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ABSTRACT

STRUCTURAL, TRANSPORT, AND MAGNETIC STUDIES OF PEROVSKITE
B .„C a„Mn03

By
Hyungje Woo

This dissertation presents an investigation of the fundamental physics of the perovskite

system Bii_xCa,Mn03. This material belongs to a group of simple perovskites called the

manganites which are of technological importance for magnetic device applications as

read-head sensors.

The Bii,CaxMn03 system is known to exhibit charge ordering (and high

sensitivity to magnetic fields) for a much broader range of x than the well-characterized

La i ,CaxMn03 system. However, the properties of Bii_xCa,Mn03 over the entire doping

range are not well understood. Magnetization and resistivity measurements (up to 30T)

as well as x-ray absorption and x-ray diffraction measurements on Bii_„Ca xMn03 were

performed to correlate the structural, transport, and magnetic properties. The system was

found to be insulating and antiferromagnetic for the entire range of x studied (x 0.4)

except near x 0.875 where glassy behavior was observed. Detailed magnetization

measurements were performed as a function of field and temperature to explore the net

moment on the Mn sites as a function of x. These measurements reveal the charge

ordering and Neel temperatures. X-ray absorption measurements reveal significant

structural distortions of the Mn-O bond distributions with increasing Bi content that

correlates directly with increasing charge-ordering temperatures. Moreover, x-ray

diffraction data reveal peak splittings consistent with lower symmetry cells as the Bi

content increases. These structural-magnetic correlations point to the importance of

Mn-o distortions in stabilizing the charge-ordered state in the manganites. A structural,

transport and magnetic phase diagram over the complete range of x has been developed.
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CHAPTER 1

INTRODUCTION

1.1 MRIGMRICMR Technology

1.1.1 A Brief History of Data Storage Technology

The idea of storing information magnetically is based on the fact that a reading sensor

(called a read head) can be used to read the magnetization of local magnetic moments

(called magnetic bits) whose direction codes for 0 or 1 on the magnetic disk. In order to

enhance the capacity of storage devices, several steps can be taken such as: (1) reduction

of the read head to magnetic disk distance, (2) enhancement of the sensitivity of the

magnetic sensor, and (3) reduction of the magnetic bit size. Materials with large changes

in resistance in response to magnetic fields (typically 0 gauss to 200 gauss) are an

important aspect in enhancing storage density. Some of the existing sensor materials will

be reviewed before focusing on the manganites. However, we now put the later

development into a historical perspective.

In 1877, Edison invented a mechanical phonograph that operated with good sound

quality for recordings lasting several minutes. In 1898, the Danish telephone and

telegraph engineer Valdemar Poulsen invented the functioning magnetic recorder to

record sound after Oberlin Smith had come up with the idea about 20 years before (see

Fig. 1.1).
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Fig. 1.1 The first telegraphone invented by Valdemar Poulsen. (a) The electromagnet
"M" on a steel wire with endless steel wire traveled along and recorded or replayed
sound. (b) Close-up of electromagnet M zoomed in from the figure (a). 1

The mechanism of Valdemar Poulsen is based on the fact that the electromagnet

"M" moves on a steel wire which can be magnetically polarized locally. If the exciting

circuit through the magnet is alternatively opened and closed, the steel wire will be

magnetized corresponding to the strength of the magnet during the periods when the

circuit is closed. Therefore, the steel wire holds a permanent record of the magnetic

chances. Running the electromagnet without a source read enabled one to read stored

information. A patent for this idea was obtained by him.

His initial interest was to focus on leaving a message when people were not home

(nowadays called an "answering machine"). Poulsen obtained a successful short

recording along a piece of piano wire by moving the electromagnet and taking into the

microphone. He played back the sound when the electromagnet was connected a

telephone earpiece and moved along the wire in the same direction followed during the

recording process On December 1, 1898, Poulsen designed a more complicated machine

for his first patent application on magnetic storage. 2 It successfully recorded sound and

was late called "Telegraphone".
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Fig. 1.2 Valdemar Poulsen's first patent, a telegraphone. The telegraphone consists of a
drum, wire and steel tape. 3

At the time of the expiration of Valdemar Poulsen's patents (in 1918), the German

electrical engineer Kurt Stille investigated the development of the telegraphone [see Fig.

1.2]. The telegraphone was a wrapped with wire around a drum and a recordingIplayback

head that traveled by a screw thread on top.

In 1932, because of poor sales, Stille decided to contract with Ferdinand

Schuchard AG to develop a totally new dictating machine, the Dailygraph magnetic wire

recorder. But rights to the design were sold to International Telephone and Telegraph

(ITT). In mid-1930s, ITT gave responsibility for magnetic recording to its subsidiary C.

Lorenz AG which produced a variety of steel tape and wire-based recorders, called the

Stahtonbandmaschine. Later, the wire and steel tape was replaced by thin plastic tape.

In 1928, The Austrian inventor Fritz Pfleumer who lived in Dresden, Germany used a

method for coating cigarette paper with small bronze particles for decorative purposes.

Eventually, Pfleumer found that his coating technology could be applied to powdered

magnetic material and created recording tape that was cheaper and easier to use than the

solid steel wire or tape of previous machines. In 1932, the Aligemeine
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Elektrizitatsgesellschaft (AEG) developed his idea and began manufacture of a machine

calling the magnetophone.

Since the late 1940s, systems using magnetically coated tape, ring heads, and

longitudinal magnetization have been developed. The first major application was for

audio recording using linear analog methods based on ac biasing. The pursuit of high

signal-to-noise ratios while increasing recording density, continued for audio and

instrumentation applications at the leading edge of high-density magnetic recording

technology. Further technological expansion led to the development of tape recording for

the storage of digital data by using unbiased nonlinear recording. o This tape drive

devices were pushed to operate at high tape speeds resulting in more rapid fast access to

stored data. The demand for fast access made possible magnetic strips and loops, but

these devices have problem of reliability. Even today, tape-drive systems remain the

primary removable storage technology for digital data.

Tape storage was followed by an effort to move from stationary-head tape

machines to video recording. This failed because of the requirement of excessive tape

speed to record very high frequencies. In 1956, this problem was solved by using a

scanning-head machine. This innovation was originally applied to professional video

recording using high-speed transverse scanning of a slowly moving tape. Its subsequent

development of helical scanning techniques produced lower-cost drives which were used

in the commercial video-recording market. 5

In 1957, the rotating rigid disk for digital data storage was introduced. 6 A read-

write head significantly improved head-media velocity by employing an air bearing to

support it. This enabled fast radial accessing over the disk in addition to high reliability
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and high data access rate. The flexible-disk system in-contact recording became a

primary product starting with the personal computer. 7 The low-cost storage technology

uses a single coated plastic disk in a protective jacket. The removable, lightweight

"diskette" led the market for small PCs.

A hard-disk drive is formed by stacking disk platters where each platter is a

aluminum alloy or glass substrate that is coated with a magnetic material and protective

layers. ReadIwrite heads placed on the magnetic media store and retrieve data. The

spindle motor rotates with a speed of between 3,600 and 10,000 revolutions per minute. 8

In 1956, IBM reported the first hard-disk drive, "the random access method of accounting

and control (RAMAC)" that had only 50 aluminum platters that were 24 inches in

diameter and coated with magnetic iron oxide. Not surprisingly, RAMAC could store

only up to five million characters (character — byte) and weighed almost a ton and

occupied the floor space of two modern refrigerators. Presently, desktop PCs have disk

drives of over 70 Gb. The physical disks are getting smaller, disks are thinner, and the

distance between head and platter are reduced (called the fly height, that is the order of 1

tin (= 25 nm) for 5 Gbits/in2 in 1997) 9 while the cost of hard drives is dropping

dramatically. Although heads were made of ferrite in previous years, in 1979 silicon

chip-building technology successfully fabricated a thin film read-head. These heads were

used to write data in tiny domains. In 1990s, IBM has produced a new technology called

the magnetoresistive (MR) head, which is based on the variation of the electrical

resistance of the read element by the magnetic field of the magnetic storage medium

instead of just reading the alternating magnetic field on a disk. [see Fig. 1.3]
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Fig. 1.3 IBM's merged read/write head design. The signals of magnetoresistance used
to read the state of magnetic bits are shown in the upper curve.

Figure 1.3 illustrates a design to read and write the state of magnetic bits in

advanced magnetic disk drives.10 The read head consists of a MR sensor between two

magnetic shields. The inductive heads write bits of information by magnetizing very

small regions along concentric tracts. In the process of reading, the existence of a

magnetic transition or flux reversal between bits causes the magnetic orientation in the

MR sensor to change. Thus, this induces the resistance of the sensor to change. Large

magnetoresistance materials are being developed to improve the sensitivity of read heads.

The sensor's output voltage (or signal) is the product of the resistance change (Ap) and

the read bias current. The output signal is amplified by low-noise electronics, and sent to

the data detection electronics. The increasing sensitivity for storing data is decreased and

far smaller drive sizes. This technology dominates the market. In 1997, an innovated

technology was developed by IBM. The giant magnetoresistive (GMR) heads in built as

a sandwich of magnetic and nonmagnetic materials layered in the read head improved
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read head sensitivity. Currie Munce, director of storage systems and technology,

announced the possibility that disk drives can store data at an aerial density more than

100 gigabits per square inch of platter space. The ultimate aim of storage technology is

to reach atomic magnetic bit size.

At this point, further technology growth is questionable because of the limitation

generated by the superparamagnetic effect (SPE). SPE is simply a physical situation

where the holding energy of the magnetic spin in the atoms containing a bit (a 0 or 1), is

increasing and is comparable to the ambient thermal energy. If this occurs, bits will be

vulnerable because of the random "flipping" between 0's and l's. Another approach to

avoid thermal problems is to use rare earth and transition elements that are magnetically

quite stable. Such metals are of a very high coercivity, called "hard." A laser is used for

"softening" by heating before data is written (see Fig.1.4). One possibly serious problem

is an accidental heating adjacent to bits that contain old data. Recently, Seagate

Technology has used a disk with grooves between the circular tracks of bits. Seagate
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reported that technological difficulty is the potential problem of picking up unwanted

noise during the reading process. In order to solve this they used a two-layer medium

with a permanent storage layer positioned below a readout layer. If such a system works

well, the Seagate technology could store 1,000 gigabits per square inch.

1.1.2 The Advent of GMR Materials

In 1986, the possibility of exchange interaction between ferromagnetic films across a

nonmagnetic metallic interlayer was experimentally shown in Fe/Cr structures 12 and rare

earth-based yttrium multilayers. 13 In MR heads, the output is directly proportional to the

MR ratio. Scientists and engineers have been searching for the materials that show far

larger changes in resistivity than the classic material permalloy (see Fig. 1-5 below).
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Figure 1.5 shows that ARIR of the double layer GMR (4%) is better than that of

the anisotropic magnetoresistance (AMR). The discovery of giant magnetoresistance

,7,(GMR) development of the antiferromagnetically coupled Fe/Cr systems 15,16 1 18

significantly stimulated the technology. In 1988, Fe/Cr magnetic superlattices (GMR)

prepared by molecular beam epitaxy were first reported by Baibich et al. 15 In (Fe

3nmICr O.9nm)60 multilayers, a GMR ratio (R ap — R p )/ R p ) where Rap and Rp are the

resistance when magnetization is antiparallel and parallel respectively, was found to be

multiplayer, the GMR ratio was — 220 % at 4.2 K and

100 % at 295 K respectively. 20 The GMR multilayers normally need a large saturation

field to overcome the antiferromagnetic coupling of magnetic layers to show the large

magneto resistance ratios.

Parkin et al. 16 reported the fact that the strength of

the antiferromagnetic coupling is a periodic function of the nonmagnetic spacer. The

origin of oscillatory antiferromagnetic coupling has been derived by the RKKY

(Ruderman-Kittel-Kasuya-Yosida) theory 21 and by quantum well models. 22

In fact, the field sensitivity of GMR multilayers is inferior to the AMR ratio of

NiFe because of the huge saturation fields in the multilayers. For example, CoFe/Cu

multilayers are not easy to implement in practical devices such as recording heads.

Therefore, an alternative GMR structure with NiFe/Cu/NiFe/FeMn is considered (Fig.1-

6). In the Fig. 1-6(a) the FeMn layer pins the magnetization of the top NiFe layer



Fig. 1-6 Typical examples of schematic cross sections of a (a) top spin value, and a (b)
bottom spin valve. Note that FM, M and AFM refer to ferromagnet, noble metal,
antiferromagnet, respectively. 23

through exchange anisotropy. 2o The FM (or antiferromagnetic) interaction between the

FM, NiFe layers is much weaker than one in the GMR multilayer such that the bottom

NiFe magnetization can switch under a small field, ~ 6 Oe only. These GMR sandwiches

nm)/FeMn(15 nm) spin valve shows a GMR ratio of ~ 9% where Co is the purpose of

enhancement of interfacial spin-dependent scattering, and Ta seed layer is for promoting

desirable film texture and morphology. The Si/NiO(75 nm)/NiFe(3 nm)Co(2

spin valve shows a GMR ratio of — 12%. 25 Thereafter, a

bottom pin valve structure of

symmetrical spin valve structure of Si/NiO(50 nm)/Co(2.5 nm)/Cu(1.9 nm)/Co(4

achieve GMR ratios of 19% and 25%

respectively. "Spectacular electron reflection" at outer surfaces was introduced by using

a tiny amount of oxygen (-5 x 10 -9 Ton) during ultrahigh vacuum (UHV) deposition

chamber during spin valve growth. 26



Fig. 1.7 The magnetic hysteresis loop and MR transfer curve of spin valves along the
easy axis (EA). 27

Figure 1-7 displays the magnetic hysteresis loop and subsequent MR in the free

layer and pinned layer along the easy axis. The free-layer hysteresis loop is slightly

shifted to the right due to a weak ferromagnetic coupling from the pinned layer. In this

spin valve, the resistance is highest when top and bottom FM layers are antiparallel while

it is lowest when parallel.

The definition of MR and GMR ratio varies according to emphasis of relative

ratios of change in magnetoresistance. Magnetoresistance (MR) is defined as

where p(H) and p(O) are resistivities due to the application of the magnetic field H and

zero at a given temperature, respectively . MR can be positive or negative (see Table
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1.3). General metals display a small MR (— a few percent) while non-magnetic pure

metals and alloys have a positive MR that depends on the square of the magnetic field, H.

However, magnetic materials show negative MR owing to the suppression of spin

disorder by the magnetic field. It is notable that highly resistive alloys also show

negative MR due to the suppression of quantum mechanical interference between scatters

(when electrons are localized over lots of impurity states, the localized states drastically

overlapped in space on application of magnetic field). Heterogeneous ferromagnetic

materials, such as thin-film multilayers and cluster-alloy compounds, exhibit giant

magnetoresistance. These materials have different properties compared to classic GMR

materials. Spin dependent scattering 28 (see Fig. 1.8) and intergrain tunneling 29 are

known mechanisms of GMR. Spin-up electrons and spin-down electrons travel randomly

inside the layers (see Fig. 1.5). In parallel magnetization arrangement (upper panel of

Fig. 1.5), spin-down electrons are scattered but spin-up electrons travel freely inside

layers. On the other hand, in the antiparallel magnetization arrangement (down panel of

Fig. 1.5), electrons of both spin augment are scattered.
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Fig. 1.8 Spin-Valve structure for a GMR read-head device. The schematic of spin-
dependent scattering of the conduction carriers within the magnetic layers or at the
boundaries of the magnetic layers is also shown. 30

As shown in the figure 1.8, there is significant difference in resistance measured

between the spin parallel and the spin anti-parallel arrangements. In case of strong and

effective scattering process, the mean free path of an electron between scattering

processes is shorter, and then the resistance becomes larger. A simplistic calculation of a

significant difference in resistance was considered by using a resistor network (see Fig.

1.9).



Fig. 1.9 A simplified equivalent resistor array displaying the GMR effect showing the
high (left panel) and low (right panel) resistance states. 31

1.1.3 Intergrain Tunneling

Hwang et al. 29 found that intergrain tunneling is induced by the scattering that stems

from grain boundaries in polycrystalline samples. They found that in polycrystalline, the

resistivity is — 10 times (at 1700 °C) and ~ 18 times (1300 °C) greater than a single

crystal.[see Fig. 1.10(A)] However magnetization curves of polycrystalline samples and

a single crystal seem very similar, implying that the intragrain properties reflect bulk

intrinsic properties [see Fig. 1.10(C)]. The MR in the polycrystalline samples is

dominated by transport across grain boundaries that are significantly sensitive to the

application of magnetic field while the intrinsic negative MR in single crystal is due to

the suppression of spin fluctuations. They suggested that spin-polarized intergrain

tunneling was involved in their results. The original work of the MR in granular nickel
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films were based on the tunneling of spin-polarized electrons between magnetic metallic

particles. 32 '33

In the tunneling process with the conservation of the electron spin, an additional

magnetic coupling energy was considered when the magnetic moments of the

neighboring grains were not parallel. With the magnetic field dependence of this

intergrain coupling energy, the first term in the high temperature expansion of the MR 33

is given by



16

where J is intergrain exchange constant, P is the electron polarization , and m is the

magnetization normalized to the saturation value. In polycrystalline La2/3Sru3Mno3, the

sharp drop in resistance is correlated with the abrupt increase in magnetization. The MR

is negative where J is positive, pointing to an antiferromagnetic intergrain interaction.

The ferromagnetic alignment of the grains by an applied field increases electron

tunneling-as in the case of spin valves.

Fig. 1.11 Comparision diagram of energy levels of the conduction band of Ni with
La2i3Sr1/3Mn03. 3o ' 35

Figure 1.11 shows energy level diagram of a normal itinerant ferromagnetic such

as Ni with a very wide conduction band (— 4.5 eV) which minority and majority carrier

bands are shifted by a gap exchange energy (-- 0.6 eV), and a partial polarization of the

electrons is about 11%. 35 On the other hand, in manganites, a relatively narrow majority

carrier conduction band (— 1.5 eV) is fully split from the minority band by a large Hund's
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energy and exchange energy (— 2.5 eV), resulting in a nearly complete polarization of the

electrons. 3o Since the high degree of spin polarization in the perovskite manganites was

shown 29 ' 36, spin-polarized transport effects have attracted much attention because of

technological applications such as spin-polarization dependent phenomena and low field

spin-valve MR.

