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ABSTRACT

BUCKLING OF COMPOSITE CONICAL SHELLS
UNDER COMBINED AXIAL COMPRESSION,

EXTERNAL PRESSURE, AND BENDING

by 
Youngjin Chung

Conical shells are extensively used in space crafts, robots, shelters, domes, tanks, and in

machinery or devices (e.g. as Belleville washers). Thus, the design of minimum weight,

maximum strength, stiffened conical (and cylindrical) shells under combined loads has

long been of interest to designers. The objective of this study is to improve the strength of

conical shells and reduce the weight of the structure. Buckling of composite conical

shells subjected to combined axial loading, external pressure, and bending is investigated

using energy and finite element methods. The conical shells have single and multiple

layers, different cone angle, length, and radius. These parameters are considered to

determine optimal condition against loads. It shall be demonstrated that these layers will

improve buckling values of compression, external pressure, and bending of the composite

shell. The applied loading is resisted primarily by in-plane stresses of the conical shell.

Donnell-type shell theory and Minimum Potential Energy Methods are presented

for linear bending analysis of composite laminated conical shells with isotropic and

orthotropic stretching-bending coupling under combined loading. The buckling equations

for the shells are expressed in terms of displacements. The solution is developed in the

form of a power series in terms of a particularly convenient coordinate system. The

energy method is used to develop the recurrence relations to calculate coefficients of the

series. A set of typical boundary conditions, thicknesses, the direction of layers axes of



orthotropy, number of them, the circumferential wave number, and different materials are

considered to analyze the buckling.

The energy solution is extended to include the buckling of composite cones

subjected to combined loads. This step shows clearly what type of load contributes more

than other loads for buckling. The parameters for the cones are also investigated to find

the interesting values for strong structures. Finite Element Analysis is extensively used to

verify the results. The numerical solutions obtained are also compared with those of

cylinders.
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CHAPTER 1

INTRODUCTION

1.1 Background and Outlines

The demands of conical shells used in space crafts, robots, shelters, domes, tanks, and in

machinery or devices (Belleville washers) are extensive. Thus, the design of minimum

weight, maximum strength, stiffened conical and cylindrical shells under combined load

has long been of interest to designers. The advent of high strength, light weight,

composite materials has resulted in broad use of multi-layered shells. Many distinctive

researchers have improved the strength of the shells changing the thicknesses, the

direction of layer axes of orthotropy, and number of them, or introducing fiber

reinforcements. These changes improve the resistance of buckling, under bending and

axial loads of the cone or cylinder.

The general case of buckling analysis of conical shells by the "equilibrium

method" represents a very complicated mathematical problem [28]. Only a few solutions

for simplified particular cases have been obtained. These involve considerable difficulty

and subtlety. The energy methods are usually more efficient than the equilibrium

approaches and lead to move accurate results [35].

In the following development, a procedure for buckling analysis of single layer

isotropic, orthotropic and laminated shells under axial compression, external pressure,

and bending is considered. For these shells, the combinations of the geometrical

symmetry, length, thickness, and material property characteristics are important factors.

1
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Energy method is used to develop the recurrence relations for pure bending and

combined loads. The effects of boundary conditions and elastic coefficients on buckling

of loads are studied. The procedure consists of the following steps:

1) The buckling equations for isotropic and orthotropic conical shells under

combined loads are expressed in terms of displacements.

2) Item (1) is repeated for multilayered composite conical shells with more

complicate form.

3) Displacements developed in series form. Then, governing equations for the

cases described in item (1) and (2) are solved for the critical buckling loads of

axial compression Per , outer pressure q„, and pure bending M„ satisfying the

set of boundary conditions.

4) Results of item (3) are extended to different thickness, different length, and

different materials.

5) Results of combined analysis for pre-loading with axial compression, outer

pressure, and pure bending.

6) An independent, extensive, Finite Element Analysis will be made to verify the

results of item (3).

7) Results and conclusions.

1.2 Objective

To make strong structure with light weight material, thickness, material properties, the

direction of material, and number of layers for composite structure are considered. The

demands of conical shells show the importance of the applications, such as space ships,
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connections with two different diameter cylinders, Belleville washers and even cola can

(Appendix B.1). Those conical shells exposed to various loads. The loads are not single

direction but multiple directions. To resist the multiple loads, combined loads analysis is

necessary. Typical buckling loads are axial compression and outer pressure. The buckling

loads of conical shell with pure bending is developed using minimum potential energy

method and power series method [31]. This research is concentrated on the combination

of loads and what combination is more effective with these combined loads.



CHAPTER 2

LITERATURE SURVEY

Donnell [9] shows a theory for the buckling of thin cylinder with moderately large

deformation, which permits initial eccentricities or deviations from cylindrical shape.

Donnell [10] and Timoshenko [28] also shows the range of the relation between the half

wave length of the deflection and the radius. The stability of circular cylindrical shells

under pure bending is investigated by Seide and Weingarten [25]. Analyses are presented

for solving the buckling problems of laminated, with the linear problem of hetrogeneous

anisotropic long cylindrical shells under axial compression and bending by Ugural [33,

36] and Flügge [11] derived nonuniform axial compression introducing dimensionless

load parameters.

The buckling analysis of conical shells has been extensively studied by the

areonautical industry. A simple formula was developed for the buckling of isotropic

conical shells under axial compression for long cone of constant thickness compared with

cylinder of equal thickness by Seide [23]. Seide [24] also made an attempt to prove the

developed formula for the critical value of cylinder and cone. For orthotropic shells there

have been fewer studies. By using the expressions for middle-surface displacement strain

relations given by Seide [22], Singer [26] derived a set of equations for the buckling of

orthotropic conical shells using the stress-strain relations for a homogeneous orthotropic

material in generalized plane stress and four independent elastic constants. Baruch [5]

explained the essential difference between cylinder and cone with boundary conditions.

4
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Chang and Katz [7] studied buckling of axially compressed conical shells with proper

boundary condition.

The derivation procedures of general shells are explained using minimum

potential energy criterion by Brush [6]. An energy procedure in series form of a

particularly convenient coordinate system was developed by Liyong Tong et al [31] for

buckling analysis of isotropic conical shells. Liyong Tong and T. K. Wang [29, 32]

developed a procedure for buckling analysis of laminated conical shells, with stretching-

bending coupling, under axial compression and external pressure. And Liyong Tong et al

[30] presented for bending analysis of orthotropic conical shells.

The combined loads, axial compression, external pressure, and pure bending of

composite laminated conical shells, with which this thesis is concerned, may be practical

importance. It appears that there is no significant publication in the literature which

covers the buckling problem of laminated composite cones under axial compression,

external pressure and pure bending or nonuniform axial compression.



CHAPTER 3

THEORY OF ORTHOTROPIC CONICAL SHELLS
UNDER COMBINED LOADS

3.1 Introduction

The definition of buckling can be a sudden large, lateral deflection of a structure due to a

small increase in an existing compression load [34]. To understand the conical shells, the

theory of plates and shells is necessary. Plates and shells are initially flat and curved

surface structures, respectively, where thicknesses are slight compared to their other

dimensions. Shells are often defined as thin when the ratio of thickness h to radius

curvature r is equal to or less than 1/20.

This work analyzes the buckling of orthotropic conical shells under axial

compression, external pressure, and bending. The treatment is based upon Donnell-type

`shallow shell theory' (Appendix B.3) governing equations for conical shells. The

parameters such as thickness, angle, radius of the cone, and material properties are

considered to determine optimal condition against loads.

Figure 3.1 Conical shell: (a) dimensions and loads

6



Figure 3.1 (Cont'd) Conical shell

(b) Uniform axial loading (c) Nonuniform axial loading and external pressure

The cone geometry, dimensions, and loading are in Figure 3.1 and force resultants [37]

are in Figure 3.2.

7

Figure 3.2 Shell elements: (a) under force resultants ;

(b) under moment and shear force resultants.
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3.2 Strain - Displacement Relations

The radius of the conical shell at an arbitrary distance x, referring to Figure 3.1 may be

conveniently expressed as follows

The strains and curvature changes in the middle surface of the conical shell are expressed

as follows [32].

3.3 Stress Resultant - Strain Relations

Resultant force obtained by Hooke's Law for orthotropic layer is expressed

and considering thickness {N}=	 h . More details are in chapter 4.



The material rigidities A  and D ;) (i, j = 1,2,6) for a typical orthotropic layer are

calculated from the following equations:

9

where h is the thickness of the shell. If the layer is isotropic, Ex = Eø = E ,

The cone is subjected to an axially compressive load Pa per unit width, external

pressure q , and bending moment load Ma . Let

It can be verified that [2 and 3] :

Under this loading, we have

where Nx0,Nø0  are membrane forces per unit width at critical state [31].
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3.4 Application of the Principle of Minimum Potential Energy

For linear buckling analysis of conical shells with isotropic and orthotropic single layer

under axial compression and bending, adopting the shallow shell theory [10] of Donnell-

type in Appendix B.3 and the minimum total potential energy principle [6] :

In the foregoing equations, we have the potential energy function is 1-1 = U s — 52 . Here

U s , and S2 represent the strain energy and work, respectively from Appendix A.

3.5 Governing Differential Equations

Let the differential operators Lij(i, j =1,2,3) and LN are expressed using reference [31]

given in the Appendix A ( A.13-15 ). Substituting Nx,Nø,Nxø,Mx,Mø , and M xø from

Eq. (3.3) into Eq. (3.9a-c), we have

The quantities L11, L12• • • • , are defined in Appendix A (A.16 through A.24)



3.6 Stress Resultant - Displacement Relations

We now substitute Eqs. (3.2) into (3.3) to obtain the force and moment stress resultants

for an orthotropic conical shell. In so doing, we have
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The transverse shear force resultants are from Reference [31]

3.7 Boundary Conditions

For the conical shell loaded as shown in Figure 3.1, the conditions at ends x = ± L/2 may

be expressed as follows :

Case 1: Simply-supported boundary conditions at x = ± L/2 .



3.8 Special Cases of Orthotropic Conical Shells

Donnell-Type Governing Equation for orthotropic conical shells developed in Sec.3.5,

degenerate to those of cylindrical shells when a is set equal to zero (Figure 3.3(a)).

When a is 90° (Figure 3.3(b)) the differential operators 4 3 , L23 , L31 and L32 approach

zero and the three equilibrium equations become independent, that is the first two

equations will then describe the in-plane problem and the third, the buckling problem of

circular plates under axially symmetric in-plane loading.

Figure 3.3 Special cases of composite conical shells



3.9 Modified Governing Differential Equations

To change equations more convenient form, multiply for the first two and the third of

equations of Eqs. (3.10) by le (x) and R4 (x), respectively.

In so doing, we have

13

3.10 Displacement Functions for Axial and Outer Pressure Loading

We shell assume solutions of the following series :

where

n is an integer representing the circumferential wave number of the buckled shell and m

is the terms of power series.

Using Eq. (3.11), resultant forces and moments can be obtained to apply boundary

conditions.
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Recurrence Relations:

Eqs. (3.17) and (3.18) into Eq. (3.16) and using Eqs. (3.1) and L J to obtain the following

recurrence relations:

where the coefficients G, 	 j) = (1,6), (2,5), and (3,14)] are given in the Appendix C

(C.1 through C.25). The above recurrence relations allow one to express the unknown

constants am,bm(m>=2) and cm (m 4) in terms of ao,a1,b0,b1,co,c1,c2 and c3 .

