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ABSTRACT

JOINT SOURCE CHANNEL CODING
FOR PROGRESSIVE IMAGE TRANSMISSION

by
Minyi Zhao

Recent wavelet-based image compression algorithms achieve best ever performances

with fully embedded bit streams. However, those embedded bit streams are very

sensitive to channel noise and protections from channel coding are necessary. Typical

error correcting capability of channel codes varies according to different channel

conditions. Thus, separate design leads to performance degradation relative to what

could be achieved through joint design. In joint source-channel coding schemes,

the choice of source coding parameters may vary over time and channel conditions.

In this research, we proposed a general approach for the evaluation of such joint

source-channel coding scheme. Instead of using the average peak signal to noise

ratio (PSNR) or distortion as the performance metric, we represent the system

performance by its average error-free source coding rate, which is further shown

to be an equivalent metric in the optimization problems.

The transmissions of embedded image bit streams over memory channels and

binary symmetric channels (BSCs) are investigated in this dissertation. Mathe-

matical models were obtained in closed-form by error sequence analysis (ESA). Not

surprisingly, models for BSCs are just special cases for those of memory channels.

It is also discovered that existing techniques for performance evaluation on memory

channels are special cases of this new approach. We further extend the idea to

the unequal error protection (UEP) of embedded images sources in BSCs. The

optimization problems are completely defined and solved. Compared to the equal

error protection (EEP) schemes, about 0.3 dB performance gain is achieved by

UEP for typical BSCs. For some memory channel conditions, the performance



improvements can be up to 3 dB. Transmission of embedded image bit streams in

channels with feedback are also investigated based on the model for memory channels.

Compared to the best possible performance achieved on feed forward transmission,

feedback leads to about 1.7 dB performance improvement.
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CHAPTER 1

INTRODUCTION

Recent advances in image compression techniques result in very efficient and

resourceful representations of images in noiseless environment. When transmitted

in noisy channels unprotected, those bit streams are easily corrupted and both the

objective and subjective reconstructed image qualities are unacceptable in most

cases. In fact, detailed analysis of the simulations shows that a single bit of error

may destroy the whole bit stream due to error propagation. Generally speaking,

this is because compactly compressed data is very sensitive to errors and those

algorithms are no exceptions either. Thus, some form of channel protections are

necessary for robust image communications. Of the various protection schemes, the

concatenated cyclic redundancy check code and rate-compatible punctured convolu-

tional code (CRC-RCPC) channel protection proposed by Sherwood [57] et al is very

promising (Figure 1.1). However, both the source and channel codes in the scheme

are developed under Shannon's "separation principle" which assumes impractical

conditions such as known channel conditions, equal importance of source codes, and

perfect channel codes etc. Those assumptions are more and more violated in modern

communication systems. Considering other limitations such as bandwidth, delay,

power constraints, and time-varying channel conditions etc., joint design of source

and channel coding schemes provides the possibility of achieving the best possible

system performances.

Conventionally, the performance of image transmission system in Figure 1.1 is

represented by average PSNR at point A [57, 58, 36]. Given a channel code set, the

best overall system performance is obtained by trying each rate of the channel code

set with Monte Carlo (MC) simulations and picking out the one that generates the

highest average peak signal to noise ratio(PSNR). Obviously, the method is a PSNR-

or distortion-based approach. While such a method is straightforward and simple

1
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for channel types such as binary symmetric channels (BSCs), its complexity quickly

goes up for more practical channel types such as memory channels and channels

with feedback information. Other limitations of the method include its dependence

on images and source codec used for optimization.

In this dissertation, the joint source-channel coding (JSCC) problem for

progressive image transmissions in different channel types and conditions are inves-

tigated with a new rate-based approach. The key idea is that the performance of

embedded image sources transmitted over a general noisy channel (without any

type limitations) can also be represented by the average first error-free run length

(FEFRL) of the bit streams. Moreover, maximization of the average FEFRL is

shown to be equivalent to the maximization of the average PSNR. Along this

direction, the expressions for the average FEFRL for both memoryless and memory

channels are obtained, all in closed-form. The optimization problem is greatly

simplified with the source model. The approach is then further extended to the

channels with feedback information by adding a rate control algorithm. With this

proposed approach, we also investigate the topics such as performance upper bounds

for unequal error protection (UEP) and memory channel transmissions, motion

effects on the quality of progressively received images. It is also shown that some of

the existing approaches for performance evaluation on memory channels are simply

special cases of the proposed method. Significant performance can be achieved with

this new approach on some memory channel conditions. It is also of interest to note

that the performance optimization algorithms for embedded image transmission over

memoryless, memory, and feedback channels are similar with the proposed source

model.
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1.1 Background and Motivation

With the exploitation of discrete wavelet transform (DWT), new quantization

techniques, and improving entropy coding algorithms, significant performance

improvements have been achieved by recent image compression algorithms [56,

54, 65, 73, 34, 64, 32, 8]. The bit streams produced by those algorithms share

some common features such as embeddedness, reducing bit significance and error

sensitivity to channel noise. The embeddedness property can be used for progressive

image transmissions and provides the possibility of exact rate control which is

highly desirable in multimedia communications. However, the error sensitivity

generates serious problems when the bit streams are transmitted in noisy channels.

Generally speaking, the error sensitivity comes from the variable length coding (VLC)

techniques which are inevitably used in all kinds of high performance compression

algorithms. The error sensitivity can be so serious that the first bit error can

propagate to the end of the bit stream and destroy the received image quality

thoroughly. Thus, some form of channel protection is needed when such bit streams

are transmitted in a noisy environment. A protected progressive image transmission

system is depicted in Figure 1.1 in which the concatenated CRC-RCPC scheme

proposed in [57] is selected as the protection method. Of course other channel

coding schemes may also be used for the channel coding block.

Figure 1.1 Progressive image transmission system
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Of many forward error correction (FEC) schemes, the concatenated

CRC-RCPC is preferable because of its simplicity of implementation, flexibility of adjusting

protection levels in and between noisy channels, and good performance compared to

other schemes. If an embedded source coder is used, then both the source and

channel coding in Figure 1.1 are realized with one codec. The scheme is capable

of dealing with different channel conditions by using different bit rate allocations.

Moreover, progression is inherent in such a scheme, which is highly desirable in

numerous applications. A main reason for the good performance of the system is that

the embedded source and channel codec allows flexible bit rate allocation between

source and channel coding which is necessary to achieve optimal system performance.

As the assumptions for the "separate" design are more and more violated in

modern communications, it is of interest to investigate the problem of optimizing the

overall system performance by considering the source and channel coding schemes

jointly. Simply speaking, the general joint source-channel coding problem that is

dealt with in the research is:

Given a bit rate constraint and RCPC code set on a channel, how to evaluate

and optimize the system performance?

Consider the situation in which some bit streams with equal lengths are trans-

mitted over a noisy channel, as depicted in Figure 1.1. Conventionally, the system

performance in Figure 1.1 is represented at point A by the average PSNR. The

performance optimization problem can then be solved by trying each RCPC code

rate in the code set with Monte Carlo simulations on a selected image set and

selecting the rate that gives out the highest average PSNR. While such a method is

straightforward and simple for channel types such as BSCs, its complexity quickly

goes up for UEP schemes and memory channels. Furthermore, the optimization

results are dependent on the images and source codec used in the optimization. A

new and general approach for this problem is proposed in the dissertation. A re-
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check of Figure 1.1 immediately shows that by using average PSNR as the system

performance metric, the subsystems are lumped together in the approach so that

any performance variations can only be observed after numerous times of source and

channel decoding. If the system performance is evaluated at point B instead of A

using the average first error-free run length (FEFRL), a PSNR can also be obtained

from average FEFRL accordingly with only one source decoding. By doing so, the

subsystems right to point B can be treated as an "effective" channel which is general

enough to accommodate common channel types such as memoryless and memory

channels. Obviously, performance evaluation at point B is independent of both

the images and specific embedded image codec involved. Furthermore, the average

FEFRL for the aforementioned channel types can all be expressed in closed-form

which greatly simplifies the optimization problem.

It may seem strange that a "joint" source-channel coding problem is solved by

"separating" the subsystems. In fact, it can also be thought of a "joint" source-

channel coding approach with one subsystem (the source decoder here) treated

differently while the rest of the whole source-channel coding system is still optimized

jointly. This point becomes more clear in later chapters when the relationship

between the conventional and proposed approach is revealed.

The first task in the joint source channel-coding problem is modeling the

source. By analyzing the behavior of embedded image bit streams transmitted in

noisy channels, a rate-based approach is proposed to evaluate the overall system

performance. Such an approach is applied to the BSC cases first and some inter-

esting results were obtained. After that, the idea is extended to the performance

optimization of the UEP schemes, which is a more challenging problem. The joint

source channel coding problems associated with UEP are clearly defined and complete

solutions on BSCs presented.
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The memoryless channels or BSCs are quite useful in comparing different

optimization techniques. However, they might be too simple to accommodate

practical communication scenarios. Historically, two state finite state Markov chain

(FSMC) or Gilbert-Elliott (G-E) channels are extensively used to approximate slow

fading channels [35, 1, 36] encountered in wireless communications. Performance

evaluations for such kinds of channels can be put into either single- or double-state

category. For the single-state method, either the "worst" state or the average bit

error rate (BER) is used to further simplify the memory channel model [35, 58]. Two-

state approaches include using the error-free or error-burst run lengths of the G-E

model, or obtaining the average FEFRL by statistical averaging method [78, 61, 10].

However, those two-state approaches also imply some unrealistic assumptions. For

example, the states transit only after a whole image bit stream has been trans-

mitted and the bit stream lengths are infinite. Obviously, those assumptions are

not reasonable in practical systems. To solve the problems we proposed a new

techniques called error sequence analysis (ESA) in this dissertation. With error

sequence analysis, the average FEFRL model is obtained in closed-form for FSMC

channels. Interestingly, previous results on BSCs and existing techniques can be

easily shown to be special cases of it. An added advantage of the source models

derived from ESA is that they do not impose any limitations on the structure of the

memory channels used. Thus, the memory channel approximation for the fading

channels can be more accurate, with new models available.

The basic CRC-RCPC system is also well suited for the automatic repeat

request (ARQ) schemes on channels with feedback information. According to the

information theory, the overall communication system performance can be further

improved with feedback information at the price of time delay. In wireless communi-

cations, such kind of feedback channels usually exist and can be used to obtain better

performance through ARQ schemes at the price of delay or throughput reduction. In
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this dissertation, the results of ESA are applied to the channels with feedback cases

with the aid of water-filling rate control technique. The optimization algorithms for

type-I and -II stop-and-wait hybrid FEC/ARQ schemes are presented. For typical

wireless communication scenarios, the additional delay incurred by the stop-and-

wait strategy is shown to be close to that of the FEC scheme. Furthermore, no

additional system overhead is incurred in the form of packet number within the

proposed scheme.

1.2 Overview of the Dissertation

The dissertation proposes to tackle the problem of optimizing the overall system

performance of progressive image bit streams transmitted over noisy channels, or

source-optimized channel coding. Unlike the conventional distortion-based method

which treats the source coding system as a whole, a rate-based approach is proposed

to evaluate the system performance with its error-free source coding rate. This rate-

based approach is exploited to investigate the joint source-channel coding problem

for several types of channels, i.e. memoryless or BSCs, deterministic time varying

channels for UEP schemes, FSMC channels and channels with feedback information.

Chapter 2 briefly reviews the embedded zerotree based image coding algorithms

and the multi-resolution channel codes. The joint source-channel coding problem

for progressive image transmission is then introduced after modeling the embedded

image sources transmitted over a general noisy channel.

Chapters 3 explains the relationship between the proposed rate-based approach

and the conventional distortion-based approach. The rest of the chapter deals with

the joint source-channel coding problem on BSCs. The mathematical source model

is presented in closed-form. Performance optimization algorithms are developed

based on the model. The idea is then extended to the UEP cases. Topics covered
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include problem definition and complete solution for UEP schemes on BSCs, system

performance upper bounds and PSNR improvements.

Chapter 4 formulates the joint source-channel coding problem on memory

channels which are used to approximate fading channels in wireless communications.

Both the ESA and the source model obtained are presented. The result is then shown

to include models on BSCs and existing techniques as special cases.

Chapter 5 investigates the joint source-channel coding problem on channels

with feedback information. Optimization algorithms for type-I and -II hybrid ARQ

schemes with stop-and-wait strategy are developed. Delay analysis and performance

improvements are also reported.

In Chapter 6, previous research is summarized together with a contribution

list. Ongoing and future work are also reported in Chapter 6.



CHAPTER 2

SCALABLE SOURCE AND CHANNEL CODING AND THEIR
COMBINATIONS

2.1 Introduction

The fast progress in the technologies such as coding techniques, VLSI and commu-

nication theory enables more and more information and services be provided by

modern communication systems. Contents that can be transferred among end users

are encircling speech, data, and multimedia contents such as images, video, audio etc.

Usually huge amounts of data with different delay and error sensitivity are generated

from those sources and transmitted over a heterogeneous communication network.

The heterogeneity of networks refers to the facts that the same network can be used

for singlecasting for transmitter to user receiver and multicasting for transmitter to

users with different receiver capability at the same time, and the transmission media

such as wireless and wireline linkage coexist. Channel capacities for wireless link

and some wirelines such as copper lines are very limited. Thus, information needs

to be compressed before transmitted over such communication channels. Different

receiver requirements on the quality of service and computational capabilities also put

additional scalability constraints on the compression algorithms such as data scala-

bility and algorithm simplicity. Highly scalable data ensures that no performance

penalty will be incurred when truncated, and low complexity reduces the decoding

load and the power consumption for the receivers. Thus, general requirements on

content processing or efficient source representation are at least threefold, i.e., high

compression, high scalability and low complexity. In the dissertation, the discussion

is limited to image representations. However, the results are applicable to any

multimedia streams possessing the same embedded nature.

