
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

EVOLUTIONARY POLYMORPHIC NEURAL NETWORKS IN
CHEMICAL ENGINEERING MODELING

by
Li Gao

Evolutionary Polymorphic Neural Network (EPNN) is a novel approach to modeling

chemical, biochemical and physical processes. This approach has its basis in modern

artificial intelligence, especially neural networks and evolutionary computing. EPNN

can perform networked symbolic regressions for input-output data, while providing

information about both the structure and complexity of a process during its own

evolution.

In this work three different processes are modeled: 1. A dynamic neutraliza-

tion process. 2. An aqueous two-phase system. 3. Reduction of a biodegradation

model. In all three cases, EPNN shows better or at least equal performances over

published data than traditional thermodynamics/transport or neural network mod-

els. Furthermore, in those cases where traditional modeling parameters are difficult

to determine, EPNN can be used as an auxiliary tool to produce equivalent empirical

formulae for the target process.

• Feedback links in EPNN network can be formed through training (evolution)

to perform multiple steps ahead predictions for dynamic nonlinear systems.

• Unlike existing applications combining neural networks and genetic algorithms,

symbolic formulae can be extracted from EPNN modeling results for further

theoretical analysis and process optimization.

• EPNN system can also be used for data prediction tuning. In which case, only

a minimum number of initial system conditions need to be adjusted. Therefore,



the network structure of EPNN is more flexible and adaptable than traditional

neural networks.

• Due to the polymorphic and evolutionary nature of the EPNN system, the

initially randomized values of constants in EPNN networks will converge to the

same or similar forms of functions in separate runs until the training process

ends. The EPNN system is not sensitive to differences in initial values of the

EPNN population. However, if there exists significant larger noise in one or

more data sets in the whole data composition, the EPNN system will probably

fail to converge to a satisfactory level of prediction on these data sets.

• EPNN networks with a relatively small number of neurons can achieve sim-

ilar or better performance than both traditional thermodynamic and neural

network models.

The developed EPNN approach provides alternative methods for efficiently

modeling complex, dynamic or steady-state chemical processes. EPNN is capa-

ble of producing symbolic empirical formulae for chemical processes, regardless of

whether or not traditional thermodynamic models are available or can be applied.

The EPNN approach does overcome some of the limitations of traditional thermo-

dynamic/transport models and traditional neural network models.



EVOLUTIONARY POLYMORPHIC NEURAL NETWORKS IN
CHEMICAL ENGINEERING MODELING

by
Li Gao

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Chemical Engineering

Department of Chemical Engineering

August 2001



Copyright © 2001 by Li Gao

ALL RIGHTS RESERVED



APPROVAL PAGE

EVOLUTIONARY POLYMORPHIC NEURAL NETWORKS IN
CHEMICAL V ENGINEERING MODELING

Li Gao

6r. Norman W. Loney, Dissertation Advisor 	 Date
Associate Professor of Chemical Engineering,
New Jersey Institute of Technology

Dr. Basil C. Baltzis, Committee Member 	 Date
Professor of Chemical Engineering, Acting Chair,
New Jersey Institute of Technology

Dr. Robert B. Barat, Committee Member 	 Date
Associate Professor of Chemical Engineering,
New Jersey Institute of TechnologyDr. Dana

 E. Knox, Committee Member 	 Date
Associate Professor of Chemical Engineering,
New Jersey Institute of Technology

Dr. Denis L. Blackmore, Committee Member 	 Date
Professor of Mathematics,New Jersey

 Institute of Technology

Dr. Daniel J. Wasser, Committee Member 	 Date
Principal Application Developer,
Foster Wheeler Corporation



BIOGRAPHICAL SKETCH

Author: 	 Li Gao

Degree: 	 Doctor of Philosophy

Date: 	 August 2001

Undergraduate and Graduate Education:

• Doctor of Philosophy in Chemical Engineering,
New Jersey Institute of Technology, New Jersey, 2001

• Bachelor of Engineering in Chemical Engineering,
Tsinghua University, Beijing, P.R.China, 1997

• Bachelor of Science in Computer Science and Engineering
Tsinghua University, Beijing, P.R. China, 1997

Major: 	 Chemical Engineering

Publications and Presentations:

Li Gao and Norman Loney,
"A New Mixed Neural Network Model for Prediction of Phase Equilibrium
in Two-Phase Extraction System," Industrial and Engineering Chemistry
Research (Submitted).

Li Gao and Norman Loney,
"Evolutionary Polymorphic Neural Network in Chemical Process Modelling,"
Computers and Chemical Engineering (In Press).

iv



To my family and parents, for their unconditional support and love and constant
encouragement.

v



ACKNOWLEDGMENT

I would like to express my sincere gratitude to my dissertation advisor and

mentor, Dr. Norman Loney, whose kind enthusiasm for research in the field of

modeling instilled in me the perseverance to finish my Ph.D. dissertation. I would

also like to thank Dr. Basil Baltzis, Dr. Dana E. Knox, Dr. Denis L. Blackmore,

Dr. Robert Barat, Dr. Robert Luo and Dr. Daniel Wasser who served in my

thesis committee and provided me with valuable feedback on various aspects of my

thesis. Also, I would like to express my special gratitude to Dr. Robert Barat for

his participation in my thesis committee.

I would also like to acknowledge the financial support of the NJIT Department

of Chemical Engineering, Chemistry and Environmental Science during the course

of my graduate study. In addition, I would like to express my sincere gratitude to

Dr. Norman Loney and other faculty members in the Department for their ongoing

efforts in providing and improving the research environment and computing facilities

during my dissertation research.

Last, but not the least, I would also like to thank my loving parents and my

brother in China for their endless and unconditional patience, love, support and

constant encouragement.

vi



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

2 LITERATURE REVIEW 	 5

2.1 Overview of Traditional Methods 	 5

2.2 Overview of Artificial Intelligence 	 9

2.2.1 	 Artificial Neural Networks 	 10

2.2.2 	 Evolutionary Computing 	 15

2.2.3 	 Current Trends in Artificial Intelligence 	 20

2.3 Applications in Chemical Engineering 	 21

3 OBJECTIVES 	 24

4 EPNN MODELING 	 26

4.1 Introduction 	 26

4.2 General Model Description 	 27

4.2.1 	 System Structure 	 27

4.2.2 	 Modeling Algorithms 	 31

4.2.3 	 Major Modeling Parameters 	 34

4.2.4 	 Comparison with Other A.I. Techniques 	 35

4.3 Model Implementation 	 36

5 EXPERIMENTS AND RESULTS 	 44

5.1 Overview 	 44

5.2 Dynamic Chemical Reaction System 	 44

5.2.1 	 Introduction 	 44

5.2.2 	 Results and Discussion 	 47

5.3 Aqueous Two Phase Extraction System 	 52

5.3.1 	 Introduction 	 53

vii



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.3.2 Data Preprocessing 	  54

5.3.3 Results and Discussion 	  56

5.4 Bioremediation Model Reduction 	  66

5.4.1 Introduction 	  66

5.4.2 Data Processing and Results 	  68

5.4.3 Discussion 	  72

6 SUMMARY AND CONCLUSIONS 	  78

7 LIMITATIONS AND FUTURE WORK 	  81

APPENDIX A SOURCE CODES 	  84

APPENDIX B INTERNET RESOURCES 	  120

REFERENCES 	  122

viii



LIST OF TABLES

Table 	 Page

5.1 Comparisons between EPNN prediction and experimental data for PEG
400 in bottom phase 	  65

5.2 Comparisons between EPNN prediction and experimental data for PEG
400 in top phase 	  65

5.3 Comparisons between EPNN prediction and experimental data for PEG
1000 in bottom phase 	  65

5.4 Comparisons between EPNN prediction and experimental data for PEG
1000 in top phase 	  65

5.5 Prediction comparison for experiment K-13 	  75

ix



LIST OF FIGURES

Figure	 Page

2.1 Sketch of a biological neuron 	 11

2.2 A typical structure of artificial neuron 	 13

2.3 A sample feedforward neural network 	 14

2.4 A sample recurrent neural network 	 15

2.5 A typical evolutionary algorithm 	 17

2.6 An example of string representation of numbers in genetic algorithms 	 18

2.7 An example of single point mutatation in genetic algorithms 	 19

2.8 An example of single point crossover in genetic algorithms 	 19

2.9 An example of a tree representation of computing formula 	 20

4.1 A typical composition of EPNN modeling system 	 28

4.2 A sample EPNN individual network 	 29

4.3 Tree representation for the formula of node No in Equation 4.2 	 30

4.4 A typical EPNN network training algorithm 	 39

4.5 Some typical operations during elementary mutation 	 40

4.6 A typical crossover operation in tree representation 	 41

4.7 A typical crossover operation at EPNN individual level 	 42

4.8 EPNN coding hierarchy scheme 	 43

5.1 Neutralization CSTR reaction 	 46

5.2 CSTR EPNN prediction results 	 48

5.3 CSTR EPNN prediction errors 	 49

5.4 Evolved EPNN network for CSTR 	 50

5.5 Two phase extraction system for PEG 	 55

5.6 Trained EPNN network structure for PEG system 	 56

5.7 Top phase PEG concentration study 	 58



LIST OF FIGURES
(Continued)

Figure 	 Page

5.8 Tuned top phase PEG predictions 	 59

5.9 Phase diagram (training results) 	 61

5.10 EPNN training errors 	 62

5.11 Phase diagram (prediction results) 	 63

5.12 EPNN prediction errors 	 64

5.13 Evolved EPNN structure for biodegradation 	 71

5.14 Comparison between experimental data and EPNN prediction of concen-
tration profiles for 2-chlorophenol and biomass in experiment K-13 	 73

5.15 Comparison between experimental data and the original Andrews model
prediction of concentration profiles for 2-chlorophenol and biomass in
experiment K-13 	 74

xi



CHAPTER 1

INTRODUCTION

Due to the technological advancements in the chemical industry, improvements from

process modelling techniques are expected to lead to better process performance. The

increasing emphasis on product quality, economic process performance and environ-

mental issues in the chemical and process industries is placing significant demands

on existing operational procedures (Stephanopoulos, 1990; Willis et al., 1991). En-

hanced process performance generally requires more process knowledge, with mathe-

matical models being the most common means of representing this kind of knowledge

(Ungar et al., 1996; Tsoukalas and Uhrig, 1997; Jarke and Marquardt, 1996).

While it may be possible to develop a model using detailed knowledge of the

physics and chemistry of a system, there are a number of drawbacks to this approach.

Most chemical engineering processes are nonlinear and complex with conventional

modelling and simulation techniques relying often on certain simplifying transport,

kinetic and thermodynamic assumptions (Pham, 1998; Zhang et al., 1998a; McKay

et al., 1997; Klein and Rivera, 2000; Cao et al., 1999). Therefore, it may take a

considerable amount of time and efforts to develop a working model. Such models

are often costly to develop and may be subject to inaccuracies or even uncertainties

in some thermodynamic models, such as the development of a biodegradation model

for environmental applications (Mandal, 1998). Furthermore, in some cases, the

chemical process is so complex that there even does not exist any thermodynamic

process model that can fully clarify the process, such as the modelling of some organic

1



2

multicomponent adsorption on activated carbon (Carsky and Do, 1999). However, if

an accurate process model is available, then many of the benefits of improved process

operability would be achievable. The current trend in process industries is to use data

based modelling techniques to develop accurate, cost-effective input-output process

descriptions for processes where traditional process modeling techniques perform

poorly. The popular techniques may be divided into two categories. The first is

based on the use of various statistical techniques and regression analysis, while the

second involves the use of modern artificial intelligence, especially artificial neural

networks or evolutionary computing.

The most well known and simplest way to apply statistical techniques assumes

that any relationships between input and output variables are linear and that the

data are normally distributed. Unfortunately, industrial systems are normally highly

non-linear and the data obtained from such processes generally do not conform to

normal distributions. Nevertheless, numerous methods can be used to implement a

systematic data analysis methodology and can help to establish the basic character-

istics of the process. However, it should be noted that a certain degree of expertise is

often required in applying and interpreting such statistically based results. For exam-

ple, statistical regression of vapor liquid phase equilibria requires extensive knowledge

of different types of equations of state and their related modeling parameters (Zhang

et al., 1998b; Blas and Vega, 1998). This is one of the reasons why researchers have

so rapidly developed and improved the use of artificial intelligence techniques.



3

Compared to traditional statistical approaches, modern artificial intelligence

methods are developed to model nonlinear, steady-state or dynamic systems with

a minimum requirement of the knowledge of the system mechanism and the cor-

responding parameters. Among various modern artificial intelligence techniques

developed for process engineering and chemistry, artificial neural networks and

evolutionary computing are the most commonly used. There is an increasing amount

of applications developed in the literature focusing on the applications of artificial

neural networks and evolutionary computing in industrial processes modeling.

It has been shown mathematically that a neural network is capable of learn-

ing any continuous non-linear input-output mapping (Hornik et al., 1989). Indeed,

applications within the chemical and process industries indicate that neural networks

can adequately represent process system behaviors (Pham, 1998; Zhang et al., 1998a;

McKay et al., 1997; Chiou and Wang, 1998; Roubos et al., 1999; Simutis and Lubbert,

1997). While neural networks can provide an extremely effective black-box modeling

tool for both steady-state and dynamic systems, the technique has some inherent dis-

advantages and limitations. The first is the network structural determination, which

generally involves heuristics or time-consuming iterative design techniques (Doherty

et al., 1997). The second is that the modeling results are often difficult to analyze

or interpret (Willis et al., 1997; McKay et al., 1997).

Since the mid 1990s, evolutionary computing has been developed and applied

in the chemical and process industries. There are a number of successful examples

in the literature (McKay et al., 1997; Edwards et al., 1998; Moros et al., 1996; Greeff



4

and Aldrich, 1998; Fraga and Matias, 1996). Compared to artificial neural network

approaches, evolutionary computing modeling results provide ways to indicate the

relative contribution of each input to the output through symbolic or token-based

regression. However, pure evolutionary computing techniques have drawbacks in

cases where feedback and saturation may appear and simple symbolic regression

may fail (Zhang et al., 1998a).

Therefore, it is essential to develop a reliable and flexible modeling technique

that can combine the network structure of neural networks with the symbolic regres-

sion power of evolutionary computing in the field of data based process modeling.

Such a model should be at least as adaptive and flexible as existing artificial neural

networks or evolutionary computing techniques in a given application.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Traditional Methods

Prior to the development of data-driven artificial intelligence models, such as neural

networks and evolutionary computing, traditional methods in chemical engineering

modeling generally relied on thorough understanding and relatively complete physical

and chemical knowledge of the target process. In the following discussion, the focus

will be on some typical traditional chemical engineering modeling techniques and

their limitations.

One example in traditional chemical process modeling is phase equilibria mod-

eling, especially the widely used group contribution models. The basic aim of group

contribution models is to utilize existing phase equilibrium data to predict the phase

equilibria of systems for which no data are available. While such predictions may be

used for preliminary design purposes, it must be emphasized that group contribution

methods for predicting phase equilibria are of a semiquantitative nature only. Wher-

ever good experimental data are available, these should be used rather than the group

contribution predictions. Although these models have been successfully applied in

many vapor-liquid phase equilibria systems, they require comprehensive knowledge

of molecular surfaces and volumes of the pure components (such as the UNIQUAC

model), which have to be estimated from molecular group structural contributions.

5



6

UNIFAC (Fredenslund et al., 1977) is one of the increasingly widely used group

contribution models based on the UNIQUAC model. In spite of many successful

applications, the UNIFAC model does have its limitations:

• Polymers are not included.

• Extensive knowledge of molecular properties is required: volume parameter,

surface area parameter, group interaction parameter, residual activity coeffi-

cient.

• Fundamental deficiency of the group contribution approach : group contri-

bution methods are developed based on sub-molecular functional groups and

hence do not know what type of applications and what kind of molecular and

process environment they are being used for. Therefore, the model validity and

accuracy may be compromised by using the same group contribution model

with the same set of parameters for all applications (Sandler, 1994).

• Difficult to describe highly polar systems.

Furthermore, it is not possible to combine modified group contribution equation

of state tables with existing UNIFAC parameter tables, which means a whole different

set of parameter tables has to be developed each time for some modified models.

Though it may not be technically impossible in some cases, it may be economically

prohibitive and impractical to do so. For liquid mixtures with polymers, modified

UNIFAC requires a completely new parameter table, which includes the densities of



7

the pure solvent and pure polymer at the temperature of the mixture of interest and

the structure of the solvent and polymer (Sandler, 1994).

In addition, group contribution model prediction of liquid-liquid equilibria is

still highly uncertain (Sandler, 1994). In order to predict liquid-liquid phase equi-

librium, it is necessary to develop a special parameter table based on liquid-liquid

equilibrium data (Magnussen et al., 1981), which points out a major deficiency in

the model. Any given activity coefficient model should, with the same parameters,

be able to predict any type of equilibria. It is not only group contribution activity

coefficient models which exhibit this weakness, molecular models do so as well.

Furthermore, many such group contribution models result in equations with

more than one set of possible parameters, though only one of these sets of parameters

fits the experimental data closely (Walas, 1985). For example, the widely investigated

Wilson equation in infinite dilution form:

In some cases, the above equation can yield three sets of parameters without

any additional information except for the data used for parameter determination.

Identifying the physically correct choice from multiple sets of parameters is a problem

when not enough data are available beyond the few that may have been used for

determination of the parameters (Walas, 1985).

All of the above problems limit the applications of group contribution in phase

equilibria modeling. The demand for and rising attention to data-driven applications



8

in some of these non-applicable areas is one of the major driving forces of the

development of modern artificial intelligence techniques in chemical process mod-

eling. Artificial intelligence techniques provide alternative ways to partially solve

the above problems, though these may not be capable of solving all of them.

Another example in traditional modeling approaches is the modeling of ad-

sorption of binary organic vapor mixtures. Similar to vapor-liquid phase equilibria

modeling, modeling and predictions of multicomponent adsorption of organic va-

por on activated carbon are very desirable due to the extremely time-consuming

experimental measurements of adsorption behavior (Brasquet and Cloirec, 1999).