1.1.4 Other Applications of GMR Materials

The giant magnetoresistance (GMR) effect shows in numerous ultra-thin multiplayer

systems where thin magnetic films (— order of a few tens of A thickness) are sandwiched

by non-magnetic metal films (— order of tens of A thickness). To get the GMR effect, the

most important factor is the fact that the relative orientation of successive magnetic layers

must be easily influenced and affected to change by the application of a magntetic field.

The GMR effect is intensively attracted because of the potential perspective such as

"read" heads in storage application.

The giant magnetoresistance (GMR) materials are possible to be built low cost

sensors with superior operation such as temperature stability 37 and linearability over

most of operating range; these can be measured up to 200 gauss. Wheatstone bridge

structures with field concentrators that can be made very small by integration techniques

are used. In memory cells, the resistance change depends on the angle between the

magnetization in the two layers (GMR) instead of the angle between the sense current

and the magnetization in normal anisotropic MR materials (AMR). Consequently, the

resistance measurement of even small currents can be use to detect the state of the

magnetization. For antiparallel configuration, a large current flows through stripe. An
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accurate measurement for magnetoresistance in GMR memory cell is used by

Wheatstone bridges. A bridge using 6% material gives a difference voltage of ± O.15

volts under application of 5 volts. Magnetization states of bit "O" and "1" lead to high

resistance (antiferromagnetically) and low resistance (ferromatically) respectively. GMR

sensors detect signals that are 3 to 20 more sensitive than traditional Permalloy alloys

(i.e. Fe/Ni) having much higher magnetic permeability than iron alone) magnetoresistive

sensor. Magnetoresistive random-access memory (MRAM) is an integrated magnetic

memory technology used in magnetic storage and magnetoresistive reading with

semiconductor support circuits. 38
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The MRAM consists of two parts: a magnetic sensing line and an orthogonal-

insulated word line. The magnetic sensing line has a pair of thin magnetic films with their

easy axes across the sense line and with interlayer sandwiched to break the exchange

coupling between the magnetic layers. A current in the sense line generates a magnetic

field parallel to the line with opposite direction between the top and bottom films.

Therefore, a storage state indicates a clockwise or counterclockwise orientation of the

magnetizations in the sandwich layers about the sense current. Thus, a "O" or "1" can be

recorded into 2D array of these cells by a word current in the variation of designated

polarity with a sense current. MRAM technology is essentially better than DRAM

because of its inherent simplicity of processing, non-volatility, static storage, and

nondestructive readout. GMR materials are used primarily in the computer hard-disk

drive industry, but other emerging markets expand nonvolatile memory chips, magnetic

field sensors, and ultrahigh speed isolators. GMR-based-magnetic sensors capable of

probing the presence and motion of magnets and other iron-containing objects are

superior to existing sensors, and can lead a market of applications. Further applications

are in fields such as automation of factory production lines with position-sensing robots,

antilock breaking systems for cars, "smart" shock absorbers, vehicle-counting systems,

currency sorting and counting based on magnetic inks. o0
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1.2 Advances due to CMR

1.2.1 CMR Oxides

A large number of studies on manganites have been performed for the past decade since

the giant magnetoresistance (GMR) effect and its technological applications were

recognized.41(a)' TheThe perovskite based manganese oxides (manganites) show unusual

electronic magnetic properties, and they have attracted interest because of potential

scientific and technological interest. The cubic manganites are represented as Al_

where A is a rare-earth ion, i.e. La, Bi, Nd and A' is a divalent ion, i.e. Ca, Sr,

Ba, or Pb.

Since the late 194Os, various studies of the mixed-valence manganese perovskites

for polycrystalline ceramic samples were characterized by Jonker et al. 42, 43 , 44 Jonker

and van Santen initiated the sample preparation, crystal structure and magnetic properties

series with a brief introduction of the electrical resistivity. Other

systems such a:

also reported.	 In 1954, magnetoresistance and other transport properties were first

accounted by Volger. 45 Volger found that the magnetoresistance of La0.8Ca0.2Mno3

shows negative with a peak near the Curie temperature.

On the other hand, in 1969 and 1970, flux-grown single crystals of La 1 ,PbxMno3

were studied by Searle and Wang, 46 Morrish et al., 47 and Leung et al. 48

They reported metallic conductivity below the Curie point Cc and a large negative

magnetoresistance (— 20%) at IT near Cc which is similar to polycrystalline Lai-
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xSrxMno3. In the magnetization measurement, a fully spin-polarized d band is related to

the ferromagnetic ordering process.

In 199Os, the mixed-valance manganites attracted again because of the

preparation of high-quality thin films with large magnetoresistance by von Helmholt et

al., 49 and Chahara et al. 50 using a method employed for high-temperature

superconductors into a structurally correlated manganites.

Comparatively, the MR value is +3% for permalloy (80%Ni-20%Fe) but -5% to

Jin et al. 41(a) founded that in La-Ca-Mn-O thin films

(100OA-200OA epitaxial films, La0.67Ca0.33MnOx grown on (100) LaA1O3 substrates by

pulsed laser deposition), the MR was as large as

device applications, manganite materials must be developed, have high sensitivity at

room temperature, and are sensitive to fields in the — 100 Oe range.
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From this point, the term CMR has been accelerated to study manganites. CMR

technology is only promised for large MR but sensitivity is still in high field (— 6T) and

low temperature. Surprisingly, the new oxide MR materials display a large MR called

colossal magnetoresistance (CMR). On the other hand, charge ordering shows

antiferromagnetic and insulating behavior with a significant changer than GMR.

Therefore, charge ordering is a candidate for CMR. 41(d)

temperature (Taco) for Bii,Ca xMno3 (BCMO) system is above room temperature while

Maximum Tco for Bi l ,CaxMnO3 (LCMO) system is only about 250 K. This is more

suitable at room temperature application. If the future technology may improve this

problem, then new technological application will be exploded.
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1.3 Importance of Structure

An understanding of atomic structure is important in correlating the magnetic orders,

transport, and structural (including local and long range) order. An ideal AMO3

perovskite structure is cubic (see Fig.1.14) where in (a) B cation (or X atom) sits at origin,

(b) A cation at origin, and (c) A cation at origin in hexagonal basis respectively.

The typical perovskite symmetry displays either orthorhombic or rhombohedral,

depending on the relative ion sizes. 71
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0.5 has a significantly reduced resistivity associated with ferromagnetism. Brown and

Banks 73 also discovered a metallic conductivity in the perovskite system Na„Wo3.

Zener 74 proposed the double-exchange spin-spin interaction to understand the

consequence of the mixed-valent character of the conducting perovskites. Wollan et

al:75 reported magnetic structures by using neutron diffraction.

antifenomagnetic order for x = O.75, and an isotropic Type G antifenomagnetic order for

x = 1.O, i.e. CaMnO3 respectively (see Fig. 1.16). Goodenough 76 proposed that the idea

of orbital orderings at Mn3+ ions is based on the anisotropic magnetic coupling that is

equivalent to Mn-O-Mn supberexchange pathways with the signs of the super-exchange

coupling. Superexchange is based upon the exchange interaction between the moments

(AF) on the transition-metal ions and is an indirect interaction through the intermediary
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of the oxides. The process of interaction is that the spin of one transition-metal ion

polarizes a neighboring oxygen and therefore, induces an interaction with a neighboring

transition-metal ion.

A theoretical calculation is possible based on x-ray diffraction data. 77
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changes by a cooperative rotation of the MO6 octahedra around a cubic [001] axis as in

tetragonal SrTiO3, 80 a cube [111] axis as in rthombohedral ( R 3c ) LaNiO3, 81 a cubic

[110] axis as in orthorhombic (Pbnm or Pnma) GdFeO3, 82 and a cube [101] axis as in

orthorhombic (Imma) La0. 7Ca0.3o3 only in T 5_ 1OOK. These rotations reduce the Mn-O-

Mn bond angle from 180 ° . Figure 1.16 shows the anisotropic antifenomagnetic order

with the minimization of the elastic energy ordered the long axes of the distorted Mn(III)

octahedra in the Lai_ xCaxMno3 system. In LaMnO3, a rotation along the [110] axis

produced an O-orthorhombic axial ratio c / a > . In addition, orbital ordering changes

for the o' -orthorhombic axial ratio c / a < -5. The o' -orthorhombic structure indicates

the possibility of the existence of a static orbital ordering and 0-orthorhombic structure

may cause dynamic Jahn-Teller deformations (see Sec. 1.5 in detailed discussions).

Figure 1.17 displays that with increasing the temperatures, the x = O.3 perovskites change

from a canted-spin ferromagnetic semiconductor in an phase for t < O.96 to a

ferromagnetic metal in a phase for t O.98. Interestingly, for 0.96 t O.98, a o phase,

a sharp increase with t in the Curie temperature T, occurs and a the CMR value reaches a

maximum. 83
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Strong evidence for Electron-Spin-Lattice Coupling:

An interesting point is the fact that the application of magnetic fields induces structural

phase transitions between rhombohedral and orthorhombic space groups in

La0.83Sr0.17Mno3 (see Fig. 1.18). 86
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Fig. 1.18	 Schematic crystal structures of crystal La0.83Sr0.1Mn03 in (a) the

orthorhombic phase (Pbnm), (b) the rhombohedral phase ( R 3 c ), and (c) structural phase
diagram in the T —H plane.

In addition, high magnetic fields have been found to destroy the highly resistive charge

ordered state (insulator to metal transition). (See Fig. 1.19)
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Table 1.3 Structural, Transport, and Magnetic Properties of MRIGMRICMR Materials.

Materials Structure Electric
features

Magnetic
features*

T(K) H(T) MR

(%)

Refs.

La2 ,3Bau3MnOx

Thin films

perovskite
like

semi-
conductor to
poor metal

FM 77
6

-99.9 
6 41(a),

87

La2 ,3Bau3MnOx

Thin films

perovskite
like

narrow gap
semiconductor
to poor metal

FM 300 7 60 41(b)

La0.83Ba0.45C003-8

Thin films

perovskite narrow gap
semi-

conductor to
poor metal

FM 7 10 - 38 88

Bil„Ca„Mn03
x = 0.875

Polycrystalline

perovskite insulator CGI
CAF

5 30 - 91 89

Sr2FeMoO6 double
perovskite

semi-metal FM 5 —
300

7 + 20
5

90

T12Mn207 pyrochlore narrow gap
semi-

conductor to
poor metal

FM 10 —
300

8 - 60 91

Metal
multilayers

two dim-
ensional

poor metal FM / AF 4.2 2 -60 15

(Zn1,Mnx)3As2
(x = 0.02)

alloys

tetragonal narrow gap
Semi-

conductor to
metal

FM 4.2 2 -34 92

Fe/Cr( 00) super-
lattices

insulator AF 4.2 2.5 150 a
52

FM = ferromagnetic, PM = paramagnetic, and AF = antiferromagnetic.
6 AR/RH = (RH — R0)/RH = 127,000%

ApIP s where Ps is the saturation resistivity.
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1.4 Jahn-Teller Distortions

1.4.1 Basic Description of Jahn-Teller effect

Jahn-Teller distortions influence the transport properties in the manganite-oxides. The

Jahn-Teller (JT) deformations of the Mn06 octahedra in perovskite are known to cause a

significant effect on their electrical and magnetic properties. The ground state of the

cation is a degenerate state rather than just a Kramers' doublet. 93 A Kramers' doublet

which can appear only when the molecule holds an odd number of electrons. The

degeneracy is lifted by a local distortion to a lower symmetry state. 9o Kramers pointed

out that an electric field without a magnetic field can fully remove the degeneracy only

for a system with an integral value of the sum of the spins, while for the system with a

half-integral value of the sum of the spins, all the levels applied to an arbitrary electric

field must be doubly degenerate. In transition-metal materials, electrons in a partially

filled cation shell are localized. In a somewhat similar situation, a high site symmetry in

the cation may possibly be delocalized due to a deformation such as JT distortions. Since

localized electrons are "atomic-like", the acting parameters should be considered strong

ligand-fields which affect the symmetry of the lattice, the elastic coupling and the

magnetic coupling between neighboring atoms. In a crystal, only d and f outer electrons

are known to be localized.

Under a configurational distortion, the structural symmetry will be lowered and

the energy level in the degeneracy will be shifted. In the case of a hydrogen atom, three p

orbital states (Ex , Ay , Az) are degenerate because the system has spherical symmetry, in

which rotation about each axis by the nucleus makes the Hamiltonian invariant, i.e.,

switching the p functions into each other. This three-fold degeneracy keeps the same
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degeneracy although a free atom lies in the external field generated by six charges that

are located in an octahedral site surrounded by the nucleus. If the distortion such as

extension or compression occurs in the octahedron along the z-axis, the structure

transforms from cubic to tetragonal. Therefore, the degeneracy will be partially lifted as

Two-fold degeneracy in the

tetragonal site can be distorted by orthorhombic perturbations.

In the sense of conservation of the energy, the energy level due to a distortion will

be lifted while another will be lowered. Now a total distortion term for the system in the

adiabatic form is considered to come form two parts as 95

where Q is the strain (distortion)

and k is the corresponding force constant, and E(Q) = -VQ where V is electron-strain

coupling constant, is the lowest component potential of the split term. W(Q) will reach a

minimum when the term defined as Qo (= VIk), deviates from zero, i.e. initial highly

symmetry position (Q = O), and the distorting force exerted by the electrons on the nuclei

is balanced by the elastic restoring force. An initial high symmetry state is unstable

because distortion caused by displacement to the minimum Q = Qo makes a reduction by

The higher order term of E(Q) rather than linear term is theoretically

questioned.
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Jahn and Teller's first publication 94 indicates that in a degenerate electronic state,

the nuclear configuration of any nonlinear polyatomic system is unstable due to nuclear

displacements that diminish the symmetry and remove the degeneracy. But this

statement is not enough. The Jahn-Teller effect implies that for degenerate of the

electronic term, the system itself distorts spontaneously and a distorted nuclear

configuration should be observed. This is not true because even for a free molecular

system, the distorted nuclear configuration may not be observable due to the JT dynamics

and the degeneracy of the system is not entirely removed. In fact, the major effect of

electronic degeneracy is a spatial coupling between the electronic and nuclear motion

with the observable effects, called "JT vibronic coupling effect". 96

Here is the mathematical proof. The Hamiltonian of the system is

where H r is the pure electronic part, denoting the electronic coordinates, HQ is the nuclear

kinetic energy, denoting Q symmetrized nuclear coordinates, and V(r,Q) is electron

nuclear and nuclear-nuclear interactions. Now V(r,Q) can expand with respect to small

nuclear displacement from the initial configuration
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where a set of energies s' k and Pk (r) are a set of energies and wave functions for the

The goal here is to solve

the Schrodinger equation with f-fold degenerate electronic term

including a perturbation. One simple point is to understand how the solutions change due

to nuclear displacements; the Schrodinger equation

where xk(Q) are functions of the nuclear coordinates (Q) and (pk(Q) are the electronic

functions. Combining two equations, the equation is
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where Wk rn(Q) is the electronic matrix element of vibronic interactions, i.e. the part of the

electron-nuclear interaction V (r, Q) in terms of Q [see Eq.1.5] and potential energy of

the nuclei in the mean field of the electrons in state pk(r) is

The coupled system of equation (Eq.1.10) can be neglected if Wk m(Q) = 0 for k # m); that

is, coupling between these states vanishes. The equation of Eq.1.10 can be decomposed

as

It is worth noting that for a given k, Eq.1.12 indicates the nuclei moving in the mean field

of the electron in state (pk(r). For a molecule of given N atoms, the number of

vibrational degrees of freedom (the number of symmetrized displacements) are 3N — 6

(3N-5 for linear molecules). The normal coordinates can be established by means of

symmetrized displacements that are collective nuclear displacements transforming

according to one of their irreducible representations under the symmetry operation of the

molecular point group by using group theory. 97 The f-fold degenerate representations

(symmetry types), F , have f lines 7 , in which the twofold degenerate representation F =

E has two lines, y = 0, c and the threefold one

normal coordinates, Eq.1.12 for nuclear motions splits into 3N - 6 (or 3N —5) equations of

harmonic oscillators with the reduced mass of the ath normal vibration and frequency

co, as



where the matrix elements of the linear terms F0 and quadratic GE, is ,have the linear

vibronic coupling constant



where 9) and 16) are the wave functions of two states of two degenerate states.

from a degenerate electronic state

at Qa = 0 is considered with vibronic coupling W(Q), a perturbation term. This term

splits the degenerate term and yields 6 I,' with the harmonic (nonvibronic part) nuclear

interaction term produce f branches of the adiabatic potential energy surface (APEC) that

intersect at Qc, = 0
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Fig. 1.21 The "Mexican hat" in the linear E )e problem with distortions of an octahedral
system ML6 . (a, b, c) at (I) = 0, 27c/3, 4763, the octahedron is tetragonally distorted along
the three 4-fold axes, respectively and (d) D2h symmetry. 99

In summary, to obtain a complete solution for Schrodinger equation, the

electronic states (pk(r) can be solved by (Eq.1.10)) and used to determine the potential

energy of the nuclei 8k(Q) from Eq.1.12. The wave function 8k(Q) and energies E of

nuclei part can be solved by (Eq.1.12). So the complete wave function is

This is called the simple adiabatic approximation or the Born-Oppenheimer

approximation.

The criterion for the simple adiabatic approximation is valid only when

where ha) is the energy quantum of vibrations in the electronic state in terms of k or m,

and	 and 8j are the electronic energy levels. Therefore, the vibronic mixing of
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different electronic states i.e. Eq.1.10 (= perturbation) is extremely small ((nIm) 1/2_ 10-2)

Fig. 1.22 Simple diagram of the electrostatic origin of the Jahn-Teller effect for three-
fold degeneracy. The electron of the central atom of an octahedral complex stretches out
or pulls in resulting in tetragonal distortion of the octahedron shown as arrows. mob

1.4.2 Cooperative Jahn-Teller Deformations

Van Vieck 1°1 showed that the two normal E g vibrational modes would remove the e-

orbital degeneracy of an electronic E g configuration in the octahedral site. These two

modes are associated with the orthorhombic and tetragonal deformations Q2 and Q3 (see

Fig. 1.23). If they are defined as Q2 = p cos() and Q3 = p sin() in the polar coordinates,

the ground state of an isolated octahedral Mn06 is independent of 0 because the only the

first order in the coupling constant g between vibrational and electronic states is

considered. 8o Therefore, the ground state can be thought a circle to any point with radius

p(= 6 = g / ../0 where C is the stiffness constant related to vibrations.



