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ABSTRACT

APPLICATION OF CHEMICAL KINETIC MODELING TO
IMPROVE DESIGN AND PERFORMANCE CRITERIA FOR

A PRACTICAL INCINERATION SYSTEM

by
Charles A. Bass, Jr.

In this study, detailed thermo-chemical kinetics with networked ideal reactor model were

applied to simulate a practical combustion system - the Secondary Combustion Chamber

(SCC) of the Rotary Kiln incineration Simulator (RKIS) at the EPA facility at Research

Triangle Park, NC. The networked ideal model was developed using analysis of reactor

geometry, temperature profile measurements, and SO 2 tracer data provided by EPA. A

computer simulation of the networked model was developed using the CHEMKIN Il library.

A parallel effort considered the effects of non-ideal mixing on detailed thermo-kinetic

simulations. Specifically, an alternate approach was developed to solve the Partially Stirred

Reactor (PaSR) model that allowed the incorporation of large detailed mechanisms. Both

ideal and non-ideal modeling approaches were compared with experimental data gathered on

a Toroidal Jet Stirred Combustor (TJSC) and the SCC at EPA. SCC experiments measured

Product of Incomplete Combustion (PIC) formation of surrogate chlorinated wastes (CCl 4

and CH 2Cl2), while the TSJC experiments measured PIC formation in ethylene/air combustion

for fuel-lean conditions near blowout and fuel-rich conditions.

Analysis of the geometry and temperature profiles of the SCC suggested the existence

of up to four distinct mixing zones. The RTDs, which were resolved from the tracer studies,

further supported a multiple PSR model. A model was chosen based on the best fit to SO 2

tracer data and consistency with physical geometry, resulting flow patterns, and temperature



measurements. A thermo-kinetic mechanism developed by Chiang (1995) was applied to the

model. The model results did not agree well with the experimental data. However, it

followed many of the underlying trends revealed by the data. Sensitivity analysis of the

parameters was used to further explore trends and recommend potential design improvements

to reduce PIC formation.

An alternate solution technique was developed for the PaSR which approximated

mean conditions and solved the deterministic model to refine the approximation and

eventually converge on a solution. The approximation, direct integration, and convergence

technique compared favorably with the published Monte Carlo modeling calculations, but

used, on average, less than 1/200 th of the CPU time. This new technique allowed use of

considerably larger detailed mechanisms. Additionally, a generalized PaSR model was

proposed to account for the effects of non-ideal macromixing.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Incineration is a viable and necessary means of disposal for hazardous waste. It has the

advantages of reducing the hazard of the waste, reducing its volume, and allowing for energy

recovery. However, hazardous waste incineration has received much criticism for the

pollutants formed by incomplete combustion called Products of Incomplete Combustion

(PICs). Incinerators can fail to adequately destroy the Principle Organic Hazardous

Constituent (POHC) or produce pollutants above regulatory limits for a number of reasons.

These include kinetic and thermodynamic failures such as improper stoichiometry (too little

or too much excess oxygen), inadequate temperature, insufficient time to react, and mixing

failures.

Modeling of combustion processes constitutes one of many research approaches to

understanding PIC production. While not a substitute for experiments, it has many

advantages. A model can be analyzed under a variety of conditions much faster and at a

lower cost than these conditions can be replicated in bench and pilot scale experiments.

Models are useful in determining trends and identifying relationships between easily measured

compounds - target analytes - and the production of hazardous, hard-to-measure PICs. They

can identify potential incinerator conditions that minimize PIC production. Elaine Oran and

Jay Boris (2001) argue that each simulation should be considered as a unique computer

experiment, "The simulation can tell us about something new unexpected when the model is
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complete enough, much as a laboratory experiment can teach us something new about the

physical environment." The insights gained from modeling can be used for improving design

of experiments, combustor designs and process control schemes.

The modeling of combustion processes combines three areas: thermodynamics,

kinetics, and mixing. Thermodynamic modeling predicts the thermodynamic properties of all

reaction species (reactants, products, and intermediates) over the range of reaction conditions.

Since ideal gas conditions generally apply in a combustor, statistical mechanics can

successfully extrapolate the measured properties of stable species and predict properties of

unstable radical intermediates through group additivities. Kinetic modeling can range in detail

between fundamental mechanisms at one extreme and global mechanisms at the other. Global

mechanisms use empirically fitted parameters that apply for a narrow range of conditions.

Fundamental mechanisms use detailed elementary reaction mechanisms. The parameters of

each reaction step are either based on published experimental results, estimated from an

appropriate analogy, or derived from fundamental thermo-chemical kinetic principles.

Fundamental mechanisms can apply over a broader range of conditions than global

mechanisms. Because they usually consider all possible kinetic pathways, fundamental

mechanisms are useful in predicting PICs. Mixing models attempt to approximate how

reactants are brought together and the products dispersed. The detail of these models can

range from ideal reactor models to complicated turbulent mixing models. Computational

limitations confine the detail of the overall combustor model. One has to trade -off between

the detail of the kinetic mechanism and the detail of the mixing model.
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The role of mixing in the modeling process depends on the ratio of the mixing time

over the reaction time, the Damköhler number. A system with a large Damköhler number is

mixing limited and requires a detailed mixing model to describe the combustion. A system

with a small Damköhler number is chemically limited and requires a detailed chemical

mechanism to describe the combustion. Such a system behaves like a well stirred reactor and

may be approximated by a perfectly stirred reactor (PSR). The advantage of the PSR is that

it is numerically easy to solve. For cases where the temperature is specified, the solution can

be rapidly found on a computer, even with a mechanism that involves hundreds of species.

An approach in reactor engineering has been to approximate complex mixing with a series of

ideal reactors that model the macro mixing zones of the system. However, the effect of non-

ideal micro-mixing must be considered at some point in order to accurately model the

reaction.

This study focuses modeling efforts on the combustion of chlorinated hydrocarbons.

These are of interest because a significant portion of hazardous wastes consists of chlorinated

hydrocarbons which are more difficult to destroy completely by incineration than non-

chlorinated hydrocarbons. These compounds affect combustion in two significant ways: they

reduce combustion efficiency (increase the ratio of carbon monoxide to carbon dioxide) and

they increase the rate of molecular weight growth in the combustion process leading to more

and heavier PICs. Because of these characteristics, chlorinated hydrocarbons, particularly

carbon tetrachloride, are commonly chosen as the surrogate POHC in trial burns.
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1.2 Research Objectives

This study applies detailed thermochemical kinetics with simplified mixing models to model

a practical combustion system - the Secondary Combustion Chamber (SCC) of the Rotary

Kiln Incinerator Simulator (RKIS) at the EPA combustion facility at Research Triangle Park,

NC. Its overall objective is to apply this model to make generalizations about the design and

control of SCCs for hazardous waste incineration, and suggest strategies to mitigate the

formation of products of PICs. Specific objectives are to:

1. develop an ideal reactor model that approximates the macro mixing zones in the SCC of

the RKIS.

2. determine the ideal reactor model parameters - the mean residence times of the ideal

reactors and bypasses - using SO 2 tracer data provided by EPA.

3. code a CHEMKIN driver program that simulates the ideal reactor model and contains a

post processing capability to analyze the results of the simulations.

4. investigate the effects and trends of departing from perfect micro-mixing within the ideal

reactors of the above model on PIC formation.

5. validate mixing models on data from experimental studies on a bench-scale toroidal jet-

stirred combustor (TSJC).

6. compare experimental results from carbon tetrachloride and methylene chloride injections

in the RKIS to the model.

7. analyze reaction mechanisms within the SCC model by exploring reaction pathways and

parameter sensitivity.
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8. use the model to investigate strategies to mitigate PIC formation, explain the mechanisms

of various failure modes on PIC production, and suggest design improvements to the SCC.

1.3 Research Approach

This study focuses on the application of fundamental combustion mechanisms. It

accomplishes this through a reactor engineering approach by developing a multi-parameter

ideal reactor model, then analyzing the departures from ideal mixing. The model employs

detailed chemical kinetic mechanisms developed by other researchers and uses them to

analyze important reaction pathways to selected PICs. Chapter 2 presents a literature review

on use of ideal reactor models and non-ideal reactor models. Additionally, it reviews

techniques for reactor characterization. It also reviews developments in kinetic modeling for

chlorocarbon combustion and formation of aromatics in the combustion process.

EPA contractors ran tracer studies on the SCC of the RKIS using step inputs of SO 2

as the tracer gas, and measured SCC temperature profiles during stoichiometric RKIS

operation. These studies delivered data on both the SCC and the SO 2 sample train. This

study uses these data to determine mean residence times and variances between different

points of the SCC and estimate temperature cross section contours. Chapter 3 describes the

methods and results in detail. This characterization provided a basis for SCC model

development.

Finding an optimal model, a model that provides the best overall fit to tracer results,

was not adopted as a goal. Instead, models were developed that explain observations, such

as distinct temperature zones, and consider reactor geometry, while using the fewest possible
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parameters. These candidate models were then narrowed to a single model that provided the

best fit to the tracer data using methods described in Chapter 4. The best fit model and its

parameters were used in a CHEMKIN driver program developed with sufficient flexibility to

specify reactor conditions, feeds, and model parameters at run time.

A parallel effort considered non-ideal reactor models (Chapter 5). The reactor

dispersion model and the segregated stirred reactor models provided two points of departure.

The dispersion model is a departure from the ideal plug flow reactor (PFR) that incorporates

axial turbulent diffusion. The segregated flow model departs from the PSR by supposing that

fluid travels through a stirred reactor in infinitesimally small packets that do not mix. This

study used an approach that regulated the rate at which these fluid packets mixed with the

mean reactor conditions. This is the partially stirred reactor (PaSR) model.

Both ideal and non-ideal modeling approaches were compared with experimental data

gathered on a TJSC at NJIT and the RKIS at EPA. The TJSC studies explored the formation

of benzene during premixed ethene/air combustion under fuel rich conditions. The RKIS

studies examined the formation of PICs in fuel lean, stoichiometric, and fuel rich conditions

when dichloromethane and tetrachloromethane were injected into the SCC (Chapter 6). The

results were compared to the model results including sensitivity analysis of the ideal reactor

model parameters. The mechanism was analyzed by using reaction pathway analysis, which

was used to gain insights into incinerator failure modes.



CHAPTER 2

LITERATURE SURVEY

Studies of both full scale incinerators and pilot scale research reactors show the need for

combining detailed thermo-kinetic mechanisms with the complexities of mixing models in

order to gain insights between incinerator design and the formation of pollutants.

Fundamental approaches to combustion kinetics and thermodynamics provide the insight into

the mechanism of pollutant formation. Normally, the complexity of these mechanisms require

the use of simple ideal mixing models to obtain a numeric solution. Research in this area

often relies on bench-scale research reactors such as tubular flow reactors, premixed laminar

flames, and jet-stirred combustors to emulate ideal mixing. In contrast, the modeling of

practical systems usually focuses on the complexity of mixing in computationally demanding

simulations which become intractable with detailed chemistry. Applying detailed thermo-

kinetic models to practical combustion systems requires some simplifying assumptions and

often use ideal mixing models as a point of departure. This literature survey looks broadly

at work performed in these areas.

2.1 The Problem of Incineration

Many studies support the use of incineration as a viable and safe means to dispose of

hazardous materials. However, the tendency to form different hazardous materials as a result

of combustion, especially in the destruction of chlorinated compounds, throws the use of

incineration into question. EPA-sponsored testing conducted by Trenholm, Gorman, and

7
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Jungclaus (1984) studied eight full scale hazardous waste incineration facilities. They

observed that Destruction and Removal Efficiency (DRE) was strongly correlated to

concentration of Principal Organic Hazardous Component (POHC) in the waste feed.

Specifically, as the POHC concentration decreased in the waste stream the DRE, expressed

as the percentage of the loss of the POHC, decreased below the required 99.99 percent DRE

standard. Further, they found that CO and THC levels, typical indicators for combustion

efficiency, were not good indicators of POHC emissions or DRE, but temperature correlated

well with DRE. Three of six sites tested had stack emissions of pentachlorodibenzofurans

(PCDF), and pentachlorodibenzodioxins (PCDD). While the authors did not suggest a

mechanism for chlorinated dioxin/furan formation, they observed that formation occurred

during cooling in the stack. In order to mitigate these problems a better understanding of the

fundamental kinetic and mixing processes that produce these results is required.

Mixing studies have been applied to full-scale mass burn incinerators using

Computational Fluid Dynamic (CFD) models. In two separate studies, Ravichandran and

Gouldin (1993) and Nasserzadeh et al. (1994) used transient 2-dimensional numerical

simulations of tracer injection to determine mixing dynamics. Both studies emphasized

significance of reactor geometry, and the proper placement of burner jets to achieve a desired

level of macromixing. They also highlighed the need for in situ tracer experiments that

determine the Residence Time Distribution (RTD) rather than relying on physical geometry

to approximate mean residence time.

A number of studies that employ pilot-scale incinerators have been conducted to gain

a better understanding of combustion of chlorinated hydrocarbons. Cundy et al. (1989)
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performed in situ sampling and kiln-simulator experiments using CCl 4 as a surrogate waste.

These studies revealed a relationship between turbulent mixing and samples of CO, and fuel

(methane) in the kiln, which had little effect on the methane and CO measured in the

Secondary Combustion Chamber (SCC) and stack. Effects of the activation of turbulent air

in the kiln were smoothed and reduced by additional mixing in the SCC. Computer

simulations of the turbulent combustion of CCl 4 (used as a surrogate waste) using the eddy

break-up model, tended to over predicted CCl4 concentration thus highlighting the need of a

realistic finite rate kinetic for CCl4 destruction. Wendt and Linak (1988) and Lemieux et al.

(1992) explored the transient effects from batch incineration. Transient puffs from batch

feeding of surrogate wastes create temporary system failures even in the presence of 100

percent excess air. The magnitude of the failure increased with temperature and kiln rotation

speed. These studies highlight the complex relationship between kinetics and mixing for

waste destruction and that a useful design model should incorporate both factors.

2.2 Detailed Thermo-Kinetic Modeling

Detailed thermo-kinetic mechanisms are compilations of relevant elementary reactions applied

with the corresponding thermodynamic properties of each species. When applied to

hazardous material incineration, these models provide a fundamental approach to the

understanding of stable intermediates production that become the body of pollutants which

make incineration controversial. Using broad sets elementary reactions with kinetic and

thermodynamic parameters valid over a large range of conditions allows the researcher to
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infer how reaction pathways and PIC production changes as conditions change. Detailed

thermo-kinetic models are necessary to gain a broad understanding of PIC production, but

this approach is not without its limitations.

To faithfully represent nature, one would have to include all possible elementary

reactions and intermediate species in a mechanism. Instead, available thermo-kinetic

mechanisms bound the problem by focusing on a limited range of fuels and PICs of interest.

Mechanisms range in detail from a half dozen species in a few dozen reactions to hundreds

of intermediate species and thousands of reactions. The required thermodynamic and kinetic

parameters are either taken from literature or estimated.

Many of these estimation techniques are summarized by Dean and Bozzelli (2000).

They include group additivity estimation of thermodynamic properties (Cohen and Benson,

1993), transitions state theory estimation of Arrhenius A-factors, and estimation of activation

energies for hydrogen atom abstractions using the "Evans—Polanyi relationship." The

pressure dependence of kinetic parameters for unimolecular reactions and bimolecular

reactions with an intermediate activated adduct is modeled by one of several approaches. The

pressure fall-off modeled by Lindemann (Kee, Rupley, and Miller, 1989) inadequately

describes the phenomenon to provide good predictions (Dean and Bozzelli, 2000). Other

models such as Troe, SRI, and Landau-Teller alone with the use of enhanced third body

collisions have supplemental parameters that work directly with the CHEMKIN-II intrepeter

(Kee, Rupley, and Miller, 1989). The Quantum Rice-Ramperger-Kassel (QRRK) approach
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(Westmorland, Howard, Longwell and Dean, 1986) recognizes the quantized states of the

energized adduct and is particularly useful for predicting results for multiple channel

reactions.

Once thermo-kinetic mechanisms are compiled, the process of adjustment and

optimization is required to gain agreement with a real combustion system to validate the

mechanism. Real combustion systems are chosen to limit the effects of mixing. The three

systems most often used are the isothermal flow reactor, the premixed laminar flat flame, and

the jet-stirred reactor. The isothermal flow reactor limits the effects of mixing by maintaining

a plug-like flow at a constant temperature down the length of the reaction tube. Dilute

concentrations and temperatures lower than those necessary for sustained combustion slows

the reactions rates and keeps the system in a reaction controlled rather than a mixing-

controlled regime. The premixed laminar flat flame produces an adiabatic flat flame front that

can be suitably modeled in one dimension. Detailed presentations of the energy and mass

conservation equations are made by Turns (1996) for calculation flame speeds and Kee et al.

(1993) for the computer code PREMIX that simulates a one-dimensional laminar flame.

Molecular diffusion in the laminar flame requires a additional set of parameters for each

species. Finally the jet-stirred reactor (Nenniger et al., 1984) produces turbulent mixing rates

within the reactor rapid enough to approximate composition and temperature as

homogeneous. The computer code PSR (Glarborg et al., 1992), a supplemental program to

the CHEMKIN package, readily simulates this reactor even for large thermo-kinetic

mechanisms. Adjustments made to sensitive parameters within the bounds of experimental
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certainty are often adequate to get good agreement between model and experimental results,

but over-optimization can limit the utility of a mechanism beyond the conditions originally

addressed.

An excellent example of a mechanism that has undergone optimization is the GRI 3.0

mechanism for natural gas and air combustion (Smith et al., 1999). This mechanism, along

with preceding versions, is frequently cited and has become an emerging standard in for

modeling of C 1 and C 2 hydrocarbon combustion. It uses 53 species and 325 reactions to

model a complete C 1 and C 2 as well as NO chemistry. It includes a limited set of C 3

combustion products to account for the minor quantities of propane in natural gas. The GRI

mechanism has been optimized for natural gas combustion in a premixed laminar one-

dimensional flame. The mechanism covers a broad spectrum of natural gas components

including methane and minor quantities for ethane, ethylene, and acetylene.

Another useful hydrocarbon mechanism was developed by Marinov et al. (1998) to

model the formation of polyaromatic hydrocarbons (PAH) from the combustion of n-butane

in air under fuel-rich conditions. It has 155 species in 689 reactions, which is small

considering the range of possible intermediate species between n-butane and polyaromatic

incomplete combustion products. Like the GRI mechanism, it was optimized for the fuel rich

n-butane combustion in a laminar flat flame. The computational model was a one-dimensional

premixed laminar flat fame code (PREMIX). Optimization of the mechanism focused on

dominant pathways to PAH growth. Analysis found the recombination of the propargyl

(C 3 H3) radical as the dominant reaction for the formation of benzene.
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Other recent studies in hydrocarbon combustion includes work done by Bikas and

Peters (2001) who developed a mechanism for the combustion of n-decane. This mechanism

was validated with experiments using a pre-mixed laminar flat flame as well as jet-stirred

reactors. It extends upon the C, and C, model in the GRI mechanism to handle the oxidation

and pyrolysis of large alkanes along a few prominent pathways using 67 species and 600

reactions. This approach contrasts with a study conducted by Heyberger et al. (2001) which

employed a computer code to automatically generate a thermo-kinetic mechanism of propene

and air combustion. The oxidation and pyrolysis reactions of C, through C 3 are exhaustive

requiring 262 species and 1295 reactions. Validation was done against jet-stirred reactor

experiments, but optimization to reduce unnecessary intermediates and reactions was not

performed.

Modeling the oxidation and pyrolysis of chlorine containing compounds is of

particular interest because of the relationship chlorine has to the formation of pollutants. The

presence of chlorine has major effects, which inhibit flame propagation, and increase the

formation of higher molecular weight aromatics. The low bond dissociation energy of the

C—Cl bond favors chlorine dissociation over hydrogen dissociation especially at lower

temperatures. At 1000 K the rate of C—Cl dissociation is 2000 times greater than C—H

dissociation (Senkan, 2000). Additionally, the higher electronegativity of Cl results in

molecular elimination of HCl as a major channel and the free chlorine radicals rapidly abstract

hydrogens from other hydrocarbons. The resulting rapid rise of hydrocarbon radicals

promote molecular weight growth and soot (Huang and Senkan, 1996). Free chlorine
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radicals and hydrogen chloride scavenge hydrogen radicals inhibiting the chain branching of

molecular oxygen. Additionally, hydrogen chloride scavenges the hydroxyl radical

regenerating free chlorine radicals and inhibiting CO burnout (Ho, Barat, and Bozzelli,

1992a).

Important mechanisms have been developed by Ho et al. (1992a) of pyrolysis and

oxidation of methylene chloride in H, / 0, mixtures using tubular flow reactors, and Ho and

Bozelli (1992b) of pyrolysis and oxidation of methylene chloride in the presence of C 1 and C.,

hydrocarbons. Both experiments rely on the relatively low temperature tubular reactor for

validation. Sgro et al. (2000) also validated the Ho mechanism using a post flame injection

of methylene chloride at relatively low temperatures between 900 to 1200 K. Using a similar

tubular flow set-up Lou and Chang (1997) investigated the oxidation of chloroform under

dilute fuel-lean conditions. Both studies found that important intermediates include CCl 3 and

COCK.

Investigation into the production of PCDDs and PCDFs continues to be one of the

most important areas of research in chlorinated hydrocarbon combustion. Experimental and

theoretical studies of chlorobenzene pyrolysis in a dilute H2 atmosphere (Ritter, Bozzelli, and

Dean, 1990a) resulted in the development of mechanisms based upon fundamental

thermodynamic and kinetic principles that explained experimental results. Extension of these

models to PCDD and PCDF radical precursors demonstrated thermodynamically favorable

pathways from chlorobenzene (Ritter and Bozzelli, 1990b). However, experimental evidence
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that shows no correlation between chlorine content in the feed and PCDD/PCDF production

(Townsend, Wilson, and Park, 1995) suggests a far more complicated mechanism that could

be addressed by better combustion practices. More research is required in this area.

2.3 Ideal Reactors

Ideal reactors provide a relatively simple mixing model to solve the large equation set

generated by a detailed thermo-kinetic mechanism. Because of this, a considerable amount

of work has been done applying ideal modeling to physical combustion systems. Practical

systems such as a swirl burner in a furnace suggest a well-stirred zone followed by a plug-

flow section. Beer and Lee (1965) investigated the mixing in this system by building a 1/10t h

scale water model and using a salt solution as a tracer to measure the RTD, which agreed

with the two stage, Perfectly Stirred Reactor (PSR) to Plug Flow Reactor (PFR) model. The

RTD (on a dimensionless basis) agreed with the RTD measured from an argon tracer used

in a full-scale pulverized coal furnace.

Using a simple kinetic model for pulverized coal combustion, Beer and Lee

demonstrated that theoretical conversions for a PSR followed by a PFR yield the highest

combustion efficiencies for a given reactor volume. The reverse flow region of the swirl

flame that corresponds to PSR region can be controlled by the adjusting the degree of swirl

or geometric factors. A divergence angle beyond the burner increases the recirculating

volume in the combustor for a given swirl number (Syred and Beer, 1974). Using the PSR

to PFR model, combustion efficiency can be maximized by adjusting swirl and combustor

design to optimize the time spent in the PSR stage.
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The approach of reducing complex mixing issues to a network of ideal reactors

follows the classical reactor engineering approach (Levenspiel, 1972). Swithenbank et al.

(1973) applied this reactor engineering approach to a turbine can combustor using an

extension of the PSR to PFR model to a more complex system. The combustor had a swirl

burner at one end with three subsequent sets of fuel and air inlets downstream. Each inlet

set reintroduced additional turbulent energy. Thus, the PSR to PFR sequence is cut short and

begins again resulting in a 7 reactor model. In a follow-up study, Ewan, and co-workers

(1984) deduced equivalent PSR volumes for the can combustor model from RTDs. These

measurements used a technique developed by Topps (1978) that measures the adsorption of

mercury vapor pulse. The resulting model was used to predict rich and lean blow-off limits.

The PSR itself provides a useful research to for exploring thermo-kinetic mechanisms.

Computer codes such as PSR developed by Sandia National Laboratories (Glarborg, 1992)

can efficiently solve large mechanisms. The research reactor must reasonably approximate

the mixing conditions assumed in ideal mixing. Nenniger et al. (1984) developed the Toroidal

Jet-Stirred Combustor (TJSC) to approximate these conditions and achieved significant

improvements over existing jet-stirred research designs. Temperature profiles in the axial

cross section of the torus were flat for fuel-lean and stoiciometric combustion and slightly

fluctuated for fuel-rich combustion. Using the assumption of isotropic, homogeneous,

turbulence they estimated turbulent parameters to deduce break-up or turbulent mixing time

that reasonably approximated PSR behavior under certain conditions.
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Analysis of inhomogeneous behavior in the TJSC conducted by Longwell and Bar-Ziv

(1989) employed both cold-flow tracer analysis and one-dimensional, spatially dependent,

modeling analysis. During fuel-rich conditions, the cross-torus temperature profile dipped in

the center which contrasted with the flat temperature profiles exhibited in fuel-lean conditions.

Longwell and Bar-Ziv contend that since mixing time was finite, the delayed combustion at

higher fuel/air equivalence ratios resulted in a lower temperature in the jet stream in the center

of the torus. This demonstrated that some reactor conditions are inadequately modeled by

a PSR. This conclusion is further reinforced by experiments conducted by Barat (1992)

where the dilution ratio of a fuel-lean mixture was steadily increased until combustion

blowout. He demonstrated that modeling of the TJSC with a PSR inadequately predicted

blowout.

The inadequacies of an ideal PSR based solely on the apparent system dimensions

have been long apparent. These inadequacies arise from inhomogeneous behavior both at the

macro and micro-scale. Danckwerts (1958a) distinguished between mixing at the macro and

micro-scales and demonstrated how the RTD can be used to quantify macromixing. He

quantified micro-scale inhomogeneities by defining the degree of segregation which varies

from 0 (completely homogenous) to 1 (completely segregated). For the completed

segregated case, he proposed a model with "points," defined a relatively small volumes of

fluid, moving through the reactor without mixing. This model can be generalized from a

system with the exponential RTD of a PSR to arbitrary RTDs. Zwietering (1959) generalized

the completely mixed case with the Maximum Mixedness Model. He demonstrated that,

while the PSR is the maximum mixing case for an exponential RTD, an RTD that reflects a
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series of PSRs achieves the maximum mixing condition with his model and not with a series

of PSRs. The Dankwerts and Zwietering models represent the limiting cases and "real"

systems lie somewhere in between.

Spencer et al. (1980) showed how a reacting tracer can determine the degree of

segregation. They used two intermediate models with mixing rules that produce conditions

between the limiting cases of the Danckwerts and Zwietering models. The first model

suggests a mixing mechanism where each "point" spends the same fraction of its time in a

segregated state. The second model assumes that all fluid spends the same fixed time in a

segregated state. David (1994) criticizes these phenomenological models in that they ignore

the physical structure of the flow. The modeling of the structure of turbulent flow, however,

creates computational demands that prevent the solution of all but the simplest thermo-kinetic

mechanisms.

2.4 Modeling of Turbulent Reacting Flows

Even with the rapid increase in computational power over the last decade, research computers

still do not have the needed capability to integrate detailed thermo-kinetic models with

Navier-Stokes Direct Numerical Simulation (DNS) of reactive turbulent flows. If the problem

involves a relatively simple geometry with only a few species whose chemical reactions do not

cause significant energy changes in the flow, the simulation might be within the realm of what

can be done (Oran and Boris, 2001). For example, Bédat et al. (1999) developed a

methodology that calibrated a reduced order 4-step mechanism against the detailed GRI 2.11

mechanism with a one-dimensional laminar transport model (PREMIX). The reduced order
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mechanism was then applied to DNS of a turbulent system operating under similar conditions

to gain detailed profiles of NO production. While it is possible to model PIC production with

detailed turbulent mixing resolution in limited circumstances, these techniques are not

applicable, yet, as engineering tools.

To make turbulent reacting flow problems tractable, certain simplifications are made

and those simplifications on based on the regime of the turbulent conditions. A useful

parameter is the turbulent Damköhler number, Da T, which is the ratio of the turbulent time

scale over the flame or chemical time scale. When Da r > l, the reaction times are shorter

than the mixing time. So, mixing is the rate determining step. In this regime, a useful model

is the eddy-break-up model, which was first suggested by Spalding (Peters, 2001). When Da T

< 1, the mixing times are shorter and chemical reactions are the rate determining step. This

region is often listed as the well stirred reactor region after the Borghi Diagram (Warnatz et

al., 1999; and Peters, 2001). In this region, stochastic approaches describing small scale

mixing work well (Oran and Boris, 2001).

Probability Distribution Function (PDF) methods achieve closure by describing the

chaotic turbulent process by its statistics. S. B. Pope's review article of the subject (1990)

and further development in Turbulent Flows (2000) discusses how PDF's derived from

Navier-Stokes equations have described combinations of velocity, dissipation and

composition. He provides a detailed discussion of a case of constant density, homogeneous,

turbulence where the composition PDF is independent of position, and presents a simple

closure approximation for diffusion that was first proposed by Dopazo et al. (1974). This

closure model relaxes local conditions to average conditions at a rate proportional to the



20

mixing frequency of the system. In many respects, this approach is similar to other mixing

models where local composition is interchanged with surrounding conditions. The most well

known of these is the coalescence and dispersion model (Curl, 1963).

Curl's model, originally developed to describe the mixing of reactants in a liquid

phase, uses a pair-wise mixing rule. The model coalesces two randomly selected drops and

immediately re-disperses them into two equal volumes with equal composition at a rate

governed by the mixing frequency. Solution techniques employ a Monte Carlo simulation that

uses an array of drops to randomly select among for coalescence. Kridiotis et al. (1989)

modified Curl's approach by using an array of fixed cells that mixed only with adjacent cells.

They successfully demonstrated an improved fit to experimental data of CO/H2 and air

combustion in a toroidal jet-stirred combustor over a perfectly stirred reactor model.

The Interaction by Exchange with the Mean (IEM) concept uses a simpler scheme of

relaxing local conditions toward the mean conditions at a rate proportional to the mixing

frequency, co, that is ratio of the turbulent kinetic energy, k, to the dissipation rate, E.

Correa's (1993) application of the IEM model, termed the Partially Stirred Reactor (PaSR),

demonstrated a solution method using a Monte Carlo simulation. The reactor consisted of

an ensemble of NI, discrete fluid packets or particles. At each time step, one or several

packets enter the reactor, and an equal number are randomly selected for removal as the

effluent. He demonstrated solutions to a 18 species, 43 reaction, CO/H 2 and air system using

300 particles; a 27 species, 77 reaction, methane and air system using up to 640 particles

(Correa and Braaten, 1993); and a 11 species, 23 reaction, CO/H 2 and air system using about

500 particles (Correa, 1995). These studies underscored the large amount of CPU time
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required for solution. For a system with NN particles and N, chemical species, a total of Np

x (N5 + 1) ordinary differential equations must be solved for each time step until a solution

converges. The methane mechanism required 166 hours on a Sun SPARC 1 workstation to

solve. Even with greater microprocessor capability found in contemporary computers, larger

thermo-kinetic mechanisms takes prohibitively large amounts of CPU time. Additional

studies conducted by Cannon et al. (1998) explored the use of the 276 reaction GRI 2.11

mechanism for methane and air. The full mechanism required 36 hours to solve using a HP

735 workstation, but only 28 minutes when reduced to a 4-step mechanism. Consequentially,

efforts have been made to reduce processing time. The two approaches to this end have been

developing a systematic approach to reduced kinetic mechanisms (Norris and Pope, 1995) and

developing efficient reaction look-up tables (Saxena and Pope, 1999) that reduce the demand

for numeric integration.

The IEM and PaSR approaches have limitations. When turbulence lacks

homogeneity, as is the usual case, dissipation has a spatial dependence, but the PaSR uses a

single spatially-independent mixing frequency. Additionally, the IEM approach fails to take

local composition into account, which makes this technique less useful for combustion

regimes with sharp local divisions (e.g. flamelets). PDF methods to overcome these

limitations include the application of combined velocity-composition-dissipation joint PDFs

(Norris and Pope, 1995, and Xu and Pope, 2000) and a local mixing approach termed

Euclidean minimum spanning tree (Subramaniam and Pope, 1998). These techniques are

more demanding on CPU time making application detailed mechanisms such as GRI 2.11

intractable (Xu and Pope, 2000).
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2.5 Summary

Research has shown the complex nature of PIC formation in practical incineration systems.

Incinerators have modes which cause failure despite the presence of excess air and adequate

apparent residence times. In research, detailed thermo-kinetic mechanisms have been

generally applied to well defined mixing systems, whereas the modeling of combustion in

complex geometries has focused on detailed turbulent modeling. The middle ground between

these approaches is the classical application of ideal reactor models to practical systems. This

approach is not without its inherent fault. Even research reactors specifically designed to

produce ideal mixing conditions fail to completely achieve it and these deviations cannot be

ignored under certain conditions. The IEM approach of the PaSR model can also bridge this

gap. It makes the simplifying assumptions to show the departure from ideal mixing, but

maintains computational simplicity that allows the incorporation of detailed thermo-kinetic

models.



CHAPTER 3

CHARACTERIZATION OF THE SECONDARY COMBUSTION CHAMBER
OF THE ROTARY KILN INCINERATOR SIMULATOR

A networked ideal reactor model preserves the mathematical simplicity of an ideal reactor

while attempting to introduce some of the complexities of the mixing process. This study

applies this approach to a pilot-scale system and allows the application of detailed thermo-

chemical kinetic mechanisms in a computationally inexpensive mixing model. A physical

characterization of the reactor was the first step toward model synthesis. Characterization

incorporated the analysis of reactor geometry, temperature profiles, and the residence time

distribution of tracers between various points. This chapter covers the characterization of the

secondary combustion chamber (SCC) of the rotary kiln incinerator simulator (RKIS) which

leads to the synthesis of a candidate model. Chapter 4 covers the final synthesis of the model

and its parameter identification.

3.1 Description of the RKIS and SCC

Figure 3.1 shows a simplified diagram of the RKIS and SCC located at the Air Pollution

Technology Branch, EPA in Research Triangle Park, NC (see Appendix C for a more detailed

diagram). The system includes the salient features of a commercial rotary kiln system. The

73 kW (250,000 Btu/hr) SCC is attached to a 73 kW pilot-scale rotary kiln incinerator. The

kiln burner is an Eclipse 82 MTVA burner and the afterburner is an ACI Pyrotron

23
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Figure 3.1 Schematic of the Rotary Kiln Incinerator Simulator (RKIS) and the
Secondary Combustion Chamber (SCC)

swirl burner. Both burners use natural gas as the primary fuel. The SCC contains a removable

choke which divides mixing chamber from the burnout section. During SCC experiments,

liquid surrogate wastes were injected at point B2 in the kiln transition duct using a nitrogen

and air atomizer. These studies included both dichloromethane (CH 2Cl2), and

tetrachloromethane (CCl 4) as the liquid surrogate wastes. The system has an on-line

continuous emission monitor at point 5 for CO, CO 2 , 02 , NO, and total hydrocarbon (THC).

An on-line HP 5890 Series II (FID, ECD) GC, with a Tekmar Purge and Trap, can be

attached to any of the sample ports. (Lemieux et al., 1995). This set-up gave the ability to

sample the volatile organics as well as continuously monitor the standard emissions.
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The geometry of the SCC gives a starting point for model synthesis by identifying

distinct mixing regions that might be modeled as ideal reactors. The two chamber design of

the SCC automatically suggests at least two mixing zones divided by the choke: the mixing

chamber and the burnout section. The off-radial entrance of the kiln transition duct into the

mixing chamber forces a cyclone chamber-like swirl, while the SCC burner creates another

swirl through adjustable vanes of the fuel and air inputs. Beer and Lee (1965) demonstrated

that the recirculating zone of the swirling flame can be modeled as a well-stirred reactor

followed by a plug flow reactor as the gases move downstream. However, since the mixing

chamber has two sources of swirl from two separate feeds the result may be two mixing zones

and possibly a third representing an entrainment zone between them. Additionally, there is

potential for another mixing zone downstream of the choke as the emerging gases slow to

the bulk velocity in the burnout section. Hence, the geometry of SCC suggests the existence

of up to four mixing zones that might be modeled as perfectly stirred reactors (PSR).

3.2 Experimental Approach

3.2.1 Residence Time Distribution (RTD)

Residence Time Distributions (RTD) are useful in characterizing non-ideal flows. Such

analysis can reveal the presence of stagnant zones (dead space) and flow bypasses while

characterizing the macro-mixing zones within the reactor. However, the RTD does not fully

characterize a non-ideal flow. It provides a linear response of a tracer injected into the
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Figure 3.2 SO2 Tracer Experimental Set-up

reactor and can be used only to directly model conversions for lst order reactions (Levenspiel,

1972). Even though the RTD can help distinguish the size and number of in-series ideal

reactors applied to model a non-ideal flow, it cannot distinguish the order of that series.

Thus, a single RTD resolved from a single input/output combination would not contribute

much to the characterization of the SCC. Rather, a more thorough approach necessitated the

measurement of RTDs from various inputs and output combinations.

Tracer studies, using sulfur dioxide (SO 2) as the tracer gas, identified the RTD of the

mixing chamber and the burnout sections of the SCC. The main kiln burner and SCC

afterburner were operated at the "stoichiometric" conditions set listed in Table 6.1. These

correspond to an overall fuel/air equivalence ratio, (1), of 0.92 with 2.42 x 10 4 std cm 3/s (30.0

g/s) entering through the kiln transition duct and 1.28 x 104 std cm 3/s (15.8 g/s) entering
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through the SCC swirl burner. Figure 3.2 shows the experimental setup. Tracer gas entered

the system as step input. This allowed two data sets, a step-up and step-down, to be

produced per data run. The analyzer had its own characteristic response. This was separately

measured using the same sample train. Even though SO2 reacts with oxygen to form an

equilibrium with SO 3 at typical SCC operating temperatures, this equilibrium occurs rapidly

with respect to the time scales being measured and should not have affected the results.

Preparation included a series of test runs and the gathering of a preliminary data set.

The test runs provided several findings that impacted on the experimental set-up. For

instance, tracer gas could not be detected at port 3 when inputted in C. This indicated a

complete bypass. Next, these tests demonstrated the need to modify the SCC and create port

4 directly through the wall of the reactor at the choke instead of sampling with a long probe

through the mixing chamber. Finally, it revealed several limitations of the SO 2 detector. This

included a minimum (analyzer limiting) digital sampling interval, At, of approximately 0.05

seconds. Also, the range of the instrument did not give it enough sensitivity at low levels to

allow the use of a pulse input of tracer gas.

With the above modifications, an initial set of data was collected for all possible

input/output port combinations. Analysis of these data provided troublesome results.

Particularly, the volume of the mixing chamber calculated from the RTD significantly

exceeded the physical volume of the entire SCC. The source of this problem was attributed

to how sample gas entered the sample train to characterize the analyzer; it entered through
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the high pressure lines off the cylinders. Modifying this procedure by introducing tracer gas

into the sample train at ambient pressure (near the operating pressure of the SCC) produced

very consistent results.

A second data set was obtained by injecting SO 2 tracer gas into the SCC at ports B 1,

B2, and C, and the response measured at 3 (except C), 4, and 5, while the SCC operated at

the same stoichiometric conditions used for dopant injection (Chapter 6). Each input/output

combination was measured as a separate run. The analyzer step response was measured

before and after each run. Table 3.1 summarizes runs the schedule of runs.

Table 3.1 SO2 Tracer Runs 

Run No.* Input Port Output Port No. Sequences

Ti B1 3 3

T2 B1 4 3

T3 B1 5 3

T4 B2 3 3

T5 B2 4 3

T7 B2 5 3

T8 C 4 3

T10 C 5 4

* Runs T6, T9, and Tl1, used a random input that was not analyzed

Analyzer Runs

before/ after

before/ after

before/ after

before/ after

before/ after

before/ after

before only

before only

A typical run had 3 sample sequences with each sequence consisting of a step-up and

step-down response. Each represents a distinct response. This set of data produced an

unexpected difference between the step-up and step-down responses of the system, which

should have been symmetrical. This phenomenon was not observed in previous trials of the

system response and had not been observed for the analyzer trials. A noticeable data spike
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Figure 3.3 Radial Temperature Profile - SCC Mixing Chamber; Temperature
Contours from 900 to 1700 K at 50 K Increments

had been observed during several system response runs during the step-up portion. The spike

was attributed to the electrical signal sent to the solenoid on the three-way valve. Hence, the

integrity of the system response step-up data was suspect and thus rejected.

3.2.2 Temperature Profiles

Temperature profiles were taken along the horizontal and vertical diameter midway in the

mixing chamber, on the vertical diameter midway in the burnout section, and midway on the

vertical diameter in the choke (see Figure 3.l). The experimenters used a suction pyrometer

for the mixing chamber and burnout section temperatures and a type R thermocouple in the

choke. The temperature was recorded every inch.
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Figure 3.3 shows a rendered contour temperature profile in the mixing chamber. This

plot was produced from the data by first linearly interpolating points every 15 degrees along

the arcs connecting equal radius data points on adjacent axes, then rendering the contour with

the MATLAB® contour function. Interpolating along the arcs followed the logic of the

cylindrical geometry and the swirling flow in the mixing chamber.

The rendering shows the presence of a relatively tight flame region and suggests the

presence of at least two distinct mixing zones in the chamber. The alignment of the kiln

transition duct is depicted on the graph. This graph displays the effect of the cooler gas

entering the chamber on the right and the relatively small flame zone of the swirl burner near

the axial centerline. Using the 1050 K contour as an approximation of the flame boundary,

the flame cross section occupies 10.2 percent of the reactor cross-section area and has an

average (weighted on the heat capacity of N 2) temperature of 1343 K. Using the same

weighting technique, the reactor cross-section has the average temperature of 1009 K.

Figure 3.4 shows the vertical temperature profiles in the choke and the burnout

section. Since the choke measurement did not use a suction pyrometer, the temperatures

shown on the graph have been corrected for radiation heat loss,' which yields gas

temperatures in the center of the choke about 90 K higher than the thermocouple

temperature. This graph indicates significant temperature difference (300 K) between the gas

near the lower choke wall and the gas just above the center in the choke, which reveals the

presence of two distinct, but converging, temperature zones. Since the choke wall heavily

'Correction is determined from an energy balance between the radiative heat loss from the thermocouple
bead to the cooler reactor wall, and the heat transfer across a boundary layer estimated by a Nusselt
number—Reynolds number correlation (Fristrom, 1995).
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Figure 3.4 Vertical Temperature Profile in the Choke and Burnout Section

insulates the passage and it is at thermal equilibrium, heat loss through the walls would not

account for this behavior. Downstream in the burnout section, the temperature profile is

approximately even with a slight degree of buoyant stratification. This suggests that streams

converge past the choke and should be modeled as a single homogenous (mixed) stream.

Interpolating along the arcs connecting temperature measurements at equal radii above and

below the centerline produced a cross-section contour for the choke and burnout section

similar to Figure 3.3. From these graphs (see Appendix C), the average cross-section

temperatures for the choke and the burnout section (at point 5) are 1213 K and 967 K,

respectively.
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3.3 Least Square Identification of the Residence Time Distribution

3.3.1 Modeled System

Identifying a system involves first modeling the fundamental characteristics of that system,

based on observations and assumptions, then identifying the system as it pertains to that

model. The SCC will be modeled based on the assumption that the reactor behaves as a linear

system for the passage of an inert tracer. In other words, the passage of the tracer can be

described with a set of linear first order differential equations, a condition that applies to a

reactor describable by a network of ideal reactors, and, when normalized, it does not depend

on the initial concentration of the tracer. Unless the tracer is consumed or adsorbed, this

assumption normally holds true.

A linear system that has a Single Input and a Single Output (SISO), such as the tracer

injected at a single point and measured at a single point downstream, can be described by a

single transfer function, g(t). The output of the system, y(t), is a convolution of the input,

u(t), with the transfer function.

For the tracer experiments, the system represents both the effects of the reactor and the

analyzer on the distribution of the tracer (Figure 3.5a). As a linear SISO system, the order

of the reactor and analyzer do not matter; the effect of the analyzer on the tracer can be

considered either before or after the reactor. This provides an alternate view where the
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Figure 3.5 Modeled System

output of the analyzer can be considered as the input of the reactor. Using this view, the

analyzer step response is the input, U(t), and the analyzer (impulse) response will be

represented as u(t). Only the analyzer step response is directly measured. However,

differentiating the analyzer step response with respect to time gives the analyzer impulse

response, which will be referred to simply as the analyzer response (Levenspeil, 1972).

u(t) dU(t) 
-

di
(3.2)
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In the same fashion, differentiating the system step response, Y(t), gives the system

response, y(t). The system response is the combined response of tracer through the analyzer

and the reactor with the addition of any uncorrelated noise external to the analyzer or reactor,

v(t) (Figure 3.5b). Equation 3.3 shows this relationship for a continuous system.

3.3.2 Least Squares Estimation

The transfer function, g(t), in the modeled system (Figure 3.5b) is also the residence time

distribution (RTD). This can be identified from the input, U(t), and output, Y(t). Hsia (1977)

provides a suitable technique which identifies this function as the estimator of a least squares

formula. This method computes the auto-correlation (input) and cross-correlation (input vs.

output) functions in the process, so the input signal must be stationary. That is, the expected

value is invariant with time (Hsia, 1977). The step input function does not meet this criterion.

However, converting the step input and response function to an impulse input and response

by using the first derivative (Levenspiel, 1972) makes it a quasi-stationary process. A

Savitsky-Golay (Press et al., 1992) filter that fits a 2nd order polynomial to a window 10

points on each side of a given point estimates the derivative by using the polynomial

coefficients estimated at each point.
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The system has a continuous input and output, but it is sampled on a discrete time

interval, 4t. When 4t is small, relative to the system response, a discrete system

approximation becomes a valid approach. Equation 3.3 approximates a discrete system by

defining the weighting function, h, as

where k is the sample index (where t = kΔt for k 	 1, 2, 3 . . .). Equation 3.5 gives the

discrete version of Equation 3.3.

Here, p is an integer such that g(t)≈ 0 for t>=pΔt and 0 k p. The discrete system

response, y(kΔt), depends on the weighted discrete analyzer response, u(iΔt), for the

preceding p measurements or i = k-p, k-p+l, . . . ,k.

Despite the fact that the experiment measured a single system response to a single

input, it is necessary, for this method, to consider the experiment as a periodic series of

responses to a periodic series of inputs where the system has time to come to rest after each

input. The system response is measured for an interval between 0 and p where p is chosen

sufficiently large such that y(t)≈ 0 for t pΔt. Equation 3.5 can now be expressed in matrix

form

y = Uh + v	 (3.6)
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Applying the matrix form of the linear least squares formula (see Draper and Smith, 1998) to

Equation 3.6 gives the estimator of h in Equation 3.8. Equation 3.8 is the estimate of the h

vector that minimizes the sum of the squared errors, v'v (Note: the prime denotes the

transpose).

Here, (I) and T represent the groupings that relate to the autocorrelation and cross-correlation

vectors, respectively, shown in Equations 3.9.
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The autocorrelation function of the inputs u and cross-correlation function of the inputs u

with the outputs y in the discrete form are defined below.

Using this least squares approach eliminates the uncorrelated noise, v(kΔt), from the solution.

This has advantages over other deconvolution techniques, such as the application of Fourier

transforms, which can algebraically inverse Equation 3.3 in frequency-space, but accentuate

the effects of the noise. Instead, the auto and cross correlations reduce the uncorrelated

noise.

A problem arises, however, when finding the inverse of (1). Because of reasons that

will be elaborated in Chapter 4, 1 is singular or near singular — it is rank deficient, and thus,

has a determinate near or equal to zero. Hence, (13 - ' as such does not exist and cannot be

determined by standard techniques such as Gaussian elimination. This also means that h will

not have a unique solution (Draper and Smith, 1998). Lack of a unique solution has

implications for model selection which will be discussed in the next chapter. Rather than

dwell on the implications here, it is sufficient to select an approach to solve for h without

directly computing 413 -1 and apply that approach consistently.

A constrained iterative reconstruction technique was chosen to find h. Schafer et al.

(1981) presented a class of constrained discrete iterative deconvolution methods that are

applicable to this problem. This iterative approach works by multiplying the auto-correlation
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matrix, 0, with an initial guess of h, to give an estimated cross-correlation vector, T. Since

F is already known, the error between the known and estimated F may be used to find the

next guess of h. To show this symbolically, Equation 3.8 is rearranged to show F as the

product,

where the parenthetical zero superscript represents the known F. Henceforth, parenthetical

n superscripts of integers 1 or greater represent successive iterations. These iterations follow

the sequence:

1. Make an initial guess of h 1  =
2. First iteration n = 1

3. Calculate new Γ(n) = (F h (n)
4. Error e = e ()) - en )

5. Z = h	 + e where 1<λ<2
6. 11 (n +1) 

= constraints(Z) : Z k = 0 when Zk <0 for all k
7. n = n + 1
8. goto step 3; repeat until error converges

For this problem, a X, with a chosen value of 1 resulted in a stable convergence. When

applying constraints in step 6, h was normalized such that

3.3.3 Least Squares Results

Each tracer run had at least three data step-down system response and analyzer response

sequences (see Table 3.1). To use these data in the least squares reconstruction of the RTD,

the information from each of these samples was normalized, combined, differentiated, and re-
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Figure 3.6 LS Reconstructed RTD, E(kΔt), from System Response, y(kΔt), and
Analyzer Response, u(kΔt); Estimated System Response, y(kΔt), Shown for
Comparison

sampled at a constant interval, 4t, for the input function, u(kΔt), and the response function,

y(kΔt). Each run was normalized and numerically converted to a step-up function. The

sampling interval for the raw data was approximately 0.05 seconds and the interval varied

slightly between sequences. So, the combination of data from each sample run sequence

(either system or analyzer step response) resulted in an inconsistent, non-uniform, interval,

but the numerical techniques covered in section 3.3.2 require a uniform Δt. The application

of the Savitsky-Golay filter in the differentiating process solved this problem. The algorithm

uses an imposed time array at a 0.05 second interval and fits a second order polynomial to the

data points within a 0.5 second window of each point on the imposed time sequence.
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The parameters of the polynomial give the derivative for each point on the interval and, in

essence, combined the data from each sample within the tracer run. Additionally, the data

points within a 0.05 second interval about each point on the imposed time sequence were

used to determine the local data variance (after correction for the local slope), which was

applied in the error analysis of model parameter estimation (Chapter 4).