Traditional empirical and theoretical models have been developed to predict the ad-

sorption equilibria based on single component adsorption data. For example, the

Ideal Adsorption Solution (IAS) model assumes that the mixture pressure depends

only on the concentration and pressure of the pure components and their isotherms.

While for some binary systems, such assumptions and calculations are quite accu-

rate, there are substantial deviations in many other systems (Carsky and Do, 1999).

The actual process is quite complex for some systems and has not yet been fully

clarified using the existing thermodynamic and transport models. While there are

recent developments trying to overcome such limitations through time-consuming

experimental efforts (Myers et al., 1992), more attention is paid to the use of data-

based approaches, such as artificial neural networks, to provide accurate and feasible

data-based process models (Carsky and Do, 1999).



9

Furthermore, in some process modeling cases, it is extremely difficult to

determine the parameters of a traditional model, such as the determination of the

Andrew's parameters in a biodegradation process (Mandal, 1998) through a number

of trials and guessing. Alternative methods for producing empirical formulae for the

studied process without arbitrary assumptions is highly desirable.

Therefore, it is necessary to develop data based modeling techniques in addition

to existing traditional models to completely model various chemical processes.

2.2 Overview of Artificial Intelligence

Artificial intelligence(AI), in a broader sense, encompasses a number of technologies

that include, but are not limited to, expert systems, neural networks, evolutionary

programming, fuzzy logic systems, cellular automata and chaotic systems. They are

part of the soft computing branch of science and engineering (Tsoukalas and Uhrig,

1997). Many of these technologies have their origins in biological or behavioral

phenomena related to human or animal living systems. Hybrid intelligent systems

generally involve two, three, or more of these individual AI technologies that are

either used in series or integrated in a way to produce advantageous results through

synergistic interactions.

As part of soft computing, artificial intelligence methods have the distinguishing

characteristic that they provide approximate solutions to approximately formulated

problems (Aminzadeh and Jamshidi, 1994). Though there are many different con-

stituents of artificial intelligence, such as fuzzy logic, neural networks, expert systems



10

and evolutionary computing, all branches of AI have the same common feature of

tolerating imprecision and uncertainty in order to develop more tractable and ro-

bust models of systems at a lower cost and greater economy of communication and

computation. In this dissertation, the developed method is based on existing artifi-

cial neural networks and evolutionary computing methods. Therefore, the following

overview will be focused on these two branches of artificial intelligence.

2.2.1 Artificial Neural Networks

It has long been known that learning in animals and humans can be achieved through

observation of examples. The exact mechanism by which this learning takes place

is still unknown, but science has yielded some clues. In 1909, Cajal Omatu et al.

(1996) found that vertebrate brains consist of an enormous number of interconnected

cells called neurons. It has since become widely accepted that these neurons are the

fundamental information processing elements of brains.

Basically, a living biological neuron receives inputs from other sources, com-

bines them in some way, performs a generally nonlinear operation on the result and

finally outputs the final result. Figure 2.1 shows a sketch of a biological neuron

showing the most important components.

Artificial neural networks are relatively crude computing models based on the

neural structure of a living brain. Artificial neurons work in a way similar to biological

neurons. The brain basically learns from experiences. The brain modeling promises

a less technical way to develop machine solutions.



11

Figure 2.1: Sketch of a biological neuron

In a nutshell, an artificial neural network (ANN) can be defined as follows

(Umeda and Niida, 1986): A data processing system consisting of a large number

of simple, highly interconnected processing elements(artificial neurons) in an archi-

tecture inspired by — but not limited by — the structure of cerebral cortex of human

brain.

ANN were originally created as an attempt to model the act of thinking by

modeling neurons in a living brain. The history of neural networks can be dated

back as early as the 1940s when McCulloch and Pitts introduced the first neural net-

work computing model. In 1956, Rosenblatt's work resulted in a two-layer network,

the perceptron, which was capable of learning certain classifications by adjusting

connection weights. Although the perceptron was successful in classifying certain

patterns, it had a number of limitations. The perceptron was not able to solve the



12

classic XOR (exclusive or) problem. Also the limit of computing facilities largely

hindered the development and research on neural networks. Such limitations led

to the decline of the field of neural networks. However, the perceptron had laid

foundations for later work in neural computing.

During the mid 1970s to 1980s, researchers showed renewed interest in neural

networks. The first practical learning method for neural network, backpropagation,

was developed at this time (Werbos, 1974; Rumelhart et al., 1986). Prior to the

development of backpropagation, attempts to use perceptrons with more than one

layer of weights were frustrated by the "weight assignment problem" . This problem

plagued the neural network field for over two decades. Since the 1990s, backpropa-

gation neural networks have been widely used in many fields, such as nonparametric

modeling (Kan and Lee, 1996), dynamic system forecasting (Zhang et al., 1998a),

system control (Ungar et al., 1996) and pattern recognition (Rivera and Klein, 1997).

Figure 2.2 shows a typical structure of an artificial neuron. In Figure 2.2,

there are four direct inputs and one feedback. The processing element acquires these

inputs and then processes them in a certain way and then generates the output. In

the artificial neuron example in Figure 2.2, the processing element simply sums all

of the acquired inputs and then uses a transfer function to produce the output. The

number of inputs, number of feedbacks and type of transfer function can be different

under difference application circumstances. In early works , the transfer function was

a simple threshold (indicator) function rather than the sigmoidal functions commonly

used today (McCulloch and Pitts, 1943). Threshold activations were found to have



13

severe limits and thus sigmoidal activation became widely used instead (Anderson,

1982). The transfer function is usually nonlinear. The most commonly used transfer

function in ANN is the sigmoidal function, which can be described by Equation 2.2.

Figure 2.2: A typical structure of artificial neuron

Where Sum is:

Current ANNs are just a simple clustering of primitive artificial neurons. This

clustering occurs by creating layers which are then connected to one another. How

these layers connect is one of the major factors that distinguishes different types of

ANNs.

In most networks, each neuron in a hidden layer receives the signals from all

of the neurons in a layer before it, typically an input layer. After a neuron performs

its transfer function, it passes its output to some of the neurons after it, providing a



14

Figure 2.3: A sample feedforward neural network

feedforward path to the output, as shown in Figure 2.3. This type of networks is a

feedforward neural network.

Another type of connection is a feedback link in recurrent neural networks. For

feedback links, the output of one layer routes back to a neuron in the previous layer.

An example of a recurrent neural network is shown in Figure 2.4. While feedforward

neural networks are easier to implement, they have no "memory" since the output

at any instant is dependent solely on the inputs and the link weights at that instant,

as stated in the literature (Tsoukalas and Uhrig, 1997).



15

Figure 2.4: A sample recurrent neural network

Much of the recent work on neural networks stems from a number of papers,

including Funa-hashi (1989) and Hornik et al. (1989) that showed that neural net-

works are a way to approximate an arbitrary function closely as the number of hidden

nodes gets large. Neural networks work well with continuous functions. Some such

continuous functions are very complex and are extremely difficult or even impossible

to handle by traditional modeling techniques.

2.2.2 Evolutionary Computing

Evolutionary computing was originally initiated and developed as a searching concept

for solving difficult optimization problems. Though the earliest field in evolutionary

computing, genetic algorithms, was initiated in the early 1970s (Holland, 1975),



16

their applications in real world practical problems was developed almost two decades

later. This was largely due to the lack of available powerful computer platforms at

that time, but was also due to some methodological shortcomings of those early

approaches (Fogel, 1995a). Goldberg presented the first systematic research collec-

tion on genetic algorithms in real world applications (Goldberg, 1989). In 1992,

John Koza used genetic algorithms to evolve programs to perform certain tasks.

He called his method genetic programming(GP). The origin of genetic programming

significantly advanced the development of genetic algorithms, allowing evolutionary

computing methods to not only search and optimize numerical systems but also to

generate symbolic formulae and schematic programs to automate and evolve the

computing process itself. A more detailed and complete overviews of the history of

evolutionary computing can be found elsewhere (Fogel, 1998; Back et al., 1997).

Evolutionary computing is developed as a set of concepts for problem solv-

ing rather than a collection of related and ready-to-use algorithms. The major-

ity of current implementations descend from three strongly related but indepen-

dently developed categories: evolutionary algorithms, evolutionary programming and

evolutionary strategies (Back et al., 1997). The most commonly used methods in engi-

neering are evolutionary algorithms, which consist of genetic algorithms and genetic

programming. This work will focus on the discussion on evolutionary algorithms,

especially genetic programming.

Typically, evolutionary algorithms contain a randomly or deterministically gen-

erated population of individuals. Each individual represents a potential solution for



17

a given problem. During evolution, each individual receives a measure of its fitness

for the given problem. Based on the fitness, the fitter individuals are selected and

put into crossover and mutate to generate the next generation in the population. In

some evolutionary computing cases, older generations are discarded and replaced by

newer generations. This evolutionary process continues from generation to genera-

tion until the desired fitness or satisfactory solutions have been reached by the fittest

individuals. Figure 2.5 shows a typical evolutionary computing algorithm.

produce an initial population of individuals
evaluate the fitness of all individuals

while termination condition not met do {
select fitter individuals for reproduction
recombine individuals
mutate some individuals
evaluate the fitness of the new individuals
generate a new population by inserting some

new good individuals and by discarding some old
bad individuals

end while

Figure 2.5: A typical evolutionary algorithm

One major advantage of evolutionary computing is that it is conceptually sim-

ple. The desired solutions are reached by repeated crossovers and mutations. During

crossovers and mutations, partially better solutions are generated.

In genetic programming, each evolving individual is a computing formula or

program, while in genetic algorithms each individual is a fixed length string of num-

bers, or vector. Generally speaking, the string representation in genetic algorithms

encodes each target process parameter as a variable in a multiple dimensional vector.



18

Figure 2.6: An example of string representation of numbers in genetic algorithms

An example of string representation of numbers is shown in Figure 2.6. The corres-

ponding vector of the genetic algorithm individual is:

where n i is a real value for a target variable. Mutation and crossover in genetic

algorithms can involve one or many points in the string representation. Figure 2.7

shows an example of single point mutation in genetic algorithms and Figure 2.8 shows

a single point crossover in genetic algorithms.

As a contrast, in genetic programming, each individual represents a computing

formula in various tree forms (Banzhaf et al., 1998; Koza, 1992, 1994). An example of

a tree representation of algebraic formulas is shown in Figure 2.9. The corresponding

algebraic formula for the tree representation in Figure 2.9 is Equation 2.3.

The variable x 1 and x 2 can be input variables of the modeling system. The

corresponding depth of the formula tree for Equation 2.3 is 4.



Figure 2.7: An example of single point mutatation in genetic algorithms

Figure 2.8: An example of single point crossover in genetic algorithms

During crossover in genetic programming, two individuals are selected. A ran-

dom crossover point is selected in the tree of each individual. Then the subtrees

below the crossover point in each individual are exchanged. Therefore, two new indi-

viduals are generated. Mutation is implemented by randomly removing a subtree in

an individual and replacing it with a newly randomly generated subtree. Therefore,

the evolving techniques and results are different from the methods used in genetic

algorithms.



20

Figure 2.9: An example of a tree representation of computing formula

More thorough discussions about the difference between genetic algorithms

and genetic programming can be found in the literature (Fogel, 1995a; Koza, 1992;

McKay et al., 1997; Greeff and Aldrich, 1998). Detailed introductions and practical

algorithms in genetic programming can also be found elsewhere (Banzhaf et al., 1998;

Koza, 1992, 1994).

2.2.3 Current Trends in Artificial Intelligence

Since the application-oriented development of neural networks and evolutionary com-

puting, both fields have been advancing into more adaptable hybrid techniques. A



21

number of hybrid methods based on ANN and evolutionary computing have been

proposed and applied in several engineering fields, such as evolving neural networks

with evolutionary computing techniques (Yao and Liu, 1997; Fogel et al., 1990), or

using a neural network structure with genetic algorithms to adapt its parameters

(Gao et al., 1999; Ghosh et al., 2000; Zhao et al., 2000).

Hybrid approaches have proven to be more advantageous in many fields over

their pure counterpart techniques. It is believed artificial intelligence will include

more new hybrid methods in the future.

2.3 Applications in Chemical Engineering

During the past decade, a number of artificial neural networks and evolutionary

computing techniques have been developed and applied in chemical engineering pro-

cesses, such as kinetics modelling (Edwards et al., 1998; Galvan et al., 1996; Moros

et al., 1996; Cao et al., 1999), dynamic process forecasting (Pham, 1998; Zhang

et al., 1998a), phase equilibrium modeling (Kan and Lee, 1996; Sharma et al., 1999),

steady-state chemical process modeling (McKay et al., 1997), bioprocess modeling

and optimization (Chiou and Wang, 1998; Roubos et al., 1999; Simutis and Lubbert,

1997) and bioseparation modeling and optimization (Klein and Rivera, 2000). There

are also applications in adsorption, bio-degradation, and assisting chemical structure

determination. A thorough overview of applications of artificial intelligence in

engineering can be found elsewhere (Fogel, 1995a).



22

In early application development of artificial intelligence in chemical process

modeling, the approaches of artificial neural networks and genetic programming

were developed along separate paths. Neural networks were generally applied to

system identification and modeling and long-term prediction and control (Zhang

et al., 1998a; Kan and Lee, 1996; Doherty et al., 1997), while evolutionary comput-

ing was mostly applied to steady state modeling (McKay et al., 1997; Greeff and

Aldrich, 1998). In the past few years, there have been some applications of hybrid

methods based on both ANNs and genetic algorithms in chemical and biochemical

process modeling and optimization (Ghosh et al., 2000; Zhao et al., 2000; Gao et al.,

1999). However, none of them has combined the symbolic regression feature of ge-

netic programming with neural network structures, though there exist some hybrid

methods in non chemical engineering applications (Yao and Liu, 1997; Chen and Ni,

1997). More recent efforts that are trying to combine artificial neural networks with

genetic programming in non-chemical engineering fields can be found in the literature

over the past two or three years (Segovia and Isas, 1998; Kiguchi et al., 1999; Yeun

and Lee, 1999). However, in those efforts, genetic programming is still used only as

tuning methods to tune up the training algorithms of traditional neural networks.

Therefore, motivated by the potential synergy resulting from both neural net-

works and genetic programming, a novel approach has been developed and is pre-

sented in this dissertation. The proposed model combines the feedback structure

of recurrent artificial neural networks and the symbolic evolving methods of genetic

programming. The model can produce empirical symbolic formulae for dynamic



23

systems, a feature that is not existent in either ANN or genetic programming. The

produced empirical symbolic formulae can be used for theoretical analysis and pro-

cess optimization. Furthermore, the proposed method can model the bioprocesses

which can be hardly modeled accurately without arbitrary assumptions by traditional

models.



CHAPTER 3

OBJECTIVES

Upon research on the limitations of traditional process modeling techniques and

existing artificial neural network and evolutionary computation methods, the primary

objective of the dissertation was to develop an alternative method that is capable of

modeling chemical processes using a data-based approach.

In addition to producing more accurate and efficient results, the proposed model

is expected to overcome some of the limitations of existing methods, such as the

"blackbox" nature of neural networks and the limits of genetic programming for

modeling complex processes. Furthermore, the proposed model is also developed to

be used as a feasible method to provide empirical models for some of the processes

for which traditional methods can hardly yield satisfactory results or for processes

for which the determination of traditional modeling parameters is difficult.

Specifically, the following are included to complete the objectives:

• Complete descriptions of the composition of proposed modeling system and

related algorithms (Chapter 4).

• Full discussion of modeling parameters in the proposed model and their appli-

cation considerations for chemical processes (Chapter 4 and Chapter 5) .

• Some typical applications in chemical process modeling of the proposed model.

Comparisons with either existing traditional neural network models or tradi-

tional thermodynamic models (Chapter 5).

24



25

• Demonstration of the advantages of using the proposed model compared to

existing techniques (Chapter 5 and Chapter 6).

• Study and give the limitations of the proposed model and suggest possible

improvements based on recently published results (Chapter 7).



CHAPTER 4

EPNN MODELING

4.1 Introduction

As discussed in previous chapters, especially Section 2.3, it is highly desirable to

develop a new hybrid method based on both neural networks and genetic program-

ming to model complex chemical processes.

Introduced below is such a novel approach motivated by the potential syn-

ergy resulting from both neural networks and genetic programming. The proposed

model combines the feedback structure of recurrent neural networks and the symbolic

evolving methods of genetic programming. This model can produce sets of empirical

symbolic formulae for both dynamic and steady-state systems through evolutionary

training. The produced empirical symbolic formulae can be used for theoretical

analysis and process optimization.

The presented model, Evolutionary Polymorphic Neural Network, or EPNN,

is mainly based on recent artificial neural network and genetic programming (GP)

developments. However, it must be stipulated that GP is very different from genetic

algorithms(GAs). Also, while the proposed model has features from GP, it is not

a replication of GP. In the proposed model, genetic algorithms are not employed.

Discussions on the differences between GA and GP can be found in Section 2.2.2.

The EPNN modeling system mainly inherits two features of GP. One feature is

the evolution of randomly or deterministically generated population of individuals.

The other feature is the tree representation of symbolic formulae in each individual.

26



27

Descriptions of how to represent a symbolic formula in a tree form was discussed

in Section 2.2.2 and Figure 2.9 shows an example of such a representation. The

corresponding depth of the formula tree in Figure 2.9 is 4. Discussions of formula

trees and depth measurements can also be found in the literature (Aho et al., 1987;

Greeff and Aldrich, 1998; McKay et al., 1997).

Before demonstrating the applications of EPNN in chemical process modeling,

it is necessary to give detailed descriptions of modeling system structures, algorithms

and their implementations.

4.2 General Model Description

4.2.1 System Structure

A typical composition of a complete EPNN modeling system is shown in Figure 4.1.