Fig. 1.23 Two Eg vibrational modes Q2 (left) and Q3 (right) in an octahedral site.

This forms a dynamic coupling of the e electrons to two E g vibrational modes Q2

and Q3 which is referred to a dynamic JT stabilization of vibronic states. In a solid,

static deformations may be affected by the symmetry of the crystalline lattice, and a Q2'

type local deformation. Consequently, the local JT deformations are cooperative in order

to minimize the elastic energy. When more ions in the solid are JT distorted, these

cooperative local distortions stimulate "a global, static displacive deformation" below an

orbital-ordering temperature. For the case of lower concentration of JT ions, locally

cooperative but dynamic JT deformations can cause anomalous physical properties.
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1.4.3 Jahn Teller Effects in the CMR System

Millis et al. 102 developed a model with dynamic Jahn-Teller and double-exchange effects

for colossal magnetoresistance in the doped rare-earth manganites, e.g. Lai_„Sr„Mn03.

Hamiltonian for this model is

where t is the hopping matrix element, da b (i) is creating operator of an outer-shell d

electron of spin a in the a orbital on site i, EH is coupling constant, S e is spin angular

moment, h is the external magnetic field, g is electron-phonon coupling, Q is the

and k is the phonon stiffness. For

a limited density (density, i.e. n =1 only), they found that the interplay of electron-

phonon coupling and double exchange correlates to the existence of a high T insulating

phase and CMR effect at Tea, and the sensitivity to magnetic field. Mechanism that is

not appeared in the double-exchange model, must relate to significantly diminish the

electron kinetic energy K at T Tea. In fact, double exchange itself can not explain the

the reisistivity as a function of temperature. Millis et al. proposed a polaron effect due to

a gigantic electron-phonon coupling resulting from a Jahn-Teller splitting of the Mn 3+ ion

which is supported by Kusters et al.' work 103 (magnetic polaron picture). Thus, the
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standard double-exchange Hamiltonian does not include magnetic polaron effects since

the Jahn-Teller coupling appears too strong while the effective carrier-spin interaction is

so weak. The extensive work 104 was studied by using the dynamical mean-field method

to investigate a model of electrons Jahn-Teller coupled to localized classical oscillators

and ferromanetically coupled to "core spins". Millis et al. argued that the model contains

the fundamental physics of the CMR manganites, Rei„A„Mn03 where Re means a rare-

earth element, that is, La or Nd etc. and A is Sr or Ca etc. They suggest the idea that the

basic physics of the CMR manganites, Rei_ xAxMn03 relates the interplay between a

strong electron-phonon coupling and the double exchange effect of magnetic order on the

electronic kinetic energy. They suggested that different doped materials have different

intrinsic electron hopping with probably different electron-phonen couplings but the

variation of the electron kinetic energy with x is very sufficient to sweep the effective

coupling through the critical value at some x between O.1 and O.5. In particular, when

they applied electron-phonon coupling in a variety of models without double exchange,

the results have a similarity with the metallic state in the ground state in the Ca

concentration, O.2 < x < O.5.

In addition to Millis, Zang et al. 105 studied Jahn-Teller electron-phonon-coupling

effects in the CMR perovskite compounds in Lai,A xMn03 in somewhat different point

of view. The long-ranged Jahn-Teller order was presumed to occur at low T. They

investigated the combined effect of orientational fluctuations of the Jahn-Teller distortion

and double exchange on the resistivity in the metallic phase below Cc. They found that

the carriers are electrons without associated static Jahn-Teller distortion. An appropriate

JT coupling strength can lift the double degeneracy of eg orbitals by finite static JT
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distortions. Therefore, the JT distortion fluctutions will cause magnetoresistance at

somewhat and high temperatures as the function of the temperature dependence. These

further scattering effects of the JT distortion will be increased when in the

inhomogeneous insulating phase above Cc with the localization of small magnetic

polarons.

Roder et al. 106 investigated the combined influence of spin double exchange and

Jahn-Teller lattice coupling to hole-doped manganites, Lal_„A xMn03 where A is Ca, Sr,

Ba. They found that the lattice effects reduce the magnetic transition temperature and

furthermore result in the maximal value of the transition temperature as a function of

dopant concentration x depending on the Jahn-Teller coupling strength.

Satpathy 1°7 employed a single Mn-O-Mn bond to understand dynamical Jahn-

Teller effect on double exchange (DEX) interaction and the isotope shift. It depends

sharply upon the electron hopping parameter t. He proposed that these stem from the

coupling of the motion of the bridging oxygen atom to the Mn electrons.

Recently, Zou et al. 108 reported the spin diffusion dynamics of the double

exchange model including Jahn-Teller distortion for manganites, i.e. the CMR effect.

Because of the trapping of composite polarons in the magnetic transition regime, the spin

diffusion dynamics becomes important. The composite polarons relate to the itinerant

character as well as the localization character. An anomalous spin diffusion peak 109 near

Cc  in perovskite manganaties is explained by the competition between both characters.

They proposed that this competition in the FM transition regime causes the CMR effect,

and two characters manifest the composite polarons crossover from itinerancy to

localization in the magnetic and transport properties of CMR materials.
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From the theoretical point of view, many issues still remain unsolved as follows:

104 (a) the origin of the experimentally observed chemical and doping dependence, (b)

the degree of "fine-tuning" of essential parameters, (c) calculations of models in different

electron concentrations, (d) quantum fluctuations of the phonons, and (e) other omitted

interactions.

1.5 Magnetic Order

1.5.1 A Theoretical Background of Magnetism

Magnetism (even superconductivity) in solids is related to "cooperative phenomena" that

are directly stemmed from the interaction between the electrons, not just a single electron

problem. In the quantum mechanical treatment, the origin of ferromagnetism was

thought of the exchange interaction which is mathematically difficult to solve the

problem and phenomenologically represented. Now suppose that nuclei are fixed like a

point charge. The Hamiltonian with the wavefunction Y(r1, r2, rN) of the

coordinates of all N electrons 110 can be written as

where the first term is the individual electronic kinetic energies, the 2nd term is the

interaction between the itchelectron and the nuclei, and the 3rdterm is the interaction

between electrons. Due to the electron-electron interaction, the equation cannot be

separated to obtain independent equations in the coordinates of the individual electrons.

In the Hartree-Fock approximation, we must consider linear combinations of such the

product wavefunctions where the entire wavefunction changes sign under the interchange
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of any two electrons. The antisymmetric wavefunctions may be taken as a Slater

This is very approximate solutions to the initial equation but an complete solution would

require an infinite series of Slater determinants. The last term i.e.,

is called "exchange interaction" which is different from the 3 rd term i.e., direct

interaction. The exchange interaction term is purely coulombic at origin and develops

from the correlated motion of the electrons due to the antisymmetry of the wavefunction.

Using annihilation operators, c and creation operator, c +, the Slater determinant can be

rewritten as
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where (01 is vacuum state. The electron Hamiltonian He with eigenstates lc; of energy

Gk.  , in the second-quantized form, can be written as

When we introduce a potential, V, by each of the electrons, the potential forms

is the matrix components of the potential between the one-

electron eigenstates,

The diagonal terms, k'= k, sum to the zero-order energies, ck while the off-diagonal

matrix components relate many electron wavefunctions where one of the electrons has

changed its state. The interaction between electrons in 2nd quantized form can be written

as

where kid are quantum numbers for any complete set of one-electron states which may or

may not be plane waves, and spin quantum number.

Now for many-electron system, if we approximate the true state of the system with a

, from the Hartree-Fock approximation the

energy of the electron-electron interaction is



This matrix term is crucial term to be considered how exchange interaction may form

magnetism. For example, for parallel spin, the exchange term gives rise to reduce the

is negative.

If we consider the spin-dependent interaction between single electrons, the

Hamiltonian, H ex , is

where J1 are called exchange integrals which is related to matrix elements in

Hartree-Fock approximation, and the sum is over all pairs of electrons.

It is of great interest that if the two states are two electronic states in the free

atom, for parallel spins by Hund's rule the sign of J tends to appear "positive"(FM spin

alignment) and for antiparallel spins the one of J does to be "negative" (AF).

The spin operators of two-electron spin states can be written by a normalized by

for spin-down. Pauli spin matrices are also
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As the x and y components of the dot product have flipped both spins and

orthogonality properties use, the z component alone appears to expectation values as

for parallel spins,

To solve the many-electron problem, these matrix elements with exchange in Hartree-

Fock approximation must be identified with the exchange integral <ijV ij> and an

additional direct term given by Heisenberg exchange.



where Es is eigenvalue in the singlet state, and E t is eigenvalue in the triplet states. To

redefine the zero of energy, the constant (E s + 3E)/4 common to all four states may be

ignored. The spin Hamiltonian can be rewritten as

Because FrPin is the scalar product of the vector spin operators S1 and S2, there are

parallel spin arrangements if J is positive and antiparallel ones if J is negative. Of course

the signs of J depend upon the energy level of E s and E t, implying that the spins are

parallel in the triplet state and antiparallel in the singlet. For a large number of spins

system, the spin Hamiltonian for the two-spin case can be summed over all pairs of ions

as

1.5.2 Molecular-Field Approximation and the Ferromagnetic Transition

In 1907, Weiss investigated ferromagnetism, called the molecular-field approximation

(FA). He was trying to understand how MFA originates from Heisenberg exchange.

The exchange Hamiltonian in a self-consistent field can be written as
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where <Si> is the expectation value of the spin Si and in a FM, it is a vector parallel to the

total spin of the system; in a AF, it will be a vector parallel to the total spin of the

system.

Now, it is of interest that the interaction between the magnetic moment of the ion

and a magnetic field (H -1.1.11 where p. is the magnetic moment for an ion), is gpoS

where h is Planck constant, g is the gyromagnetic ratio ( g = 2 for a free electron), and

Bohr magneton, j_to = eh/2mc. Let's consider an effective magnetic field HI, called the

molecular field (or internal field). The exchange energy in the z-axis along <Si> is

To calculate the magnetization (magnetic susceptibility) in the function of the

temperature and applied field, the magnetization summing over a unit volume is



where N is the number of ions per unit volume.

Using (1.48) and (1.49) with ordinary statistical mechanics,

53
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magnetic susceptibility of ferromagnetic materials above 0 where the magnetization is

small.

1.5.3 Magnetic Phenomena (Experimental Observations)

In the broad sense, doped transition metals have two interesting parts: First, non-

interacting or very dilute 3d-magnetic impurities (= doped) embedded in a non-magnetic

host, can exhibit the Kondo effect in which a localized antiferromagnetic interaction of

the isolated impurities spins with the surrounding conduction electrons. Second, the

impurity spin-spin interactions give a large arrangement of moments, called

ferromagnetism (FM); and lesser amount of moments are antiferromagnetism (AF),

paramagnetism, canted ferromagnetism (CAF), cluster glass (CG) and spin glass (SG)

[see Fig. 1.24 and Fig. 25].
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(d)
Fig. 1.24 Magnetic spin arrangements. The general 1-dimensional diagrams are shown
for (a) ferromagnetic (b) antiferromagnetic, (c) ferromagnetic orderings, and hellical spin

113arrays.
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Fig. 1.25 Two dimensional schematic diagram for spin glass and cluster glass. (a) spin
glass with 50% occupied magnetic moments (left side) (b) cluster glass ( mictomagnet)
(right side). 114

These magnetic properties depend significantly on the conduction electrons to

propagate the magnetic interactions over large distances. The difference states from FM

to SG are governed by the magnetic behavior of these itinerant electrons. For smaller

concentrations-longer distances between impurities, the interaction has an oscillatory

nature and SG ordering will probably dominate rather than ferromagnetic ordering with

large concentrations. For each system, a percolation limit exists at a critical

concentration above a long range ordering. When the percolation limit is increasing, then

magnetic clusters are formed and randomly freeze out at critical temperatures, i.e.

mictomagnetism or cluster glass.

A property exhibited by materials, whose atoms or ions tend to assume an ordered

but nonparallel arrangement in zero applied field below a certain characteristic

temperature known as the Neel temperature. Usually within a magnetic domain, a

substantial net magnetization results from the antiparallel alignment of neighboring

nonequivalent sublattices. The macroscopic behavior is similar to ferromagnetism.
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Above the Newel temperature, these substances become paramagnetic. The Newel

temperature defines the temperature at which ferrimagnetic and antiferromagnetic

materials become paramagnetic (see Fig. 1.26). The Curie temperature defines the

temperature above which a ferromagnetic material loses its permanent magnetism. In

minerals, lightening often flash-heats minerals above their Curie temperatures, effectively

resetting the magnetic fields trapped in lava flows.
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1.5.4 Spin GlassICluster Glass

Magnetic systems exhibit different kinds of ordering as a function of the temperature and

external magnetic field. Spin glasses have been heavily studied but are not well

understood for a theoretical perspective. The simplest model for a spin glass is a

collection of spins (i.e. magnetic moments) with random alignment at low temperature

(see Fig. 1.25). There may be competition among the different interactions between the

moments, in the sense that no single configuration of the spins in uniquely favored by all

interactions (this is commonly called 'frustration'). Second, these interactions must be at

least partially random. Spin glass behavior has been seen in virtually every kind of

systems which satisfies these requirements.

Experimentally, spin glasses (SG) exhibit a classic set of properties: (a) the low-

field, low-frequency ac susceptibility 8 a . c .(T) show a cusp at a temperature T g and this

cusp becomes flattened with a field as small as 50 Gauss. The nonlinear susceptibility

diverges. (b) No sharp anomaly is shows in the specific heat. (c) below T g , the magnetic

response is history-dependent. In other words, the susceptibility measured in a field-

cooled sample is higher than in a zero-field cooled. (d) below T g , the magnetization

decreases slowly as a function of time. (e) below T g, a hysteresis curve shifted from the

origin appears, (f) below T g , no magnetic Bragg scattering, which is the characteristic of

long-range order (LRO), is observed in neutron scattering experiments, thereby

demonstrating the absence of LRO. (g) susceptibility begins to deviate from the Curie

law at temperatures T >> Tg. 117

The group of SG systems composes the noble metal alloys and transition metal

alloys.. The classical) spin glasses are Cu i ,Mnx and Au i ,Fex . These noble-metal alloys
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are usually called canonical spin glasses. Other compounds which are spin glasses are

EuxSri„S (a semiconductor) and Lai,Gcl,Al2 (a metal).

On the other hand, the spin glass region in AuFe alloys usually exists in under

about 10% of impurities. For higher concentration, there is an increasing statistical

probability of on impurity having another as a first or second nearest neighbors.

Therefore, there is a tendency to form magnetic clusters due to concentration fluctuations

in the alloy and this region is known as the mictomagnetic, cluster spin glass, or cluster

glass (CG). 118 Detailed identifications between SG and CG will be discussed in

introduction of Chapter 7.



CHAPTER 2

BACKGROUND INFORMATION AND PHYSICS OF CMR SYSTEMS

2.1 Background Information on CMR Systems

As a function of temperature, pressure, doping, and A 3±/A'2+-site ionic radius, perovskite

mixed-valent manganites

Ba, Pb, etc.) show intriguing properties such as structural transformations, charge

ordering (CO), metal-insulator transitions, and magnetic ordering (ferromagnetic (FM) -

antiferromagnetic (AF)) transformations. o1,o2,o3,119 In addition to the rich basic physics

exhibited by these materials, there is also much interest from the technological

perspective because they are known to exhibit "colossal" magnetoresistance (CMR). 87

By virtue of the total miscibility of its end point compounds, the Lai,Ca xMn03

A schematic phase diagram for this

system is reproduced in Fig. 2-1. 123

62
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Fig. 2.1 Phase diagram of La 1 _,Ca,Mn03

The heavy dashed line indicates the low-x limit of the static Jahn-Teller ordered (JTO)

regime. Despite the low concentration disappearance of this particular iTO phase,

dynamic JT interactions and the incorporation of static JT ordered components are

important over most of the phase diagram. An extended phase diagram [see Fig.2-5] of

the prototypical La1_ x Ca xMn03 (LCMO) system has been developed and structural,

magnetic, and transport measurements have been performed. . 123

Evidence 53 of change ordered [Mn3  and Mn3+ cation ordering, see Fig. 2-2 and

2-3] stripes in Lao 33Cao 67Mn03 [see Fig. 2-2] and in La o 5Cao 5 Mn0 3 (see Fig. 2-3) was

also observed
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Fig. 2.5 Extended phase diagram of Lai_ x Ca,Mn03. 12

For 0 < x < ~ O.21, the system is an insulator (I) with a canted antiferromagnetic

(CAF) or ferromagnetic ground state. For the range, — O.21 < x < O.5, a ferromagnetic

metallic (FM) ground state occurs and undergoes a concomitant metal-to-insulator (MI)

and FM-to-paramagnetic (PM) transformation in the temperature range 150 K-250 K. 32,

66

R: Ron )hedral

0: Orthorhombic

(Jahn-Teller distorted

0*: On

(Octahedron rotated)

44, 120



67

Near x = O.5, a competition between a higher temperature AF-M phase and a

lower temperature CO-AF-I phase results in a first order transition. 121,122,75 In the 0.50 <

x < O.875 region, the materials are insulators with a charge/orbital (CO) ordered and AF

ordered ground state which, upon increasing the temperature, first loses its AF ordering

(at TN) and then, at a higher temperature (TO, its CO ordered. 69'121 Above x O.875 it is

believed that these materials are canted antiferromagnets (CAF). Recently Neumeier et

xCaxMn03 exhibits magnetic phase segregation with strong competition between local

FM and G-type AF regions. Assuming the orbital angular momentum is quenched, the

moments have a spin S4+ = 2 for Mn4+ in the orientation opposite to the S4+ = 3/2 for

Mn + , which leads to in equivalent magnetic sites in a localized region, or a local

ferromagnetic region with the AFM background. The lower line in Fig. 2-6-region I of a

net ferromagnetic saturation moment per Mn ion at T = OK is modeled by considering

where g is 2. 127 On the other hand, the upper line of the strongly Hund's coupled mobile

electron is

while the a 180°-spin-flip is based on removing n Mn + moments from an AFM lattice

out of N Mn + moments: M sat(OK) = g (6/2)1.tB(nIM).