The graph in Figure 3.6 shows the normalized responses and transfer function for run

T2. E(kΔt) is the least squares reconstruction estimate of the transfer function, g(kΔt), equal

to h(kΔt)/Δt (see Equations 3.4 and 3.5). As noted earlier in section 3.3.2 the singularity of

(I) allows for other solutions of E(kΔt) that meet the least square criterion and produce the

same estimate of the system response function, y (kΔt), when convoluted by u(kΔt) as shown

in Equation 3.11.

The differences within the set of possible solutions are removed in the convolution process

and cannot be reconstructed. As Chapter 4 will elaborate, u(kΔt) removes the higher

frequencies of g(kΔt) when viewed in a frequency domain. Thus, solutions of E(kΔt) can

differ in the higher frequencies, but produce the same y(kΔt) when Equation 3.11 is applied.

The constrained iterative reconstruction technique starts with a guess that does not have these

higher frequencies, so it consistently produces the "safest" solution that does not assume
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their existence. This results in a consistent estimate, but lacks the higher frequencies. So, any

sharp peaks of the "true" g(kΔt) will appear smeared, that is, slightly flattened and spread to

both the left and right.

3.3.3.1 Analysis of Moments. The first three moments of the RTD are often used to

characterize the system. These are the mean, variance, and skewness coefficient shown below

in their discrete form (Levenspiel, 1972) and (Fogler, 1992).

Before discussing the moments calculated from the experimental results, it is useful to

consider them in the context of ideal reactor models. Consider three archetype ideal reactor

models: (l.) PSR and PFR in series with mean resident times T1 and Td respectively; (2.) two

different size PSRs in series with mean residence times r1 and t2 ; and (3.) n equal PSRs in

series, each with mean residence time T i. Table 3.2 shows the RTD formulas and resulting

moments, derived from the continuous versions of Equation 3.12.

From these archetypes, several deductions may be made. First, for a simple series

with no recirculation, the PFR makes no contribution to the variance and skewness

coefficient, and PSR mean residence time for archetype 1 is better measured through the

variance. Next, the skewness coefficient has the value of 2 for a single PSR in that series and

becomes smaller as more PSRs are added. Finally, for the series of equal sized PSRs
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(archetype 3), the number of reactors in the series can be deduced from the skewness

coefficient, but since higher moments heavily weight perturbations farthest from the mean,

and thus, are less reliable, a better deduction can be made from the first two moments (Fogler,

1992):

Table 3.3 lists the results of these moment calculations for the runs in Table 3.1.

These show consistency with the physical configuration shown in Figure 3.l. As the tracer

was collected from sampling ports downstream, the mean residence time as well as the

variance increased. The variance reveals the nature of mixing, and, for an ideal reactor series,

should be additive from one section of the reactor to the other, as demonstrated with

archetype 2. From this fact, variance should increase when sampled further downstream,

which was observed. However, the variances measured for tracer runs from input port B2
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were in two cases slightly smaller than those measured from the runs starting at port B 1. One

would expect some degree of mixing to occur in the kiln transition duct which makes this

result counter-intuitive; at a given output port, the variances resulting from the B2 input

should be greater than or equal to those measured from the B1 input. This can be explained

by the lower degree of accuracy in the higher order moments. Higher moments weight

measurements furthest from the mean, which are most susceptible to noise and the least

accurate.

Table 3.3 Moments from Tracer Runs

run in/out port mean (sec) variance (sec') skewness coeff.

average analyzer 1.30 0.21 1.67

Ti B1/3 0.56 0.32 2.57

T2 B1/4 1.08 0.40 1.45

T3 B1/5 3.59 2.13 0.68

T4 B2/3 0.86 0.26 1.36

T5 B2/4 1.38 0.60 1.12

T7 B2/5 3.99 2.00 0.68

T8 C/4 0.31 0.17 2.03

T10 C/5 3.60 1.71 0.76

Despite its questionable accuracy, the skewness coefficient reveals a trend. In a

multiple PSR model the skewness coefficient decreases with the number of reactors (see

Table 3.2). The analysis of the tracer data revealed the same trend. As the sample point

moved down stream away from the injection point the skewness coefficient decreased

indicating additional (PSR) mixing zones. The RTD of a PSR gives a skewness coefficient of

2 in contrast to a PFR (with or without gaussian diffusion) which has a skewness coefficient
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of zero. For ideal reactor models, the RTD of PSRs in series approach that of a PFR as more

reactors are added (Levenspiel, 1972). The RTDs from B1 to 3 and C to 4 have a skewness

near 2 indicating a distinct single mixing region for each of these streams. Using the

skewness coefficient formula derived for multiple reactors (Table 3.2) and solving for n gives:

Using this formula, n = 0.61 for B1 to 3 and n = 0.97 for C to 4. This is further reinforced

by applying Equation 3.13 for multiple PSRs in series, which gives n = 0.98 for B1 to 3 and

n = 0.57 for C to 4. Since relying on higher moments is subject to error, no single tool is

absolute. However, the combination of both of these approaches reinforces a conclusion of

a single mixing area between B1 and 4 and another between C and 4. This also suggests that

very little, if any, of the afterburner gas (C to 4) contributes to a postulated entrainment area

discussed in section 3.l.

The B1 to 4 RTD has a smaller skewness coefficient that could indicate the presence

of an additional mixing region for the kiln gas stream prior to the choke. Applying Equation

3.13 gives n = 2.9, and applying Equation 3.14 gives n = l.9. This reinforces the assertion

of an additional mixing zone after point 3 and prior to the choke. The skewness coefficients

for the C to 5 and B1 to 5 RTDs are much smaller which supports a model of two or three

additional PSRs between the choke and point 5.
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3.3.3.2 Reactor Volumes. As a final check for the consistency of the results, a quick

comparison was made between the volumes measured by the RTDs and the physical volume

of the SCC. Using the temperature profile in the mixing chamber (Figure 3.2) and assuming

two distinct constant temperature streams, one for the kiln gas (900 K) and one for the

afterburner (1314K), the volumes were estimated to be 78 L and 35 L respectively within the

mixing section. This leaves a dead volume of 65 L in the 178 L mixing section. The long tail

of the RTD, E(kΔt) for B1 to 4 (shown in Figure 3.6), is characteristic of this dead space

(Himmelblau and Bischoff, 1968). Most of this dead space is probably adjacent to the wall

near the choke since it is not in the flow path going out of the mixing chamber and through

the choke.

3.4 Summary

The geometry of the SCC suggests the existence of up to four distinct mixing zones (flame

zone, kiln gas zone, entrainment zone, and post choke mixing zone), that is, four distinct

zones which could be modeled as PSRs. The temperature profiles support this conjecture by

showing the presence of two distinct zones in the mixing chamber, and two emerging streams

from the choke that rapidly mix as they move downstream. The RTDs, which were resolved

from the tracer studies, further support a multiple PSR model. From tracer injections at B 1,

B2 and C, the skewness coefficient decreased as the sampling point moved downstream. This

was a result of an RTD more symmetrical about its mean which follows the multiple PSR

model (Levenspiel, 1972).
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The tracer results validate the supposition that the flame and the kiln gas maintain two

distinct zones in the mixing chamber. This has important consequences for secondary

combustion chamber designs that rely on the tangential mixing of the kiln gas. Little mixing

between the two streams occurs until further downstream. Such designs, are unlikely to

actually meet requisite retention time - temperature requirements, even though averaged

(assumed mixed) conditions are within recommended standards. This analysis seem to

suggest that some turbulence producing obstruction, like a choke or bluff body, is essential

to ensue complete mixing.



CHAPTER 4

AN IDEAL REACTOR MODEL

Chapter 3 described the characteristics of the Secondary Combustion Chamber (SCC) in

terms of geometry, temperature profiles and residence distribution time (RTD). This chapter

discusses the development of a networked ideal reactor model that is consistent with these

characteristics and fits the parameters to that model. The modeling approach makes

reasonable approximations of the actual flow characteristics in order to allow for the

incorporation of detailed reaction mechanisms. Additionally, the extent and detail of physical

measurements limits model detail. This chapter deals with the issue of making a reasonable

approximation that is consistent with observations and provides a good fit to the tracer data

without introducing unsupportable or physically inconsistent complexities. Since this issue

introduces a degree of subjectivity to model selection, the goals and constraints of this

approach must be developed to provide for a measure of merit for model selection.

Developing and fitting an ideal reactor network employs a mechanistic modeling

approach, as opposed to an empirical modeling approach (Draper and Smith, 1998). It uses

assumptions based on a mathematical description of ideal reactors along with observations

on geometry, and temperature profiles within the reactor, rather than fitting a suitably large

polynomial to the tracer data. Unlike mechanistic modeling approaches that attempt to

replicate fundamental mixing behavior, an ideal reactor approach begins with a simplifying

approximation. It leads only to an approximation of the "true" mixing characteristics.

47
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An empirical approach, on the other hand, makes no assumptions about the mixing process

and does not attempt to describe it. Instead, it simply finds an equation and parameter set,

usually a sufficiently large polynomial, that faithfully reproduces the data. The goal of a

mechanistic approach, in this work, is not to resolve the true mixing characteristics of the

reactor, but to find a networked ideal reactor model that is consistent with observation and

approximates the mixing characteristics for application of the detailed reaction model.

The number of tracer run combinations limited the complexity of the network model.

The model was fit against the data from five different tracer combinations. Each combination

consist of a single-input/single-output (SISO) between one of the input points, B1 or C, and

an output point 3, 4 or 5 (see Figure 3.1). Tracer data from an SISO system can resolve the

flow parameters of the ideal reactors between points, but cannot resolve the order of ideal

reactors in a series. For instance, a model with a perfectly stirred reactor (PSR) followed by

a plug flow reactor (PFR) has the same RTD as the reverse sequence, but the sequence clearly

matters for modeling a complex reaction (Fogler, 1992). If the model had several PSRs in

series the tracer data could have resolved the mean residence time (the flow parameter) for

each ideal reactor, but not the order of reactors. So it would be fruitless to have multiple

differently sized PSRs in a series without having other evidence to distinguish the order of the

different sizes.

Other approaches to ideal reactor model development have employed a combination

of reactor geometry analysis and studies of temperature profiles, in combination with the

application of empirical formulas that describe the turbulent discharge of a fluid from a

nozzle. Swithenbank, et al. (1972) relied primarily on reactor geometry when developing a



12-parameter ideal reactor model for a turbine combustor. The fuel-rich flame originated

from a swirl nozzle and was successively augmented and diluted downstream from three sets

of holes. The authors developed the model from the physical volumes between the fuel and

air inlets to develop the ideal reactor network that was subsequently refined using the cross-

section temperature profiles and cold flow analysis (Figure 4.1). They successfully used the

model to predict the rich blow-off limits of the combustor. Ewan, et al. (1984) extended this

study by measuring the RTDs between various points in the can combustor in a cold-flow

mode which favorably compared with RTDs generated from computational fluid dynamic

(CFD) models. The authors employed a technique that used a spark on mercury amalgam to

generate a vapor pulse, which was triggered and measured at various points in the combustor.
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The data were used to identify the model parameters in each of the zones of the combustor.

These techniques taken together show a good modeling approach which uses the information

available from reactor geometry, temperature profiles and tracer studies.

This chapter proposes a "base model" from the inferences developed in Chapter 3,

which takes reactor geometry, temperature profiles, and RTD into account. From the base

model, other candidate models were developed to improve the goodness of fit to the tracer

data while maintaining consistency with temperature observations and reactor geometry.

Selection of the best model was based on a subjective analysis of the model residuals, the

parameter standard error, and agreement with the RTD moments derived in Chapter 3. To

stay within the limitations of the data, merit was also placed on the simplicity of the model as

a final selection criterion between otherwise equal candidates.

4.1 PFR and PSR Models

Ideal reactor networks use plug flow reactors (PFR) and perfectly stirred reactors (PSR) as

their building blocks. Within these networks, PSRs and PFRs are distinct entities with a

single premixed feed and a single effluent stream. Micro-mixing in a PSR is assumed to be

perfect with no mixing time. Concentrations of all species and temperature are homogenous

throughout the reactor. In contrast, a PFR has no mixing. A homogenous plug of

infinitesimal thickness moves down the reactor without mixing or distorting in the axial

direction. These ideal reactors portray the two limiting conditions of micro-mixing.



51

The material and energy equations for the PSR and PFR are well known. They are

presented here to introduce the form and notation that will be further developed in Chapter

5. Equation 4.1 (Glarborg et al., 1986) is the mass balance for a PSR which is presented in

the notation common to CHEMKIN (Kee et al., 1993) and its associated programs. The

equation assumes steady state conditions of the reactor with mass fractions of each species

and temperature remaining constant over time. The change in the mass fraction, Y, of the e
species with respect to time, equal to zero, is given by

where Wk , and 1,17'k represent molar mass and molar production rate of the kth species,

respectively, and the asterisk superscript denotes the input stream conditions. T is the mean

residence time and p is the density. This shows the balance between convective mass transfer,

the observed differences between feed and effluent, and the production rate of each species.

The energy balance (Equation 4.2) follows in a similar form and shows the balance between

convective heat transfer of the effluent stream, heat of reaction, and conduction through the

walls of the reactor.

Here, h k is the specific enthalpy of the kth species. Other variables are: the reactor external

heat loss, Q; reactor volume, V; mass weighted average specific heat, c p , and reaction

temperature, T. Since 14' k is a function of the concentration of one or more species and
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temperature, Equations 4.1 and 4.2 represent a set of k + 1 nonlinear equations, which may

be solved by a number of techniques. A Sandia distributed CHEMKIN driver program titled

PSR (Glarborg et al., 1986) solves these equations.

Using the same notation, the PFR mass balance describes the change of a single fluid

element moving through the reactor. Equation 4.3 shows the change of the mass fraction of

species k with respect to time as a function of local production rate:

Since the fluid packet is not gaining or losing mass, there is no convective term. Likewise,

the energy balance describes the change in enthalpy as a function of heat of reaction

production and external conduction:

Taking Equations 4.3 and 4.4 together gives k + 1 nonlinear ordinary differential equations

(ODEs). When the conditions of the input stream are known, the PFR mass and energy

balances are solved as initial value ODEs with time as the independent variable. These ODEs

are numerically stiff, which occurs when the dependent variables (mass fractions) change on

two or more different scales of the independent variable (Press et al., 1992). Such conditions

are typical of combustion reaction models that include both very rapid and relatively slow

reactions (Warnatz, Maas and Dibble, 1999). Finding the solution requires a program with

a robust ODE algorithm to maintain both the accuracy and stability. One such program is

DVODE (Brown, Hindmarsh, and Byrne, 1989) that is distributed with the CHEMKIN
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package. The CHEMKIN library subroutines and interpreter program allow the use of

standard chemical kinetic and thermodynamic input files and provide the ODE parameters at

run-time.

4.2 Model Synthesis

An ideal reactor model should contain as few fitted parameters as possible while remaining

consistent with observation. The goal is to make a general approximation of flow and mixing

dynamics, but not an exact representation. In this way, the model will represent the

approximate temperature-time history of the fluid traveling through the SCC while

maintaining the simplicity of ideal reactors. An ideal reactor model accommodates detailed

chemical kinetic mechanisms without undue computational cost.

The SCC (see Figure 3.1) is physically divided by a choke into two volumes: the

mixing section and the burnout section. It has two separate streams entering the mixing

chamber: fuel and our entering axially in the burner stream, and effluent gas from the rotary

kiln entering tangentially in the kiln gas stream, which carries about twice the mass of the

axial stream. Figure 4.2 shows four distinct mixing zones that arise based on the observations

and analysis developed in Chapter 3. Zone 1 constitutes the recirculating flame present in a

swirl burner. This behavior is well documented by Beer and Chigier (1972) and modeled as

a well stirred reactor by Beer and Lee (1965). The cross-section temperature profile (Figure

3.3) further validates treating the flame zone as a distinct region. Zone 2 represents the

swirling flow created by the tangential entry of the kiln gas into the mixing section (Syred and

Beer, 1974). The geometry of the mixing chamber affects the confluence of these two
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regions. Forcing both flows through a narrow choke should create an entrainment region in

the mixing section (zone 3). The temperature profile at the choke (Figure 3.4) shows a

distinctive hot center that is most likely due to a direct bypass from zone 1. The tangential

mixing zone is likely to include dead volume along the refractory wall abutted against the

choke wall. This was deduced from initial placements of trace experiment sampling probes

which found little to no trace when sampled from that location. Another recirculating zone

(zone 4) is likely as the swirling gases emerge from the choke.

The mixing section resembles a tangentially entry swirl burner (Syred and Beer, 1974;

Beer and Chigier, 1972; and Hallett, 1986) feeding the burnout section. From analysis of the

mixing chamber geometry, the tangential entry of the kiln gas creates a large axial flux of

Figure 4.2 Mixing Zones
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angular momentum that transfers through the choke to create another recirculating zone in

the same manner as the nozzle on a swirl burner. The dimensionless angular momentum flux

or swirl number, S, quantifies the intensity of this swirl (Beer and Chigier 1972). Considering

only the angular momentum generated from the kiln transition duct under isothermal

conditions S has a value of about 30 at the choke exit, indicating strong swirl (see calculations

in Appendix C). The actual swirl number, if physically measured, would be less because of

the temperature increase from combustion and the friction losses from the wall and the sudden

contraction at the choke. However, a high swirl number is consistent with both tangential

entry swirl burners and cyclone combustors. Additionally, the divergent exit into the burnout

section enlarges the recirculating zone in zone 4 (Syred and Beer, 1974). After this zone, the

flow should approximate PFR behavior similar to the behavior documented by Beer and

Chigier (1972). Figure 4.3 summarizes this analysis with a postulated model that will be the

baseline case — model O.
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In Figure 4.3, each box represents an ideal reactor. Each reactor has two parameters,

the mean residence time, r, and the reactor temperature, T (or entrance temperature for the

PFR). With 0, and 02 depicting the fractions of the flame gas stream and kiln effluent stream

mixing prior to the choke, the schematic becomes a 12 parameter model. Even though this

seems excessive, it represents the simplest possible model when geometry and observed

temperature profiles are considered. Since the SCC may contain dead space, the total volume

can not be used to eliminate a degree of freedom. The dead volume is not included on the

schematic because its parameter is found through physical closure and does not add to the

parameter count. Specifically, it is found by subtracting the identified ideal reactor volumes

from the physical volumes of the mixing and/or burnout section. The analysis of the RTD

moments (Chapter 3) further supports this postulated model. The next step is to identify the

model's parameters.

4.3 Parameter Identification

4.3.1 Approach

The model parameters were determined by directly fitting the model to the normalized tracer

step response rather than to the reconstructed RTDs. This method has the advantage of

fitting the model to original data. The process uses an iterative approach to minimize the

error defined by the least squares criterion. The Nelder-Meade simplex search routine

(Nelder and Meade, 1965), provided in the standard MATLAB® library, performs the

parameter adjustment to minimize the squares of the errors.
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Figure 4.4 shows the algorithm of this technique. The model uses the analyzer step

response, U(kΔt) (defined in Chapter 3, Section 3.3.)), as input along with an initial guess of

the parameters and gives the model step response or estimated step response, Y (kΔt), using

Equation 3.11 in step form. The total error is then calculated as the sum of the square

differences between the system step response and the model step response and weighted with

Boolean operators to prevent forbidden (negative) values. The simplex search continues to

improve the solution for the parameters and terminates the loop once the total error has been

minimized.

The model equation in Figure 4.4 shows the discrete form of the convolution equation

with g(kΔt) representing the transfer function. The actual convolutions were performed on

MATLAB® using the LSIM function from the control toolbox. LSIM accepts the transfer

function as a Laplace transform in the form of two polynomial coefficient vectors, one for the

numerator and one for the denominator. The Laplace transform is a convenient form for ideal

reactor networks. The basic building blocks, the PSR and PRF, are easily represented.

Equation 4.5 shows the Laplace transform for the a PSR.

Here, a, is 1/7-, , the reciprocal of mean residence time, G(s) is the transfer function or the

RTD of the PSR and s in the independent variable in Laplace domain. For a PFR the equation

is an exponential function.
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Although the exponential form does not algebraically complicate the network transfer

function in the Laplace domain, it does not give a convenient polynomial as required by

LSIM. Rather than trying to approximate the exponential as a polynomial, the PFR was

introduced as a time domain delay of Td after the LSIM calculation. However, the Laplace

domain network transfer functions retain the exponential for consistent notation throughout

this chapter.

Combining the reactors in the network proves the real convenience of Laplace

transform notation. In the time domain, the combination of two reactors in series, g1(t) and

g2 (t), is the convolution,

but simply the product of their Laplace transformations.

The transfer function for parallel reactors, with stream fraction 0 going to the first reactor,

is the weighted sum of the reactor transfer functions, and is the same in both Laplace and time

domains.
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By using the Laplace transforms, the network model can be developed as a matter of

algebraic manipulations that yield equations in a form compatible with the MATLAB

control toolbox.

4.3.2 Models

Using the approach described above, the model depicted in Figure 4.2 was translated into

formulas. Each formula represents a specific input to output combination corresponding to

a data set (see Table 3.1). For the mixing section, this corresponds to the combinations with

inputs at B1 and C and exiting at points 3 and 4 (as noted earlier the C to 3 combination had

no measurable output). The resulting three combinations are given in the following equations:

where a l , a2 , and a ; are the respective reciprocals of the PSR mean residence times 7-1, r2, and

T3, and 0 1 and 0, are the stream fractions shown in Figure 4.2. These parameters were fit by

the algorithm illustrated in Figure 4.4.



Figure 4.5 Candidate Ideal Reactor Mixing Section Models

/-11



Table 4.1 Competing Mixing Section Models
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An effort was made to improve the fit to the tracer data by considering alternative

models that were consistent with the observed temperature profiles and SCC geometry. The

three best fitting candidates are illustrated in Figure 4.5. These networks are described by the

equations listed in Table 4.1. All these models describe the mixing section with five mixing

parameters (mean residence time and bypass fractions, but not temperature). Each has minor

variations from the base model (Figure 4.3), but maintain the same number of mixing

parameters. The first model eliminates the bypass in the kiln gas stream by channeling all the

effluent from PSR 2 to PSR 3, which fixes 0, to 1, and adds PFR 4 (with residence time t4 )

after PSR 3. This PSR to PFR order reflects a postulated dissipation of mixing energy after

PSR 3 before the stream enters the choke and is consistent with the model suggested by Beer

and Lee (1965). The second alternative model modifies the base model by using two equally

sized PSRs in place of PSR 2 and two equally sized PSRs in place of PSR 3, which better
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models a more complex mixing pattern. The third alternative is a hybrid approach between

the first and the second in that it eliminates the bypass in the kiln gas stream, adds a PFR

following PSR 3 and uses two equal PSRs in place of PSR 2.

The model downstream of the choke describes the stream as it expands from a fast

moving fluid in the narrow choke to the slower moving fluid downstream. Translating the

model in Figure 4.3 downstream of the choke (i.e. the burnout section) to a formula gives:

This assumes the confluence of the kiln gas and burner streams in the choke at point 4.

Unlike the mixing section, this formula does not correspond to a measured tracer input/output

combination. As an alternative, the 4 to 5 tracer run was synthesized by using the C to 5, B1

to 5, and B2 to 5 runs as the system response functions and the C to 4, B1 to 4, and B2 to

4 as the respective driver functions in place of the analyzer functions (see Appendix C for the

point 4 to 5 RTDs). Adding an equally sized PSR to the model in Equation 4.11 improved

the fit with the data, but the fitted parameters differed greatly depending on the tracer

combination used to synthesized the 4 to 5 tracer run. This suggests exploring a more

complex model.

Burnout section RTDs derived from tracers entering at tangential entry points (points

B1 and B2) into the mixing section had mean times 0.6 to 0.7 seconds shorter than the RTD

produced from the axial entry point (point C). Figure 4.6 shows a model proposed to
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Figure 4.6 Candidate Ideal Reactor Burnout Section Model

reconcile these differences. It considered the kiln gas (tangential entry) and the burner gas

(axial entry) streams as separate, which was consistent with the temperature profile in the

choke (Figure 3.4). The model proposes that the burner gas stream, emerging from the

center of the choke duct, forms a separate recirculating zone as the kiln gas bypasses this zone

and mixes further downstream. Since other alterations to this model, such as additional

downstream PSRs, significantly worsened the fit, no other candidates are presented for

discussion. Equation 4.12 shows the modified burnout section model.

4.3.3 Error Analysis

Once the parameter values are estimated, it is useful to determine the confidence bounds on

them. This has several utilities. First, this allows testing the sensitivity of the objective model
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(the combination of the mixing model with the thermo-kinetic mechanism and the

thermodynamic data) to the errors of the mixing model parameters. Next, the limits are useful

for refinement or selection of the preferred candidate networked ideal reactor models.

Parameters with relatively high standard errors or high covariance often indicate

overparameterization:, more parameters in the model than are needed to represent the data

(Draper and Smith, 1998).

The networked ideal reactor model estimates the normalized system response of the

tracer, p". The it h estimated point is a function of the independent variable x, (which

correspond to the discrete time measurements, iΔt, for i = 0, 1, 2, 3, ... m-1) and n parameters

(a1, a2, a an). The sensitivity of the parameters can be deduced from the covariance

matrix,	 (Press et al., 1992) shown in matrix form:
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and o- ,2 is the local variance of the measurement of .)2, (see Appendix C for the method used

to deduce the local measurement variance). Each column of the matrix in Equation 4.14

shows the sensitivity of the system response p' to a perturbation of parameter a 1. When

applied to Equation 4.13, the diagonal elements of the covariance matrix gives the standard

or probable parameter variance, and their square roots give the standard or probable error of

the parameters.

The off-diagonal elements represent the covariance between parameters. Low values indicate

a high degree of independence between parameters. An overparameterized model usually has

some parameters with relatively high standard errors and a high covariance between them

(Draper and Smith, 1998).

The standard errors do not give the confidence bounds. The confidence bound can

be calculated independently using the t-distribution fv(1-p/2,v) (where p is the desired

confidence level and v represents the degree of freedom in - n) given by:

However, these confidence intervals are misleading and inaccurate since Equation 4.16

assumes that parameters are independent of each other and that they vary symmetrically



around	 which is seldom the case for non-linear least squares estimation (Rooney and

Biegler, 2001). Other methods that more accurately estimate the confidence region involve

Monte Carlo techniques will not be explored in this work.

4.4 Results

In the mixing section, the models for B 1/3, B 1/4, and C /4 share five parameters. Rather than

fitting each model individually, these models were fit simultaneously by adding the model-to-

data errors into a single objective function. This reconciled the inevitable differences that

would have emerged through separate treatment. The fitting was limited to those data points

on the interval between 0 and 2.7 seconds. This had two effects: it weighted the interval of

most rapid change, and it avoided the extended "tail" in the RTD that was a likely result from
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dead space in the mixing section. This effect was most pronounced in the B 1/4 tracer runs.

Figure 4.7 shows a pronounced dead space effect between 3 and 4 seconds where the model

overshoots the data. The model was insufficiently complex (by design) to account for the

slow absorption or desorption of tracer from a dead volume. By fitting on the 0 to 2.7 second

interval, the model parameters could be optimized for the portion they were meant to

describe.

Table  4.2 Results of Competing Mixing section moaeis

Model 0
(std error)

Model 1
(std error)

Model 2
(std error)

Model 3
(std error)

Reconst
RTD

standard
deviation

0.040 0.028 0.029 0.027

Theta 1 0.005 (0.151) 0.000 (0.000) 0.000 (0.111) 0.000 (0.000)
Theta 2 1.000 (0.113) 1.000 (0.038)

Tau 1(PSR) 0.330 (0.083) 0.333	 (0.007) 0.333	 (0.061) 0.333	 (0.007)
Tau 2 (PSR) 0.561 (0.007) 0.560 (0.003) 0.268	 (0.001) 0.272 (0.001)
Tau 3 (PSR) 0.596 (0.091) 0.003 (0.594) 0.277	 (0.012) 0.003 (0.942)
Tau 4 (PFR) 0.552 (0.559) 0.508 (0.898)

B1 to 4
mean 1.16 1.12 1.09 1.06 1.08

variance 0.67 0.31 0.30 0.15 0.40
skewness 1.42 2.00 1.00 1.41 1.46

C to 4
mean 0.33 0.33 0.33 0.33 0.31

variance 0.11 0.11 0.11 0.11 0.17
skewness 1.97 2.00 2.00 2.00 2.03

B1 to 3
mean 0.56 0.56 0.54 0.54 0.57

variance 0.31 0.31 0.14 0.15 0.32
skewness 2.00 2.00 1.41 1.41 2.57

All units in seconds except variance (seconds) and skewness (dimensionless).
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Table 4.2 shows the fitted parameters for the four mixing section models, the standard

errors of the parameters and compares the derived moments (mean, variance, and skewness)

to the moments from the reconstructed RTDs. The table also gives the standard deviation

between the data and each fitted model for a standard of comparison. In general, one can

infer from the fitted parameters that little to no mixing takes place between the kiln gas and

burner gas streams between the entrances and exit of the mixing section. All models show

theta 1 as zero or near-zero which implies a complete bypass between the flame zone and

choke. The flame and kiln gases essentially do not mix inside the so-called mixing section of

the SCC. Additionally, all the kiln gas stays in a single stream, which the theta 2 value of one

implies in models 0 and 2. Most likely some entrainment occurs at the interface between the

two streams, but not sufficient enough to be distinguished as a separate mixing zone. The

fitted parameters of all models show a great deal on consistency with the moments derived

from the reconstructed RTDs.

The first moments (mean) derived from the model parameters show excellent

agreement (within the measurement interval of 0.05 seconds) with the mean calculated from

the reconstructed RTDs in Chapter 3. Higher order moments, however showed less

agreement with some models. While the measurement of the variance from tracer data can

be more problematic because it weights the data furthest from the mean (which is more

effected by noise and hence less reliable), lack of agreement is a criterion for discriminating

between models. For instance, second moments (variance) derived from the model

parameters for models 2 and 3 show poor consistency with the second moment derived from

the B1/3 RTD. Both these models use two equal PSRs for PSR 2 in the mixing section.



70

Using two equal PSRs, in place of one, halves the value of the variance calculated from the

parameters (see Table 3.2, moments for model archetypes). Observing the same trend in

Table 4.2 for the B1 to 3 RTD suggests that a single PSR here is a better model.

Comparison of the skewness coefficients derived from the model parameters with

those derived from the reconstructed RTDs reveal several trends. All models have a single

PSR between C and 4 which yields a skewness coefficient of 2 (the skewness coefficient from

model 0 is slightly less that 2 due to a small amount of mixing with PSR 3) that agrees with

the moment derived from the RTD. The single PSR between B1 and 3 for models 0 and l

that gives a skewness coefficient to is closer to the skewness coefficient derived from the

RTD of 2.57. The higher number from the reconstructed RTD could be indicative of long

tails that result from dead space (Himmelblau and Bischoff, 1968) or simply an outlying data

anomaly magnified by the higher moment. The skewness coefficient from the reconstructed

RTD between B1 and 4 supports a model with two PSRs of approximately equal size.

Models 0 and 3 conform to this postulate, but model 3 lacks good agreement with the

variance.

As discussed earlier, models with high standard errors are indicative of

overparameterization, which are models with more parameters than necessary to describe the

data. The high standard errors for the bypass fractions in models 0 and 2 suggest a model

that might eliminate one or both of these parameters. Models 1 and 3 have high standard

errors for 13 and 14 which suggest a close correlation that might support eliminating one or

the other. The relation between these two parameters will be further discusses in section

4.4.3.
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1 arse 4.3 Results or competing burnout Section Models

Model 0 (B2 input)
(std error)

Model 0 (C input)
(std error)

Model 1
(std error)

Reconst
RTD

Theta 3 0.013	 (0.155)
Tau 5 (PSR) 0.782	 (0.014) 0.898	 (0.011) 0.765	 (0.117)
Tau 6 (PSR) 1.102	 (0.094)
Tau 7 (PFR) 0.811	 (0.029) 1.345	 (0.018) 1.287	 (0.032)

4 to 5
(B2 Input)

mean 2.37 2.40 2.27
variance 1.22 1.23 1.05
skewness 1.41 1.98 0.75

4 to 5
(C Input)

mean 3.14 3.15 2.99
variance 1.61 1.80 1.41
skewness 1.41 1.48 0.82

All units in seconds except variance (seconds) and skewness (dimensionless).

For the burnout section, model 0 (Figure 4.3) assumed a completely mixed flow

emerging from the choke and model 1 assumed a complete segregation of the kiln gas and

burner gas streams. The parameters for model 0 could be fit using any tracer run measured

downstream of the choke and a tracer run originating at the same input and measured at the

choke as the driving function (in the role of the analyzer function in Figure 4.4). Model 1

(Figure 4.6) required a simultaneous fit in the same manner as the mixing section. Model 0

was modified by replacing its single PSR with 2 equal PSRs in series (labeled PSR 5 for
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consistency). This provided the best fit and its results are presented in Table 4.3. Results

produced from the B2/5 and C/5 tracer runs on model 0 are compared to the simultaneous

parameter fitting on model 1 using the same tracer runs.

The results produced for model 0 from the different tracer inputs (B2 and C) varied

by 0.77 for total mean residence time. Even though each individually agrees with the

reconstructed RTD, both cannot exist since different values are required for the same ideal

reactors. Model 1, which assumes segregated streams, resolves the contradiction by giving

the steams two separate paths initially and allowing the mixing to occur further downstream

(see Figure 4.6). The resulting first and second moments derived from the model parameters

show good agreement with those corresponding to the reconstructed RTDs.

4.4.1 Selecting a Model

Model 1 was selected for the mixing section. This choice was made for a number of reasons.

First, it had a significantly better overall fit to the data than model 0, which is exhibited in the

data-to-model standard deviation in Table 4.2. Next, the model parameters for a single PSR

2 produced a much better agreement with the variance derived from the reconstructed RTD

from the B1 to 3 tracer run than the two PSRs used in models 2 and 3 (see Figure 4.4).

Finally, the model is simple, which is consistent with the goals of the ideal reactor model.

Figure 4.8 shows excellent agreement between the differentiated normalized tracer

data ( the system response) with the model 1 system response. Figure 4.9 shows the same

comparison when the effect of the analyzer is removed from the system response. The least

square (LS) identification, described in Chapter 3, accounts for the large difference between



Figure 4.8 Comparison of Model 1 with System Response: B1 to 4
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Figure 4.9 Comparison of Model 1 with LS Reconstructed RID:
B1 to 4
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model 1 and the reconstructed RTD. In order to illustrate this, a system response for model

1 was produced, using the analyzer function as the driver, then reconstructed by the same

process to produce the LS identified model. This shows excellent agreement with the LS

reconstructed data and provides an better method of visually comparing data and model. The

next section provides further analysis into this phenomenon.

The burnout section was best represented by model 1 since it accounted for the

differences produced by tracer runs from different entry points on model°. This assumes that

the kiln gas and burner gas streams emerge segregated from the choke then mix in the next

two PSRs. From the fitted parameters, most of the kiln gas bypasses the first mixing zone

before completely mixing in the next mixing zone downstream (PSR 6). This implies that the

added chlorocarbon dopant travels over half the length of the SCC before becoming

completely mixed with the SCC burner effluent. The selected burnout model is compared to

the differentiated and reconstructed data in Figures 4.10 and 4.11. Both show excellent

agreement between data and model. In Figure 4.11, the LS reconstructed model is used as

the basis of comparison.

4.4.2 Data Reconstruction and Analysis of the Power Spectrum

The analyzer has two effects on the step response of the reactor: it smears or broadens and

delays the response, and it acts as a band limiting filter. The smearing effect was corrected

by the LS reconstruction techniques covered in Chapter 3. The band limiting effect, however,

limits the ability to reconstruct the underlying transfer functions. This effect creates the

discrepancies between the reconstructed RTD and the fitted parameter model.



Figure 4.10 Comparison of Model with System Response: B2 to 5
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Figure 4.11 Comparison of Model with LS Reconstructed RTD: 4
to 5 w/ B2 Input
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The reactor RTD is the impulse response of an underlying linear transfer function,

g(t). The impulse function, 6(0, transforms into frequency domain as a constant function,

δ(w) = 1 (where a) is angular frequency 27-f), so it contains all frequencies at equal energy

levels (O'Neil, 1991). The driven system will give a true response characteristic of all the

frequencies in its transfer function. For discrete sampling, the Nyquist critical frequency fc ,

a function of the sampling interval, imposes a limitation on the frequencies produced in the

system response. Equation 4.16 shows the Nyquist critical frequency for a sampling interval,

Δt, of 0.05 seconds (Press et al., 1992). So, frequencies above 10 Hz cannot be measured

by the analyzer.

Even assuming that the SO, tracer train can produce an impulse input (synthesized by

taking the first derivative of a step input) the results are observed through an analyzer with

its own characteristic linear response. As explained in section 3.3.3, the analyzer acts as the

driver to the transfer function of the SCC to produce a system response (see Figure 3.5). The

analyzer function in this construct, unlike an impulse function, produces a frequency spectrum

that falls off far below the Nyquist critical frequency. Using the power spectral density of the

analyzer response, which is its Fourier transformation multiplied by its complex conjugate,

reveals a gain reduction of 100 dB above 1 Hz. Figure 4.12 shows the power spectrum

density of the analyzer compared to model 1 for the B1 to 4 input/output combination in the

mixing section. Since the analyzer function drives the response of the actual system, it

dampens the frequencies above 1 Hz of the system response. As a result, the LS
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Figure 4.12 Power Spectrum Comparison of Model and LS
Reconstructed RTD: B1 to 4

Figure 4.13 Comparison of Clipped and Reconstructed Model: B1
to 4
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reconstructed data and LS reconstructed model (the model driven by the analyzer response

then reconstructed again) fail to match the power densities of the model at the higher

frequencies. This effectively limits the LS reconstruction of both data and model to

frequencies below 1 Hz.

Figure 4.13 illustrates this point. The LS reconstructed model shows the selected B1

to 4 model transfer function driven by the analyzer response to produce a system response

which was reconstructed by LS identification. The other line is the impulse response of the

model transfer function with all frequencies above 1 Hz set to zero or "clipped" using a Fast

Fourier Transformation. This results in a response that closely approximates the LS

reconstructed model for B1 to 4, which closely resembles the LS reconstructed data (Figure

4.9). Therefore, the analyzer is acting as a limited bandwidth filter that dampens frequencies

above 1 Hz.

This frequency band limitation produces non-unique solutions in the reconstruction

process (Schafer et al., 1981). For instance, the LS reconstructed data graphed in Figure 4.9

or 4.11 could have resulted from any one of a number of systems with power spectral

densities equal below 1 Hz, but differing greatly above 1 Hz. This problem is more dominant

in Figure 4.14 where the B2 to 4 tracer run, rather than the analyzer, is used as the driver

function, and falls-off well below 1 Hz. The constrained iterative restoration algorithm

(Schafer et al., 1981) applied for the RTD reconstruction took a consistent approach by

starting with the system response (model or real system driven by the analyzer function) as

the initial solution. By doing this, nothing is assumed in the solution about the higher

frequencies.
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Figure 4.14 Power Spectrum Comparison of Model and LS
Reconstructed RTD: 4 to 5 w/B2 input

4.4.3 Error Analysis

Table 4.2 shows the selected (preferred) mixing section model (model 1) with low standard

errors for the first three parameters, 0 / , τ1 and T2 , but has relatively high standard errors for the

last two parameters, r and T4. High standard errors indicate overparameterization; more

parameters than can be supported by the model. At first glance, this appears to be the case.

The parameters T3 and T-4 are highly correlated. The correlation coefficient is a function of the

parameter variances and the covariance between them as shown in Equation 4.18 (Draper and

Smith, 1998),

which means that these parameters have a perfect negative correlation.
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To understand this perfect correlation, recall that model 1 added PFR 4 following PSR

3 in the base model to achieve a better fit. Figure 4.15 shows the contour of the objective

function, S. which is a summation of the squares of the differences between the system step

response, Y, and the estimated (model) system response.

The contour forms a "valley" from about 0.55 on the abscissa to the same value on the

ordinate. This suggests the elongated shape of the confidence region. Since these two

parameters compete in this region over a fixed total residence time for PSR 3 and PFR 4, it

makes more sense to define new parameters: r ;4 as the mean residence time for both PSR 3 and

PFR 4, and O 4 as the fraction of that mean residence time in PSR 3. Defined in this manner,

the parameter values become:

Thus, the residence time of PSR 3 and PSR 4 together is very certain, but it cannot be

determined from the data where PSR 3 ends and PFR 4 begins with a high degree of certainty.

This uncertainty must be explored when thermo-kinetic mechanisms are applied to the model.



Figure 4.15 Objective Function Surface: T3 vs. T4

4.4.4 Temperature Parameters

The notional ideal reactors were assigned residence time parameters based on a best fit to the

tracer step responses. This information is used in combination with physical temperatures

observations to assign temperatures to each reactor. Cross-sectional temperature

measurements from points B 1, 4, and 5 are used to assign these temperatures. Figure 4.16

shows the relationship between the selected model and the physical SCC where these

measurements were taken.



Figure 4.16 Selected Model Juxtaposed to Physical Secondary Combustion Chamber; Dimensions in Feet and Inches
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At each point, the cross sectional temperature contour was estimated using the

technique described in section 3.2.2. A weighted average of the generated cross-sectional

mesh cells gave the average temperature:

where n is the number of cells in a 0.1 inch grid. The average temperature increased from the

mixing section (1031 K) to the choke (1450 K). The lower temperature in the mixing cross-

section is due, in part, to the longer residence time of the cooler kiln gases (1.12 seconds from

B1 to point 4) versus the faster moving flame gases (0.33 seconds from C to point 4).

However, even when this is considered, the average temperature still increases. In contrast,

the burnout section deceases to an average temperature of 1241 K as gas travels between

points 4 and 5. The temperature increase from the mixing section to the choke and the

temperature decrease in the burnout section suggests the methods for assigning temperatures

to individual ideal reactors.

The cross section temperature contour (Figure 3.3) of the mixing chamber was used

to determine PSR2. Averaging the temperatures that excluded the flame region, the area of

rapid temperature rise inside the 1050 contour, resulted in a kiln gas stream average

temperature of 1009 K, which was assigned as the temperature of PSR 2. The hotter zone

(inside the 1050 K contour) had an average of 1344 K, but was not assigned to PSR 1 because

of a higher average flame gas temperature found at point 4. The model shows two distinct
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streams withing the choke, although the temperature profile (Figure 3.4) does not suggest a

dividing point. Assuming a uniform velocity in the z direction in the choke section, the two

gas streams were divided using the relative mass flow rate. A radial cross-section temperature

contour was constructed and the cross sectional grid cells were divided out using the following

relationship between velocity and mass flow:

where A i the grid cell area and vz is the uniform z direction velocity. This gave an average

flame gas stream of 1538 K and a kiln gas stream temperature of 1404 K. Since the flame in

the mixing section (PSR1) is modeled as a single PSR, only a single temperature may be

assigned. The higher temperature was assigned to PSR 1. The other two ideal reactors

temperatures were based on a uniform heat gain within the kiln gas stream to 1404 K.

The temperatures of the ideal reactors in the burnout section were assigned based on

the model parameter mixing fraction, and a uniform heat loss through the combustor walls

to the ambient air. The heat loss, Q, can be calculated from either the enthalpy differences of

the combined streams between the choke and point 5, or the heat transfer through the

combustor walls using the reactor surface area, A, the overall heat transfer coefficient, U, and

the log mean temperature difference, LMTD:



Using a measured ambient temperature, Ta , of 40 °C and mass specific enthalpy, h, based on

complete combustion products resulted in an overall heat transfer coefficient, U, of

1550 ergs/s cm 2 °C (0.272 Btu/hr ft 2 °F). The ideal reactor temperature, TR, is found for PSR

5 and PSR 6 using the energy balance for a stirred reactor:

The volume of the burnout section, VB, is known from the physical geometry of the SCC, but

the ideal reactor volumes are yet to be calculated. To do this, the volume specific heat

transfer, UA/VB , is used in combination with the ideal reactor volume expressed in terms of

reactor mean residence time, TR, and the reactor temperature shown in the second group of

terms on the right hand side of Equation 4.24:

where W is the mean molar mass and P is the reactor pressure. The enthalpy of the feed

stream is fixed, but effluent stream enthalpy depends on the reactor temperature, and is

described by the correlations in the CHEMKIN Thermodynamic Database (Kee, Rupley,

Miller, 1992). Reactor temperature was solved for using a spreadsheet equation solver and
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the results as shown in Table 4.4. The final ideal reactor is a plug flow reactor, which is

assigned an input temperature from the output of PSR 6 and a output temperature as the

average temperature at point 5.

Ideal Reactor Mean Residence
Time

(seconds)

Temperature
(K)

Volume
(Liters )

PSR 1 0.333 1538 24.0

PSR 2 0.560 1009 45.2

PSR 3 (1.003 1009 0.2

PFR 4 0.552 1009 ( in) 55.1
1404 (out)
1250(LMT)

PSR 5 0.765 1451 53.1

PSR 6 1.102 1323 184.8

PFR 7 1.287 1323 (in) 209.0
1241 (out)
1281 (LMT)

Mixing Section

(Physical System) 1.36 1031 178

(Active System) l.12 125

Burnout Section

(Physical System) 3.13 1342 (LMT) 410

(Active System) 2.39 447

The residence time of the physical system was calculated in the same manner that

would have been used for a design calculation of a commercial SCC. It was based on the total

flow, averaged measured temperature or log mean temperature, and the physical volume. The

Table 4.4 Model Parameters: Residence Times,  Temperatures and Resulting Volumes
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active residence times considered only the path taken by the dopant laden kiln gas. These

calculations show that the active path, identified in the networked ideal reactor model, is 1

second shorter than the superficial residence time from the design calculations. Differences

are also apparent between physical volumes from the SCC geometry and active volumes from

the sum of ideal reactor volumes. The difference between the active volume and physical

volume in the mixing section is likely manifested as dead space or dead volume. Early

investigations of probe placements indicated the presence of dead space in the mixing section

adjacent to the choke wall. The gradual expansion from the choke into the burnout section

prevents dead space caused by the abrupt diameter change between the mixing section and

choke. The derived active volume for the burnout section is actually greater than the physical

volume. This is a likely result of experimental error. Placed in perspective, the error reflects

a 0.28 second error in a 3.13 second burnout section.

4.5 Summary

This chapter showed a mechanistic modeling approach to choose a network ideal reactor

model. A model was chosen based on the best fit to SO 2 tracer data and consistency with

physical geometry, resulting flow patterns, and temperature measurements. The chosen model

is summarized in Figure 4.16 with parameters in Table 4.4. Frequency bandwidth limitation

introduced by the SO 2 analyzer precludes distinguishing solutions that differ only in the higher

frequencies. Thus, a best-fit model does not represent a unique solution and other

considerations such as reactor geometry, analysis of flow patterns and swirl, and temperature

cross section measurements also merited consideration in model selection.
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The evaluation of standard errors for the fitted parameters quantified the uncertainty

in the model. Within the mixing section, standard errors were generally low (less than 0.01

seconds). The exception was the parameters for the two in-series reactors PSR 3 and PFR 4

on the kiln gas stream between points 3 and 4. Further analysis revealed that the standard

error for the combined mean residence times was very small, but the fraction apportioning that

time between the two reactors was very high (0.944 for a 0 to 1 scale). Since the PSR and

PFR represent different extremes of ideal macromixing, this indicated a large degree of

uncertainty in quantifying the mixing characteristics between points 3 and 4 on the kiln gas

stream. Parameters in the burnout section had larger standard errors, but were less than 0.12

second for parameters ranging from 0.77 to 1.29 seconds.. The standard error for the

parameter describing the kiln and flame gas stream mixing in PSR 5 was the largest (0.155 for

a 0 to 1 scale). Further analysis of model sensitivity to these mixing parameters will be

covered with the application of thermo-kinetic mechanisms in Chapter 6.

Temperatures assigned using cross-section temperature profiles and energy balances

enabled ideal reactor volumes to be determined. The difference between the active and

physical volumes indicated the presence of 53 L of dead space in the 177 L mixing section, but

found 37 L more active volume than the 410 L physical volume of the burnout section. As

a percentage, this is much lower than the volume discrepancy in the mixing section. The

parameter fitting process in the burnout section, which used the tracer runs in the mixing

section rather than the analyzer as the driving functions, was more likely to have accentuated

errors. Overall, there was good agreement between the identified model and the physical

geometry of the SCC.
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The discrepancy between the superficial residence time and residence time of the kiln

gas reveals a potential fallacy in current design criteria. The identified networked ideal reactor

model has a pathway for the kiln gas, which potentially carries unburned hazardous

constituents, that takes 22 percent less time than the residence time from the design

calculation. This suggests the need to incorporate some form of detailed flow analysis into

design criteria. The classical chemical engineering method of identifying a multi-parameter

ideal reactor model is one such approach.