Working vertically downward in Figure 4.1, a complete EPNN system consists of

necessary methods such as evolutionary algorithms, tuning methods and individual

survivor strategies. The EPNN system also includes the target data structure which

is a population of EPNN individuals. This population is further divided into two

sub-populations: gene pool and mutation pool. The gene pool holds candidate solu-

tions while the mutation pool acts as an auxiliary during evolution. Each pool is a

collection of EPNN individuals and each individual is a highly interconnected net-

work of symbolic formulae. An EPNN network is defined with four sets of symbols:

function set, input variables set, output variables set and intermediate nodes (neu-

rons). Intermediate or output nodes are associated with symbolic formulae. Figure

4.2 shows an example of an EPNN network with two intermediate nodes and one



Figure 4.1: A typical composition of EPNN modeling system

output node. The corresponding functional form of the network is:

28



Figure 4.2: A sample EPNN individual network

One of many possible symbolic formulae that the above functional form may stand

for is:

The function set here is : {+,—,x,+ and In }. The input variable is X and the

output variable is No . The intermediate nodes are N1 and N2. Each node (No,N1

or N2 ) is a tree representation of a symbolic formula as demonstrated in Figure 4.3.

The recursive functions (N0 and N2 ) represent feedback linkage. The purpose of the

feedback linkage is to provide state variables and to model potential delay responses

in the target system. Each individual in an EPNN population encodes a potential



30

solution for the given problem by representing the potential solution with a system

of empirical equations.

Figure 4.3: Tree representation for the formula of node No in Equation 4.2

In summary, an EPNN system consists of a randomly or deterministically gen-

erated population of individuals. Each individual in the EPNN system is a highly

interconnected network of symbolic formulae. Each such EPNN network is defined

with four sets of symbols: function set, input variables set, output variables set and

intermediate nodes (neurons). Every distinct symbolic formula is associated with

one intermediate or output node.



31

4.2.2 Modeling Algorithms

Like existing GP and artificial neural networks, EPNN must be trained prior to data

prediction. A typical training algorithm for an EPNN system is shown in Figure 4.4.

At the beginning of the training step, every individual network in the population

is randomly generated. In each individual, the nodes are initialized with random

constants but no linkage to each other. Upon detailed examination, one can see that

the values of initial random constants do not affect the final training result in a given

problem. This fact is demonstrated in the investigated cases discussed in Chapter 5.

There are three levels of mutation in the training method of an EPNN system:

elementary, intermediate and macro mutations. Elementary mutation is the lowest

level of mutation. It deals with single node mutation, such as add, change, swap and

deletion of a single constant or a single linkage. Figure 4.5 shows some typical oper-

ations of elementary mutation in tree form. Intermediate mutation deals with swap,

replacement and deletion of a subtree of an EPNN formula, while macro mutation

deals with swap and replacement of whole intermediate nodes. Replacement means

to replace the old nodes or constants by newly randomly generated ones.

In addition to mutations, there are two levels of crossover. One is the swap

of subtree during intermediate mutation. Such crossover occurs during intermediate

mutations. An example of crossover operation between two tree represented formulae

is shown in Figure 4.6. The corresponding system of equations (Equations 4.3) are



changed to Equations 4.4.

The other level of crossover is an individual level crossover, which deals with the ex-

change of one whole formula tree between different individual networks. An example

of an individual level of crossover is shown in Figure 4.7. It can be seen from Figure

4.7 that two intermediate nodes were exchanged during the operation.

The three levels of mutation mentioned result in the polymorphic nature of an

EPNN network. All of the above mutations have an equal chance to occur. In addi-

tion, the individual level crossover happens for every individual in the mutation pool

before mutation. Two individuals are randomly selected during each such crossover.

After crossover and mutation, fitter individuals in the mutation pool are then in-

serted into the gene pool according to their fitness (selective insertion in Figure 4.4).

Then the whole population in the gene pool will be sorted again. The mutation pool

here acts as an auxiliary population and will be completely regenerated each time

following selection from the gene pool.

The criterion of individual survivor strategy is defined by a comprehensive

fitness function. This function consists of two components: a specific life span for

each individual and a combined minimum error (CME) function. The life span is



33

used as a penalty function for each individual and is a variable during the training

step (Equation 4.5). It is a function of diversity of the whole population. The more

diverse the population is, the longer life span each individual will have. The life span

is defined as:

where K is a proportionalal constant, Hi is the generation number when the ith

individual was created, G; is the jth generation number and Di is the diversity

value of jth population. Diversity is evaluated by the standard deviation of the

CME function of the gene pool. The CME function is defined as:

where Ri is defined by:

and m is the number of data points in each case, u represents experimental data

and v represents model predictions. The quantity n is the number of outputs in the

presented case. In some cases, to simplify the evolution process, the fitness function is

set to include CME only, such as the modeling of a biodegradation process discussed

in Chapter 5.

Once having reached desired fitness, the training algorithm is stopped. The

fittest individual network is then selected as the final solution for the system. The

next step is testing the prediction from the fittest individual network for forecasting

or predicting the target system.



34

It must be pointed out that the number of random constants (such as the

constant 0.2345 in Equation 4.2) in an EPNN network formula is changeable during

training due to the polymorphic nature of EPNN networks. Therefore, unlike a

traditional neural network, EPNN can adapt to different systems without over fitting

the data.

4.2.3 Major Modeling Parameters

Prior to the application of an EPNN system, modeling parameters must be deter-

mined. Parameters that require the most attention are: function set, depth of tree

and its limitations, and number of total nodes. Number of input variables and num-

ber of output variables are predetermined for each specific case. In addition, all the

input and output data should be normalized to a reasonable range. In some cases,

normalization can be simple rescaling and in other cases it can be a more complex

function.

In order to reproduce the model in parts or in total, two special considerations

need to be addressed. The first one is the maximum depth of a formula tree. Because

each formula in an EPNN network has a tree structure representation, the maximum

depth of a tree needs to be restricted during evolution to avoid excessively large and

complicated unstable functions. On the other hand, if the restricted maximum depth

of tree representation is too small, the EPNN cannot converge or will converge very

slowly. In the studied cases presented in the next chapter, the maximum depth of any

formula tree is limited to 100. The maximum is approximated by three pre-screening



35

trials according to their fitness convergence speed and the efficiency of convergence

to a global maximum. The second consideration is the appropriate design of the

function set. In the presented cases, the function set is {+,—, x, in and erp

}. But, in other cases, it could include sine, cosine or other periodic functions as

needed for periodic or periodic-like experimental data. Therefore, before starting the

training of an EPNN system, the set of functions must be properly designed.

4.2.4 Comparison with Other A.I. Techniques

In traditional neural network modeling, the linkage structure must be determined

prior to training and application of the model. This can be accomplished either

manually or by applying a number of trials which demands a long time and sub-

stantial effort and experience (Doherty et al., 1997; Nelson and Illingsworth, 1990;

Bailey and Thompson, 1990). However, EPNN can form linkage structures dynam-

ically during the training process through evolution, which reduces the time and

effort in structural determination. During evolutionary computing (i.e. genetic pro-

gramming), only one level of mutation is employed (Fogel, 1995a; Koza, 1992), while

EPNN has three levels of mutations. Increasing the number of mutation levels results

in more adaptable and efficient structures.

In more recent efforts, GAs were applied together with ANNs to reduce the

inefficiency of ANN structure determination (Ghosh et al., 2000; Zhao et al., 2000;

Gao et al., 1999). However, the "blackbox" nature of ANN was not eliminated.

The model proposed here differs from the two separate modeling methods presented



36

by Ghosh, which use ANN as a forward modeling approach and GA as a reverse

modeling method. EPNN is also different from the methods which use GA only as

a way to refine ANN parameters (Zhao et al., 2000; Gao et al., 1999). The proposed

EPNN network differs from these approaches fundamentally, because it is a natural

combination of genetic programming and ANN. Therefore, unlike most ANNs or

ANNs with GAs, EPNN does not work as a "blackbox" and can produce formulae

during modeling.

4.3 Model Implementation

The general EPNN modeling system is implemented in C ++ code by using Microsoft

Visual C ++ (TM) Version 6.0 (SP3) under Win32 platforms. The hierarchy cod-

ing scheme is illustrated in Figure 4.8. The whole system consists of the following

structural components:

• Random number generator

• Main EPNN driver

• Initialization module

• Parameter module and data pool module

• TreeNode, EPNN individual and EPNN pools

• Individual evolutionary strategies (elementary and intermediate mutations as

well as intermediate crossovers)



37

• Pool evolutionary strategies (macro mutations and macro crossovers)

• Fitness and prediction calculation module

• Data file I/O module

The system starts from the initialization module. The module includes a gen-

eration of specific size of gene pool and mutation pool of EPNN individuals. In order

to guarantee uniform network structure distribution of the individuals, all individual

networks are initialized with no linkage to internal nodes but possible linkage to in-

puts. During initialization, each node in an individual network has only the simplest

form of random symbolic formula.

The random number generator module is a critical part in the EPNN

evolutionary strategies. The module is implemented partially based on the ran-

dom number generating techniques introduced from the literature   Numerical

Recipes in C (Press et al., 1993) with an adjustment to allow generating time-

dependent random numbers. The detailed source code for the random number

generator is listed in Appendix A.

The hierarchy scheme from elementary data to the EPNN model is imple-

mented in a standard C ++ class composition chain. An EPNN model consists of a

certain number of EPNN individuals. Each individual consists of a certain number

of tree nodes, which are implemented using tree structures. Each tree node contains

elementary data, which can be a generated random constant, or a link to another

node. The detailed scheme of the hierarchy system can be found in Appendix A.



38

Both the gene pool and mutation pool are implemented via standard C ++

vector containers. Each container holds a certain number of individual EPNN net-

works. Sorting and selection algorithms are developed based on the standard C

sorting and selection methods. Source code for sorting and selection in both pools

are listed in Appendix A. Similar to the class hierarchy, the mutations and crossovers

are also implemented in a hierarchy scheme, starting from elementary to macro mu-

tations.



39

Figure 4.4: A typical EPNN network training algorithm



Figure 4.5: Some typical operations during elementary mutation

40



Figure 4.6: A typical crossover operation in tree representation

41



Figure 4.7: A typical crossover operation at EPNN individual level



Figure 4.8: EPNN coding hierarchy scheme

43



CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Overview

In this chapter, three different process modeling examples are discussed. The first

one is a dynamic neutralization process forecasting, the second one is prediction of

aqueous two-phase system partitioning, and the last example is an application of

EPNN to modeling the reduction of an existing biodegradation model.

As demonstrated in all of the following examples, EPNN performs better than

or at least performances when compared to traditional thermodynamic or neural

network models. EPNN also demonstrates the capability of producing symbolic

formulae of the process and providing valuable information to establish potential

theoretical models and optimization methods.

Furthermore, in the cases where traditional modeling parameters are hard to

determine, EPNN can be utilized as an auxiliary efficient tool to produce equivalent

empirical formulae for the target process. The last example, model reduction of a

biodegradation process, demonstrates such potential of the EPNN approach.

5.2 Dynamic Chemical Reaction System

5.2.1 Introduction

In the process industry, it is necessary to predict several steps regarding the future

of process outputs in many situations, for example, when calculating the control

objective function in a model based predictive control. In many industrial processes,

44



45

there are certain variables, such as quality variables, which are difficult to measure.

The values of these variables can be estimated from measured process variables by

using a dynamic model of the process. In some cases, however, changes in the process

inputs can affect the quality variables in the long run. Therefore, multiple step

ahead prediction is desirable in such cases to improve the estimation performance.

A multiple-step-ahead prediction model can be described as Equation 5.1.

where the model predictions 9(t — 1) to 9(t - n) are used as process outputs and

u(t — 1) to u(t — m) are process inputs.

A neutralization CSTR simulation example (Figure 5.1), which has been ex-

tensively investigated in the literature, such as the long-term prediction model by

(Zhang et al., 1998a), is used to show that the EPNN approach can efficiently predict

the highly nonlinear system for nearly chaotic data series. The dynamic thermody-

namic model for the pH neutralization CSTR process can be found in the literature

(McAvoy et al., 1972). There are two input streams into the continuous reactor, one

is acetic acid of concentration Ca at a flow rate Fa and the other is sodium hydroxide

of concentration Ch at a flow rate Fb. The acid input stream neutralizes the sodium

hydroxide. From the titration curve of the process, it is indicated that the process

is highly nonlinear around pH 7. In the modeling process, the flowrate of sodium



46

hydroxide and the tank temperature are kept constant, while the flowrate of acetic

acid is constantly disturbed due to random noise in the environment. The objective

of EPNN modeling is to produce long-term time series forecasting of the pH values

in the dynamic system only in relation to the input with disturbance, Fa , which is

the input flowrate of acetic acid.

Figure 5.1: Neutralization CSTR reaction

In order to compare with the performance of an existing neural network, the

complete data set that was used in a published paper (Zhang et al., 1998a) was

acquired . A total of 600 pairs of data points was acquired. The first 300 pairs were

used as the training set, while the remaining 300 pairs as the testing set.



47

The EPNN model was developed using the standard C/C++ computer language

under Windows NT environment. A total of five nodes were used in the model, in

which there are four intermediate nodes and one output node. The output variable is

the predicted value of the current pH level at time t, while the two input variables are:

the acetic acid flowrates at time t —1 and at time t — 2. It is important that both the

inputs and outputs are normalized to a standard value range of [-1, 1] by rescaling.

The detailed scheme of the EPNN training algorithm is illustrated in Figure 4.4. The

fitness in Figure 4.4 is calculated by the method introduced in the previous chapter.

RMS in Equation 4.7 is the reciprocal of summed square errors (SSE) of normalized

pH predictions of each individual in the EPNN population. In this work, the size of

the gene pool is 150 individuals, while the size of the mutation pool is 80.

5.2.2 Results and Discussion

The first set of 300 data points was used in the training process. A total of 3000

generations was evolved before the training program was automatically stopped.

The training process took about 6 hours on our computing platform (Pentium II

233MHz and Windows NT 4.0). Following the training process, the fittest individual

network(the EPNN individual with the highest fitness function value) was selected

as the solution. The second set of 300 data points was used in the prediction process.

Prediction results of the solution are shown in Figure 5.2 , while the associated errors

are shown in Figure 5.3. Both Figures 5.2 and 5.3 demonstrate a good approximation

over most of the data. The spikes in Figure 5.3 are mainly caused by the uniformly



48

Figure 5.2: CSTR EPNN prediction results

distributed random noise in the range of (-0.3, 0.3) in the original experimental

pH measurement. The shape of the error curve in Figure 5.3 is not uncommon in

most time series forecasting applications (Zhang, 1994; Dorffner, 1996; Oliveira et al.,

2000).



49

Figure 5.3: CSTR EPNN prediction errors

The evolved symbolic formula of the fittest individual is shown in the system

of equations 5.2.



50

where No is the output node 	 normalized pH value prediction, F is a complicated

algebraic function shown in equation 5.3; N1,N2,N3,N4 are intermediate nodes; d1,d2

are the model input variables normalized acetic acid flowrates at time (t — 1) and

(t — 2), respectively.

The associated network structure of the system of equations 5.2 is illustrated

in Figure 5.4. Unlike ANNs or ANNs with GAs, this model produces empirical

equations for the given system. In addition, despite the random noise in the pH

measurement, the system of equations 5.2 achieved an SSE of 8.8 while the traditional

recurrent neural network has an SSE of 17.0 (Zhang et al., 1998a).

Figure 5.4: Evolved EPNN network for CSTF



51

One of the most important features during the evolution of the EPNN network

is that in less than 10 generations the network can create feedback links between

nodes, if necessary. These links represent the acetic acid flow rate at previous time

intervals, such as (t — 3), (t —4) even though the initialization of the EPNN network is

only feedforward and has only two inputs: acetic acid flowrates at time (t-1) and (t-

2). By contrast, the structure of recurrent neural network must be determined before

training and cannot be modified during training (Zhang et al., 1998a). Consequently,

it demands a significant amount of effort to determine the final network structure.

Therefore, EPNN is more adaptable and efficient in network structure determination

than traditional recurrent neural networks. The evolved feedback links are capable

of modeling multi-step ahead (at least two steps ahead) prediction for the examined

nonlinear dynamic system.

Furthermore, the final EPNN network has only 4 intermediate nodes(neurons)

with performance of SSE 8.8, while the traditional recurrent neural network

had to utilize at least 14 neurons to achieve SSE = 17.0. Too many neurons can

introduce overfitting of data and yield poor generalization of the system due to too

many links between intermediate nodes in the network (Zhang et al., 1998a; Doherty

et al., 1997).

In addition to producing improved results, EPNN also evolved empirical equa-

tions (Equation 5.2). The evolved formulae not only provide information for further

theoretical study, but can also be used as empirical equations for process optimiza-

tion and dynamic control. Therefore, EPNN is fundamentally different from those



52

methods that combine ANN and GA in chemical process modeling (Zhao et al., 2000;

Gao et al., 1999).

From the above investigated case, it is clear that the EPNN approach to mod-

eling complex, dynamic system behaviors is capable of recognizing dynamics as well

as efficiently constructing empirical models for the process. Feedback links in EPNN

networks can be formed through training(evolution) to perform multi-step ahead

prediction for nonlinear systems. Furthermore, unlike those applications combining

ANNs and GAs, symbolic formulas can be extracted from EPNN modeling results

for further theoretical analysis and process optimization and control.

5.3 Aqueous Two Phase Extraction System

In this section, EPNN is applied to modeling a complex aqueous two phase extrac-

tion system. The system, polyethylene glycol (PEG)/potassium phosphate/water

at pH=7 was selected to demonstrate the performance of the EPNN model. The

results were compared favorably to a traditional neural network modeling approach

and the experimental data set. Seven distinct data sets of varying PEG molecular

weight were used in this work. Of the seven, five were used for training while the

remaining two were employed as the test cases. Following the training, a networked

symbolic equation system evolved, which, in addition to reproducing the data, can

also be used to improve understanding of the phase diagram through the discovered

parameters.



53

5.3.1 Introduction

In macromolecule and biological material processing industries, aqueous two-phase

systems (ATPS) have been applied in separation and purification of various sub-

stances. The primary advantages of ATPS handling of materials are biocompatible

environments, economical operation and scaleup and adjustable factors to manipu-

late target product partitioning (Albertsson, 1971). However, while there are many

factors available to manipulate the partition, it is difficult to correlate and model the

phase equilibrium and partition due to the highly complicated interactions between

those factors (Kan and Lee, 1996).

