5.7 MP3 encoding flow chart

5.3 Amplitude Modulation Data Hiding

72

The spread spectrum modulation can be extended to audio applications as well [28].

In this section, this technique in audio data hiding is employed and some results are

presented.

5.3.1 Hiding and Extraction

The data hiding scheme is the direct extension of the SS modulation widely used in

image and video applications. A small valued PN sequence is embedded in the
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original signal. Suppose one information bit is to be embedded in a coefficient
sequence x. The embedding procedure used is deep embedding

) = { x; + w;|z;|ay, to embed bit value 1 (5.3)

x; — wi|z;|ay, to embed bit value 0

where w is a random bipolar sequence (w; is either -1 or +1) and «; is the
threshold ratio.

The watermark domain could be the subband domain or other transform
domains. It is advised that the watermark domain should facilitate distortion
control. If the subband domain is used, the same psychoacoustic model used in MP3
compression can be applied in the artifact control.

The output of the psychoacoustic model analysis is the energy threshold ratio

r; in one scale factor band. The amplitude threshold ratio should satisfy
a; < T (5:4)
It is realized that the psychoacoustic model used in the compression is not quite
accurate in data hiding. The energy distortion control does not imply that artifact
is inaudible as long as the energy in the critical band is unchanged. Although people
tend to “mix” the frequency components in one critical band, distortion may still
be perceived. That means the amplitude modification must be sufficiently small. In
practice, the selection of the value «; should be smaller than |/7;. In the sensitive
low frequency range, a; should be further tuned.
Given the random seed, the decoder generates the random sequence w. The
correlation detector output is
N-1 /1 N—1 N-1
g= > rw, =Y zwi+ Yzt Y |z, (5.5)
i=0 i=0 i=0 i=0
where r; is the received coefficient and n; is the channel noise. If ¢ > 0, the

decision is bit value 1; Otherwise bit value 0 is decided instead.
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It should be noted that the watermark domain selection is not limited to the
subband decomposition used in MP3. The same principle could be applied in DFT
domain or other transform domains, for instance, the transforms used in MPEG-2

AAC or Dolby AC-3.

1 (a} Original Signal

-1k (b) Signal After Embedding

=)

(c) Watermark Signal

~3l. s 1 . o
o 02 0.4 06 2.8 1 1.2
Time (second}

Figure 5.8 Amplitude modulation data hiding

5.3.2 Experimental Results

Mono music clips sampled at 44.1kHz are used in the experiments. The information
bit is embedded into the MDCT coefficients from scale factor bands 6 to 18 which
correspond to frequency range from 1kHz to 10kHz. To decrease the artifacts, the
threshold «; is selected smaller than /r; in the same scale factor band. In the
sensitive bands from 1kHz to 3kHz, «; is further tuned to reduce artifacts.

Given a received coefficient r, the normalized detection output is obtained as

q= iﬁz (5.6)

One information bit is embedded every granule (576 samples) of a mono audio

clip. Figure 5.9 depicts the different ¢ distribution after embedding bit value 1 and
0. The message extraction may not be sufficiently reliable due to the host noise

interference. Some ECC code can be used to enhance its reliability.
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The main advantage of this scheme is that the psychoacoustic model can be

explicitly employed to control the artifact.
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Iigure 5.9 Normalized detector output distribution in amplitude moduiation

5.4 Phase Modulation Data Hiding
In music signal perception, it is well known that human ears are more sensitive to the
amplitude than to the phase. The most significant components are signal frequencies
and amplitudes. The signal amplitude spectrum contains more significant infor-
mation than the phase spectrum. Data can be hidden in phases with less artifacts

[28].

5.4.1 Hiding and Extraction

Bender et al. [7] proposed a scheme to hide information into the DFT phase. First,
the audio signal is divided into frames and Discrete Fourier Transform (DFT) is
applied to each frame. Second, the DFT phases in the first frame are modified while
the phases in the following frames are modified, respectively. Nevertheless, the phase
difference (relative phase) is kept unchanged. This procedure is repeated on the audio

stream.
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Although the phase is believed to be less significant perceptually, people are
still sensitive to the phase continuity between frames. In the above scheme, the frame
continuity is destroyed when the next bit is to be embedded. This may result in a beat
pattern. The abrupt phase change modifies the signal spectrum. Informal listening
tests show that small modifications in DF'T phase are inaudible. This property is
exploited for data embedding.