Therefore the general form of u(x), v(x) and w(x) may be written [31] as
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Here ui(x),vi(x) and wi (x), (i = 1,2,...,8), are the base functions of u(x), v(x) and

w(x), respectively and a0 , a 1 , bo ,b1, co , c1 , c2 and c3 are the unknowns to be determined

by imposing the boundary conditions at both ends of the cone. When m becomes large

enough using Eqs. (3.20) with Appendix C (C.1 through C.25), we have the condition for

convergence [31]

3.11 Displacement Functions for Pure Bending

We shell assume solutions of the following series for bending analysis:

n is an integer representing the circumferential wave number of the buckled shell and m

is terms of power series.

Recurrence Relations:

Eqs. (3.24) into Eq. (3.16) and using Eqs. (3.1) and Lo to obtain the following recurrence

relations with Flűgge's [11] derive way using additional coefficients in Appendix C

(C.26 through C.31):
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The first equations (n=0, n=1) have some irregularities, they are usually little importance

[6].

3.12 Determination of Stress Resultants

The three displacements U, V and W can be obtained from the buckling of cones under

axial compressive loads, outer pressure, and pure bending. Then the three displacements

may be used to calculate the membrane forces N Nø and Nxø , the bending

moments Mx , Mø and Mxø in Eqs(3.19). Equations (3.13) now yields the transverse shear

force Qx and Qø may be obtained to find the critical buckling load.

The critical buckling loads and the corresponding buckling patterns can finally be

obtained by equating the determinants of the coefficients matrix obtained after the

imposition of the eight boundary conditions to zero. This determinant is the buckling

condition of the shell.



CHAPTER 4

THEORY OF MULTILAYERED COMPOSITE CONICAL SHELLS
UNDER COMBINED LOADS

4.1 Introduction

This work is to analyze composite conical shells under axial compression, external

pressure, and bending. The treatment is based upon Donnell-type governing equations for

conical shells. A laminate is two or more laminae bonded together to act as an integral

structural element. The laminae principal material directions are oriented to produce a

structural element capable of resisting load in several directions. The stiffness of such a

composite material [21] configuration is obtained from the properties of the constituent

laminae by procedures showed in this chapter. Classical lamination theory is used to

understand multilayered composite conical shells through the chapter.

The procedures enable the analysis of laminates that have individual laminae with

principal material directions oriented at cross-ply to the to the chosen axes of laminate.

Multilayered shells are fabricated such that act as single layer materials. The layers can

not slip over each other, and the displacements remain continuous across the bond. The

parameters such as thickness, angle, radius of the cone, and material properties are

considered to determine optimal condition against loads. The cone geometry, and

dimensions are in Figure 3.1.

4.2 Classical Lamination Theory

Classical lamination theory shows a collection of stress and deformation theories that are

described in this section. Because of the stress and deformation hypotheses that are an

17
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inseparable part of classical lamination theory, it would be classical thin lamination

theory. The common simplification classical lamination theory will be used. First, the

stress-strain relation of an individual lamina is mentioned, and expressed in equation

form for the k-th lamina of a laminate. Then, the variations of stress and strain through

the thickness of the laminate are determined. The laminate stiffnesses, including the

stiffnesses that are used to relate coupling between bending and extension.

4.2.1 Lamina Stress - Strain Relations

The stress-strain relation for the k-th layer of a multilayered laminate are [35] and [1]:

The term Q*ij (i, j = 1,2,6) of the lamina rigidity matrix [Q*ij] are determined in Appendix

B.2. The stress-strain relations in arbitrary coordinates, Eq. (4.1), are useful in the

definition of the laminate stiffnesses because of the arbitrary orientation of the constituent

laminae.

4.2.2 Strain and Stress Properties in a Laminate

The concept of the variation of stress and strain through the laminate thickness is

essential to the definition of the extensional, compressive and bending stiffnesses of a

laminate. The laminate is considered to consist of perfectly bonded laminae. In addition,

the bonds are considered to be thin as well as non-shear-deformable. That is, the

displacements are continuous across lamina boundaries so that no lamina can slip relative
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to another. Thus the laminate acts as a single layer with very special properties, but

nevertheless acts as a single layer of material.

Therefore, if the laminate is thin, a line originally straight and perpendicular to the

middle surface of the laminate is assumed to remain straight and perpendicular to the

middle surface when the laminate is extended, compressed, and bent. Requiring the

normal to the middle surface to remain straight and normal under deformation is

equivalent to ignoring the shearing strains in planes perpendicular to the middle surface,

that is, γxz =γyz= 0 where is the direction of the normal to the middle surface. In

addition, the normals are presumed to have constant length so that the strain

perpendicular to the middle surface is ignored, that is ε z = 0 .

4.2.3 Stress Resultant - Strain Relations

The strains can be expressed in the form of middle surface strains ε°x, εy° , γxy and middle

surface curvatures kx, ky, k xy in xy plane are

Using the strain variation through the thickness, Eq. (4.2), in the stress-strain the

relations, the stresses in k-th layer can be expressed in terms of the laminate middle

surface strains and curvatures as
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The strain-displacement relations in Eq. (3.2) are same as section 3.2 . Resultant forces

and moments acting on a laminate are obtained by integration of the corresponding

stresses in each layer or lamina through the laminate thickness, h:

where N represents number of layers.

Figure 4.1 Multilayered laminate of a conical shell
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Nx is a force per unit length of the cross section of the laminate as shown in

Figure 4.2(a). Similarly, Mx is a moment per unit length as shown in Figure 4.2(b).

These force and moment resultants do not depend on z after integration, but are functions

of x and y, the coordinates in the plane of the laminate middle surface.

Figure 4.2 (a) In-plane forces and (b) Moments on a laminate element.

The integration indicated in Eqs. (4.4) and (4.5) can be rearranged to take

advantage of the fact that the stiffness matrix for a lamina is constant within the lamina.

Thus, the stiffness matrix goes outside the integration over each layer, but is within

summation of force and moment resultants for each layer. If the lamina stress-strain

relations, Eq. (4.3), are substituted, stress resultant-strain relations for shell expression are
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Here (Q,; ) k are lamina rigidity of kth layer Jones [12] consisting of N orthotropic

laminae as shown in Figure 4.1. The matrices A, B, and D are called stretching stiffness

matrix, stretching-bending coupling matrix, and bending stiffness matrix, respectively.

The matrix B implies coupling between bending and extension of a laminate. Thus, it is

impossible to pull on laminate that has the matrix B without at the same time bending

and/or twisting the laminate. That is, an extensional force results in not only extensional

deformations, but also twisting and/or bending of the laminate. Also, such a laminate

cannot be subjected to bending without at the same time including extension of the

middle surface.

4.3 Simplification of Laminate Stiffnesses

Some special case of laminates for which the stiffnesses take on certain simplified values

as different from the general form in Eq. (4.7). Some of the cases are almost trivial, other
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cases are more specialized, but all are contributions to the understanding of the idea of

laminate stiffnesses. Many of the cases result from the common practice of constructing

laminates from laminae that have the same material properties and thickness, but have

different orientations of their orthotropy directions relative to one another and relative to

the laminate axes.

According to the types of layer, Aij, Bij,Dij can be simplified. The symmetry of

midplane also affects the three stiffness matrices, A, B, and D . For the matrix B can be

zero if laminates in which for each ply above the midplane there is an identical ply placed

an equal distance bellow the midplane. A set of laminated layer ply that no twisting

coupling terms imply that

Among various kind of layer cases, antisymmetric laminates is studied for their physical

applications of laminated composites required nonsymmetric laminates to achieve design

requirement.

4.3.1 Antisymmetric Laminates

Symmetry of a laminate about the middle surface is often effective to avoid coupling

between bending and extension. However, to achieve practical applications, the study of

nonsymmetric laminates is interesting field. For instance, laminate coupling is necessary

to make jet turbine fan blade with pre-twist. As a further example, if the shear stiffness of

a laminate made of laminae with unidirectional fibers must be increased, one way to

achieve this requirement is to position layers at some angle to the laminate axes. To stay

within weight and cost requirements, an even number of such layers may be necessary at
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orientations that alternate from layer to layer, e.g. + 0 / —e / +9/ —0. Therefore,

symmetry about the middle surface is changed and the behavioral characteristics of the

laminate can be changed from the symmetric case. Even the 2 example laminate is

not symmetric, it is antisymmetric about the middle surface and certain stiffness

simplifications are possible.

The general case of antisymmetric laminates must ha\ C even number of layers

if adjacent laminae have alternating signs of the principal material property directions

with respect to the laminate axes. Each pair of layers must have the same thickness. The

only exceptions to the above stipulations occur when the an, orientation is 0" or

90° . As a consequence of antisymmetry of material proper,— of generally orthotropic

laminae, but symmetry of their thickness, the extensional coup,„,,__ stiffness A16

is easily seen to be zero since

and layers symmetric about the middle surface have equal U 	 ,s- and hence the same

value of the geometric term multiplying (Q1 6 ) k . Similarly, A : , 1 , zero as is the bending

twist coupling stiffness D16 ,

since again Eq. (4.8) holds and the geometric term multiplying 	 is the same for two

layers symmetric about the middle surface. The preceding rep: 	 applies also for D26 .



Figure 4.3 (a) Cross-ply laminate (b) Angle-ply laminate

There are two important class of antisymmetric laminates, the antisymmetric cross-ply

laminate and the antisymmetric angle-ply laminate in Figure 4.3. The antisymmetric

cross-ply laminate of an even number of orthotropic laminae is studied.

4.3.2 Antisymmetric Cross-ply Laminates

An antisymmetric cross-ply laminate consists of an even number of orthotropic laminae

laid on each other with principal material directions alternating at 0° and 90° to the

laminate axes as in the simple example of Figure 4.4. This case laminates do not have

A16 , A26 , D16 , and D26 , but do have coupling between bending and extension. The

regular antisymmetric cross-ply laminate is defined to have laminae all of equal thickness

and is common because of simplicity of fabrication. As the number of layers increases,

the coupling stiffness B 11 can be shown to approach zero. The stiffnesses of

antisymmetric cross-ply laminates can be expressed Tong [32] as;



The expression Qij are in Appendix B.2.

The membrane forces at critical state N x0 , Nø0 are same as Eq. (3.7) and Eq. (3.8) in

section 3.3.
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Figure 4.4 Element of a four layer cross-ply composite shell

4.4 Application of the Principle of Minimum Potential Energy

For linear buckling analysis of multilayered composite conical shells under axial

compression and bending, adopting the shallow shell theory [10] of Donnell-type and

the minimum total potential energy principle [6] :
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In the foregoing equations, we have the total potential energy is ∏=Us-Ω . Here U S ,

and S2 represent the strain energy and the potential energy, respectively from Appendix

A.

4.5 Governing Differential Equations

Let the differential operators Lij(i, j = 1, 2,3) and LN are expressed using reference [32]

given in the Appendix A ( A.13-15 ). Substituting Nx ,Nø ,Nxø ,M x ,M ø , and M xø from

Eq. (4.6) into Eq. (4.9a-c), we have

The quantities L11 , L12 ,• • • • , are defined in Appendix A (A.25 through A.34).