Recent DWT-based image coding algorithms such as embedded zerotree for

wavelet (EZW) and its derivative set partitioning in hierarchical trees (SPIHT) etc.

9
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satisfy all three requirements. Loosely speaking, the reason for such impressive

coding performance lies in the fact that DWT is a multi-resolution decomposition in

nature. Appropriate exploitation of such a feature produces high scalability together

with good compression. The algorithm simplicity originates from the tree-structured

data defined in the transform domain and the efficient set partitioning rule for the

zerotrees. Such zerotree-based wavelet image coders can be viewed as two-class (zero

and non-zero) classification strategy on statistical modeling in the frequency domain.

However, the variable length coding (VLC) techniques used in such kind

of compression algorithms also make the data streams very sensitive to channel

noise. When those bit streams are transmitted in noisy environments, some channel

protections are necessary in order to get acceptable image quality. Now the problem

is how to achieve the best reconstructed image quality under some bit rate constraint

for different channel conditions by corresponding bit rate allocations between source

and channel coding schemes? Solution to such a problem depends on several

factors such as bit rate constraint, channel conditions, source and channel coding

performances and even optimization algorithms. It is apparent that such a jointly

optimized system also requires channel code scalability so that no performance

penalty is incurred due to different allocation strategies.

2.2 Scalable Image Coding Algorithms

A typical transform coding algorithm for image compression is composed

of three parts. Namely a transformation which aims to remove the correlations

among image pixels, a quantizer which compresses the data to be transmitted and

a lossless entropy coding engine. One implementation of such a scheme is the well

known JPEG image compression standard. It uses discrete cosine transform (DCT)

to decorrelate the image pixels. Run-length coding based quantization procedure

further compresses the data. The performance of JPEG is greatly surpassed recently
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by the new generation DWT-based algorithms. Common features of those new

algorithms include high compression, rate or performance scalability of bit streams,

multi-resolution representation, and algorithm simplicity. The reasons for the

excellent performance and flexibilities over DCT-based coding techniques lie in the

fact that each component of the basic transform coding scheme has been improved.

More specifically, the DWT provides better energy compaction and space-frequency

resolution than DCT. The multi-resolution property of DWT also makes the scheme

suitable for integrating human vision system. In the quantization process, the

residual correlations between subbands are efficiently utilized by those algorithms

with new data structure such as zerotree. One common feature of the bit streams

generated by those algorithms is the embeddedness which enables precise rate control

for both encoding and decoding without any sacrifice in the reconstructed image

quality. In this section, the new algorithms based on zerotrees [56, 54] will be

briefly reviewed and the structure of the embedded bit streams and their behavior

in noisy channels analyzed. An after-channel source model is then set up based on

the analysis.

2.2.1 Wavelet Zerotrees

A typical image is composed of large area of textured background with high

statistical spatial correlation and a small portion of object edges or boundaries.

While those low frequency backgrounds contribute most of the signal energy of the

image, the high frequency edges take on more perceptual significance. DCT based

coders decompose images into equal bandwidth subbands, thus pixel correlations at

high frequency can not be removed effectively. This inefficiency gets punished at low

bit rates and results in blockiness.

Wavelet transform provides a multi-resolution representation for the images in

which all frequency components can be decorrelated efficiently. A typical octave-
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band decomposition or DWT is illustrated in Figure 2.1(a). The image is first

critically sampled and divided into four subbands. Coarser "scale" coefficients are

then obtained by identical operations on the low-low bands. Thus, there are three

subbands for each scale and the remaining lowest frequency represents the infor-

mation at all coarser scales. Within such a multi-resolution representation, infor-

mation for edges is contained in the position of a large number of small valued coeffi-

cients at fine scales. The remaining challenge is how to make effective usage of the

multi-resolution representation to code the information corresponding to edges. A

direct visual inspection of the transform coefficients indicates that the residual corre-

lations among the coefficients manifest as self-similarities across subbands. This self-

similarity can be well exploited by defining a tree-structured data in the transform

domain (Figure 2.1(b)). If all the elements of the tree are smaller than a pre-defined

threshold T, it is called a zerotree. By using such a data structure on dyadicly

decomposed image data, lots of coefficient can be coded together or 'jointly', thus

greatly increasing the efficiency of coding.

The first implementation of the zerotree concept was reported in [33]. Its

incompleteness was later on corrected in EZW [56] and obtained better performance

than that of DCT-based JPEG. SPIHT [54] further improves the coding efficiency

of EZW by adding a set partitioning rule on the tree-structured data and achieves

state-of-the-art rate-distortion performance, with an astonishing simple algorithm.

After the transform, compression and embedding can be achieved at the same

time by using zerotrees with bit plane encoding. By representing the absolute values

of the 2-D matrix of DWT coefficients in binary form, 2-D bit planes are formed from

the highest, i.e. the one includes the most significant bit of the largest coefficient,

to lower ones. Residual correlations among the coefficients still exist and exhibit as

self-similarities across scales in significance maps. This self-similarity can be well
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Figure 2.1 DWT and zerotree structure

exploited by using the tree-shaped data structure depicted in Figure 2.1(b). In a

dyadic subband system, with the exception of the highest frequency subbands, every

coefficient at a given scale can be related to a set of coefficients at the next finer

scale of similar orientation. If the magnitudes of all the elements in such a tree are

smaller than a predefined threshold value, it is called a zerotree. The zerotree is

based on the hypothesis that if a wavelet coefficient at a coarse scale is insignificant

with respect to a given threshold T, then all the wavelet coefficients of the same

orientation in the same spacial location at finer scales are likely to be insignificant

with respect to T. Such a hypothesis is almost always true for each bit plane. In other

words, the self-similarities in the bit plane are well predicted by the zerotrees. The

zerotrees in higher bit planes might be very large since the total number of elements

increases quickly with finer scales. Due to the good energy compaction of DWT, the

percentage of zerotrees is high, especially at higher bit planes. Furthermore, zerotrees

at all scales are self-terminating at the transform coefficient matrix boundaries so

there is no need to send additional symbols to describe their extent.
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The zerotree concept is used in the EZW algorithm to obtain fully embedded

image bit streams with better performance than that of DCT-based JPEG. The basic

idea of EZW is to code each zerotree on a bit plane with only one symbol. Since the

probability p of a zerotree on a bit plane is close to 1, and its information content

— log p is very small. This corresponds to the spirit of entropy coding in which a

random variable with high probability should be encoded with the shortest possible

symbol string. In EZW, quantization is done by scanning each bit plane in two passes.

In the first or dominant passes, the zerotrees and non-zerotrees are differentiated

and coded separately. In fact there are four possibilities for each significance test, a

zerotree (ZT), a significant element (POS or NEG), or an isolated zerotree (ISZ) with

one or more significant elements somewhere down the tree. By using two symbols to

represent a significant element, the sign information and the significance are coded

together to generate embedded symbol stream. The position information of the

significant elements are implied through execution path which can be duplicated

at the decoder. For isolated zerotrees, they are coded with the ISZ symbol which

signals more search is needed in finer scales, for both the encoder and decoder. On the

second or subordinate passes, the magnitude of all the significant elements are coded

and refined. There are further technical details regarding the priority of the wavelet

coefficients and adaptive arithmetic coding which will not be further discussed here.

The interested reader is referred to [56] for more details.

The encoding strategy of zerotrees in the EZW is very efficient but its treatment

of significant elements and isolated zerotrees can be further improved. This is imple-

mented in its derivative SPIHT [54] and achieves additional 0.3-0.6 dB gain. The

SPIHT algorithm improves the coding efficiency on non-zerotrees by using set parti-

tioning rules on the tree-structured data and coding each non-zerotree immediately

after it is discovered. In the set partitioning rule, a tree T(i, j) stemming from a

coefficient at position (i, j) is divided into root element R(i, j) and its descendant
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set D(i, j), i.e.

The descendant set D(i, j) is further divided into offspring set 0(i, j) of R(i, j) and

leaf set L(i, j), i.e.

By using such a set partitioning rule in the sorting passes on a bit plane, a whole

non-zerotree is coded without multiplexing with binary codes from any other trees.

As in EZW, a zerotree is always coded with a "0" and all the significant elements

are coded together with its sign and refined in the refinement passes. Surprisingly,

performance gains from this simple idea is about 0.6 dB over EZW.

Both EZW and SPIHT use adaptive arithmetic coding to further compress

the output data streams from the zerotree encoder. But it is a must for EZW to

surpass the performance of JPEG and generate binary bit streams. The encoding

engine of SPIHT is binary and the bit stream is so efficient that its performance

is better than EZW without using any entropy coding. Thus, SPIHT obtains even

better performance than EZW with simple and symmetric algorithms for encoder

and decoder while the bit stream is also fully embedded.

2.2.2 Embedded Bit Streams

Bit streams generated by EZW and SPIHT are fully embedded or progressive,

i.e. for two given rates R 1 > R2, the rate R2 code is a prefix to the rate R 1 code.

Such property is of great practical interests for the following reasons

• the encoder can achieve a precise bit rate;

• the decoder can cease decoding at any point and generate the best possible

image quality. This is of practical interest in a heterogeneous communication

environment;
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• it is very useful for indexing and browsing.

The embeddedness property varies slightly from algorithm to algorithm. While

EZW and SPIHT generates fully embedded bit streams, JPEG2000 bit streams

are partially embedded with a controllable number of scalable points. The SPIHT

algorithm is used as the source codec throughout the dissertation. For the bit streams

produced by SPIHT, sub-streams from sorting and refinement passes are multiplexed

together from bit plane to bit plane. Sign bits are multiplexed in the sorting pass

bits. Besides the rate scalability for any point of the bit stream, there are additional

self-terminating points corresponding to the end of each bit plane.

Such efficient bit streams are built to be transmitted in noiseless channels and

are quite sensitive to channel noise. In fact, computer simulations show that bit

errors propagate in the bit streams and all the information received after the first

bit in error can not be used in image reconstruction (Figure 2.2). Thus, the quality

of the reconstructed image can be either represented by the PSNR reached before

the first bit error happens (Figure 2.2(c)), or equivalently by the first error free run

length (FEFRL) of the bit stream.

The behavior of embedded bit streams in noisy channels can be explained as

follows. Since VLC bits are used to encode the significance maps in sorting passes,

bit errors will cause the decoder lose synchronization and propagate to the end of the

bit stream. For the SPIHT algorithm, VLC bits are extensively used in its sorting

passes and multiplexed with fixed length coded (FLC) bits to generate very efficient

embedded bit streams. In fact, the whole fully embedded bit stream of SPIHT can

be treated as a prefix codeword, i.e., it is self-puncturing. Moreover, each added bit

is also self-puncturing. Consequently, for an error-free bit stream, correct decoding

of the current bit does not depend on its future bits but previous ones. When a

bit error happens in the VLC bits of such an embedded bit stream, the decoder

will lose synchronization because correct backward references will be impossible.
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The error will then propagate to the end of the received bit stream and make the

decoded images unacceptable in most cases. In other words, all the bits received

after the first error bit are unusable. Bit errors after the first one will make the

reconstructed images even worse. Thus, further decoding will be destructive rather

than constructive and the PSNR of the reconstructed images will begin to decrease at

that point. On the other hand, the sign bits multiplexed in sorting passes and all the

refinement bits are FLC bits. Errors on those bits are localized to a single elements

in transform domain and do not propagate. But due to the good energy compaction

property of the DWT, the percentage of FLC bits are low, especially at low bit rates.

It is reasonable to assume that the first bit error in the bit streams always hits a

VLC bit and the decoding should stop just before it. Thus, the performance of

the embedded image sources transmitted over noisy channels can be represented by

either the PSNR obtained from the FEFRL or simply by the FEFRL model itself.

2.3 Multi-resolution Channel Coding

From the discussion in previous section, it is known that the significance or the

amount of information of each bit decreases along the embedded bit stream. Thus,

bit errors at different locations of the bit stream cause different amount of additional

distortion. With such knowledge of the embedded image bit streams, it is desirable

for the channel code to provide different levels of error protection for different parts

of the bit stream. This can be done by using a multi-resolution channel code, which

might be in the form of block codes, trellis codes, or convolutional codes. The

rate-compatible punctured convolutional (RCPC) codes [28] are used as the channel

codes in the research since it provides the additional rate-compatible property which

means that all the code bits of a higher rate code are usable by the lower rate

codes, or in other words, the higher rate codes are embedded into the lower rate

codes of the family. If the higher rate codes are not sufficiently powerful to decode
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channel errors, only supplemental bits which were previously punctured have to be

sent in order to upgrade the code. This makes the RCPC code well suited for hybrid

forward error correction/automatic repeat request (FEC/ARQ) channel protection

and jointly designed source channel coding schemes. Furthermore, since codes are

compatible, rate variation within a data partition or unequal error protection (UEP)

is possible to achieve with one encoder and one decoder for all the code rates. Thus,

a multiple-resolution channel code such as an RCPC code provides additional system

simplicity.

The simplicity and flexibility of the RCPC code make it an appropriate channel

code in the concatenated CRC-RCPC scheme [57] in which RCPC codes serve as error

correction codes and CRC as error detection code. The outer CRC code detects any

uncorrected errors after Viterbi decoding for the RCPC codes, so that the image

will not be corrupted by the disastrous error propagation. Such a combination is

necessary for optimal protection of embedded image sources since decoding needs to

stop just before the first error detected. The best possible performance is achieved

if the bit rate allocation between the source and channel coding is appropriate or

optimal which in turn requires multiple-rate channel codes.