To directly employ SS modulation in the phase domain is not successful as the
original host noise is quite large. The nonlinear schemes discussed in Chapter 4 are
more effective. For instance, the Quantization Index Modulation (QIM) [12] can be

applied in phase domain. Figure 5.10 depicts the phase QIM signaling.

S
Y

Figure 5.10 QIM in phase modulation

In this scheme, the original DFT phase value 6; at one frequency bin is replaced
by the nearest x point (to hide bit 1) or the nearest o points (to hide bit 0) on the
unit circle. To embed one bit in a phase sequence, deterministic patterns are defined
to represent bit values. For example, for a 4-coefficient sequence embedding, two
patterns similar to antipodal signaling can be defined:

{ Pattern  A: [x 0 x 0], represent bit value 1 (5.7)

Pattern -A: [o x 0 x], represent bit value 0
To hide a bit, 6; is modified to comply with pattern A or -A.
Obviously, the DFT phase noise is much larger if the corresponding amplitude
is smaller. A simple suboptimal detector is a weighted minimum distance detector.

Denote the received DFT amplitude and phase as r; and ¢;, respectively. Find the
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nearest x and o points «; and f3; to ¢; and construct two sequences according to these

two patterns:

{ u=|ag, B, a, G (5.8)

v =By, an, B2, o]

If Yri(oy — ¢0)? < Sri(Bi — ¢)?, decision is bit value 1; Otherwise bit value 0
is decided.

The distortion introduced is determined by the phase difference d between x
and o points. Smaller value of d is selected at the sensitive frequency bands while
larger value of d may be used at high frequency bands. After embedding, the DFT
phases are fixed at x or o points. To introduce randomness, the value of ; + a; is

replaced by the x or o points where «¢; is a random shift value.
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Figure 5.11 Normalized output distribution in phase modulation

5.4.2 Experimental Results
In the experiments, DFT length is 512 and the DFT phases from 1kHz to 8kHz
are changed. The value of d; varies from 7/12 to 7/4. To measure the embedding

performance, the normalized correlation output is defined as

_ <rllu—wi? v - w2 >

- ] ’ (59)

1
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where w is the received phase sequence and u and v are given by (5.8).

The above can be regarded as the normalized distance detector. The statistical
distribution of ¢ is shown in Figure 5.11. Experimental results indicate that this
scheme is effective in oblivious applications. The audio quality is preserved at
relatively lower SNR than that in amplitude modulation. The main disadvantage is

that accurate distortion is difficult.

5.5 Noise Substitution Data Hiding

Message can also be hidden in the noisy component in audio signals [28, 33].

5.5.1 Perception of Noise Components

The audio signal had long been regarded as combination of sine waves in the computer
music studies. X. Sierra [84] was among the first to introduce noise component in
computer music. Lack of noise component makes vhe music “unnatural” (A good
example of noise is the breathiness of a flute). Noise component is also perceptually
significant.

In the advanced audio analysis model, noise component is indispensable. In
the HILN model [1], signal is modeled as harmonic+individual sines+noise.
Another influential model is sines+transients+noise [56]. Some studies argue
that for noise components, what is significant is not the fine frequency structure in
noisy bands, but the noise energy shape. The noise energy shape can be described
by its DCT coefficients [1] or by a source filter model. A commonly used model is
the Linear Predictor (LP) filter.

Goodwin et al. [35] proposed the Equivalent Rectangular Band (ERB) noise
modeling. The authors claimed that the energy in ERB is more important than the
noise spectral shape. People do not resolve the fine frequency structure in a noisy

band, only a “mixing effect” is felt.
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Recently, Levine et al. [56] and Verma et al. [94] proposed a similar approach
Bark Band Noise Modeling. In noisy bark bands, only the noise energy gain is coded
and transmitted. The reconstructed noise spectrum is flat over the frequency range
of each bark band. The authors claimed higher quality compared with DCT spectral
envelope and LPC-smoothed representations.

This idea can also be used in audio compression. Fine spectral structure in
noisy bands need not to be encoded. The noise energy gain is adequate. In MP3,
all the MDCT coefficients are encoded, including the higher frequency ones. This
property can be employed to embed messages in these noisy bands. This is noise

substitution.