CHAPTER 5

NON-IDEAL REACTOR MODELS

Mixing considerations dominate combustion modeling. The mixing and distribution of the

reaction intermediates are especially important to the chain-reaction mechanism of

combustion. First, the transient radicals that make up many of the intermediates in a

combustion reaction promote additional reactions that either produce a radical (propagation),

produce multiple radicals (chain-branching), or form stable products (termination). High

temperature radicals mixing with incoming reactants sustain and stabilize the combustion

process. The onset of blowout conditions is strongly effected by mixing (Barat, 1992). The

second-order nature of the termination process strongly depends on the local concentration

that is in part determined by the mixing process. Mixing conditions which favor high local

concentrations of heavier radicals promote the carbon chain building reactions that form the

larger and more complex products of incomplete combustion (PIC). This chapter will explore

these aspects of mixing in the context of non-ideal models.

While the previous two chapters developed a model of mixing in the Secondary

Combustion Chamber (SCC) based on a network of ideal reactors, this chapter will explore

the middle ground between ideal mixing limits to assess the impact of non-ideal mixing on the

combustion model. The ideal reactors used in the network, the perfectly stirred reactor (PSR)

and the plug flow reactor (PFR), represent the two extremes of mixing: the PSR introduces

the feed fluid which is then immediately and perfectly mixed with fluid already in the reactor,

90
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and the PFR passes a non-mixing plug of fluid through the reactor. Another ideal limit can

be described by further subdividing the mixing in the PSR into "macromixing" in the bulk fluid

and "micromixing" at the molecular level; concepts that were notably advanced by

Danckwerts (1957, 1958) and Zweitering (1959).

The bulk movement of fluid in a stirred reactor driven by agitation or recirculation is

the mixing force often associated with macromixing while molecular diffusion is the mixing

force often associated with micromixing. David (1994) disagrees with this description. He

takes a stricter view by associating the types of mixing with the scale of the sample space

rather than the associated force driving the mixing. He defines macromixing in stirred

reactors, as "... the process leading to equal values of the average concentration in space,"

where micromixing involves "... processes governing the decay of physical segregation,

characterized by local concentration fluctuations." The distinction is important since

turbulent fluctuations and molecular diffusion contribute to both types of mixing. This

definition links the residence time distribution (RID), a bulk effluent concentration measured

in time, with macromixing. However, the RTD provides no information about micromixing.

Characterizing micromixing requires estimation of quantities such as the turbulent kinetic

energy and dissipation rate. The literature is full of turbulent mixing models for addressing

these issues, which will not be exhaustively reviewed here. This chapter, however, will focus

on a simplified approach to an Interaction by Exchange with the Mean (IEM) model, known

as the Partially Stirred Reactor (PaSR), for the purpose of exploring the impact of less than

ideal micromixing.
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Figure 5.1 Schematic Representation of Mixing Space (Nauman and Buffham, 1983,
147)

5.1 Models Between Ideal Limits

Nauman and Buffham (1983) proposed a qualitative diagram (Figure 5.1) depicting the

relationship between macromixing and micromixing and the associated reactor models. At

the origin is the plug flow reactor model, a non-mixing plug of fluid moving through a

reactor. As macromixing increases, micromixing is bounded by the maximum mixedness

boundary until the limit is reached at the PSR model. Perfect mixing implies a homogeneous

composition and temperature throughout the reactor at the macro scale (perfect macromixing)

and the micro scale (perfect micromixing) and a characteristic exponential RTD. At the other

extreme of micromixing, but the same degree of macromixing, is the segregated stirred tank

model. It models a uniform composition when averaged at a macro scale, but can have wide

fluctuations at the at the micro scale. It has the same RTD as a PSR since this is a
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characteristic of macromixing. The cords that attach the PSR and the segregated stirred tank

to the origin bound the normal region. Nauman and Buffham offer rigorous proof that for

simple reaction systems — those with rate equations that can be reduced in terms of a single

concentration variable — that maximum and minimum reactor performance occurs on these

limits of the normal region. While the bounding of reactor performance is not assured for

complex and multiple reactions, exploration of these bounds reveal the sensitivity of the

system to micromixing.

The two models that form the cords bounding the normal region are the maximum

mixedness model (Zwietering, 1959), and the segregated flow model (Dankwerts, 1958). In

the segregated flow model, mixing only occurs between molecules with the same ages within

the reactor until mixing with the bulk flow at the exit and thus as late as possible. Mixing in

the maximum mixedness model is the reverse of the segregated flow model and occurs

between molecules of different ages as early as possible. For each model, the macromixing,

characterized by the RTD, is the independent variable, where the micromixing is intrinsic to

the model and restricted to the bounds of Figure 5.l. The interior of the normal region may

be explored by using other models with different intrinsic levels of micromixing such as the

Axial Dispersion model, or using models with a independently adjusted level of micromixing.

These include the coalescence and dispersion model (Curl, 1963) and its extension by

Kridiotis et al. (1989). They allow the adjustment of the micromixing rate that requires the

estimation of the coalescence rate. Another approach with a single adjustable parameter is

to model the micromixing by the rate of relaxation of local conditions toward the mean
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conditions of the reactor. This approach is known as Interaction by Exchange with the Mean

(IEM). For a specified level of macromixing, the IEM model can explore the normal region

between the maximum mixedness and segregated flow models.

5.1.1 The Segregated Flow and Maximum Mixedness Models

The concept of a segregated flow can be illustrated in a binary mixture, A and B. The local

mole fractions, the values at a specific "point," for A and B are the values .1-A and (l- xA )

respectively. The global mole fraction for A is the expected (weighted average) value of the

local values, and the value for B is (1 - ( A Danckwerts (1958) defines the degree of

segregation in terms of the mean square segregation:

When the local concentration is the same as the global concentration (perfect micromixing),

I has the value of 0, and when the mixture is perfectly segregated (i.e. xA = 0 or 1) then I has

a value of 1. Danckwerts refers to these local concentrations as the concentration at a

"point," which is a small region of fluid large enough to contain many molecules, but small

compared to the whole region. He then generalizes the concept by defining segregation in

terms of an age rather than a concentration distribution in a "point." This concept parallels

David's definitions of macromixing as process leading to equal values of concentration space

irrespective of local physical segregation between "points" and micromixing as the process

of decaying that segregation.
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At one extreme, a stirred reactor can exhibit the same features of the macromixing

found in a PSR (ideal macromixing), but with complete segregation on the micro scale. This

extreme is the segregated stirred tank reactor. The model may be conceived of as "points"

moving through a stirred reactor, each completely isolated and behaving as a batch reactor.

Each "point" enters the reactor with the same composition, emerges with a composition

dependent on the time spent in the reactor, and then mixes with other emerging "points" at

the exit. The RTD weights the sum of these emerging "points." When the "points" are

sufficiently small, this can be express as an integral:

Here, the RTD reflects the stirred tank limit of complete macromixing, but the formula could

use any arbitrary RTD between the stirred tank limit and the impulse or delta function for a

plug flow, E(t) = 6(t - T). An alternate conceptualization for the same model is a PFR of

infinite length with side streams drawn at the positions and volumetric flows consistent with

the specified RTD (Figure 5.2a). This illustrates how the "points" remain segregated and mix

only at the latest possible time as they emerge from the reactor. This model forms the

segregated flow boundary in Figure 5.1.
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Figure 5.2 (a) Segregated Flow Model, (b) Maximum
Mixedness Model

Zwietering developed a model that maximized the amount of mixing for an arbitrary

RTD called maximum mixedness. Figure 5.2b shows the conceptual view of this model as

the opposite of the segregated flow model. While the segregated flow model has mixing

between "points" at the latest possible moment in the exit, the maximum mixedness model

mixes the "points" at the earliest opportunity on entry into the reactor. The PFR analogy in

Figure 5.2b shows the influent steams divided down the length of the reactor corresponding

to infintesmal entry "points" determined by the RTD. At any given moment in the reactor

a "point" will have an age of a and have life expectancy or residual life of 2,, . These quantities

are related to the total time in the reactor by the equation:

Again, using the Figure 5.2b as the conceptual guide, "points" entering the reactor mix with

"points" having the same time remaining to the exit (i.e the same life expetency, )1). A mass
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balance equation can be developed from this prespective. Using this view, the governing

equation is (Zwietering, 1959):

where Yk * is the mass fraction of species kin the feed. Using time as the independent variable,

F(t) is the cumulative distribution function that gives the probability a molecule will exit from

the reactor by time t and relates to the RTD (a probability density function) by E(t) =dF(t)/dt

For a stirred tank, F(t) = 1 - e , and with complete macromixing, dYk/dλ = 0 for all X,

which reduces Equation 5.4 to the PSR formula (Equation 4.1). When macromixing is

incomplete, values of the average concentration in space are no longer equal. There exists

life expectancies, X,, where dYk/dλ O. Integration requires the boundary conditions of

dYk/dλ = 0 for k =

Zwietering uses this model as a means of analyzing the degree of segregation as a

function of macromixing and micromixing. Following Danckwerts, he generalizes the degree

of segregation using the age distribution of the molecules, φ(α), in the reactor. The age

distribuion, φ(α ) (a probability density function), relates to F(t) by φ(α) = (1/-0[1 -F(α)].

Within a "point," the same distribution is given by φp(α). Using these distributions, the degree

of segregation is defined as the ratio of the variance of ages between "points" to the variance

of ages within the reactor:
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The denominator is dependent only on the macromixing while the numerator is a function of

micromixing. For instance, when the flow within the reactor is completely segregated each

"point" has a uniform age. So the variance between "points" equals the variances of ages

within the reactor and J = 1. When micromixing is complete as in a PSR each "point" has a

distribution of ages the same as the reactor distribution of ages, or φ(α)=φp(α). Thus, αp

equals α, which makes the variance between "points" and the degree of segregation, J, equal

to 0.

Zwietering provides rigorous proof that the maximum mixedness model minimizes J.

To illustrate this fact, a comparison is made between four competing models for a single

stirred tank reactor with a RTD equivalent to two PSRs in series ( E(t) = 4t/τ2  e -2t/τ). If this

RTD provides the only characterization of the reactor, it can be modeled as with any one of

four "ideal" models: a segregated flow (Equation 5 tit.2 using E(t) = 4t/τ2e-2t/τ) two

segregated stirred tanks in series with each using E(t) = (1h) e , two PSRs in series, and

the maxmixedness model using E(t) = 4t/τ2e -2t/τ. All models have the macromixing

characterized by the same RTD, but each exhibits different micromixing characteristics

exhibited by different degrees of segregation, J (1.00,0.7 14,0.143, and 0.0275, respectively).
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The different degrees of segregation have a significant impact for the fractional conversion

of a notional second order reaction. Figure 5.3 illustrates this effect on fractional conversion

of reactant A for these four models plotted against the reactor Damkohler number,

Da = kτCA0  . A higher degree of segregation allows for "points" with higher concentrations,

which favor the second order reaction and produce a larger fractional conversion.

The segregated flow and maximum mixedness models examine the bounds of

micromixing. Particularly, they illustrate the effect of greater segregation on second or higher

order reactions. This effect is especially important when modeling the formation of products

of incomplete combustion. For example, carbon chain building reactions usually involve

Figure 5.3 Comparison of Reactor Models for a Second Order Reaction in a Single
Stirred Reactor with an Two PSR in Series RTD, E(t) = 4t/τ2 e 2riz (spline fit on model
points from Zwietering, 1959)
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second order steps involving two radicals joining to form a stable compound. The next step

is to explore this effect in the middle ground between these models. One such approach is

the interaction by exchange with the mean (IEM) model.

5.1.2 Interaction by Exchange with the Mean (IEM) Model

The IEM model continues the application of the Danckwerts definition of the fluid "point."

Consider a reactive flow with a composition vector that defines the concentrations of all

species as a function of position and time, ξ(x,t). The change in composition of a "point" as

it moves through a reactive flow is given by (Pope, 1990):

where F is the vector of diffusion coefficients and S is the reaction rate vector, which is also

a function of	 The substantial derivative, —D , gives a Lagrangian view that follows the
Dt

"point" in a flow and observes changes in composition with respect to time. Equation 5.6

shows that the change of composition of a -point" in time as it moves with the fluid is the sum

of changes due to diffusion with its surroundings (the first term) and the reaction in that

"point" (second term). The diffusion in a turbulent fluid is a complex process that lacks the

required closure for an analytical solution. So assumptions or empirical equations are

required to solve the problem. Pope proposes a simple first order closure by assuming a

statistically homogeneous and constant density reactor. The closure term for the expected

value of the diffusion term, conditional on a specific composition, is:
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Diffusion has been simplified to the relaxation of the specific composition to the mean

composition regulated by the mean turbulence rate, w, and a constant C. Pope assigns a

value of 2 to the constant and the mixing frequency, w, may be derived from turbulent mixing

parameters by the ratio of the turbulent dissipation, c, to the turbulent kinetic energy, k. The

spatial dependence may be removed by defining the composition vector as a function of only

t, = (x '[t], t) where x+ denotes the position of the "point". From this, Pope proposes

the following model:

Equation 5.8 governs the material balance for the "point" moving through a stirred reactor.

The underlying assumption of a statistically homogenous composition applies only when the

macromixing produces these conditions throughout the reactor, which occurs when the RTD,

E(t) = ( l/τ) e-t/τ .Because the equation governs the moving particle, Pope suggests a Monte

Carlo approach for the solution. This model is the Partially Stirred Reactor Model.
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5.2 The Partially Stirred Reactor Model

A partially stirred reactor (PaSR) model assumes a reactor with constant density, a

homogeneous turbulence, and a statistically homogeneous composition. These conditions are

reasonably approximated at the stirred tank boundary (Figure 5.1) between the PSR and

Segregated Stirred Tank models. Correa and Braaten (1993) extended the concept of

Equation 5.8 and developed and tested a Monte Carlo model shown in Equations 5.9 and

5.10. The model uses an array of Np "points" (termed "particles" by the authors) each with

compositions independent of position. At each step, "points" are added to the array and

randomly selected for removal. The removed "points" mix to form the effluent stream. The

governing mass balance for the n th particle is:

The energy balance equation (Equation 5.10) is the same as that for a PFR. The first term

on the right is for reaction and diffusion, and the second term is for heat loss through walls

of the reactor:

The reactor average is updated at each time interval.
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The Monte Carlo approach imposes the probability density function that approaches

the RTD of a single PSR for a sufficiently large value of AT (Correa & Braaten, 1993). While

this method provides an intuitive approach to solving Equation 5.8, it is computationally

inefficient. If a chemical kinetic mechanism with a large number of species, AC, is used, the

problem becomes computationally prohibitive to solve, since (N+ 1) x ODEs are

generated. A study conducted by Correa and Braaten ()993) using a chemical mechanism for

CH4/air combustion with 27 species and 650 "points" (requiring the solution of 8,200 ODEs)

required 10 hours on an Intel iPSC/860 Supercomputer. The inefficiency comes from solving

multiple "points" with the same differential equations and subject to the same boundary

conditions.

5.2.1 An Alternative Approach

If statistical homogeneity is held, the above scheme is inherently inefficient. When the system

is at steady state, the composition of a "point" depends solely on the amount of time it spends

in the reactor. Say two "points" entered the reactor operating at steady state and spent time

t1 and t2 in the reactor with t 1 < t2. At time t1 , both "points" would have the same

composition. Point 2 would continue to react until it is withdrawn at time t2 . Up to time t1 ,

the same set of differential equations were solved twice. Since ODE solver algorithms exert

the most computational effort when composition is changing the quickest (in the first

microseconds), essentially twice the computational effort is required to gain redundant

information.
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An alternate approach uses the PFR conceptualization of the segregated flow model

in Figure 5.2a as a starting point. At steady state, "points" with equal ages will have the same

composition. As such, the integration can proceed like that of a PFR rather than an array of

discrete batch reactors. The governing equation is the same as Equation 5.9, but with the

superscript dropped:

with the initial condition of Yk = k(°)• The average composition at steady state is the

weighed by the probability density function for the age distribution, 9(α):

Since φ(α) vanishes quickly, the integration may be stopped at a sufficiently large value of α.

For this model, integration continues until 99.9999% of the mass is accounted for and the

remainder is extrapolated from the last value of K. In differential form, Equation 5.12

becomes:

Like the segregated flow model, the exit composition is weighted by the residence time

distribution, E(t). With the ideal macromixing required for the homogeneous composition,
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the distributions are the same, E(t) = φ(α). This is not the case for other RTDs that will not

produce a homogenous composition. The exit composition is given by:

and is equal to the average composition in the reactor for the assumed conditions. As with

composition, the segregated flow analogy applies to the calculation of local temperature. The

temperature of a fluid "point" moving down the PFR analogy shown in Figure 5.2a is given

by the PFR heat balance (Equation 4.4). The exit temperature is derived from the exit

enthalpy, which is the average weighed by the RTD:

To integrate Equation 5.11, the average composition, Yk , must be known, but it

cannot be since 5.13 must be integrated first. A solution is found through successive

substitution starting with the solution to a perfectly stirred reactor (PSR) as the first guess.

The process is continued until the solution converges. The convergence criteria is:
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Zk is rejected from the tolerance calculation if Z k < ATOL, an absolute tolerance. This

prevents division by numbers outside the ODE solver's tolerance. This technique of

successive substitution will be referred to as the direct integration and convergence method.

5.2.2 Modified Newton Convergence

For larger mechanisms, successive substitution becomes a computationally expensive

technique. The convergence is ultimately stable, but only small steps are taken toward the

solution of Y k. The multi-variable Newton's Method could be used as a convergence

technique to improve efficiency.

The covergence routine solves for Yk through a series of successive guesses, starting

with the PSR solution as the initial guess, which eventually converge to the solution.

Newton's method requires an objective that approaches zero at convergence. To create this,

Equation 5.11 is placed in integral form and substituting it into Equation 5.12 to give:

From Equation 5.17, an objective equation is created for species k:

Successive iterations are made for Yk until Equation 5.18 approaches zero. Newton's

method finds each successive iteration in a single variable equation by finding the intersection
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of the x-axis with a line tangent to the current guess. In multidimensional form, the next

guess (superscript n+1) iis found from the previous iteration using:

Finding the inverse of the Jacobian matrix is the most computationally demanding step of each

iteration, but this can be reduced by using the same Jacobian for several iterations.

5.2.3 A Generalized PaSR Model for Non-Ideal Macromixing

The development of the PaSR model relied on ideal macromixing characterized by the

exponential RTD. Ideal macromixing produces the statistically homogeneous composition

within the reactor required for the closure model in Equation 5.7. Unfortunately, this

qualification restricts the model to the "stirred tank" line in Figure 5.1. Models that describe

the normal region of this figure must contend with degrees of macromixing where

assumptions of statistically homogeneous compositions no longer apply. In this section, a

generalized closure model is proposed that remains valid throughout the normal region. It

still assumes a homogeneous and isotropic turbulence field that produces uniform

micromixing conditions describable by a single parameter. Additionally, the closure model

must remain valid as it converges to the limiting conditions on the boundaries of the normal

region: maximum mixedness, segregated flow, and (partially) stirred tank.
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As in section 5.1.2, the new closure term is based on the Lagrangian view of a "point"

traveling through the reactor. Equation 5.20 proposes the closure term for the expected value

of the diffusion term in Equation 5.6, conditional for a specific composition, C, as the

relaxation with other "points" having the same life expectancy, X (where the prime denotes

a specific life expectancy), driven by the mixing frequency, co.

Nauman and Buffham (1983) argue that limiting interactions to "points" with the same life

expectancy is necessary for a model fundamentally consistent with the second law of

thermodynamics. It is also consistent with the previous development of the closure model

(Equation 5.7). Showing that, for ideal macromixing, "points" with same life expectancy have

the same age distribution as that for all "points" in the reactor. This occurs when the age

distribution, φ(α) = 1/τ 1 - F(α )] , and residual life distribution, ψ(λ) = 1/τ[1 - F , are

independent. Given the exponential RTD for ideal macromixing, E(t) = (1h) e

independence may be demonstrated by showing that the joint probability density (defined by

Nauman and Buffham, 1983, 149) is the product of the two component pdfs:

This independence occurs only at the "stirred tank" line in Figure 5.1 and shows the

consistency between Equation 5.7 and 5.20.
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As with the development of the PaSR model, the governing equations for the

generalized PaSR model considers a single "point" moving through the reactor. Like the

maximum mixedness model where mixing only occurs between "points" (Zwietering, 1959)

with the same life expectancy, Figure 5.2b as a stirred reactor analog provides a useful

conceptual tool. "Points" enter a tubular reactor along its length in a manner consistent with

the RTD. After a "point" enters the reactor, it moves toward the exit with a decreasing life

expectancy as it interacts with other "points" entering the reactor and moving with it toward

the exit. This can be described by:

The conditional expected value of the composition considers only the "points" with the same

life expectancy. In integral form, this is:

The composition function, Yk(α,λ), is more difficult to define as a continuous function since

composition of the "point" is a function of age and life expectancy. Discrete methods for

solution are easier to imagine. For instance, consider a large number of "points," Np, exiting

the reactor at the same time. Each entered the reactor at a separate time consistent with the
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RTD, but moved through the reactor together after entry. This requires the solution of Np

distinct batch reactors interacting as they move through the reactor. The mean is calculated

by a discrete average of the "points," but the batch reactors are solved continuously.

The two limiting cases occur at the bounds of the mixing frequency, co. When co = 0

the second term, the mixing term, equals zero, and Equation 5.22 describes a segregated

"point" moving through the reactor and reduces to Equation 5.2, but with an arbitrary RTD.

When co = 00 the mixing between "points" of equal life expectancy is instantaneous, so

difference between the composition of the "point" and the conditional expected value is zero.

The mass balance using the composition of the feed and the composition as a function of life

expectancy follows the same development as the Zwietering maximum mixedness model

(Equation 5.4). Thus, the generalized PaSR model moves between the segregated flow and

maximum mixedness boundaries depending the mixing frequency. Thus, Equation 5.22

provides a reasonable candidate for a single parameter micromixing model to describe the

normal region of Figure 5.l.

5.3 Comparison to Literature Results

A computer program was developed to solve the governing equations (5.11, 5.13, and 5.15)

of the PaSR model. Both sucessive substitution and a modified Newton's convergence

routines were employed to determine the steady state averages of the composition vector.

To validate the computer model, a comparison was made with the results found in the

literature of a PaSR model that used a Monte Carlo method for solution.
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Four test systems were used. The first three attempted to reproduce results found by

the Correa (1993, 1995), and Correa and Braaten (1993). These included: a CO/H,

mechanism with 11 species and 23 elementary reaction steps (Correa, 1995) , a 18 species -

43 step CO/H 2 mechanism including nitrogen oxidation (Correa, 1993), and a 27 species - 77

step CH4 oxidation mechanism including nitrogen oxidation (Correa and Braaten, 1993).

The 11 species CO/H 2 mechanism simulated an input temperature of 900 K at 1 atm

with a 50-50 mixture of CO/H,, and with air to achieve a fuel/air equivalence ratio of 0.3159.

The simulation was originally done on a PC with a Intel 486DX2/66 microprocessor.

Convergence for 17 successive runs for frequencies ranging between 10 to 10 5 took 56.5

minutes. The convergence time peaks at 5623 Hz, but took less than ten minutes at this

frequency. The reactor conditions were set to agree with those specified for the Monte Carlo

Figure 5.4 Effect of Mixing Frequency on Reactor Temperature for CO/H 2 and Airr
Combustion, Convergence Technique Compared to Monte Carlo Solution (Correa, 1995)
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methods in by Correa (1995). Results from the convergence technique show excellent

agreement with the published results from the Monte Carlo method for temperature (Figure

5.4), CO concentration (Figure 5.5), and OH concentration (Figure 5.6). The differences

might be attributed to using slightly different reactor conditions, differences in the integration

method (Monte Carlo vs. direct integration), or having different thermodynamic files.

The results for a relatively simple CO/H 2 mechanism reveal some basic relationships

between micromixing — characterized by the mixing frequency — the reactor conditions, and

the products of combustion. Figure 5.4 shows a strong relationship between temperature and

mixing frequency. Reactor temperature depends on the completeness of reaction. The lower

mixing frequencies (or greater segregation) inhibit the overall reaction. The fuel-lean mixture

reacting near the combustion limit magnifies this effect and goes to a blowout state as the

Figure 5.5 Effect of Mixing Frequency on CO Mass Fraction for CO/H 2 and Air
Combustion, Convergence Technique Compared to Monte Carlo Solution (Correa, 1995)
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mixing frequency approaches zero. Figure 5.5 reflects the same relationship between mixing

frequency and completeness of reaction; lower mixing frequencies correspond to higher

concentrations of CO, a reactant. The dependence of OH concentration on mixing frequency

(Figure 5.6) again shows this relationship to completeness of reaction, since the hydroxyl

radical is an intermediate between the reactant, hydrogen, and the product, water vapor.

Additionally, the lower temperatures at the lower mixing frequencies shift the equilibrium with

the hydroxyl radical toward the less reactive peroxyl radical (HO,).

The 18 species - 43 step CO/H 2 mechanism including nitrogen oxidation (Correa,

1993) took longer to converge. Correa and Braaten use this system as their bench mark,

which took 166 hours to solve on a Sun SPARC II workstation. The convergence method

solved the problem much quicker and took no more than 1.4 hours for any mixing frequency.

Finally, use of the direct integration method on the 27 species - 77 step CH 4 oxidation

mechanism including nitrogen oxidation showed comparable results to those found in

literature by the monte carlo method (Correa and Braaten, 1993).

Better computational performance allowed for the use of more complex mechanisms

and analysis of a greater range of conditions. These comparisons were originally made using

a PC with a Intel 486 DX2/ 66 MHz processor, which has the same computational efficiency

as a Sun SPARC II workstation (MATLAB benchmark test). More modern processors such

as a Pentium III / 800 MHz run at approximately 27 times that speed (as per the MATLAB

benchmark test). Combining greater computational power and this more efficient algorithm

provides the capability to rapidly solve detailed thermo-kinetic mechanisms while applying

mixing conditions that more closely resemble real systems.



Figure 5.6 Effect of Mixing Frequency on OH Concentration for CO/H 2 and Air
Combustion, Convergence Technique Compared to Monte Carlo Solution (Correa, 1995)

5.4 Comparison to Experimental Results:
Toroidal Jet Stirred Combustor (TJSC) Near Blowout

The Toroidal Jet Stirred Combustor (TJSC) is a convenient system to use for comparing

experimental data with the Partially Stirred Reactor (PaSR) model. The design of the

combustor promotes a homogeneous composition throughout the reaction volume. This

corresponds to the exponential RTD characteristic of the stirred reactor line in Figure 5.1 that

can be modeled by the PaSR model (Equations 5.11 through 5.14). Additionally, analysis has

been performed on the micromixing characteristics of the combustor that can be used to

estimate the mixing parameter co. This section compares the PaSR model to a series of

114
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experiments conducted using a TJSC in fuel lean conditions near blowout. A favorable

comparison is found between data and model, but an additional model that describes the

quenching process in the sample probe was required to get this agreement.

5.4.1 System Description

Nenniger, Kridiotis, Chomiak, Longwell, and Sarofim (1984) introduced the TJSR to improve

mixing performance of spherical research reactors. The 32 jets feed a fuel/air mixture from

the manifold at high velocity into the torus (Figure 5.7). The shear from the evenly

distributed jets entering the torus produces a highly turbulent mixing environment within the

torus that gives the homogeneous conditions of a well stirred reactor and (assumed) isotropic

turbulence. From isotropic turbulence relations they estimated the turbulent mixing time, r e :

The turbulent macro scale, L„, was estimated from the vessel geometry and the macro

fluctuations of the radial cross section temperature measurements. Turbulent dissipation rate,

e, was calculated based on the assumption of complete turbulent dissipation within the vessel

using the jet exit velocity and reactor mean residence time. The mixing frequency, co, is the

reciprocal of the turbulent mixing time. The calculations made by Nenniger et al. correspond

to a mixing frequency on the order of 10,000 Hz. If turbulent dissipation is not complete

within the torus, as assumed, the actual mixing frequency would be lower.
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Barat (1990) used the TJSR to explore well stirred reactor conditions near blowout.

Using C 2H4 / air combustion under fuel lean conditions (1 = 0.54) a series of experiments

were conducted that increased the dilution ratio, where:

A water cooled sample probe extracted exit samples to measure products of incomplete

combustion (PIC): CO, CH 4 , C 2H6 , C 2H4 , C2H2. Additionally, Rayleigh scattering using a

frequency-doubled Nd:YAG laser (532 nm), was used to determine the temperature

distribution within the torus. Barat demonstrated the presence of a temperature distribution

Figure 5.7 Toroidal Jet Stirred Combustor (TJSC) Radial
View Cross Section (Barat 1990, 14)
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that became increasingly bimodal with increasing dilution as the system approached blowout.

This distribution was at the microscale between individual packets or "points" (as defined

earlier in this chapter). A degree of microscale segregation existed despite the homogeneous

macroscale conditions demonstrated by Nenniger et al. Additionally, the use of a PSR model,

even when combined with a probe quenching model, consistently under predicted measured

PICs. The following sub-sections show the comparison between these experiments and the

PaSR model.

5.4.2 Modeling Approach

The PaSR model (Equations 5.11 through 5.15) with the exponential RTD characteristic of

a well-stirred reactor was used to simulate the bench scale system. All simulations were run

for adiabatic reactor conditions. A series of mixing frequencies — 316, 1000, 3162 and 10000

Hz (an exponential progression) — were used along with the PSR (the limiting condition) the

show the effect of frequency. Model points were calculated at 0.02 intervals for dilution

ratios ranging from 0.0 to 0.22.

In addition to solving the PaSR model by the methods described in section 5.2.2, a

probe quench model was added to simulate the cooling process in the water jacketed sampling

probe. This imposes a temperature profile on a PFR model that runs after the main PaSR
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simulation. The profile was based on thermocouple measurements taken from a similar

quenched probe set-up (Vaughn, 1988). The profile in differential form is:

where T© is the input temperature, TT is the coolant temperature, and b is a constant. The

coolant temperature is 315 K and the constant, b, has a fitted value of 55.0 s 1/2 .

For this simulation, the PaSR model used version 3.0 of the GRI Mechanism. The

GRI Mechanism, a product of research sponsored by the Gas Research Institute, is optimized

for the combustion of natural gas that includes C 1 and C, hydrocarbon oxidation, a limited set

of C3 (propane) oxidation reactions, and NO formation and re-burn chemistry. The GRI

Mechanism uses 325 reactions with 53 species.

5.4.3 Comparison of Model to Experimental Data

Figures 5.8 through 5.11 show a comparison between experimental data and PaSR and PSR

simulations given on a dry basis and corrected for dilution. The hollow triangles show the

data points and filled markers show the model points that are included to help distinguish the

multiple lines. Figure 5.8 shows the effect of dilution and mixing frequency on temperature.

Increasing the mixing frequency, an intrinsic parameter, increases temperature toward the

upper limit found from the PSR model. Increasing the dilution ratio, a system variable,

decreases temperature as expected. The data points (hollow triangles) show good agreement

between the experimental data and model for a mixing frequency between 3162 and 10,000

Hz.



Figure 5.8 Reactor Temperature Dependence on Dilution Ratio, Comparison of
Experimental Data (A) with PSR and PaSR Models
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Figure 5.9 CO Concentration Dependence on Dilution Ratio, Comparison of

Experimental Data (A) with PSR and PaSR Models with Probe Quench Model
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The next three graphs include the probe quench model as a post process operation to

the PaSR and PSR models. This corresponds to the samples taken from the TJSC using a

quenched probe during the experiment. Figure 5.9 shows that lower frequencies and higher

dilution ratios tend to increase CO concentration in the effluent. The CO concentration

decreases for the second half of the 1000 Hz model run and the 316 Hz run until it drops to

zero when blowout conditions are reached. The next section will show that the effect of

mixing frequency on CO concentration is manifested only after the probe quench model and

affected principally by the concentration of unburnt fuel and initial temperatures entering the

probe. The experimental data showed no particular agreement with any frequency, but

matched higher mixing frequencies at lower dilutions and lower mixing frequencies at higher

dilution ratios.

The next two graphs show a stronger correlation between data and model. Figure

5.10 illustrates the effect of dilution and frequency on the concentration of unburnt fuel in the

effluent. Decreasing the mixing frequency, which increases the degree of segregation at the

microscale, significantly increases the amount of unburned fuel in the effluent. The increasing

the amount of dilution, which lowers the reactor temperature, also increases the amount of

unburnt fuel. The effect of dilution on unburnt fuel, as will be show later on, becomes more

pronounced as a result of the probe quench model.

Figure 5.11 sums all measured hydrocarbons (C 2H6 , C 2H4 , C,H 2 , and CH4) weighted

according to the number or carbon atoms in the species. This is similar to a total hydrocarbon

measurement, but ignores stable oxygenated hydrocarbons such as ketenes, aldehydes, and

alcohols and larger chained hydrocarbons (all present in the GRI mechanism, but not



Figure 5.10 C 2H4 (Unburned Fuel) Concentration Dependence on Dilution Ratio,

Comparison of Experimental Data (A) with PSR and PaSR Models with Probe Quench
Model

Figure 5.11 Total Measured Hydrocarbon Concentration Dependence on Dilution Ratio,

Comparison of Experimental Data (A) with PSR and PaSR Models with Probe Quench
Model
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measured in the experiment), that can account for up to 30 percent of the effluent

hydrocarbons calculated in the computer simulation. Although unburnt fuel dominates the

total measured hydrocarbons at lower frequencies, other measured species, especially

methane, make a larger relative contribution at the higher frequencies (see Appendix C

Figures C.5.1 through C.5.3). The experimental data showed good agreement with the model

in both Figures 5.10 and 5.11 between 3162 and 10,000 Hz. This mixing frequency range is

consistent with those predicted by Nenniger et al. (1984).

5.4.4 Mixing Model Analysis

To the extent that the GRI mechanism provides a valid fundamental reaction model, analysis

of the mixing model can provide insights to the relationship between mixing and combustion.

This section will analyze the mixing model by examining its components. The PSR and PaSR

models both share the same age distribution of "points" throughout the reactor; the state of

those "points" is where they differ. The uniform temperature and composition throughout

a PSR produces a uniform set of reaction rates. The degree of segregation characteristic of

the "points" in a PaSR produces different reaction regimes based on "point" age. "Points"

entering a PaSR take a finite time to mix to the average conditions of the reactor. Figures

5.12 and 5.13 show the reaction pathways for an infinitesimal "point" at different times t * =

0.0276 and 0.0283 (where dimensionless time t * = t/τ and τ = 6.5 ms). The diagrams show

the major reaction pathways and displays the smaller reactant(s) along the path. The width

of the arrow is roughly proportional to the reaction rate ranging from 10 -8 to 10-3 moles/(cm 3

s). Even though Figures 5.12 and 5.13 represent conditions separated by less than 5µs,



Figure 5.12 Reaction Pathway Analysis of PaSR, w = 10000 Hz, t * = 0.0276, T =
839 K, for C 2H4 / Air Combustion using the GRI Mechanism
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Figure 5.13 Reaction Pathway Analysis of PaSR, co = 10000 Hz, t * = 0.0283, T =
1631 K, for C 2H4 / Air Combustion using the GRI Mechanism
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the reaction regimes are very different. Initially, the lower temperature and lower

concentration of oxidant radicals ( YOH = 6.12x10 -5) favor the accumulation of the stable

intermediates carbon monoxide (CO), propane (C 3 H8), ethane (C2H6), methane (CH4), ethyne

or acetylene (C 2H 2), and ketene (CH2CO). As temperature and oxidant radical concentration

(Km 1.66x10-3) rise the regime shifts to a single predominate pathway between the fuel and

its complete combustion product, CO,. Stable intermediates are consumed and their

concentration drops. The higher initial concentrations of stable intermediates go into the

effluent because of the exponential distribution of "point" ages in the exit. When the probe

quench model is added after the PaSR, concentrations of the stable intermediates can increase

or decrease based on the specified probe conditions.

Separating the probe quench model from the PaSR reveals the contributions made by

each. The effect on three species (CO, OH, and C,H 4) illustrates some of these differences.

Figure 5.14 shows a negligible dependence of average CO concentration (dry basis corrected

for nitrogen dilution) on mixing frequency and steady increase in CO with an increasing

dilution ration (except in the case of blowout for 316 Hz). This strongly contrasts with the

PaSR plus probe quench model (Figure 5.9) that shows a strong dependence between mixing

frequency and effluent CO concentration. Additionally, it shows a general increase in CO

concentration as a result of the probe quench model suggesting significant continued reactions

in the probe. Comparing the unburned fuel concentration in the PaSR model (Figure 5.15)

with the PaSR plus probe quench model (Figure 5.1(J) also indicates continued reaction in the

probe. In this case, the cooling effect of dilution and decreased mixing frequency appears to

reduce the continued conversion in the probe. Without the probe model, the unburned fuel



Figure 5.14 Carbon Monoxide, CO, Concentration Dependence on Dilution Ratio for
PSR and PaSR Models

Figure 5.15 Ethylene (Unburned Fuel), C 2H4 , Concentration Dependence on Dilution
Ratio for PSR and PaSR Models



Figure 5.16 Hydroxyl Radical, OH, Concentration Dependence on Dilution Ratio for PSR
and PaSR Models

concentration in the effluent is mostly affected by the mixing frequency. Both mixing

frequency and dilution affect the concentration of the hydroxyl radical (Figure 5.16) in a

fashion that is remarkably similar to average temperature (Figure 5.8). Because of this

apparent temperature dependence, the OH concentration is negligible at the exit of the probe

quench model. The next three subsections will explore the effects of mixing frequency,

dilution, and the probe quench model with the GRI mechanism.

5.4.4.1 Effect of Mixing Frequency. Lowering mixing frequency delays the onset of

combustion. Figure 5.17 clearly illustrates this view. This graph shows the temperature

profile of a "point" traveling through the reactor. Reactants enter the reactor at 373 K and

ultimately reach the same flame temperature. For high mixing frequencies, combustion occurs
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rapidly. The 10,000 Hz line shows a rapid rise to the flame temperature at about t* = 0.03,

where the 316 Hz line takes a more gradual rise until t* = 0.5 to reach the same level. This

graph gives only part of the story. One must also consider the distribution of ages within the

reactor.

Two additional observations regarding Figure 5.17 should be discussed. The first

observation is that the sharper rise of the higher mixing frequency is counterintuitive. One

would expect that the higher frequency to smooth-out abrupt changes. However, this

behavior makes sense when considering the upper limiting case of the PSR that has a

complete discontinuity at the reactor entrance. The second observation is that the nearly

equal temperature both high and low frequencies reach for "points" past the initiation of

combustion. This reflects the ultimate flame temperature of a premixed feed. Even with the

same ultimate flame temperatures as the higher frequency reactor, the lower frequency reactor

has a lower weighted average temperature in the effluent.

Within the reactor is an exponential distribution of "point" ages shown in Figure 5.18.

This graph is a survival curve which is a reverse of cumulative distribution [1 - F(6] (see

Equation 5.4). It shows the fraction of "points" remaining in the reactor after a given time.

This distribution is important when considering any of the temperature-time or concentration-

time profiles in that it show the fraction of "points" that reached those conditions. The age

distribution, φ(α), ("point" age defined by Equation 5.3), which is related to F by

φ(α) = (1/τ)[1 - F(α)], weights the local conditions at each infinitesimal "point" to get the

average conditions (Equation 5.12) that the local conditions relax toward at a rate given by



Figure 5.17 Effect of Mixing Frequency on Temperature Profile with Respect to Age
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Figure 5.18 Survival Curve [1 - F(61 Shows Fraction of "Points" Remaining in Reactor
at a Given Time
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the mixing frequency. When the age distribution is used as the weighting function for the

temperature profile, a temperature probability distribution (Figure 5.19) can be derived for

temperature.

Figure 5.19 shows the density of "points" at a given temperature on the abscissa. The

probabilities are taken on a 30 K interval, so the ordinate shows the probability of any

"point," or fraction of all "points," being within the given interval about that temperature.

Both the simulations at 316 Hz and 10,000 Hz show the same mode at roughly 1700 K, but

where 95.4 percent of the "points" in the higher frequency system are in the 30 K interval

about 1700, only 61.2 percent of the 316 Hz system "points" fall into that interval. "Points"

in the lower frequency simulation have a higher probability (0.31) of falling within a range

between 400 and 1200 K. This graphic is another way of looking at the combination of

Figures 5.17 and 5.18. It illustrates the greater range of temperatures at lower mixing

frequencies. These lower temperatures promote the accumulation of stable intermediate

compounds shown (see Figure 5.12).

Figure 5.20 shows a time composition profile similar to Figure 5.17. Again, the

results illustrate the delaying effect of reduced mixing frequencies by the delayed peak of OH

and CO concentration. Although not readily apparent in the figure, CO concentration peaks

prior to the hydroxyl radical peak concentration. The rapid rise in OH concentration

promotes the CO burnout reaction:

that rapidly reduces the accumulating carbon monxide.
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Figure 5.19 Effect of Mixing Frequency on the Temperature Distribution (Probability is
on a 30 K Interval)

Figure 5.20 Effect of Mixing Frequency on Carbon Monoxide (CO) and Hydroxyl Radical
(OH) Concentration Profile with Respect to Age
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The 316 Hz lines contrast the behavior of OH and CO in the PaSR model. Carbon

monoxide concentration gradually rises; CO is stable at both low and high temperatures. In

contrast, the hydroxyl radical rises rapidly with temperature. Recall that Figure 5.16 shows

the average OH concentration in the reactor closely follows the response of the average

temperature in the reactor (Figure 5.8). Average CO concentration was almost independent

of the effect of mixing frequency (Figure 5.14), but the distribution of CO varies widely with

mixing frequency. Figure 5.21 shows the probability distribution of CO taken on a 2.0x10 -4

interval. Even though the average concentration in the reactor is the same for both

frequencies the lower frequency has a lower mode, but a wider variance; the 10000 Hz peak

contains 93.2 percent of the "points" where the 316 Hz peak contains 59.1 percent of them.

Figure 5.22 shows the concentration profile for the methyl radical (CH 3). CH 3 is an

important intermediate in the formation of other stable intermediate hydrocarbons, especially

larger chain compounds as illustrated in Figure 5.12. Once temperature rises and the hydroxyl

concentration increases, the concentration rapidly drops. This shows how the PaSR model

can significantly depart from the PSR in an ability to model the formation of hydrocarbon

PICs. The high concentration of methyl radicals promote the second order reactions in PIC

formation, which increase as mixing frequency goes down. The lower homogenous

distribution of this radicals in a PSR model does not promote these second order reactions

under fuel-lean conditions.



Figure 5.21 Effect of Mixing Frequency on the Carbon Monoxide (CO) Concentration
Distribution (Probability is on a 2.00x10 Interval)
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Figure 5.22 Effect of Mixing Frequency on Methyl Radical (CH 3 ) Concentration Profile
with Respect to Age
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5.4.4.2 Effect of Dilution. Adding a diluting gas such as nitrogen cools the reaction. The

inert gases carry off the energy released by the reaction. The lower temperatures and the

effect of diluting concentrations slows the individual reaction rates. Increased stability of the

methyl radical and lower concentrations of the hydroxyl radical promotes the production of

more stable products of incomplete combustion. As more diluting gas is added, the reactor

eventually reaches the blowout point and combustion stops. Similar to the effect of

decreasing mixing frequency; dilution also delays combustion in the reactor model. Two

cases at a mixing frequency of 316 Hz are compared: no dilution and dilution near the

blowout point.

Figure 5.23 illustrates two of the effects of dilution on the combustion model. The

second line, which shows the age— temperature profile for a dilution near blowout, has a

delayed rise in temperature and plateaus at a lower temperature. Applying the age

distribution of "points" within the reactor to Figure 5.23 yields the temperature distribution

in Figure 5.24. This graph reflects the spread in the temperature distribution measured by

Barat (1990) as dilution increases. Barat noted that the variance of the measured temperature

distribution increased with dilution and became bimodal at higher levels of dilution. In similar

fashion, the temperature distribution of the PaSR model becomes increasingly bimodal.

However, since the peak temperature decreases, the larger peak moves to the left decreasing

the distance between it and the lower peak. This causes the variance to go down. This

disagreement is partly an artifact of the model verus an experimental measurement. The low

probability temperatures would not rise above the noise in an experimental measurement. If

such a threshold were applied to the model, variances would go up with dilution also.



Figure 5.23 Effect of Dilution on Temperature Profile with Respect to Age, Dilution
Ration Value is (Volumetric Flow Added N, / Total Volumetric Flow); co = 316 Hz
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Figure 5.24 Effect of Dilution on the Temperature Distribution (Probability is on a 30 K
Interval); co = 316 Hz
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Figure 5.25 shows the dilution effect on the concentration profile with respect to the

age of the "points." The lower temperatures that result from dilution lowers the final

concentration of the hydroxyl radical. Since OH reacts with CO to produce CO 2 , the final

concentration of CO raises as a result. Dilution also delays the rapid climb in OH

concentration marking the onset of sustainable combustion. It occurs at a reduced age of 0.4

for the undiluted feed, but at 1.0 for the diluted feed. This has a significant effect on the

effluent composition in the PaSR model. Recalling the survival curve (Figure 5.18), 67

percent of the "points" remain in the reactor at a reduced age of 0.4, but only 37 percent

remain at 1.0. For the diluted case, the large percentage of "points" not past the onset of

sustainable combustion would appear at areas of "local blowout," which is how Barat

described the high dilution experiments. These cases were accompanied by higher CO

concentrations in the effluent.

The probability distribution of the CO concentration taken on a 2.00x10 -4 interval

(Figure 5.26) better illustrates the effect of dilution on CO concentration in the model. As

dilution pushes the simulation to the point of blowout, not only does the mode value increase,

but the so do the probabilities at the higher concentrations. The mode peak for the dilution

simulation decreases from 59 percent to 32 percent and the tail to the right increases from a

sum total of 24 percent to 34 percent. This suggests that if one could measure "local"

concentrations of CO that the higher density of high local concentrations of CO could be used

as an prelude indicator to blowout, as suggested by Barat (1992).



Figure 5.25 Effect of Dilution on Carbon Monoxide (CO) and Hydroxyl Radical (OH)
Concentration Profile with Respect to Age; w = 316 Hz
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Figure 5.26 Effect of Dilution on Carbon Monoxide (CO) Concentration Distribution
(Probability is on a 2.00 x10 -4 Interval); w = 316 Hz
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5.4.4.3 Probe Quench Effect. Analysis of a simple quenched probe model shows some of

the difficulties in obtaining accurate measurements of the composition within the reactor.

Even with the jacketed probe, significant reactions continue until the sample is sufficiently

cooled. The computer simulation uses a simple PFR model with a imposed temperature

profile given in differential form in Equation 5.26 and shown in Figure 5.27. The x-axis is the

reduced probe length that has a residence time of 3 milliseconds. The temperature profile

depends on the entrance temperature, which varies with mixing frequency and dilution (at a

given fuel/air equivalence ratio) in the stirred reactor. The reaction paths are slowed directly

by the dropping temperature and indirectly by the lowering concentrations of the unstable

radical intermediates.

The second major factor effecting probe reactions is the amount of unreacted

hydrocarbons in the PaSR sample. This hydrocarbon concentrated is dominated by unburnt

fuel(C2H4) that continues to react in the presence of excess oxygen. The high temperature

reaction pathways resemble those in Figure 5.13 and the low temperature reactions follow a

similar path to Figure 5.12, which is the reverse order of the reactions in the PaSR. As a

result, higher temperature PaSR samples tend to consume more of the stable intermediates.

Since simulations with higher temperature PaSR samples are a result of higher mixing

frequencies and tend to have less stable hydrocarbons in the effluents, those present tend to

be rapidly consumed to complete combustion products. PaSR effluents at low temperatures

that result from lower mixing frequencies have higher concentrations of unburnt fuel which

enter the low temperature reactions that produce the stable products of incomplete

combustion. Thus, the reactions in the probe tend to amplify the effects of the PaSR seen
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Figure 5.27 Temperature Profile in Probe Model for PaSR Inputs: 1000 Hz w/o Dilution;
316 Hz w/o Dilution; and 316 Hz Dilution Ratio of 0.173; Probe Residence Time = 3 ms

Figure 5.28 C 2H4 Concentration Profile in Probe Model for PaSR Inputs: 1000 Hz w/o
Dilution; 316 Hz w/o Dilution; and 316 Hz Dilution Ratio of 0.173; Probe Residence
Time =3 ms
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when comparing CO in the effluent of the PaSR (Figure 5.14) to the CO concentrations after

adding the probe quench model (Figure 5.9), and the comparisons of C2H4 before and after

the probe quench model (Figures 5.15 and 5.10 respectively).

Figure 5.28 shows the profile of unburnt fuel concentration through the length of the

probe quench model. As expected, the effluent from the 10,000 Hz, zero dilution, PaSR

model, which has the highest effluent temperature, has largest percentage consumption of

fuel. However, the logarithmic scale de-emphasizes the result of 316 Hz, zero dilution model,

having the largest total conversion of the unburnt fuel. The combination of a large

consumption of fuel and low temperature produces the greatest amounts of hydrocarbon PICs

in the probe quench model. The probe quench model triples the concentration of CO (Figure

5.29) and increases the concentration of C 2H2 by an order of magnitude (Figure 5.30) In

contrast, the 10,000 Hz, zero dilution, run breaks-even on CO production and consumption

and has a net consumption of C 2H 2 lowering it 3 to 4 orders of magnitude. The low entrance

temperature of the 316 Hz run with a dilution ratio of 0.173 results in little reaction within

the probe. Unlike the PaSR model, the PFR model used for the probe quench does not

include mixing with average concentrations of the unstable intermediates that would continue

to promote reaction. It results in the reactions quenching at higher temperatures when

compared to the reactions occurring at T = 839 K at a mixing frequency of 10,000 Hz in

Figure 5.12.