4.6 Stress Resultant - Displacement Relations

Upon following a procedure similar to that of chapter 3, we obtain the governing

differential equations. For laminated case, the differential operators Lo ( j= 1, 2,3 ) ,

which are more complicated than single layer are developed.

As in the case of shells orthotropic case, substitute Eqs. (3.2) into (4.6) to obtain

the force and moment stress resultants for laminated conical shells. In so doing, we have



In this equation, we have
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where i = 1,2 and j = 3+ i. The stiffness Au , Bij, and	 are defined by Eq. (4.7).

The transverse shear force resultants are same as in section 3.6

4.7 Boundary Conditions

For the conical shell loaded as shown in Figure 3.1, the conditions at ends x = ± L/2 may

be expressed as follows as discussed in Sec. 3.6:



Case 1: Simply-supported boundary conditions at x = ±L/2.

Case 2: Clamped or built-in boundary conditions at x=±L/2.
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4.8 Modified Governing Differential Equations

To change equations more convenient form, multiply for the first two and the third of

equations of Eqs. (4.10) by le (x) and R 4 (x) , respectively.

In so doing, we have

4.9 Displacement Functions for Axial and Outer Pressure Loading

We shell assume solutions of the following series :



n is an integer representing the circumferential wave number of the buckled shell and m is

the terms of power series.

Using Eq. (4.11), resultant forces and moments can be obtained to apply boundary

conditions.



Recurrence Relations:

Eqs. (4.14) and (4.15) into Eq. (4.13) and using Eq. (3.1) and Li to obtain the

following recurrence relations:
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where the coefficients [(i, j) = (1,6), (2,5), and (3,14)1 are given in the Appendix C

(C.32 through C.70). From the above recurrence relations, one cannot directly obtain c m+4

because the term am+3 is involved in the last equation. However, combining the first two

equations with m +1 with the last equation with m and rearranging them, we have the

following explicit recurrence relations:



where

and
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The above recurrence relations allow one to express the unknown constants

(m?_ 2) and cm (m> 4) in terms of a0 , , Lb, b1 , co , , c2 and c3 . Therefore the

general form of u(x), v(x) and w(x) may be written Tong [31] as

Here ui(x),vi(x) and w; (x), (i =1,2,...,8), are the base functions of u(x), v(x) and

w(x), respectively and ao , a 1 , b0 ,131 , co , c,, c2 and c3 are the unknowns to be determined

by imposing the boundary conditions at both ends of the cone. When m becomes large

enough using Eqs. (4.18), (4.19) and (4.20) with Appendix C (C.32 through C.70), we

have the condition for convergence in Eq. (3.22) R1 >= 0

R

1>=0

4.10 Displacement Functions for Pure Bending

We shell assume solutions of the following series :

Using Eq. (4.15);

n is an integer representing the circumferential wave number of the buckled shell and m is

the terms of power series.
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Eqs. (4.23) into Eq. (4.13) and using Eqs. (3.1) and Lo to obtain the following

recurrence relations with Flűgge's [11] derive way using additional coefficients in

Appendix C (C.71 through C.76):

The first equations (n=0, n=1) have some irregularities, they are usually little importance
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4.11 Solution of Multilayered Composite Conical Shells

All conditions and steps are similar as orthotropic single layer case. The recurrence

relations of composite case are more complicate than orthotropic case. The three

displacements, U, V and W can be obtained from the buckling of cones under axial

compressive loads, outer pressure, and pure bending. Then, the three displacements may

be used to calculate the membrane forces N „Nø and Nxø , the bending moments Mx , Mø

and Mxø in Eqs. (4.16).

The critical buckling loads and the corresponding buckling patterns can finally be

obtained by equating the determinants of the coefficients matrix obtained after the

imposition of the eight boundary conditions to zero. This determinant is the buckling

condition of the shell.



CHAPTER 5

CONICAL SHELLS UNDER COMBINED LOADS

For linear buckling analysis of isotropic and orthotropic single layer and multi layer

conical shell, under axial compression, outer pressure, and pure bending, adopting the

minimum total potential energy method, numerical buckling solutions are obtained. The

solutions are consist of two groups: First, three types of loading are studied separately.

second, three loads are combined each other. This analysis is available not only single

layer but also multi layer.

5.1 Classical Value of the Buckling Load under Axial Load

The notation of solution is introduced Baruch [5] and Tong [31 and 32].

where Per is the critical buckling load obtained from the present power series method.

The classical value of the critical buckling load Pa for axisymmetrical long isotropic

cones, suggested by Seide [23].

The formula disregards the effect of boundary conditions. The long cylinder means that

the edge conditions only a minor influence on the magnitude of the buckling load

provided that the shell length is not small (L > 2a; a: radius) from Ugural [35]. The

36
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critical values depends upon the material properties, thickness, and radius, while it is

independent of cylinder length.

5.2 Solution Procedure and Material Property

Solution procedure:

C-language program COMBINED 1 and COMBINED2 have been developed ( see

Appendix D ). The program steps are:

1) Enter dimensions and materials parameters.

2) Determine am, bm, cm in terms of a 0 , a 1 , bo , b1 ,c0 ,c1 ,c2 ,c3 using recurrence

relationships Eqs. (3.20, 3.25) and Eqs. (4.18, 4.24).

3) Calculate U,V,W,δW/δx, 	 Nx, Nxø and Mx for applying boundary conditions.

4) Calculate Pcr, qcr, Mcr and combined Pcr with q, Mer with P , and Mc,. with

from the condition that the determinant of each set of boundary conditions is equal

to zero. There are eight sets of boundary conditions given by Eq. (3.14) and Eq.

(3.15).

5) Check the convergence in the critical buckling loads by increasing m from 0 to 35.

Material property :

The property of single layer isotropic material is steel, E = 30 x 10 6 psi, v = 0.3 . For

multi layer, the material is used graphite/epoxy composite with from Jones [14

q

Subscript 1 is primary direction and 2 is secondary direction.
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5.3 Numerical Solutions for Isotropic Conical Shells

Buckling of isotropic material single layer is the simplest case for this research. For all

the equation, the orthotropic material reduce to simple isotropic expression. The buckling

loads are axial compression, Par outer pressure, q„, and pure bending M„ . Combined

buckling loads are obtained from combination of q and 13,„ q and M„, and P and M„ .

5.3.1 Isotropic Conical Shells under Axial Compression

Buckling of conical shell under axial compression in series form is developed by Tong et

al. [31]. For extremely short cones with L/R 1 = 0.2 , p„ becomes large as a increases

and p„ tends to constant independent of a for cones with L/R1 larger than 0.5 under

axial compressive loads for boundary conditions SS3 and SS4 in Figure 5.1 from

Appendix E.3. This expression is done by Tong et al. [31].

Figure 5.1 Buckling ratio of single layer isotropic conical shell under axial compression boundary
condition SS3, SS4 and different length ratio L/R1 = 0.2,0.5 about cone angle a
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For extremely short cone with length ratio L/R 1 = 0.2 , the buckling load ratio

p„ becomes larger as a increases and it becomes abrupt changes near 80 degree.

p„ tends to be constant values independent of a and for cone with L/R 1 larger than 0.5.

The properties of boundary condition show that SS4 is almost as twice as SS3 for both

length for the small cone angle a .

Figure 5.2 Buckling values of single layer isotropic conical shell under axial compression for
a = 30° and different boundary condition

The buckling values of single conical shells under axial compression at cone

angle a = 30° are different buckling loads for different boundary conditions. For simply

supported boundary conditions, SS1, SS2, and SS3 are similar trends comparing with

SS4. Through the length ratio L/R1 from 0.2 to 1, boundary condition SS4 is almost

twice stronger than the rest three boundary conditions in Figure 5.2 from Appendix E.1.



Figure 5.3(a) Deformed shape for L/R1=0.2,
a = 30°, SS2 under axial compression

Figure 5.3(b) Deformed shape for L/R 1 =0.2,
a = 30°, SS4 under axial compression

Figure 5.4(a) Deformed shape for L/R 1 =0.5
a = 30° , SS2 under outer pressure

Figure 5.4(b) Deformed shape for L/R 1 =0.5
a = 30° , SS4 under outer pressure

There are some deformed shapes using analysis software ANSYS 5.4. Detailed

Finite Element Analysis will be in Chapter 6. Simple deformed shapes are introduced to

understand buckling problem. The deformed shapes of cone under axial compression in

Figure 5.3(a) and 5.3(b) has different circumferential wave number. Because the buckling
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load of the cone with boundary condition SS4 needs more compression than with SS2,

the cone with boundary condition SS4 has more wave number than with SS2. The outer

pressure also affects similar to axial compression. The cone with boundary condition SS4

under outer pressure in Figure 5.4(b) has more waves than that with SS2 in Figure 5.4(a).

The circumferential wave number n can be obtained when the buckling value is

decided on simulation. For the single layer isotropic conical shell under axial

compression with a = 30° and L/R 1 = 0.5 , the circumferential wave number n and

buckling value Pa,. can be decided in Figure 5.5 from Appendix E.23. When the buckling

value reaches minimum value of first mode, the wave number n is obtained.

Figure 5.5 Buckling values of single layer isotropic conical shell under axial compression to
decide circumferential wave number n and critical value per for a = 30° and L/R 1 =0.5, SS4
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When the terms of power series m become large enough in Eq. (3.18) and Eq. (3.20), the

convergent condition is obtained by Tong [31]. The buckling value of single isotropic

conical shell under axial compression for length ratio L/R 1 = 1.0 and a = 30° about the

term of power series m is an example in Figure 5.6. from Appendix E.27. For small m,

the buckling values are diverging. The buckling values converge as m becomes large

enough. For different conditions of buckling need different number of terms m. For this

simulation, all calculations used 35 terms to get accurate buckling values as Figure 5.6.

Figure 5.6 Check convergence of buckling value of single isotropic conical shell under axial
compression for L/R1=1.0 and a = 30° about terms of power series m, SS1



5.3.2 Isotropic Conical Shells under Outer Pressure

43

Figure 5.7 Buckling values of single layer isotropic conical shell under outer pressure for cone
angles about length ratio

The buckling values of single layer isotropic conical shell under outer pressure are

different according to the cone angle a in Figure 5.7 from Appendix E.2. As cone angle

a increases, the buckling pressure becomes smaller. The buckling pressure tends to be

constant as length ratio L/R 1 gets longer. If the length ratio is same value, sharp angle

cone (a z, 0) is stronger than dull angle cone for outer pressure loading.