5.5.2 Experimental Results

The noisy components can be modified in message embedding, while the energy
gain in noisy bands is kept constant. There are many approaches meeting this
requirement. One simplest method changes the sign of those coefficients z;’s in noisy

bands by a random pattern. The hiding procedure is

(5.10)

1

o = pilz;|, to hide bit value 1
"1 —pilz;], to hide bit value 0

where p is a bipolar random sequence and p; is either —1 or +1.
The information bit is extracted via correlation. Given a received sequence r,

the decoder output statistic is
N-1
q= Z TiDi- (5°11)
=0
If ¢ > 0, the extracted bit value is 1; Otherwise bit value 0 is decided.
To accurately distinguish the noisy bands from non-noisy ones is not an easy
job. Not all high frequency coefficients are noisy, some may be the high frequency

components of a transient signal. It is reported that over 80% of the high frequency

coefficients are “non-edged”. Several complicated algorithms are proposed in [81] to
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make a distinction between noisy and non-noisy bands. In experiments, for simplicity,
the frequency bands over 5kHz are regarded as noisy. Informal listening test shows
it is a reasonable assumption.

This method could be applied in different watermark domains. It is advan-
tageous to match the compression decomposition. Because in compression quanti-
zation procedure, a small value coefficient might be quantized to zero, nevertheless it
never inverts its sign. This sign conservative property promises its robustness against
the very compression.

The noise substitution is not robust against low-pass filtering, and it may
not survive the next-generation compression where noise substitution technique is
used. Nevertheless it survives current perceptual compression schemes, such as
MP3. Experiments show those methods can reach around 20 ~ 60 bits/second

hiding capacity.

5.6 MP3 Compression and Encryption

Besides watermarking, encryption is also widely studied and deployed in multimedia
protection. It is often used in multimedia email, teleconference to prevent unauthorized
access to the multimedia contents. Multimedia signal scrambling is different from
the general data encryption that involves extensive computation [22, 63]. Two
important considerations are efficiency and security. The former requires real-time
operation of the decryption process. This is different from the data unscrambling
where off-line operation is acceptable. The security requirement is not as rigorous as
that in data encryption. Feasible solutions are trade-offs considering these factors.

Current media encryption algorithms fall into two categories. One integrates
scrambling with source coding, viz., to scramble media content before quantization
and coding. The other scrambles compressed bitstream. Usually, it is desired that

the encrypted output is bitstream syntax compatible. Some algorithms have been
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proposed and applied in video and image scenarios [68, 83]. In this section the

encryption schemes [32] in audio signals are discussed.

5.6.1 Encryption Integrated with Source Coding
In this approach, the encryption is performed before quantization and encoding. A

widely used signal scrambling method is time-frequency permutation [17].

—{ H,® — 1. G@ [
L H@ [ | —

P(z)

lhel—  — Y A -
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Encryption (at Encoder Side) Decryption (at Decoder Side)

Figure 5.12 Time-frequency permutation

Figure 5.12 shows the block diagram. P(z) is a permutation function and its
inverse function is P(z)~". Its effectiveness has been proved in practice and can be
applied directly in the MP3 MDCT domain. The side effect is that the random
permutation changes the coefficient distribution property and renders the Huffman
table non-optimal. The scrambling also destroys the correlation between contiguous
granules. These result in lower compression rate.

There does not exist an easy solution. A possible remedy to enhance Huffman
coding efficiency is to divide the frequency range into several bands, only permute
coefficients within a band. It keeps the coefficient distribution property to some
degree at the price of compromised security.

In addition, for a stereo signal, the coefficients in one granule can be further
permuted between two channels. For most music materials, it is reported that the

left and right channels in a stereo source have little correlation [41]. Thus, swapping
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the data in these channels completely destroys the content. This increases encoding

(decoding) latency and memory requirement.

(B) Granule Order After Shuffle

Figure 5.13 Stereo signal granule shuffle

5.6.2 MP3 Bitstream Syntax

In MP3 compression, the sign and amplitude of MP3 MDCT coefficients are coded
separately. The total coeflicients are divided into 3 regions: big-value region, small-
value region and zero region. The big value region at low frequency end is further
divided into 3 sub-regions where different Huffman tables are used. The small-value
region is composed of coefficient values of +1, —1 or 0. Each codeword represents a
pairs of contiguous coefficients in the big-value region or 4 coefficients (quadruple) in
the small-value region. The remaining coefficients are implicitly set to zeros (Figure

5.14).