The impact of the probe quench model on the results of the PaSR model begs the

question on the sensitivity of the probe quench model parameters. How accurately must we

measure these parameters to get a model that reliably simulates the experimental system?
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Figure 5.29 CO Concentration Profile in Probe Model for PaSR Inputs: 1000 Hz w/o
Dilution; 316 Hz w/o Dilution; and 316 Hz Dilution Ratio of 0.173; Total Residence Time
= 3 ms

Figure 5.30 C 2H 2 Concentration Profile in Probe Model for PaSR Inputs: 1000 Hz w/o
Dilution; 316 Hz w/o Dilution; and 316 Hz Dilution Ratio of 0. 173; Total Residence Time
= 3 ms
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The probe quench model, in essence, uses a single parameter, b, while the other parameters,

T0 and TT , represent the boundary conditions. The sensitivity coefficient of species i with

respect the parameter b is:

From this coefficient, the fractional uncertainty of the exit concentration of species i can be

estimated from the fractional uncertainty of b:

When IS i l << 1, uncertainties in b do not significantly add to the uncertainties in	 but when

|Si| >> 1 the uncertainties are amplified. Table 5.1 shows the sensitivity coefficients for

selected species:

Table 5.1 Probe Quench Model Sensitivity Coefficients, Si

co
(Hz)

Dilution
Ratio

To
(K)

C 2H4 in
(mole frac)

C2H4 C2H6 C2H2 CO

316 0.173 1070 1.14e-02 0.00 0.00 0.00 -1.12

316 0.0 1401 8.60e-03 0.00 0.00 0.00 -0.58

3162 0.22 1405 1.10e-03 3.44 3.30 2.10 0.00

3162 0.0 1666 1.01e-03 13.22 15.65 13.43 0.00

10000 0.0 1688 3.67e-04 12.73 12.99 14.45 2.04
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Higher probe inlet temperatures and unburnt fuel concentrations magnify the uncertainties of

the probe quench parameter. These results suggest that, for measuring hydrocarbon PICs,

quenched probe parameters should be carefully measured for condition that involve high

temperatures and excess oxygen. Measurements of CO seem to be less dependent on that

parameter.

5.5 Comparison to Experimental Results:
Toroidal Jet Stirred Combustor (TJSC) Fuel Rich Conditions

Another comparison was made with a separate set of experiments conducted by Brukh, et al.

(2001). These experiments explored ethylene/air combustion in fuel-rich conditions in order

to measure and model the formation of aromatic compounds. Modeling efforts used a

Polyaromatic Hydrocarbon (PAH) mechanism developed by Marinov et al. (1998). This

mechanism, hence referenced as the Marinov mechanism, was designed against data from a

pre-mixed laminar n-butane flame, but used earlier PAH models developed against fuel rich

methane, ethane, ethylene and propane combustion as a foundation. This mechanism, which

consists of 153 molecular species in 689 reactions, provided a good test case for the viability

of the direct integration PaSR approach to detailed thermo-kinetic mechanisms.

5.5.1 Experimental Set-up

The experimental set up used a TJSC (Figure 5.7) described in section 5.4 with a second

stage burnout section placed downstream of the TJSC. Figure 5.31 shows an axial view of

the of the TJSC with burnout section. A jacketed probe sampled the effluent gases in the

burnout section 21 milliseconds downstream of the TJSC exit. The effluent was concentrated



using a technique developed by Mitra (1990) that adsorbs Volatile Organic Compounds

(VOC) in a short adsorbent filled metal tube, and uses a electric current to desorb them into

a GC. The concentrated pulse of VOCs allowed for better resolution of benzene down to the

100 ppb range using an on-line configuration.

Six combustion conditions were selected for measurement with fuel air equivalence

ratio, (I), ranging from 1.38 to 1.93. Additional nitrogen diluted the premixed ethylene and

air mixture to control the temperature in the TJSC. Adjustment of the added nitrogen
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maintained a constant 1623 K temperature in the TJSC for all combustion conditions. The

gases exiting from the TJSC cooled to 1380 K at the sample point near the end of the burnout

section.

5.5.2 Modeling Approach

The PaSR computer model was modified to incorporate a PFR to model the burnout section

rather than the probe. A exponential cooling model was imposed by estimating the enthalpy

loss between the TJSC effluent at 1623 K and the burnout section effluent at 1380 K,

calculating the overall heat transfer coefficient from Equation 4.22, and using it as a constant

temperature loss in the PFR heat balance (Equation 4.4). Since the PFR exit temperature was

sufficiently low and combustion effluent sufficiently oxygen depleted, an additional probe

quench model was not considered necessary. The modeled PaSR, which produced

temperatures in excess of 1623 K for adiabatic conditions, required an estimated heat loss

term to produce the required average reactor temperature. The PaSR used a mixing

frequency of 3162 Hz, which was chosen for its fit with the fuel lean data and proximity of

the calculated turbulent parameters by Nenniger et al. (1984).

The Marinov mechanism and its associated thermodynamic parameters were used in

the simulation. A PaSR and PSR simulation was run using the feed conditions for each data

point. PaSR simulation runs took between 20 to 36 hours using a Pentium III 850 MHz

microprocessor with a Windows ME® operating system. This was a factor of 60 times

longer than the average simulation run using the GRI 3.0 mechanism for fuel-lean conditions.

The larger number of molecular species (153 vs 53) and reactions (689 vs. 325) of the
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Marinov mechanism, as well as application of a heat loss term, accounts for this disparity.

The large variance in scales of the concentrations of individual species makes the initial value

differential equations "stiff' and requires smaller timesteps to solve. The exchange-with-the-

mean term in Equation 5.11 along with the external heat loss term of Equation 5.15a

exacerbate the timestep problem and frequently require computations near the limits of double

precision floating point arithmetic. Convergence to a mean using successive substitution took

up to 120 iterations and increased with 1. The temperature specified PSR simulations, with

subsequent PFR, took considerably less time and averaged between 5 to 15 minutes per run.

5.5.3 Comparison of Model to Experimental Results and Analysis

The results of both the two-stage PSR/PFR and PaSR/PFR models, corrected for nitrogen

dilution and on a dry basis, are compared against the experimental data in Figure 5.32.

Although both models show excellent agreement with experimental data, the competing

approaches show less contrast than expected. At fuel/air equivalence ratios higher than 1.6,

the models produce virtually identical results. Divergence occurs at lower values of (I), but

the PaSR predicts lower concentrations contrary to the hydrocarbon concentration predictions

in fuel-lean conditions using the GRI mechanism. When the effect of the second stage PFR

is removed, the divergence reverses with the PaSR predicting the higher concentrations as

shown in Figure 5.33. These effects are consistent with the probe quench PFR model

analyzed in section 5.4.4.3. The PaSR effluent has higher concentrations of both fuel and

oxygen that contribute to the larger concentration changes in the modeled second stage.
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Figure 5.32 Benzene (C 6H6) Effluent Concentration Dependence on Fuel/Air Equivalence

Ratio, Comparison of Experimental Data (A) with PSR and PaSR (3162 Hz) Models with
PFR Second Stage

Figure 5.33 Benzene (C 6H 6) Effluent Concentration Dependence on Fuel/Air Equivalence
Ratio, Comparison of PSR and PaSR (3162 Hz) Models without PFR Second Stage
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The similarity between the PSR and PaSR results at higher values of (1) can be

attributed to the resulting lower concentrations of oxidizing radicals such as the hydroxyl

radical (OH). Figure 5.34 shows that at q) = 1.38, the concentrations of OH are generally 20

times greater than those at (1) = 1.93. As a result, the hydrocarbon radical spike that precedes

the rapid temperature rise, modeled by the PaSR for the fuel-lean systems (Figure 5.22

juxtaposed to Figure 5.17), is no longer present. Figure 5.35 shows the methyl radical age

profile for fuel/air equivalence ratios of 1.38 and 1.93. The more fuel-rich condition has a flat

methyl radical concentration profile, which does not differ greatly from the flat

age/concentration profiles expected for perfect micromixing.

Further analysis was performed by exploring the major reaction pathways to benzene

at the lower and higher fuel/air equivalence ratios. The major benzene production step was

found to be the combination reaction of the propargyl radical (CH 2CCH) with itself. This was

consistent with the finding of Marinov et al. who found this reaction to account for 80

percent of benzene production in fuel rich butane flames (1998), with the pathway through

fulvene (the 5 carbon ringed compound in Figures 5.36 and 5.37) accounting for the balance.

The model pathway to the propargyl radical varied depending on the fuel/air equivalence ratio

used and the "point" or local age chosen. Four conditions were explored: two at (1) = 1.38

and two at (I) = 1.93. The local ages chosen corresponded to peak vinyl radical (C 2H 3 )

concentration and peak hydroxyl radical concentration. Figure 5.36 corresponds to the major

pathways from ethylene to benzene at (1) = 1.38 at peak vinyl concentration. At this point,

the vinyl radical lies on the major pathway involving a combination reaction with the methyl

radical (CH3) to produce the allyl radical (CH 2CHCH2) followed by a hydrogen radical
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Figure 5.34 Hydroxyl Radical (OH) Age Profile in PaSR (3162 Hz) Model for Fuel-Rich
Ethylene/Air Combustion

0.1	 1
Time / Mean Residence Time

1 0 100

Figure 5.35 Methyl Radical (CH 3 ) Age Profile in PaSR (3162 Hz) Model for Fuel-Rich
Ethylene/Air Combustion
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abstraction to allene (CH2CCH2). Another hydrogen radical abstraction produces the

propargyl radial that is stabilized by it resonance structure (Marinov, 1998). When the local

age has advanced less than 300 microseconds from 0.063τ to 0.101τ (where the mean

residence time, τ = 7.5 milliseconds), OH concentration peaks and the "point" temperatures

rises from 1460 K to 1688 K. At these conditions, reactions of benzene and major C3 and

C4 intermediates shift to net consumption. However, at a higher fuellair equivalence ratio

the regime become one of net production. Figure 5.37 shows major reaction pathways to

benzene at peak OH concentration for (I) = 1.93 at a local temperature of 1629 K. Several

differences become apparent. The two major paths to the propargyl radical are a singlet

methylene radical (CH 2(S) or 'CH 2 ) addition with acetylene (C2H2) and a hydrogen

abstraction of propyne (CH 3CCH). Propyne is arrived at through a combination reaction

between the methyl and vinyl radicals to form allene followed by an isomerization reaction.

The fuel-rich conditions with low levels of oxidizing radicals that result in a high

sustained level of hydrocarbon radicals makes the micromixing modeled by the PaSR of little

consequence in predicting benzene concentrations. However, the rapid OH radical rises seen

in fuel-lean combustion, studied earlier in this chapter, that result in brief periods of low

temperature oxidation provides a better demonstration of the value of this model. In the

Marinov mechanism the formation of benzene, followed by hydrogen abstraction to the phenyl

radical is the pathway to PAH formation. In premixed fuel-lean well stirred combustion, most

of these reactions occur at an early local age before the temperature and OH radical

concentration peaks. The PaSR model may be more successful in predicting PAH formation

in these systems.



Figure 5.36 Major Reaction Pathways to Benzene (C 6H6), (I)= 1.38 at
peak C 2H 3 Concentration (t = 0.063τ and T = 1460 K)
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Figure 5.37 Major Reaction Pathways to Benzene (C 6H6), (I)= 1.93 at
peak OH Concentration (t = 0.088-r and T = 1629 K)
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5.6 Summary

In this chapter, a PaSR model was used to simulate ethylene/air combustion in a TJSC and

compare results to experimental data from fuel-lean and fuel-rich reactor conditions. The

PaSR model uses an interaction by exchange with the mean (IEM) as a turbulent moment

closure to simulate finite time mixing at the microscale. Local conditions are relaxed toward

the mean at a rate defined by the mixing frequency, w. Comparisons between model and

experiment for fuel-lean conditions explored the reactors at near-blowout. These were

modeled using the GRI 3.0 mechanism (Smith et al. ,1999). The fuel-rich condition

experiments measured the formation of aromatic hydrocarbons, specifically benzene, and

important aromatic formation intermediates such as acetylene. These conditions are modeled

using an n-butane mechanism (Marinov et al., 1998).

The PaSR, and similar Probability Distribution Function (PDF) models, previously

solved using a Monte Carlo simulation of a large array of fluid particles, are computationally

intractable for large mechanisms such as the GRI 3.0 mechanism. An alternate solution

technique is employed in this work that approximates mean conditions and solves the

deterministic model to refine the approximation and eventually converge on a solution. The

approximation, direct integration, and convergence technique compared favorably with the

Monte Carlo modeling calculations presented by Correa (1993 and 1995) for smaller

mechanisms, but using, on average, less than 1/200 th of the CPU time. This new technique

allows use of considerably larger detailed mechanisms.
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The comparison of PaSR model predictions to the experimental data from a TJSC

operating in both fuel-lean and fuel-rich conditions showed good agreement between model

and data. Analysis of the fuel-lean data near blowout showed best agreement with the PaSR

simulations at a mixing frequency of 3162 Hz, a plausible frequency based on analysis by

Nenniger et a/. (1984), against the measurements of hydrocarbon PICs and unburned fuel

(ethylene). Decreasing the mixing frequency had the effect of delaying combustion. It

produced a greater range of local temperatures and local concentrations. Likewise, increasing

the dilution of the feed also delayed combustion. This had the effect of increasing the bimodal

nature of the temperature distribution, similar to the effect observed by Barat (1990) from

Rayleigh scattering measurements. The PaSR model also simulated a broader distribution

of CO concentrations near blowout that showed a "local blowout" effect. For fuel-rich

conditions, PaSR model predictions had excellent agreement with experimental results, but

the results of the PaSR model converged with the results of PSR model as the fuel/air

equivalence ratio increased. Analysis showed that the reduced concentrations of the hydroxyl

and other oxidizing radicals at the higher fuel/air equivalence ratios produced a rather

constant age profile of hydrocarbon radicals similar to the uniform composition expected in

a PSR. Overall, the PaSR model gave better predictions than the PSR model, and simulated

other effects, such as the temperature distribution, that cannot be modeled by a PSR.

Finally, this chapter presented a generalized PaSR model applicable to non-ideal

macromixing that would be characterized by an RTD reflecting multiple PSRs in series. The

idea of developing a hybrid micromixing model between the Segregated Flow and Maximum

Mixedness models is not new. Spencer et al. (1980) reviewed several concepts of an
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approach to the Maximum Mixedness model, but with delayed mixing. One mixing rule kept

fluid "points" segregated until a fixed age and completely mixed thereafter, and the other rule

kept fluid "points" segregated until a fixed fraction of the total time in the reactor and

completely mixed thereafter. Neither mixing rule produces a continuous PDF. Instead, this

chapter proposed a mixing rule that relaxes the composition between individual fluid "points"

with the mean of other "points" with the same life expectancy in the reactor. This mixing rule

extends the Interaction-by-Exchange-with-the-Mean (IEM) approach, but uses a localized

mean of the group of fluid "points" that exit at the same time.

Caution is warranted when applying any IEM model. IEM reduces complex

geometric effects to one or two parameters and fails to adequately address local effects.

These limitations can be overcome. Applications to simple geometries in conditions with high

turbulent kinetic energies and sufficiently small integral time scales (Equation 5.24) are most

likely to produce good results. The IEM approach offers the advantage of using detailed

thermo-kinetic mechanisms in a micromixing model. This is a potential tool for analyzing

practical combustion systems.



CHAPTER 6

APPLICATION AND ANALYSIS OF THE NETWORKED
IDEAL REACTOR MODEL

In this chapter, the model developed in Chapters 3 and 4 is applied with detailed thermo-

kinetic mechanisms. Use of a networked ideal reactor model allowed for the application of

the large mechanisms needed to describe combustion of chlorinated hydrocarbons (CHC).

Comparisons are made between model predictions and experimental data at various sample

points for different measured PICs. In general, the model results do not agree well with the

data. However, the trends exhibited in both data and model provide insights about SCC

design.

6.1 Experimental

Chapter 3 provides a complete description of the pilot scale Rotary Kiln Incinerator Simulator

(RKIS). Throughout all tests, the Eclipse 82 MTVA primary natural gas burner in the rotary

kiln section (see Figure 3.l) was operated at 73 kW with a slight excess of oxygen. The

afterburner operated at a constant fuel rate of 51 kW. The SCC was varied between three

conditions — lean, stoichiometric, and rich — by varying the air flow to the afterburner. Test

burn runs compared one of two surrogate wastes, carbon tetrachloride (CCl4 ) or methylene

chloride (CH2Cl2 ), to blank runs that were used as a baseline. Nitrogen pressurized liquid
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surrogate waste was injected at 80 mL/min into point B2 (see Figure 3.l) in an air atomized

nozzle. The droplet size of the spray was altered by using one of two pressure settings.

Table 6.l shows a summary of these conditions.

Table 6.l Reactor Conditions

(I) Fuel/Dopant
(mol/hr)

Air
(mol/hr)

Excess 02

(%)*

Fuel Lean

Main Burner 0.85 311 3570 2.9
Afterburner 0.91 201 2140 1.7
SCC Overall 0.72 512 5710 2.5
CCl4 0.72 49.6 2.5
CH 2Cl2 0.86 74.9 l.2

Stoichiometric
Main Burner 0.85 311 3570 2.9
Afterburner l.05 201 1850 n/a
SCC Overall 0.82 512 5420 1.5
CCl4 0.82 49.6 1.5
CH 2Cl2 0.96 74.9 0.3

Fuel Rich
Main Burner 0.85 311 3570 2.9
Afterburner 1.25 201 1560 n/a
SCC Overall 0.93 512 5130 0.6
CCl4 0.93 49.6 0.6
CH 2Cl2 1.10 74.9 n/a

* mole percentage of oxygen in product stream assuming complete combustion

Samples were collected from preliminary runs using an EPA standard Volatile Organic

Sample Train (VOST) and analyzed in a GC/ Mass Spectrometer. Samples were made in the

burnout section of the SCC using reference samples of each surrogate waste or dopant.

Based on these VOST samples a list of target analytes in Table 6.2 were developed.

Although this list is extensive, concentrations of chloromethane (CH 3Cl), perchloroethylene
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(C2Cl4), trichloroethylene (C 2HCl 3 ), chlorobenzene (C 6H5Cl), and chloroform (CHCl 3), as well

as the dopants, dominated the chlorinated hydrocarbon (CHC) PICs, and benzene (C 6H6), and

to a limited extent, toluene (C6H5CH3), dominated the hydrocarbon PICs. The lighter C 1 and

C2 hydrocarbons were not measured.

Table 6.2 Target Analytes
chloroform 	 1,2, dichlorobenzene 	 ethyl benzene

carbon tetrachloride 	 methylene chloride 	 m,p xylenes

benzene 	 trans 1,2 dichloroethane 	 o xylene

toluene 	 methyl ethyl ketone 	 styrene

trichlorethylene 	 1,1,1 trichloroethane 	 1,3 dichlorobenzene

perchloroethylene 	 1,2 dichloroethane 	 1,4 dichlorobenzene

chlorobenzene

Sample runs consisted of combinations of reactor condition (lean, stoichiometric, or

rich), dopant (carbon tetrachloride, methylene chloride, or blank), injection pressure (high or

low), and sample point (3, 4, or 5). Regression analysis performed by Lemieux (Bass, Barat,

Sacchi, and Lemieux, 1995) analyzed the on-line GC results for trends based on choice of

dopant, residence time (based on port location), and equivalence ratio. Results showed a

strong correlation (R 2 = 0.9195) for benzene formation with fuel/air equivalence ratio, but

independent of the dopant used. Strong relationships with all factors were found with toluene

(R 2 = 0.9362), methylene chloride (R 2 = 0.7376), perchloroethylene (R 2 = 0.6598), and

trichloroethylene (R 2 = 0.6277). Unfortunately, comparable levels of trichloroethylene were

also detected in the blank runs, so it is a possible low-level contaminant in all runs and makes

the data suspect. GC and continuous emission monitor data are listed in Appendix B.
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6.2 Modeling Approach

A computer code, titled AFTERBURNER Version 2.4 (Appendix D), was developed to solve

the network of ideal reactors modeled after the physical SCC in Chapter 4 and summarized

in Figure 4.16 and Table 4.4. The code uses the CHEMKIN-II library (Kee et al., 1994) with

PSR (Glarborg et al., 1986). AFTERBURNER was designed with features to:

• read user input for reactor parameters and multiple input streams.

• calculate afterburner and overall fuel/air equivalence ratios and adjust the air stream to a

specified value of (I).

• accept reactor size as a volume or mean residence time.

• use heat transfer coefficients for calculating heat loss or specify a PSR operating

temperature, and estimate heat transfer coefficients for PFR sections based on a desired

output temperature.

• mix streams according to the network model.

• save output corresponding to the sample points in a formatted tiles for selected species.

• run sensitivity analysis of the model parameters.

The on-line GC sample train was simulated as a fixed temperature PSR with an elevated water

vapor content that simulated the rapid quench of the impinger. Since temperature and time

measurements of the sample lines were not taken, this was not developed as part of the

model.

Several approaches were available for determining the energy balance within the

reactor applicable to all reactor conditions. Since the one set of ideal reactor temperatures

deduced from physical temperature measurements applied only to stoichiometric conditions.
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a method was needed to generalize these findings to all modeled conditions. The simplest

approach would have been a fixed temperature approximation for all ideal reactors for all

conditions. This, of course, ignores the temperature dependence on fuel/air equivalence ratio.

To capture this effect, a heat transfer model was established and calibrated with the single set

of temperature data. The initial approach used for all reactors was an overall wall conduction

model. Specifically:

where T is the reactor temperature, T, is the temperature of the surroundings and UA is the

product of the surface area and the overall heat transfer coefficient. For the burnout section,

Ta is the ambient temperature of the room which was approximately 40 °C. The heat transfer

in the mixing section was more complex. The hotter flame is separated from the cooler wall

by the cooler kiln gas stream. If the temperature of the kiln gas is used as the value for T

in Equation 6.l, the resulting value of UA becomes too large to maintain flame stability under

fuel-rich conditions. This results in model predictions of flame blow-out.

Radiation heat transfer is a more appropriate heat transfer model for the flame in the

mixing section, and is the typical heat transfer mechanism from the flame in boilers and

incinerators. The radiation from a flames is given by (Hottel and Sarofim, 1967):

where E is the emissivity, a is the absorptivity, o is the Stefan-Boltzmann constant, and the

subscripts s and G stand for the wall surface and the gas respectively. The gas emissivity is
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not likely to remain constant over the range of conditions since it is dependent on H20 and

CO2 concentration. The soot induced luminosity of a fuel rich flame also increases this value.

If these complications are ignored and the ratio of absorptivity to emissivity considered unity

which is a reasonable approximation when the ratio of TG to Ts is not far from unity, then

radiative heat loss is given by (Perry and Green, )984):

where CS is the pseudo total exchange area. This is approximated from an enthalpy balance

using a computer run with the specified temperatures from Table 4.4. Not only does the

radiation heat loss model for PSR 1 make better physical sense, the more rapid fall-off of heat

loss, as the equivalence ratio drives the flame temperature down, allows for stable model

solutions in fuel-rich conditions.

Equation 6.l was retained as the heat transfer model for PSRs 2 and 3, and PFR 4.

However, the flame temperature was substituted for the ambient temperature since the flame

heated the kiln. gas in the mixing section. Table 6.3 summarizes the heat transfer models and

parameters used. With the exception of PSR 1, the computer model determined the ideal

reactor temperatures during execution. The temperature of PSR 1 was determined using the

GRI 3.0 mechanism without the nitrogen chemistry to speed execution. The temperature was

found based on a iterative solution using energy balance between the heat of combustion and

radiative heat loss. The GRI 3.0 mechanism was also used to determine the initial guess for

each ideal reactor temperature for the application of the more complex CHC chemistry

mechanisms.



160

Table 6.3 Heat Transfer Parameters and Energy Balance 
	Reactor T in Tout	 Atli	 Model2	 Parameter Units Volume

(K)	 (K)	 (kcal/s) 	(L)

PSR1

PSR2

PSR3 3

PSR4

PSR5

PSR6

PFR7

1. Total heat loss through the SCC walls account for approximately 25 percent of energy
entering the reactor

2. T is the reactor temperature; Tf is flame temperature (PSR l); Ta is ambient
temperature (40 K)

3. Heat transfer parameter for PSR 3 was calculated from PFR 4 on the per unit volume
basis

Figure 6.1 shows the effect of fuel/air equivalence ratio, (I), on the ideal reactor

temperatures of PSRs 1, 5, and 6, and the exit temperatures of PFRs 4 and 7. The

temperatures of these reactors varied widely with 1, while the entering kiln gas in PSRs 2 and

3 held a fairly narrow ranges from 1003 to 1012 K. The excess oxygen in the kiln gas mixing

with the afterburner flame stream in the burnout section produce increasing SCC exit

temperatures as the fuel-rich conditions decreased temperatures in the mixing section and

choke. Since the kiln gas stream does not completely mix with the flame gas until further

down the burnout section, the final combustion of the flame products occurs near the end of

the SCC causing the temperature to rise in that region of the reactor.

313 1538 -4.21
640

640.
cm2

CM- 24.0
1 	4

,-T,
(GS) a 7- - i ,

977 1009 0.287 UA(T - T)f
0.542 ca	 s.K) 45.2

1009 1009 0.00 UA(T - T) 0.048 cal/(s.K) 0.20

1009 1404 3.78 UA(T - T) 13.l cal/(s•K) 55.l

1537 1451 -0.598 UA(T - To) 0.524 cal/(s•K) 53.1

1419 1323 -2.13 UA(T - T) 2.10 cal/(s•K) 185.

1323 1241 -l.58 UA(T - T) l.62 cal/(s•K) 220.
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Several chlorine mechanisms were available for use in the networked ideal reactor

model. The most extensive available was developed by Chiang, Park, and Bozzelli (1994) and

Chiang (1995) and includes 233 species and 727 reactions. This thermo-kinetic mechanism

models the pyrolysis and oxidation of mixtures of CHCs and hydrocarbons in air. The

mechanism includes the formation up to C 6 ringed compounds (benzene and chlorobenzenes).

This mechanism was developed based on flow reactor experiments featuring a relatively high

CHC to hydrocarbon ratio, dilute concentrations, and relatively low temperatures. This may

limit its utility in systems without dilution that predominately feature hydrocarbons reacting

at higher (combustion) temperatures. As large as this mechanism is, it lacks some reaction

paths needed to provide an adequate simulation of benzene formation. For instance, the

mechanism features only two reactions for benzene formation:

Neither of these reflect more recent evidence in C 6 ring formation going primarily through the

C 3 route with the propargyl radical (Marinov et al., 1998) shown in Figures 5.36 and 5.37.

A smaller mechanism developed by Ho and Bozzelli (Ho and Bozzelli, 1992b, and

Bozzelli, 1996) uses 62 species and 268 reactions to model CHC and hydrocarbon

combustion up to C 2 carbons. This mechanism models the oxidation and pyrolysis of

methylene chloride, but does not include carbon tetrachloride, which limits its utility for

application to this set of experiments. Like the Chiang mechanism, the Ho mechanism was

developed against data from dilute flow reactor experiments and lack some of the pathways
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Figure 6.1 Ideal Reactor Temperatures Dependence on Afterburner Fuel/Air Equivalence
Ratio (Dopant Blank; GRI 3.0 Mechanism w/o Nitrogen Chemistry)

that are necessary for higher concentrations. For instance, on trial simulation runs,

application of the Ho mechanism resulted in the production of dichloroacetylene (C 2Cl2), an

unstable compound, as the dominate CHC PIC with mole fractions on the order of 10 -3 , but

experimentally C2Cl2 was not detected in the VOST method. The Ho mechanism provides

a single molecular elimination reaction for formation:

but not "outlets" for oxidation or pyrolysis. Chloroacetylene (C 2HCl) also has unusually high

concentrations in the model runs (mole fractions on the order of 10 -5 ), but again, it was not
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detected in the VOST method. Two molecular elimination reactions account for formation

but only two reactions provide destruction pathways:

Pathway analysis of methane destruction showed other anomalies in the mechanism. Analysis

under nominally fuel-rich conditions where the kiln and flame streams mixed at the entrance

to PSR 6 showed that the primary path from CH 4 to CO going through the C 2 route despite

relatively high mole fractions of CH 4 (4xl(1 3 ) and 0, (3xl0 -4). These problems could be

easily corrected.

6.3 Comparison Between Modeling and Experimental Results

Using the Chiang mechanism two computer simulation runs were performed, one for each

dopant. Each simulation ranged between SCC burner fuel/air equivalence ratios between 0.7

and l.3 incremented 0.25 for each step. Each run took approximately 2 hours (for 21 sets

of conditions). The results are shown in Figures 6.2 through 6.9.
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Figures 6.2 and 6.3 show the temperature at the end of the SCC burnout section

(point 5) as a function of (I) . Temperature increases with (I) for both dopants, but peaks for

methylene chloride at (I) = l.05. Figure 6.2 shows a difference between the dopants for the

model runs as much as 50 K, but when view in context of overall SCC fuel/air equivalence

ratio (Figure 6.3), which includes the excess air from the kiln gas, the difference is less

significant. The complex heat transfer model applied to five PSRs, which base their heat

transfer ΔT on the initial approximation of reactor temperature, accounts for some of the

jaggedness of the model lines and is the likely cause of the difference between the dopants.

The trends of the model do not predict the results of the actual experimental measurements.

The experimental temperature measurements show no dependence on (I) and average 1242

K with no statistically significant difference between the dopants. The temperatures have a

wide range of variability. Some fluctuations in the excess oxygen in either the main burner

or could be in the sample line. Recall in Chapter 5 how the differences in CO concentration

SCC burner could account for this. This is significant because PIC concentrations are very

sensitive to temperature.

Figure 6.4 shows the comparison between model runs for both dopants and the

experimental data for CO concentration at point 5. The model and the data consistently show

no significant difference between dopants and the exponential rise of CO with increasing (II.

However, the model consistently under predicts the experimental results. In Chapter 5, the

prediction of elevated CO concentrations for poor mixing (lower mixing frequency) was a

function of reactions in the sample probe and not the modeled reactor (see Figures 5.9 and

5.14). The long, unquenched sample line for the CO monitor could account for additional
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Figure 6.2 Effect of Burner (bon Temperature at Point 5, Comparison Between Model
(using Chiang Mechanism) and Experimental Results for Different Dopants

Figure 6.3 Effect of Overall SCC (Don Temperature at Point 5, Comparison Between
Model (using Chiang Mechanism) and Experimental Results for Different Dopants
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reactions with unburnt fuel and hydrocarbon PICs raising the concentration of CO. The

model consistently predicted Total Hydrocarbon (THC) concentrations on the order of 10

ppm at fuel lean conditions to 5000 ppm at fuel-rich conditions, but even complete conversion

to CO would not completely account for the difference. Next, lack of sufficient mixing of fuel

and air in the flame, and lack of sufficient mixing of the dopant in the mixing section could

have caused the higher measured concentrations of CO. An ideal reactor, as well as a PaSR,

model assumes premixed conditions, but actual conditions were non-premixed. Non-

premixed fuels can produce fuel-rich zones that promote CO production. Experiments done

by Sacchi (Bass et al., 1995) showed that intentionally produced poor mixing regions with

fuel (or dopant) elevated the levels of CO and also increased benzene production.

Figure 6.4 Effect of Overall SCC (I) on CO Concentration at Point 5, Comparison
Between Model (using Chiang Mechanism) and Experimental Results for Different
Dopants



Figure 6.5 Effect of Overall SCC (1) on Benzene Concentration at Point 5, Comparison
Between Model (using Chiang Mechanism) and Experimental Results for Different
Dopants

Figure 6.5 compares model predictions with measured benzene at point 5. The y-axis

clips off the lower range of the model prediction with CCl4 as the dopant in order to show the

dependence of the experimental measurements on (1). The model underpredicts the benzene

concentration by 4 orders of magnitude, but shows the trend of increased benzene production

with increasing (I). The initial regression analysis performed by Lemieux (Bass et al., 1995)

showed no difference between dopants, but this was based on a independent variable of

burner fuel/air equivalence ratio. When the oxygen demand of the dopant is considered. the

model predicts a difference that may be reflected in the experimental data, but there are

insufficient data points for the methylene chloride dopant to validate this difference. As
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discussed earlier, the increased benzene concentrations above model predictions could be

indicative of poor mixing. Other mechanisms such as heterogenous reactions linked to soot

growth, not accounted for in a premixed homogeneous model, could also account for the

difference.

Figures 6.6 and 6.7 compare model predictions with experimental measurements of

chloroform (CHCl3 ) at SCC choke (point 4) and point 5. Comparing the two figures shows

that chloroform is produced earlier in the SCC and not effected by burner fuel/air equivalence

ratio. Pathway analysis at points 3, 4 and 5 shows that almost all production occurs in the

mixing section in PSR 2. The mechanism produces different pathways for each dopant. For

methylene chloride the path is:

Within the mixing section, the model predicts concentrations of chloroform two orders of

magnitude higher for the carbon tetrachloride dopant, which follows in the choke, but not at

the end of the burnout section. Both models under predict chloroform at that point. The data

shows no apparent difference between dopants and chloroform concentration. The agreement

between model and data that chloroform is formed early in the SCC is significant. In the

networked ideal reactor model PSR 2 does not mix with the flame stream and has a relatively

low temperature (1000K) consistent with experimental measurement. So, CHCl 3 formation

depends on low temperatures and high concentrations of dopant.



Figure 6.6 Effect of Burner (I) on Chloroform Concentration at Point 4, Comparison
Between Model (using Chiang Mechanism) and Experimental Results for Different

Dopants

Figure 6.7 Effect of Overall SCC (I) on Chloroform Concentration at Point 5,
Comparison Between Model (using Chiang Mechanism) and Experimental Results for
Different Dopants
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The next set of graphs show the comparison perchloroethylene (C 2Cl4) predictions and

measurements at points 4 and 5. Like chloroform, perchloroethylene is formed early in the

SCC and consumed in the burnout section. Also, like chloroform, burner fuel/air equivalence

ratio has little impact on perchloroethylene concentration for both model and experimental

data. The model tends to overpredict perchloroethylene concentration with CCI 4 as the

dopant, but performs reasonably with methylene chloride. The mechanisms of formation are

somewhat different between dopants. With carbon tetrachloride as the dopant, formation

involves a 2 or 3 step process early in the mixing section:

with an almost equal alternate path between the trichloromethyl radical and

perchloroethylene. The path with methylene chloride is longer and slower with the

concentration of perchloroethylene in the mixing section (point 3) several orders of magnitude

lower than the concentration in the choke. The pathway is:

Again, like chloroform production, the formation of chlorinated PICs early in the SCC

suggests that control of PIC formation requires limiting low temperature areas with high

POHC concentrations. Additional graphs that compare model and experimental data for

chlorobenzene and carbon tetrachloride are in Appendix C.



Figure 6.8 Effect of Burner (I) on Perchloroethylene Concentration at Point 4,
Comparison Between Model (using Chiang Mechanism) and Experimental Results for
Different Donants

Figure 6.9 Effect of Overall SCC (ID on Perchloroethylene Concentration at Point 5,
Comparison Between Model (using Chiang Mechanism) and Experimental Results for
Different Dopants
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6.4 Analysis of Results

Even though agreement between model and data is poor, the networked reactor model

combined with the thermo-kinetic mechanism shows the same trends as the experimental data.

Some of these trends can be analyzed in order to gain insight into the effect of reactor

geometry and macromixing on performance. The sensitivity analysis of the model parameters

is one method of exploring these trends. In so far that the parameters of the networked ideal

reactor model reflect the basic macromixing characteristics of the SCC, an analysis of the

sensitivity of those parameters to variations provide insight to the effect of modifying those

characteristics on PIC formation.

In the context of the mass fractions of a system with kk components the normalized

first order sensitivity coefficient is defined as:

where αi is the parameter. On a mole basis the sensitivity coefficient becomes (Glarborg

et al., 1986):

In a system with n parameters, the perturbation of the resulting j th mole fraction is the sum of

the perturbation of each parameter times the respective molar sensitivity coefficient (Frank,

1978):



The uncertainty of the 7 volumetric parameters (of the SCC model) is quantified in the

standard errors determined in Chapter 4. However, since the uncertainty of the temperature

parameters is not quantified the sensitivity coefficients will not be used to quantify the

uncertainty of the resulting mole fractions. The sensitivity coefficients are useful to analyze

trends, but in a system with 233 chemical species and 15 model parameters that results in

3495 sensitivity coefficients for each set of reactor conditions, not all combinations will be

considered in this analysis. Rather, this section will look at two PICs, benzene and

perchloroethylene, and focus on the larger sensitivity coefficients.

Predicted concentrations of benzene at the SCC exit are highly dependent on

temperature in PSR 1, the SCC burner flame. When the dopant is CCl4 , sensitivity

coefficients range between -30 for fuel-lean to l.2 for fuel-rich. Under fuel-lean and

stoichiometric conditions, temperature increases in PSR 1 decrease benzene output at the

SCC exit. This same trend is noted when methylene chloride is the dopant where sensitivity

coefficients, S, range from -13 at fuel-lean conditions to -29 at fuel-rich conditions. With

CH 2Cl2 as the dopant, the heat transfer to PFR 4 is also important, especially under fuel-lean

conditions where the sensitivity coefficient is -74. These findings suggest that increased

burner temperature and better heating of the kiln gas stream will reduce benzene in the SCC

exit.
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The formation of perchloroethylene is also dependent on conditions in PSR 1. For

the carbon tetrachloride dopant, higher temperatures in PSR 1 produce a significant

downward trend in C 2Cl4 at the SCC exit. At first glance, this does not make intuitive sense,

because the CHC dopant does not mix into the SCC burner flame. However, the temperature

of PSR 1 has a significant impact on the temperatures of PSR 2, 3, and PFR 4, which are all

in the mixing section of the SCC. This effect is also reflected in the sensitivity of the heat

transfer coefficient of PFR 4. The reactor size of PSR 1 also has an effect with the methylene

chloride dopant system. Increases in the SCC burner flame size decrease perchloroethylene

at the SCC exit, with the sensitivity coefficients ranging from -20 (fuel-lean) to -450 (fuel-

rich). Since it also has the same effect on hydrocarbon PICs such as acetylene and ethylene,

this effect suggests a relationship between downstream hydrocarbon concentration and the

destruction of C2Cl4 downstream. These effects taken together suggest that a higher burner

flame temperature and decreased hydrocarbon PIC production in the flame by better mixing

and an increased recirculating zone would reduce the formation of CHCs downstream.

6.5 Summary

In this chapter, a networked ideal reactor model identified in Chapter 4 was applied to the

SCC over a variety of conditions. A heat transfer model was used to apply the temperature

parameters, developed from data at stoichiometric conditions, to a range of conditions. A

thermo-kinetic mechanism developed by Chiang (1995) was applied to the model. Even

though this mechanism has shortcomings when applied to combustion conditions, it contained

sufficient detail to provide predictions for many of the target analytes measured by the on-line
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GC. The model results did not agree well with the experimental data. However, it followed

many of the underlying trends revealed by the data.

Several factors could have improved the modeling effort. More data were required

on the operating conditions of the SCC, especially reactor temperatures using a suction

pyrometry at multiple points during operation. This would have reduced the level of

extrapolation required in developing a heat transfer model. Additionally, no data were

available on the effect of the sample quench upstream of the on-line GC and how this might

have affected results. Additional validation of the thermo-kinetic mechanism would have

increased confidence in the model. This should include data taken at combustion

temperatures in research devices such as a TJSC or a laminar flat flame. The aromatic

chemistry of the Chiang mechanism requires additional work to provide for additional

potential reaction pathways especially through the propargyl radical. These modifications

would require additional validation on idealized bench scale systems.

The underlying trends mirrored by the reactor model provide a means to suggest SCC

design modifications to improve performance. The trends found by parameter sensitivity

analysis suggest that SCC performance could be improved by: (l) maintaining a high burner

flame temperature; (2) reducing unburned hydrocarbons in the burner effluent by improving

mixing and increasing the recirculating volume; and (3) achieving earlier heating of the kiln

gas perhaps by using multiple tangential entries into the mixing section. Further investigation

into this system should determine the effect of such improvements.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This research has explored the identification and application of an ideal reactor model to a

Secondary Combustion Chamber (SCC). This was done to explore the middle ground

between detailed thermo-kinetic mechanisms, which have been generally applied to well-

defined mixing systems, and the application of detailed turbulent mixing models with reduced

thermo-kinetic mechanisms to complex geometries. This section summarizes what has been

learned about mixing in a practical combustion system and success in applying detailed

thermo-kinetic mechanisms to it. It also, provides conclusions regarding the ability to depart

from the concept of ideal mixing while still retaining detailed chemistry in the model. Finally,

recommendations are made regarding the general design of an SCC, and future research in

the area.

Analysis of the geometry of the SCC suggested the existence of up to four distinct

mixing zones (flame zone, kiln gas zone, entrainment zone, and post-choke mixing zone), that

is, four distinct zones which could be modeled as PSRs. Temperature profiles supported this

conjecture by showing the presence of two distinct zones in the mixing chamber, and two

emerging streams from the choke that rapidly mix as they move downstream. The RTDs,

which were resolved from the tracer studies, further supported a multiple PSR model. The

tracer results validated the supposition that the flame and the kiln gas maintain two distinct
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zones in the mixing chamber. This has important consequences for secondary combustion

chamber designs that rely on the tangential mixing of the kiln gas. Little mixing occurred

between the two streams until further downstream in the burnout section.

A model was chosen based on the best fit to SO 2 tracer data and consistency with

physical geometry, resulting flow patterns, and temperature measurements. The chosen

model is summarized in figure 4.16 with parameters in table 4.4. A frequency bandwidth

limitation introduced by the SO2 analyzer precluded distinguishing solutions that differ only

in the higher frequencies. Hence, a best-fit model does not represent a unique solution and

other considerations such as reactor geometry, analysis of flow patterns and swirl, and

temperature cross section measurements also merited equal consideration in model selection

Temperatures assigned using cross-section temperature profiles and energy balances enabled

ideal reactor volumes to be determined. The difference between the active and physical

volumes indicated the presence of 53 L of dead space in the 177 L mixing section, but found

37 L more active volume than the 410 L physical volume of the burnout section. However,

overall there was good agreement between the identified model and the physical geometry of

the SCC.

A heat transfer model was used to apply the temperature parameters, developed from

data obtained at stoichiometric conditions, to a range of conditions. A thermo-kinetic

mechanism developed by Chiang (1995) was applied to the model. This mechanism had

shortcomings, but it contained sufficient detail to provide predictions for many of the target

analytes measured by the on-line GC. The model results did not agree well with the
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experimental data. However, it followed many of the underlying trends revealed by the data.

Sensitivity analysis of the parameters was used to further explore trends and recommend

potential design improvements to reduce PIC formation.

A PaSR model was employed that used an interaction by exchange with the mean

(IEM) as a turbulent moment closure to simulate finite time mixing at the microscale. Local

conditions are relaxed toward the mean at a rate defined by the mixing frequency, co.

Comparisons between model and experiment for fuel-lean conditions explored a Toroidal Jet

Stirred Combustor (TJSC) at near-blowout using the GRI 3.0 mechanism. An n-butane

mechanism was used for fuel-rich condition simulations of experiments that measured the

formation of aromatic hydrocarbons, specifically benzene in the TJSC. An alternate solution

technique, developed in this work, approximated mean conditions and solved the deterministic

model to refine the approximation and eventually converge on a solution. The approximation,

direct integration, and convergence technique compared favorably with the Monte Carlo

modeling calculations presented by Correa (1993 and 1995) for smaller mechanisms, but used,

on average, less than 11200 th of the CPU time. This new technique allowed use of

considerably larger detailed mechanisms. Additionally, a generalized PaSR model was

proposed to include the effects of non-ideal macromixing. The model takes a hybrid approach

to the Zwietering Maximum Mixedness Model. The generalized model uses a mixing rule that

relaxes the composition between individual fluid "points" with the mean of other "points"

with the same life expectancy in the reactor.
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The comparison of PaSR model predictions to the experimental data from a TJSC

operating in both fuel-lean and fuel-rich conditions showed good agreement between model

and data at a mixing frequency of 3162 Hz. Decreasing the mixing frequency had the effect

of delaying combustion. It produced a greater range of local temperatures and local

concentrations. Likewise, increasing the dilution of the feed also delayed combustion. This

had the effect of increasing the bimodal nature of the temperature distribution, similar to the

effect observed by Barat (1990) from Rayleigh scattering measurements.

7.2 Recommendations

The analysis of the SCC revealed that little mixing between the kiln gas stream and the flame

occurs in the so-called mixing section. However, typical SCC designs lack a choke section,

which forces additional mixing downstream. Designs without a choke section, are unlikely

to meet requisite retention time - temperature requirements, even though averaged (assumed

mixed) conditions are within regulatory standards. This analysis seem to suggest that some

turbulence producing obstruction, like a choke or bluff body, is essential to ensue complete

mixing.

The underlying trends mirrored by the reactor model suggested further SCC design

modifications to improve performance. The trends found by parameter sensitivity analysis

suggested that SCC performance could be improved by: maintaining a high burner flame

temperature; reducing unburned hydrocarbons in the burner effluent by improving mixing and
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increasing the recirculating volume; and achieve earlier heating of the kiln gas perhaps by

using multiple tangential entries into the mixing section. Further investigation into this system

should determine the effect of such improvements.

A better modeling effort is possible with several improvements. More data are

required on the operating conditions of the SCC, especially reactor temperatures at multiple

points during operation using suction pyrometry to maximize accuracy of measurements.

Less extrapolation of heat transfer parameters would be required. The water quench system

upstream of the on-line GC should be analyzed and modeled to determine specific effects on

target analytes. Finally, additional validation of the thermo-kinetic mechanism will increase

confidence in the SCC model. Validation of the mechanism should include data taken at

combustion temperatures in research devices such as a TJSC or a laminar flat flame. The

aromatic chemistry of the Chiang mechanism requires additional work to provide for

additional potential reaction pathways especially through the propargyl radical.

Finally, additional work is needed to develop the generalized PaSR model. This

model has the potential of applying detailed thermo-kinetic mechanisms to the complex

mixing system in an SCC while considering the effects of non-ideal macro and micromixing.

However, caution is warranted when applying a model that reduces complex geometric

effects to one or two parameters. These limitations can be overcome. Applications to simple

geometries in conditions with high turbulent kinetic energies and sufficiently small integral

time scales should be tested first. Computational Fluid Dynamics (CFD) analysis of complex

geometries will be necessary to understand the details of the turbulent mixing before applying

the model.



APPENDIX A

TERMS AND SYMBOLS

A.1 Symbols

Nomenclature

inverse of mean residence time for reactor n
b 	 probe quench model parameter

mass weighted average specific heat
Dar 	turbulent. Damköhler number
E(t) 	 RTD
F(t) 	 cumulative distribution function
fc 	Nyquist critical frequency
g(t) 	 system transfer function
G(s) 	 Laplace transform of the system transfer function

axial flux
angular flux

h	 weighting function vector
h	 estimate of the weighting function vector
h(kΔt) 	 system weighting function
h k 	specific enthalpy of species k
j(α,λ) 	 age, life expectancy, joint probability distribution
LMTD 	 log mean temperature difference

angular momentum

m

	 mass flow rate
n	 number of equal ideal reactors
ii 	 molar flow rate
P 	 pressure
p	 an upper index value

Q	 heat flow rate
skewness coefficient

S	 swirl number
S	 reaction rate vector

first order sensitivity coefficient
first order sensitivity coefficient, mole basis

s 	 Laplace-space independent variable
t 	 independent time variable
Δt 	 discrete time step
T 	 temperature
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U 	 input matrix
u(kΔt) 	 discrete input function
U(kΔt) 	 discrete step input function
u(t) 	 continuous input function
U(t) 	 continuous step input function
U transposed input matrix
v 	 system noise vector
✓ reactor volume
v(t)	 system noise

Wk 	 molar mass of species k
molar production rate of species k

Xk 	 mole fraction of species k
y 	 system output vector
y(kΔt) 	 discrete system impulse response
Y(kΔt) 	 discrete system step response
y(kΔt) 	 estimated (model) system impulse response
Y(kΔt) 	 estimated (model) system step response

y(t)	 continuous system impulse response
Y(t)	 continuous system step response

Yk 	 mass fraction of the kth species
expected value

Greek Symbols

parameter vector
parameter i
point age in the reactor
impulse function with offset τ
input/output cross correlation function vector
specific composition field
bypass fraction at location 11

point life expectancy: time remaining the reactor
mean
composition scalar field
density
age distribution
variance
vector of local variances
dummy time variable
mean residence time
fuel/air equivalence ratio
input autocorrelation function matrix
covariance matrix
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covariance between it and j th parameters
V(,),)	 point life expectancy distribution

ω

	 mixing frequency
angular velocity

Subscripts and Indicies

an index
j	 an index
k	 step index, k = 0, 1, 2, 3, . . .
k	 the index for a specific chemical species
n	 an index

A.2 Terms

CDF	 Cumulative Distribution Function
CFD	 Computational Fluid Dynamics
CHEMKIN-II (Kee et al., 1989) Software Package for the formulation, solution, and

interpretation of gas-phase chemical kinetics
CPU	 Central Processing Unit
DNS	 Direct Numeric Simulation, direct integration of Navier-Stokes and

associated continuity equations
DRE	 Destruction and Removal Efficiency, percentage of POHC converted in the

incinerator
DVODE	 (Brown, Hindmarsh, and Byrne, 1989) Double precision Variable

coefficient ODE solver
ECD	 Electron Capture Detector, a post column detector on a gas

chromatograph
EPA	 U.S. Environmental Protection Agency
FID	 Flame Ionization Detector, a post column detector on a gas chromatograph
GRI	 Gas Research Institute
IEM	 Interaction by Exchange with the Mean, turbulent closure model
LS	 Least Squares
ODE	 Ordinary Different Equation
PAH	 Polyaromatic Hydrocarbon
PaSR	 Partially Stirred Reactor, mixing model using IEM closure
PCDD	 Pentachlorodibenzodioxin
PCDF	 Pentachlorodibenzofuran
PDF	 Probability Distribution Function
PFR	 Plug Flow Reactor
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PIC	 Product of Incomplete Combustion
POHC	 Principle Organic Hazardous Component
PREMIX	 (Kee et al., 1993) A FORTRAN program for modeling steady laminar one-

dimensional premixed flames
PSR	 Perfectly Stirred Reactor
PSR	 (Glarborg, et al, 1992) A Fortran program for modeling well-stirred

reactors
QRRK	 Quantum Rice-Ramperger-Kassel, methodology for determining kinetic

parameters for unimolecular and bimolecular pressure dependent reactions
RKIS	 Rotary Kiln Incinerator Simulator, a pilot scale rotary kiln and SCC located

at EPA, Research Triangle Park, NC.
RTD	 Residence Time Distribution
SCC	 Secondary Combustion Chamber
SISO	 Single Input Single Output
TSJC	 Toroidal Jet Stirred Combustor, a bench scale premixed gas combustor that

generates mixing energy from 32 jets
VOC	 Volatile Organic Compound
VOST	 Volatile Organic Sample Train



APPENDIX B

EXPERIMENTAL DATA

Listed below are experimental data from the Secondary Combustion Chamber (SCC) of

the Rotary Kiln Simulator (RKIS) provided by the Air Pollution Technology Branch, of

the National Risk Management Research Laboratory, Research Triangle Park, NC.