2.4 Joint Source-Channel Coding

Under the separation principle, the new generation of wavelet-based source

coders assume noiseless channel conditions and produce very efficient but extremely

fragile bit streams. In fact a single bit error will propagate to the end of the bit stream

and yield catastrophic source decoding failure. On the other hand, uncorrected

channel errors are inevitable in modern communication systems, even with channel

protection. The variety of channel conditions pose the challenging problem of how

to achieve the best possible performance with the rate scalable source and channel
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codes under some bit rate constraints and in different channel types. Furthermore,

the decreasing importance of the source bit asks for unequal protection levels.

Historically, channel codes are also developed under the separation principle

which assumes equal importance of source bits. This assumption is violated for those

embedded image bit streams. Another violated assumption implied in separately

designed source-channel coding system is the imperfectness of the channel codes

which means residual errors will be present after channel decoding.

A communication system in which the source and channel codes are designed

or optimized in a dependent fashion is called "joint source-channel code (JSCC)" . It

allows for strategies where the choice of source code parameters varies over channel

conditions, and the choice of channel code parameters varies with source features and

statistics. Joint source-channel coding applies to any system in which the conditions

of the separation theorem are violated and dependence between source and channel

code arises. In summary, reliance on separation principle may result in performance

degradation relative to what could be achieved through joint design.

The noisy channel models in Figure 1.1 can be put into several categories

such as memoryless channels, predictable time-varying channels for UEP, memory

or finite state Markov chain (FSMCs) models for slow fading channels, and channels

with feedback (Table 2.1). To obtain the best end-to-end system performance with

Channel Types Feedforward (FEC) Feedback (Hybrid-ARQ)
Type-I Type-II

Memoryless EEP, UEP Optimization
Delay analysis

Code combining
Best performanceMemory ESA

Table 2.1 Channel classification

equal error protection (EEP) schemes in BSCs, conventional method such as that of

[57] allocates the bit budget between source and channel coding by conducting Monte

Carlo simulations. However, such average distortion-based method depends on the

operational rate-distortion function of the source codec and training images. It is
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almost impossible to obtain source models in closed-form. Those shortcomings make

the performance optimization very difficult for more complicated schemes such as

UEP and channel types like FSMC channels. In this dissertation, a new rate-based

approach is developed for the joint source-channel coding problem for progressive

image transmissions in various kinds of noisy channels. The basic idea is to obtain the

average FEFRL in closed-form for BSCs and maximize it with the available RCPC

code set. This idea is also applied to the challenging problem of designing optimal

UEP schemes for the embedded image bit streams in BSCs and some interesting

results are obtained.

Two-state FSMC or Gilbert-Elliott (G-E) channels are often used to approximate

flat slow fading channels encountered in wireless communication. The evaluation

of the performance of embedded image bit streams transmitted over such kinds of

channel models remains an unsolved problem. By conducting error sequence analysis

(ESA) on the received bit stream, we obtain source models in closed-form. Such

models are general enough to include previous results for BSCs and the existing

methods are shown to be special cases for ESA. Significant PSNR improvements

are expected and achieved for the time-varying channels since assumptions for the

separation principles are more severely violated here. In the research, multipath

and motion incurred Doppler effects on the system performance are all investigated.

PSNR improvements are over 3 dB better than previous results under some channel

conditions.

Feedback channels usually exist in practical communication systems. The

overall system performance for progressive image transmission can be further

improved by an ARQ scheme with feedback information at the price of additional

time delay. The basic CRC-RCPC system is also well suited for the ARQ schemes on

channels with feedback information and some efforts have been made to optimize the

performance for different ARQ schemes. In [36], the performance of type-I hybrid-
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ARQ schemes with stop-and-wait strategy on both memoryless and memory channels

are evaluated and optimized. In [12], hybrid ARQ scheme using code combining is

investigated on typical BSCs with a rate-based method. In this dissertation, the

approach developed for feed-forward channels is further extended to the feedback

channel cases by adding a water-filling rate control algorithm. System performance

for type-I and -II hybrid ARQ schemes are optimized to achieve about 1.7 dB gain

than those obtained on feed-forward channels with optimal EEP schemes.



CHAPTER 3

PROGRESSIVE IMAGE TRANSMISSION IN BINARY SYMMETRIC
CHANNELS

It is well known that variable length coding (VLC) in a source encoder makes

the output data stream very sensitive to channel noise since the receiver may lose

synchronization on decoding such errors. When transmitted in noisy channels,

proper channel protections are necessary in order to make the received image

quality acceptable. Recently, a concatenated cyclic redundancy check code and

rate-compatible punctured convolutional code (CRC-RCPC) channel coding scheme

[57] is proposed to protect the fragile embedded image and video [9, 47] bit streams

in noisy channels. The channel protection scheme is widely accepted due to its good

system performance, flexibility and simplicity. The initial attempts to optimize such

a scheme started from a simple progressive image transmission scenario in which

an embedded image compression algorithm such as SPIHT is used as the source

codec and the channels are a class of binary symmetric channels (BSCs). It is

already shown in Chapter 2 that when an embedded image coder is used, the source

decoding should stop before the first error encountered. Intuitively, the system

performance can be evaluated by the average of peak signal to noise ratio (PSNR)

obtained from the first error-free run lengths (FEFRL) of the embedded bit streams

at point A (Figure 1.1). The disadvantages of such a distortion-based evaluation and

optimization is quite obvious. The optimization results are dependent on the images

and individual source codec used and the computational complexity is high. In this

chapter, the average FEFRL is proposed to represent the system performance and

its expression in BSCs is obtained in closed form. It is shown that maximization of

average FEFRL and averagge PSNR are equivalent. Such a method is justified to

be simpler and more powerful when dealing with more complicated schemes such as

23
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unequal error protection (UEP) and channel types such as memory channels in later

chapters.

3.1 Rate-based Performance Evaluation

Consider the case in which embedded image bit streams with length L, are

transmitted over a general noisy channel. The position where the first bit error

happens is denoted as k+ 1. Obviously, the FEFRL Lsef k is a random variable

and the performance of the received bit stream can be evaluated in two ways. Since

all the information of the reconstructed image comes from the FEFRL of the bit

stream (point A in Figure 1.1), its PSNR can be expressed as

where p is used to denote the PSNR for simplicity purpose in the dissertation, Rsef =

Lsef/N is the error-free source coding rate for an N pixel image, σp= 255 according

to the PSNR definition, and D(Rs ) is the operational distortion rate function of the

source codec. f, k, and Rsef will be used interchangeably hereinafter without

further specifications. Conventionally the expectation of (3.1) is used to represent

the overall system performance

where p (Rsef ) is the probability distribution function of the error-free source rate

(or normalized FEFRL). Due to the lack of closed-form D(Rs ), (3.2) can not be

expressed in closed-form and the average PSNR (Figure 3.1) obtained from Monte

Carlo simulations is often used to represented the overall system performance on a

specific channel as
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where j = 1, 2, ..., J, J is the total number of simulations, and ρp[Rsef(j)] is the

PSNR of the jth trial obtained from (3.1).

Figure 3.1 Rate- vs. distortion-based performance evaluations

Such a system evaluation approach is widely accepted and used [57, 59, 58, 35,

36]. It is clear from (3.1), (3.2) and (3.3) that such an approach is dependent on both

the images and the source codec used. Alternatively, the overall system performance

may also be evaluated at point B in Figure 1.1 by using the average FEFRL

where L s,/ is the FEFRL of the bit stream (Figure 3.1). The corresponding PSNR

can be obtained using (3.1) as

with only one source decoding!

It is clear from Figure 3.1 that PSNR values obtained from (3.5) and (3.3)

might be different. Thus, it is of further interests to investigate the relationship

between the conventional method (3.3) and the proposed one (3.5), or equivalently,



the relationship between the average distortion

and the distortion incurred from the average error-free source coding rate D (Rsef).

A divide-and-conquer approach is used here to solve the problem. First, the

simplest case of the problem is considered in which the transmission is noiseless. For

noise-free transmissions, all the bit streams will be received error-free, i.e.

Substitutions of (3.7) into (3.3), (3.5), and (3.6), we immediately have

Next, for each of the J simulations, the complement of Rsef is defined as (Figure

where R3 = Ls /N and N is the number of pixels in an image.

It is known that for most of the current embedded image coders, the bit signif-

icance reduces along the source bit stream. In fact, due to the convexity of the

source codec rate-distortion function D(R), the additional distortion incurred by the

stop-before-error strategy in a single trial can be expressed as (see Figure 3.2)



Figure 3.2 Rate-Distortion analysis of embedded image sources

where

and JD >= 0 reflects the fact that each subsequent bit lowers AD less (Figure 3.2).

For a single experiment, the total distortion is D(j) = D(Rs) + ΔD(j) and the

average PSNR can now be expressed as

Similarly, the PSNR obtained from R sef can be expressed as

Now consider the cases in which the channels are very

clean. It will be seen later in this chapter that for very clean channels, the average

error-free source coding rate R„f is close to R3 . Thus, it is reasonable to assume

that JD —+ 0 (Figure 3.2) and (3.11) can now be written as

(3.15) means that in a small range near R3 , the convex function D(R) is approx-

imately linear in its argument. Then log /),(R) or p(R) is convex in R. Using Jensen's



with equality holds when the channel is noiseless. (3.16) means that for the embedded

image bit streams transmitted over a specific channel, the PSNR obtained from

average FEFRL is upper bounded by the average PSNR of FEFRLs.

Finally, for the general cases the assumption of (3.15) is not necessary. However,

the relationship between (3.3) and (3.5) is not clear in those cases. It should also be

noted that a direct comparison between (3.6) and 1) (Rsef) would be more persuasive.

Those are left as open problems.

3.2 Embedded Image Source Modeling

The rate-based system evaluation approach (3.4) provides a new and simple

approach to solve the system performance optimization problem linked with

progressive image transmission in noisy channels. The development of mathe-

matical models for such an approach starts from the simplest case by setting up a

scenario in which embedded source bit streams are transmitted over a BSC. The

position of the first bit error is denoted as k + 1. Obviously the first error-free run

length (FEFRL) f k of the bit stream is a random variable and its probability

density can be described by the following bi-modal geometric distribution

where E is the bit error probability (or bit error rate (BER)) of the BSC, L, is the

length of the source bit stream. With the probability distribution function (3.17),

the mean and the variance a2 of the random variable FEFRL  Lsef can be easily
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where q = 1 — c. Compared to (3.2) and (3.3), the advantages of using Rsef to

evaluate the system performance in Figure 1.1 is now obvious: it is independent of

images and the performance of source codec, and in closed-form.

It is clear from (3.18) that both the average FEFRL I,sef (or t) and its standard

deviation a are functions of the source bit stream length L3 and the bit error rate

c of the BSC. Using (3.18), the statistics of the embedded image source transmitted

over BSCs (with BER e = {10-1 , 10-2 , 10-3 } and e = {10 -5 ,10-6 }) without any

protections are depicted in Figure 3.3(a) and (b), respectively. The source coding

rate R, is selected to be in the range of 0.1 to 1 bpp for the two figures. As you

can see from Figure 3.3(a), the percentages of error-free reception are higher for

better channel conditions, which means better reconstructed image quality. It is

also discovered from this figure that for a specific channel, the percentage of average

FEFRL becomes higher at low bit rates. In other words, shorter source bit streams

require less channel protection. This discovery can be exploited to further improve

the system performance. In Figure 3.3(b), both the average FEFRLs and their

standard deviations versus the total bit rate constraint RT are plotted. Obviously,

for better channel conditions, not only the average FEFRLs becomes longer, their

spreads also get tighter. Thus, maximization of the average FEFRL does secure best
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system performance. It is also of interest to note that for BSCs with c = 10 -6 , the

whole bit stream is received almost error-free even without any channel protection.

From (3.18), it is easy to obtain

which correspond to our intuition that when a channel is noise-free, the whole bit

stream transmitted over it will be received error-free.

3.3 EEP Optimization

It is clear from Figure 3.3(a) that channel protection is necessary for the

embedded image bit streams transmitted in very noisy channels. A natural problem

is how much protection should be provided under some bit rate constraint so that the

overall system performance on a channel is the best possible? Within the scheme of

Sherwood et al. [51, the source packet length and CRC code rate are fixed. So the

only adjustable variable of the scheme is the RCPC code rate. Given some bit rate

constraint on a channel, different RCPC code rate applied to the EEP scheme corre-

sponds to different bit rate allocation strategy (Figure 3.4) which produces different

source bit stream length. Thus, the best system performance is achieved with the

RCPC code rate that gives out the highest average PSNR or the longest average

FEFRL.

3.3.1 EEP Optimization Algorithm

The mathematical model of (3.18) can be used as the target function for the joint

source-channel coding optimization problems linked with the EEP scheme. In such a

scheme the RCPC code rate is an adjustable variable and the best PSNR performance

of the whole system is achieved on a specific BSC when the optimal protection rate
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Figure 3.3 After-channel embedded source statistics
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Figure 3.4 Bit rate allocation

is used. Let RT be the total bit rate constraint in bit per pixel (bpp), Rs and R, be

the source and channel coding rates in bit per pixel, respectively. The rate R, is the

number of redundant bits needed for CRC, RCPC, and the Viterbi algorithm flush.

With the given RCPC code set on a specific BSC, the problem is to maximize the

average PSNR (or minimize the average distortion) of the received image under the

constraint of the total bit-rate with the given RCPC code rates rRcPCi E R„,, i.e.

where '1Z, Rrcpc is the RCPC code rate set with size |Rrcpc| RC PCI • Note that rRCPCi is

unitless. On BSCs, (3.20) can be solved by Monte Carlo simulations using (3.3), as

in [57, 35, 37, 5] due to the reason mentioned above.

On the other hand, (3.1) can be rewritten in the form of

Since R(D) is a non-increasing function of distortion D [18], D(Rsef) is also a non-

is a non-decreasing

function of Rsef, and log(•) is also a non-decreasing function, it can be concluded

that g(Rsef) is a non-decreasing function of Rsef. Thus, (3.20) is equivalent to the

following optimization problem

Remember that the Rsef is now available in closed-form, and the source coding rate

is constrainted by
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where

is the equavalent CRC code rate andrRCPC^ E R.R„, are the RCPC code rates.