I x|

[*II I ] IIll illlfl Il L 11 Frquency
M Y —— bin

sub-region 0 sub-region 1 sub-region 2 small-values zero-value

region region

big-value region

Figure 5.14 Partitioning of MDCT coefficients
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An MP3 frame is an independent decoding unit. Its header() specifies
important parameters for decoding operation, bit rate, sampling frequency, coding

mode, etc. The encryption should not change these fields.

audio_data()
{

main_data_begin

for (gr=0; gr<2; gr++)
for (ch=0; ch<nch; ch++) {
part2_3_length[gr][ch]
big_values[gr][ch]
global_gain[gr][ch]
scalefac_compress{gr][ch]
window_switching_flag[gr][ch]
if(window_switching_flag[gr][ch])
block_type[gr][ch]
mixed_block_flag[gr]{ch]
for (region=0; region<2; region++) {
table_select[gr][ch][region]
for (window=0; window<3; window++)
subblock_gain[gr][ch][region]
} else {
for (region=0; region<3; region++)
table_select[gr][ch]{region]
region0_count[gr][ch]
region!_count[gr][ch]
}
preflag[gr][ch]
scalefac_scale[gr][ch]
countltable_select[gr][ch]

}

main_data()

Figure 5.15 Side information in MP3 syntax
The audio_data() field provides the decoding control parameters and MDCT
data (main_data()). The first half of audio_data() specifies the side information
and main_data() is composed of the codewords and signs of the MDCT coefficients

(Figure 5.15).
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Although the length of a frame is constant at a given bit rate, bit consumption
for samples in one granule (576 samples) is variable. The “bit reservoir” technique
permits the current frame to “borrow” bits saved from past frames to absorb the
imbalance. The current frame data may locate in previous frames. The location

where the main_data() begins is determined by main_data_begin, a 9-bit offset value.

5.6.3 Encryption in Compressed Domain

In this section, discussion is focused on encryption directly on an MP3 bitstream. To
avoid confusing the decoder, the encrypted bitstream should comply with the MP3
bitstream syntax. According to different sensitivity requirements, three different
protection levels are provided: 1) slight protection, where the encrypted bitstream
presents a satisfactory music quality for a casual listener, although not good enough
for Hi-Fi reproduction. This can be used to generate different music versions for
casual users and professionals; 2) moderate protection, where the scrambled content
is meaningful and the main music features are kept with obvious degradation. This
can be used for customer evaluation. After test listening, customers could pay and
obtain a decryption key to recover the quality. 3) mazimum protection, where the
music content is completely destroyed, rendering the MP3 bitstream meaningless.
To be MP3 syntax compatible, the bitstream can not be simply scrambled, since this
generates an invalid bitstream and confuses decoder. And the file size should be kept
unchanged.

The selected Huffman table should not be changed. The minimum unit that
can be manipulated is a codeword (of a pair of coefficients in the big-value region or
quadruple of 4 coefficients in the small-value region). The encryption can work at the
following levels: codeword level, sub-region level and granule level. The scrambling

is one or combination of these strategies.
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At the codeword level, because the coefficient amplitudes and signs are
separately encoded, the codes can be permuted and (or) the signs be flipped by
a random pattern. While sign flipping can happen on any non-zero coefficient, the
permutation should be limited to codes using the same Huffman table for syntax
compatibility. For the coefficients whose amplitudes are greater than 15, the linbits
field can be scrambled without any constraints. At the sub-region level, the sub-
regions can be permuted. Respective permutation is also required for related side
information parameters, such as code counts and Huffman table index. At the
granule level, the granules inside a frame can be reordered randomly. The corre-
sponding parameters, such as part2_3_length, etc. should be shuffled for the integrity
of the granule. For different applications, special attention should be taken to meet
the degradation requirements.

Encryption with Slight Distortion

In the MP3 time-frequency decomposition, a fine frequency resolution is applied
at low and high frequency bands. At high frequency end, it is not quite necessary.
That gives us some room for manipulation. The noise perception property should
be used in scrambling. For example, the signs of the MDCT coefficients over 5kHz
can be flipped. The frequency shape in a critical band is unchanged. In addition,
these coefficients within one scale factor band can be permuted as the noise energy
gain is still kept. The modification is almost transparent for a casual listener. If
more distortion is permitted, the lower frequency coeflicients can even be permuted
or sign-flipped. This operation can be further tuned for specific requirements.