Table B.1 Temperature Measurements in the Mixing Section 
X-position Y-position Temperature X-position Y-position Temperature

(in.) (in.) (°F) (in.) (in.) (°F)

0 1 2215 0 -1 1650
0 2 2286 0 -2 1355
0 3 2266 0 -3 1311
0 4 1865 0 -4 1310
0 5 1331 0 -5 1307
0 6 1316 0 -6 1310
0 7 1311 0 -7 1313
0 8 1312 0 -8 1317
0 9 1311 0 -9 1316
0 1 0 1310 0 -10 1312
0 11 1318 0 -11 1310
0 12 1331 0 -12 1307
1 0 1983 -1 0 1999
2 0 2309 -2 0 1378
3 0 2274 -3 0 1324
4 0 1891 -4 0 1322
5 0 1375 -5 0 1317
6 0 1319 -6 0 1317
7 0 1317 -7 0 1315
8 0 1314 -8 0 1321
9 0 1311 -9 0 1315

10 0 1317 -10 0 1310
11 0 1322 -11 0 1297
12 0 1322 -12 0 1216
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Table B.2 RKIS PIC Concentrations (mg/m3 )

Run Dopant Aerosol
Pressure

AB
SR

Port CHCl3 CCl4 C6H6 C2HCl3 C2Cl4 C6H5Cl

0622RG4 CCl4 high 0.85 4 0.016 0.012 14.735 0.273 0.287 2.582

0616RP5 CCl4 low 0.85 5 0.005 0.349 10.777 0.049 0.009 2.264

0615RG5 CCl4 high 0.85 5 0.006 0.585 11.025 0.078 0.002 l.059

0621SP3 CCl4 low 1 3 0.187 0.136 0.036 0.099 0.026 0.020

062lSG3 CCl4 high 1 3 0.082 0.149 0.031 0.098 0.027 0.082

0614SG5 CCl4 high 1 5 0.012 0.268 0.009 0.044 0.033 0.061

0615SP5 CCl4 low 1 5 0.007 0.311 0.009 0.080 0.003 0.054

0622LG4 CCl4 high 1.1 4 0.115 0.078 1.165 0.124 0.159 0.096

0620LG5 CC14 high 1.1 5 0.004 0.111 0.018 0.059 0.001 0.006

0616LG5 CCl4 high l.1 5 0.004 0.221 0.046 0.068 0.004 0.255

0620LP5 CC14 low 1.1 5 0.006 0.088 0.026 0.048 0.001 0.012

0623MRG4 CH2C12 high 0.85 4 0.032 0.005 9.946 0.260 0.221 16.571

0623MRG5 CH2Cl2 high 0.85 5 0.003 0.002 8.806 0.122 0.021 2.165

0621MSG3 CH2Cl2 high 1 3 0.207 0.020 5.640 0.127 0.071 19.917

0623MLG4 CH2Cl2 high 1.l 4 0.066 0.040 0.306 0.097 0.060 0.018



Table B.2 RKIS PIC Concentrations, Continued (mg/m

Run	 Dopant	 At.
Pressure

0623MLG5	 CH2Cl2 high

0622RB4	 n/a	 blank

0615RB5	 n/a	 blank

0620RB5	 n/a	 blank

06215133	 n/a	 blank

0621 SB3	 n/a	 blank

0620S B5	 n/a	 blank

06155B5	 n/a	 blank

06145B5	 n/a	 blank

0622LB4	 n/a	 blank

0620LB5	 n/a	 blank

0616LB5	 n/a	 blank

AB Port CHCl3 CCl4 C6H6 C2HCl3 C204 C6H5Cl

SR

1.1 5 0.063 0.005 0.609 0.091 0.010 0.289

0.85 4 0.000 0.001 9.376 0.029 0.001 0.017

0.85 5 0.000 0.135 12.340 0.075 0.002 0.019

0.85 5 0.000 0.001 10.482 0.037 0.001 0.000

1 3 0.002 0.002 0.062 0.048 0.002 0.037

1 3 0.006 0.001 0.203 0.057 0.002 0.760

1 5 0.000 0.001 0.263 0.054 0.001 0.000

1 5 0.000 0.000 0.007 0.052 0.002 0.059

1 5 0.000 0.000 0.005 0.045 0.000 0.000

1.l 4 0.003 0.001 0.306 0.013 0.006 0.009

1.1 5 0.000 0.002 0.006 0.080 0.002 0.013

l.1 5 0.000 0.022 0.567 0.075 0.002 0.102



Table B.3 RKIS Continuous Monitor Readings

Run Kiln 02 Kiln CO2 Kiln CO Stack 02 Stack Stack CO Kiln T SCC Mix SCC Mid

(%) (%) (PPm) (%) CO2 (%) (ppm) (°F) T (°F) T (°F)

0614SG5 5.4 9.3 391 l.9 11.7 48 1884 1306 1735

0614SB5 5.4 9.3 391 1.9 11.7 48 1884 1306 1735

0615SP5 N/A N/A N/A 2.2 12.5 97 1897 1359 1806

0615SB5 N/A N/A N/A 2.2 12.5 97 1897 1359 1806

0615RG5 N/A N/A N/A 0.5 13.1 10790 1900 1361 1799

0615RB5 N/A N/A N/A 0.4 12.4 9550 1895 1363 1775

0616RP5 0.0 12.5 2276 0.0 13.l 11830 1908 1339 1802

0616LB5 l.6 11.7 14 2.9 11.1 20 1922 1364 1797

0616LG5 0.6 12.4 436 1.6 12.2 22 1937 1368 1799

0620LB5 0.6 12.0 552 2.0 11.4 26 1811 1307 1748

0620RB5 (10 11.9 5850 0.3 11.8 11130 1839 1320 1704

0620SB5 0.0 12.2 2310 0.5 12.3 638 1855 1332 1773

0620LP5 0.4 12.2 719 2.3 11.7 28 1882 1351 1778

0620LG5 0.8 11.9 735 2.7 11.3 29 1895 1361 1784



Table B.2 RKIS Continuous Monitor Readings

Run Kiln 02 Kiln CO2 Kiln CO Stack 02 Stack Stack CO Kiln T SCC Mix SCC Mid
(%) (%) (PPm) (%) CO2 (%) (ppm) (°F) T (°F) T (°F)

062lSG3 0.1 12.1 1858 0.5 12.6 925 1874 1321 1781

0621SB3 0.0 12.1 1677 0.5 12.2 1790 1901 1337 1801

0621SP3 0.0 12.0 2220 0.2 12.8 1850 1904 1343 1794

0621MSG3 0.0 12.0 2114 0.2 12.4 5350 1918 1347 1789

062lSB3-2 N/A N/A 1165 0.3 12.2 1023 1892 1357 1809

0622LB4 0.5 12.1 796 2.2 11.8 23 1821 1268 1743

0622RB4 0.0 11.8 7400 0.3 12.1 13790 1856 1280 1665

0622RG4 0.0 11.9 8940 0.4 12.4 16230 1879 1295 1670

0622LG4 0.3 12.3 1100 2.0 12.4 29 1930 1339 1778

0623MLG4 I .() 11.6 44 1.4 12.1 151 1906 1349 1786

0623MRG4 0.0 11.8 4730 0.0 12.0 13160 1917 1341 1742

0623MLG5 0.9 11.6 48 1.7 12.0 41 1931 1374 1790



APPENDIX C

ADDITIONAL GRAPHICS, EQUATIONS, AND CALCULATIONS

C.1 Graphics

This section contains additional graphs that support various discussions in Chapters 3

through 5.
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Figure C.3.1 Scale Diagram of the Secondary Combustion Chamber
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Figure C.4.1a Mixing Section Model Residuals (y-axis shows residuals
on a scale from 0 to l)
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Figure C.4.1b Burnout Section Residuals (y-axis shows residuals on a scale from
0 to l)



Figure C.4.2b Comparison of Model 1 with System Response: C to 4



Figure C.4.2d Power Spectrum Comparison of Model and LS
Reconstructed RTD: C to 4
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Figure C.4.3b Comparison of Model with System Response: Bl to 3



Figure C.4.3d Power Spectrum Comparison of Model and LS
Reconstructed RTD: B1 to 3
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Figure C.4.4b Comparison of Model with LS Reconstructed RTD: 4 to 5
w/C input



Figure C.4.4c Power Spectrum Comparison of Model and LS
Reconstructed RTD: C to 5
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Figure C.4.5 Comparison of System Responses: 4 to 5 for B2, and C input



Average T 1038.8 K
Density Weighted Average T 1029.5 K
Enthalpy Density Weighted Average 1030.8 K

Flame Gas Density Weighted Average T 1339.l K
Flame Gas Enthalpy Density Weighted Average 1343.5 K

Kiln Gas Density Weighted Average T 1008.8 K
Kiln Gas Enthalpy Density Weighted Average 1009.0 K

Zone Division Temperature 1101.4 K

Flame Area Fraction 0.1016
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Figure C.4.6 Mixing Chamber Cross Section Temperature Analysis



Mass Flows:

Kiln Gas 108 kg/hr
Flame Gas 56.8 kg/hr

Average T 1453.9 K
Density Weighted Average T 1449.9 K
Enthalpy Density Weighted Average 1450.6 K

Flame Gas Density Weighted Average T 1537.8 K
Flame Gas Enthalpy Density Weighted Average 1537.9 K

Kiln Gas Density Weighted Average T 1403.7 K
Kiln Gas Enthalpy Density Weighted Average 1403.9 K

Zone Division Temperature 1486.3 K
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Figure C.4.7 Choke Cross Section Temperature Analysis



Mass Flows:

Kiln Gas 108 kg/hr
Flame Gas 56.8 kg/hr

Average T 1240.6 K
Density Weighted Average T 1240.6 K
Enthalpy Density Weighted Average 1240.6 K

Flame Gas Density Weighted Average T 1248.6 K
Flame Gas Enthalpy Density Weighted Average 1248.6 K

Kiln Gas Density Weighted Average T 1236.4 K
Kiln Gas Enthalpy Density Weighted Average 1236.4 K

Zone Division Temperature 1243.8 K

Figure C.4.8 Burnout Section Cross Sectional Analysis
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Figure C.5.1 C 2H6 Concentration Dependence on Dilution Ratio, Comparison of
Experimental Data (A) with PSR and PaSR Models with Probe Quench Model
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Figure C.5.2 C2H 2 Concentration Dependence on Dilution Ratio, Comparison of
Experimental Data (A) with PSR and PaSR Models with Probe Quench Model



Figure C.5.3 CH4 Concentration Dependence on Dilution Ratio, Comparison of

Experimental Data (A) with PSR and PaSR Models with Probe Quench Model
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C.2 Calculations

C.2.1 Calculation of Swirl Number

Swirl Number is calculated based on tangential flow. Consider an isothermal system with

tangential mixing having an angular velocity of w and a axial velocity of u. The radius is R 0 .

Swirl number is defined as (Beer and Chigier, 1972):

and axial flux is:

For the mixing section of the SCC shown in figure C.3.1, the axial flux may be approximated

by finding the average axial velocity, 5. Then equations C.2 reduces to:

The average axial velocity is calculated from the axial mass flux, which is the sum of the mass

flux entering the axially in the burner, ma, and the mass flux entering tangentially, mt ::



Substituting equation C.5 into C.4 gives:

Assume a uniform axial velocity in the mixing section:

where 1 is the angular momentum.. Following an example provided by Hallett (1986) of swirl

number calculations in a tangentially stirred reactor, the angular momentum may be calculated

from the location, angle and velocity of the tangentially entering fluid. For the SCC mixing

section shown in figure C.l, the fluid enters in a kiln transition duct with radius, R 1. So the

angular momentum is given by:

The angular velocity at the point of entry is the velocity in the kiln transition duct, which is:
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Substituting equations C.8 and C.9 into C.7 gives:

Ignoring friction losses, both angular and axial flux is conserved (Beer and Chigier, 1972).

So as the flow enters the choke both G, and G, remain the same, but the radius reduces to R e .

So the swirl number at the choke, S choke, is given by:

At stoichiometric conditions, the tangential mass flow is:

Likewise, the axial mass flow is

which gives a swirl number at the choke calculates as (units cancel):
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This neglects friction losses, but the value is in the typical range of cyclone combustors. The

increase in temperature from mixing chamber to the choke can be accounted for by a simple

formula provided by Syred and Beer (1974):

The large swirl number would logically lead to a large recirculating zone in the burnout

section. The divergent cone at the choke exit enlarges the recirculation zone, increases

recirculation mass flow substantially, and reduces the pressure loss coefficient (Syred and

Beer, 1974).

C.2.2 Model Moments

Chapter 3 presented three archetype ideal reactor models and the associated model moments:

mean, variance, and skewness coefficient. These three models are:

Case l. PSR 1 followed by PFR d

Case 2. two PSRs, 1 and 2, of unequal size in series

Case 3. n PSRs in series, each of size i
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The RTD functions for these for cases are listed below. τ is the mean residence time of an

ideal reactor in the network.:

C.2.2.1 Case 1 Moments. Applying the RTD to the definition of the mean:

Using the definition of the variance:

and applying the Case 1 RTD with the same change in variable as equation C.15:



Using the definition of the skewness coefficient:
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and applying the Case 1 RTD with the same change in variable as equation C.18:

C.2.2.2 Case 2 Moments. The RTD for Case 2 is substituted into equation C.14:



Likewise, the variance is found by substituting the Case 2 RTD in equation C.16:
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for the skewness coefficient:

C.2.2.3 Case 3 Moments. The RTD for Case 3 is substituted into equation C.14:

Likewise, the variance is lc



Finally, the Case 3 RTD substituted into equation gives the skewness coefficient:
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C.2.3 Calculation of Local Variance

For the step-input tracer experiments discussed in chapter 3, each input and output

combination had multiple trials. The time interval of the data recorder was set at 0.05

seconds, but the interval was not precise. A Savitsky-Golay filter (Press et al., 1992) with

an imposed interval combined the information from the multiple runs. The fitted polynomial

parameters estimated at each discrete time point were used to estimate the derivative of the

series.

An estimate of local variance was required for error analysis. Since data points did

not fall at precise intervals, the variance for each time interval point used all points one

interval step to the left and right to determine the variance of the ordinate (y-axis). Figure

C.C.l illustrates this concept. Let yk represent the estimated y-value from the Savitsky-Golay

filter at time tk = kΔt on the imposed time sequence. A nearby point (t1, v) is corrected using

the derivative at tk :
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If j represents the set of n points within a time step of tk , then the local variance is defined as:

The local variance is used for determining the standard errors of the estimate of the model

parameters in Chapter 4.

Figure C.C.1 Calculation of Local Variance



APPENDIX D

REACTOR MODEL PROGRAMS

This appendix has the FORTRAN source code for the reactor model programs. Section DA

shows the networked ideal reactor program and D.2 shows the PaSR model program. Each

program contains sufficient internal decimation for explaination. Both programs link to the

CHEMKIN-IIIibrary.

D.1 Afterburner Version 2.4

C 	 PROGRAM AFTERBURNER
C
C
C 	 Integration of constant pressure kinetics problems using ideal
C 	 reactors
C
C 	 VERSION 2.4:
C 	 1.1. 17 Mar 94 added restart and fixed temperature options
C 	 1.2. Removed element balance
C 	 1.3. Added heat transfer in PFR
C 	 1.4. Added tracking of CEMs and groups of products
C 	 1.5. May 94 added the second PFR for a rapid cool
C 	 1.6. Jun 94 added an additional Bypass between PSR1 and Choke
C 	 1.7. Jul 94 added rop analysis and expressed results in mg/m*3
C 	 2.0 Jan 95 redesign of program to a modular format
C 	 2.1 Apr 96 added PSR 5, eliminated radiant heat loss
C 	 2.2 	 Jun 96 generalized file opening in PDPSR, added sensitivity
C 	 analysis
C 	 2.3 	 Dec 96 added heat transfer coefficient estimation based on
C 	 complete combustion; modified input file; modified SUBTOUTINE
C	 FUN to allow isothermal reactors; added model sensitivity
C	 2.4 Oct 01 modified program to match model in chapter 4; changed
C 	 heat transfer coefficient estimaion using PSR to estimate
C 	 enthalpy of combustion products
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER(I-N)
PARAMETER (LENIWK=500000, LENRWK=500000, LENCWK=50000, NK=30,

1 	 NLMAX=55, LIN=5, LOUT=6, LINKCK=25, KMAX=250,
2 	 LPIC=18, LRAD=19, LCEM=20,
3 	 LROP=39, LOPS=9)

C
DIMENSION IWORK(LENIWK), RWORK(LENRWK), X(KMAX), Z(KMAX),
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1 	 XF(KMAX), ZF(KMAX), XA(KMAX), ZA(KMAX), XK(KMAX),
2 	 ZK(KMAX), XD(KMAX), ZD(KMAX), ZP(KMAX), XP(KMAX),
3 	 XI(KMAX), ZI(KMAX), XIM(KMAX), ZIM(KMAX), ZSI(KMAX),
4 	 ZSO4(KMAX), ZSO5(KMAX), S(KMAX), IPIC(NK), IRAD(NK),
5 	 ICEM(NK), ITOP(30), VOL(LOPS), TEMP(LOPS), UA(LOPS),
6 	 P(LOPS), BETA(20), ZKSI(KMAX)
CHARACTER CWORK(LENCWK)*16, KSYM(KMAX)*16, KELE(6)*2, REACTOR*4,

1 	 CNUMS*10, FILE1*12, FILE2*12, FILE3*12, FILE4*12
LOGICAL KERR, IERR, LPHI_B, LPHI, RESTART, SERIES, UNITS ,LTAU,

1

	

	 SENS, TGIV(LOPS), SKIP2, LUA(LOPS), MODEL
EXTERNAL FUN

C
COMMON /RCONS/ PATM, RU, TA, PA, UAV
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI

C
DATA KERR/.FALSE./, ISENS/0/, X/KMAX*0.0/, KSYM/KMAX*"/,

1 	 XA/KMAX*0.0/, XK/KMAX*0.0/, XD/KMAX*0.0/,
2 	 CAL2ERG /41868000/
CNUMS = '0123456789'

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Initialize files and constants
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

OPEN (UNIT=LOUT, STATUS='UNKNOWN', FORM='FORMATTED',
1 	 FILE=lab24.out')
WRITE (LOUT, 15)

15 FORMAT
1/' AFTERBURNER: Version 2.4'
2/' 	 Charles Bass, October 2001',
3/' 	 DOUBLE PRECISION')

C 	 Open the CHEMKIN LINK file
C

OPEN (LINKCK, FORM='UNFORMATTED', file='cklink')
C
C	 Initialize CHEMKIN
C

CALL CKLEN (LINKCK, LOUT, LENI, LENR, LENC)
CALL CKINIT (LENIWK, LENRWK, LENCWK, LINKCK, LOUT, IWORK,

1 	 RWORK, CWORK)
CALL CKINDX (IWORK, RWORK, MM, KK, II, NFIT)

C
C 	 Open Output Files
C

OPEN (UNIT=LIN, STATUS='OLD', FORM='FORMATTED', FILE='abinp.txt')
OPEN (UNIT=LPIC, STATUS='UNKNOWN', FORM='FORMATTED',

1 	 FILE='pics.txt')
OPEN (UNIT=LRAD, STATUS='UNKNOWN', FORM='FORMATTED',

1 	 FILE='radicals.txt')
OPEN (UNIT=LCEM, STATUS='UNKNOWN', FORM='FORMATTED',

1 	 FILE='cems.txt')
C
C
C

NEQ = KK + 1
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C

LRW 	 = 22 + 9*NEQ + 2*NEQ**2
NVODE = LENR + 1
NWT = NVODE + LRW
NH 	 =NWT + KK
NWDOT = NH + KK
NTOT = NWDOT+ KK - 1

C
LIW = 30 + NEQ
IVODE = LENI + 1
ITOT = IVODE + LIW - 1

C
IF (KK .GT. KMAX) THEN

WRITE (LOUT, *)
1 	 ' Error...KMAX too small...must be at least ',KK

KERR = .TRUE.
ENDIF

C
IF (LENRWK .LT. NTOT) THEN

KERR = .TRUE.
WRITE (LOUT, *)

1 	 ' Error...LENRWK too small...must be at least', NTOT
ENDIF

C
IF (LENIWK .LT. ITOT) THEN

KERR = .TRUE.
WRITE (LOUT, *)

1 	 ' Error...LENRWK too small...must be at least', NTOT
ENDIF

C
IF (LENIWK .LT. ITOT) THEN

KERR = .TRUE.
WRITE (LOUT, *)

1 	 ' Error...LENIWK too small...must be at least', ITOT
ENDIF

IF (KERR) STOP

CALL CKSYMS (CWORK, LOUT, KSYM, IERR)
CALL CKSYME (CWORK, LOUT, KELE, IERR)
IF (IERR) KERR = .TRUE.
CALL CKWT 	 (IWORK, RWORK, RWORK(NWT))
CALL CKRP 	 (IWORK, RWORK, RU, RUC, PATH)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Read input file
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

CALL PARSER (LIN, LOUT, 'FLAG', 4, R1, R2, R3, R4)
RESTART = (INT(R1) .EQ. 1)
SERIES = (INT(R1) .EQ. 2)
LPHI_B = (INT(R2) .EQ. 1)
LPHI = (INT(R2) .EQ. 2)
LTAU = (INT(R3) .EQ. 1)
SENS = (INT(R4) .EQ. 1)
MODEL = (INT(R4) .EQ. 2)
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SKIP2 = (INT(R4) .EQ. 9)
CALL PARSER (LIN, LOUT, 'UNITS', 1, R1, R2, R3, R4)
UNITS = (INT(R1) .EQ. 1)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'PICS', IPIC, IK1)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'RADIC', IRAD, IK2)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'CEMS', ICEM, IK3)
CALL PARSER (LIN, LOUT, 'AMBIENT', 2, PA, TA, R3, R4)
IF (UNITS) THEN

PA = PA/29.9213
TA = (TA + 459.67)*5/9

ELSE
PA = PA/760
TA = TA + 273.15

ENDIF
C
C 	 Default reactor pressure
dynes cm**2
C

DO 30 I = 1, LOPS

is equal to ambient pressure in

IF (I 	 .EQ. 1) REACTOR = 	 'PSR1'
IF (I 	 .EQ. 2) REACTOR = 	 'PSR2'
IF (I 	 .EQ. 3) REACTOR = 	 'PSR3'
IF (I 	 .EQ. 4) REACTOR = 	 'PFR4'
IF (I 	 .EQ. 5) REACTOR = 	 'PSR5'
IF (I 	 .EQ. 6) REACTOR = 	 'PSR6'
IF (I 	 .EQ. 7) REACTOR = 	 'PFR7'
IF (I 	 .EQ. 8) REACTOR = 	 'PFR8'
IF (I 	 .EQ. 9) REACTOR = 	 'PFR9'

CALL PARSER (LIN, 	 LOUT, REACTOR, 4, VOL(I), UA(I), TEMP(I),
1 P(I))

TGIV(I) = (INT(UA(I)) .EQ. -1)
LUA(I) = (INT(UA(I)) .EQ. -2)
IF (UNITS) THEN

IF (.NOT. LTAU) VOL(I) = VOL(I) * 28316.85
TEMP(I) = (TEMP(I) +459.67)*5/9
IF (.NOT. TGIV(I) .AND. .NOT. LUA(I)) UA(I) = UA(I)*0.125998
P(I) = P(I)/29.92126

ELSE
TEMP(I) = TEMP(I)
P(I) = P(I)/760

ENDIF
C
C 	 BETA is the parameter vector
C

BETA(I) = VOL(I)
IF (TGIV(I) .OR. LUA(I)) THEN

BETA(I+9) = TEMP(I)
ELSE

BETA(I+9) = UA(I)
ENDIF

30 CONTINUE
CALL PARSER (LIN, LOUT, 'IMPINGER', 2, TAU_IMP, TEMP_IMP, R3, R4)
IF (UNITS) THEN

TEMP_IMP = (TEMP_IMP + 459.67)*5/9
ELSE

TEMP_IMP = TEMP_IMP + 273.15
ENDIF
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CALL PARSER (LIN, LOUT, 'PHI', 1, PHI_D, R2, R3, R4)
CALL PARSER (LIN, LOUT, 'BYPASS', 2, BYPASS1, BYPASS3, R3, R4)
BETA(19) = BYPASS1
BETA(20) = BYPASS3

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Stream input and adjustment
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 burner fuel and air
C

CALL STREAM (LIN, LOUT, 'FUEL', KSYM, KK, IWORK, RWORK, UNITS,
1 	 FLRTF, XF, ZF)
CALL STREAM (LIN, LOUT, 'AIR', KSYM, KK, IWORK, RWORK, UNITS,

1 	 FLRTA, XA, ZA)
C
C 	 Kiln gas and dopant
C

CALL STREAM (LIN, LOUT, 'KILNG', KSYM, KK, IWORK, RWORK, UNITS,
1 	 FLRTK, XK, ZK)
CALL STREAM (LIN, LOUT, 'DOPANT', KSYM, KK, IWORK, RWORK, UNITS,

1 	 FLRTD, XD, ZD)
IF (FLRTD .GT. 0.0 .AND. FLRTK .GT. 0.0) THEN

CALL MIX (KK, FLRTK, FLRTD, ZK, ZD, IWORK, RWORK)
CALL CKYTX (ZK(2), IWORK, RWORK, XK)

ENDIF
IF (FLRTD .GT. 0.0 .AND. FLRTK .EQ. 0.0) THEN

DO 10 I = 1,KK+1
ZK(I) = ZD(I)

10 	 CONTINUE
FLRTK = FLRTD
CALL CKYTX(ZK(2), IWORK, RWORK, XK)

ENDIF
C
C	 Air and steam injection
C

CALL STREAM (LIN, LOUT, 'INJ1', KSYM, KK, IWORK, RWORK, UNITS,
1 	 FLRTI, XI, ZI)
CALL STREAM (LIN, LOUT, 'INJ2', KSYM, KK, IWORK, RWORK, UNITS,

1 	 FLRTP, XP, ZP)
IF (FLRTP .GT. 0.0) THEN

CALL MIX (KK, FLRTI, FLRTP, ZI, ZP, IWORK, RWORK)
CALL CKYTX (ZI(2), IWORK, RWORK, XI)

ENDIF
C
C 	 calculate fuel/air equivalence ratios
C

PHI_B = EQUIV_RATIO (KK, ZA(2), ZF(2), ZA(2), ZF(2), FLRTA,
1 	 FLRTF, FLRTA, FLRTF, KELE, KSYM, IWORK, RWORK)
PHI = EQUIV_RATIO (KK, ZA(2), ZF(2), ZK(2), ZI(2), FLRTA, FLRTF,

1 	 FLRTK, FLRTI, KELE, KSYM, IWORK, RWORK)
C
C 	 Adjust fuel/air equivalence ratio
C

IF (LPHI_B) THEN
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FLRTA = FLRTA*PHI_B/PHI_D
ENDIF
IF (LPHI) THEN

CALL CKCOMP ('02', KSYM, KK, 102)
102 = 102 +1
A = ZF(IO2)*FLRTF + ZK(IO2)*FLRTK + ZI(IO2)*FLRTI
B = A + ZA(IO2)*FLRTA
FLRTA = 1/ZA(IO2)*(B*PHI/PHI_D - A)

ENDIF
C
C 	 Recalculate fuel/air equivalence ratios
C

IF (LPHI .OR. LPHI_B) THEN
PHI_B = EQUIV_RATIO (KK, ZA(2), ZF(2), ZA(2), ZF(2), FLRTA,

1 	 FLRTF, FLRTA, FLRTF, KELE, KSYM, IWORK, RWORK)
PHI = EQUIV_RATIO (KK, ZA(2), ZF(2), ZK(2), ZI(2), FLRTA,

1 	 FLRTF, FLRTK, FLRTI, KELE, KSYM, IWORK, RWORK)
ENDIF

C
C 	 Mix fuel/air stream
C

CALL MIX (KK, FLRTF, FLRTA, ZF, ZA, IWORK, RWORK)
CALL CKYTX (ZF(2), IWORK, RWORK, XF)
FLRT = FLRTF
FLRTSI = FLRTF
FLRTKSI = FLRTK
DO 50 N = 1, KK+1

Z(N) = ZF(N)
ZSI(N) = ZF(N)
ZKSI(N) = ZK(N)

50 CONTINUE
70 CONTINUE

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Solve series of reactors
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 IF conducting model sensivity the reconstruct orignal input
C 	 stream and set model parameters
C

IF (MODEL) THEN
DO 80 N = 1, KK+1

Z(N) = ZSI(N)
ZK(N) = ZKSI(N)

80 	 CONTINUE
FLRT = FLRTSI
FLRTK = FLRTKSI
DO 90 N = 1,9

VOL(N) = BETA(N)
IF (TGIV(N) .OR. LUA(N)) THEN

TEMP(N) = BETA(N+9)
ELSE

UA(N) = BETA(N+9)
ENDIF

90 	 CONTINUE
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BYPASS1 = BETA(19)
BYPASS3 = BETA(20)

ENDIF
CALL CKYTX (Z(2), IWORK, RWORK, X)

C
C 	 Write output file headings
C

WRITE (LPIC,7510) (KSYM(IPIC(K))(:10), K=1,IK1)
WRITE (LRAD,7510) (KSYM(IRAD(K))(:10), K=1,IK2)
WRITE (LCEM,7510) "THC","TCLC",(KSYM(ICEM(K))(:10), K=1,IK3)

C
C 	 ***** PSR 1 *****

C
IF (VOL(1) .NE. 0.0) THEN

C
C 	 Run PSR sub program
C
C
C Total Heat Flux in cal/s
C

IF (LUA(1)) TGIV(1) = .TRUE.
QLOS = UA(1)*(TEMP(1)**4 - TEMP(2)**4)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR1/IN', IWORK, RWORK)

CALL PDPSR(1, KK, II, Z(1), X, KSYM, FLRT, P(1), VOL(1),
1 	 TGIV(1), QLOS, TEMP(1), RESTART, LTAU, SENS, Z)

CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR1/OUT', IWORK, RWORK)
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL CKRHOX (P(1)*PATM, Z(1), X, IWORK, RWORK, RHO)
IF (LTAU) VOL(1) = VOL(1)*FLRT/RHO
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,7511) 'PSR1', VOL(1), Z(1), (X(IPIC(K)), K=1,IK1)
WRITE (LRAD,7511) 'PSR1', VOL(1), Z(1), (X(IRAD(K)), K=1,IK2)
WRITE (LCEM,7511) 'PSR1', VOL(1), Z(1), THC, TCLC,

1 	 (X(ICEM(K)),K=1,IK3)
ENDIF

C
C
C

Bypass 1

ZF(1) = Z(1)
DO 100 I = 1, KK

ZF(I+1) = Z(I+1)
XF(I) = X(I)

100 CONTINUE
FLRTF = BYPASS1*FLRT
FLRT = (1-BYPASS1)*FLRT

C
C	 ***** PSR 2 *****
C

IF (VOL(2) .NE. 0.0 .AND. .NOT. SKIP2) THEN
IF (LUA(2)) TGIV(2) = .TRUE.
QLOS = UA(2)*(TEMP(2) - Z(1))

C
C 	 A short PFR is called to simulate the transition duct
C

DT = 1.0E-4
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IPFR = 0
TAU = 1.0
UAV = -1
CALL PDPFR (IPFR, LOUT, LPIC, LRAD, LCEM, ZK, IWORK, RWORK,

1 	 KELE, FLRTK, P(2), TAU, DT, IPIC, IRAD, ICEM,
2 	 IK1, IK2, IK3, .TRUE.)

CALL CKYTX (ZK(2), IWORK, RWORK, XK)
CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PSR2/IN', IWORK, RWORK)
CALL PDPSR(2, KK, II, ZK(1), XK, KSYM, FLRTK, P(2), VOL(2),

1 	 TGIV(2), QLOS, TEMP(2), RESTART, LTAU, SENS, ZK)
CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PSR2/OUT', IWORK, RWORK)
CALL CKYTX (ZK(2), IWORK, RWORK, XK)
CALL CKRHOX (P(2)*PATM, ZK(1), XK, IWORK, RWORK, RHO)
IF (LTAU) VOL(2) = VOL(2)*FLRTK/RHO
CALL GROUP (KK, XK, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,7511) 'PSR2', VOL(2), ZK(1), (XK(IPIC(K)), K=1,IK1)
WRITE (LRAD,7511) 'PSR2', VOL(2), ZK(1), (XK(IRAD(K)), K=1,IK2)
WRITE (LCEM,7511) 'PSR2', VOL(2), ZK(1), THC, TCLC,

1 	 (XK(ICEM(K)),K=1,IK3)
C
C 	 cumlative save at point 3
C

IF (ISENS .EQ. 0)
1 	 CALL SAVER (KK, ZK, XK, SERIES, 'pt3pic.txt', 'pt3rad.txt',
2 	 Ipt3cem.txt1,1pt3bin', KSYM, KELE, IWORK, RWORK,
3 	 IPIC, IRAD,ICEM, IK1, IK2, IK3, PHI, PHI_B)

C
C 	 send output through impinger
C

IF (TAU_IMP .GT. 0.0) THEN
CALL IMPINGER (7, RESTART, II, ZK, KSYM, TAU_IMP, TEMP_IMP,

1 	 IWORK, RWORK, ZIM)
CALL CKYTX (ZIM(2), IWORK, RWORK, XIM)
IF (ISENS .EQ. 0)

1 	 CALL SAVER (KK, ZIM, XIM, SERIES, 'im3pic.txt',
2 	 'im3rad.txt', 'im3cem.txt', 'im3bin', KSYM, KELE,
3 	 IWORK, RWORK, IPIC, IRAD, ICEM, IK1, IK2, IK3,
4 	 PHI, PHI_B)

ENDIF
ENDIF

150 CONTINUE
C
C 	 ***** PSR 3 *****

C
IF (FLRTF .GE. 0.0) THEN

CALL MIX(KK, FLRTK, FLRTF, ZK, ZF, IWORK, RWORK)
CALL CKYTX (ZK(2), IWORK, RWORK, XK)

ENDIF
IF (VOL(3) .NE. 0.0) THEN

IF (LUA(3)) TGIV(3) = .TRUE.
QLOS = UA(3)*(TEMP(3) - Z(1))
CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PSR3/IN', IWORK, RWORK)
CALL PDPSR(3, KK, II, ZK(1), XK, KSYM, FLRTK, P(3), VOL(3),

1 	 TGIV(3), QLOS, TEMP(3), RESTART, LTAU, SENS, ZK)
CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PSR3/OUT', IWORK, RWORK)
CALL CKYTX (ZK(2), IWORK, RWORK, XK)
CALL CKRHOX (P(3)*PATM, ZK(1), XK, IWORK, RWORK, RHO)
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IF (LTAU) VOL(3) = VOL(3)*FLRTK/RHO
CALL GROUP (KK, XK, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,7511) 'PSR3', VOL(3), ZK(1), (XK(IPIC(K)), K=1,IK1)
WRITE (LRAD,7511) 'PSR3', VOL(3), ZK(1), (XK(IRAD(K)), K=1,IK2)
WRITE (LCEM,7511) 'PSR3', VOL(3), ZK(1), THC, TCLC,

1 	 (XK(ICEM(K)),K=1,IK3)
ENDIF

***** PFR 4 *****

IF (VOL(4) .GT. 0.0) THEN
TA_OLD = TA
TA = Z(1)
IF (LTAU) THEN

TOUT = TEMP(4)
TLM = (ZK(1)-TOUT)/LOG((ZK(1)-TA)/(TOUT-TA))
CALL CKRHOY (P(4)*PATM, TLM+TA, ZK(2), IWORK, RWORK, RHO)
VOLP = VOL(4)*FLRTK/RHO

ELSE
VOLP = VOL(4)

ENDIF
ENDIF
IF (LUA(4) .AND. VOL(4) .GT. 0.0) THEN

UA(4) = UA_FIND (KK, II, ZK(1), TOUT, TA, XK, KSYM,
1 	 FLRTK, PA, VOL(4), IWORK, RWORK)

UAV = UA(4)/VOLP
ELSEIF (TGIV(4) .AND. VOL (4) .GT. 0.0) THEN

UAV = -1.0
ZK(1) = TEMP(4)

ELSEIF (VOL(4) .GT. 0.0) THEN
UAV = UA(4)*CAL2ERG/VOLP

ENDIF
DT = 1.00e-4
CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PFR4/IN', IWORK, RWORK)
IF (VOL(4) .GT. 0.0) THEN

CALL PDPFR (4, LOUT, LPIC, LRAD, LCEM, ZK, IWORK, RWORK,
1 	 KELE, FLRTK, P, VOL(4), DT, IPIC, IRAD, ICEM,
2 	 IK1, IK2, 1K3, LTAU)

CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'PFR4/OUT', IWORK, RWORK)
CALL CKYTX (ZK(2), IWORK, RWORK, XK)
CALL CKRHOX (P(3)*PATM, ZK(1), XK, IWORK, RWORK, RHO)
CALL GROUP (KK, XK, KELE, IWORK, RWORK, THC, TCLC)
IF (.NOT. LUA(4)) VOLP = VOL(4)
WRITE (LPIC,7511) 	 VOLP, ZK(1), (XK(IPIC(K)), K=1,IK1)
WRITE (LRAD,7511) 'PFR4', VOLP, ZK(1), (XK(IRAD(K)), K=1,IK2)
WRITE (LCEM,7511) 	 VOLP, ZK(1), THC, TCLC,

1 	 (XK(ICEM(K)),K=1,IK3)
TA = TA_OLD
ENDIF

Choke (point 4) Logging of Kiln and Flame gas streams

Flame Gas

CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'CHOKE F', IWORK, RWORK)
IF (ISENS .EQ. 0)

1CALL SAVER (KK, Z, X, SERIES, 'pt4fpic.txt', 'pt4frad.txt',
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	2 	 sptf4cem.txt', 'pt4fbin', KSYM, KELE, IWORK, RWORK,

	

3 	 IPIC, IRAD,ICEM, IK1, IK2, IK3, PHI, PHI_B)
CALL TOP30 (KK, 'SCC Choke F', KSYM, X, ITOP)

C
C 	 send output through impinger
C

IF (TAU_IMP .GT. 0.0) THEN
CALL IMPINGER (8, RESTART, II, Z, KSYM, TAU_IMP, TEMP_IMP,

	

1 	 IWORK, RWORK, ZIM)
CALL CKYTX (ZIM(2), IWORK, RWORK, XIM)

IF (ISENS .EQ. 0)

	

1 	 CALL SAVER (KK, ZIM, XIM, SERIES, 'im4fpic.txt', 'im4frad.txt',

	

2 	 'im4fcem.txt', 'im3fbinl, KSYM, KELE, IWORK, RWORK,

	

3 	 IPIC, IRAD, ICEM, IK1, IK2, IK3, PHI, PHI_B)
CALL TOP30 (KK, 'Choke F - Impinger', KSYM, X, ITOP)

ENDIF
C
C 	 Kiln Gas
C

CALL ENERGY_BAL (ZK(1), ZK(2), FLRTK, 'CHOKE K', IWORK, RWORK)
IF (ISENS .EQ. 0)
1CALL SAVER (KK, ZK, XK, SERIES, 'pt4kpic.txt', 'pt4krad.txt',

	

2 	 'ptk4cem.txt', 'pt4kbin', KSYM, KELE, IWORK, RWORK,

	

3 	 IPIC, IRAD,ICEM, IK1, IK2, IK3, PHI, PHI_B)
CALL TOP30 (KK, 'SCC Choke K', KSYM, XK, ITOP)

C
C 	 send output through impinger
C

IF (TAU_IMP .GT. 0.0) THEN
CALL IMPINGER (9, RESTART, II, ZK, KSYM, TAU_IMP, TEMP_IMP,

	

1 	 IWORK, RWORK, ZIM)
CALL CKYTX (ZIM(2), IWORK, RWORK, XIM)

IF (ISENS .EQ. 0)

	

1 	 CALL SAVER (KK, ZIM, XIM, SERIES, 'im4kpic.txt', 'im4krad.txt',

	

2 	 'im4kcem.txt', 'im3kbin', KSYM, KELE, IWORK, RWORK,

	

3 	 IPIC, IRAD, ICEM, IK1, IK2, IK3, PHI, PHI_B)
CALL TOP30 (KK, 'Choke F - Impinger', KSYM, X, ITOP)

ENDIF

C
C 	 Calculate, save normalized model 1st order sensivity coefficients
C

IF (MODEL) THEN
IF (ISENS .EQ. 0) THEN

DO 160 N = 1, KK+1
ZSO4(N) = ZK(N)

	

160 	 CONTINUE
ENDIF

C
C 	 Mean molecular weight
C

WT = 0
DO 165 I = 1,KK

WT = WT + XK(I)*RWORK(NWT-1+I)

	

165 	 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C
C 	 Calculate normalized sensitivity coefficients and save
C 	 Sensitivity coefficients calculated on mole fraction basis
C 	 Zero or negative concentrations have sensitivity coeff of 0
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

RMAS2MOL = 0
IF (ISENS .GT. 0) THEN

S(1) = (BETA(ISENS)/ZSO4(1))*(ZK(1) - ZSO4(1))/H
DO 170 K = 1, KK

S(K+1) = (ZK(K+1) - ZSO4(K+1))/H
RMAS2MOL = RMAS2MOL + S(K+1)/RWORK(NWT-1+K)

170 	 CONTINUE
RMAS2MOL = BETA(ISENS)*WT*RMAS2MOL
DO 180 K = 1, KK

IF (ZSO4(K+1) .GT. 0.0) THEN
S(K+1) = (BETA(ISENS)/ZSO4(K+1))*S(K+1) - RMAS2MOL
ELSE

S(K+1) = 0.0
ENDIF

180 	 CONTINUE
ITENS = INT(ISENS/10) + 1
IONES = ISENS - (ITENS -1)*10 + 1
FILE1 = isn4pic 1 //CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

1 	 //'.TXT'
FILE2 = isn4rad'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

1 	 //'.TXT'
FILE3 = 'sn4cem'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

1 	 //'.TXT'
FILE4 = 'sn4bin'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)
CALL SAVER (KK, S, S(2), SERIES, FILE1, FILE2, FILE3,

1 	 FILE4, KSYM, KELE, IWORK, RWORK, IPIC, IRAD,
2 	 ICEM, IK1, IK2, IK3, PHI, PHI_B)

ENDIF
ENDIF

C
C 	 Add post mixing chamber injection
C

IF (FLRTI .GT. 0.0) THEN
CALL MIX (KK, FLRT, FLRTI, Z, ZI, IWORK, RWORK)
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'CHOKE/INJ', IWORK, RWORK)

ENDIF
C
C 	 ***** PSR 5 *****

C
C 	 First mix in stream from bypass 3
C

IF (BYPASS3 .GE. 0.0) THEN
C
C	 Bypass 3
C

ZF(1) = Z(1)
DO 185 I = 1, KK

ZF(I+1) = ZK(I+1)
185 CONTINUE
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FLRTF = BYPASS3*FLRTK
FLRTK = (1-BYPASS3)*FLRTK

Mix with flame stream and execute PSR

CALL MIX(KK, FLRT, FLRTF, Z, ZF, IWORK, RWORK)
CALL CKYTX (Z(2), IWORK, RWORK, X)

ENDIF
IF (VOL(5) .NE. 0.0) THEN

IF (LUA(5)) TGIV(5) = .TRUE.
QLOS = UA(5)*(TEMP(5)-TA)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR5/IN', IWORK, RWORK)
CALL PDPSR(5, KK, II, Z(1), X, KSYM, FLRT, P(5), VOL(5),

1 	 TGIV(5), QLOS, TEMP(5), RESTART, LTAU, SENS, Z)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR5/OUT', IWORK, RWORK)
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL CKRHOX (P(5)*PATM, Z(1), X, IWORK, RWORK, RHO)
IF (LTAU) VOL(5) = VOL(5)*FLRT/RHO
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,7511) 'PSR5', VOL(5), Z(1), (X(IPIC(K)), K=1,IK1)
WRITE (LRAD,7511) 'PSR5', VOL(5), Z(1), (X(IRAD(K)), K=1,IK2)
WRITE (LCEM,7511) 'PSR5', VOL(5), Z(1), THC, TCLC,

1 	 (X(ICEM(K)),K=1,IK3)
ENDIF

***** PSR 6 *****

Mix in balance of kiln Bass

CALL MIX(KK, FLRT, FLRTK, Z, ZK, IWORK, RWORK)
IF (ISENS .EQ. 0)

1 CALL SAVER (KK, Z, X, SERIES, 'pt4apic.txt', 'pt4arad.txt',
2 	 'pt4acem.txt', 'pt4abin', KSYM, KELE, IWORK, RWORK,
3 	 IPIC, IRAD,ICEM, IK1, IK2, IK3, PHI, PHI_B)

CALL CKYTX (Z(2), IWORK, RWORK, X)
IF (VOL(6) .NE. 0.0) THEN

IF (LUA(6)) TGIV(6) = .TRUE.
QLOS = UA(6)*(TEMP(6)-TA)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR6/IN', IWORK, RWORK)
CALL PDPSR(6, KK, II, Z(1), X, KSYM, FLRT, P(6), VOL(6),

1 	 TGIV(6), QLOS, TEMP(6), RESTART, LTAU, SENS, Z)
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PSR6/OUT', IWORK, RWORK)
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL CKRHOX (P(6)*PATM, Z(1), X, IWORK, RWORK, RHO)
IF (LTAU) VOL(6) = VOL(6)*FLRT/RHO
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,7511)
WRITE (LRAD,7511)
WRITE (LCEM,7511)

1
ENDIF

***** Following PFRs

DO 200 I = 1,3
IPFR = 1+6

'PSR6', VOL(6), Z(1), (X(IPIC(K)), K=1,IK1)
'PSR6', VOL(6), Z(1), (X(IRAD(K)), K=1,IK2)
'PSR6', VOL(6), Z(1), THC, TCLC,
(X(ICEM(K)),K=1,IK3)
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if LUA is true, a heat transfer coefficient is estimated to give
a chosen output temperature, if only TGIV is true reactor is
isothermal

IF (VOL(IPFR) .GT. 0.0) THEN
IF (LTAU) THEN

TOUT = TEMP(IPFR)
TLM = (Z(1)-TOUT)/LOGHZ(1)-TA)/(TOUT-TA))
CALL CKRHOY(P(IPFR)*PATM, TLM+TA, Z(2), IWORK, RWORK,RHO)
VOLP = VOL(IPFR)*FLRTK/RHO

ELSE
VOLP = VOL(IPFR)

ENDIF
ENDIF
IF (LUA(I+6) .AND. VOL(I+6) .GT. 0.0) THEN

UA(I+6) = UA FIND (KK, II, Z(1), TOUT, TA, X, KSYM,
1 	 FLRT, PA, VOL(I+6), IWORK, RWORK)

UAV = UA(I+6)/VOLP
ELSEIF (TGIV(I+6) .AND. VOL (I+6) .GT. 0.0) THEN

UAV = -1.0
Z(1) = TEMP(I+6)

ELSEIF (VOL(I+6) .GT. 0.0) THEN
UAV = UA(I+6)*CAL2ERG/VOLP

ENDIF
DT = 1.00e-4
IF (VOL(I+6) .GT. 0.0) THEN
CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PFR/IN', IWORK, RWORK)

CALL PDPFR (IPFR, LOUT, LPIC, LRAD, LCEM, Z, IWORK, RWORK,
1 	 KELE, FLRT, P, VOL(I+6), DT, IPIC, IRAD, ICEM,
2 	 IK1, IK2, IK3, LTAU)

CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'PFR/OUT', IWORK, RWORK)
ENDIF

cumlative save at point 5

IF (I .EQ. 1) THEN
CALL CKYTX (Z(2), IWORK, RWORK, X)
IF (ISENS .EQ. 0)

1 	 CALL SAVER (KK, Z, X, SERIES, 'pt5pic.txt', 'pt5rad.txt',
2 	 'pt5cem.txt', 'pt5bin', KSYM, KELE, IWORK, RWORK,
3 	 IPIC, IRAD,ICEM, IK1, IK2, IK3, PHI, PHI_B)

CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'SCC Exit', IWORK, RWORK)
CALL TOP30 (KK, 'SCC Exit', KSYM, X, ITOP)

send output through impinger

IF (TAU_IMP .GT. 0.0) THEN
CALL IMPINGER (10, RESTART, II, Z, KSYM, TAU IMP,

1 	 TEMP_IMP, IWORK, RWORK, ZIM)
CALL CKYTX (ZIM(2), IWORK, RWORK, XIM)
IF (ISENS .EQ. 0)

1 	 CALL SAVER (KK, ZIM, XIM, SERIES, 'im5pic.txt',
2 	 'im5rad.txt', 'im5cem.txt', 'im5bin', KSYM, KELE,
3 	 IWORK, RWORK, IPIC, IRAD, ICEM, IK1, IK2, IK3,
4 	 PHI, PHI_B)
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CALL TOP30 (KK, 'Exit - Impinger', KSYM, X, ITOP)
ENDIF

ENDIF
C
C 	 cumlative save at point stack
C

IF (I .EQ. 3) THEN
CALL CKYTX (Z(2), IWORK, RWORK, X)

IF (ISENS .EQ. 0)
1 	 CALL SAVER (KK, Z, X, SERIES,'ptstpic.txt','ptstrad.txt',
2 	 iptstcem.txt',1ptstbinl, KSYM, KELE, IWORK, RWORK,
3 	 IPIC, IRAD, ICEM, IK1, IK2, IK3, PHI, PHI_B)

C
C 	 send output through impinger
C

IF (TAU_IMP .GT. 0.0) THEN
CALL IMPINGER (11, RESTART, II, Z, KSYM, TAU_IMP,

1 	 TEMP_IMP, IWORK, RWORK, ZIM)
CALL CKYTX (ZIM(2), IWORK, RWORK, XIM)

IF (ISENS .EQ. 0)
1 	 CALL SAVER (KK, ZIM, XIM, SERIES, 'imstpic.txt',
2 	 'imstrad.txt', 'imstcem.txti, 'imstbin', KSYM,
3 	 KELE, IWORK, RWORK, IPIC, IRAD, ICEM, IK1, IK2,
4 	 IK3, PHI, PHI_B)

ENDIF
ENDIF

200 CONTINUE
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Model Sensitivity calculations
C 	 Calculates the normalized first order sensitivity coefficients
C 	 for the ideal reactor model. Calculates for each volume (or mean
C 	 residence time) parameter, the temperature if specified in an
C 	 isothermal or specified exit temperature problem, and bypass
C	 parameters. If a parameter is zero the sensitivity coefficient
C 	 is automatically zero.
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Save output of unperturbed system
C

IF (MODEL) THEN
IF (ISENS .EQ. 0) THEN

DO 210 N = 1, KK+1
ZSO5(N) = Z(N)

210 	 CONTINUE
ENDIF

C
C 	 Mean molecular weight
C

WT = 0
DO 215 I = 1,KK

WT = WT + X(I)*RWORK(NWT-1+I)
215 	 CONTINUE

C
C 	 Calculate normalized sensitivity coefficients and save
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C 	 Sensitivity coefficients calculated on mole fraction basis
C

RMAS2MOL = 0
IF (ISENS .GT. 0) THEN

S(1) = (BETA(ISENS)/ZS05(1))*(Z(1) - ZS05(1))/H
DO 220 K = 1, KK

S(K+1) = (Z(K+1) - ZS05(K+1))/H
RMAS2MOL = RMAS2MOL + S(K+1)/RWORK(NWT-1+K)

220 	 CONTINUE
RMAS2MOL = BETA(ISENS)*WT*RMAS2MOL
DO 225 K = 1, KK

IF (ZSO5(K+1) .GT. 0.0) THEN
S(K+1) = (BETA(ISENS)/ZS05(K+1))*S(K+1)

	

1 	 - RMAS2MOL
ELSE

S(K+1) = 0.0
ENDIF

225 	 CONTINUE
BETA(ISENS) = BETA_OLD
ITENS = INT(ISENS/10) + 1
IONES = ISENS - (ITENS -1)*10 + 1
FILE1 = 'sn5pic'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

	

1 	 //'.TXT'
FILE2 = 'sn5rad'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

	

1 	 //'.TXT'
FILE3 = 'sn5cem'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)

	

1 	 //'.TXT'
FILE4 = 'sn5bin'//CNUMS(ITENS:ITENS)//CNUMS(IONES:IONES)
CALL SAVER (KK, S, S(2), SERIES, FILE1, FILE2, FILE3,

	

1 	 FILE4, KSYM, KELE, IWORK, RWORK, IPIC, IRAD,

	

2 	 ICEM, IK1, IK2, IK3, PHI, PHI_B)
ENDIF

C
C 	 Perturb next parameter
C

230 	 CONTINUE
ISENS = ISENS + 1
IF (ISENS .GT. 20) GOTO 250
IF (BETA(ISENS) .LE. 0.0) GOTO 230
BETA_OLD = BETA(ISENS)
BETA(ISENS) = BETA(ISENS) + 0.001*BETA(ISENS)
H = BETA(ISENS) - BETA_OLD
REWIND(LOUT)

235 CONTINUE
GOTO 70

250 CONTINUE
ENDIF

7510 FORMAT (2X, '"Unit"', 4X, ' "V(cm3)"',3X,'"TMP(K)"',

	

1 	 30(' " 1 ,A16,'"'))
7511 FORMAT (2X, A6, 2X, F11.0, F11.2, 30G19.4)

END

C
SUBROUTINE PDPSR (IPSR, KK, II, TIN, XIN, KSYM, FLRT, PA, VOL,

	

1 	 TGIV, QLOS, TEMP, RESTART, LTAU, SENS, ZOUT)
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 subroutine PDPSR sets up the input file and reads
C
C 	 inputs:
C
C 	 IPSR integer, reactor number
C 	 KK 	 integer, number of species
C 	 II 	 integer, number of reactions
C 	 TIN 	 temperature of the input stream
C 	 XIN 	 mole fractions of species
C 	 KSYM character array of chemical specie symbols
C 	 FLRT mass flow rate g/sec
C 	 PA	 ambient pressure (atm)
C 	 VOL 	 reactor volume (cm**3)
C	 TGIV logical, 1 temperature fixed, 0 temperature solved
C 	 QLOS 	 heat loss (cal/sec)
C 	 TEMP 	 reactor temperature (initial guess if TGIV=0)
C	 RESTART logical 1 = start from restart file
C 	 LTAU logical 1 = volumes become mean residence times in sec
C 	 SENS 	 logical 1 = run sensitivity analysis
C
C 	 output:
C
C 	 ZOUT double array of exit temperature and mass fractions
C
C 	 scratch:
C
C 	 FOSC double array of first order sensitivity coefficients
C 	 wrt the pre-exponential parameter in rxn i
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)

PARAMETER (LENRWK=500000,LENIWK=500000,LENLWK=50000,LENCWK=50000,
1 	 KMAX=250)
DIMENSION RWORK(LENRWK), IWORK(LENIWK), XIN(*), ZOUT(*),

1 	 FOSC(KMAX)
LOGICAL RESTART, TGIV, LWORK(LENLWK), LTAU, SENS
CHARACTER KSYM(*)*16, CWORK(LENCWK)*16, CREST*8, CRCVR*8,

1 	 CSENS*8, CNUMS*10

DATA LIN, LOUT, LREST, LSAVE, LRCVR, LINKCK, LSENS
1 	 /10, 6,14,11,16,25,26/
DATA ISTEPS/100/, DT/1E-5/, ATOL/1E-20/, RTOL/1E-6/
CNUMS = '0123456789'

C
c 	 Convert IPSR to a string and concatenate to file name
C

ITENS = INT(IPSR/10) 	 + 1
IONES = IPSR - (ITENS - 1)*10 	 + 1
CRCVR = 'rcvr' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)
CREST = 'rest' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)
CSENS = 'sens' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)

C
C 	 Open input and output files



C
OPEN

1
OPEN

1
OPEN

1
OPEN

1
OPEN

1
OPEN

1

(LIN, STATUS ='UNKNOWN',
FILE='psrin')
(LINKCK, STATUS='OLD',
FILE='cklink')
(LREST, STATUS='UNKNOWN',
FILE=CREST)
(LRCVR, STATUS='UNKNOWN',
FILE=CRCVR)
(LSENS, STATUS='UNKNOWN',
FILE=CSENS)
(LSAVE, STATUS='UNKNOWN'
FILE='save')

FORM=' FORMATTED',

FORM='UNFORMATTED',

FORM='UNFORMATTED',

FORM='UNFORMATTED',

FORM='UNFORMATTED',

, 	 FORM='UNFORMATTED',
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C
C 	 If LTAU is .TRUE. then VOL represents the mean residence time
C 	 volume is set at an arbitrary 1000 cc
C

IF (LTAU) TAU = VOL
C
C
C Write Input File for PSR1
C
C

IF (.NOT. TGIV) WRITE (LIN, 2001)
IF (TGIV) WRITE (LIN, 2015)
IF (RESTART) WRITE (LIN, 2014)
DO 50 I = 1, KK
IF (XIN(I) .GT. 0 ) THEN
WRITE (LIN, 2002) KSYM(I), XIN(I)

ENDIF
50 CONTINUE

WRITE (LIN, 2003) PA
IF (.NOT. LTAU) WRITE (LIN, 2004) VOL
IF (LTAU) THEN

WRITE (LIN, 2004) 1000.0
WRITE (LIN, 2021) TAU

ENDIF
IF (.NOT. LTAU) WRITE (LIN, 2005) FLRT
IF (.NOT. TGIV) WRITE (LIN, 2006) TIN
IF (.NOT. TGIV) WRITE (LIN, 2007) QLOS
WRITE (LIN, 2008) 0
WRITE (LIN, 2009) ISTEPS, DT
WRITE (LIN, 2010) ISTEPS, DT
WRITE (LIN, 2019) ATOL
WRITE (LIN, 2020) RTOL
WRITE (LIN, 2011) TEMP
IF (SENS) WRITE (LIN, 2022)
WRITE (LIN, 2012)
REWIND (LIN)
WRITE (LOUT, 2017) IPSR
CALL PSR (LIN, LOUT, LINKCK, LREST, LSAVE, LRCVR, LENLWK,

1 	 LWORK, LENIWK, IWORK, LENRWK, RWORK, LENCWK, CWORK)
CLOSE (UNIT=LIN, STATUS='DELETE')
CLOSE (UNIT=LREST, STATUS = 'KEEP')
CLOSE (UNIT=LRCVR, STATUS = 'KEEP')

C
C 	 Read PSR output to ZOUT array



C
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REWIND (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE) ISOLUT
READ (LSAVE) NNP
KKP = NNP - 1
READ (LSAVE) EQUIVP, PP, TAUP, FLRTP, VP, QP
READ (LSAVE) TP, (XIN(K), K=1,KKP)
READ (LSAVE) (ZOUT(K), K=1,NNP)
DO 100 I = 1,NNP
IF (ZOUT(I) .LT. 0.0) ZOUT(I) = 0.0

100 CONTINUE
IF (SENS) THEN

READ (LSAVE)
DO 200 I = 1,II

READ (LSAVE) N, FOSCT, (FOSC(K), K = 1,KK)
WRITE (LSENS) N, FOSCT, (FOSC(K), K = 1,KK)

200 	 CONTINUE
ENDIF
CLOSE (UNIT=LSENS, STATUS = 'KEEP')
CLOSE (UNIT=LSAVE, STATUS = 'DELETE')
WRITE (LOUT, 2018)

2001 FORMAT ('ENRG')
2002 FORMAT ('REAL', 1X, A16, 1X, E13.6)
2003 FORMAT ('PRES', 1X, E13.6)
2004 FORMAT ('VOL', 1X, E13.6)
2005 FORMAT ('FLRT', 1X, E13.6)
2006 FORMAT ('TINL', 1X, E13.6)
2007 FORMAT ('QLOS', 1X, E13.6)
2008 FORMAT ('PRNT', 1X, 12)
2009 FORMAT ('TIME', 1X, 112, 2X, E13.6)
2010 FORMAT ('TIM2', 1X, 112, 2X, E13.6)
2011 FORMAT ('TEMP', 1X, E13.6)
2012 FORMAT ('END')
2013 FORMAT ('CNTN')
2014 FORMAT ('RSTR')
2015 FORMAT ('TGIV')
2016 FORMAT ('AROP')
2017 FORMAT (2X, 'Calling PSR for Unit: ', 12)
2018 FORMAT (2X, 'Returning to the main program.')
2019 FORMAT ('ATOL', 1X, E13.6)
2020 FORMAT ('RTOL', 1X, E13.6)
2021 FORMAT ('TAU', 2X, E13.6)
2022 FORMAT ('SEN')

RETURN
END

SUBROUTINE PDPFR (IPFR, LOUT, LPIC, LRAD, LCEM, Z, IWORK, RWORK,
1 	 KELE, FLRT, P, VOL, DT, IPIC, IRAD, ICEM, IK1,
2 	 IK2, IK3, LTAU)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C 	 subroutine PDPFR sets up the input file and reads
C
C 	 inputs:
C
C 	 IPFR 	 integer, reactor number
C 	 LOUT integer, standard output file
C 	 LPIC volume step file for pics
C 	 LRAD volume step file for radicals
C 	 LCEM volume step file for CEMs
C 	 Z 	 array of independent variables
C 	 IWORK integer working array
C 	 RWORK double working array
C 	 KELE character element array
C 	 FLRT 	 mass flow rate g/sec
C 	 P 	 reactor pressure (atm) then converted to (dynes/cm**3)
C 	 VOL 	 reactor volume (cm**3)
C 	 DT 	 time step (sec)
C 	 IPIC 	 array of PIC indicies
C 	 IRAD array of RAD indicies
C 	 ICEM array of CEM indicies
C 	 IK1,IK2,IK3 length of indici arrays
C 	 LTAU logical = 1 VOL represents the residence time
C
C 	 output:
C
C 	 Z 	 double array of exit temperature and mass fractions
C
C 	 working:
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
C

PARAMETER (ITOL=1, ITASK=1, IOPT=0, RTOL=1.0E-06,
1 	 ATOL=1.0E-15, MF=22, KMAX = 250)
DIMENSION IWORK(*), RWORK(*), Z(*), IPIC(*), IRAD(*), ICEM(*),

1 	 X(KMAX)
CHARACTER KELE(*)*2
LOGICAL LTAU
EXTERNAL FUN

C
COMMON /RCONS/ PATH, RU, TA, PA, UAV
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
PA_OLD = PA
PA = P
P = P*PATM

C
C 	 initialize values
C

ISTATE = 1
NEQ = KK + 1
LRW = 22 + 9*NEQ + 2*NEQ**2
NVODE = LENR +1
IVODE = LENI +1
LIW = 30 + NEQ
TT1 = 0.0
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TT2 = TT1
VPFR = 0.0
IF (LTAU) TAU = VOL

C
C 	 Start Loop
C
C 	 print volume incremental solution
C

50 CONTINUE
IF ((MOD(TT2, 100*DT) .EQ. 0.0) .OR. ((.NOT. LTAU .AND.

1 	 VPFR .GE. VOL) .OR. (LTAU .AND. TT2 .GE. TAU))) THEN
T = Z(1)
CALL CKYTX (Z(2), IWORK, RWORK, X)

C
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,3002) IPFR, VPFR, T, (X(IPIC(K)), K=1,IK1)
WRITE (LRAD,3002) IPFR, VPFR, T, (X(IRAD(K)), K=1,IK2)
WRITE (LCEM,3002) IPFR, VPFR, T, THC, TCLC,

1 	 (X(ICEM(K)), K=1,IK3)
ENDIF

C
C	 Check for end of volume or end of residence time
C

IF ((VPFR .GE. VOL) .AND. (.NOT. LTAU)) THEN
WRITE (LOUT, 3001) IPFR, TT2
GOTO 100

ENDIF
IF (LTAU .AND. TT2 .GE. TAU) THEN

WRITE (LOUT, 3001) IPFR, TT2
GOTO 100

ENDIF
C
C 	 integrate to next output TT2 + DT
C

TT2 = TT2 + DT
IF (LTAU .AND. TT2 .GE. TAU) TT2 = TAU

C 	 WRITE (LOUT,317) NEQ, TT1, TT2, ITOL, RTOL, ATOL, ITASK, ISTATE,
C 	 1 	 IOPT, NVODE, LRW, IVODE, LIW, MF
C 317 FORMAT(//,'NEQ ',I4, 4X, 'TT1 ', G9.3, 4X, 'TT2 	 G9.3, 4X, /,
C 	 1 	 'ITOL ', 14, 3X, 'RTOL ', G9.3, 3X, 'ATOL ', G9.3, 3X, /,
C 	 2 	 'ITASK ', 14, 2X, 'ISTATE ', 14, 6X, 'IOPT ', 14, 7X, /,
C 	 3 	 'NVODE ', 14, 2X, 'LRW 	 ', 14, 6X, 'IVODE I, 14, 6X,/
C 	 4 	 'LIW 	 ', 14, 2X, 'MF 	 ', 14)

CALL DVODE
(FUN, NEQ, Z, TT1, TT2, ITOL, RTOL, ATOL, ITASK,

1 	 ISTATE, IOPT, RWORK(NVODE), LRW, IWORK(IVODE),
2 	 LIW, JAC, MF, RWORK, IWORK)

C
C 	 WRITE (*,*) 'EMERGED WITH ISTATE = ', ISTATE

IF (ISTATE .LE. -2) THEN
IF (ISTATE .EQ. -1) THEN

ISTATE = 2
GO TO 100

ELSE
WRITE (LOUT,*) ' ISTATE=',ISTATE
STOP

ENDIF



233

ENDIF
C
C 	 Volume increment
C

CALL CKRHOY (P, Z(1), Z(2), IWORK, RWORK, RHO)
VPFR = VPFR + DT*FLRT/RHO

C
C

GOTO 50
100 CONTINUE

P = PA
PA = PA_OLD

3001 FORMAT (5X, 'PFR 	 ' TAU (SEC) = 	 F8.4)
3002 FORMAT (2X, 'PFR',I1, 4X, F11.0, F11.4, 30E19.4)

RETURN
END

C
SUBROUTINE FUN (N, TIME, Z, ZP, RPAR, IPAR)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Function Subroutine provided for DVODE.
C
C 	 Solves a constant pressure plug flow reactor with a constant heat
C 	 transfer coefficient per unit volume - UAV
C
C	 Input:
C	 N Number indepent variables (not used)
C 	 TIME 	 Not used
C 	 Z 	 Array of indepent variables
C 	 RPAR 	 Working real (double) array
C 	 IPAR 	 Working integer array
C
C 	 Output:
C	 ZP first time derivative of Z
C
C 	 Common:
C 	 TA Double, ambient temperature
C 	 UAV 	 Double, heat transfer coeff/vol
C 	 (ergs/(sec*degK*cc))
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C 	 IMPLICIT REAL (A-H 2 O-Z), INTEGER(I-N)
C

COMMON /RCONS/ PATM, RU, TA, PA, UAV
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI

C
DIMENSION Z(*), ZP(*), RPAR(*), IPAR(*)

C
C 	 Variables in Z are: Z(1) 	 = T
C 	 Z(K+1) = Y(K)
C
C 	 Call CHEMKIN subroutines
C

P = PATM * PA
CALL CKRHOY (P, Z(1), Z(2), IPAR, RPAR, RHO)
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CALL CKCPBS (Z(1), Z(2), IPAR, RPAR, CPB)
CALL CKWYP (P, Z(1), Z(2), IPAR, RPAR, RPAR(NWDOT))
CALL CKHMS (Z(1), IPAR, RPAR, RPAR(NH))

C
C 	 Form governing equation
C

SUM = 0.0
DO 100 K = 1, KK

H	 = RPAR(NH 	 + K - 1)
WDOT = RPAR(NWDOT + K - 1)
WT = RPAR(NWT + K - 1)
ZP(K+1) = WDOT * WT / RHO
SUM = SUM + H * WDOT * WT

100 CONTINUE
IF (UAV .NE. -1) THEN

ZP(1) = -SUM / (RHO*CPB) - UAV*(Z(1)-TA)/(CPB*RHO)
ELSE

ZP(1) = 0
ENDIF

C
RETURN
END

C
C

SUBROUTINE GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C
C 	 Groups mole fractions into total hydrocarbons (THC), total
C 	 chlorinated hydrocarbons (TCLC). THC counts each carbon atom in
C 	 a hydrocarbon. TCLC counts chlorine atoms in each chlorocarbon.
C
C
C 	 Assumes the existence of exactly 6 elements which must include
C 	 C, CL, and H. If the mechanism has more than 6 elements, modify
C 	 the parameter MM accordingly.
C
C 	 Input:
C 	 KK 	 (integer) number of species
C 	 X 	 (double) mole fraction array
C	 KELE 	 (character) array of element strings
C 	 IWORK 	 (integer) working array
C	 RWORK 	 (double) working array
C
C	 Output:
C	 THC, TCLC
C	 (double) summed mass frac
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (MM =6, KMAX = 250)
DIMENSION X(*), IWORK(*), RWORK(*), NCE(MM,KMAX), IELE(MM)
CHARACTER KELE(*)*2

C
C	 initialize variables, and get element matrix
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C
THC = 0
TCLC = 0
CALL CKNCF (MM, IWORK, RWORK, NCE)

C
C 	 find indices of key elements
C

CALL CKCOMP ('C',KELE,MM,IELE(1))
CALL CKCOMP ('H',KELE,MM,IELE(2))
CALL CKCOMP ('CL',KELE,MM,IELE(3))

C
C	 count species in various categories for entire stream
C

DO 100 K = 1,KK
IC = NCE(IELE(1),K)
IH = NCE(IELE(2),K)
ICL = NCE(IELE(3),K)
IF (IC .GE. 1 .AND. IH .GE. 1) THC = THC + X(K)*IC
IF (IC .GE. 1 .AND. ICL .GE. 1) TCLC = TCLC + X(K)*ICL

100 CONTINUE
RETURN
END

C
C

SUBROUTINE STREAM (LIN, LOUT, KEYWORD, KSYM, KK, ICKWRK, RCKWRK,
1 	 UNITS, FLRT, X, Z)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Subroutine to read mole fractions and temperature of an
C 	 input stream. Mole fractions are normalized and converted to
C 	 mass fractions. Input file is read until KEYWORD is encountered
C 	 or an END is reached.
C
C 	 Input:
C 	 LIN 	 input fortran unit
C 	 LOUT 	 output fortran unit
C 	 KEYWORD character keyword of particular stream
C 	 KSYM 	 character array containing all species
C 	 KK 	 total number of species
C 	 UNITS 	 logical, .TRUE. = scfh, degF, cf
C
C 	 Output:
C 	 X 	 array of normalized mole fractions
C 	 Z 	 array of temperature and mass fractions
C 	 FLRT 	 double, flow rate grams/sec
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
DIMENSION X(*), Z(*), ICKWRK(*), RCKWRK(*),

1 	 VALUE(3)
CHARACTER KSYM(*)*16, LINE*80, KEYWORD*(*), LINE2*80
LOGICAL IERR, KERR, UNITS
DATA KERR/.FALSE./

C
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C 	 Check keyword and parse heading line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=300) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
STOP

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, '(5X,A65)') LINE
CALL CKNPAR (LINE, 3, LOUT, LINE2, ISTART, KERR)
IF (KERR) THEN

WRITE (LOUT, *) 'STREAM: ERROR IN CKNPAR'
STOP

ENDIF
CALL CKXNUM (LINE2, 3, LOUT, NVAL, VALUE, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'STREAM: ERROR IN CKXNUM'
STOP

ENDIF
IF (NVAL .NE. 3) THEN
WRITE (LOUT, *) 'STREAM: INCORRECT FORMAT IN HEADING LINE'
STOP

ENDIF
NOSPEC = INT (VALUE(1))

C
C 	 Convert Temperature from degF or degC to K and molar flow rate
C 	 from scfh or std cc/sec to mol/s
C

IF (NOSPEC .NE. 0) THEN
IF (UNITS) THEN

Z(1) = (VALUE(2) + 459.67)*5/9
FLRT = VALUE(3) * 1.19530/3600.0

ELSE
Z(1) = VALUE(2) + 273.15
FLRT = VALUE(3) * 4.46158e-5

ENDIF
C
C 	 Initialize non-zero moles
C

DO 100 I = 1, NOSPEC
READ (LIN, '(A)') LINE
CALL CKSNUM (LINE, 1, LOUT, KSYM, KK, KNUM, NVAL,

1 	 VAL, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR READING MOLES'
STOP

ENDIF
X(KNUM) = VAL

100 	 CONTINUE
C
C 	 Normalize the mole fractions



C

C
C
C

C
C
C

C
C
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X(K)

XTOT

XTOT = 0.00
DO 150 K = 1, KK

XTOT = XTOT +
150 CONTINUE

DO 200 K
X(K) 	 =

= 	 1,
X(K)

KK
/

200 CONTINUE

Initial conditions and mass fractions

CALL CKXTY (X, ICKWRK, RCKWRK, Z(2))

Convert molar flow rate to mass flow rate

CALL CKMMWX(X, ICKWRK, RCKWRK, WTM)
FLRT = FLRT*WTM

ELSE
FLRT = 0

ENDIF
RETURN

ENDIF
GOTO 50

300 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND. PROGRAM STOPPED.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')

END
C
C

SUBROUTINE PARSER (LIN, LOUT, KEYWORD, NODAT, RVAL1, RVAL2,
1 	 RVAL3, RVAL4)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C 	 Subroutine to read selected from the input file. Example:

Data is in the form:

KEYWORD RVAL1 RVAL2 RVAL3 RVAL4

or:

REM comments .....

PARSER will return NODAT real values after KEYWORD. If KEYWORD
is not found error is returned. If "REM" is found the line
is skipped and the following line is automatically read.

C
C
C
C
C
C
C
C
C
C
C
C
C Input:
C
C
C
C
C
C 	 Output:
C

LIN
LOUT
KEYWORD
NODAT

RVAL1

integer, input fortran unit
integer, output fortran unit
character string keyword to be checked
integer, number of data items in line (1-4)

double, first real value returned
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C 	 RVAL2 double, second real value returned
C 	 RVAL3 double, third real value returned
C 	 RVAL4 double, forth real value returned
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
DIMENSION VALUE(4)
CHARACTER LINE*80, KEYWORD*(*), LINE2*80
LOGICAL KERR
DATA KERR /.FALSE./

C
C 	 Read Line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=200) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
STOP

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, '(5X,A50) . ) LINE

C
C 	 Parse Line
C

CALL CKNPAR (LINE, NODAT, LOUT, LINE2, ISTART, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR IN CKNPAR'
STOP

ENDIF
CALL CKXNUM (LINE2, NODAT, LOUT, NVAL, VALUE, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR IN CKXNUM'
STOP

ENDIF
RVAL1 = VALUE(1)
RVAL2 = VALUE(2)
RVAL3 = VALUE(3)
RVAL4 = VALUE(4)
RETURN

ENDIF
GOTO 50

200 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND. PROGRAM STOPPED.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')

END

SUBROUTINE MIX(KK, FLRT1, FLRT2, Z1, Z2, ICKWRK, RCKWRK)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C 	 This subroutine calculates the mixed temperature of two streams
C 	 along with the mixed mass flow rate and mass fractions
C
C 	 Input:
C 	 FLRT1/2 flow rate of stream 1/2
C 	 Z1/Z2 temperature and mass fractions of stream 1/2
C
C 	 Output: 	 Zl, FLRT1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER(I-N)
PARAMETER (KMAX = 250)
DIMENSION Z1(*), Z2(*), HMS1(KMAX), HMS2(KMAX), ZM(KMAX),

1 	 ICKWRK(*), RCKWRK(*)
C
C 	 Enthalpies and mean heat capacities of each stream are found
C

CALL CKHMS(Z1(1), ICKWRK, RCKWRK, HMS1)
CALL CKHMS(Z2(1), ICKWRK, RCKWRK, HMS2)
CALL CKCPBS(Z1(1), Z1(2), ICKWRK, RCKWRK, CPAV1)
CALL CKCPBS(Z2(1), Z2(2), ICKWRK, RCKWRK, CPAV2)

C
C 	 Add masses and enthalpy of streams
C

DATA LOUT/6/
C 	 WRITE (LOUT,'(2X,A10,2X,2F8.0)')'Init Temp',Z1(1),Z2(1)

HT = 0
FLRTM = FLRT1 + FLRT2
DO 100 I = 1, KK
HT = HT + Z1(I+1)*HMS1(I)*FLRT1 + Z2(I+1)*HMS2(I)*FLRT2
ZM(I+1) = (Z1(I+1)*FLRT1 + Z2(I+1)*FLRT2)/FLRTM

100 CONTINUE
C
C 	 Calculate first guess for mix temperature
C

ZM(1) = (FLRT1*CPAV1*Z1(1) + FLRT2*CPAV2*Z2(1))/
1 	 (FLRT1*CPAV1 + FLRT2*CPAV2)
CALL CKCPBS(ZM(1), Z1(2), ICKWRK, RCKWRK, CPAV1I)
CALL CKCPBS(ZM(1), Z2(2), ICKWRK, RCKWRK, CPAV2I)
CPAV1 = (CPAV1 + CPAV1I)/2
CPAV2 = (CPAV2 + CPAV2I)/2
ZM(1) = (FLRT1*CPAV1*Z1(1) + FLRT2*CPAV2*Z2(1))/

1 	 (FLRT1*CPAV1 + FLRT2*CPAV2)
C 	 WRITE (LOUT,'(2X, A10,2X,F8.3,E13.6) 1 ) 1 1st guess',ZM(1),HT
C
C 	 Interpolate to get final mixing temperature
C

T_HIGH = 5000
T_LOW = 300
DO 200 J = 0,100
CALL CKHBMS(ZM(1), ZM(2), ICKWRK, RCKWRK, HAVE)
HTG = HAVE*FLRTM
DIFF = (HT - HTG)/ABS(HT)
IF (ABS(DIFF) .LE. 0.0001) GOTO 400
ZM(1) = (1. + 0.1*DIFF)*ZM(1)

C 	 WRITE (LOUT,'(2X,A10,2X,F8.3,E13.6,E13.6) 1 )'next guess',
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C 	 1 	 ZM(1),HTG,DIFF
200 CONTINUE

C
C 	 bisection technique if newton fails
C

DO 300 J = 0,100
ZM(1) = (T_HIGH + T_LOW)/2
CALL CKHBMS(ZM(1), ZM(2), ICKWRK, RCKWRK, HAVE)
HTG = HAVE*FLRTM
DIFF = (HT - HTG)/ABS(HT)
IF (DIFF .LT. 0.0) THEN

T_HIGH = ZM(1)
ELSE

T_LOW = ZM(1)
ENDIF
IF (ABS(DIFF) .LE. 0.0001) GOTO 400

C	 WRITE (LOUT, 1 (2X,A10,2X,F8.3,E13.6,E13.6) 1 )'next guess',
C 	 1 	 ZM(1),HTG,DIFF

300 CONTINUE
WRITE(LOUT,350)

350 FORMAT(1X,'TEMPERATURE NOT CONVERGED IN MIX')
STOP

400 CONTINUE
FLRT1 = FLRTM
DO 500 I = 1, KK+1

Z1(I) = ZM(I)
500 CONTINUE

RETURN
END

C
C

SUBROUTINE SYMINDICIES (LIN, LOUT, KK, KSYM, KEYWORD,
1 	 INDICIES, IDX)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 SYMINDICIES returns the indicies of the selected species in the
C 	 line after the KEYWORD.
C
C 	 Inputs:
C 	 LIN 	 integer, input file unit
C 	 LOUT 	 integer, output file unit
C 	 KK 	 integer, number of species
C 	 KSYM character, array of species strings
C	 KEYWORD character, prefix keyword
C
C	 Output:
C	 INDICIES integer, array of indicies of selected species
C	 IDX 	 integer, number of selected species
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
PARAMETER (KMAX=250)
DIMENSION INDICIES(*)
CHARACTER KSYM(*)*16, LINE*80, KEYWORD*(*)
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LOGICAL KERR
DATA KERR /.FALSE./

C
C 	 Read Line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=200) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
RETURN

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, '(5X,A50)') LINE

READ (LIN, '(A)', END = 200) LINE
WRITE (LOUT, '(5X,A50)') LINE
CALL CKCRAY (LINE, KK, KSYM, LOUT, KMAX, INDICIES, IDX, KERR)
IF (KERR) THEN
WRITE(LOUT, 8003) KEYWORD
STOP

ENDIF
RETURN

ENDIF
GOTO 50

200 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')
8003 FORMAT ('ERROR IN CKCRAY FOR LINE FOLLOWING KEYWORD - 	 A10)

END
C
C

FUNCTION EQUIV_RATIO (KK, YF, YA, YK, YI, FLRTF, FLRTA, FLRTK,
1 	 FLRTI, KELE, KSYM, IWORK, RWORK)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Returns fuel/air equivalence ratio of input streams. Based on
C 	 complete combustion products of CO2, H20, HCL, and N2.
C
C 	 Inputs:
C 	 KK 	 number of species
C 	 YF,YA,YK,YI 	 arrays of mass fractions of 4 streams
C 	 FLRT? 	 flow rates (g/s) of streams
C 	 KELE 	 character array of element symbols
C 	 KSYM 	 character arrays of species symbols
C 	 IWORK,RWORK integer and double work arrays
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (MM =6, KMAX = 250)
DIMENSION YF(*), YA(*), YK(*), YI(*), IWORK(*), RWORK(*),
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1 	 NCE(MM,KMAX), Y(KMAX), X(KMAX), IELE(MM)
CHARACTER KELE(MM)*2, KSYM(*)*16

C
C 	 initialize variables, and get element matrix
C

TCL = 0
TO = 0
TC = 0
TH = 0
CALL CKNCF (MM, IWORK, RWORK, NCE)

C
C 	 find indices of key elements
C

CALL CKCOMP ('C',KELE,MM,IELE(1))
CALL CKCOMP ('H',KELE,MM,IELE(2))
CALL CKCOMP ('CL',KELE,MM,IELE(3))
CALL CKCOMP ('0',KELE,MM,IELE(4))

C
C 	 Combine Streams
C

DO 50 K = 1,KK
Y(K) = (YF(K)*FLRTF + YA(K)*FLRTA + YK(K)*FLRTK +YI(K)*FLRTI)/

1 	 (FLRTF + FLRTA + FLRTK + FLRTI)
50 CONTINUE

C
C 	 Convert to Mole Fractions
C

CALL CKYTX (Y, IWORK, RWORK, X)
C
C 	 count species in various categories for entire stream on 1 mol
basis
C

DO 100 K = 1,KK
IC = NCE(IELE(1),K)
IH = NCE(IELE(2),K)
ICL = NCE(IELE(3),K)
IO = NCE(IELE(4),K)
TCL = TCL + X(K)*ICL
TC = TC + X(K)*IC
TH = TH + X(K)*IH
TO = TO + X(K)*IO

100 CONTINUE
CALL CKCOMP ('02', KSYM, KK, 102)
TO2 = X(IO2)

C
C 	 subtract free oxygen counted in previous loop
C

TO = TO - 2*T02
C
C 	 Find required 02 and PHI
C

REQUIRED_02 = TC + 0.25*(TH -TCL) - 0.5*TO
EQUIV_RATIO = REQUIRED_ 02/T02
RETURN
END

C
C
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SUBROUTINE IMPINGER (IPSR, RESTART, NN, Z, KSYM, TAU, TEMP,
1 	 IWORK, RWORK, ZOUT)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Cools a sample stream in a water vapor saturated PSR at TEMP
C 	 for mean residence time TAU. Uses a generic flow rate of 1 g/s.
C 	 Water vapor is first increased to reflect an equilibrium partial
C 	 pressure (but no greater than a mole fraction of 0.75) and HCL
C 	 is removed before entering the PSR. Water vapor is removed from
C 	 the effluent.
C
C 	 Inputs:
C 	 IPSR 	 integer of recovery/restart file
C 	 KK 	 integer, number of species
C 	 NN 	 integer, number of reactions
C 	 Z 	 double array, mass fractions of stream
C 	 KSYM character array, specie symbols
C 	 TAU double, residence time of PSR (sec)
C 	 TEMP double, temperature of PSR (K)
C 	 IWORK integer, working array
C 	 RWORK double, working array
C
C 	 Output:
C 	 ZOUT double array, mass fractions of effulent
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C

PARAMETER (KMAX = 250)
DIMENSION Z(*), IWORK(*), RWORK(*), X(
CHARACTER KSYM(*)*16
LOGICAL RESTART
COMMON /RCONS/ PATM, RU, TA, PA, UAV
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI

ZOUT(KMAX)

C
C 	 indicies of H20 and HCL
C

CALL CKCOMP ('H2O', KSYM, KK, IH2O)
CALL CKCOMP ('HCL', KSYM, KK, IHCL)
CALL CKYTX (Z(2), IWORK, RWORK, X)
FLRT = 1

C
C 	 Molar flow rate
C

FLRTM = 0
DO 50 I = 1, KK

FLRTM = FLRTM + FLRT * Z(I+1)/RWORK(NWT+I-1)
50 CONTINUE

FLRTM OLD = FLRTM
C
C 	 find water vapor pressure and mole frac
C

P_H2O = EXP(18.3036 - 3816.44/(TEMP-46.13))
P_H2O = P_H2O/760



X_H20 = P_H20/PA
X_H2O_MAX = 0.75
X_H20 = MIN(X_H20, X_H2O_MAX)

C
C 	 adjust molar flow rate from mole fraction of water
C

FLRTM = FLRTM*(1-X(IH20)-X(IHCL))/(1-X_H20)
C
C 	 adjust mass flow rate
C

FLRT = FLRT + RWORK(NWT+IH20-1)*(FLRTM*X_H20 -
1 FLRTM_OLD*X(IH20)) - RWORK(NWT+IHCL-1)*X(IHCL)

C
C 	 find the volume
C

VOL = FLRTM*RU*TEMP*TAU/(PA*PATM)
C
C 	 readjust X array
C

DO 100 I = 1, KK
IF (I .EQ. IH20) THEN

X(I) = X_H20
ELSEIF (I .EQ. IHCL) THEN

X(I) = 0.0
ELSE

X(I) = X(I)*FLRTM_OLD/FLRTM
ENDIF

100 CONTINUE
C
C 	 call PSR
C

CALL PDPSR (IPSR, KK, NN, Z(1), X, KSYM, FLRT, PA, VOL, .TRUE.,
1 	 0.0, TEMP, RESTART, .FALSE., .FALSE., ZOUT)

C
C 	 Remove water vapor
C

CALL CKYTX (ZOUT(2), IWORK, RWORK, X)
FLRTM = 0.0
DO 150 I = 1, KK

FLRTM = FLRTM + FLRT*Z(I)/RWORK(NWT+I-1)
150 CONTINUE

FLRTM_OLD = FLRTM
FLRTM = FLRTM*(1-X(IH20)-X(IHCL))
DO 200 I = 1, KK

IF (I .EQ. IH20) THEN
X(I) = 0.0

ELSEIF (I .EQ. IHCL) THEN
X(I) = 0.0

ELSE
X(I) = X(I)*FLRTM_OLD/FLRTM

ENDIF
200 CONTINUE

CALL CKXTY (X, IWORK, RWORK, ZOUT(2))
RETURN
END

C
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SUBROUTINE SAVER (KK, Z, X, SERIES, FILE1, FILE2, FILE3, FILE4,
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1 	 KSYM, KELE, IWORK, RWORK, IPIC, IRAD, ICEM,
2 	 IK1, IK2, IK3, PHI, PHI_B)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 SAVER saves mole fractions of designated species in formated text
C 	 files and saves both mole and mass fractions of all species in
C 	 an unformatted binary file.
C
C 	 Input:
C
C 	 KK 	 integer, number of species
C 	 Z 	 double array, temp and mass fractions
C 	 X 	 double array, mole fractions
C 	 SERIES 	 logical, .TRUE. overwrites and makes header
C 	 FILE? character, output files
C 	 KSYM character array, specie symbols
C 	 KELE character array, element symbols
C 	 IWORK integer array, working array
C 	 RWORK double array, working array
C 	 IPIC integer arrray, indicies of selected species
C 	 IRAD,ICEM same
C 	 IK? 	 integer, number of indicies in respective
C 	 arrays
C 	 PHI 	 double, overall fuel/air equivalence ratio
C 	 PHI_B double, burner fuel/air equivalence ratio
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C

PARAMETER (LFILE1 = 31, LFILE2 = 32, LFILE3 = 33, LFILE4 =34,
1 	 LOUT = 6)
DIMENSION Z(*), X(*), IWORK(*), RWORK(*), IPIC(*), IRAD(*),

1 	 ICEM(*)
CHARACTER KSYM(*)*16, KELE(*)*2, FILE1*(*), FILE2*(*), FILE3*(*),

1 	 FILE4*(*), LINE*80
LOGICAL SERIES

C
C 	 Grouped CEMs
C

CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
C
C	 open output files
C

OPEN (UNIT = LFILE1, FORM='FORMATTED', STATUS = 'UNKNOWN',
1 	 FILE = FILE1)
OPEN (UNIT = LFILE2, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = FILE2)
OPEN (UNIT = LFILE3, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = FILE3)
OPEN (UNIT = LFILE4, FORM='UNFORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = FILE4)
IF (SERIES) THEN

WRITE (LFILE1,7510) 'TEMPERATURE', (KSYM(IPIC(K)), K=1,IK1)
WRITE (LFILE2,7510) 'TEMPERATURE', (KSYM(IRAD(K)), K=1,IK2)
WRITE (LFILE3,7510) 'TEMPERATURE', 'PHI', 'PHI_BURNER',
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	1 	 'THC', 'TCLC', (KSYM(ICEM(K)), K=1,IK3)
WRITE (LFILE4) (KSYM(K), K=1,KK)
WRITE (LFILE4)
WRITE (LFILE4)

ELSE
DO 200 I = 1,100

READ (LFILE1,7516,END=220) LINE
READ (LFILE2,7516,END=220) LINE
READ (LFILE3,7516,END=220) LINE
READ (LFILE4,END=220)
READ (LFILE4,END=220)
READ (LFILE4,END=220)

	

200 	 CONTINUE
WRITE (LOUT,*) FILE1, "NO END FOUND!"
STOP

	

220 	 CONTINUE
BACKSPACE (LFILE1)

ENDIF
WRITE (LFILE1,7512) Z(1), (X(IPIC(K)), K=1,IK1)
WRITE (LFILE2,7512) Z(1), (X(IRAD(K)), K=1,IK2)
WRITE (LFILE3,7513) Z(1), PHI, PHI_B, THC, TCLC,

	

1 	 (X(ICEM(K)), K=1,IK3)
WRITE (LFILE4) Z(1), PHI, PHI_B, THC, TCLC
WRITE (LFILE4) (X(K), K=1,KK)
WRITE (LFILE4) (Z(K), K=1,KK+1)

230 CONTINUE
IF (SERIES) ENDFILE (LFILE1)
IF (SERIES) ENDFILE (LFILE2)
IF (SERIES) ENDFILE (LFILE3)
IF (SERIES) ENDFILE (LFILE4)
CLOSE (LFILE1, STATUS ='KEEP')
CLOSE (LFILE2, STATUS='KEEP')
CLOSE (LFILE3, STATUS='KEEP')
CLOSE (LFILE4, STATUS='KEEP')

7510 FORMAT (2X, 30(' "',A16,'"'))
7512 FORMAT (4X, F11.0, 3X, 30(5X,E14.6))
7513 FORMAT (4X, F11.0, 2X, 2(5X,F14.6), 30(5X, E14.6))
7516 FORMAT (A80)

RETURN
END

SUBROUTINE TOP30 (KK, POINT, KSYM, X, ITOP)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 TOP30 Returns the indicies of the top 30 species
C 	 and saves symbol and mole frac in file "top30"
C
C 	 Input:
C 	 KK 	 integer, number of species
C 	 POINT character string, sample location
C 	 KSYM character array of specie symbols
C 	 X 	 double array of mole fractions
C
C 	 Output:
C
C 	 ITOP integer array of indicies
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C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (LTOP = 38)
DIMENSION X(*), ITOP(*)
CHARACTER KSYM(*)*(*), POINT*(*), LINE*80
LOGICAL SKIP

C
C

DO 300 1=1,30
RHOLD=0
DO 200 K=1,KK

SKIP = .FALSE.
DO 100 J=1,I-1

IF (ITOP(J) .EQ. K) SKIP = .TRUE.
100 	 CONTINUE

IF (.NOT. SKIP) THEN
IF (X(K) .GT. RHOLD) THEN

IHOLD = K
RHOLD = X(K)

ENDIF
ENDIF

200 	 CONTINUE
ITOP(I) = IHOLD

300 CONTINUE
OPEN (UNIT = LTOP, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = 'top30')
DO 400 I = 1,10000

READ (LTOP,7516,END=420) LINE
400 CONTINUE

WRITE (LOUT,*) "TOP30: NO END FOUND!"
STOP

420 CONTINUE
WRITE (LTOP,7510) POINT, (KSYM(ITOP(K)), K=1,30)
WRITE (LTOP,7512) (X(ITOP(K)), K=1,30)
CLOSE (LTOP, STATUS ='KEEP')

7510 FORMAT (2X, 31(' "',A16,'"'))
7512 FORMAT (19X, 30(5X,E14.6))
7516 FORMAT (A80)

RETURN
END

SUBROUTINE ENERGY_BAL (TEMP, Y, FLRT, POINT, IWORK, RWORK)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C	 Subroutine ENERGY_BAL logs the specific enthalpy, temperature,
C 	 flowrate, and total enthalpy of a stream at a designated point.
C
C 	 Input:
C 	 TEMP double, temperature of the stream
C 	 Y 	 double array, mass fractions
C 	 FLRT double, flow rate in g/s
C 	 POINT character, location of the stream
C 	 IWORK integer working array
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C 	 RWORK double working array
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (LERG = 12)
DIMENSION Y(*), IWORK(*), RWORK(*)
CHARACTER POINT*(*), LINE*80
CALL CKHBMS (TEMP, Y, IWORK, RWORK, HAVE)
HRT = HAVE * FLRT
OPEN (UNIT = LERG, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = 'energy_bal')
DO 100 I = 1,10000

READ (LERG,7502,END=120) LINE
100 CONTINUE

WRITE (LOUT,*) "ENERGY BAL: NO END FOUND!"
STOP

120 CONTINUE
WRITE (LERG, 7501) POINT, TEMP, HAVE, FLRT, HRT
CLOSE (LERG, STATUS ='KEEP')

7501 FORMAT (A10,F7.0,' K ',E9.3,' erg/g ',E9.3,' g/s ',E9.3,' erg/s')
7502 FORMAT (A80)

RETURN
END

C
FUNCTION UA FIND (KK, II, TIN, TOUT, TA, X, KSYM, FLRT, PA,

1 	 TAU, IWORK, RWORK)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Returns estimate of UA (ergs/(sec*K)). Uses three fixed
C	 temperature PSRs each with 1/3 of the residence time TAU
C 	 temperatures are 1) input 2) arithmetic mean 3) exit
C
C 	 Q = UA(TLM) 	 where Q = Hin - Hout
C
C 	 TLM is the co-current log mean between the input temperature, the
C 	 output temperature and the ambient temperature.
C
C 	 Inputs:
C 	 KK 	 integer, number of species
C	 II 	 integer, number of reactions
C 	 TIN 	 double, inlet temperature (K)
C 	 TOUT 	 double, desired outlet temperature (K)
C 	 TA 	 double, ambient temperature (K)
C 	 X 	 double array(KK), mole fractions
C 	 KSYM 	 character array of specie symbols
C 	 FLRT 	 double, flow rate (g/s) of inlet stream
C 	 PA 	 double, ambient pressure (atm)
C 	 TAU 	 double, residence time of the reactor
C 	 IWORK,RWORK integer and double work arrays
C
C 	 Output:
C 	 UA 	 double, heat transfer coefficient (erg/s*K)
C
C 	 Scratch:
C 	 XSCT 	 double array(K), outlet mole fractions
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C 	 ZSCT 	 double array(K+1), outlet temp, mass frac
C 	 HAVE_IN 	 double, average input enthalpy
C 	 HAVE_OUT 	 double, average output enthalpy
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (LOUT=6, KMAX = 250)
DIMENSION X(*), IWORK(*), RWORK(*), XSCT(KMAX), ZSCT(KMAX)
CHARACTER KSYM(*)*16

C
C 	 Find Mass Fractions and Mean Input Enthalpy
C

DO 200 K = 1, KK
XSCT(K) = X(K)

200 CONTINUE
ZSCT(1) = TIN
CALL CKXTY(X, IWORK, RWORK, ZSCT(2))
CALL CKHBMS(ZSCT(1), ZSCT(2), IWORK, RWORK, HAVE_IN)

C
C 	 A series of 3 PSRs to approximate PFR output composition
C

TAU_I = TAU/3
TEMP = TIN
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
CALL CKYTX(ZSCT(2), IWORK, RWORK, XSCT)
TEMP = (TIN + TOUT)/2
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
CALL CKYTX(ZSCT(2), IWORK, RWORK, XSCT)
TEMP = TOUT
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
C
C 	 Output enthalpy
C

CALL CKHBMS(ZSCT(1), ZSCT(2), IWORK, RWORK, HAVE_OUT)
C
C 	 Net enthalpy loss
C

QLOSS = FLRT*(HAVE_IN - HAVE_OUT)
C
C 	 Log mean temperaure and estimated UA
C

TLM = (TIN - TOUT)/LOG((TIN - TA)/(TOUT - TA))
UA_FIND = QLOSS/TLM
RETURN
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 END OF PROGRAM
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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D.2 PaSR Version 3.0

C
C	 PROGRAM PASR
C
C
C 	 Solves an isobaric partially stirred reactor. Reactor exchanges
C 	 concentrations with reactor average based on a mixing frequency
C 	 parameter.
C
C 	 VERSION 3.3.1 Last Updated June 13, 1998:
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER(I-N)
PARAMETER (LENIWK=500000, LENRWK=500000, LENCWK=50000, NK=30,

1 	 NLMAX=55, LIN=5, LOUT=6, LINKCK=25, KMAX=250,
2 	 LPIC=18, LRAD=19, LCEM=20, LPROF=21, LBPROF=22,
3 	 NITER = 500, TTOL = 1E-3, ATOL = 1E-13)

DIMENSION IWORK(LENIWK), RWORK(LENRWK), X(KMAX), Z(KMAX),
1 	 XF(KMAX), ZF(KMAX), XA(KMAX), ZA(KMAX), ZOUT(KMAX),
2 	 ZAVE(KMAX), IPIC(KMAX), IRAD(KMAX), FN(KMAX),
3 	 ICEM(KMAX), ZPSR(KMAX), XN(KMAX), ZN(KMAX),
4 	 ZD(KMAX), XD(KMAX), IPROF(KMAX)
CHARACTER CWORK(LENCWK)*16, KSYM(KMAX)*16, KELE(6)*2, START*12,

1 	 FINISH*12
LOGICAL KERR, IERR, TGIV, SERIES, REST, LPHI, LTAU, LFREQ, LDIL,

1 	 LNEWT, LSENS, MODEL, SKIP, LUA, LCONV, LPROBE
EXTERNAL FUN

COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
COMMON /PASRCONS/ ZAVE, FREQ, TAU, FN

C
DATA KERR/.FALSE./, KSYM/KMAX*"/, TEMP RMS /0.0/,

1 	 LCONV/.FALSE./, LPROBE/.TRUE./
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Initialize files and constants
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

OPEN (UNIT=LOUT, STATUS='UNKNOWN', FORM='FORMATTED',
1 	 FILE='pasr.out')
WRITE (LOUT, 15)

15 FORMAT
1/' PASR: 	 Version 3.4'
2/' 	 Charles Bass, June 2, 2001'
3/' 	 DOUBLE PRECISION')

C 	 Open the CHEMKIN LINK file
C

OPEN (LINKCK, FORM='UNFORMATTED', file='cklink')
C
C 	 Initialize CHEMKIN
C

CALL CKLEN (LINKCK, LOUT, LENI, LENR, LENC)
CALL CKINIT (LENIWK, LENRWK, LENCWK, LINKCK, LOUT, IWORK,



1 RWORK, CWORK)
CALL CKINDX (IWORK, RWORK, MM, KK, II, 	 NFIT)

C
C Open Output Files
C

1
OPEN (UNIT=LIN, 	 STATUS='OLD', 	 FORM='FORMATTED',

FILE='pasrinp.txt')

1
OPEN (UNIT=LPIC, STATUS='UNKNOWN',

FILE='pics')
FORM='FORMATTED',

1
OPEN (UNIT=LRAD, STATUS='UNKNOWN',

FILE='radicals')
FORM='FORMATTED',

1
OPEN (UNIT=LCEM, STATUS='UNKNOWN',

FILE=lcams')
FORM='FORMATTED',

1
OPEN (UNIT=LPROF, STATUS='UNKNOWN',

FILE='profile')
FORM='FORMATTED',

1
OPEN (UNIT=LBPROF, STATUS='UNKNOWN',

FILE='bin_prof')
FORM='UNFORMATTED',

C
C
C

NEQ = KK + 1
LRW 	 = 22 + 9*(2*NEQ) + 2*(2*NEQ)**2
NVODE = LENR + 1
NWT = NVODE + LRW
NH 	 = NWT + KK
NWDOT = NH + KK
NTOT = NWDOT+ KK - 1

C
LIW = 30 + 2*NEQ
IVODE = LENI + 1
ITOT = IVODE + LIW - 1

C
IF (KK .GT. KMAX) THEN
WRITE (LOUT, *)

1 	 ' Error...KMAX too small...must be at least ',KK
KERR = .TRUE.