Since the seminal work of Goodenough 76 the interesting charge/orbital ordered phases of

these materials have been an area of continually evolving experimental and theoretical

work in terms of: the degree of Mn 3+/Mn4+ order; the orbital orientational ordering of the
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Mn3+-like Jahn-Teller distorted sites; and the detailed incorporation of these local

distortions into the long range ordered state.

As noted above, the x 	 O.5 region of this system is particularly interesting

because of the existence of the CO-AF-I and FM-M phase competition. 54 Charge/orbital

ordering has also been observed in many other systems such as;

From the experimental perspective, weak peaks in the electron diffraction images

of La 05 Ca o5 Mn0 3 are found on crossing (with temperature) into the charge ordered

region. 64 The charge ordered regions are seen in dark-field images from superlattice

peaks (resulting from differences in strain) that order in stripes. 76,128,64,69 In the strong

charge ordering region of LCMO system, i.e. for O.63 < x 0.67 , charge ordering is

associated with significant increases in the sound velocity at 260 K. 69 These

observations suggest a connection between the magnetic and charge ordering and the

local structure (Mn-O bond distribution and Mn-Mn correlations) of charge ordered

materials.



Fig. 2.7 Typical magnetic structure of the perovskite-type oxides AFM. The oxygen
atoms have been left out for clarity. 140

The fundamental origin of the magneto-structural properties of these materials is

still evolving. The first model of magnetism in these materials was developed by

Kramers 141 , Zener. 142 Zener modeled an indirect exchange, called "double exchange" in

which the eg electron hops from a Mn4  site to the neighboring oxygen site concomitant

with a transfer of one electron for the oxygen site to a Mn 4  site, along the same chain.
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Framers proposed an indirect "superexchange" which leads to an

antiferromagnetic alignment of spins in the absence of Mn 3±/Mn4+ hopping. Millis et

102al. pointed out the importance of local structural deformation (dynamic Jahn-Teller

distortions) in the PM phase along with the quenching of these distortions in the FM-M

phase.

Fig. 2-9 Level splitting of the Mn(3d) orbitals for LaMn03 as obtained from the density-
functional calculation (LDA). 134

Millis showed that double exchange alone does not adequately predict the transport and

magnetic properties of these materials. Many local structural studies have now been

performed revealing strong correlations between the transport and magnetism on the

ferromagnetic region of the manganites. 135 However, not much work has been done in

the charge ordered and insulating regions.
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2.2 Other Phase Diagrams

A systematic study of a broad range of materials in the system Li_,,A„Mn03 (L = Pr, Sm;

A = Ca, Sr) was performed by Martin, Hervieu, and Raveau. 136 The properties of the

manganites are known to vary with the manganese valence, and are also significantly

affected by chemical factors such as ionic radii. 83"37 From the Table 1.1, we show the

atomic radii of La, Pr, Bi, Sm, Ca and similar ionic radii. [see Fig. 2-10 and Fig. 2-11]

The Sr atom is relatively large.[see Fig. 2-12] It was discovered that Sm i ,CaxMn03

(SCMO) and Pri_„Ca,Mn03 (PCMO) fall into the class of manganites, which are

insulators over the entire doping region while Pr1_„Sr,Mn03 mimics the behavior of the

classic Lai,CaxMn03 system. The small-Ca-ion doped systems Smi_ xCaxMn03, Pr1-

,Ca„Mn03 and La i _„Ca„Mn03 all show a peak in low temperature magnetization near x

O.9. The high net moments in these systems were attributed to cluster glass formation

based on ac susceptibility measurements. It should be emphasized, however, that neutron

scattering measurements on the material clearly showed the presence of G-type AF order

coexisting with the FM-cluster glass behavior. Interestingly, even in the end-member,

CaMnO3, weak ferromagnetism is observed a long with G-type AF order. 138 The

material Bii_ xCa,Mn03 (BCM0) was also found to exhibits a large moment near x

O.875. A systematic study of the BCM0 study will be carried out in this thesis.
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CHAPTER 3

PREVIOUS WORK ON Bii_.Ca.Mn03 AND
MAGNETIC-TRANSPORT PROPERTIES

3.1 PREVIOUS WORK ON Bi i ,Ca„Mn03

A large, but somewhat scattered, body of work has been performed on the doped BCMO

system. This work is summarized in this chapter.

Bokov et al. 39studied the structural, magnetic and resisivity properties of the of

Their phase included: two monoclinic phases and one

orthorhombic phase as a function of temperature for x < O.4; one of the monoclinic

transforms to a monoclinic low-temperature phase; and above x — O.83 the more distorted

monoclinic phase gives rise to a higher symmetry orthorhombic phase. Their magnetic

measurements showed a FM-like Curie constant (0) at high temperatures for all x < O.9.

For x < O.4, the lattice parameter b is larger than the lattice parameter a, i.e., b > a, but for

at x = 1. They suggested that for x > O.8, because the Mn 3concentration are relatively

low, the resultant exchange interaction must be antiferromagnetic. Charge ordering was

suggested to occur between x = O.2 and x = O.4. From resistivity measurements on x =

O.4, O.5 and O.7, a dramatic increase of resistivity at low temperature with Bi content was

found. Consistent with the work of Chiba et al. 1o0 , the reduction in resisivity occurs

near the point where the net magnetization per Mn site is largest x — O.9.

LI



77

x O.8 regime. They noted that while the Bi- and Ca- based systems had the same

crystal symmetry and weak ferromagnetism in this Ca-rich region, the magnetic moments

in the Bi-system were larger than those in the La-system at the same Ca content.

(CaMnO3 was found to exhibit semi-conductor type behavior and is antiferromagnetic

1o2
) Chiba et al. 1o1 found that, the low temperature resistivity drops continuously when

CaMnO3 is doped with Bib+ (electron doping) and reaches a minimum at x O.875, and

exhibits a weak temperature dependence. At x = O.875, the resistivity exhibits a very

weak temperature dependence. At x O.85, a sharp increase in resistivity was found and

suggested an anomalous magnetic transition temperature. The Neel temperature was

while the paramagnetic Curie

temperature decreased with increasing Ca doping. At x = O.875, the Neel temperature

approaches the paramagnetic Curie temperature and a saturation magnetization of 1.111B

per Mn site is obtained (which is almost 1/3 of the fully aligned value, i.e., 3.11-tB,

suggesting spin canting). The maximum moment is achieved at this value of x.

Cheong and Hwang 1o3 expanded on the magnetic phase diagram of Chiba et al.

by including the charge ordered temperatures for 0.5 < x < 0.7. For this range, the charge

ordered temperature is always above 30OF. The maximum charge ordering temperature

of 332 K was found to occur at x — O.63. In addition, they also observed the same

behavior of the charge ordering temperature in the LCM0 system.

charge ordering temperature T eo = 210 K, a structural transition was found in which the

lattice parameters change abruptly. This coincides with the transition from orthorhombic
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to monoclinic II found by Bokov et al. 139 Above Teo ferromagnetic spin fluctuations

were found by neutron diffraction. These fluctuations switch over to antiferromagnetic

fluctuations below T eo . Strong competition between FM double exchange charge

ordering and AF superexchange occurs in this system. The Newel temperature was found

to be 160 K. The same trends were also found in earlier neutron diffraction

measurements by Turkevich and Plakhtii 144 on Bio.15Cao.85Mn03. They found the

signature of the onset of antiferromagnetic Mn — Mn interactions at low temperatures as

evidenced by appearance of {110} and {211} superstructure lines.

Optical conductivity measurements by Liu et al. 145 divide the phase diagram of

this system into three distinct temperature regions. For T > T eo ferromagnetic correlations

exist, for TN< T < Teo phase separation into C0 (AF) and ferromagnetic regions coexist

and for T < TN a charge gap develops a long-range antiferromagnetism is observed.

Murakami et al. 146 found evidence for charge ordering in Bi 0 , 2 Ca0sMn03

concomitant with 32- and 36-fold periodicity. The charge ordering temperature, Taco, was

found to be —160 F and below Tco the magnetic structure was transformed from

paramagnetic to antifenomagnetic phase. Long-period structures with 32- and 36-fold

periodicity associated with charge ordering in Bi0.2Ca0sMn03 were found.

Utilizing high-pressure synthesis, Sugawara et al. 147 obtained the end member,

BiMnOb. It was found that, unlike LaMnOb, BiMnO3 is ferromagnetic with a Curie

temperature of 103 K. The saturation magnetization was observed to be — 41..tB per Mn

site. A distorted perovskite structure with a triclinic pseudo-unit cell was found.

In oxygen K-edge EELS measurement, Murakami et al. 148 explored changes in

the near edge structure with temperature and doping. They associate the main line
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transition with a I s to hybridized O(2p)-Mn(3d) transition. The reduction in the main

line intensity in going into the charge ordered region was associated with weakening of

the O(2p)-Mn(3d) hybridization due to a distortion of the Mn-O-Mn bond angle resulting

from charge ordering. The charge ordering was also detected by electron diffraction.

The broad array of interesting properties suggests a deep correlation between the local

structure and the magnetic and transport trends in the BCM0 system.

High temperature structural studies of BiMnOb were recently performed by Faqir

et al. 149 They reported that BiMnOb has structural phase transition from triclinic to

tetragonal structure at 490 °C in air and a ferromagnetic transition temperature (Cc ) of

°108 K. BiMnO 3 was found to decompose into Bi203 and Bi203.2Mn203 at —60OC .

Matsumoto et al. 150 measured a single phase region in O.08 x 0.12 of the

9R(= 9 layer rhombohedral structure) structure for the Bai_„Bi xMn03 system. They

concluded that the concentration at x = O.05 obtained the optimal stabilization of 9R

structure from the correlation between the average ionic radius of the Ba/Bi cation in the

A site and Bi content.

Recently, Atou et al. reported powder neutron diffraction measurements of the

structure of the ferromagnetic perovskite BiMnO 3 formed under high pressure. A

distorted perovskite structure was found with monoclinic C2 space group symmetry.

They suggested that, the distortions were caused by the polarized Bi 6s 2 lone pairs. 147

The combined Jahn-Teller instability (Mn 3+) and lone pair induced distortions result in a

highly disordered BiMnOb system with a range of Mn-O bonds between 1.78 and 2.32 A.

The origin of the ferromagnetic tendency is uncertain.
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Recently, Ohshima et al. 151 prepared films of BiMnO3 on SrTiO b substrates.

Although the films exhibited the ferromagnetic behavior seen in the corresponding bulk

material, the saturation moment of thick films (M = 2.81 B ) fell short of the bulk value (M

= 3.6p,B). In addition, a strong dependence of the saturation moment on film thickness

was found. Also, unlike the bulk material strong hysteresis was found in the film

samples.

The broad array of interesting properties suggests a deep correlation between the

long-range and local structure and the magnetic and transport trends in the BCMO

system.



CHAPTER 4

FUNDAMENTALS OF TRANSPORT IN OXIDES

4.1 METAL-INSULATOR TRANSITIONS (MIT)

The distinguishing characteristic between a metal and an insulator can be established only

at absolute zero temperature because when the temperature is not zero, thermal

excitations allow an insulator to carry a current. It is natural that the ground state

determines the metal and insulator states. Above T = OK, the positive gradient of the

temperature, i.e. dRIdT determines "metallic-like" and the negative one is "insulator-

like". The MIT can be truly a transition between two distinct ground states forced by

parameters. 152

Metal-insulator transitions occur with large resistivity changes (greater than tens

of orders of magnitude). These phenomena have been attracted because of intriguing

phenomena and technological importance. A key issue to understanding MIT is the fact

that there are phase transitions forced by a strongly correlated electron-electron

interaction. The insulating state forced by the correlation effects is classified as the Mott

Insulator. 153 Particularly near the phase-transition region, the metallic state displays

fluctuations and orderings in the spin, charge, and orbital degrees of freedom. One

interesting debate is related to interplay among spin, charge, and orbitals. There are

several theoretical attempts such as Fermi-liquid theory that treats correlations connected

adiabatically in the noninteracting picture. 15o For strong-coupling models that do not

require Fermi-liquid theory, the Hubbard model and t-J models are scaling theory 155 of

the transition are applied.
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A theoretical understanding of the transition between the Mott insulator and

metals was attempted by a simplified lattice fermion models, called "Hubbard model". 156

Mott took a lattice model with a single electronic orbital on each site. If there are no

electron-electron interactions, the atomic orbitals of a single band could be overlapped.

When two electrons with spin-up and spin-down occupy each site, the band becomes full.

But if two electrons occupy the same site, then they might feel a significant Coulomb

repulsion. Thus, Mott proposed the splitting of the band. The lower band electrons

occupied in an empty site and the upper band electrons that occupied a site are already

taken by another electrons, for example, when one electron is in a site, the lower band is

full [see Fig. 4.1]. Then the system becomes an insulator. Figure 4.1 shows the

representation of the intrinsic properties of materials such as insulator (usually

above 10 1oohm-cm), metal (-10 -1° ohm-cm at T = 1K), semimetal, and semiconductor (10 -

2 to 109 ohm-cm at room temperature) and details show the difference of energy bands

gapped by certain range, called energy gaps or band gaps, in which no wavelike electron

orbitals exist.
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Fig. 4.1 Electron occupancy of allowed energy bands: insulator, metal, semimetal,
semiconductors. 157 Note that for a semimetal (bismuth), a middle band is almost filled
while the upper band is mostly empty at absolute zero. At absolute zero temperature a
pure semicoductor (silicon etc.) shows an insulator. On the right-hand side, i.e. left of
two semiconductor is the thermally excited state of carriers in a finite temperature. The
last semiconductor exhibits the state of electron deficiency due to impurities. An orbital
at energy c Fermi energy at T = 0 F.

For an insulator, the Fermi level EF is located at the middle of the valence band (lower)

and the conduction band (upper). For the doped material, extra electrons are bound to

conduction band, and the Fermi level shifts upward to the localized states near

conduction band. The localized electron wave functions are overlapped and broaden.

Then the Fermi level is inside the "impurity band", and therefore, the system becomes

metallic.

Abnormal transport properties of the metallic state near the insulator transition are

mostly found in transition metal oxides d-electron systems such as high Cc

superconductivity in cuprates and colossal magnetoresistance (CMR) in manganites.

Generally speaking, the theoretical parameters such as strong spin and orbital

fluctuations, mass renormalization effects, incoherence of charge dynamics, and phase

transitions in mainly varying band filling, bandwidth, and dimensionality are related to
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experiment parameters for example, chemical composition, doping, pressure,

temperature, and magnetic fields. Basically two distortion mechanisms from the ideal

crystals are "disordered" and mesoscopic (= sub-micron) systems. The fluctuations are

significantly increasing and diverging as the temperature decreases down to zero.

Theoretically, Bloch's theorem itself could not explain it.

The disorder and electron-electron interaction are crucial factors in understanding

MIT. Two models are initiated in electron localization. Mott 16(a) proposed that a metal-

insulator transition occurs only as a result of Coulomb repulsion among electrons when

the potential energy of the electrons is greater than their kinetic energy. The

phenomenon of Anderson localization 158 was founded for such a disorder system in the

electrostatic potential caused by random impurities. This disorder state changes a system

of non-interacting electrons into an insulating state. Anderson localization is based on

the fact that the more disorder rises, the slower the diffusion of electrons gets until it

suddenly stops completely. Such a transport is due to the tunneling of electrons through a

barrier, and the resistance is known to change exponentially rather than just inversely as

the length. The problem of coexistance of both disorder and interaction-induced effects

is still unclear.

The theory implies that this phenomenon is involved in the quantum states of the

system that localized electrons in some regions of the system, not just allowing extended

states that characterized the diffusion regime. The phenomenon is known to metal

insulator transition which attracts physical properties such as phase transitions, solid-

liquid or ferromagnetic-paramagnetic and so forth. 159 The bands of d-electron systems

are strongly affected by anisotropic crystal fields in solids. In the transition-metal, the
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overlap indirect between d orbitals bridging ligand p orbitals (oxygen atom) [see Fig.

4.2].



Fig. 4.3 Crystal —field splitting of 3d orbitals in cubic, tetragonal, and orthothombic
crystals. Note that there are 10 different degeneracies with spins in 3d orbital.
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Fig. 4.4 Schematic diagrams: Top: crystal-field splitting of five-fold degenerate atomic
3d levels ( lower t2 g (triply degenerate) and higher e g (doubly degenerate) levels). Jahn-
teller distortion of Mn0 6 octahedron results more splitting onto orbitals such as x 2 -y2 ,
3z2 -r2 , xy, yz, and zx. Bottom: Structural distortion of perovskite manganites between
orthorhombic(left) and rhombohedral (right). 41(e)
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4.2 Models of p vs. T (Variable Range Hopping)

Goodenough 76 proposed that as the conduction electron enters an antibonding orbital, it

will look for the lowest energy one. It notes that the lowest antibonding energy indicates

the outmost bonding energy with the longest bond distance. A localized state caused

from the electron phonon interaction is called a small polaron. The variable range

hopping conduction (VRH) is described by the conduction mechanism of one electron by

way of intermediately localized orbitals in a random potential. The conductivity in the n

dimensions is written as

compared with our result in details in the chapter 6.



CHAPTER 5

EXPERIMENTAL METHODS

5.1 Sample Preparation

5.1.1 Standard Method

mixed, ground, and pressed into pellets which were calcined at 900 °C. After calcination,

the samples (x > 4.O) were reground and sintered at 1000 °C in air. The samples for x <

O.4 were sintered at 1050 °C in air. This was repeated one more time. This method was

used for samples with x > 0.25.