Note that b, c, and f are the source packet length, CRC code length for each packet,

and the length of flush bits, respectively, all in bits. It is clear from (3.23) that any

increase in block length b will result in a higher equivalent CRC code rate, i.e.

This higher equivalent CRC code rate will turn into longer source bit stream

length. Under the assumption that the CRC code will detect all the residual errors,

the increase in b eventually turns into better system performance. Thus, a fair

comparison between different optimization techniques requires identical channel

conditions, bit rate constraint, and block length b.

Substitution of (3.22) into (3.18) yields

where q = 1 — c, f is the effective BER provided by the RCPC code rate rRCPCi and

RT is the bit rate constraint. With (3.25), the average FEFRL becomes a function

of the RCPC code rate and the the total bit rate constraint RT. Thus, (3.21) can be

easily solved by the following numerical method,

The results obtained from (3.26) is the strongest code on that channel so that the

longest bit streams can be received optimally. It is already known from a previous

section that the optimal protection levels might be different for bit streams with

different lengths. Thus, it might not be optimal for shorter bit streams trans-

mitted over that channel. If the performance is optimized for each individual bit
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rate constraint RT, i.e.,

thus, the optimal protection levels might differ on a channel and it is called a dynamic

EEP (dEEP) scheme.

3.3.2 Simulation Results and Discussions

It is now clear that for the progressive image transmission system depicted in Figure

1.1, its performance can be either the conventional average PSNR or the PSNR

obtained directly from the average FEFRL. Both of the methods were tested with

SPIHT on three BSCs E = 10-{1-2,3 }. The RCPC code set used in the simulation is

The total bit rate constraint RT

is in the range of [0.1, 1.0] (bpp). The source bit packet length b, number of CRC bits

c and flush bits f are 200, 16, and 6, respectively. In the analysis and simulations,

it was assumed that the probability of an undetected error after RCPC and CRC

decoding is zero.

For the three BSCs, the source coding rates Rs and Rsef versus the RCPC

code rate indexes are plotted in Figure 3.5 using (3.22) and (3.25), respectively. In

Figure 3.5(a) and (b), it can be seen that the average FEFRLs increase with stronger

protection levels (here represented by higher code rate indexes). At some point,

the average FEFRLs begin to decrease. This is because the bit stream is already

overprotected, or in other words, too much bit rate has been allocated for channel

protection. Obviously, when the source bit stream is optimally or over protected,

we have Rsef  (j) --> 0 which justifies our expectation. It is also apparent that the

optimal RCPC code rates are higher for smaller bit rate constraint or shorter bit

streams. Thus, the performance can be further improved by assigning higher code

rate at low bit rates. For the BSC with BER equals 10 -3 , the weakest RCPC code
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rate will provide the optimal protection (Figure 3.5(c)). Stronger codes will result

in overprotection and performance degradation.

For the EEP scheme, the optimal code rates obtained by both of these two

methods for the 3 BSCs are listed in Table 3.1 and plotted in Figure 3.7(a). The

equivalence of the maximization of Rsef and average PSNR for such optimization

problems is justified by the identical optimal code rate obtained for each channel.

The curve in Figure 3.7(a) is a general guideline for selecting optimal protection

levels on a class of BSCs satisfying 10' < E < 10 -1 .

Channels 10-1 10-2 10-3

Sherwood et al. [57] 8/27 8/12 8/9
Proposed method 8/27 8/12 8/9

Table 3.1 Optimal code rate comparison

The experiments of [57] were then repeated with 1000 Monte Carlo simulations

on the three BSCs using LENA and GOLDHILL images and SPIHT without

arithmetic coding. The PSNR results are depicted in Figure 3.6 together with those

by the proposed method. It is seen from Figure 3.6 that in BSCs E = 10 1 '21 , PSNR

performances by the proposed method are almost identical with, or even slightly

better than those from Monte Carlo simulations. The experiment results can be

explained as follows. In the Monte Carlo simulations of [57] and this dissertation, the

decoding stopped before the block with the first bit error. Usually, some error-free

bits in that block have to be discarded. Obviously, the new method takes some

advantages over the conventional one in this aspect. For the BSC of c = 10-3 , the

bit stream is almost error-free after RCPC decoding. The two identical curves in

Figure 3.6 correspond to the equalities of (3.8) and (3.9).



Figure 3.5 Results of RCPC code rate optimization
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Figure 3.6 PSNR comparisons of the two methods
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Dynamic EEP schemes were also implemented by assigning higher optimal code

rates for lower bit constraints and tested them in the BSCs f = 10- { 1,2} optimal

protection rate profiles for the two BSCs are plotted in Figure 3.7(b). For each BSC,

the different optimal RCPC code rate for the corresponding bit rate constraint RT

are obtained using (3.27). It is clear that for lower bit rate constraint or shorter bit

streams, the optimal protections are indeed weaker. All the PSNR results for this

simulation are obtained using (3.5) and depicted in Figure 3.8. It can be seen that

the PSNR improvement of the dynamic EEP scheme over the EEP scheme [57] is

up to 0.3 dB. Moreover, such a dEEP scheme can be overhead-free compared to the

EEP scheme since the protection profiles can be easily stored in both the transmitters

and receivers.

3.4 Progressive UEP Schemes

One important feature of the fully embedded image sources is that the bit

importance decreases along the bit streams. Thus, by reducing the protection levels

for the later part of the bit stream properly, the performance of the optimal EEP

scheme might be further improved since more source bits can be transmitted and

received correctly. It is apparent that such a UEP scheme is still progressive in nature

and the different protection levels turn the effective channel (as seen to the left of

point B in Figure 1.1) into a deterministic time-varying one (Figure 3.9). Without

lost of generality, consider an M level progressive UEP scheme where M <

The total bit stream length is first divided into M partitions, then each partition

is assigned a different protection rate. In order to achieve the best possible system

performance under UEP in the sense that the average FEFRL is maximized, both the

partition points and the protection rates for each of the bit streams partitions should

be optimized. Furthermore, the optimal partition points and protection levels need



Figure 3.7 Optimal protections for EEP and dEEP
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Figure 3.8 PSNR improvements of the dynamic EEP scheme over the EEP scheme
on SPIHT
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to be transmitted to the receivers in the headers so that the decoders know where

and how to switch among the available channel coding rates. Obviously, the increase

in the number of protection levels will result in the increase in the amount of side

information to be carried in the bit stream header, which may eventually consume

all the UEP gains from the optimization of the partition points and protection levels.

Thus, the optimization problem of progressive UEP under some bit rate constraint

on a specific channel is threefold,

Figure 3.9 Deterministic time-varying channel model for M-rate progressive UEP
schemes

1. How many protection levels are optimal?

2. For an M-rate UEP, how to partition the bit stream optimally with M — 1

partition points?

3. For a specific partition, what is the optimal code rate set for that UEP?

Obviously, the complete solutions should provide optimal results for all three

problems simultaneously.

The performance optimization for UEP schemes on BSCs has been tackled

with both distortion-based [36] and rate-based [12] approaches, on problem 3 only.

Solution on problem 2 is usually ad hoc and problem 1 is never defined explicitly

before. In this section, with the rate-based performance evaluation approach

proposed in previous sections, a closed-form embedded image source model for UEP

is developed, and complete solutions are obtained for all three UEP optimization

problems on BSCs.
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3.4.1 After-channel Source Models

For such a challenging problem, the analysis starts from the simplest UEP

scheme, i.e., the 2-rate case. First consider a BSC with bit error probability c and

source bit streams with length L, to be transmitted over it. Under equal error

protection, the average FEFRL Lsef can be expressed as in Section 3.2:

For the 2-rate UEP schemes, the two distinctive RCPC code rates generate

two 'effective' BSCs as seen by the source bit streams (see Figure 3.10). With the

FEFRL model in mind the probability distribution for the position of the first bit

error in the bit stream can be expressed as

where e l and 6 2 are the 'effective' BERs provided by the corresponding RCPC code

rate rRCPCI and 	 respectively, and

The average FEFRL can then be obtained from its probability density function (3.29)

For M-rate UEP schemes under some total bit rate constraint RT , the corre-

sponding bit stream length LT = N RT is partitioned into M sections with LT =
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Figure 3.10 Bit stream partition for 2-rate UEP schemes

∑  Li , where N is the number of pixels in an image. Each of the partitions L i is

then protected by a distinctive RCPC code with rate r RCPCi E RRCPC 
• 

The source

bit partition lengths are constrained by

where

The expression of Lsef for 2-rate UEP can be easily generalized to the M-rate

cases as

It can be verified from (3.31) that

which justifies our intuition that the whole bit stream is error-free when the channel

is noiseless.

3.4.2 UEP Optimization

As in the previous subsection, optimization attempts start from the simplest

2-rate UEP case. Let RT be the total bit rate, R, and R, be the source and channel
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coding rates, respectively. The optimal partition point L 1 and the optimal code rate

pair {rc1, rc2} are to be found such that the Lsef is maximized, i.e.

For 2-rate cases. The optimal tri-tuple for 2-rate UEP in the bit rate range is

Such tri-tuples can be obtained by the following optimization algorithm:

For 3-rate UEP, the optimal partition pair {L1 , L2 } and the optimal RCPC

code rate tri-tuple {rci , i = 1, 2, 3} are needed to be found such that the Le/ is

maximized, i.e.

under the constraints L 1 < L2 and rc1 < rc2 < rc3 . It can be solved by by the

following optimization algorithm:

1. Code rate tri-tuple {rci}{L1  ,L2} optimization: under the constraints of Rs + 	 <=

2. Partition pair optimization: under the constraint of 0 < L1 < L2 <= LT,

3. repeat 1, 2 for designated RT.
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3.4.3 Necessary Condition for UEP Gain

It is desirable to use UEP schemes only when some gains in the form of

exists, i.e. better than the optimal EEP scheme. This is because the design and

implementation of UEP schemes will eventually consume additional system resources

in the form of overhead and complexity. Suppose bit rate constraint RT, an RCPC

code rate set 'R. R, pc , and a specific channel are given, with rRCPCK as the highest

rate code in the code rate set and optimal protection rate rRCPC for EEP scheme on

that channel, a necessary condition for such UEP gain on a specific channel is given

in the following proposition:

Theorem 1 For a given RRCPC , the necessary condition for the existence of UEP

gain over optimal EEP scheme ΔLsef > 0 is 3 RT E [Rm in , Rmax] under which I-, <

rCK on that binary symmetric channel.

Proof : Consider an optimal EEP scheme with

on a channel, we have

and obviously

where L, and Ls are obtained under the same rate constraint RT. It is also easy to

verify the following fact for the channel which will be used in later proof

For the same RT, assume we have a 2-rate optimal UEP scheme by partitioning LT

into
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and the maximum error-free bit stream length is

can be rewritten in the following form

apparent that

I is apparent.

Furthermore, such derivation can be easily generalized to the M-rate UEP cases. 0

3.4.4 Upper Bounds for UEP Gain

When the necessary condition for UEP gain is satisfied, there might be some gain

to be achieved through the use of multiple rate UEP schemes. Obviously such UEP

gains are not unlimited because the protection levels can not be relaxed without

restriction and the number of available code rates are constrained by the code set.

Theoretical performance upper bound is desirable and helpful in the UEP scheme

design. Under some bit rate constraint RT, consider an optimal M >= 2 rate UEP

scheme with optimal code rate set 1.1-.c17 .-- 7 1. CM 1 E 7?-„, where Fdi < ... < F,A,/ , theL- 

average FEFRL can be expressed as

The average FEFRL

for EEP scheme under the same bit rate constraint RT is
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(3.48) can be rewritten in the following form according to the optimal partition {id
for (3.47) as

From (3.18), it is easy to obtain

Thus,

The following fact can be verified by simulations

Combining (3.47), (3.49), (3.52), and (3.53), we have the following upper bound for

UEP gains

on a specific BSC under the bit rate constraint RT.

3.4.5 Side-information and Overhead

For an M-rate UEP scheme to work properly, some additional side information such

as the partition points and the protection levels need to be transmitted in the source

header so that the receiver knows where and how to switch among RCPC code rates

along the bit stream. To reduce the amount of overhead, the length of the first and
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the second partitions for two- and three-rate UEP schemes are transmitted. Since

the source bits are divided into packets, those lengths may be represented in terms of

number of packets, thus at most 10 and 5 bits are enough for the first and the second

partitions, respectively. In order to send the the RCPC code rate information to

the decoder, it is assumed that all the optimal RCPC code rate pairs and tri-tuples

are known to both the encoder and the decoder. Such an assumption is reasonable

because the optimization results are independent of training images. Thus, only

the sequential numbers of the possible optimal pairs and tri-tuples are coded for a

specific channel.

3.4.6 Simulation Results and Discussions

First, the performance of the the proposed 2-rate dynamic UEP scheme was tested

over 3 BSCs with c = 10 -i , 10 -2 , and 10 -3 , respectively. To illustrate the process

of optimal tri-tuple searching, the Lsef at RT = 0.2 bpp for the BSC of BER=0.1

is plotted in Figure 3.11(a). Note that the code pair for each point on that curve

is optimized. It can be seen that Lsef does not increase with L 1 monotonically.

For a specific bit rate constraint, the optimal partition point L 1 is the peak of the

curve. The optimal RCPC code rate pair is the one linked with the peak point. The

optimal code pairs for BSCs of e = 10' and 10-2 obtained this way are listed in

Table 3.2. Note that there are at most 3 code pairs for each of the channel. Thus,

2 bits are enough to inform the decoder how to switch between the RCPC code

rates. Although no explicit constraints are put on the relationship between r RCPCi

and rRCPC2 in the simulation, r RCPC1 < r RCPC2 for optimal protection is eventually

satisfied. That corresponds to our intuition that important bits at the beginning part

of the bit stream should be protected heavily. In fact, such constraint is implied in

the maximization of Lsef and all the weights of qii"s in (3.31). For BSC of c = 10-3,
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the 2-rate UEP scheme degenerates into an EEP one, because the necessary condition

for UEP gain is not satisfied anymore.