Encryption with Moderate Degradation

It is believed the frequency amplitude is more important than phase in audio
signal. However, sign-flipping of the non-noisy coeflicients introduces obvious degra-
dation. The permutation and sign-flipping can be used in this case. To scramble

medium frequency coefficients introduces obvious degradation. The audio signal
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spectrum has a wide dynamic range. To keep features of music clips, the large value
coefficients should be skipped, and only the relatively smaller ones are manipulated.
Experiments reveal that the components under 3kHz are perceptually significant and
should not be manipulated much.

Encryption with Maximum Protection

To provide maximum protection, it is desired to completely destroy the audio
content while keeping the bitstream syntax. Sign-flipping and codeword permutation
can be employed at codeword level. The order can be shuffled at the sub-region
level. The side information parameters, such as Huffman table index table_select,
codeword count region_count (Figure 5.15) etc. should also be permuted accordingly.
The permutation can also happen at higher level. For instance, in a stereo signal,
two granules in each channel can be shuffled in one frame. To abide by the syntax,

the order of the side information parameters should be changed respectively.

5.7 Music Perception and Audio Model Analysis
In this section, the music perception and audio parametric coding is revisited.
Discussion is focused on audio spectral model analysis and how music phenomenon

is explained and described by the model.

5.7.1 Audio Signal Models

In parametric coding, sound signal is analyzed and a parametric representation is
constructed. Different models can be used to describe a sound signal. There are three
kinds of models to describe the sound signal. One is abstract model. For example,

FM modulation [97] approach represents sound signal as
y(t) = Asin(c(t) + [Isin(M(t))], (5.12)

where A is the peak amplitude, ¢(¢) is varying carrier frequency, I is modulation

index and M () is the modulated signal. A general audio waveform is approximated
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by an FM modulated signal, although this model does not have apparent physical
interpretation.

Physical model is based on source modeling. The parametric representation
describes the mechanical and acoustic behavior of a music instrument. The
parameters are different for different instruments. Some instrument physical models
have been studied extensively [88].

A very powerful tool in audio analysis is based on spectrum model. Human
psychoacoustic studies reveal the signal short time spectrum is extremely important
for human perception procedure. The perceptual difference is negligible as long as the
short time spectrum of the reconstructed signal is sufficiently close to the spectrum
of the original signal.

Some models have been developed in signal spectrum “description”. The model
individual sines+harmonic sines+noise is used in MPEG-4 parametric coding [1]. In
this model, spectrum is described by some individual sines, harmonic sines and noise -
component. Some algorithms just describe signals by harmonic components and
noisy component [43].

Much of the computer music generation is based on the spectrum model. Music
has long been regarded as combination of sines. Sierra [84] is among the first to
introduce noise component in it. All the above audio analysis algorithms model music
signal as a combination of deterministic part and stochastic parts. The following part

describes the influential model proposed in [56, 95].

5.7.2 Spectral Model: Transient+Sines+Noise

The most significant part perceptually is the sines in a piece of music. Earlier music
models decompose music into sinusoids and stochastic component noise. Model
analysis extracts the time-varying parameters of amplitude, phase, and frequency to

describe sinusoids.
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Audio analysis is usually done frame by frame. In each frame, most perceptually
significant (usually those with larger amplitude) sines are picked up and parameters
are estimated to describe them. These parameters include amplitude, frequency
and initial phase. Therefore, suppose in the ["* frame, R, sinusoids are picked and

extracted. The signal is thus represented as a combination of these sines.

Ry
s(m) =Y A, cos[mw,; + ¢,). (5.13)

r=1

The r* sinusoid is described by a triple 4, wy;, .