5.1.2 High Pressure Synthesis

BiMnOb was synthesized under high pressure (25 kbar (2.5 GPa)) at 800 °C by using a

cylinder-piston-type pressure furnace, from Depths of the Earth Company. A 1:1-mixture

of Bi203 and Mn203 was mixed, ground, pressed into pellets, held in gold capsules for 1

hour heated. The purity of BiMnO b was checked by x-ray fluorescence spectroscopy.

The furnace assembly is shows in Fig. 5.1. The detailed steps follow.
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Fig. 5.1 High-pressure furnace assembly for high-temperature experiments. 165

Step 1. The assembly stands on the base plug support block.

Step 2. On top of the support block an insulator ring that is built of gasket paper

Step 3. The insulated thermocouple wires (Tungsten-Rhenium alloys W26Re and W5

Re; Chromel-Alumel) is rapped in Teflon insulation and put into Alumina insulation. A

flat surface is desirable.

Step 4. The thermocouple securely slides through a pyrex glass tubing insulator over the

base plug.

Step 5. A crushable magnesia tube over the thermocouple is positioned and fixed. The

tube stands on the base plug, and the thermocouple top is flush with the magnesia tubing.

Note that the thermocouple can be reused several times.
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Step 6. An alumina disk (similar to size of sample) placed over the opening of the

magnesia bushing and thermocouple top is glued by using Al203 cement.

Step 7. The graphite furnace on the assemblage is put in place and is directly connected

to the base plug.

Step 8. The sample capsule is inserted into the furnace.

Step 9. The empty space between the sample capsule and the furnace is filled with pyrex

(or Mg0 or Al203 wire, etc.) solid or powder. A solid wire or piece of disk is better than

power because the powder may block the flowing of current between graphite and base

plug. This should be checked by an ohmmeter.

Step 10. A cylindrical segment of pyrex rod is placed in the furnace.

Step 11. A salt rod is cut off and aligned with the top margin. An important point

concerning the assembly is that the fit should be snug to preventing cracking the furnace.

Step 12. To operate the temperature above 1000°C a glass-salt furnace insulator is

needed.

Step 13. A furnace lid (graphite cap) is placed on the furnace tube.

Step 14. The salt cell should slide over the glass insulator or graphite furnace and the top

edge of the salt cell must be flush with the furnace lid. For the case of a tightly fitting

salt cell, it can be heated before it is incorporated into the furnace assembly.

Step 15. A 0.001 ~ O.003 thick lead foil is wrapped around the salt cell.

This method was attemped for samples for x < O.25 for which the standard solid

state reaction method failed. In addition to BiMnO3, Bi0.9Ca0.1Mn03, and

Bi0.8Ca0.2Mn03 preparation was attempted.
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5.2 Extended X-ray Absorption Mine Structure (EXAMS)

XAFS spectroscopy is broadly applied to physics, materials science, chemistry (in

particular catalysis and coordination chemistry), biology, geochemistry and

environmental science. The extended x-ray absorption fine structure (EXAFS) is the fine

structure of the x-ray absorption coefficient from an absorption edge up to 1 to 2 keV.

EXAFS measurements are able to extract local atomic structure about specific atomic

species by tuning across the characteristic absorption edges.

EXAFS is attracted by following properties: (A) Synchrotron radiation sources

are now available which are tunable and with higher resolution and significantly higher

intensities (10 3 ) than the standard x-ray tube sources. (B) long-range order is not

required, haence both crystalline and non crystalline solids can be considered on the same

basis. (C) The local atomic structure can be determined with a great resolution (— 0.005

A) for distinct elements.

Absorption of an x-ray photon (typically to 40 keV) causes ejection of a bound

electron from a core level. X-ray absorption resulting in the ejection of the 1s, 2s1/2

2p1/2 , and 2p3/2 correspond to the F-, L 1 , L2 and Lb edges, respectively. Classically,

the outgoing photoelectron wave backscatters off the neighboring sites and interferes

with the incoming wave to produce oscillation as a function of energy- the EXAFS

oscillations. The frequency of the oscillations is related to the absorber-neighbor

distance and the amplitude is related to the coordination number.
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is Planck's constant, i.e., x-ray energy and E0 is the binding energy of the photoelectron .
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In the scattering process from incident plane wave and scattered outgoing

spherical wave with a fixed scattering center through the central potentral V(r), a phase

shift 61 with the l athpartial wave occurs if V(r) decreases faster than r-1. In this model the

effect of scattering by spherical atomic potentials is accounted for by the scattering

amplitude, t; , of the atom located at site with angular momentum 1 17°

For a cluster of atoms this becomes the matrix

The amplitude of propagation from site i with angular momentum L to site j with

angular momentum L' is given by the function GALL, . Hence the scattering path above

becomes

and can be expanded into successive terms representing scattering of the photoelectron

off various centers. For the convenience purpose, we drop subscript on G
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an the experiments, the background signal extraction was carried out using

AUTOBK. I71 The fine structure signals were extracted from the spectra as the difference

between the normalized spectra and an adjustable spline function fit through the post-

edge region normalized by the absorbance decrease with energy, the parameters of which

were adjusted to minimize low frequency region (R < 1 A) in the Fourier transform. After

comparison, two to ten individual scans were averaged. Representative data are given in

the inset in Fig. 5.6.
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where Sot is the scale factor for the multielectron effects, Ni is coordination number of the

i - shell, Rib is radius of the i - shell, o is mean square radial displacement or Debye-

Waller factor, fib is backscattering amplitude of the photoelectron due to the atoms of i -

coordination shell, Cb, and C4 are cumulants 173 ' 174 of a distribution to model enharmonic

effects and/or non - Gaussian disorder 175 , and 44 is phase shift, respectively.

The inhomogeneously broadened (fine structure) 8 based on the statistical

ensemble of scattering path lengths 176 is written as

an the cumulant approach to distributions, one represents the Fourier transform of a

distribution by its moments. For small deviations from a Gaussian distribution a rapidly

converging series makes possible a description by a small number of parameters. For the

effective distribution we have
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For an effective Gaussian distribution, cumulants (C a) higher than the second vanish. an

a convergent series the Cb and C4 parameters are related to asymmetry and flatness of the

distribution, respectively. [see Eq.5.4] We performed fits with parameters up to C4.

Photoelectron scattering factors utilized in these fits were obtained using the code

FEFF7.177 These complex phase shifts included the electron damping. By defining the

coordination numbers, N, as the values known for perovskite systems, average bond

lengths, R, and Debye-Waller factors, a, were extracted from the fits as well as Cb and C4

for the Mn-O (first shell) bond distribution. The errors in these parameters were

estimated based on the statistical spread found for fits to individual scans.

X-ray absorption spectra were measured at Brookhaven National Laboratory's

National Synchrotron Light Source (NSLS) beam lines X19A, X18B, X19A and X23A2.

Si(311) monochromator crystals were used on X18B and X19A while Si(311) crystals

were used on X23A2. Spectra were taken in transmission mode using N2-filled ion

chambers. The reduction of the x-ray absorption measurements was performed using
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standard procedures. 67(b) Calibration was accomplished by defining the first inflection

point in a simultaneous Mn foil as 6539 eV, the ionization threshold. Consistency

between different beamlines was checked by using a Mn02 powder reference sample

over the complete data range. Bi spectra were collected at the Bi Lb edge 13419 eV.

Mig. 5.7 Schematic transmission and fluorescence experimental set-ups.
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OPTaCAL CONFaGURATaON

Table 5.2 Beamline Descriptions (National Synchrotron Light Source (NSLS),
Brookhaven National Laboratory).

Beamlines Descriptions
X11 A Monochromator: Double flat crystal; non-fixed exit; hutch table tracks with beam

height; first crystal is cooled; Bragg angle range from 5 deg. to 80 deg.; located 12
meters from the source.

X14A Mirror:	 Platinum coated flat single-crystal silicon mirror cylindrical in design, 700
mm long x 100 mm wide; variable vertical focusing or collimation. Radius
adjustable from flat to 1km, incident angles between 1 and 7 mradians; located 7.5
meters from the source; can be removed for high energy operation.

Monochromator:	 Horizontally	 focusing	 double	 crystal	 monochromator;
adjustable focal point from 13.3 - 30 meters from source; first crystal is water-
cooled and flat; second crystal is conically bent; located 9.3 meters from the source.

Xl8B Monochromator : Si(111) channel cut monochromator with detuning and some
deglitching capabilities. Beam walk < few microns during typical scan.
Monochromator in ultra high vacuum 18 m from the source. Sample at — 20 m
from the source.0.1, 0.2, 0.3, 0.5, 1.0 and 1.5 mm vertical slits at — 17 m from the
source.

X 9A Monochromator: NSLS boomerang-type double flat crystal monochromator; fixed
exit geometry; first crystal is water-cooled; operates at UHV; two presettable Bragg
angle ranges of 14.4 - 70 deg (low) and 8.5 - 15 deg (high) located 9.3 meters from
the source. Though able to reach energies up to 20keV with the current complement
of crystals, the beamline specializes in the energy range between 2.12 and 8.0 keV
(P to Fe in the periodic table) using a Si(111) (low) focused configuration
Mirrors: A recently replaced spherical front mirror immediately downstream of

the shield wall collimates light in the vertical direction; and a toroidal mirror after
the monochromator focuses the beam to a —0.8 mm x 0.8 mm beam spot in the
hutch. The 60 cm length of this last optic limits the horizontal acceptance angle to
roughly 1.5 mradians.
Windows: Beamline is UHV and windowless up to an 8 mil Be window located

inside the experimental hutch.

X23A2 Monochromator: Upwards reflecting, fixed exit Golovchenko-Cowan design;
piezo-feedback stabilized.

X23B Mirror No. 1: Platinum coated flat silicon collimating mirror; 400 mm long by 70
mm wide; collimation achieved by four point bending; high energy cutoff is 11
keV; angle of incidence is 7.15 mradians; located 7.9 meters from the source.

Monochromator: Fixed exit position double crystal monochromator (Cowan
type); two ranges of incident angle are 8 - 15 degrees and 13.5 - 70 degrees;located
9.2 meters from the source.
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Table 5.3 Beamline Description (Advanced Photon Source (APS), Argonne National
Laboratory).

Beamlines Descriptions
MRCAT Monochromator: The line is equipped with a Si (111) monochromator consisting of

a cryo-cooled first crystal designed by the ITT Center for Synchrotron Radiation
Research and Instrumentation (CSRRI) and a 200mm long second crystal which
provides an energy range of 4.8keV to 30keV from the fundamental reflection. This
monochromator has been measured to deliver in excess of 10 13 photons/second to
the experimental station.
Harmonic Rejection and Focussing Mirrors: All of the MRCAT mirrors reside in
the experimental station and are intimately connected to the general positioning
system that we have developed for the beamline. Currently, there is a
positionable flat harmonic rejection mirror with Pt and Rh stripes.
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5.3 X-ray diffraction

The following is based significantly on Rietveld Analysis: R. A. Young, "Using the

Rietveld method", version 5, School of Physics, Georgia anstitute of Technology, Atlanta,

GA 30332, 1995.

The Rietveld method 179 is a powerful tool to refine crystal structures (not just

profiles) using x-ray and neutron diffraction data until a good agreement between

observed and calculated observations is obtain. Ultra-high resolution synchrotron

sources 180 have been utilized in solid state chemistry/physics. Materials may be distorted

by a variety of defects such as concentration variation, macrostrain, microstrain, size

stacking fault, antiphase domains which possibly affect the shape and width of the

powder diffraction pattern reflections. 181

Methodologically the process of the Rietveld method is based on the least-squares

refinements until the optimum fit is obtained between the entire observed powder

diffraction pattern taken as a whole and the whole calculated pattern established on the

simultaneously refined models with desired input parameters: the crystal structure(s),

diffraction optics effects, instrumental factors, and other specimen characteristics (e.g.,

lattice parameters).

Data are Collected with the intensity value, yid, at equal increments (steps) depends

on scattering angle (20), some energy parameter such as velocity for time-of-flight (TOF)

neutron data (energy dispersion via velocity discrimination data) or fixed wavelength for

X-ray data. The Rietveld method is basically the same approach in both X-ray and
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neutron data. The differences among data sources are whether the steps are in angle or

energy and the required instrumental parameters.

The residual, S y, is the minimized value in the least-squares refinement

where K is the Fah Bragg reflection. an addition, the "Goodness-of-Fit" indicator, S, is

defined as

where N is the number of observations (data points), P is the number of constraints, and

R and RAP are about 10% or less and 82 is as small as possible not less than 1.

The software package developed at Los Alamos National Laboratory, Generalized

Structure Analysis System (GSAS) 182 was adopted to fit our materials.



5.4 Resistivity Measurements

Resistivity measurements were measured by standard technique, i.e. the four point
probe.
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Mig. 5.10 Standard four point probe method with sliver paste or paint used to adhere
wires.

Gold wire (usually 12 — 50 lAm) and the sample was contacted with the silver print

conductive paint. Resistivity can be calculated as follows:

where V is voltage measured, a is the current, 1 is the length in voltage-contact, and a, b

are cross-sectional sides.
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5.5 Magnetic Measurements

There are numerous commercial magnetic sensors such as Search-Coil

Magnetometer, Flux-Gate Magnetometer, Optically Pumped Magnetometer, Hall-Effect

Sensor, Magnetoresistive Magnetometer, Magnetodiode, Magnetotransistor, Fiber-Optic

Magnetometer, Magneto-Optical Sensor, and SQUaD Magnetometer. 183 Detailed

descriptions for those are described in a review article. 184 These sensitivities, power

requirements and frequency limits are vary. SQUaDs are able to measure magnetic fields

as small as -10-10 gauss but their disadvantages are the required low temperature

condition. On the other hand magnetoresistive sensors with flux collectors enable

frequencies to execute up to 10 8 Hz with only 100 mille watts of power.

5.5.1 SQUID Measurements

The superconducting quantum interference device (SQUaD) is the most sensitive

for measuring a magnetic field (see Fig. 5.11). The key idea is based

on extraordinary interactions of electric currents and magnetic fields measured when

materials are cooled down below a superconducting transition temperature. an this

temperature, the materials become superconductors.
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Mig. 5.11 Magnetic sensor comparison. 185

af a superconducting ring is interrupted by a line of magnetic flux, a current is

induced into the ring. This magnitude of the induced current is very sensitive indicator of

the flux density. an fact, the ring can detect a tiny change in the field from a single

quantum unit of magnetic flux.

The device wass originally proposed by Brian D. Josephson in 1962, who was a

graduate student at the University of Cambridge. His basic interest was in what could

happen in a superconducting ring interrupted by a "weak-link", either a thin layer of

insulator or an area where the superconductor itself narrows to a very small cross section.

He discovered that a supercurrent can penetrate the weak link, but it is an oscillating

function of the magnetic field intensity in which the supercurrent has a peak and dies out

periodically. This situation is very similar pattern as the interference fringes generated by

the diffraction of light.



an a SQUaD, there are three major parts: the SQUaD ring, the radio-frequency

coil, and the large antenna loop. These parts should be cooled to be a superconducting

state by using the liquid helium. Periodic variations of output signals are used to measure

the current in the ring and ambient magnetic field. This ring is coupled to a radio-

frequency circuit that gives a known bias field and serves as the detector output.

Consequently changes in the ring vary the resonant frequency of the circuit, and from this

result the output signal changes periodically as the field varies. Variations in the field

can be observed by counting the peaks and valleys which are similar to count fringes in

an interference pattern. A feedback loop can be alternatively used to lock the radio-

frequency circuit onto a single peak and continuously regulate the bias field to

compensate for changes in the external field. This feedback current is a measure of the

ambient field.

Typically a SQUaD can be formed by two Josephson junctions in the ring. an a

situation that the two weak links are matched properly through design, the current in the

ring gets a dc response to the flux going through it.

The superconducting ring in a SQUaD is a toroid with a few millimeters in

diameter (PbINd). Sensitivity is improved by coupling the ring to a larger

superconducting loop or coil without a weak link, which effectively acts like a magnetic
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"antenna" or dc search coil, gathering flux over an area of several square centimeters. A

dc transformer between the sense loop and the SQUaD readout can be obtained with

advantages of using superconducting properties. Therefore the SQUaD ring eventually

operates like a very accurate ammeter, which can measure the current in the pickup coil.

A null level can be set by adjusting the bias field of the radio-frequency circuit rather

than the average terrestrial magnetic field. Superconducting sense loop has a dc response

to magnetic fields. The gradient of the external field in nine directions (613,/6x, 813,16y,

etc.) can be measured, and it is called a high-sensitivity "gradiometer". The SQUID

usually consumes only several watts to operate the radio-frequency electronics.

DC magnetization measurements were performed with a Quantum Design SQUaD

magnetometer (MPMS-XL) between 4.2 F and 400 F. AC susceptibility was measured

by a Quantum Design MPMS (1 Tesla model with ultra-low field options).
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5.5.2 High Mield Measurements

The high field magnetization and resistivity measurements (up to 30 T DC) were

performed using the Cell #8 32 mm bore magnet at the National High Magnetic Field

Laboratory (NHMFL), Florida. A vibrating sample magnetometer was used for

magnetization measurements and the standard four-probe method for resistivity was

employed.
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Vibrating Sample Magnetometer (VSM):

To measure the magnetization in high magnetic laboratory, we used a VSM that can be

used by large samples up to 6 mm diameter and 8 mm long, and can detect the

magnetization with a resolution of 10 -3 emu. Temperature in the VSM can varies from

1.2F to 30OK and fields up to 33T. Figure 4-15 demonstrates the actual set-up of VSM.

Sample was mounted inside the plastic tube (like a straw to drink soda). We used the

Lake Shore's Vibrating Sample Magnetometer systems with vibrating frequencies of 82

Hz.

an some figures we report the magnetization in Bohr Magnetons (R B)/Mn ion ofBi-

„Ca,Mn0 3 . This is derived by starting with the magnetization in emu units. Using the

weight of the sample we then obtain the magnetization in emu/mole. We then carry out

the following multiplication:
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emu/mole Bil_„Ca,MnOb * (1 mole /6.022 x 10 23 molecules) x (1 11B/9.27332 10-23 emu)

BIMn ion.