The circumferential wave number n can be obtained when the buckling value is decided

with similar way as axial compression case. For the single layer isotropic conical shell

under outer pressure with a = 30° and L/R1 = 0.2 , the circumferential wave number n

and buckling value q„ can be decided in Figure 5.8 from Appendix E.25. When the

buckling value reaches minimum value, the wave number n is decided.
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Figure 5.8 Buckling values of single layer isotropic conical shell under outer pressure to decide
circumferential wave number n and critical value q, for a = 30° and L/R1=0.2, SS1

5.3.3 Isotropic Conical Shells in Pure Bending

The buckling values of single layer isotropic conical shells in pure bending for different

length ratio are interesting. For short cone, the buckling values become small as cone

angle a increases. As the length ratio becomes longer, the buckling shows unstable

values for small angle region in Figure 5.9 from Appendix E.4. This trends are somewhat

related to the thickness of the cone. Thinner cones with relatively long length are not so

strong as short cones. The short cones, with L/R1 = 0.2 and 0.5 , are stable through the

cone angle a in Figure 5.9. There are unstable cone angle region ofL/R, = 1.0 for the

thickness ratio R, Pi = 100 . More details of long cone shows later section.
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Figure 5.9 Buckling values of single layer isotropic conical shell in pure bending for different
length ratio about cone angle, SS3

5.3.4 Long Isotropic Conical Shells

The length ratio (L/R1 ) of a cone is an important factor for its buckling value. Short cone

is usually strong but long cone needs other factors to be strong. The thickness is one of

the important factor to make long cone strong. Shells of technical significance are often

defined as thin when the ratio of thickness h to radius r is equal to or less then 1/20. The

buckling effects of length ratio (L/R 1 ) are different to the loads, axial compression, outer

pressure, and pure bending. Buckling values of long cone with different Young's

modulus are available in Appendix E (E.20-24). This changes do not affect much more

than thickness changes.



Case A. Long Isotropic Conical Shells under Axial Compression
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Figure 5.10 Buckling values of long single layer isotropic conical shell under axial compression
for different thickness a = 30° about length ratio L/R 1 , SS2

The buckling values of single layer isotropic cone shell under axial compression in

Figure 5.10 from Appendix E.18. are different for each thickness ratio ( h/R 1 ). When the

thickness ratios are 0.01 and 0.02, the buckling values are falling down to zero for certain

length. The relatively thicker cones such as h/R 1 = 0.03 and 102 = 0.04 have steady

buckling values for the length. The values are independent of the length as cones become

longer if the thickness is properly increased under axial compression. The deformed

shape examples are in Figure 5.11(a) and 5.12(a) for thin shell, and Figure 5.11(b) and

5.12(b) for relatively thicker shells.



Figure 5.11 Deformed shapes for relatively long cylinder L/R 1 =3.0, Ex=30E6
under axial compression. (a) h/R 1 =0.01, B.C(SS1) (b) h/12 1 =0.05, B.C(CC3)
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Figure 5.12 Deformed shapes for relatively long cone L/R 1 =3.0, Ex=30E6 under
axial compression. (a) h/R 1 =0.01, B.C. (SS1) (b) h/R 1 =0.05, B.C. (CC3)



Figure 5.13 Buckling values of long single layer isotropic conical shell under axial compression
for different thickness (a) h/R 1 =0.02 (b) h/R 1 =0.04 and length ratio L/R 1 about cone angle a ,SS2
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The cone angle a is also an important parameter of different thickness ratio for buckling.

For relatively thinner cone, h/R1 = 0.02 in Figure 5.13(a), has different buckling values

according to different length ratio L/R1 . Although there are stable conditions for

L/R1 = 0.2 and 1.0 , the longer cones, L/R1 = 3.0 and 4.0 show unstable status for some

cone angle region. The longer cones can be more stable if thicker cones are used as in

Figure 5.13(b). For cone shells with L/R1 = 3.0 and 4.0 , buckling values became stable

and increased respectively in Figure 5.13(b). Therefore, the thickness is one of the

important parameters for buckling values of long cones.

Case B. Long Isotropic Conical Shells under Outer Pressure

Figure 5.14 Buckling values of long single layer conical shell under outer pressure for different
thickness a = 30° about length ratio, SS2



50

The buckling values of single layer isotropic cone shell under outer pressure in Figure

5.14 from Appendix E.19 are similar as axial compression case. When the thickness

ratios are thin ( h/R 1 = 0.01, 0.02 ), the buckling values are falling down to zero for

certain length. The thicker cones ( h/R 1 =0.03, 0.04 ) have some values but with slope to

down. If the buckling values under outer pressure are necessary, the thickness should be

considered for the length. The deformed shape examples are in Figure 5.16(a) for thin

shell, and Figure 5.16(b) for relatively thicker shell.

The buckling of outer pressure for long cone is similar as axial compression case.

The cone angle a is also an important parameter of different thickness ratio for buckling.

For relatively thinner cone, h/R 1 = 0.02 in Figure 5.15(a), has different buckling values

according to different length ratio L/R 1 . Although there are stable conditions for

L/R 1 = 0.2 and 1.0 , the longer cone, L/R 1 = 3.0 shows unstable status for some cone

angle region. The buckling values for L/R 1 = 4.0 are near zero and unstable of whole

cone angle region for this thinner ratio. The longer cones can be more stable if thicker

cones are used as in Figure 5.15(b). For cone shells with L/R 1 = 3.0 and 4.0 , buckling

values became stable and increased respectively in Figure 5.15(b). Therefore, the

thickness is one of the important parameters for buckling values of long cones.



Figure 5.15 Buckling values of long single layer conical shell under outer pressure for different
thickness (a) hIR1=0.02 (b) h/R1=0.04 and length ratio L/R1 about cone anglea , SS2
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Figure 5.16 Deformed shapes for relatively long cone L/R 1 =3.0, Ex=30E6 under
outer pressure. (a) h/R 1 =0.01, B.C. (SS1) (b) h/R 1 =0.05, B.C. (CC3)

Case C. Long Isotropic Conical Shells in Pure Bending

Figure 5.17 Buckling values of long single layer isotropic conical shell in pure bending for
different thickness and a = 30" about length ratio, SS2
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For pure bending in Figure 5.17 from Appendix E.20, the buckling values of long single

layer isotropic conical shell are similar to axial compression case with some differences.

The buckling values of pure bending for short cone, L/R1 = 0.2 , are larger than other

values for fixed thickness and decrease smoothly as length ratio increases. For thinner

shell, h/R, = 0.01, the buckling values become near or almost zero as length ratio

increases. As shell becomes thick, h/R1 = 0.04 , the buckling values become larger than

other thickness throughout the length reaches L/R1 =2.0 in Figure 5.17. For considering

buckling values in pure bending, the thickness is one of the important factor for the

length.

The buckling of pure bending for long cone is similar as axial compression and

outer cases. The cone angle a is also an important parameter of different thickness ratio

for buckling. In comparing with pervious two loading, the buckling of pure bending is

small. Therefore a little shorter cones are used for this case. For relatively thinner cone,

h/R1 = 0.02 in Figure 5.18(a), has different buckling values according to different length

ratio L/R1 . Although there are stable conditions for L/R1 = 0.2 , 0.5, and 1.0 , the longer

cone, L/R1 = 1.8 shows unstable status for some cone angle region. The buckling values

for L/R1 = 1.8 are near zero and unstable of some cone angle region for this thinner ratio.

The longer cones can be more stable if thicker cones are used as in Figure 5.18(b). For

cone shells with L/R1 = 1.8 , buckling values increase stability but still unstable cone

angle region is exist in Figure 5.18(b). To obtain buckling values of pure bending for

long cones, the thickness is more important than other two loads.



Figure 5.18 Buckling values of long single layer isotropic conical shell in pure bending for
different thickness (a) h/R1=0.02 (b) h/R1=0.04 and length ratio L/R 1 about cone angle a , SS2
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5.3.5 Isotropic Conical Shells under Combined Loads

The way of applying combined load is consist of two parts. First, apply pre-load for some

different rates of buckling load for each cone angle a , length ratio L/R 1 and other cases.

Second, calculate the buckling loads using simulation program for each case of pre-load.

The loading coupled axial compression with outer pressure, pure bending moment with

axial compression, and pure bending moment with outer pressure.

Case A. Combined Loads for Outer Pressure and Axial Compression

Figure 5.19 Buckling values of single isotropic conical shell under axial compression with
different rate outer pressure for L/R 1 =0.2 about cone angle, SS2

The buckling values of single isotropic conical shell under axial compression combined

with outer pressure are in Figure 5.19 from Appendix E.6. The pre-applied pressure
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doesn't make big change for the 25% and 50% of its own buckling values (q„) for the

cone angle a . After 50% of buckling pressure (q„), the axial compression buckling

values (Pcr ) are decreased more than other pre-pressure loading. Therefore axial

compression buckling values are not sensitive to outer pre-pressure of lower percentage.

Figure 5.20 Buckling values of single layer isotropic conical shell in pure bending with
different axial pre-compression for a = 30° about length ratio, SS2

For buckling values of single layer isotropic conical shell in pure bending with

different axial pre-compression, the trend is similar to previous case in Figure 5.20 from

Appendix E.6. The pre-applied pressure shows little change for the 25% of its own

buckling values (q„) for the length ratio L/R 1 . After that percentage, axial compression

values become sensitive to outer pre-pressure.



Case B. Combined Loads for Axial Compression and Pure Bending
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Figure 5.21 Buckling values of single layer isotropic conical shell in pure bending with axial pre-
compression for length ratio, L/R 1 =0.2 about cone angle a , SS2

The buckling values of single layer isotropic conical shell in pure bending with axial pre-

compression are somewhat different from previous case in Figure 5.21 from Appendix

E.7. For the previous outer pressure and axial compression case, there are sensitive and

insensitive regions about outer pre-pressure. The pre-applied loads and buckling values

are changed similar pattern to axial pre-compression and pure bending. This means that

the effect of axial pre-compression changes the buckling values of bending moment

almost linearly.



Case C. Combined Loads for Outer Pressure and Pure Bending

58

Figure 5.22 Buckling values of single layer isotropic conical shell in pure bending with outer
pre-pressure for length ratio, L/R 1 =0.2 about a , SS2

The buckling values of single layer isotropic conical shell in pure bending with outer pre-

pressure are similar to outer pre-pressure and axial compression in Figure 5.22 from

Appendix E.8. For the 25% and 50% of outer pre-pressure of (q„), the buckling values

of bending are insensitive. After 50% of pre-pressure of it, the pure bending buckling

values (M„ ) are decreased more and more. This means that the buckling values of pure

bending are not sensitive to outer pre-pressure at the lower percentage of it.



5.3.6 Isotropic Conical Shells Compare with Cylinder Case
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Figure 5.23 Buckling ratio of single layer isotropic conical and cylindrical shell under axial
compression, outer pressure, and pure bending for length ratio, L/R 1 =0.2 about angle, SS2

The buckling ratios of single layer isotropic conical to cylindrical shell under axial

compression, outer pressure, and pure bending show in Figure 5.23 from Appendix E.5.

The ratios of three loading decreases almost similar trend about cone angle a . For axial

compression, the ratios are higher than outer pressure ratios as cone angle a increases to

around 50 degrees. From that angle, the ratios of axial compression are smaller than that

of outer pressure. The ratios of pure bending are usually higher than that of other

loadings. For the three cases of ratios, pure bending case is the most effective, and axial

compression case is better than outer pressure before 50 degree cone angle. After 50

degrees, outer pressure case is more effective than axial compression case.