A number of thermodynamic models have been developed and applied to

describe the mechanism of phase separation. The Flory and Huggins theory (Flory

et al., 1964) has been applied successfully in modeling the polyethylene glycol

(PEG)/dextran systems (Gustaffsson et al., 1986). Later, models based on statisti-

cal thermodynamics, such as UNIQUAC or UNIFAC (Abrams and Prausnitz, 1975;

Fredenslund et al., 1975) were developed and applied to correlate and extrapolate

phase diagrams with system parameters by fitting other similar phase equilibrium

data (Gao et al., 1991). However, there is a common drawback in predicting phase

diagrams using the above models. Generally speaking, a thermodynamic model

requires a set of specific parameters which are only valid exclusively for a particular

system. For example, the model of phase equilibrium with parameters measured

from the Dextran 500/PEG 1000 system may not be able to forecast phase equi-

librium for a Dextran 500/PEG 3400 system. Therefore, in order to apply those



54

thermodynamic models in laboratory or industrial process design, a huge parameter

database for numerous systems is required. However, the special equipment to

determine these parameters may not be available in every laboratory or factory

(Kan and Lee, 1996).

Since the mid 1990s, in order to overcome the limitations of traditional thermo-

dynamic models, there have been a number of efforts of applying neural networks to

predict phase equilibrium data, for systems such as PEG/potassium phosphate/water

(Kan and Lee, 1996). The advantages of these neural network approaches are stated

as nonparametric models (Tsoukalas and Uhrig, 1997; Caudill and Butler, 1992).

Structurally, they are adjustable and adaptable for different phase systems with-

out re-evaluation of thermodynamic parameters. However, there are limitations to

these approaches. The most cited one is the nonparametric nature or "blackbox"

operation, which makes it difficult to establish efficient structures of neural network

and training methods (Doherty et al., 1997). While the trained model has performed

very well on the testing data sets, it does not provide information about the potential

mechanism of the system. Therefore, EPNN is applied to modeling the two-phase

extraction system.

5.3.2 Data Preprocessing

The phase equilibrium data of the PEG / potassium phosphate aqueous two-phase

system (pH 7) were obtained from experiments reported in the literature (Lei et al.,

1990; Kan and Lee, 1996). Figure 5.5 illustrates the extraction process. The total



Figure 5.5: Two phase extraction system for PEG

weight proportions of PEG and potassium phosphate in the two-phase system are

two inputs to the EPNN system. In addition, the normalized PEG molecular

weight(MW) was utilized as a third input. Because the molecular weight of PEG

commonly applied for ATPS is below 50,000, the normalized MW is expressed in

Equation 5.4, which is adopted from the literature (Kan and Lee, 1996).

In the two-phase extraction system, the size of an EPNN population is 100 and

the size of mutation pool is 50. The maximum depth of any formula tree is restricted

to 100. The function set consists of the following operators: { +, —, x, -, in and exp

} . There are four intermediate nodes: N4, N5, N6 and N7. The number of output

nodes is 4, as shown in Figure 5.6. The inputs to the model are d 1 , normalized

PEG molecular weight, d2 , total concentration of potassium phosphate and d 3 , total

concentration of PEG.



56

Figure 5.6: Trained EPNN network structure for PEG system

During the training step of the EPNN model, all the data from PEG 600, 1,500,

3,400, 8,000 and 20,000 are used to train the model until satisfactory prediction

precision is reached. Following the training, the prediction of the model for both

interpolation and extrapolation was tested. PEG 1000 and PEG 400 cases are used

in this step. Each data set consists of 8 data points. A total of 40 data points were

used for the EPNN system training in a single run. The remaining 16 data points

were used to test the EPNN system performance in a different run.

5.3.3 Results and Discussion

During the simulation, 20,000 generations were evolved before the training program

automatically stopped. Then the fittest individual network was selected as the



57

solution (Figure 5.6). The corresponding symbolic networked formulae of the fittest

EPNN network are:

and 12 is:

From Equation 5.5 and Figure 5.6 it can be seen that the nodes in the network

are interconnected with each other by back-links (feedbacks). Those back-links were

formed automatically during the training step.



58

The degree of complexity of the evolved network is related to the precision of

the given data. As indicated in the experimental data (Lei et al., 1990; Kan and Lee,

1996), bottom PEG(N1 ) and top salt (N2 ) concentrations are minor components

in their respective phases. This may result in a higher level of error/uncertainty

due to the magnitude of these concentrations (Lei et al., 1990; Kan and Lee, 1996).

Therefore the EPNN network, in striving to maintain a constant error, forms a more

complicated structure.

In this work the intermediate nodes are not germane to the interpretation of

the results.

Figure 5.7: Top phase PEG concentration study



59

Figure 5.8: Tuned top phase PEG predictions

Examination of Equation 5.5 reveals some interesting and useful information

about the PEG/potassium phosphate/water system:

• Concentration of PEG in top phase (N 3 ) is approximately a function of total

PEG concentration (d3 ) and total salt concentration (d2).

• Concentration of salt in bottom phase (N0 ) is approximately independent of the

molecular weight of PEG (d1 ) and thus only depends on the total concentration

of PEG (d3 ) and potassium phosphate (d2).



60

• Concentration of the minor component in each phase (N1 and N2 ) is more

complicated and interconnected than the major component concentration (No

and N3 ) in their respective phases.

Albertsson (1971) showed that for a constant pH (pH=7), and a proper ex-

perimental salt concentration range, the PEG concentration in both phases remain

constant regardless of the PEG molecular weight. According to Figure 5.7, the ex-

perimental results of Albertsson are approximately confirmed by the EPNN model.

In particular, it is shown that PEG concentration in the top phase is dependent on

total PEG concentration. However, the top phase PEG concentration can be more

accurately predicted (Figure 5.8) by tuning the EPNN model with different initial

system conditions. Now, the top phase PEG concentration, N3, depends on all three

variables:

During the tuning step, only one total node was used, which is the output node.

Only 50 generations are evolved to produce the improved approximation. The EPNN

training results can be tuned with only minimum changes in the initial conditions.

Therefore, unlike traditional neural networks, which demand a significant effort to

change network structures before tuning (Doherty et al., 1997), the network structure

of EPNN is more flexible and adaptable through tuning. This is an advantage of the

EPNN's polymorphic nature over traditional neural networks.



61

As indicated in the experimental data (Lei et al., 1990), the product of d1 x d2

or d1 x d3 is really small and only second-order correlated to N3 , while d2 and d3 are

both larger and first-order correlated to N3. Therefore according to Equation 5.6,

N3 is less sensitive to d 1 (MW of PEG). The observed result of independence for N3

(top PEG concentration) still holds true in the approximation.

Figure 5.9: Phase diagram (training results)

Figure 5.9 shows the training results after the tuning. The top left part of the

figure shows the concentrations in the top phase, and the bottom right part shows

the concentrations in the bottom phase. Figure 5.10 shows the associated training

errors. Both Figure 5.9 and Figure 5.10 show good agreement with the experimental



62

Figure 5.10: EPNN training errors

data (Lei et al., 1990) over the five training data sets.

Figure 5.11 shows the prediction results using the tuned network structure.

As in Figure 5.9, the top left part of the figure shows the concentrations in the top

phase, and the bottom right part shows the concentrations in the bottom phase.

Figure 5.12 shows the associated prediction errors. Again, both Figure 5.11 and

Figure 5.12 show good agreement with the experimental data over the two testing

data sets. The standard deviations of EPNN prediction are 0.0114 wt/wt (PEG

400) for extrapolation and 0.00302 wt/wt (PEG 1000) for interpolation, while the

traditional neural network approach errors are, respectively, 0.0118 wt/wt (PEG 400)



63

and 0.0085 wt/wt (PEG 1000) (Kan and Lee, 1996). Detailed prediction results are

listed in Table 5.1 — Table 5.4.

Figure 5.11: Phase diagram (prediction results)

In addition to producing better results, EPNN also evolved empirical formulae

(Equations 5.5 and 5.6), which can be applied over the whole range of the studied

system. The formulae produced by EPNN not only provide valuable information

for further theoretical study, but can also be used as empirical equations in ATPS

process optimizations (Huenupi et al., 1999).

Due to the polymorphic and evolutionary nature of the EPNN system, the

initially randomized values of constants in EPNN networks will converge to the



64

Figure 5.12: EPNN prediction errors

same or similar forms of functions in separate runs until the training process ends.

Therefore, the EPNN system is not sensitive to differences in initial constant values

of the EPNN population. However, if there is significantly larger noise in one or

more data sets in the whole data composition, the EPNN system will probably fail

to converge to a satisfactory level of prediction on these data sets. Therefore, the

precision of the training data is critical to successful and efficient modeling using

EPNN.



Table 5.1: Comparisons between EPNN prediction and experimental data for
PEG 400 in bottom phase

Potassium Concentrations PEG Concentrations
Experimental EPNN Experimental EPNN

0.3145 0.30019 0.0305 0.02982
0.3351 0.32607 0.0254 0.02709
0.3761 0.37449 0.0224 0.02305
0.3973 0.40367 0.0212 0.02095

Table 5.2: Comparisons between EPNN prediction and experimental data for
PEG 400 in top phase

Potassium Concentrations PEG Concentrations
Experimental EPNN Experimental EPNN

0.0685 0.0685 0.2875 0.29905
0.0578 0.05605 0.3202 0.33274
0.0469 0.04498 0.3679 0.37224
0.0395 0.03805 0.3973 0.38456

Table 5.3: Comparisons between EPNN prediction and experimental data for
PEG 1000 in bottom phase

Potassium Concentrations PEG Concentrations
Experimental EPNN Experimental EPNN

0.2156 0.21639 0.0308 0.03959
0.2556 0.2439 0.0108 0.01362
0.2808 0.27463 0.0071 0.01053
0.3081 0.30447 0.0056 0.00854

Table 5.4: Comparisons between EPNN prediction and experimental data for
PEG 1000 in top phase

Potassium Concentrations PEG Concentrations
Experimental EPNN Experimental EPNN

0.0664 0.07545 0.2502 0.24818
0.0553 0.05709 0.2902 0.29344
0.046 0.04979 0.3256 0.32371
0.037 0.04462 0.3637 0.35769

65



66

5.4 Bioremediation Model Reduction

5.4.1 Introduction

As the worldwide concern for the protection of the environment grows, more people

are seeking and developing ways to eliminate the contaminants from more than two

hundred years of industrial activities. One of the promising techniques to elimi-

nate organic contaminants is biodegradation. With the increasing applications of

biodegradation in waste treatment, better modeling and better understanding of the

ongoing biodegradation process is also increasingly demanded. However, due to the

nature of complex mechanism of such processes, it is difficult to develop a complete

and reliable, structured model using traditional methods without many unsuccessful

modeling trials and arbitrary assumptions. Such limitations can significantly de-

crease the applicability and reliability of existing models. Therefore, it is desirable

to develop alternative ways to model biodegradation processes.

The focus in this section will be on the model reduction of an existing in-situ

bioremediation model using EPNN techniques. The original model and processes

can be found in the literature (Mandal, 1998). The original model was developed for

biodegradation in a soil batch bioreactor.

In order to model the process, the original approach made simplifying assump-

tions and divided the process into two levels of material balances: aggregate phase

and mobile phase. For the aggregate phase, the material balance of the biodegrad-

able component in a different segment of the spherical aggregates is represented in

Equation 5.7:



67

The first term on the right represents the intra-aggregate diffusion, the second

term represents the rate of biodegradation and the third term is the adsorption rate.

The biodegradation rate (Bd) and the associated biomass growth rate are given by

the equations 5.8 and 5.9, respectively (Mandal, 1998):

Where Ca is the 2-CP concentration, b is the concentration of biomass, A is the

specific growth rate constant in the Andrews model and fi e is the specific death

rate constant. The specific growth rate was described by an inhibitory biokinetic

model (Andrews model). One of the major problems in the original model is that

it is extremely difficult to determine the exact value of the parameter (Vic) in the

aggregate phase model from experimental data. Therefore, arbitrary assumptions

about /2, are needed on a limited number of available values in the literature during

the parameter determination step as well as the final model verification step (Mandal,

1998).

Due to the arbitrary assumption on the modeling parameters, the original

model fits poorly with the experimental data in some cases, although several trials

had been made to guess an approximate value of the parameter. Therefore, in



68

order to avoid the above arbitrary assumptions in parameter determination, EPNN

is applied in the biodegradation process modeling as an alternative and efficient way

to reduce the existing model to the forms without such arbitrary assumptions.

5.4.2 Data Processing and Results

The experimental data are obtained from the literature, which are from the biodegra-

dation experiments of 2-chlorophenol by a pure culture (Pseudomonas pickettii) in

a jacketed batch reactor (Mandal, 1998). Prio to applying EPNN to reduce this

biodegradation model, the overall yield coefficient was assumed constant. Therefore

the biomass concentration growth rates should be dependent only on their initial

concentrations of biomass and 2-CP and the time of the process under the same

experimental conditions (constant temperature and controlled 0 2 concentrations).

This is a reasonable assumption as made by Mandal (1998).

Under the above simplifying assumptions, empirical symbolic models can be

extracted from EPNN modeling of the experimental biomass growth curves. In the

modeling process, the input set of EPNN is: the current time of the process relative

to the initial starting time; the initial concentration of 2-chlorophenol (2-CP) and

the initial concentration of biomass. The total nodes(neurons) of each individual

EPNN net is set to two, which are both the output nodes: the prediction of biomass

concentration and the prediction of 2-CP concentration at the present time. The

function set is: {+, x, exp and ln}. The gene pool size was designed as 1500 and

the mutation pool size was 1000. The maximum depth of formula tree is restricted



69

to 100. In order to simplify the procedure, the comprehensive fitness function is set

to the combined mean squared error in Equation 5.10.

where R1 and R-2 are the mean squared error of prediction of biomass concentration

and the mean squared error of the prediction of 2-CP concentration, respectively.

All the 15 sets of experimental data were used to train the EPNN system

in order to get maximum coverage of all possible data ranges. The experimental

data were randomly mixed together prior to model training. Furthermore, statistical

"significance test" (Jonathan, 1991) was utilized during the training process to avoid

over-fitting data. The basic algorithm of significance test is to compare standard

deviation for the target variable, obtained in the training process performed for the

real data set, to standard deviations obtained using the same evolved formulae for

artificially generated data sets with random permutations of the values of the target

attribute between different records. If the latter is significant larger than the former

one, then the evolved EPNN formulae has not over-fitted the real data set. A total of

6,727 generations evolved before the EPNN system reached a satisfactory solution.

The final evolved symbolic system of equations extracted from the fittest individual

EPNN net is listed in Equation 5.11 and the associated network structure is shown



in Figure 5.13.

70

where N1 and No are the output nodes prediction of biomass concentration and

prediction of 2-CP concentration, respectively. d 1 ,d2 , d3 are the model input variables

  time, initial biomass concentration and initial 2-CP concentration, respectively.

It has to be pointed out that the values of No and N1 are bounded to non-negative

numbers by the boundary condition specified in Equation 5.12. When time (d 1 ) is

larger than the boundary upper limit, the value of N o will be artificially set to zero

and N1 will be set to remain the maxima value reached at the boundary upper limit

value of d1 .

where f (d2, d3) is an implicit function defined in Equation 5.13:



71

Figure 5.13: Evolved EPNN structure for biodegradation

Figure 5.14 and Figure 5.15 show an example of the training results of EPNN

compared to the fitting results of the original model using experiment K-13. Table

5.5 shows the corresponding comparisons between EPNN prediction results and the

original model for K-13. Because the original dissertation (Mandel, 1998) does not

include the simulated data sheet, the simulated data of the Andrews based model

were obtained using the adaptive stepsize controlled Runge -Kutta method, which

can be found in the literature (Press et al., 1993). The mean square errors of EPNN

prediction of biomass concentrations and 2-CP concentrations for K-13 are 0.3375

and 1.67, respectively, while the original model prediction for K-13 has mean square

errors of 5.89 and 10.95. Besides K-13, for all other experimental data sets, EPNN

achieves much better fitness than the original Andrews equation based model.



72

5.4.3 Discussion

From the above results of the EPNN prediction, it is shown that EPNN can produce

a more accurate empirical model for the studied biodegradation process. In ad-

dition, unlike the original Andrews equation based growth rate model, the EPNN

approach does not require any arbitrary assumptions on modeling parameters, or

any trials before guessing a value of the model parameters. The EPNN can auto-

matically establish empirical symbolic relationships between initial concentrations

and the current concentrations through the training process.

The discovered relationship equations (Equation 5.11 ) can be used as a sub-

stitute for the Andrews equation based growth rate model in the original modeling

system. Therefore, the biodegradation rate (Bd) in Equation 5.7 can be replaced

with EPNN empirical equations (Equation 5.11). In such a modified model, it is

thus not necessary to make trials and use guessing about the value of µc in further

calculations. However, asymptotic behavior cannot be predicted over time and must

be monitored (such as artificial cut off negative values) in order to avoid spurious

results obtainable about deterministic modeling.