BER RT (bpp) .1 .2 .3 .4 .5 .6 .7 .8 .9 1
E = r

RCPC1
24 24 26 26 26 26 27 27 27 27

10-1
RC PC2

r2 22 22 24 24 24 24 24 24 24 24
1 = 2' RCPC1 11 11 11 11 11 12 12 12 12 12
10-2 1.2 10 10 10 10 10 11 11 11 11 11

R CPC2

Table 3.2 Optimal 2-rate UEP code pairs for BSCs 10 -1 ,10-2 (denominators only,
numerators = 8)

The partition results for 2-rate UEP schemes on BSC of e = 10 -1 and 10 -2 are

depicted in Figure 3.12. It is apparent that the number of source bits under weaker

protections are small, especially for very noisy channel conditions.

The 3-rate UEP scheme is then tested on BSCs c = 10{ -1,-2}. The optimal

RCPC code rate tri-tuples for those two BSCs are listed in Table 3.3. Again, the

constraint of rR CPCi < rRCPC2 < rRCPC3 was not imposed in the simulations. But the

results for the optimal protection schemes always satisfy the constraint. Thus, the

necessary condition for UEP optimality is justified. It can also be seen that for the

BSC with c = 10 -2 , only two rates are present until RT = 0.5 (bpp). This is due to

the fact that there is no UEP gain for the 3-rate scheme over the 2-rate one at low

bit rates. Since there are at most 4 code rate tri-tuples for those two BSCs, a total

of 17 bits overheads will provide all the necessary side information for the decoder.

For the BSC of c = 10-1 , the optimization result at RT = 0.6 (bpp) is illustrated

in Figure 3.11(b). Due to the constraint of L 1 < L2, no searching is done in the area

of L 1 >= L2 and the computational burden is reduced by half. For each point on the

surface, there is a corresponding RCPC code rate tri-tuple and this tri-tuple has been

optimized. By reaching the highest point of the surface and getting its coordinates

and the corresponding optimal code rate tri-tuple for that point, optimization is done

for the current bit rate constraint.
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The optimal partitions for the 3-rate UEP scheme on BSC of BER=0.1 are

depicted in Figure 3.13(a). The conclusions can be drawn from this figure are two-

fold. First, for the optimal UEP schemes, the strongest protection levels should

never exceed what is optimal for EEP schemes. Second, weaker protections should be

provided near the end of the source bit streams. Thus, the prevailing ad hoc practice

of providing heavier protections for the beginning part of the source bit streams

will result in performance penalty. It is of interests to note the correspondence

between protection level changes and partition fluctuations at RT = 0.2 and 0.7(bpp)•

Protection levels of EEP and UEP schemes are compared in Figure 3.13(b). The

relaxation of the protection levels of the optimal dynamic schemes is quite obvious,

especially at low bit rates.

The gains of dynamic EEP, 2- and 3-rate UEP schemes over EEP schemes for

the two BSCs are depicted in Figure 3.14. One important observation from this

comparison is that the gains of the 3-rate schemes over 2-rate ones are marginal for

both of those two BSCs. In fact, there is no gain at all in the BSC of E = 10-2 for bit

rates below RT = 0.5(bpp). This corresponds to the results listed in Table 3.3. With

such observations, it may be concluded that for BSCs satisfying E < 10 -1 , at most

three rates are enough to achieve almost all the gains with a dynamic UEP scheme.

Two rate UEP scheme is an appropriate choice for those BSCs .

BER RT (bpp) .1 .2 .3 .4 .5 .6 .7 .8 .9 1
i

RCPC1 24 25 26 26 26 26 27 27 27 27
E = l0-1 11 CPC2 23 24 24 24 24 24 26 26 26 26

^ri
ROPC:1 21 22 22 22 22 22 24 24 24 24

rRCPC1 11 11 11 11 11 12 12 12 12 12
E = 10-2 -/"24,,CPC2 10 11 11 11 11 11 11 11 11 11

RC' PC3
10 10 10 10 10 10 10 10 10 10

Table 3.3 Optimal 3-rate UEP RCPC code rate tri-tuples for BSCs E = 10 {-1 '-2}

(denominators only, numerators = 8)

Using LENA image, PSNR performances of SPIHT without arithmetic coding

are obtained for both EEP and 3-rate dynamic UEP schemes over the two BSCs.
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The results and the upper bounds obtained from (3.54) are depicted in Figure 3.14.

Performance improvements over EEP schemes under the same channel conditions

and bit rate constraint are around 0.3 dB.

Based on the simulation results, the answers to the three questions on

progressive UEP scheme optimization at the beginning of this section are as following,

1. For a large class of BSCs with BER satisfying E <= 10-1 , the optimal number

of UEP levels is 3!

2. For optimal UEP schemes, protection relaxation usually happens late in the

bit stream,

3. Optimal code rates can never be lower than those for optimal EEP scheme on

that channel.

3.5 UEP with Bit Class Demultiplexing

Various strategies have been devised to improve the robustness of EZW-based

bit-streams. The demultiplexing of EZW bit-streams belonging to the different

spatial regions of an image makes channel errors localize within the corresponding

regions of the reconstructed image. It is shown that this introduces resilience [19].

Such spatially oriented sub-streams can be further improved against error propa-

gation and packet losses, once they are elegantly fit into the fixed-size bit packets

[52]. Although these methods improve resilience, simulation results show that the

quality of reconstructed images when they reach the receiver are better suited to

Forward Error Coding (FEC) methods.

The common drawback of all the FEC-based methods described above, with

the exception of the method in [37], is the disregard of the functionality of the bits



Figure 3.11 Optimization processes for the BSC of c = 10-i
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Figure 3.12 2-rate UEP optimal partition results
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Figure 3.13 3-rate UEP optimization results, BSC E = 10 -1
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Figure 3.14 Comparison between EEP and UEP
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they protect. In fact, a SPIHT bit-stream can be divided into sub-streams, which

have different error immunities and applied appropriate (unequal) protections. The

method in [37] uses the sub-streams generated from their own EZW-derivative

algorithm which has an inferior error-free performance, compared with other

algorithms, such as SPIHT. Hence, the overall performance of this method remains

limited, although the approach is intuitively better when compared to other schemes.

The proposed method [5] is a derivative of the SPIHT algorithm [54]. Except for

a negligible header and some bit position changes, the resulting bit-stream has almost

the same rate-distortion characteristics as the original SPIHT algorithm (without

arithmetic coding) for error-free applications. The objective is to modify the SPIHT

bit-stream, such that the resulting bit-stream is better protected using FEC.

3.5.1 Error Resilience of Bit Classes

It is well known that the SPIHT algorithm encodes images using bit planes and

performs two passes for each bit-plane. While one pass determines sign values and

the implicit location information of significant wavelet coefficients (i.e. sorting pass),

the next pass sends the refined bit values of the significant coefficients which are

determined up to the current bit-plane (i.e. refinement pass) [54]. The bits generated

during the sorting pass excluding sign bits are denoted as Location Bit Class (LBC),

and bits of the refinement pass and sign bits together are denoted as Value Bit Class

(VBC).

It is important to observe the following about these two bit classes: bit errors in

LBC lead to a catastrophe, VBC bit errors do not propagate along the bit-stream as

long as LBC bits are error-free. In other words, VBC bits behave like a fixed-length

codeword sequence, while in LBC, bit errors propagate similar to a fragile variable-

length bit-stream. Since dividing a bit-stream into fixed- and variable-length sub-

streams and protecting them with unequal FEC is shown to be advantageous in a
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noisy channel transmission, a similar approach can also be utilized during protection

of SPIHT bit-stream.

The SPIHT bit-stream has different error tolerances of its bits with respect to

their positions in the bit-stream. In other words, the importance of each bit (i.e. its

effect on the reconstructed image) decreases, as one moves towards the end of the

bit-stream. This makes the UEP of different segments of a bit-stream possible. One

approach might be dividing the whole bit-stream into different length sub-streams

with reduced protection to the end [35]. Note that such an approach does not take

into account the implicit bit-plane structure of the SPIHT bit-stream. Since it is

necessary to inform the receiver of the location of the point at which FEC rate

should change, the UEP of the bits for different bit-planes looks more advantageous.

The bit-plane number showing the boundary of the bit-planes at which the protection

rate changes, is represented with a lower number of bits in comparison to sending

lengths of different sub-streams.

The question remains, how to divide the bit-planes into different classes

according to their error resilience? In SPIHT bit-streams, while the image is

encoded from the most-significant-bit-plane to the least-significant-bit-plane, the

number of the bits encoded at each bit-plane begin to increase rapidly at some

critical point. Simulations showed that the last few (1-2) bit-planes usually contain

almost half of the total bit-budget. For simplicity, a transition point between the

bit-planes of LBC can be determined. The bit-planes before and after this point are

protected with two different channel rates. Let us denote the section in LBC before

this transition point as LBC- and after that as LBC+. LBC can also be further

divided into bit-planes for improved UEP at the cost of increased complexity.

In summary, the original SPIHT stream can be demultiplexed into three sub-

streams, as LBC-, LBC+ and VBC. The demultiplexing process is depicted in Figure

3.15.



Figure 3.15 SPIRT bit stream delmultiplexing and re-multiplexing
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3.5.2 Bit-stream Syntax and Overheads

After the proposed demultiplexing stage, the sub-streams are ordered for trans-

mission purposes. Since the number of bits in the bit-stream stays almost the same as

the original bit-stream for any given budget, the most important remaining measure

to be protected is the progression of the bit-stream.

Simulations show that VBC has on the average 25% of the total bit-budget for

the compression range of 0.1 — 1 bpp for the standard test images. Thus, if VBC is

inserted at the beginning of the bit-stream, as shown in Figure 3.15, the progression

at the receiver can still be partially maintained after buffering VBC portion of the

bit-stream. The maximum delay incurred by this method is proportional to the size of

VBC. Moreover, the overall performance of the proposed method is also proportional

to the size of VBC.

Finally, the decoder requires some information header bits to determine when

and how to demultiplex the incoming substreams. Signaling the transition between

LBC- and LBC+, 3 bits are required to represent the bit-plane number. To detect

the end of the VBC, the length of the VBC sub-stream is represented by 10 bits.

Thus, a total of 13 overhead bits is sufficient in order to uniquely reconstruct the

compressed image at the receiver.

3.5.3 Error Protection

With slight modifications in the SPIHT algorithm, three sub-streams with different

error resilience properties are obtained. It should be noted that the proposed demul-

tiplexing does not have an immunity against errors without using FEC. Demulti-

plexing only helps to group the bits which were originally located randomly within

the bit-stream into different error resilience classes. Effectively protecting these bit

classes is the next goal.
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However, there is no analytical way to determine the protection needed to

use for LBC+, LBC- and VBC sub-streams, respectively. Although joint source-

channel coding methods can analytically judge the optimum rates for some simple

sources. With the complex SPIHT algorithm, simulations remain to be the only way

to ascertain the best source-channel bit ratios. Intuitively, it is expected to put less

protection on VBC compared to LBC; and LBC- should be protected more than

LBC+.

LBC- and LBC+ are protected by concatenated rate-compatible punctured

convolutional (RCPC) and cyclic redundancy codes (CRC). The inner RCPC code

serves to correct bit errors caused by noisy channels. The outer CRC code detects

any uncorrected errors after Viterbi decoding for RCPC codes, so that the image

will not be corrupted by disastrous error propagation. In the proposed scheme,

LBC- and LBC+ are protected by two different RCPC code rates rLBC_ and rLBC+ ,

respectively.

CRC is mainly utilized for detecting the errors that propagate. Since errors do

not propagate in VBC, protecting these bits against errors using only RCPC codes

is sufficient. There might be some undetected errors after RCPC decoding, but they

stay local within the image. The RCPC code rate rVB C for VBC is expected to be

the highest among three sub-streams.

3.5.4 Simulation Results and Discussions

The proposed method is tested by using standard images, Lena and Goldhill (512 x

512), in order to compare its performance with other schemes. The images are

encoded for bit-rates ranging from 0.1 to 1 bpp. The channel is assumed to be a

binary symmetric channel (BSC) with bit error rates of (BER) E = 10-1 and 10 -2 .

All the experimental results are obtained by averaging 1000 independent simulations

over the BSC.
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The RCPC codes used are selected from the tables in [24] from a parent code

of rate 1/4, puncturing period 8 and memory length 6. A family of (4 — 1) x 8 = 24

codes are obtained with the rates RRCPC  =	 ..., 	 Before RCPC encoding,

the output sub-streams are packetized separately into length L (L = 202) blocks. For

LBC- and LBC+, 16 checksum bits (CRC) are then added to the packets. Finally,

6 zero bits are added to the end of each packet to flush the memory of the Viterbi

decoder. These packets are then multiplexed appropriately and sent over the channel.

First, the method in [57] was repeated, for each image and channel. The method

divides the SPIHT bit-stream into length L packets and protects them equally using

RCPC and CRC codes. By 1000 simulations, the optimal RCPC code rates for the

channels with BER f = 10-i and 10 -2 are obtained as r 1 = 8/28 and r2 = 8/12,

respectively. These rates are equal to those used for the equal error protection scheme

(EEP) in [57] and will be further used in the selection of RCPC code rates for the

proposed UEP scheme. The resulting rate-distortion (PSNR vs. bit-rate) curves for

this method are shown (as solid lines) in Figure 3.16 and 3.17.