5.3.7 Isotropic Conical Shells for Different Radius with Same R, /h
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Figure 5.24 Buckling values of single layer isotropic conical shell under axial compression for
L/R 1 and cone angle a = 30° with same R1/h=100 ratio about different radius R I , SS2

For the buckling values of single layer isotropic conical shell under axial compression,

the radius also a parameter. The buckling values are different for radius R, with keeping

the ratio R1 /h = 100 . If R1 is decreased, the thickness h also becomes smaller in Figure

5.24 from Appendix E.26. The absolute buckling values of cone are dependent on the

size of radius R1 . Although the cone with same R1 /h ratio, the buckling values can be

extremely large or small for different radius. For the shorter cone, the buckling values

decrease nonlinearly as radius R1 decreases. As cones become longer, the buckling

values decrease near linear.
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5.4 Numerical Solutions for Orthotropic Shells

The buckling of orthotropic material is the same way as previous procedure. For

orthotropic material, the direction of strength should be considered. Graphite/epoxy is

used and orthotropy ratio range E4 /Ex (1/40 ~ 1) is adopted.

5.4.1 Orthotropic Shells under Axial Compression

Figure 5.25 Buckling values of single layer orthotropic conical shells under axial
compression for length ratio at a = 30° about 	 /Ex ratio, SS1

Orthotropic material is also important for buckling. Buckling values of single layer

orthotropic cone shells under axial compression at L/R1 = 0.2 are steady and longer

cones (L/R1 = 0.5, 0.8,1.0 ) are similar trends as short cone for the orthotropy ratio range

Eø/Ex (1/40 ~ 1/10). For the range E ø /Ex (1/10 ~ 1), the buckling values increase all
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length ratio in Figure 5.25 from Appendix E.9. The buckling values of longer cones

increase abruptly even though the absolute values are not so large as short cones.

5.4.2 Orthotropic Shells under Outer Pressure

Figure 5.26 Buckling values of single layer orthotropic conical shells under outer pressure
for length ratio at a = 30° about Eø /Ex ratio, SS1

Buckling values of single layer orthotropic cone shells under outer pressure at L/R1 = 0.2

are not increasing much and longer cones (L/R1 = 0.5,0.8,1.0) are almost constant for the

orthotropy ratio E0 /E, (1/40 ~ 1/10). For the range E 4, /Ex (1/10 ~ 1), the buckling values

increase for all length ratio. Although the buckling values of longer cones increase little,

the values of short cone increase dramatically in Figure 5.26 from Appendix E.10.

Comparing with axial loading, the length ratio acts sensitively, especially for short cone.



5.4.3 Orthotropic Shells in Pure Bending
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Figure 5.27 Buckling values of single layer orthotropic conical shell in pure bending for
different length ratio, and a = 30° about E0 /Ex , SS 1

The buckling values of single layer orthotropic conical shell in pure bending for different

length ratio about orthotropy ratio, Eø /Ex are in Figure 5.27 from Appendix E.11. The

orthotropic cone shells under pure bending at L/R1 = 0.2 are steady with large values and

longer cones (L/R 1 = 0.5,0.8,1.0 ) are similar trends with small values for the orthotropy

ratio range Ed, /Ex (1/40 ~ 1/10). For the range Eø /Ex (1/10 ~ 1), the buckling values

increase all length ratio.
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5.5 Numerical Solutions for Multilayered Composite Conical Shells

A set of laminated cone with antisymmetric even number cross-ply cones in Figure 4.1

and 4.4 (or N layered conical shell) are numerically studied. The laminae oriented

angles 0° and 90° are also considered in Figure 4.3 (a). The coefficients, Aij, Bij, and

Dij, in the constitutive Eq. (4.6) for this lamination are partly different according to the

layers conditions.

5.5.1 Multilayered Composite Conical Shells under Axial Compression

Figure 5.28 Buckling value of multi layer orthotropic conical shell under axial compression
for layers about cone angle, SS1

The buckling values of multi layer orthotropic conical shells under axial compression are

affected by the number of layers. The buckling values increase as the number of layers
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increase in Figure 5.28 from Appendix E.12. In comparing with other increment of layer

number, the buckling values increase large as layer number changes from 2 to 4. All the

buckling values decrease as cone angle a increases.

Figure 5.29 Buckling values of multi layer orthotropic conical shell under axial
compression for layer no. and a = 30° about length ratio, SS 1

The buckling values of multi layer orthotropic conical shell under axial compression are

affected by length ratio L/R 1 . The buckling values increase as the number of layers

increase in Figure 5.29 from Appendix E.12. In comparing with other increment of layer

number, the buckling values increase largest as layer number changes from 2 to 4. The

trends of buckling values for length ratio L/R1 are similar as single layer. For short

length ratio region, the buckling values become large. The buckling values tend to be

constant as the length ratios become longer.



5.5.2 Multilayered Composite Conical Shells under Outer Pressure
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Figure 5.30 Buckling values of multi layer orthotropic conical shell under outer pressure for
layer no. about cone angle, SS 1

The buckling values of multi layer orthotropic conical shells under outer pressure are

affected by the number of layers. The buckling values increase as the number of layers

increase. The coupling of two layers in the cone reduces the buckling load. In comparing

with other increments of layer number, the buckling values increase large as layer

number changes from 2 to 4. All the buckling values decrease as cone angle a increases

in Figure 5.30 from Appendix E.13.
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Figure 5.31 Buckling values of multi layer orthotropic conical shell under outer pressure for
layer no. and a = 30° about length ratio, SS1

The buckling values of multi layer orthotropic conical shell under outer pressure

are affected by length ratio L/R 1 . The buckling values increase as the number of layers

increase. In comparing with other increment of layer number, the buckling values

increase largest as layer number changes from 2 to 4. The trends of buckling values for

length ratio L/R1 are similar as single layer. For short length ratio regions, the buckling

values become large. The buckling values tend to be constant as the length ratios become

longer in Figure 5.31 from Appendix E.13.



5.5.3 Multilayered Composite Conical Shells in Pure Bending
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Figure 5.32 Buckling values of multi layer orthotropic conical shell in pure bending for layers
about cone angle, SS1

Buckling values of multi layer orthotropic conical shell in pure bending increase as the

number of layers become larger in Figure 5.32 from Appendix E.14. The buckling values

are changed largest for layer number from 2 to 4. The trends are similar to outer pressure

loading case as cone angle changes.

Buckling values of multi layer orthotropic conical shell in pure bending are

interesting for different length ratio. The influence of bending-extension coupling is to

reduce for the buckling load for two-layer cone. The maximum buckling values occur

around length ratio, L/R 1 = 0.8 in Figure 5.33 from Appendix E.14. The largest change

occurs for the layer number from 2 to 4 like other loads.
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Figure 5.33 Buckling values of multi layer orthotropic conical shell in pure bending for layer
numbers and a = 45° about length ratio, SS1

5.5.4 Multilayered Composite Conical Shells under Combined Loads

Like single layer case, the way of applying combined load is consist of two parts. First,

apply pre-load for several different rates of buckling load for each cone angle a , length

ratio L/R 1 , different number of layers and other cases. Second, calculate the buckling

loads using simulation program for each case of pre-load. The loading coupled axial

compression with outer pressure, pure bending moment with axial compression, and pure

bending moment with outer pressure.



Case A. Combined Loads for Outer Pressure and Axial Compression
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Figure 5.34 Buckling values of multi layer orthotropic conical shell under axial compression
with outer pre-pressure about number of layers at a = 30°, SS2

The buckling of multi layer orthotropic conical shell under combined loading with axial

compression and outer pressure shows in Figure 5.34 from Appendix E.15. An axial

compressive load P, in pounds, and uniform outer pressure q , in pounds per square inch.

The external pressure is applied for each rate of critical pressure q„ for number of layer.

For 25% of q„, the buckling values of axial compression P,. are similar to the values

without any pre-pressure. For the pre-load of outer pressure, the second half of q„ is

more sensitive than that of first half. In comparing with other increments of layer number,

the buckling values are increased large as layer number changes from 2 to 4.



Figure 5.35 Buckling values of multi layer orthotropic conical shell under axial compression
with outer pre-pressure for number of layer=4 and L/R 1 =0.2 about cone angle, SS2

The combined buckling values of multi layer conical shells with axial

compression and outer pressure for the fixed number of layer show in Figure 5.35 from

Appendix E.15. For the total layer number 4, length ratio L/R 1 = 0.2 , the buckling values

are similar trends to single layer case about cone angle a . When pre-applied outer

pressure rate is 25%, the axial compression buckling values are not so much changed as

that of without pre-load. After the first 25% of pre-applied outer pressure, every 25%

increment affects more and more. This means that the effect of outer pressure is little at

the lower pre-pressure. The outer pre-pressure is sensitive to higher pre-pressure for

combined with axial compression.



Case B. Combined Loads for Axial Compression and Pure Bending
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Figure 5.36 Buckling values of multi layer orthotropic conical shell in pure bending with axial
pre-compression for L/R 1 =0.2 and a = 30° about number of layer, SS2

The buckling of multi layer orthotropic conical shell under combined loading with axial

compression and pure bending is in Figure 5.36 from Appendix E.16. An axial

compressive load P, in pounds, and bending moment M , in pounds inch. The axial

compression is applied for each rate of critical buckling values Per for different cone

angle a and number of layer. Every 25% increment affects similar rate change to

buckling value of pure bending. This means that the effect of pre-axial compression

changes the buckling values of bending moment almost linearly. This trend is different

from combined axial compression with outer pressure case in Figure 5.33. In comparing
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with other increment of layer number, the buckling values also increase large as layer

number changes from 2 to 4.

Figure 5.37 Buckling values of multi layer orthotropic conical shell in pure bending with axial
pre-compression for number of layer=4 and L/R 1 =0.2 about cone angle, SS2

The combined buckling values of multi layer conical shells with pure bending and

axial pre-compression for fixed number of layer is in Figure 5.37 from Appendix E.16.

With the total number 4 and length ratio L/R 1 = 0.2 , the buckling values are similar

trends to single layer case for cone angle a . Each rate of increment of pre-axial

compression, the buckling value of pure bending is similar rate of it.



Case C. Combined Loads for Outer Pressure and Pure Bending

74

Figure 5.38 Buckling values of multi layer orthotropic conical shell in pure bending with outer
pre-pressure for L/R 1 =0.2 and a = 30° about number of layer, SS2

The buckling values of multi layer orthotropic conical shell under outer pressure and pure

bending are in Figure 5.38 from Appendix E.17. The uniform outer pressure q , in pounds

per square inch. The outer pressure is applied for each rate of critical pressure q„ for

each number of layer. For 25% of q„, the buckling values of pure bending M„ are not

much changed in comparing with other rate of qcr. The buckling values are increased

large as the number of layer changes from 2 to 4 comparing with other increment of layer

number.



Figure 5.39 Buckling values of multi layer orthotropic conical shell in pure bending with outer
pre-pressure for number of layer=4 and L/R 1 =0.2 about cone angle, SS2

Buckling values of multi layer orthotropic conical shell in pure bending with outer

pressure for fixed number of layer are in Figure 5.39 from Appendix E.17. This shows

similar trends to combined outer pressure and axial compression case. When pre-outer

pressure rate is 25%, the buckling values of pure bending are not so much changed as that

of without pre-outer pressure. After the first 25% of pre-applied outer pressure, every

25% increment affects more and more for the buckling values. This means that the outer

pre-pressure is sensitive to higher pre-pressure for buckling value of combined with pure

bending.
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CHAPTER 6

FINITE ELEMENT ANALYSIS (FEA)

6.1 Introduction

Numerical methods enables the engineer to expend his or her ability to solve practical

design problems. The engineer may now treat real shapes as distinct from the somewhat

limited variety of shapes amenable to simple analytic solution. Similarly, the engineer

need no longer force a complicate loading system to fit a more regular load configuration

to conform to the dictates of a purely academic situation. Numerical analysis thus

provides a good tool with which the engineer may feel free to deal with the solution of

problems as they are found in practice. Numerical analyses lead often to a system of

linear algebraic equations. The most appropriate method of solution then depends on the

nature and the number of such equations, as well as the type of high level computing

equipment available.