Figure 5.14: Comparison between experimental data and EPNN prediction of
concentration profiles for 2-chlorophenol and biomass in experiment K-13

73



Figure 5.15: Comparison between experimental data and the original Andrews
model prediction of concentration profiles for 2-chlorophenol and biomass in
experiment K-13

74



Table 5.5: Prediction comparison for experiment K-13

Time(h) Biomass (Exp) 2-CP (Exp) Biomass (EPNN) 2-CP (EPNN) Biomass (Andew) 2-CP (Andrews)

0.25 10.4 88.2 10.3458 90.9766 10.68 87.8

0.5 10.7 87.8 10.5771 89.5984 10.97 86.97

0.75 10.7 86.5 10.8122 88.1762 11.26 86.11

1 10.8 85.6 11.0513 86.7176 11.57 85.22

1.25 10.9 83.7 11.2947 85.2279 11.89 84.31

1.5 11.2 82.3 11.5428 83.7106 12.21 83.36

1.75 11.5 81 11.7960 82.1679 12.55 82.39

2 11.8 80.4 12.0546 80.6010 12.9 81.38

2.33 12.2 79.2 12.4048 78.4971 13.38 80

2.58 12.6 78.7 12.6775 76.8768 13.75 78.91

2.75 12.8 77.7 12.8668 75.7621 14.02 78.13

3 13 76 13.1511 74.1040 14.42 76.99

3.25 13.4 74.9 13.4431 72.4236 14.83 75.79

3.5 13.7 73 13.7431 70.7209 15.27 74.54

3.75 13.9 71.5 14.0517 68.9959 15.71 73.25

4 14.4 69.5 14.3695 67.2487 16.18 71.91



Table 5.5: Comparison for K-13 (Continued)

4.25 14.9 67.9 14.6971 65.4794 16.66 70.52

4.5 15.2 65.8 15.0350 63.6877 17.16 69.07

4.75 15.6 63.8 15.3840 61.8739 17.68 67.56

5 16.1 62 15.7446 60.0379 18.23 65.99

5.25 16.4 60.2 16.1177 58.1797 18.79 64.35

5.5 16.7 58 16.5039 56.2993 19.38 62.65

5.75 17.2 55.9 16.9040 54.3967 20 60.86

6 17.8 53.9 17.3188 52.4718 20.64 59.03

6.25 18 52 17.7493 50.5248 21.31 57.08

6.5 18.3 49.9 18.1964 48.5556 22.02 55.04

6.75 18.9 47.7 18.6609 46.5642 22.76 52.9

7 19.4 45.6 19.1439 44.5505 23.54 50.65

7.25 20 43.7 19.6465 42.5147 24.35 48.29

7.5 20.5 41.7 20.1697 40.4567 25.22 45.79

7.75 20.8 39.2 20.7148 38.3765 26.13 43.16

8 21.3 37.8 21.2829 36.2740 27.09 40.38

8.25 21.9 35 21.8753 34.1494 28.11 37.43



Table 5.5: Comparison for K-13 (Continued)

8.5 22.1 32.1 22.4935 32.0026 29.2 34.3

8.75 22.6 31.1 23.1387 29.8336 30.35 30.96

9 23.2 29.7 23.8126 27.6423 31.58 27.4

9.25 23.9 27.2 24.5167 25.4289 32.88 23.65

9.5 24.6 25.4 25.2526 23.1933 34.29 19.58

9.75 25.4 23.5 26.0220 20.9354 35.79 15.25

10 26.2 19.1 26.8268 18.6554 37.37 10.68

10.25 27.1 18.4 27.6690 16.3532 38.95 6.123

10.5 27.9 15.6 28.5504 14.0288 40.33 2.12

10.75 29 12.6 29.4732 11.6821 40.98 0.2543

11 30.1 10.6 30.4397 9.3133 41.06 0.01485

11.25 31.4 7.25 31.4522 6.9223 41.07 0.0008172

11.5 32.5 4.82 32.5130 4.5090 41.07 0.00004304

11.75 33.9 2.66 33.6249 2.0736 41.07 0.000002266

12 34.7 0.81 34.7904 0.8840 41.07 1.193E-07

12.25 35.5 0 36.0125 -0.2864 41.07 6.281E-09



CHAPTER 6

SUMMARY AND CONCLUSIONS

In the previous chapters, in the context of a discussion of limitations of traditional

methods and an history overview of the development of artificial intelligence, EPNN

was introduced and its usefulness was demonstrated in the modeling of three typical

chemical processes.

More precisely, Chapter 1 introduced the history of chemical process modeling

and the necessity for developing data based modeling approaches. In Chapter 2

some of the limitations of traditional thermodynamic modeling methods found in

the literature were discussed. A brief historical overview of artificial intelligence was

also included in Chapter 2, followed by a more focused discussion of artificial neural

networks and evolutionary computing techniques and their limitations. Then the

current trends in the development of artificial intelligence were introduced and the

need for developing a new hybrid method in process modeling was discussed.

In Chapter 3, the objective of the dissertation was presented as a guideline.

Following the dissertation objective, Chapter 4 included a detailed discussion of the

EPNN modeling system: its structures, compositions, algorithms, modeling param-

eters and their considerations as well as EPNN implementation.

Applications in three distinctive chemical processes were demonstrated in

Chapter 5. Comparisons with traditional neural networks were made in the dy-

namic neutralization process and the aqueous two phase system. Model reduction

78



79

of a biodegradation process was presented as the third application, showing the

advantage of using EPNN over the traditional Andrew equation based model.

From the discussed example cases, it is clear that the EPNN approach is capable

of modeling complex, dynamic or steady-state systems. EPNN can be also used to

generate empirical symbolic formulae for chemical processes where determination of

traditional modeling parameters is extremely difficult or even non-applicable.

In summary, the EPNN modeling system has the following features:

• Feedback links in EPNN network can be formed through training(evolution)

to perform multi-step ahead prediction for dynamic nonlinear systems.

• Unlike those applications combining neural networks and genetic algorithms,

symbolic formulae can be extracted from EPNN modeling results for further

theoretical analysis and process optimization.

• EPNN system can also be used for data prediction tuning. In which case, only

a minimum number of initial system conditions need to be adjusted. Therefore,

the network structure of EPNN is more flexible and adaptable than traditional

neural networks.

• Due to the polymorphic and evolutionary nature of the EPNN system, the

initially randomized values of constants in EPNN networks will converge to the

same or similar forms of functions in separate runs until the training process

ends. The EPNN system is not sensitive to differences in initial values of the

EPNN population. However, if there exists significant larger noise in one or



80

more data sets in the whole data composition, the EPNN system will probably

fail to converge to a satisfactory level of prediction on these data sets.

• EPNN networks with a relatively small number of neurons can achieve sim-

ilar or better performance than both traditional thermodynamic and neural

network models.

The developed EPNN approach provides alternative methods for efficiently

modeling complex, dynamic or steady-state chemical processes. EPNN is capa-

ble of producing symbolic empirical formulae for chemical processes, regardless of

whether or not traditional thermodynamic models are available or can be applied.

The EPNN approach does overcome some of the limitations of traditional thermo-

dynamic/transport models and traditional neural network models.



CHAPTER 7

LIMITATIONS AND FUTURE WORK

Although the developed EPNN approach has many promising advantages over

existing thermodynamic or transport models or even traditional artificial intelligence

techniques, it is still important to point out the known issues and limitations of

current EPNN modeling techniques.

Because EPNN is based on genetic programming, due to the stochastic nature

of evolutionary computing, EPNN is not guaranteed to converge in all cases. When

a large number of nodes (i.e. over 20) are used on the testing platform (Pentium II

233MHz, 96MB RAM and Windows NT 4.0), the EPNN evolves very slowly. This

may be caused by a large search space or too many possible solutions for the system.

For systems with a small number of inputs/outputs variables (less than 20), or for

systems that can be reduced into subsystems of such scale, EPNN is suitable and is

an efficient way to establish empirical models.

In other cases, when strong or radical interactions are coexisting with the in-

puts, EPNN may fail to converge or yield any meaningful results at all. This oc-

curred in one of our pre-screening experiments, which involved the prediction of or-

ganic waste biodegradation rate constants based on the group contribution method

(Tabak and Govind, 1993).

It may also be necessary to develop an improved version of the CME function

(Equation 4.6) when many simultaneous outputs are desired. One of the possible

improvements is designing CME as a n-dimensional weighted vector containing n

81



82

different mean square errors as shown in Equation 7.1. Then in the n-dimensional

vector space, the objective of evolution will be minimizing the CME vector to obtain

maximum fitness.

where Ri is defined by Equation 4.7 and w i is its associated weight constant.

As a performance limitation, EPNN can evolve or converge very slowly in some

highly nonlinear or noisy environments. For example, in the case of biodegradation

model reduction, it took the EPNN system more than 6,000 generations before it

reached a satisfactory solution. Though the whole process was automatically con-

trolled, it still took several hours (4 to 6 hours) in the testing platform. This may

be due to the highly nonlinear relationship between the biodegradation rate and the

initial concentrations in real world as compared to the simple Andrew model.

It is necessary to develop a more comprehensive diversity control over the gene

pool when given a large search space. A search-space-size calculation table can

be integrated into the EPNN evolutionary strategies. The table can be used as a

validation tool for random formulae evolved from EPNN. In order to optimize EPNN

modeling processes, the size of the search space table may be significantly reduced by

incorporating a high-level of existing chemistry or physical knowledge of the target

process. In such cases, more constraints can be added into the validation method of

the search space table. The search space table can be also used to create formula

trees of uniformly distributed depth. However, too strict constraints may yield non-

converging models. Therefore, it is necessary to develop adaptive constraints in large



83

search spaces. Some further discussions can be found elsewhere (Chakraborty, 1999).

In more radical environments, co-evolution of interactive species may be more

desirable than single species evolution in the current EPNN system. Some recent

studies on co-evolution can be found in the literature (Puppala et al., 1998; Hirasawa

et al., 2000; Berlanga et al., 2000). During co-evolution, one set of algorithms can

be used for modeling the detailed chemical engineering process, while another set

of algorithms can be used to monitor, evolve and modify the algorithm parameters

or constants. In this way, more directed or self-adjustable evolving meta-algorithms

can be developed.

Furthermore, it may be an effective way to include fitness distributions to design

more efficient and faster converging systems (Fogel and Ghozeil, 1996). Parallel

computing techniques may also be worthy of serious consideration to improve the

computing efficiency and develop a more computing-powerful EPNN system.

In some engineering cases, if strong noise coexists in the process inputs, or the

process is conducted in a noisy environment, it is necessary to develop methods to

consider the noise in the model and can still properly model the process. Such im-

provement efforts can be based on noise processing models from recent developments

(Beyer, 2000; Wong et al., 2000).



APPENDIX A

SOURCE CODES

The C ++ source code for EPNN modeling system.

#include <iostream>
#include <vector>
#include <list>
#include <map>
#include <string>
#include <algorithm>
#include <f stream>
#include <sstream>
#include <math.h>
#include <string.h>

extern "C"
{

#include<time.h>
}

#define EPNN_VER 2.1

using namespace std;

//*********************************************
//* Class Parameters
//*********************************************

class Parameters {
public:

Parameters();

bool allowFeedback;
int Num Of_Inputs;
int numNodes;
int Num Of_Outputs;
double aeltaData;
int steps; //how many steps calc for each individual

int maxDepth;

double qDataTypeChange;
double qNodeType;
double qNodeTypeChange;
double qNodeFuncChange;

int gpoolsize;
int mpoolsize;
double mutate_rate;
int docking;
double dif_eps;
bool isSigDiffer(double, double);

84



double desired_fitness;
double mild_diversity;
double min_diversity;
double min_qReplacement;
void diversity_control(double);
double max_eps;
double max_output;

//function pack
double Operate(int,double, double);
bool isSingleFunc(int);
int numFunctions;
string fWriteOut(int, string s1, string s2);

void write_diverse(ostream os);

void WriteOut(ostream 	 ) const;
void Readln(string s);

private:
double mr,qdtc, qnfc, qntc;
void save_diverse(void);
void restore_diverse(void);

I;

void Parameters::ReadIn(string s)
{

if stream is(s.c_str());

if(!is)
throw "Parameter File Not Found!";

is>>allowFeedback;
is>>Num_Of_Inputs;
is>>Num Of_Outputs;
is>>numRodes;
is>>gpoolsize;
is>>mpoolsize;
is>>desired_fitness;
is>>mild_diversity;
is>>min_diversity;
is>>min_qReplacement;

}

void Parameters::WriteOut(ostream os) const
{

os<<allowFeedback<<" ";
os<<Num_Of_Inputs<<" ";
os<<Num Of_Outputs<<" ";
os<<niunRodes<<" ";
os<<gpoolsize<<" ";
os<<mpoolsize<<" ";
os<<desired_fitness<<" ";
os<<mild diversity<<" ";
os<<min_diversity<<" ";
os<<min_qReplacement<<" ";

85



void Parameters::write_diverse(ostream os)
{

os<<endl<<"Mutation Parameters"<<endl;
os<<mutate_rate<<" "<<qDataTypeChange<<" ";
os<<qNodeTypeChange<<"<<qNodeFuncChange<<endl;

}

void Parameters::save_diverse(void)
{

mr=mutate_rate;
qdtc=qDataTypeChange;
qnfc=qNodeFuncChange;
qntc=qNodeTypeChange;

}

void Parameters::restore_diverse(void)
{

mutate_rate=mr;
qDataTypeChange=qdtc;
qNodeFuncChange=qnfc;
qNodeTypeChange=qntc;

}

void Parameters::diversity_control(double div)
{

if(div < mild_diversity ) {
mutate_rate *=div;
qDataTypeChange *=div;
qNodeFuncChange *=div;
qNodeTypeChange *=div;

if(mutate rate<0.001 II
qDataTypeChange <0.001 II
qNodeFuncChange <0.001 II
qNodeTypeChange <0.001)

restore_diverse();

return;
}

restore_diverse();

return;
}

// determine whether or not is significantly different!!!

bool Parameters::isSigDiffer(double dl, double d2)
{

if( d1==0 && d2 ==0) return false;

if(d1==0 && d2 !=0) return true;
if( d2==0 && dl !=0) return true;

if(d1/d2 > 1.5 II d2/d1 > 1.5)
return true;

if( fabs((d1-d2)/d2) > dif_eps) return true;

return false;

86



}

string Parameters::fWriteOut(int idx, string s1, string s2)
{

string res;
if(idx>=numFunctions II idx <0 ) return res;

switch (idx)
{

case 0:
res=s1;

res += "+";
res +=s2;
break;

case 1:
res=s1;

res += "-";
res +=s2;
break;

case 2:
res=s1;

res += "*";
res +=s2;
break;

case 3:
res=s1;

res += "/";
res +=s2;
break;

case 4:
res="exp(";
res+=s2;
res+=")";
break;

default:
break;

}

return res;
}

bool Parameters::isSingleFunc(int idx)
{

bool yes=false;

// if(idx==5) yes=true;

return yes;

}

double Parameters::Operate(int idx, double dl, double d2)
{

double res=0;

Twitch(idx)

case 0:
res=dl+d2;
break;

case 1:
res=d1-d2;

87



break;
case 2:

res=d1*d2;
break;

case 3:
if(d2==0) res=0;
else res=d1/d2;
break;

case 4:
res=exp(d2);
break;

default:
break;

}

return res;
}

Parameters::Parameters() {
allowFeedback=false;
Num Of_Inputs=1;
numRodes=1;
Num_Of_Outputs=1;
deltaData=0.1;

numFunctions=4;
//maybe changed accordingly

maxDepth=120;

qNodeType=0.65;
qDataTypeChange=0.6;

qNodeFuncChange=0.6;
qNodeTypeChange=0.65;
steps=3;

gpoolsize=100;
mpoolsize=50;
mutate_rate=0.5;
docking=2;
dif_eps=0.005;
desired_fitness=500;

max_eps=60000.0;
max_output=60000.0;

mild_diversity=0.18;
//threshold for parameter diversity control

min_diversity=0.18;
//threshold for pool diversity control

min_qReplacement=0.2;
//threshold for minimum replacement rate.

save_diverse();
}

Parameters paras;

//*********************************************
//* Class RandomData to Generate Random Data
//*********************************************

88



class RandomData {

public:
double GenRanData(void);
int GenRanlnt(int);
RandomData() ;

private:
const unsigned long int Modulus;
unsigned long int seed;
unsigned long int result;

I;

RandomData::RandomData() : Modulus(2147483647)
{

double temp;
seed=result=0;

for(int i=0; i<200; i++)
temp=GenRanData();

return;
}

{

double RandomData::GenRanData(void)

seed=(unsigned long int ) (seed +
(unsigned long int) time(NULL)*31);

seed= (unsigned long int ) ( seed ) 'h Modulus;

if ( result==0 ) result=seed;

result=result+seed;

result=(unsigned long int ) result * 31 'h Modulus;

return (unsigned) (result-0.5) / (double) (Modulus);

}

//Generate random integer between 0 and d-1

int RandomData::GenRanlnt(int d)
{

double temp=GenRanData();
int k=(int) (temp*d);
if (k>=d) k=0;
return k;

}

RandomData rans;

//******************************************************
//* class DataPool to hold input/node values
//******************************************************
class DataPool {
public:

double * inputs;

89



vector<double> inPool;
double * nodes;

int dpSize;
int numDP;

int curNode;
bool isNodeInit;

DataPool();
-DataPool();
void stepInput(int);
void regulize(void);

1;

void DataPool::regulize(void)
{

for(int i=0; i<paras.numNodes; i++)
{

if(nodes[i] > paras.max_output)
nodes[i]=paras.max_output;

if (nodes [i] < (-1.0)*paras.max_output)
nodes[i]= (-1.0)* paras.max_output;

/*
// not allow negative values !

if(nodes[i]< -0.01)
nodes[i]=paras.max_output;

if (nodes [i] <0)
nodes[i]=0.0;

*/

}
}

void DataPool::stepInput(int curDP)
{

for(int i=0; i<paras.Num_Of_Inputs; i++)
{

inputsai=inPool[curDP*dpSize+i];
}

}

DataPool::~DataPool()
{

delete [] inputs;
delete [] nodes;

90



91

DataPool::DataPool() {

inputs=new double [paras.Num_Of_Inputs];
for(int i=0; i<paras.Num_Of_Inputs; i++)

inputs [i]=0;

nodes=new double [paras.numNodes];
for(i=0; i<paras.numNodes; i++)

nodes[i]=0;

curNode=0;
isNodeInit=true;
inPool.clear();

}

DataPool dpool;

//******************************************************
//* class ElementalData to hold number, input or
//* 	 feedbacks
//******************************************************

class ElementalData {

public:
ElementalData();
void Mutate(void);
double value(void);

void WriteOut (ostream &) const;
void Readln (istream &);

friend ostream operator<<(ostream 	 const ElementalData &);

bool isConst(void) { return type==0; }

ElementalData & operator= (double);

private:
double constant;
int inindex;
int f index;
int type;
void ReGenerate(void);

1;