It is natural to find these parameters are different from frame to frame. Further
studies reveal that although those sines are changing, most sines in the current frame
are close to one of those sines in the next frame. So it is reasonable to assume the
sines in the next frame are the continuation of the sines in the previous frame. The
sinusoids are not interpreted as individual sines, but as a sinusoid evolving slowly

from frame to frame. The evolution of the evolving sine is called a track.
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Figure 5.16 Track of sinusoid
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Further analysis demonstrates it is reasonable to assume the frequency and
amplitude of those sinusoids are evolving linearly. What people feel is the changing
sinusoids. In a track, the initial phase is not significant and not encoded. At decoder
side, an arbitrary phase is used. Humans may perceive the phase discontinuity at
frame borders. Figure 5.16 shows the evolution of a typical sinusoids. It is seen
that the track gives birth in Frame 1, and “dies” in Frame 7. Sinusoidal modeling is
not sufficient to represent audio signals as this model can not track non-stationary
(rapid-changing) signals. The rapid-changing signals are referred as “attacks” in the
previous discussion.

In a clip of music generated by an instrument, the phenomenon usually
match the pattern Attack-Decay-Sustain-Release [45]. Figure 5.17 shows the music
waveform envelope when a key is stricken.

Amplitude

i =l
1 1

Attack Decay Sustain Release
Figure 5.17 Attack-Decay-Sustain-Release pattern
The attack phase which is a rapid-changing part shows non-stationary property
of the signal. It is the most difficult part for coding. In MP3, lots of complexity is
involved dealing with attacks. In audio model analysis, analysis and experimental
studies proved it is not appropriate to model the attack as the sum of sinusoids.
Basically, transients are broadband signals that can not be well represented by

sinusoids.
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After subtracting the sum of sinusoids from the original signal, the error residue
is analyzed to determine whether transients are present. If so, the attack is described
by transform coefficients [56] or by other methods [94]. Subsequently, the remaining
parts are stochastic which can be modeled using an appropriate noise models [34,
35, 56, 94]. In Section 5.5, noise perception is covered. The audio parameters are
perceptually significant, to be robust against the parametric compression, data hiding

should modify these parameters in a transparent way. It is a very challenging task.



CHAPTER 6

CONCLUDING REMARKS AND FUTURE RESEARCH

In this research work, some watermarking topics have been covered. The detection
in data hiding is studied and new algorithms are proposed. Much of the focus is
on audio data hiding and human psychoacoustic model. The effectiveness of the
algorithms proposed has been demonstrated in the analytical work and applications.

It 1s important to achieve watermark compression resilience while meeting
transparency requirement. Compression reduces the redundancy in the signal
without losing perceptual value (transparency). Its function is to remove the percep-
tually insignificant components, while the steganography embeds some perceptually
insignificant information. Note that it does not mean information can not be
embedded in the perceptual significant components. Nevertheless, watermark should
be insignificant to meet the transparency requirements. Obviously, compression and
steganography are in a kind of “arms race” [52]. Petitcolas et al. [3] pointed out,
steganography is almost impossible to survive ideal compression.

The above conclusion is easy to understand. In a signal space, perceptually
equal signal points should be compressed to one point by an ideal compression.
If two different points in the space are of same perceptual value, that implies the
compression is not efficient enough (thus not ideal). Ideal compression does not
exist in reality. It can be concluded that a more efficient compression scheme makes
data hiding more difficult. Some researchers suggest to integrate watermarking
with compression design. This makes the watermarking robust to this compression,
although not guarantee of its survival against other compression algorithms. Wang et
al. presented a watermarking scheme in their proposal to JPEG 2000 [96]. Recently,
Cognicity Corp. has already integrated their hiding technology AudioKey with
Lucent Perceptual Audio Coder (PAC).

91
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It is desired to take advantage of the compression in data hiding [7]. Some
factors addressed in compression such as quantization and coding, need not to be
considered in steganography. However, today’s compression robust scheme may not
survive the more advanced compression of the next generation.

In order to verify multimedia copyright ownership, watermarking must be
compression and tamper resistant. In the SS modulation scheme, the decoder has
a very rigorous requirement on synchronization. The watermark verification fails
if the synchronization can not be kept. In image and video applications, water-
marking should be robust against geometric distortions, rotation, and translation.
In audio applications, it should survive the more advanced parametric compression
and model-based compression. An even more challenging task is to be robust against
time-scale modification and piteh-scale modification.

Many watermarking problems are still unresolved. The ongoing research work
will focus on audio data hiding, especially on study of the hiding schemes resistant
to MPEG-4 compression. Future research topic is the design of compression with
content protection features. A more accurate psychoacoustic model should be
developed for steganography applications based on music signal perception and

understanding.
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