Since a closed form solution for the optimal RCPC code rate set based on rate-

distortion measure is very difficult to obtain, a careful inspection of the optimization

problem reveals the following facts which can be used as guidelines for the rate

selection:

1. For the two channels used in simulation, the RCPC code rates for the EEP

scheme from [57] are assumed to be appropriate for the LBC- sub-streams,

2. Protection provided by RCPC codes for LBC+ and VBC sub-streams should

be weaker than that for LBC-, which means r L„+ > rLBC and rVBC > r LAC-

3. Protection for VBC should be weaker than that for LBC+ sub-streams, which

means rVBC > rLBC+ •
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Based on these guidelines, the available choices of code rates are restricted

to those higher than r 1 and r2 in the given set for the two selected channels.

Thus optimal code sets can be obtained through a few experiments. The optimal

RCPC code sets are obtained as fkrLsc- , r LBC-1-1 rV BC} =

{8/12, 8/11, 8/10}, respectively, for the channels with BER e = 10 -i and 10 -2 ,

under the constraint on the total transmitted bits, which includes source channel

coding bits and overheads. These RCPC code rates are selected from the available

set such that the overall PSNR performance of the proposed scheme is the best for

each channel over the range of tested bit rate.

Figure 3.16 and 3.17 display the simulation results for the proposed method.

In Figure 3.16 (a) and (b), the performance curves for the individual approaches are

also plotted, namely Case 1 and Case 2. In Case 1, demultiplexing is achieved only as

VBC and LBC, whereas in Case 2, only bit-plane segmentation (LBC- and LBC+)

is tested. Case 3 is simply the proposed method which divides the bit-stream into

three substreams.

From Figure 3.16 (a) and (b), it is clear that most of the improvement over

performance comes from Case 1, while Case 2 provides the flexibility of keeping

the progression of the original SPIHT. It is expected that the proposed scheme will

perform better at higher bit rates, because the percentage of the sign and refinement

bits will increase in the resulting bit stream.

It is observed that the proposed scheme outperforms the method of [57] by

approximately 0.3 dB for the two tested channels. The method in [37] is outper-

formed by about 1.0 dB for the channel with c = 10-2 . The PSNR improvement

over the method in [37] is due to the efficiency of source compression (SPIHT) and

sign bit protection. The method based on ARQ achieves better performance than

the proposed one with help from a feedback channel. Since feedback cannot increase

{8/28, 8/25, 8/20}, and
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Figure 3.16 PSNR comparisons with LENA



Figure 3.17 PSNR comparisons with GOLDHILL
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channel capacity, better performance is achieved at the price of an additional time

delay.

3.6 Concluding Remarks

In this chapter, a new framework for the JSCC design of progressive image

transmission in memoryless channels was presented. Based on the fact that the

FEFRL model is general for any channel conditions, mathematical after-channel

source models were developed for EEP and UEP schemes, all in closed-form. These

models are independent of operational rate-distortion functions of the source codec

and training images and provide the possibility of analyzing the performance of

embedded image sources in more complicated channel conditions and other inter-

esting issues such as necessary condition of UEP gain and its limit. An equivalent

problem for optimal rate allocation between source and channel coding budget is

defined and the maximization of Rsef and PSNR are shown to be equivalent.

Optimization problems for EEP and UEP schemes are proposed and algorithms

are presented in this chapter. For EEP schemes, it is discovered that shorter bit

streams may require less protection. Performance improvements based on such a fact

are obtained by setting up dynamic EEP scheme without any overhead. Simulation

results justify the equivalence of the two methods.

For the progressive UEP schemes, the optimization problems definition were

clearly defined and complete solutions for BSCs were provided. The necessary

conditions were proved and the theoretical upper bounds provided for UEP gains.

Optimization algorithms for 2- and 3-rate UEP schemes are also developed. In

computer simulations, obtained PSNR improvements are about 0.3 dB over the

optimal EEP schemes under the same channel conditions. This gain comes at the

price of off-line searching load of the optimization algorithm and negligible rate

overhead while the system complexity is unchanged compared to that of [57]. The
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progression of the source bit stream is also kept. It is also discovered that for BSCs

with e < 10-i , at most three rates are enough to achieve almost all the UEP gains.

Further increase in the number of protection levels will not be beneficial.

The idea of demultiplexing the SPIHT bit stream by the classifications of VLC

and FLC bits and providing UEP accordingly were also investigated. Monte Carlo

simulations on the scheme show similar performance to those of progressive UEP.

The SPIHT algorithm without arithmetic coding is used for all the simulations in

the dissertation.



CHAPTER 4

PROGRESSIVE IMAGE TRANSMISSION IN FADING CHANNELS

Reliable delivery of digital multimedia content is an important issue in the next

generation of wireless communication systems. Usually the content such as images

and video clips needs to be compressed to fit into the band-limited wireless channels.

The new generation of wavelet-based image codecs [56, 54] produce efficiently

embedded bit streams with decreasing bit significance, which are quite suitable

for such purposes. But due to the variable length coded (VLC) bits used in the

algorithms, bit errors propagate in the bit stream and all the bits after the first

error are unusable in image reconstruction. For the embedded image bit streams

transmitted over binary symmetric channels (BSCs), the quality of the reconstructed

images can be evaluated by either the conventional peak signal to noise ratio (PSNR)

averaging or the error-free source rate averaging technique developed in the research.

The idea of obtaining the average of the first error-free run lengths (FEFRL) will

also be adopted in this chapter and the result is shown in closed-form.

In wireless communications, the channel is much more complicated than BSCs

due to the multipath reflections and receiver movements. By quantizing the received

signal to noise ratio (SNR) envelope properly, both the slow fading and Doppler

effects can be well approximated by finite state Markov chain (FSMC) channels

[70, 67] in which each state corresponds to a BSC. With such a general model, the

correlated bit errors can be modeled by hidden Markov models and the existing

Markov chain theory can be applied to the bit streams transmitted over them.

The most widely used FSMC channel models are the two state class (or Gilbert-

Elliott models) [59, 35, 36, 1, 60, 78] which represent the simplest structure of the

general FSMC model. However, even for this simple two-state channel model, channel

simulation could be a formidable task and some further simplifications are usually

67
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exploited to investigate the performance of information transmission over such a kind

of models.

To evaluate the performance of the embedded bit streams transmitted over

an FSMC channel with two or more states, existing techniques use either single or

multiple BSCs to simplify the memory channel. In [59, 35], the BSC with the worst

bit error rate (BER) is selected to approximate the Gilbert-Elliott (G-E) channel.

In [58, 78, 10], single BSC with crossover probability equivalent to the overall BER

of the fading channel were used. In [78, 61], the transmission of bit streams is

assumed to happen in each state of the FSMC model independently. System perfor-

mances are represented by the statistical averaging of the performances in each state.

Assumptions and approximations in those methods are obvious and the question still

remains: for the embedded image bit streams transmitted over a G-E or a more

general FSMC channel, how to get the system performance analytically, accurately,

and optimally?

To solve the problem, a new technique called error sequence analysis (ESA)

is developed in this chapter to evaluate the performance of the embedded image

bit streams transmitted over general FSMC channels. Based on the fact that the

FEFRL model is also valid for the embedded image bit streams transmitted over

FSMC channels and the corresponding error sequence can be modeled by an hidden

Markov model [67], both the probability density function and the average FEFRL

are obtained in closed-form which include the result for the BSCs as a special case.

This is not surprising since a single BSC is a special or the simplest form of a general

FSMC model. It is further shown that existing techniques are also special cases of

the proposed method. Computer simulations on the new approach reveal the short-

comings of the existing techniques and the Doppler effect on system performances.

In [59], the concatenated RCPC-CRC protection scheme is further combined

with product channel codes or interleaving technique to reduce the bursty error
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effect of fading channels. However, those techniques trade the progression of the

embedded source codec to obtain better performances and are not considered in this

dissertation.

4.1 Fading Channel Modeling

It is well known that wireless communication channels are characterized by

fluctuating received signal to noise ratio (SNR) which is Rayleigh distributed due

to the multipath effects. User movement results in time variations of the channel

responses because of Doppler effect. There are well developed fading envelope models

in the literature. But for the joint source-channel coding problem addressed in this

dissertation, those models are difficult to use due to the lack of closed-form expression

for high dimension error sequence distributions. On the other hand, FSMC models

are general enough to model various types of fading phenomena, since ther are

capable of approximating the correlations in and between the states. The theory

is well developed so that it is easy to calculate the distribution of different error

sequences and evaluate the corresponding system performances.

Figure 4.1 Finite state Markov chain channel models

For binary communications, a bit stream xn is transmitted over an FSMC

channel and yn is received (Figure 4.1(a)). The corresponding error sequence can be
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defined as

where e E E -=- {0, 1}. It is apparent that e = 0 means a correctly received bit and 1

means the bit is incorrect. The K state FSMC model in Figure 4.1(a) can be uniquely

described by its state space S, state transition matrix P, and stationary distribution

7r = {πi}K. For stationary FSMC channels, the state equilibrium constraint 7r P = 7r

and 7r 1 = 1 are satisfied. For such a symmetric channel, en is stationary and we

have [66]

where 1 = {1, 1, ..., 1} K , P (ek) is the error matrix probability and can be expressed

as

where F(e) = diagfp(e|i)}K is the state error probability matrix, and p(e|i) = e i are

the crossover probabilities for the BSCs. In summary, an error sequence can also

be described by the parameters of the FSMC channel {S, P, F(e)}. From (4.2), the

overall or average crossover probability of the FSMC channel can be obtained by

letting n = 1, i.e.,

By partitioning or quantizing the received SNR level into two levels, parameters

of Gilbert-Elliott (G-E) models can be obtained using the procedure described in [70]

For the 2-state FSMC or G-E channel, the overall bit error rate -ë corresponds to

that of the fading channel [45]
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where p is the average SNR of the fading channel. Note that there is no one to one

correspondence between the set of valid FSMC models and the real world fading

channels. So it is of interest to investigate the models constructed from physical

fading channels. The discussions are limited to slow fading channels in this disser-

tation because they can be well approximated by birth-and-death processes [67].

4.2 Single-BSC-Based Techniques

For the embedded image bit streams transmitted over a memory channel,

transitions between the channel state make the analysis and simulations of the

channel difficult. The first solution of the problem is to further simplify the channel

by using only one BSC in the model. Then the existing optimization techniques can

be used to assign an 'optimal' protection level for that single BSC. Usually the worst

channel state ew , is one of the choices since the resulting scheme will be robust for

any channel situations.

When the average SNR p of the fading channel is known, the corresponding

FSMC model can also be represented by an equivalent BSC whose BER can be

obtained from (4.4). Protection level can then be optimized by matching the RCPC

code rate to T. It is of interest to investigate this simple method since all the

independent parameters of the FSMC model are involved in (4.4) and it represents

a simplified version of the ESA method which is to be developed in later sections of

this chapter. The performance of the system might be improved by using the average

channel state E. The expectation is reasonable since more channel state information

is exploited in the e-based optimization.

However, both of the solutions are incomplete because the performance of the

"optimally" protected bit streams can not be evaluated properly. So there is no way

to compare even between the above two schemes.
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4.3 Statistical Averaging Approach

When an embedded image bit stream is transmitted over a two-state memory

channel with statistics {E, π , P}, and protected by RCPC code with rate rci E

RRCPC, under the assumption that exact channel state information is not available,

the expected first error-free run length (FEFRL) of the embedded image bit streams

transmitted over G-E channels can be expressed or defined as

,g }where Lsef  f is the average FEFRL when the channel is in state b and g, respectively

(Figure 4.1 (b)). It is already shown in Section 3.3.1 that the maximization of Lsef

and average PSNR are equivalent. Thus, by using (4.5) as the target function, both

states of the G-E channel are involved and the following constrained joint source-

channel optimization problem need to be solved

Note that the performance obtained from (4.5) is rate-based and can easily be

generalized to the K-state cases. In fact, the statistical averaging approach can also

be applied to the distortion-based analysis, as in [61, 10].

The implied assumption for this statistical averaging method is that the state

transitions of the memory channels always happen after the whole bit stream of

an image is completely transmitted over each of the states. Obviously such an

assumption is not true for most wireless communication channels. The system

performance obtained from such a method, be it rate- or distortion-based, might

have been exaggerated. It will seen in the later sections of this chapter.
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4.4 Error Sequence Analysis (ESA)

The FEFRL model has been used in BSCs by many researchers [57, 35]. In

fact, there is no constraint on the channel type when the model is derived. The only

concern is the position where the first bit error happens. Obviously such a model

is also applicable to any kinds of noisy channels, e.g. FSMC channels. By applying

the FSMC theory on the error sequence of the FEFRL model, both its probability

density function and the ensemble average can be obtained in closed-form. With

such a closed-form performance metric, the performance optimization of the EEP

protection scheme on FSMC channels is quite similar to that in the BSC case, which

has been solved in Chapter 3 with ease.

Now consider the scenario in which a binary embedded image bit stream is

transmitted over an FSMC channel as depicted in Figure 4.1(a). Again, the FEFRL

is denoted as Lsef k. Obviously the first bit error happens at k + 1. From (4.1)

we immediately have the corresponding error sequence for the first k + 1 bits as

Combining (4.2) and (4.7), the probability density function of the FEFRL k can be

expressed by the following bimodal matrix-geometric distribution

where L, is the length of the source bit stream. The average of the FEFRL can be

obtained from (4.8) as

where F(0) = diag{p(0|i)}k= diag{	 1 — c,, c are the error probabilities

of the BSCs. By using spectral decomposition of the matrix P(0), the calculation
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of its exponentials can be greatly simplified especially when the length of the source

bit stream L3 is long. Let

where A = diag{ 	 {λi}K are the eigenvalues of P(0), A is a matrix whose rows

are the eigenvectors of P(0). Substitution of (4.10) into (4.9) yields

which greatly reduces the computational load of Lef for very long image bit streams.