ElementalData ElementalData::operator = (double x)
{

type=0;
inindex=-1;
findex=-1;
constant=x;

return (*this);
}

ostream operator<< (ostream os, const ElementalData ed)
{

switch(ed.type)



{

case 0:
os<<ed.constant;
break;

case 1:
os<<'d'<<ed.inindex;
break;

case 2:
os<<'N'<<ed.findex;
break;

default:
break;

}

return os;
}

void ElementalData::WriteOut(ostream os) const
{

os<<type<<'
<<constant<<'
<<inindex<<'
<<findex<<";

return;
}

void ElementalData::ReadIn(istream & is)
{

is>>type;
is>>constant;
is>>inindex;
is>>findex;
return;

}

{

double ElementalData::value(void)

switch (type) {
case 0:

return constant;
case 1:

return dpool.inputs[inindex];
case 2:

return dpool.nodes[findex];
default:

break;
}

return constant;
}

void ElementalData::Mutate(void)
{

double mtype=rans.GenRanData();

if(mtype > paras.cpataTypeChange)
{

ReGenerate();
return;

92



93

switch (type)
{
case 0:

if(rans.GenRanData() < 0.5)
constant +=rans.GenRanData() * paras.deltaData;

else
constant -=rans.GenRanData() * paras.deltaData;

break;

case 1:
inindex= rans.GenRanInt(paras.Num_Of_Inputs);
break;

case 2:

findex=rans.GenRanInt(paras.numNodes);

if(! paras.allowFeedback)
while (f index < paras.Num_Of_Outputs)

findex=rans.GenRanInt(paras.numNodes);
break;

default:
break;

}

}

.EclementalData::ElementalData()

}

void ElementalData::ReGenerate
{

type=rans.GenRanInt(3);

if(paras.numNodes == paras.Num_Of_Outputs)
type=rans.GenRanInt(2);

if(! paras.allowFeedback &&
dpool.isNodelnit && type==2)
type=1;

switch (type) {

case 0:
constant=rans.GenRanData();
break;

case 1:
inindex= rans.GenRanInt(paras.Num_Of_Inputs);
break;

type=0;
constant=0;
findex=0;
inindex=0;
ReGenerate();



94

case 2:

findex=rans.GenRanInt(paras.numNodes);

if(! paras.allowFeedback)
while(findex < paras.Num_Of_Outputs)

findex=rans.GenRanInt(paras.numNodes);
break;

default:
break;

}

}

//******************************************************
//* Class TreeNode: holds the function tree
//******************************************************

int depth=0;

class TreeNode {
public:

double value(void);
void Mutate(void);
TreeNode();
TreeNode(int);
TreeNode(char); //define zero ground tree;
~TreeNode();
bool isSingle(void);

friend ostream & operator<<(ostream &, const TreeNode &);
void WriteOut(ostream & os) const;
void Readln(istream & is);
TreeNode & operator=(const TreeNode &);

void clear(void);

int type;
int funindex;
ElementalData data;
TreeNode * lchild, * rchild;
void funcMutate(void);

1;

TreeNode & TreeNode::operator = (const TreeNode & tr)
{

clear();

type=tr.type;
funindex=tr.funindex;
data=tr.data ;

if (type==0)
return (*this);

if(tr.lchild) {
lchild=new TreeNode(0);
(* lchild) = (* tr.lchild );

private:



}

if(tr.rchild) {
rchild=new TreeNode(0);
(* rchild) = (* tr.rchild );

}

return (*this);

}

void TreeNode::clear(void)
{

if(lchild) delete lchild;
if(rchild) delete rchild;

lchild=rchild=0;

type=0;
funindex=-1;

}

bool TreeNode::isSingle(void)
{

if(type==0) return true;
if(paras.isSingleFunc(funindex)) return true;

return false;
}

void TreeNode::WriteOut(ostream & os) const
{

os<<type<<";
data.WriteOut(os);
os<<funindex<<";

if (lchild)
lchild->WriteOut(os);

if (rchild)
rchild->WriteOut(os);

if (type !=0)
os<<";

}

void TreeNode::ReadIn(istream & is)
{

clear();

is>>type;
data.ReadIn(is);
is>>funindex;

if(type==0)
{

if(lchild) delete lchild;
if(rchild) delete rchild;
lchild=rchild=0;

return;

95



if(lchild) delete lchild;
if(rchild) delete rchild;
lchild=rchild=0;

lchild=new TreeNode(1);
lchild->ReadIn(is);

if(! paras.isSingleFunc(funindex))
{

rchild=new TreeNode(1);
rchild->ReadIn(is);

}

return;

}

ostream & operator<<(ostream & os, const TreeNode & tr)
{

}

if(paras.isSingleFunc(tr.funindex)) {
string sl, s2;

ostringstream oss;
oss<<(* tr.lchild);

if(! (tr.lchild->isSingle()))
sl="(";

si +=oss.str();

if(! (tr.lchild->isSingle()))
s1 +=")";

os<<paras.fWriteOut(tr.funindex,s1,s2);

return os;

}

string s1, s2;

ostringstream oss1, oss2;
ossl<<(* tr.lchild);
oss2<<(* tr.rchild);

if (! (tr.lchild->isSingle()))
sl="(";

if (! (tr.rchild->isSingle()))
s2="(";

s1 +=ossl.str();

if ( ! (tr.lchild->isSingle()))
si +=")";

96

if(tr.type==0) {

os<<tr.data;
return os;



s2 +=oss2.str();

if(! (tr.rchild->isSingle()))
s2 +=")";

os<<paras.fWriteOut(tr.funindex,s1,s2);

return os;
}

TreeNode:: ~TreeNode()
{

if(lchild) delete lchild;
if(rchild) delete rchild;

lchild=rchild=0;

}

TreeNode::TreeNode(int c)
{

lchild=rchild=0;
funindex=-1;
type=0;

}

TreeNode::TreeNode()
{

lchild=rchild=0;
funindex=-1;
type=0;

if(rans.GenRanData() > paras.qNodeType)
type=1;

else type=0;

if(depth > paras.maxDepth) type=0;

switch(type)
{

case 0:
break;

case 1:
funindex=rans.GenRanInt(paras.numFunctions);
depth ++;
lchild=new TreeNode;
if(!paras.isSingleFunc(funindex))

rchild=new TreeNode;
break;

default:
break;

}

97

//define zero ground tree



98

TreeNode::TreeNode(char)
{

lchild=rchild=0;
funindex=-1;
type=0;
depth=0; 	 //zero ground depth !

if(rans.GenRanData() > paras.qNodeType)
type=1;

else type=0;

if(depth > paras.maxDepth) type=0;

switch(type)
{

case 0:
break;

case 1:
funindex=rans.GenRanInt(paras.numFunctions);
depth ++;
lchild=new TreeNode;
if(!paras.isSingleFunc(funindex))

rchild=new TreeNode;
break;

default:
break;

}

}

double TreeNode::value(void)
{

double res;

if(type==0)
res=data.value();

else
{

if(lchild ==0)
throw "Empty tree evaluation!";

if(paras.isSingleFunc(funindex))
res=paras.Operate(funindex,lchild ->value(),0);

else
{

if(rchild==0)
throw "Empty tree evaluation!";

res=paras.Operate(funindex,
lchild->value(), rchild->value());

}
}

return res;

}

void TreeNode::Mutate(void)



{

bool change=rans.GenRanData() > paras.qNodeTypeChange;

if (!change)
{

switch(type){
case 0:

data.Mutate();
break;

case 1:
funcMutate();
break;

default:
break;

}

return;
}

//type change mutation!

if(type==0) {
type=1;
depth=0; // reset depth for adding a new subtree;

funindex=rans.GenRanInt(paras numFunctions);
depth ++;
lchild=new TreeNode;
if(!paras.isSingleFunc(funindex))

rchild=new TreeNode;

return;
}

if(type==1) {
type=0;

depth=0; //reset depth for subtree;

if(lchild) delete lchild;
if(rchild) delete rchild;

lchild=rchild=0;

return;
}

return;
}

void TreeNode::funcMutate(void)
{

bool change=rans.GenRanData() > paras.qNodeFuncChange;

// determine whether or not should change function types

if(! change)
{

if(lchild) lchild->Mutate();
if(rchild) rchild->Mutate();

99



return;
}

depth=0; 	 //reset depth for changing functions;

funindex=rans.GenRanInt(paras.numFunctions);

if(paras.isSingleFunc(funindex) && rchild)
{

delete rchild;
rchild=0;
return;

return;

}

//******************************************************
//* class EPNNet defines a single EPNN individual net
//******************************************************
class EPNNet {
public:

TreeNode * nodes;
EPNNet();
EPNNet (string s); //read data from input;

EPNNet();
double fitness(void);
void invalidate(void) { fits=-1; curDP=0;}
bool isValid(void); 	 // invalid net, should be discared !!!

void Mutate(void);
void incLife(double);
void setLife(double);
void CrossOver(EPNNet &);

void WriteOut(ostream & os) const;
void ReadIn(istream & is);
friend ostream & operator<< (ostream &, const EPNNet &);

double getFitness(void) const
{ return fits*(1.0-life); }

void ref resh(bool); //recalculate the fitness !

bool operator <(const EPNNet &) const;
EPNNet & operator =(const EPNNet &);

double Predict(int, int);

private:
void Initlnputs(string s);
void stepInput(void);

100

}

if(! paras.isSingleFunc(funindex) && !rchild)
{

depth ++;
rchild=new TreeNode;

return;
}



void calc(void);
void stepCalc(void);
double ems(int);

int curDP;
double fits;
double life;

1;

double EPNNet::Predict(int idx, int n)
{

if (idx <0 II idx>=dpool.numDP)
throw "Prediction out of range!";

if(n<0 II n>= paras.Num_Of_Outputs)
throw 'Prediction out of range!";

double res;
int cur=curDP;
curDP=idx;

stepInput();
for(int i=0; i<paras.steps; i++)

stepCalc();

res=dpool.nodes[n];

curDP=cur;

return res;

}

void EPNNet::setLife(double d)
{

life=d;
}

EPNNet & EPNNet::operator = (const EPNNet & net)
{

curDP=net.curDP;
fits=net.fits;
life=net.life;

for(int i=0; i<paras.numNodes; i++)
nodes[i]=net.nodes[i];

return (*this);
}

bool EPNNet::operator < (const EPNNet & net) const
{

return (getFitness()) >= (net.getFitness());
}

void EPNNet::CrossOver(EPNNet & net)
{

int idx1=rans.GenRanInt(paras.numNodes);
int idx2=rans.GenRanlnt(paras.numNodes);
TreeNode tr;

101



// invode the copy operators !!!
tr=net.nodes[idx1];
net.nodes[idx1]=nodes[idx2];
nodes [idx2] =tr;

}

void EPNNet::incLife(double d)
{

life +=d;
if(life>=1.0)

invalidate();
}

void EPNNet::Mutate(void)
{

for(int i=0; i<paras.numNodes; i++)
nodes[i].Mutate();

}

EPNNet:: ~EPNNet()
{

if
delete [] nodes;

}

ostream & operator<<(ostream & os, const EPNNet & net)
{

for(int i=0; i<paras.numNodes; i++)
{

os<<endl<<"N"<<i<<"= ";
os<<net.nodes[i];

}

return os;
}

void EPNNet::Readln(istream & is)
{

for(int i=0; i<paras.numNodes; i++)
nodes[i].ReadIn(is);

}

void EPNNet::WriteOut(ostream & os) const
{

for(int i=0; i<paras.numNodes; i++)
{

os<<"\r\n";
nodes[i].WriteOut(os);

}

}

bool EPNNet::isValid(void)
{

if(fits>=0) return true;
return false;

102

//recalculate fitness !!!



void EPNNet::refresh(boól debug)
{

char c;

curDP=O; 	 //recalculation !

double * eps=new double[paras.Num_Of_Outputs];
double * emax=new double[paras.Num_Of_Outputs];
double temp;

for(int i=0; i<paras.Num_Of_Outputs; i++)
feps[i]=0; emax[i]=0; }

for(i=0; i<dpool.numDP; i++ ) {
calc();

for(int j=0; j<paras.Num_Of_Outputs; j++)
{

if(eps[j]>paras.max_eps) {
eps[j]=paras.max_eps;

}

temp=ems(j)*ems(j);

//adding max error consideration
if(temp>emax[j]) emax[j]=temp;

eps[j] +=temp;
}

}

for(i=0; i<paras.Num_Of_Outputs; i++)
if(eps[i]>paras.max_eps)

eps[i]=paras.max_eps*paras.max_eps
*dpool.numDP;

for (i=0; i<paras.Num_Of_Outputs; i++)
eps[i]=sqrt(eps[i]/dpool.numDP);

// adding max error consideration;
for(i=0; i<paras.Num_Of_Outputs; i++)
{

if(emax[i]>paras.max_eps) emax[i]=paras.max_eps;
eps[i]=0.7*eps[i]+0.3*sqrt(emax[i]);

}

for 	 i<paras.Num_Of_Outputs; i++)
if(eps[i]>paras.max_eps)

eps[i]=paras.max_eps;
fits=1.0;

for(i=0; i<paras.Num_Of_Outputs; i++)
fits *=eps[i];

103



104

fits=exp(log(fits)/(double)(paras.Num_Of_Outputs) );

if(fits!=0) fits=1.0/fits;
else fits=paras.desired_fitness;

fits=fits*(1.0-life);

deleten eps;
deleteD emax;

}

double EPNNet::fitness(void)
{

if(dpool.inPool.size() < paras.Num_Of_Inputs + paras.Num_Of_Outputs )
throw "EPNN Net not proporly initialized!";

if (fits >=0 ) return getFitness();

refresh(false); //recalculate fitness!!!!

return getFitness();
}

//idx should be 0 -- Num_Of_Outputs -1
double EPNNet::ems(int idx)
{

double res;
res=dpool.inPool[(curDP-1)*dpool.dpSize + paras.Num_Of_Inputs + idx];
res -= dpool.nodes[idx];

// return absolute output difference;
return res;

}

void EPNNet::calc(void)
{

if(dpool.inPool.size() < paras.Num_Of_Inputs + paras.Num_Of_Outputs )
throw "EPNN Net not properly initialized!";

stepInput();
for(int i=0; i<paras.steps; i++)

stepCalc();

fits=-1.0;
}

void EPNNet::stepCalc(void)
{

vector<double> d(paras.numNodes);

for(int i=0; i<paras.numNodes; i++)
d[i]=nodes[i].value();

for(i=0; i<paras.numNodes; i++)
{



dpool.nodes[i]=d[i];
}

dpool.regulize();
}

void EPNNet::stepInput(void)
{

dpool.stepInput(curDP);

curDP ++;
}

void EPNNet::Initlnputs(string s)
//initialize the data pool:: inputs !
{

if(dpool.inPool.size() !=0)
return;

if stream ifs;

ifs.open(s.c_str());

if(! ifs)
throw "data file not file!";

//read-in all the data into buffer;

double dp=0;

ifs>>dp;
while(! (!ifs) ) {

dpool.inPool.push_back(dp);
ifs>>dp;

}

curDP=0;

//******************************************************
dpool.dpSize=paras.Num_Of_Inputs+ paras.Num_Of_Outputs;
dpool.numDP=dpool.inPool.size()/dpool.dpSize;
//******************************************************

fits=-1;
life=0.0;

}

EPNNet::EPNNet()
{

nodes=new TreeNode[paras.numNodes];

// dpool.inPool.clear();
curDP=0;
fits=-1;
life=0.0;

if 	 ==0)

105



fdpool.dpSize=0; dpool.numDP=0;}

}

EPNNet::EPNNet(string s)
{

dpool.isNodeInit=true;
nodes=new TreeNode [paras numNodes] ;
dpool.isNodeInit =false;

curDP=O;
fits=-1;
life=0.0;

Initlnputs(s);
}

//******************************************************
//* class EPNNMoldel defines EPNN modeling system
//******************************************************

void netRefresh (EPNNet & net)
{

net.refresh(false);
// refresh the fitness calculation !!!