CHAPTER 6

CORRELATIONS BETWEEN THE MAGNETIC AND STRUCTURAL

PROPERTIES OM Ca DOPED BiMnO3

6.1 X-RAY DIMMRACTION MEASUREMENTS

content coincides with reduced space group symmetry.
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Fig. 6.2 Temperature dependence (1/T4(K4 )) of the electric resistivity for x = 0.4, 0.6,
O.8, and O.9, respectively. Note that there are anomalies at T c0 = 315K, 33OF, and 19OF
for x = O.4, O.6, and O.8 respectively. TN 16OF and 13OK for x = O.4, and 0.6. an the
lower panel we compare the logarithmic resistivity variation for the x = O.9, Bi le _
,CaxMn0 3 material plotted versus 1/T (upper curve) and 1/T 1i3 (lower curve).



As discussed below, at high temperatures these doped manginites manifest FM-

correlations. Models of these materials picture the FM correlations as local-polarons

randomly distributed and fluctuating. 31 an this picture, the carrier hopping between FM

fluctuations would involve disordered and potentially variable range hopping. an view of

this, Fontcuberta et al. 189 used the (T0/T)1i4 dependence of the log of the resistivity data

to characterize manganite system results. Varma et al. 190 argued in favor of a (T o/T) 1/2

type behavior for manganite systems due to the importance of electron interactions in the

localization. This provides some motivation for trying the 3-D variable range hopping

as an ansatz for plotting the data. At this juncture, however,

we prefer to view the (1/T) 14 display of the data simply as an empirically useful method

of characterizing the high temperature variation of the resistivity.

an Fig. 6.2 (upper panel) the logarithmic variation of the resistivities of the x =

an the smaller range of this plot

the x = O.9 variation is quite linear. The x = O.4, O.6, and O.8 material resistivities can

form for T > Taco (the charge/orbital

ordering temperatures). For the high temperature region materials the values of P o and To

The onset of the charge-ordered phase is characterized

by a clear increase in the resistivity for all of the materials (see top of Fig. 6.2). This is

consistent with the suppression of the carrier hopping associated with the charge-ordered
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phase. No clear resistivity anomalies, associated with the AF ordering temperatures (TN),

were observed.

at is worth noting for later reference that the magnitude of the resistivity at 300 K

versus composition (see Fig. 6.5(b)), from our and previous work, 14° shows a distinctive

dip (of nearly 2.5 orders of magnitude) in the O.8 < x < O.95 range. A similar drop in the

localization energy scale parameters (T o) is evident from our data. The low-x side of this

dip is associated with the suppression of CO correlations whereas the rise, approaching

CaMnO3 is related to the crossover to insulating behavior with the disappearance of

doped carriers.
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Mig. 6.3(a)-(c) Temperature dependence of the magnetization for x = O.4, 0.6, O.8, and
0.9 as (a), (b), and (c). The magnetization measurements at x = O.4, O.6, and O.8 were
taken with magnetic fields of 1T, 2T, and 4T for cooling down and warming up.



The magnetic susceptibility at the high temperatures showed Curie-Weiss type behavior

with a FM-like (i.e. negative) 0-value over the

in Fig. 6.5(a). Here the Curie-Weiss behavior is for temperatures above the c ordering

and antiferromagnetic transition temperatures. Thus this high temperature range appears

to be dominated by local ferromagnetic fluctuations (FMF) that are presumably mediated

hopping-induced double exchange interactions. With decreasing

temperature our x = O.4, 0.6, and O.8 magnetization curves (see Figs. 6.3(a) - 3(d)) exhibit

distinct maxima at the charge ordering temperatures (TO indicated. The neutron

scattering results of Bao et al. 119 and Turkevich and Plakhtii 191 (on a x = 0.82 material)

have nicely correlated such maxima with the suppression of the FMF when the charge

ordering freezes out the hopping mechanism. an the charge-ordered phase, AF

superexchange interactions dominate, leading to an AF ordering at a temperature (TN) in

the 129F-171K range. TN is identified with a lower temperature local-magnetization

maximum. an the x = O.8 material the signature of the AF-ordering is perceptible only as
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a subtle shoulder on the low temperature side of the CO related peak in the magnetization

(see Fig. 6.3(c)).

The CO phase is suppressed for x values above ~ O.85. Our x = O.9 magnetization

curves, for example, reflect the development of a robust net moment, which depends on

the field strength, below a magnetic ordering temperature near 11OK. The onset of AF

type order in this temperature range is common to materials with O.85 < x 1.0 in this

system as is the appearance of a net FM moment in a magnetic field. This FM moment

has been attributed in the past to FM-interaction induced moment canting. However the

magnitude and nonlinear field onset of the FM moment varies strongly in this O.85 < x

1.O range as illustrated by the H = 1T moment variation vs. x (from our and other work)

in Fig. 6.5(b). 140 The rapid rise in the FM moment as x increases through O.85 marks the

exit from the CO-AF state. The similarly rapid magnetization drop near x = O.95

correlates with the suppression of a FM-B value (high-T FMF) in the same range. As has

been noted previously, the B value of the x = 1.O material is several folds larger than the

AF-TN, suggesting possible low energy scale nonmagnetic (covalency) effects in the pure

Ca material.

The nonlinear field dependence of the magnetization in CaMnOb and its response

to electron doping has been touched upon, (although too briefly) in the literature. The

roles of magnetic frustration, AF-domain-spin-canting, 188 homogeneous canted

antiferromagnetic (CAF) order, and (most recently) local scale FM/AF coexistence have

all been brought up in this regard, 126 an Fig. 6.4 we illustrate a subtle field dependent

behavior in these BCMO materials which may reflect a competing FM component in the

CO/AF state of this system.



The M/H curves in Fig. 6.4 represent the finite field susceptibility (as opposed to

the differential susceptibility dM/dH) and help to highlight field dependent saturation

effects in the magnetic response. For the x = O.9 material (Fig. 6.4(d)) the M/H curves at
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low field (e.g. 5 = O.1T) manifest a tremendous response at the ordering temperature.

The 5 = 1 T, MI5 curve shows a typical FM component response below TN and its

smaller magnitude simply indicates that the FM response saturated at a much smaller

field. This type of behavior is the basis for CAF or locally-coexisting FM/AF order

proposed for such x > 0.85 range materials.

an a simple AF system, where the field energy is much less than TN, the field

response should be small and MI5 would be expected to increase with increasing field (at

least until spin flop effects saturate). The M/5 curves of the x = O.4 material in Fig. 6.4

(a) illustrate this type of behavior.

an Fig. 6.4(c) the MI5 curves within the CO-AF phase of the x = 0.8 material are

shown. There is a small but clear nonlinear field response below about 100-12OF in the

1T curve which is saturated in the higher field curves. Comparison of Fig. 6.4(c) and Fig.

6.4(d) shows that this field-effect in the x = O.8 material is similar in thermal variation,

although much smaller in magnitude, to that in the x = 0.9 material. Again in the MI5

results for x = 0.6 (Fig. 6.4) a similar (albeit quite small) low — T, low field increase in

the response can be seen. For x = O.6 the energy scale for this effect has moved down to

about 5OF. af one refers to the 1T susceptibility results of Chiba et al. 140, one notes the

presence of low temperature FM — moment response in the x = O.8 and x = O.85 materials

in their CO/AF states. Whether these effects are related to local composition

fluctuations, CO/AF — domain interface, or FM-like impurity site effects are at present

unclear and further work on these effects is warranted.
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6.4 PHASE DIAGRAM

an Fig. 6.5 we summarize our results and previous magnetic results for the BCMO

system as a phase diagram. 5ere the previous work on this system focused either on

restricted temperature or composition ranges. Our results augment the previous work and

we have carefully attempted to draw together both our and previous results. The high

temperature phase is a paramagnet (PM) with ferromagnetic fluctuations (FMF) for the

range x < O.95. The loss of FM correlations, approaching the x = 1.O (pure-Ca) material

is marked by a dotted line. For the x < 0.85 range the Mn3+/Mno+ hopping, supporting the

FMF, is quenched upon crossing a line of charge ordering transitions (Tco). With further

cooling, in the x < O.85 range, a transformation to a antiferromagnetic (while still CO

ordered) ground state occurs below a line of temperatures TN (in the 110 ~ 16OF range).
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(c) A summary phase diagram of the BCM0 system. We indicate phases including: the
AF ordering temperatures and AF phase, canted AF (CAF) phase with large moment
(LM), canted AF (CAF) phase with small moment (SM), high temperature range
supporting ferromagnetic fluctuations (FMF) charge/orbital ordered phase and its
ordering temperature. Note that the data comes from our work (filled triangles and filled
squares), Chiba et al. 1o0 (open squares and open inverted triangles), Bokov et al. 139

(back-slashed squares) and Bao et al. 119 (open triangle with vertical bar and squares with
cross).

at is worth noting that the charge-ordered phase of this system is stable over a

wider range of compositions and temperatures than in any of the other manganite

systems. an the case of the LCMO system, for example, in the 0.4 < x < O.5 range a FM

metallic phase has replaced the charge ordering state found here as the ground state.

Moreover, in none of the other systems does the C0 ordered state persist above room

temperature.

The loss of C0 correlations for x > O.8 appears to enable the Mnb+/Mno+ hopping

and FMF to persist to room temperature, and below, as evidenced by a wider FM Curie-

Weiss range for the susceptibility and the strongly reduced resistivity in this x-range.

Moreover, a FM component (peaking near x = O.875) also appears to be incorporated into

the AF ground state in this range as reflected by the magnetization at 10 K variation

versus x in Fig. 6.5(c).
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6.5 Mn-K Near Edge XAS

Previous work has shown the Mn-K near edge spectra to be useful in chronicling

the Mn-valence/configuration change in the LCM0 system. 188 an Fig. 6.6 the main edge

(and pre-edge in the inset) spectra for, x = O.O, O.5, and 1.O in this system are shown. at

should be noted that: the peak feature, B, shifts markedly between the formally Mno+ and

Mono+ compounds with x = 0.O and x = 1.O; the x = O.5 material has an intermediate

chemical shift while preserving a quite sharp B-feature. andeed, it has been noted by

several authors that the intermediate spectra in this series (e.g. see the x = O.5 spectrum)

are far too sharp to be a superposition of the end point spectra, despite conventional

discussions of the systems of magnetic properties in terms of dynamic Mn3+/Mno+

mixtures. 192 This quandary is underscored and compounded by noting that the structure

of the x = O.5 main-edge spectrum changes only very slightly upon entering its low

temperature "charge/orbital ordered state". 193

The Mn-K pre-edge feature spectral strength in this system has also been shown

to track the Mn-valence/configuration change. The increase in the pre-edge feature

strength, with increasing x, is illustrated in the inset of Fig. 6.6. The presence of three

identifiable features al/a2/a3 in the pre-edge of CaMnO3 has been found to be

characteristic of such Mono+ compounds. 188 The cross over to a bimodal al/a2 structure

in LaMnOb is also clear in the Fig. 6.6-inset.



The main-edge spectra of the BCMO series shown in Fig. 6.7 sharply contrasts with these

previous results (the differing crystal structure of the x = O.0 material motivates its

separate consideration). While the B-feature of the BCMO series does shift

systematically to lower energy with decreasing x, the B-feature also rapidly broadens,

and loses intensity to the region of the spectrum labeled A in Fig. 6.7. anterestingly,

plotting the B-feature energy position versus x for the (Bi,Ca)-system (see Fig. 6.7-inset

lower right) reveals a quite good correlation with the (La,Ca)-system despite the

dramatically different edge-structural evolution in the two.

an Fig. 6.7, upper-left, the pre-edge spectra of the BCMO series are shown. The

spectral strength of these pre-edges decreases with decreasing x. This is consistent with
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the previous results on the LCM0 system and with the decreasing Mn-valence. The shift

of intensity away from the a2 to the al portion of the spectrum is also consistent with that

observed in the (La,Ca) system, with decreasing x and with decreasing Mn-valence. The

formation of a particularly sharp pre-edge feature in the BiMnO 3 is worth noting. an

previous studies by our group on defected perovsites, the appearance of such features has

correlated with the formation of non-centrosymmetric Mn06 octahedra. 188 Such local

deviations from centrosymmetry would be consistent with the proposed "ferroelectric"

distortions in of BiMnO3 . 19o
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edge spectrum for BiMnO3 (see Fig. 6.7) displayed multiple unresolved features at the

edge (see the labeled features 1-4 in Fig. 6.7). Ti-F edge studies of the ATiOb (A = Ca,

Sr, Ba, Pb) systems 196 have shown that the multiplicity and splitting of the main edge

features increase with the increasing distortion in these ferro-distortive/electric

perovsites. These main edge splittings persist far above the ferroelectric transition

temperatures in these Ti-based materials leading authors to propose reinterpretation of the

ferroelectricity as an order-disorder transition of the local distortions. 197 The

exceptionally large distortions in PbTiO3 and BiMnO b have been attributed to the

polarizability of the PbIBi 6s 2 states and their incorporation into covalent bonding with

the 0. 19o"95 The pronounced splitting of the Mn-K main edge features is consistent with

such local distortion effects.

It is tempting to associate the large modifications of the Mn main edge (upon Bi

substitution into CaMnO3) with disordered local distortions of the same sort that lead to

the ferroeclectricity in BiMnO3. That such local distortions would persist at x values far

from the pure ferroelectric x = O.0 material is not unexpected in view of the local stability

of distortions in the Ti-compounds at temperatures far above the ferroelectricity transition.

197 To empirically test this notion, we have formed the difference spectra At = [I(x)-x

I(1.O)]/x for the BCM0 series where I(x) is the Mn-K edge spectrum at a given x (Fig.

6.8). This procedure "subtracts off " a fraction, x, of sites assumed to remain CaMnO3-

like. While the authors believe that the CaMnO3-like sites must in fact also evolve

substantially with x, this method does provide a means of identifying subtle features in

the B-feature broadening process.



Figure 6.8 displays the CaMnO b and BiMnO 3 spectra along with a series of All

difference spectra. As alluded to above, the subtraction procedure appears over zealous

in the energy region of the CaMnO b B-feature peak (i.e. the "CaMnO 3 -like" sites should
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not be x-independent). Nevertheless, there are strong structures in the .64.1 spectra at

energies close to the features labeled 2 and 4 in the BiMnO b spectrum. There is also a

distinct shoulder at the feature-3 energy despite the fact that it rides on the over-

subtracted, B-feature dip. At the highest concentration (x = O.4) the buildup of intensity

in the feature-1 region is also apparent. Thus our Mn-K main edge XAS appears

consistent with the notion that Bi-substitution introduces locally distorted Mn-sites into

the BCM0 system that are similar to those which lead to the ferroelectric distortion in

BiMnO3.

Work by Bridges et al. 198 has shown modest but clear temperature dependences

in the pre-edge spectra of the LCM0 system in the ferromagnetic 0.2 < x < O.5 range.

Recently, Qian et al. 193 have confirmed this effect and also discovered a different

thermal dependence accompanying the onset of robust charge/orbital ordering for O.5 5_ x

O.8 in the LCMO system.
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Figure 6.9 illustrates the variation of the Mn-K pre-edge features of the O.6

material from above to below the charge/orbital ordering temperature. As observed by

Qian et al. 193 (for the La-Ca system) the spectral intensity in the lowest energy portion of

the pre-edge (the al -feature region) is reduced modestly in the CO phase. The same

effect was seen in the x = O.8 system but with a much smaller change presumably due to

the much weaker charge ordering near the phase's stability limit. The interpretation of

these modest charge/orbital ordering induced that spectral changes are unclear at present,

but two suggestions will be made here to motivate theoretical calculations. A small

increase in the degree of Me- admixture accompanying the loss of ferromagnetic

interactions upon entering the charge-ordered phase would at least be qualitatively

consistent with the pre-edge feature change (i.e. the al feature is weakened/shifted-up

with increasing Mn-valence). A second possibility involves the orbital component, at the

more-Mn3+ sites, of the charge-ordered phase. Specifically, the static orbital alignment at

these sites should be accompanied by a Jahn-Teller energy up-shift in the unoccupied e g

-states. Since the al feature involves such eg states, the charge-ordered induced

degradation of the low energy side of the al-feature would be reasonable. Clearly the

emergence of consistent pre-edge feature changes accompanying the phase changes in

these materials should stimulate theoretical calculations of these spectral features.
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6.6 Mn-K EXAMS

In order to compare the local structure unique of BCM0 samples with LCM0

samples, we have performed Mn K-Edge x-ray absorption spectra measurements.

Representative raw x-ray absorption spectra data are shown in Fig. 6.10 (Fig. 5.6 shown

again for comparison) as the inset for x = O.9. Note that only small changes in amplitude

occur with temperature.
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In Fig. 6.10, we show the magnitude of the Fourier transform of the XAFS*k o

spectra for selected materials in the BCMO system at 3OOK. The first peak (1 - 2 A)

corresponds to the Mn - 0 bond distribution. The second (— 2.5 A) and third peaks (3.3

A) contain the Mn - Ca/La and Mn - Mn correlations, respectively. The higher

coordination peaks should also be noted. The corresponding curves for the LCM0

system at 3OOK are shown in Fig. 6.11.
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characterized by a Debye-Waller factor type reduction due to static and thermal disorder

effects. Thus the Mn-0 first shell in the Bi substituted system appears to be disordered

on a local scale relative to the LCMO system. The Bi-induced onset of charge/orbital

ordering correlations could contribute to this effect; however, work in our group has

shown that the first Mn-0 shell feature in the La0.5Ca0.5Mn03 spectra do not show

significant change upon entering the ordered state. The spectra above and below the

charge ordering temperature for the Bi0.2Ca0.8Mn03 material also does not reveal an

appreciable first shell modification (Table 6.1). Thus the local distortions in the Mn-0

shell in the BCM0 system appear to be related to the local effect of the Bi-substitution

and not to the longer range charge/orbital ordering distortions. In fact, in systematic

temperature dependent on x-ray absorption spectra measurements of the O.8 and O.9

systems, no significant changes in the Mn-0 peak shape occur with temperature.