The powerful finite element method had its beginnings in the 1950s, and with the

widespread us of the digital computer it has since gained considerable favor relative to

other numerical approaches. The finite element approach deals with an assembly of

elements that replaces the continuous structure, and it is the replaced structure that is then

the subject of analysis. The general procedures of the finite element and conventional

structural matrix methods are similar. In the latter approach, the structure is idealized as

an assembly of structural members connected to one another at joints or nodes at which

the resultants of the applied forces are assumed to be concentrated. The basic concept of

FEM is shown in Reddy [18]. Throughout the FEM analysis, the ANSYS 5.4, software
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program, is used. Theoretical buckling values are compared with FEM results for single

layer and multi layer structure under load. ANSYS 5.4 doesn't include buckling of pure

bending function. Therefore, FEM analyses are done mainly on axial compression and

outer pressure.

6.2 Definition of Buckling Analysis

Buckling analysis is a technique used to determine buckling loads-critical loads at which

a structure becomes unstable-and buckled mode shape-the characteristic shape associated

with a structure's buckled response. The general procedure for buckling problem by

the finite element method is summarized as follows [19]:

Enter geometry of structure,
material properties, etc.

Calculate elemental
stiffness matrices.

Using continuous reduction
technique, determine [K].

Apply constraints

 

Calculate matrices and set
determinant to zero

Determine buckling load.
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6.2.1 Types of Buckling Analyses

Two techniques are available in the ANSYS/Multiphysics, ANSYS/Mechanical,

ANSYS/Structural, and ANSYS/LinearPlus programs for predicting the buckling load

and buckling mode shape of a structure: nonlinear buckling analysis, and eigenvalue (or

linear) buckling analysis. Eigenvalue (or linear) buckling analysis is used to compare with

theoretical results [3]. Procedure of eigenvalue buckling analysis is given Appendix F.

6.2.2 Eigenvalue Buckling Analysis

Eigenvalue buckling analysis predicts the theoretical buckling strength of an ideal linear

elastic structure. This method corresponds to the textbook approach to elastic buckling

analysis: for instance an eigenvalue buckling analysis of a column will match the classical

Euler solution. However, imperfections and nonlinearities prevent most real structures

from achieving their theoretical elastic buckling strength.

6.2.3 Commands Used in a Buckling Analysis

There are two types of way to build a model and perform a buckling analysis. First, use

sets of commands that are used to do any other type of finite element analysis. Second,

choose similar options from the graphical user interface (GUI) to build and solve models.

6.2.4 Procedure for Eigenvalue Buckling Analysis

Eigenvalue buckling analysis for five-step procedure (see Appendix F for details):

1.Build the model. 	 2.Obtain the static solution.

3.Obtain the eigenvalue buckling solution.

4.Expand the solution.	 5.Review the results.
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6.3 The FEA of Isotropic Conical Shells

Finite Element Analysis, using ANSYS 5.4 software programs, is used to verify the

results of present method outlined in item 3) of Chapterl.

Element Type:

To analyze isotropic case, SHELL63, an element type, is used in ANSYS. SHELL63 has

both bending and membrane capabilities. Both in-plane and normal loads are permitted

[2].

Figure 6.1 SHELL63 Elastic Shell

The element has six degree of freedom at each node: translations in the nodal x, y,

and z directions and rotations about the nodal x, y, and z axes. Stress stiffening and large
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deflection capabilities are included. A consistent tangent stiffness matrix option is

available for use in large deflection analyses.

The geometry, node locations, and the coordinate system for this element are

shown in Figure 6.1 and SHELL63. The element is defined by four nodes, four thickness,

an elastic foundation stiffness, and the orthotropic material properties. Orthotropic

material directions correspond to the element coordinate directions. The elements of this

analysis are depend on the size of cones. The geometry and the coordinate system for this

cone are followed by theoretical data. For single layer, the number of elements are: the

length ratio L/R1 = 0.2 (180x 6) , = 0.5 (120 x10) , L/R1 = 0.8 (120 x12) , and

L/R1 = 1.0 (100 x 16) with radius R1 =1 in. in Figure 6.2.

The thickness is assumed to vary smoothly over the area of the element with the

thickness input at the four nodes. If the element has a constant thickness, only TK(I) need

be input. If the thickness is not constant, all four thicknesses must be input.

Figure 6.2 The elements of 11R 1 =1.0 (100x16) at α=30°
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Figure 6.3 Buckling values of single layer isotropic conical shell under axial compression
comparing with FEM for a = 30° about length ratio, SS2

The comparison theoretical results with FEM results for single layer isotropic cone under

axial compression is in Figure 6.3. At cone angle a = 30° and boundary condition SS2,

two values are almost identical profiles and results. For the shorter length ratio

L/R1 = 0.2 , the difference is the smallest among other length because of the most stable

condition for short cone. Table 6.1 shows the values and error percentage.

Table 6.1 Buckling values of single layer isotropic conical shell under axial compression comparing with
FEM for a = 30° about length ratio, SS2

LP?, Current Theory (lb) FEM (lb) Difference

0.2 4791.70 4844.51 1.10 %
0.5 4418.81 4727.00 6.97 %
0.8 4291.79 4436.76 3.38 %
1.0 4315.75 4420.46 2.43 %
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Figure 6.4 Buckling values of single layer isotropic conical shell under axial compression
comparing theory data with FEM for L/R1 = 0.5 about cone angle, SS2

The comparison theoretical results with FEM results for single layer isotropic

cone under axial compression is in Figure 6.4. For length ratio L/R1 = 0.5 and boundary

condition SS2, the theory and FEM values are almost identical profiles and results for

large cone angle region. The differences are small among other cone angles because of

the stable condition for large cone angle region in Table 6.2.

Table 6.2 Buckling values of single layer isotropic conical shell under axial compression comparing theory
data with FEM for L/R1 = 0.5 about cone angle, SS2

a Current Theory (lb) FEM(lb) Difference
0 5868.08 6095.38 3.88 %
5 5832.42 6127.23 5.05 %
10 5710.26 5917.44 3.63 %
30 4418.81 4527.00 2.45 %
60 1303.43 1305.42 0.15 %
80 191.78 192.35 0.29 %
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Figure 6.5 Buckling values of single layer isotropic conical shell under axial compression
comparing theory, FEM and classical theory for L/R1 = 0.5 about cone angle, SS4

The comparison theoretical results with FEM and classical results for single layer

isotropic cone under axial compression is in Figure 6.5. For length ratio L/R1 = 0.5 and

boundary condition SS4, the theory and FEM values are almost similar profiles as

boundary condition SS2. Table 6.3 shows the values and difference.

Table 6.3 Buckling values of single layer isotropic conical shell under axial compression comparing theory,
FEM and classical theory for L/R1 = 0.5 about cone angle, SS4

a Current
Theory (lb)

Classical
Theory (lb)

Difference FEM (lb) Difference

0 11434.46 11408.27 -0.23 %  11465.04 0.27 %
5 11344.97 11321.61 -0.21 % 11471.97 1.12 %
10 11080.13 11064.27 -0.14 % 11213.67 1.21 %
30 8561.41 8556.20 -0.06 % 8745.92 2.16 %
70 2878.30 2852.07 -0.91 % 2881.96 0.13 %
80 349.13 344.00 -1.47 % 341.18 -2.27 %
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Figure 6.6 Buckling values of single layer isotropic conical shell under outer pressure
comparing theory data with FEM for a .30° about length ratio, SS2

The comparison theoretical results with FEM and classical results for single layer

isotropic cone under outer pressure is in Figure 6.6. For cone angle a = 30° and boundary

condition SS2, the theory and FEM values are almost similar profiles except extremely

short cone. At the length ratio L/R1 = 0.2 , the boundary region may increase the buckling

values during FEM analysis. Smaller elements may increase the accuracy. Table 6.3

shows the values and difference percentage.

Table 6.4 Buckling values of single layer isotropic conical shell under outer pressure comparing theory data
with FEM for a = 30° about length ratio, SS2

L/R1 Current Theory (lb) FEM (lb) Difference

0.2 2315.08 3931.41 69.81 %
0.5 509.64 489.21 -4.01 %
0.8 276.00 262.75 -4.80 %
1.0 208.81 200.19 -4.22 %
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Figure 6.7 Buckling values of single layer isotropic conical shell under outer pressure
comparing theory data with FEM for L/R1 = 0.5 about cone angle, SS2

Under outer pressure, the comparison theoretical results with FEM results for

single layer isotropic cone is in Figure 6.7. For length ratio L/R1 = 0.5 and boundary

condition SS2, the theory and FEM values are similar profiles and results for cone angle

a . The differences are small for near zero degree cone angle. Table 6.5 shows the values

and difference percentages.

Table 6.5 Buckling values of single layer isotropic conical shell under outer pressure comparing theory data
with FEM for L/R, = 0.5 about cone angle, SS2

a Current Theory (lb) FEM (lb) Difference
0 739.19 734.57 -0.63 %
5 712.45 706.65 -0.81 %
10 680.19 667.58 -1.85 %
30 509.64 489.21 -4.01 %
60 218.89 206.30 -5.75 %
80 62.02 74.36 19.9 %



6.4 The FEA of Orthotropic Conical Shells

6.4.1 Comparison with Theoretical Results under Axial Compression
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Figure 6.8 Buckling values single layer orthotropic conical shell under axial compression
comparing theory data with FEM for ER IE, =10 and a= 30° about length ratio, SS2

Under outer pressure the comparison theoretical results with FEM and classical results for

single layer isotropic cone is in Figure 6.8. For Ex/Eø = 10 , cone angle a = 30° and

boundary condition SS2, the theory and FEM values are almost identical profile through

the length ratio. Table 6.6 shows the values and difference percentage.

Table 6.6 Buckling values single layer orthotropic conical shell under axial compression comparing theory
data with FEM for EVE, =10 and a= 300 about length ratio, SS2

L/R1 Current Theory (lb) FEM (lb) Difference

0.2 3647.44 3643.27 -0.11 %
0.5 1084.97 1075.47 -0.88 %
0.8 1009.19 999.15 -0.99 %
1.0 1050.89 1045.54 -0.51 %
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Figure 6.9 Buckling values of single layer orthotropic conical shell under outer pressure
comparing theory data with FEM for Ex /Eø =10 and L/R 1 =0.8 about cone angle, SS2

The comparison theoretical results with FEM results for single layer orthotropic cone

under outer pressure is in Figure 6.7. For E x /Eø = 10 , length ratio L/R1 = 0.5 and SS2,

the theory and FEM values are similar profiles and results for cone angle a. The

differences are a little larger for cone angle approaches to 80 degree. Table 6.7 shows the

values and difference percentages.