ENDIF
C

IF (LENRWK .LT. NTOT) THEN
KERR = .TRUE.
WRITE (LOUT, *)

1 ' Error...LENRWK too small...must be at least', NTOT
ENDIF

C
IF (LENIWK .LT. ITOT) THEN

KERR = .TRUE.
WRITE (LOUT, *)

1 	 ' Error...LENRWK too small...must be at least', NTOT
ENDIF

C
IF (LENIWK .LT. ITOT) THEN

KERR = .TRUE.
WRITE (LOUT, *)

1 	 ' Error...LENIWK too small...must be at least', ITOT
ENDIF

C
IF (KERR) STOP

251
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C
CALL CKSYMS (CWORK, LOUT, KSYM, IERR)
CALL CKSYME (CWORK, LOUT, KELE, IERR)
IF (IERR) KERR = .TRUE.
CALL CKWT 	 (IWORK, RWORK, RWORK(NWT))
CALL CKRP 	 (IWORK, RWORK, RU, RUC, PATM)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Read input file
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

CALL PARSER (LIN, LOUT, 'FLG1', 3, R1, R2, R3, R4)
REST = (INT(R1) .EQ. 1)
SERIES = (INT(R1) .EQ. 2)
LPHI = (INT(R2) .EQ. 1)
LTAU = (INT(R3) .EQ. 1)
CALL PARSER (LIN, LOUT, 'FLG2', 3, R1, R2, R3, R4)
LNEWT = (INT(R1) .EQ. 1)
LSENS = (INT(R2) .EQ. 1)
MODEL = (INT(R2) .EQ. 2)
SKIP = (INT(R3) .EQ. 1)
CALL PARSER (LIN, LOUT, 'CYCL', 4, R1, CY_MIN, CY_MAX, CY_STEP)
LFREQ = (INT(R1) .EQ. 1)
LDIL = (INT(R1) .EQ. 2)
IF (LDIL) THEN
IF ((CY_MAX .GE. 1.0) .OR. (CY_MIN .LT. 0.0)) THEN

WRITE (*,*) 'DILUTION BOUNDS MUST BE BETWEEN 0 AND 1'
ENDIF

ENDIF
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'PIGS', IPIC, IK1)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'RADIC', IRAD, IK2)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'CEMS', ICEM, IK3)
CALL SYMINDICIES (LIN, LOUT, KK, KSYM, 'PROF', IPROF, IK4)
CALL PARSER (LIN, LOUT, 'AMBIENT', 2, PA, TA, R3, R4)
PA = PA/760
TA = TA + 273.15
CALL PARSER (LIN, LOUT, 'PASR', 4, VOL, UA, TEMP, P)
TGIV = (INT(UA) .EQ. -1)
LUA = (INT(UA) .EQ. -2)
TEMP = TEMP + 273.15
P = P/760
CALL PARSER (LIN, LOUT, 'PQUE', 2, PQTAU, PQTEMP, R3, R4)
PQTEMP = PQTEMP + 273.15
CALL PARSER (LIN, LOUT, 'PHI', 1, PHI, R2, R3, R4)
CALL PARSER (LIN, LOUT, 'FREQ', 1, FREQ, R2, R3, R4)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Stream input and adjustment
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 burner fuel and air
C

CALL STREAM (LIN, LOUT, 'FUEL', KSYM, KK, IWORK, RWORK, .FALSE.,
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1 	 FLRTF, XF, ZF)
CALL STREAM (LIN, LOUT, 'AIR', KSYM, KK, IWORK, RWORK, .FALSE.,

1 	 FLRTA, XA, ZA)
CALL STREAM (LIN, LOUT, 'DIL', KSYM, KK, IWORK, RWORK, .FALSE.,

1 	 FLRTN, XN, ZN)
CALL STREAM (LIN, LOUT, 'DOPA', KSYM, KK, IWORK, RWORK, .FALSE.,

1 	 FLRTD, XD, ZD)
C
C 	 mix the fuel and dopant streams
C

IF (FLRTD .GT. 0.0) CALL MIX (KK, FLRTF, FLRTD, ZF, ZD, IWORK,
1 	 RWORK)

C
C 	 calculate fuel/air equivalence ratios
C

PHI_B = EQUIV_RATIO (KK, ZA(2), ZF(2), ZA(2), ZF(2), FLRTA,
1 	 FLRTF, FLRTA, FLRTF, KELE, KSYM, IWORK, RWORK)

C
C 	 Adjust fuel/air equivalence ratio
C

IF (LPHI) FLRTA = FLRTA*PHI_B/PHI
C
C 	 Recalculate fuel/air equivalence ratios
C

PHI_B = EQUIV_RATIO (KK, ZA(2), ZF(2), ZA(2), ZF(2), FLRTA,
1 	 FLRTF, FLRTA, FLRTF, KELE, KSYM, IWORK, RWORK)

C
C 	 Mix fuel/air stream
C

CALL MIX (KK, FLRTF, FLRTA, ZF, ZA, IWORK, RWORK)
C
C 	 Mix Diluting Nitrogen into Stream
C

CALL MIX (KK, FLRTF, FLRTN, ZF, ZN, IWORK, RWORK)
C
C 	 Update mole fractions
C

CALL CKYTX (ZF(2), IWORK, RWORK, XF)
Z(1) = ZF(1)
FLRT = FLRTF
DO 50 K = 1, KK
Z(K+1) = ZF(K+1)
X(K) = XF(K)

50 CONTINUE
C
C 	 Energy and Element balances of input stream
C

CALL ENERGY_BAL (Z(1), Z(2), FLRT, 'Inlet', IWORK, RWORK)
CALL ELE_BAL (KK, X, KELE, FLRT, 'Inlet', IWORK, RWORK)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Solve PSR for initial Reactor Averages
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Total Heat Flux in cal/s
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C
C
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C
IF (LUA) THEN
TGIV = .TRUE.
CALL CKHBMS (Z(1), Z(2), IWORK, RWORK, HAVE)
HIN = FLRT*HAVE
QLOS = 0
ELSEIF (TGIV) THEN
QLOS = 0

ELSE
QLOS = UA*(TEMP-TA)
ENDIF

Run PSR sub program

CALL PDPSR(1, KK, II, Z(1), X, KSYM, FLRT, P, VOL,
1

	

	 TGIV, QLOS, TEMP, REST, LTAU, LSENS, ZAVE)
CALL CKYTX (ZAVE(2), IWORK, RWORK, X)

C
C 	 find heat transfer, and volume parameters
C

CALL CKRHOX (P*PATM, ZAVE(1), X, IWORK, RWORK, RHO)
IF (LTAU) THEN
TAU = VOL
VOL = TAU*FLRT/RHO
ELSE
TAU = RHO*VOL/FLRT

ENDIF
IF (LUA) THEN
CALL CKHBMS (ZAVE(1), ZAVE(2), IWORK, RWORK, HAVE)
HOUT = FLRT*HAVE
UAV = (HIN - HOUT)/(VOL*(ZAVE(1) - TA))
ELSEIF (TGIV .AND. .NOT. LUA) THEN
UAV = -1
ELSE
UAV = UA*41868000/VOL
ENDIF
DO 70 N = 1, NEQ
ZPSR(N) = ZAVE(N)

70 CONTINUE
CALL ENERGY_BAL (ZPSR(1), ZPSR(2), FLRT, 'PSR', IWORK, RWORK)
CALL ELE_BAL (KK, X, KELE, FLRT, 'PSR', IWORK, RWORK)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Solve PASRs until the Solution Converges
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Frequency Flow Loop

CALL TIME(START)
IF (.NOT. LFREQ .AND. .NOT. LDIL) THEN
CY_MAX = 1.0
CY_MIN = 1.0
CY_STEP = 1.0
ENDIF
DO 400 R = CY_MIN, CY_MAX, CY_STEP
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IF (LFREQ) FREQ = 10**R
DO 80 N = 1, NEQ

ZAVE(N) = ZPSR(N)
80 CONTINUE

IF (LDIL) THEN
FLRTN = R*FLRTF/(1-R)
FLRT = FLRTF
DO 85 N = 1, NEQ

Z(N) = ZF(N)
85 	 CONTINUE

CALL MIX (KK, FLRT, FLRTN, Z, ZN, IWORK, RWORK)
FLRT = FLRTF
CALL MIX (KK, FLRT, FLRTN, ZAVE, ZN, IWORK, RWORK)

ENDIF
C
C 	 Write output file headings
C

WRITE (LPIC,3001) (KSYM(IPIC(K))(:10), K=1,IK1)
WRITE (LRAD,3001) (KSYM(IRAD(K))(:10), K=1,IK2)
WRITE (LCEM,3001) "THC","TCLC",(KSYM(ICEM(K))(:10), K=1,IK3)
WRITE (LPROF,3004) (KSYM(IPROF(K))(:10), K=1,IK4)

C
C 	 logical option SKIP skips PASR and Runs PSR instead
C

IF (SKIP) THEN
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL PDPSR(1, KK, II, Z(1), X, KSYM, FLRT, P, VOL,

1 	 TGIV, QLOS, TEMP, REST, LTAU, LSENS, ZAVE)
C

DO 90 N = 1,NEQ
Z(N) = ZAVE(N)

90 	 CONTINUE
CALL CKYTX (Z(2), IWORK, RWORK, X)
GOTO 300

ENDIF
C
C 	 Start Loop
C

DO 200 ITER = 0, 5000
C
C 	 Find Mean Residence Time and Time Intervals (tf) for NBATCH
C 	 Reactors
C

CALL CKRHOY (P*PATM, ZAVE(1), ZAVE(2), IWORK, RWORK, RHO)
IF (.NOT. LTAU) TAU = RHO*VOL/FLRT

C
C 	 choose TF for 99.9999% mass recovery in NITER iterations
C

TF = TAU*(-LOG(1.0E-6)/NITER)
C
C 	 Adjust volume for given tau
C

IF (LTAU) VOL = FLRT*TAU/RHO
C

CALL PDPASR (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK, P,
1 	 TF, NITER, IPROF, IK4, ZOUT, TEMP_RMS)
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ZAVE(1) = ZOUT(1)
ERR = 0.0
DO 150 N=1,KK

FN(N+1) = ZAVE(N+1) - ZOUT(N+1)
IF (ZOUT(N+1) .GE. ATOL)

	

1 	 ERR = ERR+((ZAVE(N+1)-ZOUT(N+1))/ZOUT(N+1))**2

	

150 	 CONTINUE
ERR SQRT(ERR)
WRITE (*, 3005) R, FREQ, FLRTN, ZAVE(1), ERR
CALL CKYTX (ZOUT(2), IWORK, RWORK, X)

C
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,3002) ITER, TAU, ZOUT(1), (X(IPIC(K)), K=1,IK1)
WRITE (LRAD,3002) ITER, TAU, ZOUT(1), (X(IRAD(K)), K=1,IK2)
WRITE (LCEM,3002) ITER, TAU, ZOUT(1), THC, TCLC,

	

1 	 (X(ICEM(K)), K=1,IK3)
IF (LCONV) GOTO 220
LCONV = (ERR .LE. TTOL)

C
C 	 Otherwise find new guess for ZAVE
C

IF ((MOD(ITER,100) .EQ. 0) .AND. LNEWT) THEN
CALL PASRNEWT (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK,

	

1 	 P, TF, NITER, IPROF, IK4, ZOUT, X)
ELSE

DO 170 N = 1,KK
ZAVE(N+1) = ZOUT(N+1)

	

170 	 CONTINUE
ENDIF

200 CONTINUE
220 CONTINUE

LCONV = .FALSE.
CALL ENERGY_BAL (ZOUT(1), ZOUT(2), FLRT, 'Exit', IWORK, RWORK)
DO 250 N = 1,KK+1

Z(N) = ZOUT(N)
250 CONTINUE
300 CONTINUE

CALL SAVER (KK, Z, X, SERIES, "pic", "rad", "cam", "bin",

	

1 	 KSYM, KELE, IWORK, RWORK, IPIC, IRAD, ICEM,

	

2 	 IK1, IK2, IK3, PHI_B, FREQ, TAU, FLRT, P, TEMP_RMS)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Run Probe quench if PQTAU := 0 using Barat or Calculated profile
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IF (PQTAU .NE. 0.0) THEN
IF ((PQTAU .GT. 0.0).AND. (LPROBE)) THEN

TLM = (Z(1)-PQTEMP)/LOGHZ(1)-TA)/(PQTEMP-TA))
CALL CKRHOY (P*PATM, TLM+TA, Z(2), IWORK, RWORK, RHO)
PQVOL = FLRT*PQTAU/RHO
PQUA = UA_FIND (KK, II, Z(1), PQTEMP, TA, X, KSYM, FLRT,

1 	 PA, PQTAU, IWORK, RWORK)
PQUAV = PQUA/PQVOL
DT = le-6
CALL PDPFR (0, LOUT, LPIC, LRAD, LCEM, Z, IWORK, RWORK,
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1 	 KELE, FLRT, P, PQTAU, DT, IPIC, IRAD, ICEM, IK1,
2 	 IK2, IK3, .TRUE.)

ELSE
IF (LPROBE) BM = PQTAU
LPROBE = .FALSE.
PQUAV = -1
TCOOL = PQTEMP
CM = (Z(1) - TCOOL)/TCOOL
DT = le-6
PQTAU = 0.003

C
C 	 Default Probe residence time is 3 ms
C

CALL PDPFR (0, LOUT, LPIC, LRAD, LCEM, Z, IWORK, RWORK,
1 	 KELE, FLRT, P, PQTAU, DT, IPIC, IRAD, ICEM, IK1,
2 	 IK2, IK3, .TRUE.)

ENDIF
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL SAVER (KK, Z, X, SERIES, "picq", "radq", "cemq u ,

1 	 "binq", KSYM, KELE, IWORK, RWORK, IPIC, IRAD, ICEM,
2 	 IK1, IK2, IK3, PHI_B, FREQ, PQTAU, FLRT, P, TEMP_RMS)

ENDIF
SERIES = .FALSE.

400 CONTINUE
CALL TIME (FINISH)
WRITE (*,3003) START, FINISH

3001 FORMAT (MITER" 	 ',' "tau" 	 ',4X,'"TMP(K)"',30(' "',A16,'"'))
3002 FORMAT (16, F11.4, F11.4, 30E19.4)
3003 FORMAT (//2X, 'Start Time: 	 ', Al2, /2X,'Finish Time: ', Al2)
3004 FORMAT ('TIME 	 ','T/TAU 	 ','CDF 	 ',4X,'"TMP(K)"',

1 	 30(1 "',A16,'"'))
3005 FORMAT (2X,'FACTOR',F6.2,2X,'FREQ',2X,F9.1,2X,'N2',2X,

1 	 F6.2,2X,'TEMP',2X,F8.2,2X,'ERR',2X,F9.5)
END

C
SUBROUTINE PDPSR (IPSR, KK, II, TIN, XIN, KSYM, FLRT, PA, VOL,

1 	 TGIV, QLOS, TEMP, RESTART, LTAU, SENS, ZOUT)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 subroutine PDPSR sets up the input file and reads
C
C 	 inputs:
C
C	 IPSR 	 integer, reactor number
C 	 KK 	 integer, number of species
C	 II 	 integer, number of reactions
C 	 TIN 	 temperature of the input stream
C	 XIN 	 mole fractions of species
C 	 KSYM character array of chemical specie symbols
C 	 FLRT 	 mass flow rate g/sec
C 	 PA 	 ambient pressure (atm)
C 	 VOL	 reactor volume (cm**3)
C 	 TGIV logical, 1 temperature fixed, 0 temperature solved
C 	 QLOS 	 heat loss (cal/sec)
C 	 TEMP 	 reactor temperature (initial guess if TGIV=0)
C 	 RESTART logical 1 = start from restart file
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C 	 LTAU logical 1 = volumes become mean residence times in sec
C 	 SENS 	 logical 1 = run sensitivity analysis
C
C 	 output:
C
C 	 ZOUT double array of exit temperature and mass fractions
C
C 	 scratch:
C
C 	 FOSC double array of first order sensitivity coefficients
C 	 wrt the pre-exponential parameter in rxn i
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
C

PARAMETER (LENRWK=150000, LENIWK=150000,LENLWK=6000,LENCWK=6000,
1 	 KMAX=250)
DIMENSION RWORK(LENRWK), IWORK(LENIWK), XIN(*), ZOUT(*),

1 	 FOSC(KMAX)
LOGICAL RESTART, TGIV, LWORK(LENLWK), LTAU, SENS
CHARACTER KSYM(*)*16, CWORK(LENCWK)*16, CREST*8, CRCVR*8,

1 	 CSENS*8, CNUMS*10
C

DATA LIN, LOUT, LREST, LSAVE, LRCVR, LINKCK, LSENS
1 	 /10, 6,14,11,16,25,26/
DATA ISTEPS/100/, DT/1E-5/, ATOL/1E-20/, RTOL/1E-6/
CNUMS = '0123456789'

C
c 	 Convert IPSR to a string and concatenate to file name
C

ITENS = INT(IPSR/10) + 1
IONES = IPSR - (ITENS - 1)*10 + 1
CRCVR = 'rcvr' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)
CREST = 'rest' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)
CSENS = 'sens' // CNUMS(ITENS:ITENS) // CNUMS(IONES:IONES)

C
C 	 Open input and output files
C

OPEN (LIN, STATUS ='UNKNOWN', 	 FORM='FORMATTED',
1 	 FILE='psrin')
OPEN (LINKCK, STATUS='OLD', 	 FORM='UNFORMATTED',

1 	 FILE='cklink')
OPEN (LREST, STATUS='UNKNOWN', FORM='UNFORMATTED',

1 	 FILE=CREST)
OPEN (LRCVR, STATUS='UNKNOWN',FORM='UNFORMATTED',

1 	 FILE=CRCVR)
OPEN (LSENS, STATUS='UNKNOWN',FORM='UNFORMATTED',

1 	 FILE=CSENS)
OPEN (LSAVE, STATUS='UNKNOWN', 	 FORM='UNFORMATTED',

1 	 FILE='save')
C
C 	 If LTAU is .TRUE. then VOL represents the mean residence time
C 	 volume is set at an arbitrary 1000 cc
C

IF (LTAU) TAU = VOL



C
C 	 Write Input File for PSR1
C
C

IF (.NOT. TGIV) WRITE (LIN, 2001)
IF (TGIV) WRITE (LIN, 2015)
IF (RESTART) WRITE (LIN, 2014)
DO 50 I = 1, KK
IF (XIN(I) .NE. 0 ) THEN
WRITE (LIN, 2002) KSYM(I), XIN(I)

ENDIF
50 CONTINUE

WRITE (LIN, 2003) PA
IF
IF

(.NOT.
(LTAU)

LTAU)
THEN

WRITE (LIN, 2004) VOL

WRITE
WRITE

(LIN,
(LIN,

2004)
2021)

1000.0
TAU

ENDIF
IF (.NOT. LTAU) WRITE (LIN, 2005) FLRT
IF (.NOT. TGIV) WRITE (LIN, 2006) TIN
IF (.NOT. TGIV) WRITE (LIN, 2007) QLOS
WRITE (LIN, 2008) 0
WRITE (LIN, 2009) ISTEPS, DT
WRITE (LIN, 2010) ISTEPS, DT
WRITE (LIN, 2019) ATOL
WRITE (LIN, 2020) RTOL
WRITE (LIN, 2011) TEMP
IF (SENS) WRITE (LIN, 2022)
WRITE (LIN, 2012)
REWIND (LIN)
WRITE (LOUT, 2017) IPSR
CALL PSR (LIN, LOUT, LINKCK, LREST, LSAVE, LRCVR, LENLWK,

1 	 LWORK, LENIWK, IWORK, LENRWK, RWORK, LENCWK, CWORK)
CLOSE (UNIT=LIN, STATUS='DELETE')
CLOSE (UNIT=LREST, STATUS = 'KEEP')
CLOSE (UNIT=LRCVR, STATUS = 'KEEP')

C
C 	 Read PSR output to ZOUT array
C

REWIND (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE)
READ (LSAVE) ISOLUT
READ (LSAVE) NNP
KKP = NNP - 1
READ (LSAVE) EQUIVP, PP, TAUP, FLRTP, VP, QP
READ (LSAVE) TP, (XIN(K), K=1,KKP)
READ (LSAVE) (ZOUT(K), K=1,NNP)
DO 100 I = 1,NNP
IF (ZOUT(I) .LT. 0.0) ZOUT(I) = 0.0

100 CONTINUE
IF (SENS) THEN

READ (LSAVE)
DO 200 I = 1,II

259
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READ (LSAVE) N, FOSCT, (FOSC(K), K = 1,KK)
WRITE (LSENS) N, FOSCT, (FOSC(K), K = 1,KK)

200 	 CONTINUE
ENDIF
CLOSE (UNIT=LSENS, STATUS = 'KEEP')
CLOSE (UNIT=LSAVE, STATUS = 'DELETE')
WRITE (LOUT, 2018)

2001 FORMAT ('ENRG')
2002 FORMAT ('REAL', 1X, A16, 1X, E13.6)
2003 FORMAT ('PRES', 1X, E13.6)
2004 FORMAT ('VOL', 1X, E13.6)
2005 FORMAT ('FLRT', 1X, E13.6)
2006 FORMAT ('TINL', 1X, E13.6)
2007 FORMAT ('QLOS', 1X, E13.6)
2008 FORMAT ('PRNT', 1X, 12)
2009 FORMAT ('TIME', 1X, 112, 2X, E13.6)
2010 FORMAT ('TIM2', 1X, 112, 2X, E13.6)
2011 FORMAT ('TEMP', 1X, E13.6)
2012 FORMAT ('END')
2013 FORMAT ('CNTN')
2014 FORMAT ('RSTR')
2015 FORMAT ('TGIV')
2016 FORMAT ('AROP')
2017 FORMAT (2X, 'Calling PSR for Unit: ', 12)
2018 FORMAT (2X, 'Returning to the main program.')
2019 FORMAT ('ATOL', 1X, E13.6)
2020 FORMAT ('RTOL', 1X, E13.6)
2021 FORMAT ('TAU', 2X, E13.6)
2022 FORMAT ('SEN')

RETURN
END

SUBROUTINE PDPASR (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK,
1 	 P, TF, NITER, IPROF, IK4, ZOUT, TEMP_RMS)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 subroutine PDPASR sets up the input file and reads
C
C 	 inputs:
C
C 	 LOUT 	 integer, standard output file
C	 LPROF integer, selected PDF profile output
C 	 LBPROF integer, binary data profile output
C	 LCONV logical, .true. when solution has converged
C 	 Z 	 array of independent variables
C 	 IWORK integer working array
C 	 RWORK double working array
C 	 P 	 double, pressure in atmosphere
C 	 TF 	 time step (sec)
C 	 NITER integer, number of iterations of time TF
C 	 IPROF integer array of indicies of selected species
C 	 IK4 	 integer number of elements in IPROF
C
C 	 output:
C
C 	 ZOUT 	 double array of exit temperature and mass fractions
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C

C 	 TEMP_RMS double root mean square temperature fluctuation
C
C 	 working:
C 	 ZWORK double array at least NEQ*2 second half is
C 	 integration of the average
C 	 TMAX 	 double, stop time for DVODE integration
C 	 X1 	 double, LOG transform of TF
C 	 X2 	 double, LOG transform of TMAX
C 	 DX 	 double, LOG scale interval
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)

PARAMETER (ITOL=2, ITASK=1, IOPT=0, RTOL=1.0E-14,
1 	 MF=22, KMAX=250, KMAX2=500)
DIMENSION IWORK(*), RWORK(*), Z(*), ZOUT(*), ZWORK(KMAX2),

1 	 ZAVE(KMAX), X(KMAX), FN(KMAX), IPROF(*), ATOL(KMAX2)
LOGICAL LCONV
EXTERNAL FUN

COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
COMMON /PASRCONS/ ZAVE, FREQ, TAU, FN

C
C 	 initialize values
C

ISTATE = 1
NEQ = KK + 1
LRW = 22 + 9*(2*NEQ) + 2*(2*NEQ)**2
NVODE = LENR +1
IVODE = LENI +1
LIW = 30 + 2*NEQ
TT1 = 0.0
TT2 = TT1
P HOLD = PA
PA = P
DO 20 N = 1, NEQ
ZWORK(N) = Z(N)
ZWORK(N+NEQ) = 0
ATOL(N) = ABS (ZAVE(N))*RTOL + 1E-22
ATOL(N+NEQ) = ATOL(N)

20 CONTINUE
CALL CKHBMS (Z(1), Z(2), IWORK, RWORK, HAVEG)
ATOL(NEQ+1) = RTOL*ABS (HAVEG)

C
C 	 Rewind and skip header for PDF profile file
C

IF (LCONV) THEN
REWIND (LPROF)
READ (LPROF,*)
REWIND (LBPROF)
WRITE (LBPROF)
WRITE (LBPROF)
WRITE (LBPROF)

ENDIF



C
C

262

C
C 	 Start Loop
C
C 	 TF = TF/100
C 	 NITER = NITER + 120

TMAX = TF*NITER
X1 = LOG(TF)
X2 	 LOG(TMAX)
DX = (X2 - X1)/(NITER - 1)
TEMP_RMS = 0.0
DO 100 ITER 	 1,NITER

C
TT3 = EXP(X1 + (ITER - 1)*DX)

C
C 	 F is the Probability Density Function
C

Fl 	 1/TAU* EXP(-TT2/TAU)
F2 = 1/TAU* EXP(-TT3/TAU)
F = 0.5*(F2+F1)*(TT3 - TT2)

C
C 	 Save the solution profile on last iteration
C

IF (LCONV) THEN
WRITE (LPROF,3002) TT2, TT2/TAU, F, ZWORK(1),

1 	 (ZWORK(IPROF(K)+1),K=1,IK4)
DO 50 K = 1, KK+1

ZOUT(K) = ZWORK(K)
50 	 CONTINUE

CALL CKYTX (ZOUT(2), IWORK, RWORK, X)
WRITE (LBPROF) ZOUT(1), F, TT2, TAU, TF
WRITE (LBPROF) (X(K), K=1,KK)
WRITE (LBPROF) (ZOUT(K), K=1,KK+1)

ENDIF
C
C 	 Integrate TEMP_RMS using trapizoidal technique
C

F_RMS = 1/TAU*EXP(-TT2/TAU)*(ZWORK(1) - ZAVE(1))**2
IF (ITER .GT. 1) THEN

TEMP_RMS = TEMP_RMS + (F_RMS + F_RMS_OLD)*TF/2
ENDIF
F_RMS_OLD = F_RMS

C
C 	 integrate to next output TT3
C

TT2 = TT3
CALL DVODE

(FUN, 2*NEQ, ZWORK, TT1, TT2, ITOL, RTOL, ATOL,
1 	 ITASK, ISTATE, IOPT, RWORK(NVODE), LRW, IWORK(IVODE),
2 	 LIW, JAC, MF, RWORK, IWORK)

WRITE (*,*) 'EMERGED WITH ISTATE = 	 ISTATE
IF (ISTATE .LE. -1) THEN

IF (ISTATE .EQ. -1) THEN
ISTATE = 2

ELSE
WRITE (LOUT,*) ' ISTATE=',ISTATE
STOP
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ENDIF
ENDIF

C 	 IF ((ITER .EQ. 100).OR.(ITER .EQ. 120)) TF = TF*10
100 CONTINUE

C
C 	 copy average mass fractions to the output array
C

DO 150 K = 1,KK
ZOUT(K+1) = ZWORK(K+KK+2)

150 CONTINUE
C
C 	 Normalize outputs
C

F = 1-EXP(-1*TT2/TAU)
ZWORK(KK+2) = ZWORK(KK+2)/F
TEMP_RMS = TEMP_RMS/F
DO 170 K = 1,KK

ZOUT(K+1) = ZOUT(K+1)/F
170 CONTINUE

TEMP_RMS = SQRT (TEMP_RMS)
C
C 	 find the average temperature from the average enthalpy
C

T_REF = 1000
HAVE = ZWORK(NEQ+1)
CALL CKHBMS (T_REF, ZOUT(2), IWORK, RWORK, H_REF)
CALL CKCPBS (ZAVE(1), ZOUT(2), IWORK, RWORK, CPB)
CALL CKCPBS (T_REF, ZOUT(2), IWORK, RWORK, CPB_REF)
ZOUT(1) = (HAVE-H REF)/((CPB+CPB_REF)/2) + T_REF
DO 200 I = 1, 5000

CALL CKHBMS (ZOUT(1), ZOUT(2), IWORK, RWORK, HAVEG)
DIFF = (HAVE - HAVEG)/ABS(HAVE)
IF (ABS(DIFF) .LE. 1E-6) GOTO 250
ZOUT(1) = (1 + 0.01*DIFF)*ZOUT(1)

200 CONTINUE
WRITE (LOUT,*) 'Temperature did not converge in PDPASR'

250 CONTINUE
PA = P_HOLD
RETURN

3002 FORMAT (F11.8, F11.8, F11.8, F11.2, 30E19.6)
END

C
SUBROUTINE PASRNEWT (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK,

1 	 P, TF, NITER, IPROF, IK4, ZSCRATCH, RJAC)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Subroutine to find next guess of mean mass fractions using a
C 	 modified Newton-Raphson technique.
C
C 	 This Subroutine is an adaptation of PSRJAC from PSR, a program
C 	 written by PETER GLARBORG of TECHNICAL UNIVERSITY OF DENMARK
C 	 and ROBERT J. KEE of SANDIA NATIONAL LABORATORIES.
C
C 	 It also uses LINPACK subroutines DCOPY, DGECO, and DGESL found
C 	 in DMATH.FOR
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C 	 Input:
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

LOUT 	 integer general output file
LPROF 	 integer PDF profile output file
LBPROF 	 integer BIN PDF profileoutput file
LCONV 	 logical .TRUE. for last iteration
Z 	 double array of state variables
IWORK 	 integer working array
RWORK 	 double working array
P 	 pressure in atmospheres
TF 	 double time increment for output
NITER 	 integer number of iterations in PDPASR
IPROF 	 integer array of indicies of selected species
IK4 	 integer number of elements in IPROF
ZSCRATCH double scratch array of state variables
RJAC 	 double Jacobian input of dummy arguments

C 	 Output: common array ZAVE has next guess of average state
C 	 variables
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
C

PARAMETER (KMAX = 250, ATOL = 1E-30)
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
DIMENSION RJAC(KK,*), IPVT(KMAX), ZAVE(KMAX), Z(*),

1 	 ZSCRATCH(*), IWORK(*), RWORK(*), FN(KMAX), IPROF(*)
COMMON /PASRCONS/ ZAVE, FREQ, TAU, FN
LOGICAL LCONV

C
C 	 Determine computer tolerance for relative and absolute pertibation
C

U = 1.0
50 CONTINUE

U = U*0.5
COMP = 1.0 + U
IF (COMP .NE. 1.0) GOTO 50

ABSOL = SQRT(2*U)
RELAT = SQRT(2*U)

C
C 	 ZERO THE MATRIX STORAGE SPACE.
C

CALL DCOPY (KK*KK, 0.0, 0, RJAC, 1)
C
C
C
C TOP OF THE LOOPS OVER THE RESIDUE CLASSES AND
C 	 SOLUTION COMPONENTS.
C

WRITE (*,*) 'Building Jacobian'
DO 200 M = 1, KK

C
C 	 FOR A GIVEN RESIDUE CLASS AND A GIVEN SOLUTION COMPONENT,
C 	 PERTRB THE VECTOR AT POINTS IN THE SAME RESIDUE CLASS.
C

SAVE 	 = ZAVE(M+1)
PERTRB = ABS(ZAVE(M)) * RELAT + ABSOL
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ZAVE(M+1) 	 = ZAVE(M+1) + PERTRB
C
C 	 Call PDPASR with the perturbed ZAVE and store in ZSCRATCH
C

CALL PDPASR (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK, P, TF,

	

1 	 NITER, IPROF, IK4, ZSCRATCH, TEMP_RMS)
C
C 	 Build Jacobian
C

DO 100 N = 1, KK
RJAC(N, M) = (ZAVE(N+1)-ZSCRATCH(N+1)-FN(N+1))/PERTRB

	

100 	 CONTINUE
C
C 	 Restore ZAVE to it original value
C

ZAVE(M+1) = SAVE

C
C 	 BOTTOM OF THE LOOPS OVER THE RESIDUE CLASSES AND SOLUTION
C 	 COMPONENTS.
C

200 CONTINUE
C
C 	 Factor the Jacobian Matrix
C

CALL DGECO (RJAC, KK, KK, IPVT, RCOND, ZSCRATCH(2))
IF (1.0 + RCOND .EQ. 1.0) THEN

WRITE (LOUT, *) ' FATAL ERROR, SINGULAR JACOBIAN'
STOP

ENDIF
C
C 	 Use the Jacobian ITER times
C

ERR1_OLD = 1E6
ERR2_OLD = 1E6

500 CONTINUE
C
C 	 Solve J*X = B Where:
C 	 B = FN
C 	 X = Y_AVE_OLD - Y AVE NEW
C
C 	 Output of DGESL: B becomes X
C

CALL DGESL (RJAC, KK, KK, IPVT, FN(2), 0)
ERR1 = 0.0
DO 250 N = 1, KK

IF (ZAVE(N+1) .GT. ATOL)

	

1 	 ERR1 = ERR1 + (0.5*FN(N+1)/ZAVE(N+1))**2
250 CONTINUE

ERR1 = SQRT(ERR1)
IF (ERR1 .GT. ERR1_OLD) GOTO 600
ERR1_OLD = ERR1
DO 300 N = 1, KK

ZAVE(N+1) = ZAVE(N+1) - 0.5*FN(N+1)
300 CONTINUE

CALL PDPASR (LOUT, LPROF, LBPROF, LCONV, Z, IWORK, RWORK, P,

	

1 	 TF, NITER, IPROF, IK4, ZSCRATCH, TEMP_RMS)
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ZAVE(1) = ZSCRATCH(1)
ERR2 = 0.0

DO 400 N = 1, KK
FN(N+1) = ZAVE(N+1) - ZSCRATCH(N+1)

IF (ZAVE(N+1) .GE. ATOL)
1 	 ERR2 = ERR2 + ((ZAVE(N+1)-ZSCRATCH(N+1))/ZAVE(N+1))**2

400 CONTINUE
ERR2 = SQRT(ERR2)
IF (LCONV) GOTO 600
LCONV = (ERR2 .GT. ERR2_OLD)
ERR2_OLD = ERR2
WRITE (*,*) 'CONVERGING 	 ERR1', ERR1, ' ERR2', ERR2
GOTO 500

600 CONTINUE
WRITE (*,*) 'DIVERGING'
RETURN
END

C
SUBROUTINE FUN (N, TIME, Z, ZP, RPAR, IPAR)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Function Subroutine provided for DVODE.
C
C 	 Solves a constant pressure plug flow reactor with a constant heat
C 	 transfer coefficient per unit volume - UAV
C
C 	 Input:
C 	 N 	 Number State variables (not used)
C 	 TIME 	 Double, independent time variable
C 	 Z 	 Array of indepent variables
C 	 RPAR 	 Working real (double) array
C 	 IPAR 	 Working integer array
C
C 	 Output:
C 	 ZP 	 first time derivative of Z
C
C 	 Work:
C 	 Y 	 Double Array, mass fractions
C
C 	 Common:
C 	 TA 	 Double, ambient temperature
C 	 UAV 	 Double, heat transfer coeff/vol
C 	 (ergs/(sec*degK*cc))
C 	 TAU 	 Double, mean residence time
C 	 ZAVE 	 Double Array of reactor average states
C 	 in last iteration
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C

PARAMETER (KMAX = 250)
DIMENSION Z(*), ZP(*), RPAR(*), IPAR(*), ZAVE(KMAX), Y(KMAX),

1 	 FN(KMAX)
COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
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COMMON /PASRCONS/ ZAVE, FREQ, TAU, FN
C
C	 Variables in Z are: Z(1) 	 = T
C 	 Z(K+1) = Y(K)
C 	 Z(KK+2) = HAVE
C 	 Z(K+KK+2) = YAVE(K)
C
C 	 Initialize Y array
C

DO 50 K = 1,KK
Y(K) = Z(K+1)

50 CONTINUE
C
C 	 Call CHEMKIN subroutines
C

P = PATM * PA
CALL CKRHOY (P, Z(1), Y, IPAR, RPAR, RHO)
CALL CKCPBS (Z(1), Y, IPAR, RPAR, CPB)
CALL CKWYP (P, Z(1), Y, IPAR, RPAR, RPAR(NWDOT))
CALL CKHMS (Z(1), IPAR, RPAR, RPAR(NH))

C
C 	 Find the value of the PDF (RTD)
C

E = (1/TAU)*EXP(-1*TIME/TAU)
C
C 	 Form governing equation
C

SUM1 = 0.0
SUM2 = 0.0
DO 100 K = 1, KK

H 	 = RPAR(NH 	 + K - 1)
WDOT = RPAR(NWDOT + K - 1)
WT 	 = RPAR(NWT 	 + K - 1)
ZP(K+1) = -1*FREQ*(Z(K+1)-ZAVE(K+1)) + WDOT * WT / RHO
SUM1 = SUM1 + H*ZP(K+1)
SUM2 = SUM2 + H*Z(K+1)
ZP(K+KK+2) = E*Z(K+1)

100 CONTINUE
IF (UAV .GE. 0) THEN

ZP(1) = -1*SUM1/CPB - UAV*(Z(1)-TA)/(CPB*RHO)
C
C 	 Turbulent Heat Transfer by Reynolds Analogy
C
C 	 ZP(1) = ZP(1) - 0.7*FREQ*(Z(1) - ZAVE(1))

ELSE
ZP(1) = 0.0

ENDIF
ZP(KK+2) = E*SUM2

C
RETURN
END

C
SUBROUTINE PDPFR (IPFR, LOUT, LPIC, LRAD, LCEM, Z, IWORK, RWORK,

1 	 KELE, FLRT, P, VOL, DT, IPIC, IRAD, ICEM, IK1,
2 	 IK2, IK3, LTAU)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C 	 subroutine PDPFR sets up the input file and reads
C
C 	 inputs:
C
C 	 IPFR 	 integer, reactor number
C 	 LOUT integer, standard output file
C 	 LPIC volume step file for pics
C 	 LRAD volume step file for radicals
C 	 LCEM volume step file for CEMs
C 	 Z 	 array of independent variables
C 	 IWORK integer working array
C 	 RWORK double working array
C 	 KELE character element array
C 	 FLRT 	 mass flow rate g/sec
C 	 P 	 reactor pressure (atm) then converted to (dynes/cm**3)
C 	 VOL 	 reactor volume (cm**3)
C 	 DT	 time step (sec)
C 	 IPIC 	 array of PIC indicies
C 	 IRAD array of RAD indicies
C 	 ICEM array of CEM indicies
C 	 IK1,IK2,IK3 length of indici arrays
C 	 LTAU logical = 1 VOL represents the residence time
C
C 	 output:
C
C 	 Z 	 double array of exit temperature and mass fractions
C
C 	 working:
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)

PARAMETER (ITOL=1, ITASK=1, IOPT=0, RTOL=1.0E-06,
1 	 ATOL=1.0E-20, MF=22, KMAX = 250, LBINQ=23)
DIMENSION IWORK(*), RWORK(*), Z(*), IPIC(*), IRAD(*), ICEM(*),

1 	 X(KMAX)
CHARACTER KELE(*)*2
LOGICAL LTAU
EXTERNAL FUN2

COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI
PA_OLD = PA
PA = P
P = P*PATM
OPEN (UNIT=LBINQ, STATUS='UNKNOWN', FORM='UNFORMATTED',

1 	 FILE='bin_que')
WRITE (LBINQ)
WRITE (LBINQ)
WRITE (LBINQ)

C
C 	 initialize values
C

ISTATE = 1



NEQ = KK + 1
LRW = 22 + 9*NEQ + 2*NEQ**2
NVODE = LENR +1
IVODE = LENI +1
LIW = 30 + NEQ
TT1 = le-12
TT2 = TT1
VPFR = 0.0
IF (LTAU) TAU = VOL

C
C 	 Start Loop
C
C 	 print volume incremental solution
C

50 CONTINUE
T = Z(1)
CALL CKYTX (Z(2), IWORK, RWORK, X)
CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
WRITE (LPIC,3002) IPFR, VPFR, T, (X(IPIC(K)), K=1,IK1)
WRITE (LRAD,3002) IPFR, VPFR, T, (X(IRAD(K)), K=1,IK2)
WRITE (LCEM,3002) IPFR, VPFR, T, THC, TCLC,

1 	 (X(ICEM(K)), K=1,IK3)
WRITE (LBINQ) Z(1), 0.0, 0.0, THC, TCLC
WRITE (LBINQ) (X(K), K=1,KK)
WRITE (LBINQ) (Z(K), K=1,KK+1)

C
C 	 Check for end of volume or end of residence time
C

IF ((VPFR .GE. VOL) .AND. (.NOT. LTAU)) THEN
WRITE (LOUT, 3001) IPFR, TT2
GOTO 100

ENDIF
IF (LTAU .AND. TT2 .GE. TAU) THEN

WRITE (LOUT, 3001) IPFR, TT2
GOTO 100

ENDIF
C
C 	 integrate to next output TT2 + DT
C

TT2 = TT2 + DT
IF (LTAU .AND. TT2 .GE. TAU) TT2 = TAU
CALL DVODE

(FUN2, NEQ, Z, TT1, TT2, ITOL, RTOL, ATOL, ITASK,
1 	 ISTATE, IOPT, RWORK(NVODE), LRW, IWORK(IVODE),
2 	 LIW, JAC, MF, RWORK, IWORK)

C
C 	 WRITE (*,*) 'EMERGED WITH ISTATE = 	 ISTATE

IF (ISTATE .LE. -2) THEN
IF (ISTATE .EQ. -1) THEN

ISTATE = 2
GO TO 100

ELSE
WRITE (LOUT,*) ' ISTATE=',ISTATE
STOP

ENDIF
ENDIF
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C
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C 	 Volume increment
C

CALL CKRHOY (P, Z(1), Z(2), IWORK, RWORK, RHO)
VPFR = VPFR + DT*FLRT/RHO

C
C

WRITE(LOUT,*) Z(1), TNEW
GOTO 50

100 CONTINUE
P = PA
PA = PA_OLD

3001 FORMAT (5X, 'PFR 	 ' TAU (SEC) = 	 F8.4)
3002 FORMAT (2X, 'PFR',I1, F11.4, F11.4, 30E19.4)

RETURN
END

C
SUBROUTINE FUN2 (N, TIME, Z, ZP, RPAR, IPAR)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Function Subroutine provided for DVODE.
C
C 	 Solves a constant pressure plug flow reactor with a constant heat
C 	 transfer coefficient per unit volume - UAV
C
C 	 Input:
C 	 N 	 Number of equations (not used)
C 	 TIME 	 Independent variable
C 	 Z 	 Array of dependent variables
C 	 RPAR 	 Working real (double) array
C 	 IPAR 	 Working integer array
C
C 	 Output:
C 	 ZP first time derivative of Z
C
C 	 Common:
C 	 TA Double, ambient temperature
C 	 UAV 	 Double, heat transfer coeff/vol
C 	 (ergs/(sec*degK*cc))
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C	 IMPLICIT REAL (A-H 2 O-Z), INTEGER(I-N)
C

COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM
COMMON /ICONS/ KK, NWT, NH, NWDOT, LENR, LENI

C
DIMENSION Z(*), ZP(*), RPAR(*), IPAR(*)

C
C 	 Variables in Z are: Z(1) 	 = T
C 	 Z(K+1) = Y(K)
C
C 	 Call CHEMKIN subroutines
C

P = PATM * PA
CALL CKRHOY (P, Z(1), Z(2), IPAR, RPAR, RHO)
CALL CKCPBS (Z(1), Z(2), IPAR, RPAR, CPB)
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CALL CKWYP (P, Z(1), Z(2), IPAR, RPAR, RPAR(NWDOT))
CALL CKHMS (Z(1), IPAR, RPAR, RPAR(NH))

C
C 	 Form governing equation
C

SUM = 0.0
DO 100 K = 1, KK

H 	 = RPAR(NH 	 + K - 1)
WDOT = RPAR(NWDOT + K - 1)
WT = RPAR(NWT + K - 1)
ZP(K+1) = WDOT * WT / RHO
SUM = SUM + H * WDOT * WT

100 CONTINUE
IF (PQUAV .GE. 0.0) THEN

ZP(1) = -SUM / (RHO*CPB) - PQUAV*(Z(1)-TA)/(CPB*RHO)
ELSE

IF (Z(1) .GT. 373) THEN
ZP(1) = (0.5*BM*TIME**(-0.5))*CM*TCOOL*EXP(BM*TIME**0.5)

ELSE
ZP(1) = 0

ENDIF
ENDIF
RETURN
END

C
C
C

SUBROUTINE GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C
C 	 Groups mole fractions into total hydrocarbons (THC), total
C 	 chlorinated hydrocarbons (TCLC). THC counts each carbon atom in
C 	 a hydrocarbon. TCLC counts chlorine atoms in each chlorocarbon.
C
C
C 	 Assumes the existence of exactly 6 elements which must include
C 	 C, CL, and H. If the mechanism has more than 6 elements, modify
C 	 the parameter MM accordingly.
C
C 	 Input:
C 	 KK 	 (integer) number of species
C 	 X 	 (double) mole fraction array
C 	 KELE 	 (character) array of element strings
C 	 IWORK 	 (integer) working array
C 	 RWORK 	 (double) working array
C
C 	 Output:
C 	 THC, TCLC
C 	 (double) summed mass frac
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (MM =6, KMAX = 250)
DIMENSION X(*), IWORK(*), RWORK(*), NCE(MM,KMAX), IELE(MM)
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CHARACTER KELE(*)*2
C
C 	 initialize variables, and get element matrix
C

THC = 0
TCLC = 0
CALL CKNCF (MM, IWORK, RWORK, NCE)

C
C 	 find indices of key elements
C

CALL CKCOMP ('C',KELE,MM,IELE(1))
CALL CKCOMP ('H',KELE,MM,IELE(2))
CALL CKCOMP ('CL',KELE,MM,IELE(3))