It is of interest to note that both (4.8) and (4.9) are quite similar in outlook to

their counterparts for the BSCs. In fact, let it = {0, 0, ..., 0,1} K and P = diag{pii}k

where

we immediately have

and

where

and q = 1 — E. Compare with (3.17) and (3.18), it is clear that (4.12) and (4.13) are

exactly the same as those obtained in the BSCs. It is clear now that the approach

used to derive the probability density function and the average FEFRL on BSCs in

Chapter 3 is also ESA, but with the error sequence implied in the analysis process.
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Note that the matrix products in (4.8) and (4.9) are non-commutative, which reflect

the dependencies between the elements in the error sequence.

With (4.9) as the target function, the overall system performance can be

optimized by solving the following constrained joint source-channel optimization

problem

Such a problem can be solved by the numerical method similar to that in Chapter 3

4.5 Relationship with Existing Techniques

In order to evaluate and optimize the the performance of the embedded image

bit streams transmitted over FSMC channels, various techniques have been developed

and can be categorized into either single or multiple BSC based approaches [59, 35,

78]. Single BSC based approaches can be further divided into either worst case BSC

(e.,) or average BER (-0 based one. For the multiple BSC based techniques, they

can also be further divided into either the statistical averaging approach or error

sequence analysis (ESA) technique. It is apparent that different "optimal" RCPC

code rates is.' s might be obtained from different techniques. In fact, it can beRCPC

easily seen that E obtained by (4.4) for the single-BSC-based method represents a

special case of (4.7) in which the error sequence is simply e = 1. Also when 1 — E

in (4.12) and (4.13) are replaced with 1 — Ew , it can be recognized immediately that

this is also a special case of ESA.

For the embedded image bit streams transmitted over K-state FSMC channels,

the Le/ can be obtained by the statistical averaging approach as
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where {7r, } is the stationary distribution of the FSMC channel. On the other hand,

setting P = I and substituting it into (4.9), we have

Compare (4.17) with (4.18), it can be recognized immediately that the statistical

averaging approach (4.17) is also a special case of ESA. Furthermore, it can also be

proved that

which means that the PSNR performance from statistical averaging approach might

be exaggerated. This is because by setting P = I, the general FSMC models are

turned into a group of isolated (or independent) BSCs without any state transitions

between them. However, those transitions represent the Doppler effects caused

by receiver motion [70]. Thus, the Doppler effects represented by the probability

transition matrix P are omitted in the statistical averaging approaches and the bit

errors in and between each BSCs are independent. Obviously, this is not true for

errors caused either by FSMC or fading channels.

4.6 Performance Upper Bound

When the exact channel state information for the FSMC channel is available, the

protection level can be easily matched to each state of the model optimally. Thus,

the performance may serve as an upper bound for the system

where
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and Lse 	 Ls) are obtained by (4.14). This is easy to prove. Since Ψ(qi, Lis ) >

(q{i} , L s ) holds for all the BSCs . Note that such an upper bound is for EEP

schemes only and it is channel specific.

4.7 Simulation Results and Discussions

In the computer simulations, the two state FSMC or Gilbert-Elliott (G-E)

channels were used to approximate physical multipath fading channels. To facilitate

the comparison between different techniques, G-E channel 1 is selected from Lu et

al. [35]. G-E channel 2 is constructed from the physical fading channel in Sherwood

et al. [59] with carrier frequency of 900 MHz, data rate 500 kbps, and mobile speed

of 4 mi/h. The G-E channel parameters are listed in Table 1.

Channels Lu et al. [35] Sherwood et al. [59]
feb , €9 1 {.12, .0680} {.12, .0018}
{πb, πg} {.62, .38} {.18, .82}
{pgb , pbg} {.08, .05} {5.4e-5, 1.2e-5}

T .1000 .0233

Table 4.1 G-E Channel parameters

The optimization processes of the RCPC code rate for the two channels by the

proposed ESA method are depicted in Figure 4.2. It is apparent that G-E channel

1 represents a typical channel condition in which better performances are obtained

in the strong protection region. This is because the channel stays in the "bad" state

most of the time. In this case, both E, and E based strategies produce protection

levels close to the optimal one obtained by ESA. G-E channel 2, on the other hand,

represents a totally different situation in which the channel stays in the "good" state

most of the time. Thus, better performance occurrs in the weakly protected region. It

can be expected that the overall performance of this new bit rate allocation strategy

will greatly outperform those from conventional single BSC based strategies since the

protection rate difference is almost the largest possible. It should also be noted that
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for Channel 2, the optimal protection rate switches to the strong protection region

when the bit rate is as high as RT = 1.0 (bpp). This is not totally unexpected. When

the length of the bit stream is long enough, eventually the correlations between the

errors of the fading or FSMC channel will play a more important role in the system

performance and stronger protection is required to reach optimality. Considering the

facts that the average FEFRL from the weaker protection is close to that of stronger

one and a simple EEP scheme is desirable whenever possible, the protection rate for

this channel is selected to be 8/9.

To compare various evaluation and optimization techniques, the respective

"optimal" rates from those approaches are used to obtain the corresponding perfor-

mances with SPIHT on LENA image for the two channels, all by ESA. The PSNR

results and the performance upper bounds are depicted in Figure 4.3(a) and 4.3(b),

respectively. It can be seen that for G-E channel 2 which represents better channel

conditions, the PSNR improvements of ESA over E, based strategy can be up to 3

dB. Generally speaking, E based optimization is better than that of e, based. This

is not a surprise since all the statistics of the FSMC channels are involved in the

optimization, although in a simplified manner.

For the two G-E channels selected, the "optimal" protection rates obtained

by statistical averaging and ESA are the same. In Figure 4.4, PSNR results from

those two methods are compared. As predicted in (4.19), performances exaggeration

caused by the statistical averaging approach can be up to 5 dB, especially at high

bit rates.

The mobile speed was then increased from 4 to 40 mph to test the Doppler

effect on the system performance. It can be seen from Figure 4.5 that after the

protection level increases from 8/9 to 8/28, the performance of the received images

reduces by about 2 dB for the whole bit rate range tested due to the faster movement

of the mobile.



Figure 4.2 Optimization of protection levels, ESA

4.8 Concluding Remarks

The transmissions of embedded image bit streams over FSMC channels were

studied in this chapter. With error sequence analysis the probability density function

and average FEFRL are obtained in closed-form which are general for any FSMC

model structures. Not surprisingly, previous results on BSCs are shown to be a special

case of ESA. It should be so because a single BSC is just a special or the simplest

FSMC channel. Thus, the performance evaluation and optimization for progressive

image transmissions over memory and memoryless channels are unified with the

proposed rate-based approach and ESA. Furthermore, other existing performance

evaluation techniques for the embedded image bit streams transmitted over FSMC

channels are shown to be special cases of the new approach. Computer simulations

on EEP optimizations reveal the shortcomings of the other methods and the PSNR

improvement is up to 3 dB. Doppler effects on the system performances are also

investigated with the new approach by simulations, maybe for the first time on the

7Q
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Figure 4.3 PSNR comparisons of the methods with LENA image



Figure 4.4 Performance evaluation method comparison with LENA image
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Figure 4.5 Doppler effect on system performance, G-E channel 2, LENA image
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topic. Due to the complexity of fading channels, optimization results for individual

memory channel may not be as useful as in the memoryless channel cases. General

guidelines for optimal protection strategy on FSMC channels are more practical.

Such a general guideline can only be obtained with more experiments on different

memory channel conditions. Finally, it is claimed again that with the average FEFRL

model derived in the FSMC channel, the performance optimization algorithms for

progressive image transmission in BSC and memory channels are unified.



CHAPTER 5

PROGRESSIVE IMAGE TRANSMISSION IN CHANNELS WITH
FEEDBACK INFORMATION

The new generation of image coders produce embedded image bit streams which can

be used for progressive image transmission in multimedia applications. To protect the

error-sensitive bit streams in feed-forward channels, forward error correction (FEC)

schemes have been proposed and optimized in [57, 84, 76, 36, 12, 14]. In fact the

basic concatenated cyclic redundancy check code and rate-compatible convolutional

code (CRC-RCPC) scheme used in previous chapters is also well suited for automatic

repeat request (ARQ) schemes on channels with feedback information. In wireless

communications, such kind of feedback channels usually exist and can be used to

obtain better performance through ARQ schemes at the price of delay or throughput

reduction. In this chapter, rate-based analysis and optimization algorithms for type-I

and -II hybrid ARQ with stop-and-wait (SW) strategy are presented. The algorithms

developed are general for both memoryless and memory channel cases. For typical

wireless communication scenarios, the additional delay incurred by the stop-and-

wait strategy is shown to be close to that of the FEC scheme. With stop-and-wait

strategy, no additional system overhead is incurred in the form of packet numbers.

The system improvement of the hybrid ARQ schemes can be 1.7 dB better than that

of the pure FEC schemes under the same channel condition.

5.1 Type-I Hybrid ARQ

For progressive image transmissions in noisy communication channels, FEC

schemes must stop decoding and discard all the following packets starting from the

one in which the first bit error happens. For the optimal FEC schemes, the effective

channel is quite "clean" . It is highly probable that the first bit errors happen near

the end of the bit stream and the number of discarded packets is small. When

83
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a feedback channel is available, the receiver can inform the transmitter with the

status of the current packet. By adding an ARQ control protocol, the concatenated

CRC-RCPC scheme is transferred into a hybrid FEC/ARQ scheme and the system

performance can be improved by using the bits after the first bit error. Furthermore,

system performance can also be optimized by adjusting the bit allocation between

the source and channel coding rate in the scheme. The discussions on ARQ schemes

in this chapter are limited to the stop-and-wait (SW) ARQ schemes only, since they

satisfy the requirements imposed by progressive image transmission in multimedia

applications. It will also be seen that for typical wireless communications, the stop-

and-wait strategy is good enough for the transmission dominant scenario. An added

advantage of SW-ARQ is the packet number need not to be piggybacked in the

packets so that no additional overhead is incurred compared to that of the FEC

schemes. With retransmissions, all the bit rate budget can be used at the receiver

side except the discarded packets. This efficiency may save some bit rate for source

coding and the system performance might be better than that of the optimal FEC

scheme under the same channel conditions.

5.1.1 Optimization Algorithm for Hybrid ARQ

In the proposed type-I stop-and-wait hybrid-ARQ system, the concatenated

RCPC-CRC channel coding scheme is the same as that of [57] and it is assumed that all

the residual errors after RCPC decoding are detectable in such a scheme. After a

packet is sent, the transmitter waits for a response from the receiver. It is further

assumed that the feedback channel is error-free. Since our source models depend on

the accepted packet error rate, this assumption will not affect the analytical results

in this dissertation. An illustrated description of the scheme is depicted in Figure

5.1. The transmitter keeps on sending new packets when an Acknowlegment (ACK)

is received. On receiving a Negative Acknowlegment (NAK), the transmitter simply
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retransmits the current packet, thus a new transmission attempt is started. Such

a process is repeated until the bit rate constraint is reached. Obviously, the errors

in each of the trials under the bit rate constraint are independent of each other, so

on the average the FEFRL can also be used to represent the length for each of the

sending trials as Lsef. To facilitate further analysis, some necessary definitions of the

proposed scheme are listed below.

Figure 5.1 Water-filling for type-I SW-HARQ

Definition 1 NTP: total number of packets under the total bit rate constraint RT.

where N is the number of pixels in an image and 1 is the packet size.

Definition 2 N CEFP : number of consecutive error-free packets received in one trans-

mission trial.

where b = 200 is the source packet size.

Definition 3 NR: total number of retransmissions.
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Definition 4 NLTP: number of packets in the last transmission trial.

Definition 5 N REFP: total number of error-free packets received.

In Figure 5.1, the packets in which the first errors happen are discarded and

the image transmission is completed after several independent trials. Thus, the

final decoded image quality is determined by the total number of error-free packets

received NREFP. By using a simple water filling on the bit rate constraint RT, we

have

It is apparent now that the value of NREFP can be maximized by adjusting the ratio

between source and channel coding budget, i.e.

Such an optimization problem can be easily solved by the following numerical method

So the performance of the optimal ARQ scheme on a channel is

and it is expected to be larger than 't:'er on the same channel.

5.1.2 Delay Analysis

The better performance of ARQ over FEC schemes comes at the price of reduced

throughput or longer time delay. Comparing a type-I stop-and-wait hybrid ARQ

scheme with a pure FEC scheme under the same total bit rate constraint RT, the
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following facts can be noticed immediately. First, the total number of bits trans-

mitted in the two schemes are the same, i.e.

which means the total transmission time of the two schemes are the same

Second, the delay difference between them is simply the additional waiting time of

the type-I stop-and-wait hybrid ARQ scheme which is used for the source and channel

decoding for all the received packets. Note that the even the discarded packets need

to be processed before a feedback message NAK can be generated. In a typical

wireless communication scenario with 64 kpbs data rate, users roam in the less than

30 km area around the base stations, the total transmission time for a 512 x 512

pixel image will take 4s. The transmission delay will be less than 10 -4s and thus is

negligible. The total source decoding time T3 of such an image would be in the range

of 10-2 to 10-1 [54]. It is reasonable to assume that the channel decoding time TT of

the same magnitude as Ts . On a specific channel, optimal ARQ and FEC schemes

might request different protection levels. Thus, the total decoding times of the two

schemes might be different. But notice the fact that transmission time dominates

both of the schemes regardless of the optimal protection level difference, it may be

concluded that the throughput property of the proposed type-I hybrid SW-ARQ

scheme is quite similar to that of the pure FEC scheme. More complicated ARQ

schemes such as selective repeat and go-back-N are not necessary for progressive

image transmission.