Detailed first-shell fits were performed on x = 0.8 and O.9 as well as on the x =

1.0 and these results are reported in Table 6.1. For high Bi content (x < O.8) the spectra

can not be modeled by Gaussian distributions or cumulants (expansion does not

converge) because of the high level of local structural distortions. This is consistent

with the very large distribution of Mn-0 distances found by neutron diffraction in the x =

0 endmember, BiMn0 3 . 195
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TABLE 6.1 XAFS Derived Structure at x = O.8, O.9, and 1.O

T(K) R(A) 2 C3 C4

50 1.898 ± 0.002 0.0038 ± 0.0001 -8.00 x10-6 ± 6.75 x10-6 5 . 02 x 10 6 ± 4.14 x10 -6

100 1.905 ± 0.004 0.0037 ± 0.0003 6 . 00 x 10 .6 ± 6.08 x10-5 -2.18 x10-7 ± 1.12 x10 -5

150 1.908 ± 0.005 0.0032 ± 0.0002 -1.10 x10-5 ± 7.80 x10 -5 -2.50 x10 -5 ± 1.06 x10 -5

160 1.903 ± 0.006 0.0037 ± 0.0004 -6.20 x10 -5 ± 7.23 x10-5 -6.50 x10 -6 ± 1.08 x10 -5

170 1.905 ± 0.008 0.0038 ± 0.0004 -5.30 x10-5 ± 1.07 x10 3 . 16 x 10 6 ± 1.28 x10 -5

180 1.924 ± 0.008 0.0031 ± 0.0005 2.17 x10-4 ± 1.11 x10-4 -2.24 x10 -5 ± 1.49 x10 -5

190 1.910 ± 0.005 0.0034 ± 0.0004 1.30 x10-5 ± 7.10 x10-5 -1.71 x10-5 ± 1.39 x10-5

200 1.918 ± 0.007 0.0034 ± 0.0004 1.26 x10-4 ± 1.07 x10 -4 -1.51 x10 -5 ± 1.13 x10 -5

210 1.927 ± 0.010 0.0031 ± 0.0002 2.46 x10 -4 ± 1.40 x10 -4 -1.96 x10 -5 ± 5.93 x10 -6

220 1.922 ± 0.011 0.0031 ± 0.0008 1.40 x10 -4 ± 1.69 x10 -4 -3.03 x10 -5 ± 1.21 x10-5

230 1.918 ± 0.008 0.0035 ± 0.0006 1.04 x10-4 ± 1.12 x10 -4 -1.90 x10 -5 ± 1.33 x10-5

240 1.920 ± 0.003 0.0034 ±0.00004 1.10 x10-4 ± 4.75 x10-5 -1.77 x10-5 ± 2.37 x10 -6

250 1.915 ± 0.003 0.0036 ± 0.0003 4.13 x10-4 ± 4.88 x10 -5 -1.77 x10 -5 ± 1.45 x10 -5

300 1.918 0.007 0.0040 ± 0.0004 9.40 x10-4 ± 1.04 x10 4 -1.54 x10 -5 1.37 x10 -5

10 1.895 _ 0.002 0.0053 ± 0.0002 -3.40 x10-4 ± 1.47 x10-5 4.47 x10 -5 ± 2.34 x10 -7

50 1.898 ± 0.008 0.0050 ± 0.0002 -2.78 x10 -4 ± 1.01 x10 -4 4.55 x10 -5 ± 4.84 x10 -6

85 1.897 ± 0.005 0.0062 ± 0.0001 -2.77 x10 -4 ± 9.18 x10-5 7.83 x10 -5 ± 1.50 x10 -5

100 1.902 ± 0.012 0.0056 ± 0.0004 -2.37 x10-4 ± 2.38 x10 -5 5.01 x10 -5 ± 4.95 x10 -6

125 1.889 ± 0.015 0.0062 ± 0.0004 -3.89 x10-4 ± 9.27 x10-5 5.46 x10 -5 ± 1.62 x10 -5

150 1.902 ± 0.002 0.0057 ± 0.0011 -2.50 x10-4 ± 5.73 x10-5 5.19 x10 -5 ± 1.62 x10 -5

220 1.903 ± 0.003 0.0056 ± 0.0003 -2.01 x10-4 ± 7.81 x10-5 5.31 x10 -5 ± 7.81 x10-5

300 1.898 0.003 0.0054 ± 0.0004 -3.26 x10 -4 ± 1.63 x10 -5 5.20x10 + 6.10 x10-6

300 1.885 ± 0.003 0.0037 ± 0.0001 -1.79 x10 ± 5.69 x10 -5 7.91 x10 -6 ± 2.57 x10-6

300 	 1.899

Sample

Bio.2CaosMn03
Taco = 19OK

S02 = 0.81

Bio . 1 Ca0 .9Mn03
S02 = 0.88

CaMnO3
S02 = 0.90

CaMnO 3 XRD
(Ref. of 216)
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Referring again to the BCM0 results in Fig. 6.10, the higher shell Mn-Bi/Ca and

Mn-Mn coordination peaks are seen to be systematically reduced in amplitude with

increased Bi content and in Fig. 6.11 they were compared to the LCM0 system. This

implies that the higher Bi concentration samples are increasingly disordered. Again the

potential role of charge/orbital ordering in this disordering-effect must be considered.

Work in our group has shown that the third shell (Mn-Mn) feature is strongly reduced in

the ordered (low temperature) phase of the La 0 . 5 Ca0 . 5Mn0 3 material. Thus the increasing

higher shell disorder (with increasing Bi-content) in BCM0 system would appear to

involve a charge/orbital ordering contribution in addition to the local Bi-distortion

contribution. 5ence, local disorder induced by the Bi 6s 2 lone pairs stabilize charge

ordering over a large doping (x) range and suppresses the e g hopping mediated metallic

state.



151

6.7 Conclusion

Systematic structural, magnetic, and transport studies on the BCM0 system were

reported for the doping range x 0.4. These measurements were correlated with x-ray

absorption spectroscopy measurements. The XAS measurements clearly indicate that

increasing Bi content in CaMnOb stabilizes increasing Mn + character similar to the

LCM0 system. 5owever, the XAS results also indicate that very substantial local

distortions about the Mn sites accompany the Bi substitution in contrast to the LCM0

system. Indeed, the x-ray diffraction data reveal splittings consistent with lower

symmetry cells as Bi content increases.

The phase diagram of the BCM0 system (and the magnetic and transport

properties on which it is based) resembles the LCMO system in some aspects, and differs

from others. The similarities to be noted are as follows. At room temperature FM

interactions and enhanced electrical conductivity (decreased resistivity) are rapidly

stabilized by small levels of A3+ substitution. FM fluctuations dominate the high

temperature region for x 5 O.95. A robust FM component is incorporated into the AF

ground state with the maximum of this FM component correlating with the maximum

conductivity enhancement near x = O.875. A charge/orbital plus AF ordered phase onsets

near x = O.83 below which a line of CO ordering transition temperatures (Taco) rises

steeply, with decreasing x, in the phase diagrams.

A strong disparity with the LCM0 system lies in the substantially more robust

character of the charge-ordered state in the BCMO system. Specifically, the charge

ordering temperature rises to the 33OF range as opposed to about 25OK in the LCM0
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system. This remains high for x extending down to O.4 as opposed to Taco declining and

the ground state converting to a FM metal below x = O.5 in the LCM0 system.

Presumably the local Mn-O distortions stabilize the local charge/orbital ordering process.

In general the FM-metal to CO-ordered insulator transition manifests the most

precipitous field sensitive conductivity change in manganite materials. Bi-substitution

appears to most efficiently stabilize the CO-ordering to above room temperature. Thus

the use of Bi-admixture in materials with high temperature FM-metal transition

temperatures may be an avenue to bring these two phenomena into competition in the

room temperature range.



CHAPTER 7

EVIDENCE MOR SPIN CLUSTERS AND GLASSY BEHAVIOR
IN Bil,Ca xMn03 (x 0.875)

7.1 Introduction

Compared to the x < 0.5, colossal magnetoresistance FM region, the x > 0.5 region has

been less extensively studied. In the range O.50 < x < — O.875, one finds a charge/orbital

(CO) and AF ordered ground state with insulating behavior. For x above about O.9, the

CO order disappears and the G-type AF order, observed in CaMnO3, appears. 75,76

5owever, a substantial ground state FM component, originally ascribed to canted AF

behavior, appears in this high x range and peaks with significant magnitude near x =

0.875. o1(a)-(b),o2,o3, oo"20"26, 199,200"72"o0	 More recently, the notion of FM clusters and

local phase segregation have been invoked to explain the FM response in this

composition range. 201"36, 202 A reduction in the resistivity, yielding values typical of

semiconductors, accompanies the peak in the FM moment near x = O.875.

Because of the enhanced moments found in this region of the phase diagram,

more recent work has focused on understanding this high Ca region. Neumeier et al. 126

magnetic phase segregation with strong competition between the local FM and the long

range AFM order, as compared to the standard model of CAF order in this region of the

phase diagram. Troyanchuk et al. 138(a) showed that the Eui_„Ca,Mn03 system also

manifested a FM component in the 0.8 5 x 1.O range. Again, FMIAF phase coexistence

was inferred, based on the observed saturation moments. Maignan et al. 201 showed that

153
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the temperature range 200-300 K. In addition, based on magnetic susceptibility and

magnetization measurements, they found evidence for cluster glass behavior for 0.88 x

< 1.O. For example, no saturation of the magnetization was found in fields as high as 5 T.

A systematic study of a broad range of materials in the system Li_ xA xMn03 (L = Pr, Sm;

A = Ca, Sr) was performed by Martin, 5ervieu, and Raveau. 58 In direct contrast with the

hole doped Mno+ rich region results 83 , they found that large magnetoresistance in the

Mono+ rich region required a small cationic radius. Sm i _ xCa,MnOb (SCM0) and Prig_

xCaxMn03 (PCMO) were observed to fall into a class of manganites which are insulators

over the entire doping region while Pr i _xSrxMn03 mimics the behavior of the classic Lai_

xCaxMn03 system. The small-Ca-ion doped systems Smi_ xCaxMn03, Pri,CaxMn03 and

Lai_xCaxMn03 all show a peak in low temperature magnetization near x — O.9. The high

net moments in these systems were attributed to cluster glass formation based on ac

susceptibility measurements. It should be emphasized, however, that neutron scattering

measurements on the material clearly showed the presence of G-type AF order coexisting

with this FM-cluster glass behavior. 138(a) Interestingly even in the end-member,

CaMnO3, weak ferromagnetism is observed a long with G-type AF order. I38

In Bii_xCaxMn03, Chiba et al. 1o0 observed that the low temperature resistivity

drops continuously when CaMnOb is electron-doped with Bib+, and reaches a minimum at

x = O.875 with magnitude characteristic of a semiconductor. At this doping, the Newel

temperature approaches the paramagnetic Curie temperature (B) and a maximum

saturation magnetization of 1.111 B per Mn site (compared to the theoretical saturation

value of 3.1 1.tB per Mn site) is observed.
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Thus, the substitution region near x O.875 exhibits anomalous and not yet

clearly understood properties in a range of manganite systems. In particular, it is not

clear if the large moment found per Mn ion is due to spin canting, spin glass or spin

cluster behavior or some more novel magnetic structure.

Extending our recent work on the Bi i ,CaxMn03 (BCMO) system 172 , we have

focused the present investigation on the anomalous magneticItransport properties near x

O.875. Low and high field (up to 30 T) magnetization and resistivity measurements were

reported. The long-time and frequency dependence of the magnetization have been

studied in detail to probe for glass-like behavior. The combined experiments evidence

cluster and glasslike behavior (in addition to AF correlations) in this x O.875 BCM0

material (and by inference in the more general class of electron doped manganites).

7.2 Experimental Procedure

Polycrystalline samples of BCM0 at x = O.875 were synthesized by the standard solid-

state reaction method. Stoichiometric mixtures of Bi203, CaCOb and Mn0 2 were ground

and pressed into pellets that were then calcined at 1000 °C for 5 hours. After calcination,

the samples were reground and sintered at 1200 °C in air. This was repeated at 1250 °C.

DC magnetization measurements were performed with a Quantum Design SQUID

magnetometer (MPMS-XL) between 4.2 F and 300 F in fields up to 50 Oe. AC

susceptibility was measured by a Quantum Design MPMS (1 Tesla model with ultra-low

field options).

The high field magnetization and resistivity measurements (up to 30 T) were

performed using the Cell #8 32 mm bore magnet at the National 5igh Magnetic Field
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Laboratory. A vibrating sample magnetometer (VSM) was used for magnetization

measurements and the standard four-probe method for resistivity was employed.

7.3 RESULTS

7.3.1 Low Mield Magnetic Response

Recent interest in hole doped (Mn3  based) manganate materials stems from their

ferromagnetic and magnetoresistive properties. The occurrence of FM-like interactions

has naturally broadened this field to electron doped (Mn 3+ based) manganates. We have

represents the optimal composition with maximum magnetic moment. 140 The sharply

peaked magnetization is emphasized in the inset of Fig. 7.1 where we show the

magnetization (in Bohr magnetons per Mn ion at 5 = 1 T) as a function of doping. The

data from this work (solid squares) are compared to the previous work of Chiba et al. 14o

For the LCM0 system, a similar maximum in the magnetization was also reported.

126"43"99



Mig. 7.1 The magnetization curves, taken with increasing temperature, under zero-field
cooled (ZFC) and field cooled (FC) for Bil_,,Ca xMn03, x = O.875. The FC curve shows
the onset of the FM-like moment below the ordering temperature. The inverse magnetic
susceptibility (8 -1 ) versus temperature illustrates the Curie Weiss behavior with a FM B
where the slightly upper curve is cooling down and lower one is warming up in
temperature. Inset shows magnetization (Bohr magneton) versus Ca doping x at 1 T.
Note that the highest moment is found at x = O.875. Note that the filled squares are our
data and the filled circles are from the data from Chiba et al. 140

The thermal behavior of the ferromagnetic component for this x = O.875 material

is illustrated by the in Fig. 7.1 where the temperature dependence of the low field (50 Oe)

magnetization and inverse magnetic susceptibility, 8 -1 are shown. Fitting the high
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(FC) magnetization (Fig. 7.1) follows a temperature dependence reminiscent of magnetic

order parameter behavior. Indeed TN = 109 K has been chosen from the negative

inflection point of the magnetization rise. The zero-field cooled (ZFC) magnetization has

a much more complicated thermal behavior emphasizing the role of thermallfield history

in this material, which will be discussed below.

7.3.2 High Mield and Small Remnant Magnetization

In Fig. 7.2 we present high field (to 30 T) hysterysis loop magnetization measurements

below and above the transition temperature. The magnetization is clearly strongly

nonlinear at all temperatures below 175 F. In the 5 to 50 K range, the magnetization

appears to be made up of two components: a strongly nonlinear component which

saturates (at about 1.25 1113) in the 10-15 T range, and a smaller linear component of about

Even at 30 T the full magnetization is 1.41 11B far less than the theoretical

limit of 3.1 Reducing the field from 30 T to 0 yields a very small remnant (see Fig.

7.2(b)), of about O.08 1_1B, which is suppressed by just a 70 Oe field in the opposite

direction. Figure 7.2(b) also displays the partially completed hysteresis loops at a

number of temperatures. Neglecting the small remnant, the shape of the nonlinear

component of the magnetization below TN resembles somewhat that of a Brillouin

function with varying large moment.
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Fig. 7.2a Magnetization (Bohr magneton per a Mn ion) versus magnetic field swept up
and swept down to 3OT with different temperatures. at clearly shows the magnetic phase
transition, i.e., from paramagnetic to ferromagnetic before and after 109 F.(left box)
Right Panel: The experimental magnetization, Mcxp, (normalized to its value at 30 T) at
T-175 F versus magnetic field. Also shown for comparison, are the mean-field results
calculated for a simple FM material with Te = 109 F, with spin J = 3 and J = 4.

The strongly nonlinear field dependence of the magnetization persists (albeit

decreasing with increasing T) for temperatures well above TN. Specifically, the M(5)

curve at T = 175 F deviates strongly from linear 5 dependence in the 10 T range. andeed

comparison of the experimental M(5, T = 175 K) data to a mean field ferromagnetic

model with an effective spin (J eff) and a Curie temperature Tc=109 F would require Jeff >

3 to replicate the curvature of the experimental data. Thus the T = 175 F nonlinearity of
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the high field magnetization is clearly inconsistent with the — 1.41 11B (S - O.8)

ferromagnetic component at low temperatures.

7.3.3 Thermal High Mield Magnetization

To better understand the behavior exhibited in Fig. 7.2, we display magnetization

vs. temperature plots, at a fixed field, in Fig. 7.3.
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increase substantially in increasing 5. For 5 > 5T the vestiges of the order-parameter

dependence persist for T < TN it "rides" on a strongly increasing magnetization in the T>

TN range. A break in the M(T,5) curves near TN —105-110 K also appears to persist up to

30 T, suggesting that the ordering onset is surprisingly field insensitive for a material

with a strong AF component. Additionally the very substantial field response, for 5> 5

T, appearing at temperatures far above TN is inconsistent with simple AF order. In a FM

material, 5 is thermodynamically conjugate to the order parameter (the DC

magnetization), and accordingly a large field response is induced well above the ordering

temperature. Jince the susceptibility of our x = O.875 material is ferromagnetic-like, this

large higher-T response is not unexpected despite the AF component in the ground state.

In the discussion section we will return to this point.



Fig. 7.3b Jimulation of magnetiztion by mean field theory.
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7.3.4 High Mield Magnetization-Magnetoresistance Correlation

The correlation between the field dependence of the magnetization and the resistivity (at

temperatures below TN) is further explored in Fig. 7.4. Note that, as T decreases below

TN, the maximum magnetization does not vary significantly, while the zero field

resistivity, and magneto resistance increase enormously. Also while the magnetization is

nearly saturated at 2 T, the resistivity manifests large changes out to 15-20 T. The large

low field magnetoresistance typical of inter-grain tunneling in ferromagnetic materials

appears not to be important in this material. 29, 203

(albeit strongly scattered) electronic states. The largest field effect is the

dramaticreduction in the low temperature resistivity-rise. This effect would be consistent

with a field-induced reduction in the degree of doped electron localization (a reduction in

scattering). If one views the localization as electrons retarded (but not trapped) by local

pinning site potentials, then the field effect could be seen as lowering the depth of these

potentials and extending the spatial range of the electronic states. Greater electron

hopping and a lower resistivity would result from such a mechanism.
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Mig. 7.5 Electrical resistivity versus temperature when applied up to 3OT. The
magnitude of resistivity near 3OT indicates semiconductor-type behavior. No negative
magnetoresistivity up to 3OT was found. The inset shows the anomalies of resistivity at
106K in OT and 4T with tiny shoulder. Note that the transition temperature is near 109F.