}

// End of definition of function object :)

class EPNNModel {
public:

EPNNModel(string s);

void Evolve(void);
bool Finished(void);

void WriteOut(ostream & os) const;
void Readln(istream & is);
friend ostream & operator<<(ostream 	 const EPNNModel &);
void WriteFittest(ostream & os) const;
void WriteOut(string s) const;
void WriteFittest(string s) const;
void Readln(string s);
void Predict(string s);
void train_results(void);

106

private:
list<EPNNet> genepool;
list<EPNNet> mutpool;

EPNNModel();
void regenerate(string s);
void renew(void);

void refresh(void);
void mutate(void);
EPNNet & m_at(int);
double diversity(void) const;



void pool_merge(void);
void newlife(list<EPNNet> &);
void dyna_adjust(void);

//***************************
//* Debug informations
//***************************
unsigned long int generation;
unsigned int replacement;
string data_file;

1;

void EPNNModel::Predict(string s)
{

of stream ofs(s.c_str());

if(!ofs)
throw "Cannot create file for prediction!";

ofs<<endl<<"Prediction Results"<<endl;
ofs<<"Format: (Experimental Data) "

<<"(Prediction Data) ...."<<endl;

list<EPNNet>::iterator it=genepool.begin();

int idx=0;

for(int i=0; i<dpool annIDP; i++)
{

ofs<<endl;
for(int j=0; j<paras.Num_Of_Outputs; j++)
{

idx=i*(dpool.dpSize);
idx+=paras.Num_Of_Inputs + j;

ofs<<dpool.inPool[idx]<<" ";
ofs<<it->Predict(i,j)<<" ";

}
}

return;
}

bool EPNNModel::Finished(void)
{

double fit;
fit=genepool.begin()->getFitness();

if(fit>=paras.desired_fitness)
return true;

return false;

}

//renew at most 3 fittest individual in the net!!!
void EPNNModel::renew(void)
{

EPNNet * netl, * net2, * net3;
netl=net2=net3=0;

107



double vals; int count=0;
list<EPNNet>::iterator it;

it=genepool.begin();
vals=it->getFitness();
netl = new EPNNet(data file);
(*net1)= (*it); count ++;

while(count <=3 && it != genepool.end())
{

if(paras.isSigDiffer(vals, it->getFitness()))
{

count ++;

if (count ==2 )
{

net2 = new EPNNet(data_file);
(*net2)=(*it);

}

if (count==3)
{

net3=new EPNNet(data_file);
(*net3) = (*it);

}

}

it++;
}

regenerate(data_file);
it=genepool.begin();

if(netl) {
(*it)=(* netl);
delete net1;
it++;

}

if(net2) {
(*it)=(* net2);
delete net2;
it++;

}

if(net3) {
(*it)=(* net3);
delete net3;
it++;

}

}

// dynamically adjust modeling parameters
// to better fit the target system
void EPNNModel::dyna_adjust(void)
{

double div, qr;

108



div=diversity();
paras.diversity_control(div);

//calculate replacement ratio
qr=(double)(replacement)/(double)(paras.mpoolsize);

if(div<paras.min_diversity II
qr < paras.min_qReplacement)
renew();

return;

}

// set life=0 for each individuals in the list
void EPNNModel::newlife(list<EPNNet> & lis)
{

list<EPNNet>::iterator it;
for(it=lis.begin(); it !=lis.end() ; it++)

it->setLife(0);
}

void EPNNModel::ReadIn(string s)
{

ifstream ifs(s.c_str());
if(!ifs)

return;

ReadIn(ifs);
}

void EPNNModel::WriteFittest(string s) const
{

of stream ofs(s.c_str());
if(!ofs)

throw "Cannot create output file!";
WriteFittest(ofs);

}

void EPNNModel::WriteOut(string s) const
{

of stream ofs(s.c_str());

if(!ofs)
throw "Cannot create output file!";

WriteOut(ofs);
}

void EPNNModel::pool_merge(void)
{

int dock=0;
list<EPNNet>::iterator mit;
list<EPNNet>::const_iterator nit;

nit=mutpool.begin();

while(nit != mutpool.end() )
{

mit=genepool.begin();

109



110

dock=0;

while(dock < paras.docking && mit !=genepool.end() )
{

if((*mit).getFitness() < (*nit).getFitness()) {
(* mit) = (* nit);
replacement ++;
(*mit).refresh(false);
mit++; dock ++;
continue;

}

if((*mit).getFitness() == (*nit).getFitness()) {
dock ++; mit ++;
continue;

}

if((*mit).getFitness() > (*nit).getFitness())
dock=0;

mit ++;

}

nit ++;
}

}

double EPNNModel::diversity(void) const
{

double div=0, prev=0;
int count=0;

list<EPNNet>::const_iterator
it=genepool.begin();

prev=it->getFitness();
count++;

for(it=genepool.begin(); it!=genepool.end(); it++)
{

if(paras.isSigDiffer(prev,it->getFitness())) {
count++;
prev=it->getFitness();

}
}

div=(double) (count) / (double)(paras.gpoolsize);

return div;
}

/*
double EPNNModel::diversity(void) const
{

double div=0, prev=0;

list<EPNNet>::const_iterator



111

it=genepool.begin();

prev=it->getFitness();
it++;

for(; it!=genepool.end(); it++)
{

div +=fabs(prev - it->getFitness())/prev;
prev=it->getFitness();

}

div= div/(genepool.size()-1);

return div*10.0;
}
*/

//refresh pool fitness
void EPNNModel::refresh(void)
{

for_each(genepool.begin(), genepool.end(), netRefresh);
genepool.sort();

}

ostream & operator<<(ostream & os, const EPNNModel & model)
{

int count=0;
os<<endl<<"Generation="<<model.generation<<endl;
os<<"Diversity="<<model.diversity()<<endl;

list<EPNNet>::const_iterator it;

os<<"Gene Pool =>"<<endl;
for(it=model.genepool.begin(); it!=model.genepool.end(); it++)
{

os<<it->getFitness()<<" ";
count++;

if(count >50) break;

*/

os<<end1;

os<<"Mutation Pool =>"<<endl;
for(it=model.mutpool.begin(); it!=model.mutpool.end(); it++)

os<<it->getFitness()<<" ";

os<<end1;

os<<"Replacement="<<model.replacement<<endl;

return os;

/*

void EPNNModel::WriteFittest(ostream & os) const
{

//*******************************************************



112

//* Output the extra information for fittest individual
//*******************************************************
char buf[20];
_strdate(buf);

os<<end1;
os<<"**************************************************"<<endl;
os<<"* Information Regarding The Fittest Individual *"<<end1;
os<<"* 	 *"<<end1;
os<<"* 	 Date: "<<buf<<" 	 *"<<end1;
os<<"**************************************************"<<end1;

os<<"Fitness="<< genepool.begin()->getFitness()
<<end1;

os<<"Generation="<<generation<<endl;

os<<"Inputs:";
for(int i=0; i< paras.Num_Of_Inputs; i++)

os<<'d'<<i<<";
os<<end1;

os<<"Outputs:";
for(i=0; i< paras.Num_Of_Outputs; i++)

os<<'N'<<i<<";
os<<end1;

os<<(* genepool.begin());
os<<end1;

os<<"********** End of Report *************************";
os<<end1;

}

void EPNNModel::WriteOut(ostream os) const

int count=0;
os<<generation<<endl;

list<EPNNet>::const_iterator it;

for(it=genepool.begin(); it!=genepool.end(); it++)
{

it->WriteOut(os);
count ++;
if(count >50) break;

}

WriteFittest(os);

}

void EPNNModel::ReadIn(istream & is)
{

int count=0;
is>>generation;

list<EPNNet>::iterator it;

for(it=genepool.begin(); it!=genepool.end(); it++)
{

it->ReadIn(is);



count++;
if(count>50) break;

}

refresh();
}

void EPNNModel::Evolve(void)

dyna_adjust();

replacement=0;
for_each(genepool.begin(), genepool.end(), netRefresh);
genepool.sort();

//*********************************************
//** Generate the mutation pool
//*********************************************

list<EPNNet>::iterator nit, mit;

nit=genepool.begin();
mit=mutpool.begin();

for(int i=0; i< paras.mpoolsize; i++)
{

(* mit) = (*nit);
mit++; nit++;

}

mutate();

for_each(mutpool.begin(), mutpool.end(), netRefresh);
mutpool.sort();
genepool.sort();

pool_merge();
generation ++;

nit=genepool.begin();
nit->refresh(true);

return;
}

void EPNNModel::mutate(void)

list<EPNNet>::iterator nit=mutpool.begin();
int idx1=0;

for(int i=0; i< paras.mpoolsize; i++, idxl++)
{

if(rans.GenRanData0<paras.mutate_rate)
{

(* nit).Mutate();
}

113

else



int idx2=rans.GenRanInt(paras.mpoolsize);
if(idx2 != idxl)

(* nit).CrossOver(m_at(idx2));
}

}

}

EPNNet EPNNModel::m_at(int idx)
{

list<EPNNet>::iterator mit=mutpool.begin();

int i=idx;

while(i>0) {
mit ++;
i --;

}

return (* mit);
}

EPNNModel::EPNNModel()
{

genepool.clear();
mutpool.clear();
EPNNet * net;

//only initialize gene pool !
for(int i=0; i<paras.gpoolsize; i++)
{

net=new EPNNet;
genepool.push_back(* net);

}

//only initialize mutation pool !
for(i=0; i<paras.mpoolsize; i++)
{

net=new EPNNet;
mutpool.push_back(* net);

}

generation=1;
replacement=0;
data_file="";

}

void EPNNModel::regenerate(string s)
{

genepool.clear();

EPNNet * net;

//only initialize gene pool !
for(int i=0; i<paras.gpoolsize; i++)
{

net=new EPNNet(s);
genepool.push_back(* net);

114



115

}

return;

}

EPNNModel::EPNNModel(string s)
{

genepool.clear();
mutpool.clear();
EPNNet * net;

//only initialize gene pool !
for(int i=0; i<paras.gpoolsize; i++)
{

net=new EPNNet(s);
genepool.push_back(* net);

}

//only initialize mutation pool !
for(i=0; i<paras.mpoolsize; i++)
{

net=new EPNNet(s);
mutpool.push_back(* net);

}

refresh();
generation=1;
replacement=0;

data_file=s;
}

//******************************************************
//* Main fucntion driver
//******************************************************

void show_usuage(void)
{

cout<<end1;
cout<<"*****************************************"«endl;
cout<<"* EPNN Modeling Command Parameters 	 *"<<endl;
cout<<"* 	 *"<<end1;
cout<<"* 	 Version "<<EPNN_VER

<<" 	 *"<<endl;
cout<<"*****************************************"<<endi;

cout<<"Usage 1:"<<end1;
cout<<"**********************************"<<endl;
cout<<"epnn paras.dat"<<end1;

cout<<"**********************************"<<end1;
cout<<" (Creating modeling parameters.)"<<end1;
cout<<"where \"paras.dat\" is the output file name "<<end1;
cout<<" to save input modeling parameters."<<endl;

cout<<end1;

cout<<"Usage 2: "<<end1;
cout<<"**********************************"<<end1;

cout<<"epnn paras.dat data.dat"<<endl;
cout<<"**********************************"<<end1;



cout<<"(Run Modeling Training.)"<<end1;
cout<<"where \"paras.dat\" is the parameter file; "<<end1;
cout<<" \"data.dat\" is the normalized data file."<<end1;

cout<<end1;

cout<<"Usage 3:"<<endl;
cout<<"**********************************"<<end1;

cout<<"epnn /p paras.dat data.dat"<<end1;
cout<<"**********************************"<<end1;

cout<<"(Run Modeling Prediction.)"<<end1;
cout<<"where \"paras.dat\" is the parameter file; "<<end1;
cout<<" \"data.dat\" is the normalized data file."<<end1;

}

void init_paras(const char * pfile)
{

of stream ofs(pfile);
if(! ofs)

throw "Can not create output file";

cout<<end1;
cout<<"Please Input your parameters one by one,"

<<" using -1 for default."<<end1;

double d; int i;

//**********************************
cout<<endl<<"allowFeedback=";
cin>>i;
if(i !=-1) paras.allowFeedback=i;

cout<<endl<<"Num_Of_Inputs=";
cin>>i;
if 	 -1) paras.Num_Of_Inputs=i;

cout<<endl<<"Num_Of_Outputs=";
cin>>i;
if 	 -1) paras.Num_Of_Outputs=i;

cout<<endl<<"numNodes=";
cin>>i;
if 	 -1) paras.numNodes=i;

cout<<endl<<"gpoolsize=";
cin>>i;
if 	 -1) paras.gpoolsize=i;

cout<<endl<<"mpoolsize=";
cin>>i;
if(i!= -1) paras.mpoolsize=i;

cout<<endl<<"desired_fitness=";
cin>>d;
if(d!= -1) paras.desired_fitness=d;

//******************************************

cout<<endl<<"mild_diversity=";

116



cin>>d;
if(d!= -1) paras.mild_diversity=d;

cout<<endl<<"min_diversity=";
cin>>d;
if(d!= -1) paras.min_diversity=d;

cout<<endl<<"min_qReplacement=";
cin>>d;
if(d!= -1) paras.min_qReplacement=d;

paras.WriteOut(ofs);

return;

}

void prediction(const char * file1, const char * file2)
{

int i;
string pars(file1), dats(file2);
string savel("farm.dat");
string save2("results.dat");

cout<<"Initializing 	  Please wait...."<<end1;
paras.ReadIn(pars);

EPNNModel model(dats);
model.ReadIn(save1);

for(i=0; i<4; i++)
model.Evolve();

cout<<end1;
cout<<"Predicting 	  Please wait...."<<end1;
model.Predict(save2);
cout<<"Prediction finished!"<<endl;

cout<<end1;
cout<<"Please check ";
cout<<"\""<<save2.c_str()<<"\" for details.";

cout<<end1;

return;
}

int main (int argc, char * argv[])
{

try{

switch(argc)
{

case 1:
show_usuage();
return 0;

case 2:
init_paras(argv[1]);
return 0;

case 3:
break;

117



118

case 4:

if(strcmp(argv[1],"/p") !=0 &&
strcmp(argv[1],"/P") !=0)
throw "Wrong command parameters!";

prediction(argv[2],argv[3]);
return 0;

default:
throw "Wrong command parameters!";

}

string pars(argv[1]), dats(argv[2]);
string savel("farm.dat");
string save2("fittest.dat");
string training("trains.dat");

paras.ReadIn(pars);

EPNNModel model(dats);

model.ReadIn(save1);

do
{

cout<<"numDP="<<dpool.numDP<<endl;
cout<<model;
if(model.Finished()) break;
model.Evolve();
model.Predict(training);
model.WriteFittest(save2);
model.WriteOut(save1);

}
while(! model.Finished()) ;

cout<<end1;
cout<<"*****************************************"<<endl;
cout<<"* 	 Model Fitting has finished 	 *"<<end1;
cout<<"*****************************************"<<endl;

cout<<" The EPNNModel is saved in ";
cout<<"\""<<save1.c_str()<<"\"."<<endl;
cout<<" The fittest individual is shown";
cout<<" in \""<<save2.c_str()<<"\"."<<endl;

}

//*****************************************
//* Exception dealing system
//*****************************************

catch ( const char * msg)
{

cout<<end1;
cout<<msg;

cout<<end1;



catch (bad_alloc &)
{

cout<<end1;
cout<<"MEMORY CANNOT BE ALLOCATED!";

cout<<end1;
return -1;

}

catch (...)
{

cout<<end1;
cout<<"Unknown error occured!";

}

return 0;
}

119



APPENDIX B

INTERNET RESOURCES

The presented dissertation is largely based on branches of modern soft computing and

artificial intelligence. Because of rapid development and progress in these fields, the

best way to track the most recent progress is to look up and search on the internet.

Therefore, a brief collection of internet resources is listed below. The listed internet

resources can be used as a starting point to search for most updated information on

artificial intelligence and soft computing.

• The Genetic Computing Notebook.

http://www.geneticprogramming.com/

• USENET newsgroup for evolutionary computing.

news:comp.ai.genetic

• FAQ for comp.ai.genetic

http://alife.santafe.edu/ joke/encore/www/

• USENET newsgroup for neural networks.

news:comp. ai.neural-nets

• FAQ for comp.ai.neural -nets

ftp://ftp.sas.com/pub/neural/FAQ.html

• The Hitch-Hiker's Guide to Evolutionary Computation.

http://alife.santafe.edu/ joke/encore/

120



• World Online Conference on Soft Computing (WSC).

http://www.bioele.nuee.nagoya-u.ac.jp/WFSC/

• IEEE Neural Network Council Home Page.

http://www.ewh.ieee.org/tc/nnc/

• International Neural Network Society

http://cns -web.bu.edu/INNS/index.html

• Japanese Neural Network Society (JNNS), (in Japanese)

http://jnns.infeng.tamagawa.ac.jp/English/index -e.html

121



REFERENCES

Abrams, D. and J. Prausnitz, Statistical thermodynamics of liquid mixtures: a new
expression for the excess Gibbs energy of partly or completely miscible systems.
AIChE Journal, 21(1): 116 (1975).

Aho, A. V. et al., Data Structures and Algorithms. Addison-Wesley (1987).

Albertsson, P. -A., Partition of Cell Particles and Macromolecules. Wiley-
Interscience, second edition (1971).

Alvarez, E., et al., Design of a combined mixing rule for the prediction of vapor-
liquid equilibria using neural networks. Industrial and Engineering Chemistry
Research, 38: 1706-1711 (1999).

Aminzadeh, F. and M. Jamshidi, Soft Computing. Prentice Hall (1994).

Anderson, J., Logistic Discrimination in Classification, Pattern Recognition and Re-
duction of Dimensionality, 169-191. Elsevier Science Ltd., Amsterdam: North
Holland (1982).

Angeline, P. J., et al., An evolutionary algorithm that constructs recurrent neural
networks. IEEE Transactions on Neural Networks, 5(1): 54-65 (1994).

Back, T., Evolutionary Algorithms in Theory and Practice : Evolution Strate-
gies, Evolutionary programming, Genetic algorithms. Oxford University Press
(1996).

Back, T., et al., Evolutionary computation: Comments on the history and current
state. IEEE Transactions on Evolutionary Computation, 1(1): 3-17 (1997).

Bailey, D. and D. Thompson, How to develop neural networks. AI Expert, 5(6): 38
(1990).

Banzhaf, W. et al., editors, Genetic Programming : An Introduction On The Auto-
matic Evolution Of Computer Programs And Its Applications. Morgan Kauf-
mann Publishers (1998).

Berenson, M. L. and D. M. Levine, Basic Business Statistics: Concepts and
Applications. Prentice Hall International (1983).

Berlanga, A., et al., General learning co-evolution method to generalize au-
tonomous robot navigation behavior. In Proceedings of the IEEE Conference
on Evolutionary Computation, 769-776 (2000).

122



123

Beyer, H.-G., Evolutionary algorithms in noisy environments: Theoretical issues and
guidelines for practice. Computer Methods in Applied Mechanics and Engineer-
ing, 186(2): 239-267 (2000).

Bhaskar, V., et al., Multiobjective optimization of an industrial wiped-film pet reac-
tor. AIChE Journal, 46(5): 1046-1058 (2000).

Blas, F. J. and L. F. Vega, Prediction of binary and ternary diagrams using the
statistical associating fluid theory (saft) equation of state. Industrial and En-
gineering Chemistry Research, 37(2): 660-674 (1998).

Brasquet, C. and P. L. Cloirec, QSAR for organics adsorption onto activated carbon
in water: What about the use of neural networks? Water Research, 33(17):
3603-3608 (1999).

Bury, K. V., Statistical Models In Applied Science. Wiley International (1975).

Cao, H., et al., The kinetic evolutionary modeling of complex systems of chemical
reactions. Computers and Chemistry, 23: 143-151 (1999).

Carsky, M. and D. Do, Neural network modeling of adsorption of binary vapour
mixtures. Adsorption, 5(3): 183-192 (1999).

Caudill, M. and C. Butler, Understanding Neural Networks: Computer Explorations,
volume 1-2. MIT Press (1992).

Chakraborty, G., Genetic programming for a class of constrained optimization prob-
lems. In Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, 1314-1319 (1999).