C
C 	 count species in various categories for entire stream
C

DO 100 K = 1,KK
IC = NCE(IELE(1),K)
IH = NCE(IELE(2),K)
ICL = NCE(IELE(3),K)
IF (IC .GE. 1 .AND. IH .GE. 1) THC = THC + X(K)*IC
IF (IC .GE. 1 .AND. ICL .GE. 1) TCLC = TCLC + X(K)*ICL

100 CONTINUE
RETURN
END

C
C

SUBROUTINE STREAM (LIN, LOUT, KEYWORD, KSYM, KK, ICKWRK, RCKWRK,
1 	 UNITS, FLRT, X, Z)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Subroutine to read mole fractions and temperature of an
C 	 input stream. Mole fractions are normalized and converted to
C 	 mass fractions. Input file is read until KEYWORD is encountered
C 	 or an END is reached.
C
C 	 Input:
C 	 LIN 	 input fortran unit
C 	 LOUT 	 output fortran unit
C 	 KEYWORD character keyword of particular stream
C 	 KSYM 	 character array containing all species
C 	 KK 	 total number of species
C 	 UNITS 	 logical, .TRUE. = scfh, degF, cf
C
C 	 Output:
C 	 X 	 array of normalized mole fractions
C 	 Z 	 array of temperature and mass fractions
C 	 FLRT 	 double, flow rate grams/sec
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
DIMENSION X(*), Z(*), ICKWRK(*), RCKWRK(*),

1 	 VALUE(3)
CHARACTER KSYM(*)*16, LINE*80, KEYWORD*(*), LINE2*80
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LOGICAL IERR, KERR, UNITS
DATA KERR/.FALSE./

C
C 	 Check keyword and parse heading line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=300) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
STOP

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, '(5X,A65)') LINE
CALL CKNPAR (LINE, 3, LOUT, LINE2, ISTART, KERR)
IF (KERR) THEN

WRITE (LOUT, *) 'STREAM: ERROR IN CKNPAR'
STOP

ENDIF
CALL CKXNUM (LINE2, 3, LOUT, NVAL, VALUE, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'STREAM: ERROR IN CKXNUM'
STOP

ENDIF
IF (NVAL .NE. 3) THEN
WRITE (LOUT, *) 'STREAM: INCORRECT FORMAT IN HEADING LINE'
STOP

ENDIF
NOSPEC = INT (VALUE(1))

C
C 	 Convert Temperature from degF or degC to K and molar flow rate
C 	 from scfh or std cc/sec to mol/s
C

IF (NOSPEC .NE. 0) THEN
IF (UNITS) THEN

Z(1) = (VALUE(2) + 459.67)*5/9
FLRT = VALUE(3) * 1.19530/3600.0

ELSE
Z(1) = VALUE(2) + 273.15
FLRT = VALUE(3) * 4.46158e-5

ENDIF
C
C 	 Initialize non-zero moles
C

DO 100 I = 1, NOSPEC
READ (LIN, '(A)') LINE
CALL CKSNUM (LINE, 1, LOUT, KSYM, KK, KNUM, NVAL,

1 	 VAL, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR READING MOLES'
STOP

ENDIF
X(KNUM) = VAL



274

100 	 CONTINUE
C
C	 Normalize the mole fractions
C

XTOT = 0.00
DO 150 K = 1, KK

XTOT = XTOT + X(K)
150 	 CONTINUE

DO 200 K = 1, KK
X(K) = X(K) / XTOT

200 	 CONTINUE
C
C 	 Initial conditions and mass fractions
C

CALL CKXTY (X, ICKWRK, RCKWRK, Z(2))
C
C 	 Convert molar flow rate to mass flow rate
C

CALL CKMMWX(X, ICKWRK, RCKWRK, WTM)
FLRT = FLRT*WTM

C
C

ELSE
FLRT = 0

ENDIF
RETURN

ENDIF
GOTO 50

300 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND. PROGRAM STOPPED.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')

END
C
C

SUBROUTINE PARSER (LIN, LOUT, KEYWORD, NODAT, RVAL1, RVAL2,
1 	 RVAL3, RVAL4)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C 	 Subroutine to read selected from the input file. Example:
C 	 Data is in the form:
C
C 	 KEYWORD RVAL1 RVAL2 RVAL3 RVAL4
C
C	 or:
C
C 	 REM comments 	
C
C 	 PARSER will return NODAT real values after KEYWORD. If KEYWORD
C 	 is not found error is returned. If "REM" is found the line
C 	 is skipped and the following line is automatically read.
C
C 	 Input:
C 	 LIN 	 integer, input fortran unit
C 	 LOUT 	 integer, output fortran unit
C 	 KEYWORD character string keyword to be checked
C 	 NODAT 	 integer, number of data items in line (1-4)
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C
C 	 Output:
C 	 RVAL1 double, first real value returned
C 	 RVAL2 double, second real value returned
C 	 RVAL3 double, third real value returned
C 	 RVAL4 double, forth real value returned
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
DIMENSION VALUE(4)
CHARACTER LINE*80, KEYWORD*(*), LINE2*80
LOGICAL KERR
DATA KERR /.FALSE./

C
C 	 Read Line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=200) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
STOP

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, 1 (5X,A50) 1 ) LINE

C
C 	 Parse Line
C

CALL CKNPAR (LINE, NODAT, LOUT, LINE2, ISTART, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR IN CKNPAR'
STOP

ENDIF
CALL CKXNUM (LINE2, NODAT, LOUT, NVAL, VALUE, KERR)
IF (KERR) THEN
WRITE (LOUT, *) 'ERROR IN CKXNUM'
STOP

ENDIF
RVAL1 = VALUE(1)
RVAL2 = VALUE(2)
RVAL3 = VALUE(3)
RVAL4 = VALUE(4)
RETURN

ENDIF
GOTO 50

200 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND. PROGRAM STOPPED.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')

END

SUBROUTINE MIX (KK, FLRT1, FLRT2, Z1, Z2, ICKWRK, RCKWRK)
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C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 This subroutine calculates the mixed temperature of two streams
C 	 along with the mixed mass flow rate and mass fractions
C
C 	 Input:
C	 FLRT1/2 flow rate of stream 1/2
C	 Z1/Z2 temperature and mass fractions of stream 1/2
C
C	 Output: 	 Zl, FLRT1
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER(I-N)
PARAMETER (KMAX = 250)
DIMENSION Z1(*), Z2(*), HMS1(KMAX), HMS2(KMAX), ZM(KMAX),

1 	 ICKWRK (*) , RCKWRK(*)
C
C 	 Enthalpies and mean heat capacities of each stream are found
C

CALL CKHMS(Z1(1), ICKWRK, RCKWRK, HMS1)
CALL CKHMS(Z2(1), ICKWRK, RCKWRK, HMS2)
CALL CKCPBS(Z1(1), Z1(2), ICKWRK, RCKWRK, CPAV1)
CALL CKCPBS(Z2(1), Z2(2), ICKWRK, RCKWRK, CPAV2)

C
C 	 Add masses and enthalpy of streams
C

DATA LOUT/6/
C 	 WRITE (LOUT,'(2X,A10,2X,2F8.0)')'Init Temp',Z1(1),Z2(1)

HT = 0
FLRTM = FLRT1 + FLRT2
DO 100 I = 1, KK

HT = HT + Z1(I+1)*HMS1(I)*FLRT1 + Z2(I+1)*HMS2(I)*FLRT2
ZM(I+1) = (Z1(I+1)*FLRT1 + Z2(I+1)*FLRT2)/FLRTM

100 CONTINUE
C
C 	 Calculate first guess for mix temperature
C

ZM(1) = (FLRT1*CPAV1*Z1(1) + FLRT2*CPAV2*Z2(1))/
1 	 (FLRT1*CPAV1 + FLRT2*CPAV2)
CALL CKCPBS(ZM(1), Z1(2), ICKWRK, RCKWRK, CPAV1I)
CALL CKCPBS(ZM(1), Z2(2), ICKWRK, RCKWRK, CPAV2I)
CPAV1 = (CPAV1 + CPAV1I)/2
CPAV2 = (CPAV2 + CPAV2I)/2
ZM(1) = (FLRT1*CPAV1*Z1(1) + FLRT2*CPAV2*Z2(1))/

1 	 (FLRT1*CPAV1 + FLRT2*CPAV2)
C	 WRITE (LOUT,'(2X, A10,2X,F8.3,E13.6)')'lst guess',ZM(1),HT
C
C	 Interpolate to get final mixing temperature
C

THIGH = 10000
T_LOW = 0
DO 200 J = 0,100
CALL CKHBMS(ZM(1), ZM(2), ICKWRK, RCKWRK, HAVE)
HTG = HAVE*FLRTM
DIFF = (HT - HTG)/ABS(HT)
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IF (ABS(DIFF) .LE. 0.0001) GOTO 400
ZM(1) = (1. + 0.1*DIFF)*ZM(1)

C 	 WRITE (LOUT,'(2X,A10,2X,F8.3,E13.6,E13.6) 1 )'next guess',
C 	 1 	 ZM(1),HTG,DIFF

200 CONTINUE
C
C 	 bisection technique if newton fails
C

DO 300 J = 0,100
ZM(1) = (T_HIGH + T_LOW)/2
CALL CKHBMS(ZM(1), ZM(2), ICKWRK, RCKWRK, HAVE)
HTG = HAVE*FLRTM
DIFF = (HT - HTG)/ABS(HT)
IF (DIFF .LT. 0.0) THEN

T_HIGH = ZM(1)
ELSE

T_LOW = ZM(1)
ENDIF
IF (ABS(DIFF) .LE. 0.0001) GOTO 400

C	 WRITE (LOUT,'(2X,A10,2X,F8.3,E13.6,E13.6)')'next guess',
C 	 1 	 ZM(1),HTG,DIFF

300 CONTINUE
WRITE(LOUT,350)

350 FORMAT(1X,'TEMPERATURE NOT CONVERGED IN MIX')
STOP

400 CONTINUE
FLRT1 = FLRTM
DO 500 I = 1, KK+1

Z1(I) = ZM(I)
500 CONTINUE

RETURN
END

C
C

SUBROUTINE SYMINDICIES (LIN, LOUT, KK, KSYM, KEYWORD,
1 	 INDICIES, IDX)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 SYMINDICIES returns the indicies of the selected species in the
C 	 line after the KEYWORD.
C
C 	 Inputs:
C 	 LIN 	 integer, input file unit
C 	 LOUT 	 integer, output file unit
C 	 KK 	 integer, number of species
C 	 KSYM character, array of species strings
C 	 KEYWORD character, prefix keyword
C
C 	 Output:
C 	 INDICIES integer, array of indicies of selected species
C 	 IDX 	 integer, number of selected species
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C

IMPLICIT DOUBLE PRECISION (A-H, O-Z), INTEGER (I-N)
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PARAMETER (KMAX=250)
DIMENSION INDICIES(*)
CHARACTER KSYM(*)*16, LINE*80, KEYWORD*(*)
LOGICAL KERR
DATA KERR /.FALSE./

C
C 	 Read Line
C

REWIND (LIN)
50 CONTINUE

READ (LIN, '(A)', END=200) LINE
IF (INDEX (LINE, 'END ') .EQ. 1) THEN
WRITE (LOUT, 8001) KEYWORD
RETURN

ENDIF
IF (INDEX (LINE, 'REM ') .EQ. 1) GOTO 50

C
C 	 Check keyword
C

IF (INDEX (LINE, KEYWORD) .EQ. 1) THEN
WRITE (LOUT, '(5X,A50)') LINE

READ (LIN, '(A)', END = 200) LINE
WRITE (LOUT, '(5X,A50)') LINE
CALL CKCRAY (LINE, KK, KSYM, LOUT, KMAX, INDICIES, IDX, KERR)
IF (KERR) THEN
WRITE(LOUT, 8003) KEYWORD
STOP

ENDIF
RETURN

ENDIF
GOTO 50

200 WRITE (LOUT, 8002)
STOP

8001 FORMAT ('KEY WORD - ' , A7, ' - NOT FOUND.')
8002 FORMAT ('UNEXPECTED END TO INPUT FILE ENCOUNTERED.')

	

8003 FORMAT ('ERROR IN CKCRAY FOR LINE FOLLOWING KEYWORD - 	 A10)
END

C
C

FUNCTION EQUIV_RATIO (KK, YF, YA, YK, YI, FLRTF, FLRTA, FLRTK,
1 	 FLRTI, KELE, KSYM, IWORK, RWORK)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Returns fuel/air equivalence ratio of input streams. Based on
C 	 complete combustion products of CO2, H2O, HCL, and N2.
C
C 	 Inputs:
C 	 KK 	 number of species
C 	 YF,YA,YK,YI 	 arrays of mass fractions of 4 streams
C 	 FLRT? 	 flow rates (g/s) of streams
C 	 KELE 	 character array of element symbols
C 	 KSYM 	 character arrays of species symbols
C 	 IWORK,RWORK integer and double work arrays
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (MM =6, KMAX = 250)
DIMENSION YF(*), YA(*), YK(*), YI(*), IWORK(*), RWORK(*),

1 	 NCE(MM,KMAX), Y(KMAX), X(KMAX), IELE(MM)
CHARACTER KELE(MM)*2, KSYM(*)*16

C
C 	 initialize variables, and get element matrix
C

TCL = 0
TO = 0
TC = 0
TH = 0
CALL CKNCF (MM, IWORK, RWORK, NCE)

C
C 	 find indices of key elements
C

CALL CKCOMP ('CI,KELE,MM,IELE(1))
CALL CKCOMP ('H',KELE,MM,IELE(2))
CALL CKCOMP ('CL',KELE,MM,IELE(3))
CALL CKCOMP ('0',KELE,MM,IELE(4))

C
C 	 Combine Streams
C

DO 50 K = 1,KK
Y(K) = (YF(K)*FLRTF + YA(K)*FLRTA + YK(K)*FLRTK +YI(K)*FLRTI)/

1 	 (FLRTF + FLRTA + FLRTK + FLRTI)
50 CONTINUE

C
C 	 Convert to Mole Fractions
C

CALL CKYTX (Y, IWORK, RWORK, X)
C
C 	 count species in various categories for entire stream on 1 mol
basis
C

DO 100 K = 1,KK
IC = NCE(IELE(1),K)
IH = NCE(IELE(2),K)
ICL = NCE(IELE(3),K)
IO = NCE(IELE(4),K)
TCL = TCL + X(K)*ICL
TC = TC + X(K)*IC
TH = TH + X(K)*IH
TO = TO + X(K)*IO

100 CONTINUE
CALL CKCOMP ('02', KSYM, KK, 102)
TO2 = X(IO2)

C
C 	 subtract free oxygen counted in previous loop
C

TO = TO - 2*T02
C
C	 Find required 02 and PHI
C

REQUIRED_02 = TC + 0.25*(TH -TCL) - 0.5*TO
EQUIV_RATIO = REQUIRED_O2/TO2
RETURN
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END
C
C

SUBROUTINE SAVER (KK, Z, X, SERIES, FILE1, FILE2, FILE3, FILE4,
1 	 KSYM, KELE, IWORK, RWORK, IPIC, IRAD, ICEM,
2 	 IK1, IK2, IK3, PHI, FREQ, TAU, FLRT, P, TEMP_RMS)

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 SAVER saves mole fractions of designated species in formated text
C 	 files and saves both mole and mass fractions of all species in
C 	 an unformatted binary file.
C
C 	 Input:
C
C 	 KK 	 integer, number of species
C 	 Z 	 double array, temp and mass fractions
C 	 X 	 double array, mole fractions
C 	 SERIES 	 logical, .TRUE. overwrites and makes header
C 	 FILE? character, output files
C 	 KSYM character array, specie symbols
C 	 KELE character array, element symbols
C 	 IWORK integer array, working array
C 	 RWORK double array, working array
C 	 IPIC integer arrray, indicies of selected species
C 	 IRAD,ICEM same
C 	 IK? 	 integer, number of indicies in respective
C 	 arrays
C 	 PHI 	 double, overall fuel/air equivalence ratio
C 	 FREQ double, turbulent frequency (Hz)
C 	 TAU double, mean residence time (sec)
C 	 FLRT double, mass flow rate (g/sec)
C 	 P 	 double, reactor pressure (atm)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION(A-H 2 O-Z), INTEGER(I-N)
C

PARAMETER (LFILE1 = 31, LFILE2 = 32, LFILE3 = 33, LFILE4 =34,
1 	 LOUT = 6)
DIMENSION Z(*), X(*), IWORK(*), RWORK(*), IPIC(*), IRAD(*),

1 	 ICEM(*)
CHARACTER KSYM(*)*16, KELE(*)*2, FILE1*(*), FILE2*(*), FILE3*(*

1 	 FILE4*(*), LINE*80
LOGICAL SERIES
COMMON /RCONS/ PATM, RU, TA, PA, UAV, PQUAV, TCOOL, BM, CM

C
C 	 Grouped CEMs
C

CALL GROUP (KK, X, KELE, IWORK, RWORK, THC, TCLC)
C
C 	 open output files
C

OPEN (UNIT = LFILE1, FORM='FORMATTED', STATUS = 'UNKNOWN',
1 	 FILE = FILE1)
OPEN (UNIT = LFILE2, FORM= 1 FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = FILE2)
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OPEN (UNIT = LFILE3, FORM='FORMATTED', STATUS = 'UNKNOWN',

	

1 	 FILE = FILE3)
OPEN (UNIT = LFILE4, FORM='UNFORMATTED', STATUS = 'UNKNOWN',

	

1 	 FILE = FILE4)
IF (SERIES) THEN

WRITE (LFILE1,7510) 'TEMPERATURE', (KSYM(IPIC(K)), K=1,IK1)
WRITE (LFILE2,7510) 'TEMPERATURE', (KSYM(IRAD(K)), K=1,IK2)
WRITE (LFILE3,7510) 'TEMPERATURE', 'RMS TEMP', 'PHI',

	

1 	 'FREQUENCY', 'TAU', 'Volume', 'Heat Trans', 'Heat Trans',

	

2 	 'Mass Flow','THC', 'TCLC', (KSYM(ICEM(K)), K=1,IK3)
WRITE (LFILE4) (KSYM(K), K=1,KK)
WRITE (LFILE4)
WRITE (LFILE4)

ELSE
DO 200 I = 1,100

READ (LFILE1,7516,END=220) LINE
READ (LFILE2,7516,END=220) LINE
READ (LFILE3,7516,END=220) LINE
READ (LFILE4,END=220)
READ (LFILE4,END=220)
READ (LFILE4,END=220)

	

200 	 CONTINUE
WRITE (LOUT,*) FILE1, "NO END FOUND!"
STOP

	

220 	 CONTINUE
BACKSPACE (LFILE1)

ENDIF
CALL CKRHOX (P*PATM, Z(1), X, IWORK, RWORK, RHO)
VOL = TAU*FLRT/RHO
UA = UAV*VOL/41868000
PQUA = PQUAV*VOL/41868000
WRITE (LFILE1,7512) Z(1), (X(IPIC(K)), K=1,IK1)
WRITE (LFILE2,7512) Z(1), (X(IRAD(K)), K=1,IK2)
WRITE (LFILE3,7513) Z(1), TEMP_RMS, PHI, FREQ, TAU, VOL, UA,

	

1 	 PQUA, FLRT, THC, TCLC, (X(ICEM(K)), K=1,IK3)
WRITE (LFILE4) Z(1), PHI, FREQ, THC, TCLC
WRITE (LFILE4) (X(K), K=1,KK)
WRITE (LFILE4) (Z(K), K=1,KK+1)

230 CONTINUE
IF (SERIES) ENDFILE (LFILE1)
IF (SERIES) ENDFILE (LFILE2)
IF (SERIES) ENDFILE (LFILE3)
IF (SERIES) ENDFILE (LFILE4)
CLOSE (LFILE1, STATUS ='KEEP')
CLOSE (LFILE2, STATUS='KEEP')
CLOSE (LFILE3, STATUS='KEEP')
CLOSE (LFILE4, STATUS='KEEP')

7510 FORMAT (2X, 31(' "',A16,'"'))
7512 FORMAT (4X, F11.2, 3X, 30(5X,E14.6))
7513 FORMAT (4X, F11.2, 2X, 8(5X,F14.4), 30(5X, E14.6))
7516 FORMAT (A80)

RETURN
END

SUBROUTINE ENERGY_BAL (TEMP, Y, FLRT, POINT, IWORK, RWORK)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
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C
C 	 Subroutine ENERGY_BAL logs the specific enthalpy, temperature,
C 	 flowrate, and total enthalpy of a stream at a designated point.
C
C 	 Input:
C 	 TEMP double, temperature of the stream
C 	 Y 	 double array, mass fractions
C 	 FLRT double, flow rate in g/s
C 	 POINT character, location of the stream
C 	 IWORK integer working array
C 	 RWORK double working array
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (LERG = 12)
DIMENSION Y(*), IWORK(*), RWORK(*)
CHARACTER POINT*(*), LINE*80
CALL CKHBMS (TEMP, Y, IWORK, RWORK, HAVE)
HRT = HAVE * FLRT
OPEN (UNIT = LERG, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = 'energy_bal')
DO 100 I = 1,1000

READ (LERG,7502,END=120) LINE
100 CONTINUE

WRITE (LOUT,*) FILE1, "NO END FOUND:"
STOP

120 CONTINUE
WRITE (LERG, 7501) POINT, TEMP, HAVE, FLRT, HRT
CLOSE (LERG, STATUS ='KEEP')

7501 FORMAT (A10,F7.0,' K ',E9.3,' erg/g ',E9.3,' g/s ',E9.3,' erg/s')
7502 FORMAT (A80)

RETURN
END

C
C

SUBROUTINE ELE_BAL (KK, X, KELE, FLRT, POINT, IWORK, RWORK)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C
C 	 Gives the mass flow rate of six elements at point POINT. Appends
C 	 results in file 'element_bal'.
C
C 	 Input:
C 	 KK 	 (integer) number of species
C 	 X 	 (double) mole fraction array
C 	 KELE 	 (character) array of element strings
C 	 FLRT 	 (double) total mass flowrate in g/s
C 	 POINT 	 (character) the sample point
C 	 IWORK 	 (integer) working array
C 	 RWORK 	 (double) working array
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
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PARAMETER (LELE = 12, MM = 6, KMAX = 250)
DIMENSION X(*), IWORK(*), RWORK(*), NCE(MM,KMAX), IELE(MM)
CHARACTER KELE(*)*2, POINT*(*), LINE*120
OPEN (UNIT = LELE, FORM='FORMATTED', STATUS = 'UNKNOWN',

1 	 FILE = 'element_bal')
DO 100 I = 1,1000

READ (LELE,8502,END=120) LINE
100 CONTINUE

WRITE (LOUT,*) FILET, "NO END FOUND:"
STOP

120 CONTINUE
C
C 	 initialize variables, and get element matrix
C

TC = 0
TH = 0
TO = 0
TCL = 0
TAR = 0
TN = 0
CALL CKNCF (MM, IWORK, RWORK, NCE)

C
C 	 find indices of key elements
C

CALL CKCOMP ('C',KELE,MM,IELE(1))
CALL CKCOMP ('H',KELE,MM,IELE(2))
CALL CKCOMP ( 1 0 1 ,KELE,MM,IELE(3))
CALL CKCOMP ('CL',KELE,MM,IELE(4))
CALL CKCOMP ('AR',KELE,MM,IELE(5))
CALL CKCOMP ('N',KELE,MM,IELE(6))

C
C 	 count species in various categories for entire stream
C

DO 200 K = 1,KK
TC = TC + NCE(IELE(1),K)*X(K)
TH = TH + NCE(IELE(2),K)*X(K)
TO = TO + NCE(IELE(3),K)*X(K)
TCL = TCL + NCE(IELE(4),K)*X(K)
TAR = TAR + NCE(IELE(5),K)*X(K)
TN = TN + NCE(IELE(6),K)*X(K)

200 CONTINUE
CALL CKMMWX (X, IWORK, RWORK, WTM)
TC = TC * FLRT/WTM * 12.0112
TH = TH * FLRT/WTM * 1.00797
TO = TO * FLRT/WTM * 15.9994
TCL = TCL * FLRT/WTM * 35.4530
TAR = TAR * FLRT/WTM * 39.9480
TN = TN * FLRT/WTM * 14.0067
WRITE (LELE, 8501) POINT, TC, TH, TO, TCL, TAR, TN
RETURN

8501 FORMAT (A10, 2X, '(in g/s)', 2X, 'C 	 E9.3, ' 	 H 	 E9.3, ' 	 0 I,
1 	 E9.3, ' 	 CL 	 E9.3, ' 	 AR ', E9.3, ' 	 N 	 E9.3)

8502 FORMAT (Al20)
END

C
FUNCTION UA_FIND (KK, II, TIN, TOUT, TA, X, KSYM, FLRT, PA,

1 	 TAU, IWORK, RWORK)
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C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 Returns estimate of UA (ergs/(sec*K)). Uses three fixed
C 	 temperature PSRs each with 1/3 of the residence time TAU
C 	 temperatures are 1) input 2) arithmetic mean 3) exit
C
C 	 Q UA(TLM) 	 where Q = Hin - Hout
C
C 	 TLM is the co-current log mean between the input temperature, the
C 	 output temperature and the ambient temperature.
C
C 	 Inputs:
C 	 KK 	 integer, number of species
C 	 II 	 integer, number of reactions
C 	 TIN 	 double, inlet temperature (K)
C 	 TOUT 	 double, desired outlet temperature (K)
C 	 TA 	 double, ambient temperature (K)
C 	 X 	 double array(KK), mole fractions
C 	 KSYM 	 character array of specie symbols
C 	 FLRT 	 double, flow rate (g/s) of inlet stream
C 	 PA 	 double, ambient pressure (atm)
C 	 TAU 	 double, residence time of the reactor
C 	 IWORK,RWORK integer and double work arrays
C
C 	 Output:
C 	 UA 	 double, heat transfer coefficient (erg/s*K)
C
C 	 Scratch:
C 	 XSCT 	 double array(K), outlet mole fractions
C 	 ZSCT 	 double array(K+1), outlet temp, mass frac
C 	 HAVE_IN 	 double, average input enthalpy
C 	 HAVE_OUT 	 double, average output enthalpy
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

IMPLICIT DOUBLE PRECISION (A-H 2 O-Z), INTEGER (I-N)
PARAMETER (LOUT=6, KMAX = 250)
DIMENSION X(*), IWORK(*), RWORK(*), XSCT(KMAX), ZSCT(KMAX)
CHARACTER KSYM(*)*16

C
C 	 Find Mass Fractions and Mean Input Enthalpy
C

DO 200 K = 1, KK
XSCT(K) = X(K)

200 CONTINUE
ZSCT(1) = TIN
CALL CKXTY(X, IWORK, RWORK, ZSCT(2))
CALL CKHBMS(ZSCT(1), ZSCT(2), IWORK, RWORK, HAVE _IN)

C
C 	 A series of 3 PSRs to approximate PFR output composition
C

TAU_I = TAU/3
TEMP = TIN
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
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CALL CKYTX(ZSCT(2), IWORK, RWORK, XSCT)
TEMP = (TIN + TOUT)/2
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
CALL CKYTX(ZSCT(2), IWORK, RWORK, XSCT)
TEMP = TOUT
CALL PDPSR(97, KK, II, ZSCT(1), XSCT, KSYM, FLRT, PA, TAU_I,

1 	 .TRUE., 0, TEMP, .FALSE., .TRUE., .FALSE., ZSCT)
C
C 	 Output enthalpy
C

CALL CKHBMS(ZSCT(1), ZSCT(2), IWORK, RWORK, HAVE_OUT)
C
C 	 Net enthalpy loss
C

QLOSS = FLRT*(HAVE IN - HAVE_OUT)
C
C 	 Log mean temperaure and estimated UA
C

TLM = (TIN - TOUT)/LOG((TIN - TA)/(TOUT - TA))
UA_FIND = QLOSS/TLM
RETURN
END

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C 	 END OF PROGRAM
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC



APPENDIX E

RTD RECONSTRUCTION AND PARAMETER FITTING
TECHNIQUES AND PROGRAMS

This appendix contains several MATLAB script programs used to identify the RTDs and

fit model parameters. MATLAB uses a C-like scripting language that can deal with entire

vectors and matrices in a single statement. The documentation describes the program

direction, but does not explain individual MATLAB calls.

E.1 Fitpoly: a MATLAB M-File for a 5 Parameter Model Fit

function [g 1 ,g2,g3] = fitpoly6(model,t,U 1 ,Y 1 ,t 1 ,U2,Y2,t2,U3,Y3,t3)

% [gl g2 g3] = FITPOLY6(model,t,U1,Y1,t1,U2,Y2,t2,U3,Y3,t3)

% FITPOLY fits a 5 parameter model the RTD data from three input - output
% combinations in the mixing chamber of the EPA-AEERL Combustion Divisions
% RKIS. The input-output combinations are:

1. B 1 to 4
2. C to 4
3.	 B 1 to 3

% FITPOLY uses a nonlinear curve fit routine that uses the Nelder-Meade simplex
% search algorithm (FMIN) to minimize the a merit function designed to
% find parameters based on a least squares criterion. The merit function is the
% sum of the squares of the errors between the model and the data. The response
% of three separate input and output combinations are fitted simultaneously.

% FITPOLY fits the integrated data. The model outputs are simulated by the
% control toolbox function LSIM. The integrated analyzer response is the input
% function. The output is subtracted from averaged normalized step data and
% squared to give the merit function. Required input is:

U1, U2, U3 	 averaged analyzer data corresponding to t
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Y1, Y2, Y3	 ordered normalized step-down system responses

t1, t2, t3	 time vectors correcponding to the above

the time vector

%	 model	 string of the model transfer function as such:
[Y l_pred,Y2_pred,Y3_pred,g 1 ,g2,g3 ] = model(t,U 1 ,U2,U3,c)
where c is the vector of parameters

% Additionally a function err = modelf(c0) must be created that returns the squared
% error of the model.

echo on
clc

dt = 0.05;

% Set up evaluation string to analyze model results

evalstr = [model,'(t,U1,U2,U3,c)']

% model string for FMIN minimization. This model produces a merit function based
% on least square criterion that FMIN minimizes

model = [model,'f' ];
n = length(t);

% Trim analyzer response based on the lengh of t, assumes t begins at 0

U1 = U1(1:n);
U2 = U2(1:n);
U3 = U3(1:n);

% Trim system response data within range of t

indicies = find((t1>=min(t))&(t 1 <=max(t)+0.05 ));
Y1 = Y1(indicies);
t 1 = t 1 (indicies);
indicies = find((t2>=min(t))&(t2<=max(1)+0.05));
Y2 = Y2(indicies);
t2 = t2(indicies);
indicies = find((t3>=min(t))&(t3<=max(t)+0.05));
Y3 = Y3(indicies);
t3 = t3(indicies);

% Pass the Data to the Model



global t U1 Y1 t1 U2 Y2 t2 U3 Y3 t3

% Set up graphs and plot handles

global Axeshandlel Plothandlel Axeshandle2 Plothandle2 Axeshandle3 Plothandle3
figure('Name','Fit to Normalized System Step Response);
hold on;
Axeshandle 1 = subplot(2,2, 1) ;
plot(t1,Y1;c-VEraseModeVnone');
xlabel(B1 to 4: Time (sec)'),
ylabel('Cumulative Probability');
Axeshandle2 = subplot(2,2,2);
plot(t2,Y2,'c-','EraseMode','none');
xlabel('C to 4: Time (sec)'),
ylabel('Cumulative Probability');
Axeshandle3 = subplot(2,2,3);
plot(t3,Y3;c-VEraseModeVnone');
xlabel('B1 to 3: Time (sec)'),
ylabel('Cumulative Probability');
axes(Axeshandlel)
set(Axeshandlel,'NextPlot','add')
Plothandlel = plot(t1.Y1,'y-','EraseMode'.'xor');
axes(Axeshandle2)
set(Axeshandle2,'NextPlot','add')
Plothandle2 = plot(12,Y2,'y-','EraseMode','xor');
axes(Axeshandle3)
set(Axeshandle3,'NextPlot','add')
Plothandle3 = plot(t3,Y34-','EraseModeVxor');

% Optimizeparameters

c00 = [2 44 .8 01';
op = foptions;
op(18) = 1;
op(1) = 1;
op(2) = le-6;
op(14) = 5000;
c = fmins(model,c00,op,[1);

% c = c00;
al = c(1);
a2 = c(2);
a3 = c(3);
a4 = c(4);
a() = c(5);

[Y 1 _pred,Y2_pred,Y3_pred,gl_pred,g2 pred,g3 predl = eval(evalstr);
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% Replot step responses for the record

figure('Name','Fit to Normalized System Step Response Data');
plot(t 1 ,Y 1 ,'.',t,Yl_pred,'-');
xlabel('B1 to 4: Time (sec)'),
ylabel('Cumulative Probability');
figure('Name','Fit to Normalized System Step Response Data');

xlabel('C to 4: Time (sec)'),
ylabel('Cumulative Probability');
figure('Name','Fit to Normalized System Step Response Data');
plot(t3,Y3,'.',t,Y3_pred,'-');
xlabel('B1 to 3: Time (sec)'),
ylabel('Cumulative Probability');

% Analysis of residuals

residuall = Y1 - interpl(t,Yl_pred,t1,'spline');
residual2 = Y2 - interp 1 (t,Y2_pred,t2,'spline);
residual3 = Y3 - interp 1 (t, Y3_pred,t 3 .'spline');
figure('Name','Model Residuals');
subplot(2,2, 1),
plot(t 1 ,residual 1 ,T-');
xlabel('B1 to 4: Time (sec)'),
ylabel('Cumulative Probability');
subplot(2,2,2),
plot(t2,residual2,'r-');
xlabel('C to 4: Time (sec)'),
ylabel('Cumulative Probability');
subplot(2,2,3),
plot(t3,residual3,T-');
xlabel('B1 to 3: Time (sec)'),
ylabel('Cumulative Probability');

% Correlation of the residuals

rxx 1 = correla2(residu al 1 ,residual 1 );
rxx2 = correla2(residual2,residual2);
rxx3 = correla2(residual3,residual3);
figure('Name','Auto Correlation of the Residuals');
subplot(2,2,1),
plot(t 1 ,rxx 1 ,'r-');
xlabel('B1 to 4: Time (sec)),
subplot(2,2,2),
plot(t2,rxx2,'r-');
xlabel('C to 4: Time (sea),
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subplot(2,2,3),
plot(t3,rxx3,'r-1;
xlabel('B1 to 3: Time (sec)');

% Compute the covariance matrix and estimate the confidence bounds

% Compute numeric derivatives wrt a

dl = 1/al;
d2 = 1/a2;
d3= 1/a3;
ah4 a4 + 0.0001;
ah0 = a0 + 0.0001;

dh1 = dl + 0.0001;
dh2 = d2 + 0.0001;
dh3 =d3 +U.0001'
ah1 = 1/dh1;
ah2 1/dh2;
ah3 = 1/dh3;
h = ah0 - a0;

c = [al a2 a3 ah4 a0];
[Yl_pred_h,Y2_pred_h,Y3_pred_h,g1 pred,g2_
dyda4 = [(Yl_pred_h - Yl_pred)/h;(Y2_pred_h

c = [ah1 a2 a3 a4 a01;
[Y 1 _pred h,Y2_pred_h,Y3 pred_h,g 1 _pred,g2_pred,g3_pred] = eval(evalstr);
dydal = [(Y 1 _pred h - Y l_pred)/h;(Y2_pred_h - Y2 pred)/h;(Y3_pred_h - Y3_pred)/h] ;

c= [al ah2 a3 a4 a0];
[Y 1_pred h,Y2_pred_h,Y3_pred_h,g1_pred,g2 pred,g3_pred] = eval(evalstr);
dyda2 = [ (Y 1 _pred_h - Yl_pred)/h,(Y2_pred_h - Y2_pred)/h;(Y3_pred_h - Y3_pred)/h] ;

c= [al a2 ah3 a4 a0];
[Y1_pred h,Y2_pred_h.Y3 pred_h,g1_pred,g2_

dyda3 = [(Y1_pred h - Y1_pred)/h;(Y2 pred_h

c = [al a2 a3 a0 ah0];
[Y1  pred h,Y2 pred h,Y3 pred h,g1  pred,g2_
dyda0 = [(Y1_pred_h - Y1_pred)/h:(Y2_pred_h

% Model Variance

df = length([residual 1 ;residual2 ;residual3 ])-5
sigma_sq = sum([residuall ;residu al2 ;residual3] . ^2) ;
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pred,g3_pred] = eval(evalstr);
- Y2 pred)/h;(Y3_pred_h - Y3_pred)/h];

pred,g3_pred] = eval(evalstr);
-Y2_pred)/h;(Y3_pred h - Y3 pred)/h];

pred,g3_predi = eval(evalstr);
- Y2_pred)/h;(Y3_pred_h - Y3_pred)/h];



sigma_sq = sigma_sq/df

% Obtain variance vector and differentiate system response data
% and create variance matrix

[Yls,yl,sigmal] = sgfilt2(t1,Y1,t,10,2);
[Y2s,y2,sigma2] = sgfilt2(t2,Y2,t,10,2);
[Y3s,y3,sigma3] = sgfilt2(t3,Y3,t,10.2);
variance = [sigmal;sigma2;sigma3].^2;
variance = [ variance variance variance variance variance]';

% Create Covariance Matrix

dY = [dyda0 dyda 1 dyda2 dyda3 dyda4];
alpha = dY'./variance*dY
size(alpha)
C = inv(alpha)
Formal_Variances = diag(C)

% Standard Errors

thetal_se = sqrt(C(1,1));
taul_se sqrt(C(2,2));
tau2_se = sqrt(C(3,3));
tau3_se = sqrt(C(4,4));
tau4_se = sqrt(C(5,5));
taul = dl;
tau2 = d2;
tau3 = d3;
thetal = a0;
tau4 = a4;
fprintf(1,'thetal=1t%6.4f [%6.4f1\d,theta1, theta 1_se)
fprintf(1,'taul =\t%6.4f [%6.41]\n',taul, tau l_se)
fprintf(1,'tau2 =\t%6.4f [%6.411\nr,tau2, tau2_se)
fprintf(1,'tau3 =\t%6.4f [%6.4f]\n',tau3, tau3_se)
fprintf(1,'tau4 =\t%6.4f [%6.4f1\n',tau4, tau4_se)

break

% Comparison to differentiated data

qc
% differentiate and normalize analyzer response using a 10-2 SG filter

[Us,u1] = sgfilter(t,U1,10,2);
[Us,u2] = sgfilter(t,U2,10,2);
[Us,u3] = sgfilter(t,U3,10,2);
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U1 = ul/trapz(t,u1);
U2 = u2/trapz(t,u2);
U3 = u3/trapz(t,u3);

% normalize differentiated system responses

yl = yl/trapz(t,y1);
y2 = y2/trapz(t,y2);
y3 y3/trapz(t,y3);

% find system impulse response

c = [al a2 a3 a4 a0];
[Y1_pred,Y2_pred,Y3_pred,g1_pred,g2_pred,g3_pred] = eval(evalstr);

% Add a 4 sec tail to each function

n = length(t);
t_add = [t(n)+dt:dt:t(n)+4]';
t= [t;t_addl;
pad = zeros(length(t_add),1);
yl = [y1;pad];
y2 = [y2;pad];
y3 = [y3;pad];
Y1_pred = [Y1_pred;pad];
Y2_pred = [Y2_pred;pad];
Y3_pred = [Y3_pred;pad];
g 1 _pred [g1_pred;pad];
g2_pred = [g2_pred;pad];
g3_pred = [g3_pred;pad];
u 1 = [u I ;pad];
u2 [u2;pad];
u3 = [u3;pad];
n_old = n;
n = length(t);
n_freq = (n-1 )/2 + 1 ;
nqf = 1/(2*dt);
freq = [0:nqf/(n freq- 1 ):nqfr ;
figure('Name','System Response');
plot(t,Y1_pred4-',t,y1,'c+');
xlabel('B1 to 4: Time (sec)),
ylabel('Probability Density'),
axis([0 t(n_old) min(yl) 4/3*max(yl)]);
figure('Name','System Response');
plot(t,Y2_pred4- 1 ,t,y2, 1 c+ 1 );
xlabel('C to 4: Time (sec)'),
ylabel('Probability Density'),
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axis(R) t(n_old) min(y2) 4/3*max(y2)[);
figure(Name','System Response');
plot(t,Y3_pred,ly-',t,y3,'c+');
xlabel(B1 to 3: Time (see));
ylabel('Probability Density'),
axis([0 t(n_old) min(y3) 4/3*max(Y3) I);

% reconstruct transfer function B1 to 4

RangeStr = 'B 1 to 4';
[g1_pred g 1 _rest g 1 t_shift] = RECONST(RangeStr,u 1 ,Y 1 pred,y 1,g 1 pred,t,dt,n);
Spec_A(RangeStr,u 1 , y 1 ,g 1 ,g 1_rcst,g 1_pred,freq,n_freq,dt)

% Compute Moments B1 to 4

meanl = trapz(t_shift,t shift.*g 1 );
varil = trapz(t_shift,(t_shift-mean1).^2.*g1);
skew 1 = 1/(vari 1 A (3/2))*trapz(t_shift,(I shift-meanl )/3.. *g 1);

% C to 4

RangeStr = 'C to 4';
[g2_pred g2 rcst g2 t_shift] = RECONST(RangeStr,u2,Y2_pred,y2,g2_pred,t,dt,n);
Spec_A(RangeStr,u2,y2,g2,g2_rcst,22_pred,freq,n freq,dt)

% Compute Moments C to 4

mean2 = trapz(t_shift,t_shift. *g2);
vari2 = trapz(t_shift,(t_shift-mean2).^2.*g2);
skew2 = 1/(vari2^(3/2))*trapz(t_shift,(t_shift-mean2).^3.*g2);

% B1 to3

RangeStr = 'B1 to 3';
[g3_pred g3_rcst g3 t_shift] = RECONST(RangeStr,u3,Y3_pred,y3,g3_pred,t,dt,n);
Spec_A(RangeStr,u3,y3,g3,g3 rcst,g3_pred,freq,n_freq,dt)

% Compute Moments B1 to 3

mean3 = trapz(t_shift,t_shift.*g3);
vari3 = trapz(t_shift,(t_shift-mean3). ^2. *g3);
skew3 = 1/(vari3^(3/2))*trapz(t_shift,(t_shift-mean3).^3.*g3),

% Input

meana 1 = trapz(t,t.*u 1);
varia 1 = trapz(t,(t-meana 1). A 2.*u1);
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skewal = 1/(varial^(3/2))*trapz(t,(t-meana1).^3.*u1);

meana2 = trapz(t,t.*u2);
varia2 = trapz(t,(t-meana2).^2.*u2);
skewa2 = 1/(varia2^(3/2))*trapz(t,(t-meana2).^3.*u2);

meana3 = trapz(t,t.*u3);
varia3 = trapz(t,(t-meana3).^2.*u3);
skewa3 = 1/(varia3^(3/2))*trapz(t,(t-meana3).^3.*u3);

% Response

meanr 1 = trapz(t,t.*y 1 );
varirl = trapz(t,(t-meanr1).^2.*y1);
skewr 1 = 1/(varir 1^(3/2))*trapz(t.(t-meanr 1 ).^3.*y 1);

meanr2 = trapz(t,t.*y2);
varir2 = trapz(t,(t-meanr2).^2.*y2);
skewr2 = 1/(varir2^(3/2))*trapz(t,(t-meanr2).^3.*y2);

meanr3 = trapz(t,t.*y3);
varir3 = trapz(t,(t-meanr3). ^2. *y3);
skewr3 = 1/(varir3^(3/2))*trapz(t,(t-meanr3).^3.*y3);

fprint f( 1 ,'\nRTDs \n')
fprintf(1,'meanl = %6.4f \tvariancel = %6.4f Vskewnessl = %6.41\d,meanl,vari1,skewl)
fprintf(1,'mean2 = %6.4f \tvariance2 = %6.4f \tskewness2 = %6.4f\n',mean2,vari2,skew2)
fprintf(1,'mean3 = %6.4f \tvariance3 = %6.4f \tskewness3 = %6.4f\d,mean3,vari3,skew3)
fprintf(1,'\nAnalyzer Response\n')
fprintf( 1 ,'meanl = %6.4f \tvariancel = %6.4f \tskewness 1 = %6.4f\n',meana 1 , varia 1 ,skewa 1 )
fprintf(1,'mean2 = %6.4f \tvariance2 = %6.4f \tskewness2 = %6.41\n',meana2,varia2,skewa2)
fprintf(1,'mean3 = %6.4f \tvariance3 %6.4f \tskewness3 = %6.41\d,meana3,varia3,skewa3)
fprintf(1,ThSystem Response\n')
fprintf( 1,'mean 1 = %© 6.4f \tvariance 1 = % 6.4f \tskewness 1 = %6.4f\n',meanr 1 , varir 1 ,skewr 1 )
fprintf(1,'mean2 = %6.4f \tvariance2 = %6.4f \tskewness2 = %6.4f\n',meanr2,varir2,skewr2)
fprintf(1,'mean3 = %6.4f \tvariance3 = %6.4f \tskewness3 = %6.4f\n',meanr3,varir3,skewr3)

E.2 Example Model Function

function [Yl,Y2,Y3,gl,g2,g3] = modell(t,Ul,U2,U3,c)

% Returns simulation and step response of modell with parameter vector c to
% a set of data given inthe global variable Data.



% model 1 assumes the form of the transfer function of two
% PSRs in series and a delay expressed in the parameter a00
% which is imposed after the LSIM function:

a2*a3
% G(s)   * exp(-a00*s)

(s + a2) * (s + a3)

% model 2 assumes the form of the transfer function of two
% PSRs in series added to one PSR:

al*a3	 al
% G(s) =	 a0* 	  + (1 a0) * 	

(s + al)* (s + a3)	 (s + al)

% which simplifies to:

al*[(1 - a0)*s + a3]
% G(s) =

(s + al) * (s + a3)

% model 3 assumes the form of the transfer function of a single PSR

a2
% G(s) =

(s + a2)

al = c(1);
a2 = c(2);
a3 = c(3);
a0 = c(4);
a00 = c(5);
numl = [a3*a2];
denl = conv([1 a3],[1 a21);
num2 = [al*(1-a0),al*a3];
dent = conv([1 al],[1 a3]);
num3 = [a2];
den3 = [1 a2];
Y1 =
Y 1 = interp1M-5 :0.05 :-0.05 f;tl-Fa00, [zeros(100,1);Y1],t,tlinear');
Y2 = lsim(num2,den2,U2,t);
Y3 = lsim(num3,den3,U3,t);
gl = impulse(numl,denl,t);
gl = interpl([[-5:0.05:-0.05 ] 1;t]+a00,[zeros(100,1);g1],t,linear');
g2 = impulse(num2,den2,t);
g3 = impulse(num3,den3,t);

295



E.3 Satvisky-Golay Filter

function [ys,dydx2,sigma] = sgfilt2(x,y,x2,win,order)

% Satvisky-Golay Windowed Filter (windowed on x2)
% [ys,dydx2,sigma] = sgfilt2(x,y,x2,win,order)

% Returns the smoothed dependent variable, ys, and first derivative, dydx2
% wrt x2. win (integer) specifies the window to the left and right of the
% point to be smoothed. order specified the order of the fitted polynomial.

% The SG filter fits a polynomial of specified order to the points in the
% "window" about a point in x2 using least square criteria. All pairs of x,y
% which fall within the bounds of this window are used. The first derivative
% is found from the coefficients of the polynomial. The process is repeated
% for each individual point.

% sigma is the array of sample standard deviations of y corresponding to the
% x values within the sequence interval, dx2, about x(i)

% Least square fit is found using QR decomposition

if (order > win)
fprintf(1n1Polynomial order is larger than window size.\n');
break;

end
[ml,n1] = size(x);
[m2,n2] = size(y);
[m3,n3] = size(x2);
if ((n1 -= n2) I (ml -= m2))

fprinttnn\Input vectors must be the same size\n');
err = 1;
break;

end
if (n1 > ml)

x = x';
end
if (n2 > m2)

Y = Y ? ;
end
if (n3 > m3)

x2 = x2';
end
if (min(x2) < min(x)) I (max(x2) > max(x))
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fprintf( 1\n\Second time independent vector must lie within the bounds of the first\n');
err = 1;
break;

end
n = length(x);
n2 = length(x2);
dydx2 = zeros(n2,1);
ys = zeros(n2,1);
sigma = zeros(n2,1);
order = round(order);
win = round(win);
dx2 = 1.5 *(max(x2)-min(x2))/(n2- 1 ) ;

% Create linearized polynomial regression matrix
% also a pseudo regression matrix for x2 to use the
% resulting parameters in a polynomial of order 'order'

X = [ones(n,1),x];
X2 = [ones(n2,1),x2];
for i = 2:order

X = [X x.Ai];
X2 = [X2 x2.^i];

end

% solve regression for each point

for i = 1:n2

% x2 window indicies

win Jower2 = i - win;
win_upper2 = i + win;
if (win_lower2 < 1)

win_lower2 = 1;
end
if (win_upper2 > n2)

win_upper2 = n2;
end

% Indicies of x within the bounds of the x2 window

win_indicies = find((x>=x2(win_lower2))&(x<=x2(win_upper2)));

% least Squares using QR factorization solves an over specified
% equation Ax=b where A=X, x=a (the parameters) and b=y
% the estimator (best fit) of y is c
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b = y(win_indicies);
A = X(win_indicies,:);
[Q,R] = qr(A);
c = Q'*b;
a = R\c;
ys(i) = a'*X2(i,:)';
dydx2(i) = [[ 1 :orderi.*a(2:order+ 1 )F*X2(i, 1 :order)';

% Find the standard deviations within the intervals of x2

interval = find((x>=x2(i)-dx2)&(x<=x2(i)+dx2));
sigma(i) = std(y(interval)-(x(interval)-x2(i)rdydx2(i));

end
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