In the inset of Fig. 7.5, small but reproducible structures in the resistivity curves

near the AF ordering temperature, at 0 and 4 T, are shown. The downturn in the

resistivity upon entering the AF state is reminiscent of the critical resistivity anomalies at

the AF ordering temperature caused by the loss of spin disorder scattering. The small

size of this effect is consistent with the probable dominance of localization over spin

disorder scattering in these materials. The field degradation of this anomaly would be
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consistent with a field induced suppression of spin scattering above the ordering

temperature.

7.3.5 AC Susceptibility and Time Tependent Magnetization

In general, history/time dependence of the magnetization (e.g. see the FC and ZFC

magnetization curves in Fig. 7.1) is often invoked as evidence for magnetic-glass

behavior such as spin glass, cluster-glass or mictomagnetism. While very similar

behavior is typical of what some authors have referred to as a cluster glass 201,202, 204, 205,

206,207,208,209,210,211 5 this issue is clearly still an open one. (For comparison see a recent

example of cluster glass behavior: the Co based perovskites La0.5Sr0.5Co03 202,205,209,210).

To experimentally address the potential glassy character in our x = O.875 BCMO

material, we have measured both the frequency dependent AC susceptibility (see Figures

6a and 6b, and the time evolution of the ZFC moments (see Fig. 7.7). As we will see our

ac- 2, results indicate a strong coupling of the magnetization to the AF order parameter.

Whether this coupling arises through AF spin canting or a more sophisticated

ferromagnetic cluster coupling is not clear. The results will also show time dependent

and dissipative behavior which could be related to either AF-domain or glassy effects. In

our discussion we will lean toward a canted AF-domain interpretation.
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magnetic energy dissipation in the sample and is often associated with the degree of

hysteresis loop energy absorption.

The connection of 8 to the co = O, DC results is manifested in a number of ways. In the

plot of 8 -' vs. T, shown in Fig. 7.6(a) (top-inset), the FM-like CW high temperature

behavior is clear in precise analogy to the DC- 8 -1 behavior in Fig. 7.1. Indeed even the

details of the estimated ordering temperature of 109 K, and the downward departure of

the data, just above TN, are faithfully replicated in the ac- 8' -1 and DC- 8 -1 behavior.

There is also a qualitative similarity in structure between the below-TN 8' results in Fig.

7.6 and the DC-ZFC magnetization curve in Fig. 7.1: in both, one observes a negative

inflection at 109 K, a peak within 5 degrees below TN; and a change from sharp-concave

to slowly-varying-convex curvature between 10-15 K below TN. The strongly nonlinear

increase in magnetic response, with field, (seen in all of the DC results) is also evident

even in these low ac-fields. Jpecifically, comparing the vertical scales in Fig. 7.6(a) and

7.6(b) one finds that 8' (10 Oe) is nearly 5 fold larger than 8' (O.1 Oe). The modest

decreases in 8' at higher frequencies are appreciable only in the 50 K< T < TN range,

where the dissipation (8" ) is also large. Finally it is worth noting that the magnitude of

8' at low temperatures reaches (and remains near) a maximum near 20 F. This would
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suggest that there appear to be a population of spins/spin-clusters that are free enough to

respond to small fields far below TN.

The behavior of 8" is related to the dependence of the magnetic energy

dissipation in the ordered phase. Figure 6(b)-inset in bottom panel compares the detailed

temperature dependence of 8' and 8" near TN. The nonlinear onset of 8" is displaced

slightly lower in temperature relative to the 8' onset. Moreover, the sharp peak in the

dissipation appears to coincide with the positive inflection point on the low-T side of the

8' peak. This relation is consistent with the growth of ordered AF domains (and

therewith the domain uncompensated net moments) below TN. The downturn in 8'

reflects the AF locking of some of the spins and the peaking of 8" reflects the

concomitant onset of hysteresis loop energy dissipation. 5ere the field coupling to the

AF domain is through its net uncompensated moment. As the T is further lowered, the

order-parameter and coercive-field for domains increase to far above the ac-field. This

leads to the low-T quenching of 8" as the domain reorientation dissipating freezes out.

Jimilarly comparing the 8" (O.1 0e ) and 8" (10 0e) results one notes a 10-15 fold

increase in magnitude which extends over a much wider temperature range in the higher

field case. This would be consistent with the large field-induced enhancement of the

magnetic response, and with it the ensemble of domains active in hysterysis-loop energy

dissipation.

The strong frequency/temperature dependence of 8" (relative to 8' ) can also be

discussed in terms of the domain effects. Jpecifically the smaller clustersIdomains will

have a more rapid response time whereas the larger domains will respond more

ponderously. Thus the higher frequency degradation of 8" should follow the loss of the
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number domains able to respond at shorter response times. The precipitous decay of the

8" (5 = 0.1 0e, f= 15z) below its peak perhaps best illustrates both the rapid freezing

out of available domains with low-coercive fields and short response times. These

detailed correlations should be incorporated into a proper theory of the AF-domain, and

of cluster and glass-like effects in this material, however, such a model is not clear at this

time.

Certainly some of the ac susceptibility features exhibited here are similar to those

exhibited in CG systems; however, there are also disparities. Indeed, it should be noted

that there are also substantial disparities (in ac susceptibility behavior) between different

so called "cluster glass" systems. 209, 211 Thus portions of the ac susceptibility would

appear to fit into the somewhat broadly defined cluster glass category. The presence of a

strong underlying AF order would appear also to set this system apart from other CG

systems.

An additional measurement to probe for magnetic-glassy behavior is the slow-

long term response of the system to an applied magnetic field. In Fig. 7.7 bottom we

show the evolution of the ZFC magnetization for wait times t wo = 0, 30, and 300 minutes.

The measurements were performed by cooling in zero field, waiting for time, two, before

applying a 20 0e magnetic field, and then recording the magnetization as a function of

time.

The magnitude of these glassy effects can be seen from the figure to be modest

(i.e. a few percent). The magnitudes of the magnetization are also uniformly smaller for

longer wait times after the temperature "quench". This indicates a slow relaxation (upon

cooling) into a more magnetically frustrated state, which is less responsive to external
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field. The magnitude of the time dependent magnetization as a function of waiting time

is consistent with that observed in the La0.5Jr0.5Co03 CG system. 2°9

The logarithmic time evolution of the magnetization appears to support a

distribution of time scales in the relaxation. The logarithmic-time derivative or the ZFC

magnetization evolution is shown in Fig. 7.7 (upper curves). These derivative curves do
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not show a characteristic maximum occurring at the wait time, as seen in the SG

La0.91Jro.o9Co03. 202

Thus the time/frequency dependent magnetic behavior of the x = O.875 BCMO

material does exhibit glassy effects in addition to cluster effects. The observed trends are

broadly consistent with cluster glass behavior 202,213 with the broadness and somewhat

imprecise definition of such behavior being recognized.

7.4 DISCUSSION

7.4.1 Cluster Behavior

Jeveral points are worth noting regarding the magnetic properties of electron doped

manganites like the Bii_xCaxMn03 x = 0.875 material studied in this work. G-type AF

order in CaMnOb has been shown to persist in these materials with doping up to levels

similar to our x = O.875 material. Indeed the AF ordering temperature in these electron-

doped materials is changed-but-little from that found in the undoped parent compound

(i.e., TN is in the 109-120 K range). Although a substantial net moment does appear at

low fields in these materials, the onset of this moment is precisely coincident with the AF

ordering temperature (as opposed to higher or lower). Thus G-type AF interactions with

an energy scale — TN would appear to be an important component in understanding the

magnetic properties of these materials.

The saturation of the resistivity at a finite (though large) low temperature limit

would suggest a population of partially electron itinerant doped electrons. The

coexistence of electron hopping and AF order are the key ingredients for DeGenes model
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of canted antiferromagnetism in these types of materials. One must therefore carefully

consider the canted-AF explanations for this materials behavior. Certainly local

deviations from a homogeneous canted-AF state would be present, however the

occurrence of a distinct glassy state is an open question.

In our discussion of Fig. 7.1 we noted the similarity of the field-cooled

magnetization, M FC(T), to a temperature dependence the order parameter below a

magnetic transition. We have critically compared the rise in the magnetization below TN

in Figure 1, to the critical behavior (1-T/TN with the mean field p = 1/2, and with 13 =

1/3 which is closer to the experimental estimate.[see Fig. 7.8(a)] 21o The MFC(T) is found

to rise and saturate more quickly than either of these. Including nonlinear effects in mean

field case, by iteratively solving the Brillouin function for the spontaneous field, steepens

the temperature dependence toward the experimental data but not sufficiently. Nonlinear

effects within a non-mean field f3 = 1/3 model should improve still more the notion of a

coupling (to first order only) of the low field moment MAC  (T) to the order parameter.

5owever, the full, detailed dependence of M FC(T) on the order parameter (as well as T

and 5) is certainly much more complicated.

This notion would suggest a first order coupling of the low field magnetization (or

the effective magnetic moment Jeff) to the order parameter for a G-type AF, the staggered

magnetization (M s = MA-MB, where the A and B refer to the AF sub-lattices). Recall

also that we noted, for temperatures well above TN, the magnetic susceptibility can be fit

to a CW-type susceptibility 8 = C/(T+0) with B close to -TN (rather than the + TN value

expected for a G-type AF). The below TN behavior could result from the canted-moment

component coupled to the AF order. An explanation in terms of phase segregated FM



174

regions would appear more demanding. At this juncture we will consider extending the

notion of a first order linear coupling between Ms and Jeff to T > TN purely

phenomenologically.

Above TN there is no average sublattice magnetization and no static AF domains.

5owever, there are temporal and spatial AF fluctuations. As T approaches TN from

above, the AF fluctuation divergence is governed by the staggered susceptibility Xs— (T-

TN) --Y [with the y = 1 for the mean field value assumed here]. Within our first order

coupling assumption, the magnitude of the magnetization should track this divergence,

qualitatively explaining the 8 (T- TN) behavior observed.

To be more quantitative, after Landau and Lifshitz 215 and directly from the

fluctuation dissipation theorem, the mean squared order parameter fluctuations above TN

go like

Invoking the ordered sate behavior, a given AF fluctuation/domain would have an

uncompensated effective DC magnetic moment (uff), with the bigger the Ms the bigger

the moment. Jpecifically, the uff of such a AF fluctuation, should be coupled linearly to

the local staggered magnetization. Thus one would expect the average susceptibility of

an ensemble of such moments, each associated with an AF fluctuation, to have a Curie

susceptibility,
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Given a sufficient number of uncompensated moments, the susceptibility is dominated by

the second diverging term, thereby yielding CW behavior with the "wrong" sign for the

Weiss-temperature for an AF.

To illustrate the viability of the above notion we show in Fig. 7.8(b)-(c), the

experimental inverse susceptibility, along with the predictions of our model. TN = 109 K

was fixed and the C 1 and C2 were adjusted to track the data. The model-experimental

agreement is quite encouraging despite the simplicity of the model. Note that for 8 -1 the

model correctly replicates the high temperature FM-like CW parameter and the
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downward curvature away from CW behavior as T approaches TN from above (see Figure

7.1 and Figure 7.6a-inet).
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Using the value of C2 one can estimate the temperature dependence of the

effective cluster spin (per Bopped electron) is shown in Figure 7.8(c). The notion of the

existence of an effective cluster moment (in each AF fluctuation) is also supported by the

strongly nonlinear field dependence of the magnetization at 175 K (65 F above the

ordering temperature) noted in the discussion of Fig. 7.2(a).

Turning to the below TN behavior, we note that the strongly nonlinear high field

magnetization curves (neglecting the very small remnant) are in fact reminiscent of

superparamagnetism exhibited by large collectives of moments acting as clusters (Jee

Figures 7.2(a) and 7.2(b)). To illustrate this we first estimate the linear field response

from the highest field slope of the low temperature magnetization data. After subtraction

of this linear term, our experimental magnetization curve at 65 K was normalized to its

value at 30 T and plotted versus 5/T in Fig. 7.9. For comparison plots of the Briulouin

function vs. 5/T for differing spin values are also shown in Fig. 7.9. Clearly the field

dependence must be more complicated however, based on the saturation-shoulder in this

comparison, the experimental results would appear to be consistent with an effective

uncompensated spin clusters with J on the order of 200.

Within the canted-AF interpretation these moments would be associated with

single-AF-domains, each with its own canting direction. The zero-field randomly

oriented domains would become aligned with the canting direction along a sufficiently

large external field. The magnitude of the canting component of the spin would also be

expected to be enhanced in field, upon decreasing the field the domains would have to

de-align to produce the low remnant magnetization.
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Thus above and below TN the magnetic response would appear to be consistent

with the respective presence of AF fluctuations and domains with large net moments.

This consistency follows from the first order coupling of the DC magnetization to the AF

order parameter (the staggered magnetization). It should be noted that such a liner, M a

M s , coupling is explicitly present in the theory of canted antiferromagnetism. 217
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7.5 Conclusions

In this paper we have studied extensively the low-field, high-field magnetic and transport

properties of the electron doped BCMO x = O.875 material. In addition the frequency

dependence of the ac susceptibility and time evolution in the low field magnetization

have been reported. Experimental evidence of both magnetic clusters and glassy-

magnetic behavior in this BCM0 for x = O.875 material was found. Further, the

magnetoresistance of this material supports a field-induced enhanced delocalization of

the doped electrons in this system.

Extensive magnetic and transport properties of the electron doped

Bio.125Cao.875Mn03 materials are reported over the temperature range 5 - 300 F and

magnetic field range 0 - 30 T. Low field magnetization measurements evidence both an

antiferromagnetic state below TN * = 109 K in which a ferromagnetic component

develops rapidly in modest fields, and ferromagnetic Curie- Weiss behavior at higher

nagnetization measurements over the 5

F to 300 K temperature range show strongly nonlinear field response below and far

above the ordering temperature. The residual magnetic moment and coercive field, in the

ordered state, are, however, exceptionally small. These results are discussed in terms of

the FM coupling spins into large moment clusters. The possible coupling of these

clusters to the AF staggered magnetization (below TN) and to AF fluctuations (above TN)

is discussed. The high field magnetoresistance (up to 30 T) appears to be governed by a

field-induced reduction in the doped carrier localization. The glassy character of the

cluster magnetic response was investigated by measuring the frequency dependent ac
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susceptibility and time/history evolution of the low field magnetization. Glassy behavior

in the cluster response is indeed observed and is discussed in terms of the field

modification of the multiple degenerate frustrated-magneticIdoped-carrier states of the

system in zero field being modified in finite field. Cluster and Glassy behavior

motivation is discussed in Appendix section.



CHAPTER 8

MUTURE WORK

Present work needs to be expanded in further studies as follows:

1. Prepare and study samples in the region (O.0 < x < 0.25) to determine the onset of
the ferromagnetic insulating state.

2. Jtudy carefully the C0 to FM cross over region near x — O.3 (make a the sample
set for x = O.35 to 0.25 in small steps) using the same experimental approach
implemented for the x = O.875. Compare this with the LCM0 and PCM0
systems at the same doping.

3. Perform temperature dependent x-ray diffraction measurements to probe the
charge ordering behavior.

4. Model the energetics of the magnetic ordering by LSDA calculations on BiMnOb
(FM), LaMnOb (AF) and other Mn3  endmembers. (5ow does structure influence
the stability of the magnetic phase?).

5. Measure the anisotropy of transport in single crystals or films of the BCMO
systems. (5ow are the current flow directions and the magnetic field directions
related?)
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APPENDIX

Cluster and Glassy Behavior Motivation

In order to illustrate the potential cluster and glassy behavior in these materials we

consider a few configurations for a highly simplified, one-dimensional block (domain) of

9 spins, all with magnitude S. We include in this domain two doped interstitial electrons

(dots), and two associated preferred pinning sites for the electrons (boxes). An electron

between spins causes a ferromagnetic interaction (-JF). 5aving an electron hop one site

away from its preferred site costs an energy E, and hopping further than one site is

excluded. All other magnetic interactions are AF of magnitude J. The magnetic field

energy is ± ji.FIS per spin aligned/anti-aligned with the external field.

State B in the figure indicates a case where the magnetic and hopping energies are

optimized in zero field but which will pay an energetic price in increasing the field. State

A maintains the optimum magnetic interaction energy, which is further stabilized in an

external field, but at the cost of an electron displaced from its pinning site potential. State

C has the highest external field response but at the expense of flipping one AF spin

interaction.

In a system made up of a generalization of such blocks, the response to an

external field could reasonably be expected to show glassy behavior as the electron

hopping and spin flipping occurred by tunneling through their energy barriers. Moreover,

the AF ordering can also be viewed as mediating an effective long range interaction

between FM defects (i.e. a sort of static-non-damped generalization of the oscillating

RKKY interaction in metals). This interaction could be AF or FM depending on the odd

or even number of intervening AF bonds (i.e. on the inter-cluster distance). Thus in zero
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external field substantial magnetic frustration in the inter-FM-defect interaction would be

present leading to additional glassy behavior. In a magnetic field the presence of low

energy excitations (i.e. electron displacement or single spin flipping), which induce inter-

defect FM interactions, would allow the rapid formation of large clusters of defects all

ferromagnetically aligned into a super cluster.

It is worth noting that the field-induced electron hopping excitations (as in the B

to A case above) would constitute a broadening of the trap-site potential in an external

field. Juch a field induced decease in the doped electron localization would provide a

mechanism for the large-high-field magnetoresistance. The presence of a large linear

component in the M vs. 5 data at 30 T (below TN) would also suggest that the spin flip

mechanism (case C) is rather unimportant at the fields considered here. Thus the electron

hopping induced inter cluster FM coupling would appear to be most important in our

system.
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