Chambers, L., editor, Practical Handbook of Genetic Algorithms. CRC Press (1995).

Chen, S.-H. and C.-C. Ni, Evolutionary artificial neural networks and genetic pro-
gramming: A comparative study based on financial data. Artificial Neural
Networks and Genetic Algorithms (1997).

Chiou, J.-P. and F.-S. Wang, A hybrid method of differential evolution with ap-
plication to optimal control problems of a bioprocess system. In Proceedings
on Evolutionary Computation, The 1998 IEEE International Conference, 627
(1998).

Doherty, S., et al., Experiment design considerations for non-linear system identi-
fication using neural networks. Computers and Chemical Engineering, 21(3):
327-346 (1997).



124

Dorffner, G., Neural networks for time series processing. Neural Network World,
6(4): 447-468 (1996).

Edwards, K., et al., Kinetic model reduction using genetic algorithms. Computers
and Chemical Engineering, 22 (1998).

Fausett, L., Fundamentals of Neural Networks:Architectures, Algorithms and
Applications. Prentice Hall (1994).

Flory, P. J. et al., Statistical thermodynamic of chain molecule liquids. i. an  equation
of state for normal and paraffin hydrocarbons. Journal of American Chemistry
Society, 86: 3507 (1964).

Fogel, D., Evolutionary Computation: Toward a New Philosophy of Machine Intelli-
gence. IEEE Press (1995a).

Fogel, D., Evolutionary Computation: The Fossil Record. IEEE Press (1998).

Fogel, D. B., Comparison of evolutionary programming and genetic algorithms on
selected constrained optimization problems. Simulation, 64(6) (1995b).

Fogel, D. B., Pratical advantages of evolutionary computation. Applications of Soft
Computing, 14-22 (1997).

Fogel, D. B. and A. Ghozeil, Using fitness distributions to design more effi-
cient evolutionary computations. In Proceedings of the IEEE Conference on
Evolutionary Computation, 11-19 (1996).

Fogel, D. B., et al., Evolving neural networks. Biological Cybernetics (1990).

Fraga, E. and T. Matias, Synthesis and optimization of a nonideal distillation system
using a parallel genetic algorithm. Computers and Chemical Engineering, 20:
s79—s84 (1996).

Fredenslund, A., et al., Group-contribution estimation of activity coefficients in non-
ideal liquid mixtures. AIChE Journal, 21(6): 1086 (1975).

Fredenslund, A., et al., Vapor-Liquid Equilibria Using UNIFAC : A Group Contri-
bution Method. Elsevier Scientific Pub. Co., New York (1977).

Gagne, F. and C. Balise, Predicting the toxicity of complex mixtures using artificial
neural networks. Chemosphere, 35(6): 1343-1363 (1997).

Gallant, S., et al., Modeling of non-linear elution of proteins in ion-exchange chro-
matography. Journal of Chromatography, 702: 125-142 (1995).



125

Galushko, S., Calculation of retention and selectivity in reversed phase liquid chro-
matography. iv: Chromdream software for the selction of initial conditions and
for simulating chromatographic behavior. Journal of Chromatography, 552: 91-
102 (1991).

Galvan, I., et al., The use of neural networks for fitting complex kinetic data. Com-
puters and Chemical Engineering, 20 (1996).

Gao, F., et al., Genetic algorithms and evolutionary programming hybrid strategy
for structure and weight learning for multilayer feedforward neural networks.
Industrial and Engineering Chemistry Research, 38: 4330-4336 (1999).

Gao, Y.-L., et al., Thermodynamics of ammonium sulfate-polyethylene glycol aque-
ous two-phase systems. Part 2. Correlation and prediction using extended
UNI-FAC equation. Fluid Phase Equilibria, 63(1-2): 173-182 (1991).

Gen, M. and R. Cheng, Genetic Algorithms and Engineering Design. John Wiley
(1997).

Ghosh, P., et al., Integrated product engineering: A hybrid evolutionary framework.
Computers and Chemical Engineering, 24: 685-691 (2000).

Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley (1989).

Greeff, D. and C. Aldrich, Empirical modeling of chemical process systems with
evolutionary programming. Computers and Chemical Engineering, 22(7-8):
995-1005 (1998).

Gruau, F., Genetic synthesis of modular neural networks. In Proceedings of The Fifth
International Conference on Genetic Algorithms, 318-325 (1993).

Gu, T., Mathematical Modeling and Scale- Up of Liquid Chromatography. Springer
(1995).

Gustaffsson, A. et al., The nature of phase separation in aqueous two-phase systems.
Polymer, 27(21): 1768 (1986).

Hancock, P. J. B., Coding Strategies for Genetic Algorithms and Neural Nets. Ph.D.
thesis, University of Stirling, UK (1992).

Hansen, J. V. and R. D. Nelson, Neural networks and traditional time series methods:
A synergistic combination in state economic forecasts. IEEE Transactions on
Neural Networks, 8(4): 863-873 (1997).



126

Hinde, R. F. and D. J. Cooper, Pattern-based approach to excitation diagnostics for
adaptive process control. Chemical Engineering Science, 49: 1403-1415 (1994).

Hinton, G., How neural networks learn from experience. Scientific American (1992).

Hirasawa, K., et al., Genetic symbiosis algorithm. In Proceedings of the IEEE Con-
ference on Evolutionary Computation, 1377-1384 (2000).

Holland, J., Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor, MI (1975).

Hornik, K., et al., Multi-layer feed-forward networks are universal approximators.
Neural Networks, 3 (1989).

Huenupi, E., et al., Optimization and design considerations of two -phase continuous
protein separation. Journal of Chemical Technology and Biotechnology, 74(3):
256-263 (1999).

Huo, Q. and C. Chan, Contextual vector quantization for speech recognition with
discrete hidden Markov model. Pattern Recognition, 28: 513 (1995).

Jarke, M. and W. Marquardt, Design and evaluation of computer-aided process mod-
elling tools. In International Conference on Intelligence Systems in Process
Engineering, AIChE Symposium Series, 97-109 (1996).

Jonathan, W. L., Randomization tests: Statistics for experimenters. Computer Meth-
ods and Programs in Biomedicine, 35(1): 43-51 (1991).

Kan, P. and C. -J. Lee, A neural network model for prediction of phase equilibria in
aqueous two -phase extraction. Industrial and Engineering Chemistry Research,
35: 2015-2023 (1996).

Kiguchi, K., et al., Identification of robot manipulators using neural networks and
genetic programming. In Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, volume 4,802-806 (1999).

Kinnear, K., Advances in Genetic Programming. MIT Press, Cambridge, MA (1994).

Klein, E. J. and S. L. Rivera, Optimization of ion-exchange protein separations
using a vector quantizing neural network. Biotechnology Progress, 16: 506-512
(2000).

Koza, J. R., Genetic Programming: On the Programming of Computers By Means
of Natural Selection. MIT Press (1992).



127

Koza, J. R., Genetic Programming II : Automatic Discovery of Reusable Programs.
MIT Press (1994).

Krothapally, M. and S. Palanki, A neural network strategy for batch process opti-
mization. Computers and Chemical Engineering, 21: S463—S468 (1997).

Kuscu, I. and C. Thornton, Design of artificial neural networks using genetic algo-
rithms: review and prospect. Cognitive and computing sciences, University of
Sussex (1994).

Lakshminarayanan, S., et al., New product design via analysis of historical databases.
Computers and Chemical Engineering, 24(2): 671-676 (2000).

Lei, X., et al., Equilibrium phase behavior of the poly(ethylene glycol)/potassium
phosphate/water two-phase system at 4 c. J. Chem. Eng. Data, 35: 420-423
(1990).

Lennox, B. et al., Case study of investigating the application of neural networks for
process modeling and condition monitoring. Computers and Chemical Engi-
neering, 22(11): 1573-1579 (1998).

Lentner, M., Introduction To Applied Statistics. Weber and Schmidt (1975).

Leung, Y., et al., Degree of population diversity-a perspective on premature conver-
gence in genetic algorithms and its markov chain analysis. IEEE Transactions
on Neural Networks, 8(5): 1165-1176 (1997).

Luo, L., et al., Adaptive quantization algorithm for MPEG-2 video coding. In Pro-
ceeddings of IEEE International Conference on Acoustics, Speech and Signal
Processing, volume 5,2841-2844 (1998).

Luo, R. G. and J. T. Hsu, Optimization of gradient profiles in ion-exchange chro-
matography for protein purification. Industrial and Engineering Chemistry Re-
search, 36(2): 444-450 (1997).

Magnussen, T., et al., UNIFAC parameter table for prediction of liquid-liquid equilib-
ria. Industrial and Engineering Chemistry, Process Design and Development,
20(2): 331-339 (1981).

Mandal, D. K., Modelling of In-Situ Bioremediation With Emphasis on Inhibitory
Kinetics and Biomass Growth. Ph.D. Thesis, New Jersey Institute of Technol-
ogy, Newark, New Jersey (1998).

Mao, Q. M. and M. Hearn, Optimization of affinity and ion-exchange chromato-
graphic processes for the purification of proteins. Biotechnology and Bioengi-
neering, 52(2): 204-222 (1996).



128

Maren, A., et al., Handbook of Neural Computing Applications. Academic Press
(1990).

Masters, T., Advanced Algorithms for Neural Networks: A C++ Sourcebook. John
Wiley and Sons (1995).

Mavrovouniotis, M. L., Artificial Intelligence in Process Engineering. Academic Press
(1990).

McAvoy, T. J., et al., Dynamics of pH in CSTRs. Industrial Engineering and Chem-
istry Process Research, 11: 68-70 (1972).

McCulloch, W. S. and W. Pitts, A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5: 115-133 (1943).

McKay, B., et al., Steady-state modeling of chemical process systems using genetic
programming. Computers and Chemical Engineering, 21(9): 981-996 (1997).

Mendenhall, W. and R. L. Scheaffer, Mathematical Statistics With Applications.
Duxbury Press (1973).

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Berlin, second edition edition (1994).

Mitchell, M., An Introduction to Genetic Algorithms. MIT Press (1996).

Morari, M. and E. Zafiriou, Robust Process Control. Prentice Hall, Englewood Cliffs,
NJ (1989).

Moriaty, D. E. and R. Miikkulainen, Forming neural networks through efficient and
adaptive coevolution. Evolutionary Computation, 5 (1998).

Moros, R., et al., A genetic algorithm for generating initial parameter estimations for
kinetic models of catalytic processes. Computers and Chemical Engineering,
20 (1996).

Myers, A. L., et al., Prediction of multicomponent adsorption equilibrium. discus-
sions on energy of adsorption in relation to adsorption equilibrium. Interna-
tional Chemical Engineering, 32(3): 585-590 (1992).

Nelson, M. M. and W. Illingsworth, A Practical Guide to Neural Networks. Addison-
Wesley (1990).

Nikravesh, M., et al., Model identification of nonlinear time variant processes via
artificial neural network. Computers and Chemical Engineering, 20(11) (1996).



129

Oliveira, K. A., et al., Using artificial neural networks to forecast chaotic time series.
Physica A: Statistical Mechanics and Its Applications, 284(1): 393-404 (2000).

Omatu, S., et al., Neuro - control and Its Applications. Springer—Verlag (1996).

Pham, Q., Dynamic optimization of chemical engineering processes by an
evolutionary method. Computers and Chemical Engineering, 22: 1089-1097
(1998).

Press, W. H., et al., Numerical Recipes in C : The Art of Scientific Computing.
Cambridge University Press (1993).

Puppala, N., et al., Shared memory based cooperative coevolution. In Proceedings of
the IEEE Conference on Evolutionary Computation, 1132-1136 (1998).

Quinlan, P. T., Structural change and development in real and artificial neural net-
works. Neural Networks, 11(4): 577-599 (1998).

Raghu, P., et al., Unsupervised texture classification using vector quantization and
deterministic relaxation neural network. In IEEE Transactions on Image Pro-
cessing, volume 6, 1376-1387 (1997).

Rawlins, G. J., Foundations of genetic algorithms. Morgan Kaufmann Publishers
(1991).

Rich, S. and V. Venkatasubramanian, Model-based reasoning in diagnostic expert
systems for chemical process plants. Computers and Chemical Engineering,
11(2): 111-122 (1987).

Rivera, S. L. and E. J. Klein, Automatic classification of chromatographic peaks. In
Proceedings of American Control Conference, volume 5, 3262-3266 (1997).

Roubos, J., et al., An evolutionary strategy for fed-batch bioreactor optimization;
concepts and performance. Journal of Biotechnology (1999).

Rumelhart, D., et al., Learnining Internal Representations by Error Propagation.
MIT Press (1986).

Sandler, S. I., editor, Models For Thermodynamic And Phase Equilibria Calculations.
Marcel Dekker, University of Delaware, Newark, Delaware (1994).

Segovia, J. and P. Isas, Genetic programming for learning rule search in neural nets.
Neural Network World, 8(2): 201-212 (1998).



130

Sharma, R., et al., Potential applications of aritificial neural networks to thermody-
namics: Vapor-liquid equilibrium predictions. Computers and Chemical Engi-
neering, 23: 385-390 (1999).

Shum, S., et al., An expert system approach to malfunction diagnosis in chemical
plant. Computers and Chemical Engineering, 12(1): 27-36 (1988).

Simutis, R. and A. Lubbert, Exploratory analysis of bioprocesses using artificial
neural network-based methods. Biotechnology Progress, 13: 479-487 (1997).

Smith, M., Neural Networks for Statistical Modeling. International Thomson Com-
puter Press (1996).

Spears, W. M., et al., An overview of evolutionary computation. In Proceedings of
the 1993 European Conference on Machine Learning (1993).

Stephanopoulos, G., Artificial intelligence in process engineering. current state
and future trends. Computers and Chemical Engineering, 14(11): 1259-1270
(1990).

Storn, R., System design by constraint adaptation and differential evolution. IEEE
Transactions on evolutionary Computation, 3: 22-34 (1999).

Strang, G., Linear Algebra And Its Applications. Harcourt Brace (1986).

Tabak, H. H. and R. Govind, Prediction of biodegradation kinetics using a nonlinear
group contribution method. Environmental Toxicology and Chemistry, 12(2):
251-260 (1993).

Tsoukalas, L. H. and R. E. Uhrig, editors, Fuzzy and neural approaches in engineer-
ing. Wiley-Interscience (1997).

Umeda, T. and K. Niida, Process control system synthesis by an expert system.
Control Theory and Advanced Technology, 2(3): 385-398 (1986).

Ungar, L., et al., Process modeling and control using neural networks. In Inter-
national Conference on Intelligence Systems in Process Engineering, AIChE
Symposium Series, 57-67 (1996).

Volk, W., Applied Statistics For Engineers. McGraw-Hill (1969).

Walas, S. M., Phase Equilibria in Chemical Engineering. Butterworth Publishers,
University of Kansas (1985).



131

Wang, F.-S. and J.-P. Chiou, Optimal control and optimal time location problems
of differential-algebraic systems by differential evolution. Industrial and Engi-
neering Chemistry Research, 36: 5348-5357 (1997).

Wasserman, P., Advanced Methods in Neural Computing. Van Nostrand Reinhold
(1997).

Weiss, M. A., Data Structures and Algorithm Analysis in Java. Peachpit Press
(1998).

Werbos, P., Beyond Regression: New Tools for Prediction and Analysis In the Be-
havioral Sciences. Ph.D. thesis, Harvard University, Boston, MA (1974).

Whitley, D., et al., Genetic algorithms and neural networks: Optimizing connections
and connectivity. Parellel Computing, 14 (1990).

Willis, M., et al., System modeling using genetic programming. Computers and
Chemical Engineering, 21 (1997).

Willis, M. J., et al., Artificial neural networks in process engineering. IEE Proceed-
ings, Part D: Control Theory and Applications, 138(3): 256-266 (1991).

Wong, M. L., et al., Discovering knowledge from noisy databases using genetic pro-
gramming. Journal of the American Society for Information Science, 51(9):
870-881 (2000).

Yang, M., et al., Neural network model for prediction of binary adsorption using
single solute and limited binary solute adsorption data. Separation Science
and Technology, 31(9): 1259-1265 (1996).

Yao, X. and Y. Liu, Evolving artificial neural networks. In Proceedings of the IEEE,
volume 87,1423-1447 (1997).

Yeun, Y. S. and K. H. Lee, Function approximations by coupling neural networks and
genetic programming trees with oblique decision trees. Artificial Intelligence
in Engineering, 13(3): 223-239 (1999).

Yu, H., et al., Combined genetic algorithm/simulated annealing algorithm for large
scale system energy integration. Computers and Chemical Engineering, 24(8):
2023-2035 (2000).

Zhan, J. and M. Ishida, The multi-step predictive control of nonlinear siso pro-
cesses with a neural model predictive control (NMPC) method. Computers
and Chemical Engineering, 21 (1997).



132

Zhang, J., et al., Long-term prediction models based on mixed order locally recur-
rent neural networks. Computers and Chemical Engineering, 22: 1051-1063
(1998a).

Zhang, N.-W., et al., Statistical regression of binary vapor-liquid equilibrium data
for ternary phase equilibrium predictions. Fluid Phase Equilibria, 147(1-2):
123-143 (1998b).

Zhang, X., Time series analysis and prediction by neural networks. Optimization
Methods and Software, 4(2): 151-170 (1994).

Zhao, W., et al., Optimizing operating conditions based on ANN and modified GAs.
Computers and Chemical Engineering, 24: 61-65 (2000).

Zhou, F., et al., Multiobjective optimization of the continuous casting process for
poly (methyl methacrylate) using adapted genetic algorithm. Journal of Ap-
plied Polymer Science, 78(7): 1439-1458 (2000).

Zorzetto, L., et al., Process modelling development through artificial neural net-
works and hybrid models. Computers and Chemical Engineering, 24: 1355-
1360 (2000).


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Literature Review 
	Chapter 3: Objective
	Chapter 4: EPNN Modeling
	Chapter 5: Experiments and Results
	Chapter 6: Summary and Conclusions
	Chapter 7: Limitations and Future Work
	Appendix A: Source Codes
	Appendix B: Internet Resources
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)