Table 6.7 Buckling values of single layer orthotropic conical shell under outer pressure comparing
theory data with FEM for Ex /Eø =10 and L/R 1 =0.8 about cone angle, SS2

a Current Theory (psi) FEM (psi) Difference

0 50.87 48.79 -4.09 %
5 48.31 46.66 -3.42 %
10 45.52 43.88 -3.60 %
30 32.53 31.21 -4.06 %
60 14.06 13.93 -0.92 %
80 4.22 7.24 71.56 %
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6.5 The FEA of Multi Layer Composite Conical Shells

Element Type:

SHELL91 [2] is used for layered applications of a structural shell model or for modeling

thick sandwich structures. Up to 16 different layers are permitted for applications with the

sandwich option turned off. The element has six degree of freedom at each node:

translations in the nodal x, y, and z directions and rotations about the nodal x, y, and z

axes.

Figure 6.10 SHELL91 16-Layer Structure Shell



89

Input Data:

The geometry, node locations, and the coordinate system for this element are shown in

Figure 6.10. The element is defined by eight nodes, layer thickness, layer material

direction angles, and orthotropic material properties. Midside nodes may not be removed

(with a zero node number) from this element. The elements of this analysis are depend on

the size of cones. The geometry and the coordinate system for this cone are followed by

theoretical data. For multi layer, the number of elements are: the length ratio

L/R1 = 0.2 (40x 5) , L/R 1 = 0.5 (40x 8) , L/R 1 = 0.8 (40 x10) ,and L/R 1 = 1.0 (40 x12) with

radius R1 =1 in. in Figure 6.2. Because SHELL91 has eight nodes for each rectangular

element, it makes more equation than SHELL63. A triangular element may be formed by

defining the same node number for nodes K, L and 0.

The total number of layers (NL; up to 16) must be specified. Layer of 2, 4, 6, 16

are calculated. If the properties of the layers are symmetric about the mid-thickness of

element (layer symmetry, LSYM=1), only half the properties, up to and including those of

the middle layer (if any), need to be entered. Otherwise (LSYM=0), the properties of all

layers should be entered.
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Figure 6.11 Buckling values of multi layer orthotropic conical shell under axial compression
comparing with theory and FEM for L/R1=0.8, and a = 30° about length ratio, SS2

Under axial compression, the comparison theoretical results with FEM results for multi

layer orthotripic cone is in Figure 6.11. For cone angle a= 30°, L/R1 = 0.8, and

boundary condition SS2, two values are similar profiles and results. The differences

between theory and FEM values decrease as layer numbers increase. Fine mesh may

improve the accuracy. Table 6.8 shows the values and difference percentage.

Table 6.8 Buckling values of multi layer orthotropic conical shell under axial compression comparing
theory data with FEM for L/R 1 =0.8, a = 30° about number of layer, SS2

N Current Theory (lb) FEM (lb) Difference

2 601.89 561.06 -6.78 %
4 888.99 802.81 -9.69 %
6 891.28 830.03 -6.87 %
16 887.69 846.18 -4.67 %
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Figure 6.12 Buckling values of multi layer orthotropic conical shell under axial compression
comparing with theory and FEM for a = 30° and number of layer=16 about length ratio, SS2

The comparison theoretical results with FEM results for multi layer orthotropic

cone under axial compression is in Figure 6.12. For cone angle a = 30°, number of

layer=16, and boundary condition SS2, two values are similar profiles and results. For

shorter length ratio L/R1 = 0.2 , the difference is a little larger among other length cones.

Table 6.9 shows the values and difference percentage.

Table 6.9 Buckling values of multi layer orthotropic conical shell under axial compression comparing with
theory and FEM for a = 30° and number of layer=16 about length ratio, SS2

L/R1 Current Theory (lb) FEM (lb) Difference

0.2 2073.16 1841.90 -11.15 %
0.5 856.91 823.56 -3.89 %
0.8 887.69 846.18 -4.68 %
1.0 918.33 891.56 -2.92 %
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Figure 6.13 Buckling values of multi layer orthotropic conical shell under outer pressure
comparing with theory and FEM for a = 30°, and number of layer=16 about length ratio, SS2

The comparison theoretical results with FEM and classical results for multi layer

isotropic cone under outer pressure is in Figure 6.13. For cone angle a= 30° and

boundary condition SS2, the theory and FEM values are almost similar profiles except

extremely short cone like single layer case. Fine elements may increase the accuracy.

Table 6.10 shows the values and difference percentage.

Table 6.10 Buckling values of multi layer orthotropic conical shell under outer pressure comparing with
theory and FEM for a = 30° , and number of layer=16 about length ratio, SS2

L/R1 Current Theory (lb) FEM (lb) Difference

0.2 558.30 725.52 29.95 %
0.5 105.30 93.09 -11.59 %
0.8 55.47 50.18 -9.54 %
1.0 42.28 38.91 -7.97 %



CHAPTER 7

RESULTS AND CONCLUSIONS

1. Using developed C-language program COMBINED1, COMBINED2, results of the

two simulation outputs are in Appendix E. MS VISUAL C++ 6.0 is used as a

compiler.

2. The buckling values are affected by boundary conditions, length ratio L/R 1 , cone

angle a , thickness ratio h/R 1 etc. For axial compression, boundary condition SS 1,

SS2, and SS3 have similar trends but SS4 is larger. In Figure 5.4 and 5.5, different

boundary condition has different wave number. More wave number needs more

compression. For the buckling values of outer pressure, the length ratio and cone

angle are important factors. As cone angle a increases the buckling pressure

becomes smaller. For pure bending, thickness ratio and length ratio are important. As

the length ratio becomes longer, the buckling shows unstable values for small cone

angle region in Figure 5.9. Buckling values are related to the thickness of the cone.

3. For combined loads, outer pressure and axial compression act differently. Axial

compression buckling values are not sensitive to outer pre-pressure of lower

percentage, while axial compression and pure bending do not have similar patterns.

This means that the effect of axial pre-compression changes the buckling values of

bending moment almost linearly. The combined load pattern of outer pressure and

axial compression are identical to that of outer pressure and pure bending. The

buckling values of pure bending are not sensitive to outer pre-pressure at the lower

percentage of it.
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4. Orthotropic material has two different strengths in each direction. Regardless of

length ratio and loads, buckling values increase as orthotropy ratio Eø /Ex reaches 1.

Shorter cones have large buckling loads comparing with other long cone.

5. For a multi-layered cone, a set of laminated cone with antisymmetric even number

cross-ply cones (or /V- layered conical shell) are used. The laminae oriented angles

0° and 90° are also considered. The buckling values increase as the number of layers

increase. The increment of layer from 2 to 4 is larger than other increments. The

buckling values of each loading have similar trends as single layer.

6. For axial compression of single layer cone, comparison theoretical and FEM values

matches well. Boundary conditions also affect FEM solution. The three types of

solutions, current solution, classical solution, and FEM solution are almost same

profiles with boundary condition SS4 in Figure 6.4. For outer pressure, the theory and

FEM results are almost similar profile except extremely short cone. The buckling

values of multilayered cones have similar trends as single layer cones. The buckling

values increase as number of layer increases. The difference between theoretical and

FEM buckling values are also reduced as number of layer increases.

The buckling of conical shell under pure bending is developed using minimum potential

energy method and power series method. Relatively long cones are studied to find the

stability conditions about thickness ratio. Three types of loads, axial compression, outer

pressure, and pure bending are used to obtain the effects of combined loads. Multilayered

cone shells increase the buckling loads as the number of layers increase. Generally, the

results of finite element method matches well with theoretical values. To avoid the

buckling conditions from various loads and to lessen the weight, combination of the layer
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symmetry, length, and material properties are important. To make good structure, new

material needs to be developed stronger and light weight material to economize energy.



APPENDIX A

ENERGY METHODS AND COEFFICIENTS

The lines of curvature coordinates are denoted by the symbols x and y, and the principal

radii of curvature by Rx and R y . Along the coordinates lines, distances ds x and ds y can

be expressed as ds x = AL dx 	 dsy = BL dy

Where AL , BL are the Lamé coefficients for the X, Y, Z rectangular coordinates.

A point can be expressed on the surface (Figure A.1), then X=X(x,y), Y=Y(x,y),

Z=Z(x,y).

The sign of z for convex shells is taken to be negative inward. The coordinates x, y, z are

orthogonal coordinate system.

The method is based on a strain energy expression derived in terms of the

following three simplifying assumptions developed by Koiter [13] and [14]:
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1. The shell is thin, h/R	 1, where is the smallest principal radius of curvature

of the undeformed middle surface.

2. The strains are small compared with unity, and the strain energy per unit

volume of the undeformed body is given by quadratic function of strain for an

isotropic solid.

3. The effect of transverse shearing and normal stresses may be neglected in

strain

energy density.

In terms of these Koiter's assumptions, the strain energy of a thin elastic shell equations

[13]

Um ,U b are membrane strain energy and bending strain energy, respectively.

where εx,εy and γxy are middle surface normal and shear strain components and k x,ky

and kxy are curvature changes.
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The total potential energy 11 is consists of strain energy and the potential energy

2 of the applied loads. For Q , Px , Py , /3, are the distributed load on the surface of the

shell element, and u, v, w represent the displacements of a point on the shell middle

surface of x, y, and z components. Equations (A.1) through (A.5) need a set of kinematic

relations of general potential energy expression for an arbitrary shape shell.

The equations developed here start from nonlinear middle surface kinematic

relations of simple form.

where e 13 ,	 and xij are linear functions of the displacement components

U ,V ,W . The relations of this form are derived by Sanders [20].
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The minimum potential energy criterion is used to derive an expression for the second

variation of the potential energy of a shell of general shape in terms of the linear

displacement parameters eij, βi, xij .

Thus the final expression for the second variation may be written

For a functional of the form, the Euler equations are given;

This leads to, after dropping the terms involving the squares of the derivatives in Eq.

Similarly

where
For single layer :
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APPENDIX B

APPLICATION, TRANSFORMATION, AND SHELL THEORY

B.1 Applications for Conical Shells

The applications of cone shape structure; (a) upper and lower part of can have cone

shapes, Belleville spring washers[16, 17] are popular cone structure, (c) space ship [8] is

consist of many cone shapes, (d) space station [15] has large cone structures.

Figure B.1 Applications for conical shells: (a) cola can
(b) belleville washers (c) space ship, Gemini (d) space station
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B.2 Transformed Reduced Stiffness Matrix

103

Here Q1 1 , Q22 and Q12 are referred to the principal direction (x, y) of the material. The

0 is the angle between these axes and the reference coordinates (x * ,y * ) lamina in Figure
B.2.

Figure B.2 Positive rotation of principal material axes from xy axes.
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B.3 Shallow Shell Theory

Figure B.3 shows Donnell-type [10] 'shallow shell theory' out of general shell

theory. When n is very large so that the half wave length of the deformation is small

compared to the radius, the flat plate developed should give a fair approximation. The

complete general shell theory is applicable over the whole span, but a modification of it

which has come to be known as 'shallow shell theory' has been found to be very useful,

giving good approximation in the upper range of values of n, for values down to three or

four (and acceptable approximation for values as low as two).

Yigure 11.3 Range of applicability of shell
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RECURRENCE RELATION COEFFICIENTS
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qn 2 1?,
— D11 m(m — 1) 2 (772 — 2) sin 4 a — D22n 4 + cos a
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APPENDIX D

PROGRAM LOGIC

Computer program ( COMBINED1, COMBINED2 ) to determine critical load using C-

language has been developed. For confidence of my program logic, some existing data is

compared with my data in Appendix E (E.28).

Outline of Program
1

o Input geometry dimensions and material parameters.

o Determine am,bm,cm, in terms of a o , a1, b0 , b, , co , c, , c2 , c3 using recurrence
relationships.

o Calculate U,V,W,δW/δx,Nx,Nxø  and Mx for applying boundary conditions.

for( repeat m until converging )
begin

o Make coefficients matrix after imposing each boundary
condition.

o Set the determinant to zero.

0 Obtain the critical buckling load.

end.
}

repeat program for axial compression, outer pressure, and pure bending.

repeat program for combined outer pressure and axial compression,

for combined axial compression and pure bending, and

for combined outer pressure and pure bending.

Some other outputs are obtained by changing parameters.

COMBINED2 is developed by changing Gi,j Appendix (C.32 through C.70) from

COMBINED 1.
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APPENDIX E

NUMERICAL SOLUTION DATA

E.1 Buckling Values of Single Layer Isotropic Conical Shell under Axial Compression (Pa)

SS 1



PH



E.2 Buckling Values of Single Layer Isotropic Conical Shell under Outer Pressure (qcr)

ss1:
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E.3 Buckling Ratio of Single Layer Isotropic Conical Shell under Axial Compression (Pcr/Pclassical)

SS1:
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1 /1
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E.9 Buckling Values of Single Layer Orthotropic Conical Shell under Axial Compression (Pcr)
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	50.0	 1645.69 (17) 302.95 (10) 143.70 ( 9)

	

60.0 	 1258.89 (17) 214.06 (10) 	 97.17 ( 9)

	

70.0 	 850.06 (17) 132.72 ( 9) 	 56.44 ( 8)

	

80.0 	 428.06 (17) 	 61.81 ( 8) 	 23.75 ( 7)

101.52 ( 9)
67.76 ( 8)
38.50 ( 8)
15.27 ( 6)

129

SS1:
R 1/h=100.0 vxø=0.300 vøx=0.03000 Ex=30x106 psi
alpa \ L/R 1 	0.2	 0.5 	 0.8
0.0 	 528.29 (28)
1.0 	 527.30 (28)
5.0
	

521.79 (28)
10.0
	

511.47 (29)
20.0
	

479.77 (29)
30.0
	

435.46 (29)
40.0
	

379.73 (30)
45.0
	

348.29 (30)
50.0
	

314.79 (30)
60.0
	

242.53 (30)
70.0
	

164.73 (31)
80.0
	

83.26 (31)

alpa \ L/R 1 	0.2
0.0 	 343.86 (33)
1.0	 343.23 (33)
5.0
	

339.63 (34)
10.0
	

332.82 (34)
20.0
	

312.46 (34)
30.0
	

283.57 (35)
40.0
	

247.51 (35)
45.0
	

227.10 (36)
50.0
	

205.28 (36)
60.0
	

158.19 (36)
70.0
	 107.49 (36)

80.0
	

54.35 (36)

95.79 (13)
95.26 (13)
92.88 (13)
89.43 (13)
81.07 (14)
70.78 (14)
59.55 (14)
53.70 (14)
47.76 (14)
35.75 (14)
23.74 (14)
11.83 (14)

0.5
58.65 (14)
58.37 (14)
57.12 (14)
55.05 (15)
50.12 (15)
44.25 (16)
37.56 (16)
34.05 (16)
30.45 (16)
23.03 (16)
15.43 (16)
7.73 (16)

49.66 (10)
49.18 (10)
47.18 (10)
44.55 (10)
38.33 (11)
31.98 (11)
25.65 (11)
22.57 (11)
19.58 (11)
13.96 (11)
8.80 (10)
4.21 (10)

Ex=30x106 psi
0.8

28.09 (11)
27.80 (11)
26.62 (11)
25.12 (11)
21.99 (11)
18.57 (12)
15.13 (12)
13.44 (12)
11.79 (12)
8.59 (12)
5.59 (12)
2.74 (12)

E4,=3x106 psi Gxø=1.15x106 psi
1.0

38.65 ( 9)
38.19 ( 9)
36.33 ( 9)
33.60 (10)
28.20 (10)
22.99 (10)
17.99 (10)
15.60 (10)
13.33 (10)
9.19 (10)
5.59 ( 9)
2.58 ( 9)

Eø=1.5x106 psi Gx4=5.77x105 psi
1.0

21.28 (10)
20.99 (10)
19.82 (10)
18.42 (10)
15.71 (10)
12.90 (11)
10.23 (11)
8.97 (11)
7.76 (11)
5.51 (11)
3.46 (10)
1.66 (10)

Eø=1x106 psi Go=3.85x105 psi
1.0

15.09 (10)
14.90 (10)
14.15 (10)
13.24 (10)
11.30 (11)
9.38 (11)
7.54 (11)
6.65 (11)
5.79 (11)
4.16 (11)
2.67 (11)
1.30 (11)

SS1:
R 1 Th=100.0 v0=0.300 vøx=0.0.1500

SS 1:
R 1 /11.100.0 v x4=0.300 vøx=0.01000 Ex=30x106 psi
alpa \ L/R 1 	0.2	 0.5 	 0.8
0.0 	 270.25 (37) 	 45.07 (15) 	 20.43 (11)
1.0	 269.74 (37) 	 44.87 (15) 	 20.25 (11)
5.0 	 266.90 (37) 	 43.87 (16) 	 19.50 (11)
10.0 	 261.66 (37) 	 42.35 (16) 	 18.53 (12)
20.0 	 245.58 (38) 	 38.74 (16) 	 16.21 (12)
30.0 	 222.99 (39) 	 34.24 (17) 	 13.85 (12)
40.0 	 194.60 (39) 	 29.23 (17) 	 11.42 (13)
45.0 	 178.58 (39) 	 26.56 (18) 	 10.19 (13)
50.0 	 161.47 (40) 	 23.78 (18) 	 8.98 (13)
60.0 	 124.44 (40) 	 18.03 (18) 	 6.62 (13)
70.0 	 84.56 (40) 	 12.11 (18) 	 4.35 (13)
80.0 	 42.76 (40) 	 6.08 (18) 	 2.15 (13)

SS 1:
R 1/h=100.0 vo=0.300 vøx=0.00750 Ex=30x106 psi Eø=7.5x105 psi Go=2.88x105 psi
alpa \ L/R I 	0.2	 0.5 	 0.8 	 1.0
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E.28 Buckling Ratio of Single Layer Isotropic Conical Shell under Axial Compression (Pcr/Pclassical)
Compare with Existing Data
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 APPENDIX F

PROCEDURE FOR BUCKLING ANALYSIS

The steps are from reference [3].

Step 1: Build the model

Specify the jobname and analysis title and then use PREP7 to define the element types,

element real constants, material properties, and the model geometry.

Points to Remember

• Only linear behavior is valid.

• Young's modulus(EX) (or stiffness in some form) must be defined

Step 2: Obtain the static solution:

The procedure to obtain a static solution with the following exceptions:

• Prestress effect [PSTRES] must be activated.

• Unit load are usually sufficient (that is, actual load values need not be

specified). All loads are scaled. (Also, the maximum permissible eigenvalue is

1,000,000 - you must use larger applied loads if your eigenvalue exceeds this

limit.)

• You can apply a non-zero constraint in the prestressing pass as the static load.

The eigenvalues found in the buckling solution will be the load factors applied

to these non-zero constraint values.

• At end of the solution, leave SOLUTION [FINISH]

Step 3: Obtain the eigenvalue buckling solution
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This step requires files Jobname.EMAT and Jobname.ESAV from the static

analysis. The following tasks are involved in obtaining the eigenvalue buckling solution:

1.Enter the ANSYS solution processor.

GUI Path: Main Menu>Solution

2. Define the analysis type and analysis options.

Option: New Analysis [ANTYPE]

Choose New Analysis. Restarts are not valid in an eigenvalue buckling

analysis.

Option: Analysis Type: Eigen Buckling [ANTYPE]

Choose Eigen Buckling analysis type.

Option: Eigenvalue Extraction Method [BUCOPT]

Choose one of the following solution methods. The space iteration method

is generally recommended for eigenvalue buckling because it uses the full

system matrices. (If you choose the reduced method, you will need to

define master degrees of freedom before initiating the solution.)

• Reduced (Householder) method

• Subspace iteration method

Option: Number of Eigenvalues to be Extracted [BUCOPT]

Default to one, which is usually sufficient for eigenvalue buckling.

Option: Shift Point for Eigenvalues Calculation [BUCOPT]

This option represents the point (load factor) about which eigenvalues are

calculated. The shift point is helpful when numerical problems are

encountered (due to negative eigenvalues, for example). Defaults to 0.0.
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Option: Number of Reduced Eigenvectors to Print [BUCOPT]

This option is valid only for the reduced method. This option allows you

to get a listing of the reduced eigenvectors (buckled mode shapes) on the

printed output file (Jobname.OUT).

3. Specify load step options.

The only load step options valid for eigenvalue buckling are expansion

pass options and output controls. Expansion pass option are explained next

in step 4. You can request buckled mode shapes from the reduced method

to be included in the printed output. No other output control is applicable.

GUI Path: Main Menu>Solution>-Load Step Opts- Output

Ctrls>Solu Printout

4. Save a back-up copy of the database to a named file.

GUI Path: Utility Menu>File>Save As

5. Start solution calculations.

GUI: Main Menu>Solution>-Solve-Current LS

The output from the solution mainly consists of the eigenvalues, which are printed

as part of the printed output (Jobname.OUT). The eigenvalues represent the

buckling load factors; if unit load were applied in the static analysis, they are the

buckling loads. No buckling mode shapes are written to the data base or the result

file, so you cannot postprocess the results yet. To do this, you need to expand the

solution (explained next).
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Sometimes you may see both positive and negative eigenvalues calculated.

Negative eigenvalues indicate that buckling occurs when the loads are applied in

an opposite sense.

6. Leave the SOLUTION processor.

GUI: Close the Solution menu.

Step 4. Expand the solution.

To review the buckled mode shape(s), the solution must be expanded regardless of which

eigenvalue extraction method is used. In the case of the subspace iteration method, which

uses full system matrices, you may think of "expansion" to simple mean writing buckled

mode shapes to the results file.

Step 5. Review the results.

Results from a buckling expansion pass are written to the structural results file,

Jobname.RST. They consist of buckling load factors, buckling mode shapes, and relative

stress distributions in POST1, the general postprocessor. To review results in POST1, the

database must contain the same model for which the buckling solution was calculated

(issue RESUME if necessary). Also, the results file (Jobname.RST) from the expansion

pass must be available.

1. List all buckling load factors.

GUI: Main Menu>General Postproc>Results Summary

2. Read in data for the desired mode to display buckling mode shapes. (Each

mode is stored on the results file as a separate substep.)
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GUI: Main Menu>General Postproc>-Read Results-loadstep

3. Display the mode shape.

GUI: Main Menu>General Postproc>Plot Results>Deformed Shape

4. Contour the relative stress distributions.

GUI: Main Menu>General Postproc>Plot Results>-Contour Plot-Nodal

Solution or

Main Menu>General Postproc>Plot Results>-Contour Plot-Element

Solution
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