5.1.3 Simulation Results

The proposed optimization algorithm for type-I stop-and-wait hybrid ARQ scheme

is tested over two BSCs with BER=10 -1 and 10 -2 , and a two state FSMC or G-E

channel. The G-E channel parameters are listed in Table 5.1.
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{Eb, Es} {πb, πg} P T
{.12, .0680} { .62, .38} {.08, .05} .1000

Table 5.1 G-E Channel parameters

The optimization results for the BSCs are depicted in Figure 5.2. It is noticeable

that at the optimal protection level, the total number of retansmissions NR is small.

This is reasonable, because, for this type-I hybrid ARQ scheme, too many retrans-

missions means many packets should be discarded, thus wasting the bit rate budget.

The resulting average FEFRLs for both the FEC and the hybrid ARQ schemes on

the three tested channels are illustrated in Figure 5.3. It can be seen that under

the same channel conditions, the optimal protection levels of the ARQ scheme are

relaxed, which means more source bits are coded and received under the same bit rate

constraint
, sefi.e. LARQ jFEC The optimal protection rates and the corresponding

PSNR performances on the three tested channels are depicted in Figure 5.4, together

with those of the FEC schemes. The results of [36] and [14] are also put into Figure

5.4(a) for comparison purpose. On the BSC with BER 10 -1 , the optimal protection

rate of [36] is also 8/19. This is not a surprise since maximization of average PSNR is

equivalent to maximization of average FEFRL, as already stated in previous chapters.

Of course identical RCPC code rates result in identical system performances. The

almost identical PSNR performances in Figure 5.4(a) on BSC of e = 10' further

justifies the conclusion in Chapter 3 that for optimal protected systems, performances

obtained from rate-based evaluation are close to those from distortion-based method.

The slightly better performance of [14] on BSC with BER=10-² can be attributed to

the 32 byte source packet length and the more efficient type-II hybrid ARQ scheme

that uses code combining techniques.

The PSNR performances and the corresponding optimal protection rates for

both the pure FEC and type-I hybrid ARQ schemes on the G-E channel are depicted
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in Figure 5.4(b). Both curves here are obtained using the proposed performance

evaluation approach. The PSNR improvements of ARQ over FEC is slightly better

than what are achieved in BSCs. This is because the "separation" principle is violated

more severely in the FSMC or fading channels. Thus, more gain is expected and

achieved on worse channel conditions. It can be seen that the PSNR improvement

of the type-I stop-and-wait hybrid ARQ over the FEC scheme can be up to 1.4 dB.

Note that the performance improvements were achieved at weaker protection levels

on the same channel conditions. The prices paid for the better performances are the

additional time delay and system complexity.

5.1.4 Concluding Remarks

With the rate-based performance analysis which is general for both BSCs and FSMC

channels, an optimization algorithm of type-I hybrid ARQ schemes was developed

for progressive image transmissions. The constraint of progressive transmission is a

built-in feature of the scheme and the method is applicable to both memoryless and

memory channels. Computer experiments show up to 1.4 dB PSNR improvements

over the pure FEC schemes on the same channel conditions. It is also shown that

the delay involved in typical wireless communications is dominated by propagation

time so that the throughput of the proposed ARQ scheme is close to that of the pure

FEC schemes.

5.2 Type-II Hybrid ARQ

For progressive image transmissions in noisy communication channels, FEC

schemes must stop decoding and discard all the packets starting from the one in

which the first bit error happens. When a feedback channel is available, the bits



Figure 5.2 Protection level optimization for type-I HARQ
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Figure 5.3 Comparison of FEC and type-I HARQ schemes
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Figure 5.4 Comparison of FEC and type-I HARQ schemes by PSNR performances
with LENA image
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after the first bit error are usable with the aid of a hybrid ARQ schemes. In fact,

even the discarded packets in the type-I stop-and-wait hybrid ARQ schemes are also

usable. By combining with the punctured bits, the current erroneous packet which is

discarded by type-I hybrid ARQ might be decoded error-free at a lower RCPC code

rate. Thus, the embedded property of both the source and channel coding engines

are fully exploited. Its performance can be optimized by adjusting the bit allocation

between the source and channel coding and is expected to be better than that of

type-I stop-and-wait hybrid ARQ under the same channel conditions.

5.2.1 Code Combining of Hybrid ARQ

An illustrated description of the proposed stop-and-wait hybrid ARQ scheme using

code combining technique is depicted in Figure 5.5. After a packet is sent, the

transmitter waits for a response from the receiver. The transmitter keeps on sending

new packets if an ACK is received. On receiving an NAK , the transmitter sends

a refinement packet containing the punctured bits at the next lower code rate in

the RCPC code set which is to be combined with the current packet. The process

continues until the current packet is decoded error-free. Here it is assumed that all

the erroneous packets are decodable eventually if the lowest (or the optimal rate

on a specific channel) is reached. The transmission restarts with an ACK received

and the process is continued until the total bit rate constraint is reached. Note that

there is no need to retransmit the CRC and the flush bits for the current packet and

retansmissions are for individual packet only. Obviously, the errors in each of the

trials under the bit rate constraint are independent from each other. Hence, on the

average, the length for each of the transmission trials can also be represented by the

average FEFRL Lsef. To facilitate further analysis, some necessary definitions of the

proposed scheme are listed below.



Figure 5.5 Water-filling for SW-HARQ with code combining

Definition 6 NTP: total number of packets under the total bit rate constraint RT.

where N is the number of pixels in an image and

is the packet size, b is the number of source bit in the packet. The RCPC code rate

is denoted as rRCPC  (i) where i is the index of the RCPC code rate set and

where c and f are the number of CRC and flush bits in each packet, respectively.

Definition 7 NITP: average number of packets in each independent transmission

trials.

Definition 8 Lcc : average length of code combining in each independent trans-

mission trials.
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where NR is the average number of retransmissions needed for an erroneous packet

to be decoded error-free.

Definition 9 En, : average length of each independent transmissions.

Definition 10 NIT: number of independent transmission trials.

Definition 11 NLTP: number of packets in the last transmission trial.

is the length of bit stream in the last transmission trial.

Definition 12 NREFP: total number of error-free packets received.

In Figure 5.5, the packets in which the first errors happen are made error-free

by code combining and the image transmission is completed after several independent

trials. Thus, the final decoded image quality is determined by NREFP. By using a

simple water filling on the bit rate constraint RT, we have

It is apparent now that the value of NREFP can be maximized by adjusting the ratio

between source and channel coding budget, i.e.



96

Such an optimization problem can be easily solved by the following numerical method

So the performance in terms of average FEFRL L sef of the optimal type-II hybrid

ARQ scheme on a channel is

and it is expected to be larger than L e f RQT-I and Lsef^FEC on the same channel.

5.2.2 Simulation Results and Discussions

The proposed method is tested over two BSCs with BER of 10 -1 and 10-2 , and a

two state FSMC or Gilbert-Elliott (G-E) channel. The G-E channel parameters are

selected from [36] and listed in Table 5.2. In the simulation, it is assumed that the

average number of codes combining for error-free RCPC decoding is

and fFEC is the optimal protection rate for the FEC schemes on that channel. This
RCPC

means that the error-free decoding is achieved when the optimal protection rate of

the FEC scheme is reached, on the average.

Table 5.2 G-E Channel parameters

The optimization results for BSC with E = 10-1 are depicted in Figure 5.6. It

is noticeable that at the optimal protection level, NIT is small. It is also of interests

to note the almost flat N REFP and NIT curves starting from some RCPC code rate
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in Figure 5.6(a). It can be explained as follows. On a very noisy channel like the

one here with BER 10 -1 , strong protection from RCPC code is usually required

for robust transmission in the feed-forward channel. When the protection level is

reduced to some very weak level, the first error might happen in the first packet! In

that case, retransmission is frequent and a new packet can reach the receiver only

after the current one is decodable. Not surprisingly, those packets will be decodable

when the code rate reach the optimal protection level for the feed-forward channel,

on the average, as stated in (5.19) and (5.20). So the final result is that, with very

weak channel protection, the code combining technique turns the whole scheme into

a 'equivalent' optimal FEC scheme with optimal protection rate expressed in (5.20).

Of course this is not economical due to the additional delay involved in the numerous

retransmissions.

The resulting average FEFRLs for both the pure FEC and the type-II stop-

and-wait hybrid ARQ schemes on the G-E channel are illustrated in Figure 5.7. It

is clear that under the same channel conditions, the optimal protection levels of the

ARQ scheme are relaxed, which means more source bits are coded and received under

the same bit rate constraint, i.e.

It can also be seen from Figure 5.7(a) and (c) that on the same the channel, the

optimal performance measured in Lsef of the 'equivalent' FEC scheme is better than

that of the 'real' FEC one. In fact, even the optimal 'real' FEC system needs

to discard some packets due to the error propagation effects. However, with the

`equivalent' FEC scheme or the type-II stop-and-wait hybrid ARQ schemes at weak

protection levels, each packet is assumed to be decodable after the optimal protection

rate is reached. This assumed efficiency explains the 'better' performance here. Note

that such small performance improvement is achieved at the price of additional time
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delay and system complexity since numerous retransmissions are necessary for each

packet.

The optimal protection rates and the corresponding PSNR performances on the

three tested channels are depicted in Figure 5.8(a) and (b), together with those of the

type-I hybrid ARQ and the FEC schemes. It is apparent that the performance for

the type-I hybrid ARQ scheme is better than that of the FEC schemes schemes for up

to 1.4 dB on the same channel, with less protection. Of course such improvement is

obtained with some additional time delay and system complexity such as bufferring.

Code combining further improves the system performance for up to 0.3 dB compared

to that of the type-I hybrid ARQ. The PSNR improvements of ARQ over FEC can be

higher in FSMC or fading channels, as the one selected here, since the "separation"

principle is violated more severely therein. Thus, higher performance gain up to 1.7

dB is achieved on worse channel conditions.

The results of [36] and [14] are also put into Figure 5.8 for comparison purposes.

On the BSC of e = 10 -1 , the optimal protection rate of [36] is also 8/19. It means that

the rate- and distortion-based optimization criterion are equivalent. This identical

optimal protection level also results in identical system performances. The almost

overlapped PSNR curves in Figure 5.8 on BSC of E = 10- i further justifies the

conclusion in Chapter 3 that for optimal protected embedded bit streams, perfor-

mances obtained from the proposed approach and the conventional average PSNR

method are very close.

It can be seen from Figure 5.8 that the performance improvement of type-

II over type-I hybrid ARQ [85] is about 0.3 dB. This marginal improvement can

be explained by the fact that the former is more efficient than the latter only for

the packets in which the first bit error happen. However, for optimally protected

schemes, the number of such packets is small. The slightly better performance of
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[14] on BSC of c = 10-2 can be attributed to the 32 bytes source packets (b = 256)

and the arithmetic coding of SPIRT.

5.2.3 Concluding Remarks

Using rate-based performance analysis, which is general for both BSCs and FSMC

channels, an optimization algorithm for type-II stop-and-wait hybrid ARQ schemes

was developed for progressive image transmissions in channels with feedback infor-

mation. The constraint of progressive transmission is a built-in feature of the general

source model and the method is applicable to both memoryless and memory channels.

The more efficient usage of the erroneous packets of the type-II stop-and-wait hybrid

ARQ schemes turns into the best possible system performance, which is about 0.3

dB better than that of the type-I schemes and can be up to 1.7 dB better than the

FEC schemes under the same channel conditions. It is also shown that for typical

progressive image transmission in wireless communications, the delay incurred is

dominanted by transmission time. Thus, the throughput of the proposed ARQ

is also close to that of the FEC schemes. Improvement over type-I schemes is

marginal since the number of discarded packets in the optimally protected schemes is

small. Compared to the type-I stop-and-wait hybrid ARQ scheme, the performance

improvement of type-II is achieved without additional increase in system overhead

and delay. However, the system complexity of type-II scheme is higher due to the

more complicated buffering for the punctured channel bits.

5.3 Conclusions

In this chapter, the idea of rate-based performance evaluation and optimization

for progressive image transmission in FSMC channels is extended to the communi-

cation systems in which feedback channels are available. Within such a practical

scenario for current wireless communications, it is of interest to investigate the
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performance gain of such systems when processing delay is tolerable. The source

model developed for FSMC channels in Chapter 4 is used in the feed-forward

channels. The concatenated CRC-RCPC scheme is modified into a hybrid ARQ

system by adding a water-filling like rate control algorithm. For type-I hybrid

ARQ, the system performance is about 1.4 dB better than what is achievable on

feed forward channels with EEP. The performance is then further improved by

code combining techniques for about 0.3 dB. Since general FSMC models are used

as feedforward channels, the average FEFRL derived by ESA is applicable to the

hybrid ARQ schemes for progressive image tranmission in channel with feedback

information. The performance optimization algorithms for pure FEC and hybrid

ARQ schemes are quite similar.



Figure 5.6 Protection level optimization for type-II SW-HARQ
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Figure 5.7 Comparison of FEC, type-I and -II SW-HARQ schemes
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Figure 5.8 Comparison of FEC, type-I and -II SW-HARQ schemes by PSNR perfor-
mances with LENA image



CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

Just as the image compression algorithms try to provide the best performance with

limited bit rate constraint, the target of joint source-channel coding (JSCC) for

progressive image transmission is also to achieve the highest performance under the

bit rate constraint. The problem tackled in the dissertation is how to obtain the best

possible performance for progressive image transmission over finite state Markov

chain (FSMC) channels with or without feedback information. The research efforts

began from the investigation on the recent successful image compression algorithms

such as EZW and SPIHT. A lingering question is why those algorithms can achieve

such significant performance improvememnt? And what lesson can be learned so

that a similar problem can be solved successfully? One important observation is

that even a simple idea can also result in significant performance improvement, such

as what is achieved from SPIHT. In fact, the major contribution of the dissertation

comes from the slightly different system performance evaluation method, which is

also a very simple idea. By moving from point A to B in Figure 1.1, the conventional

distortion-based performance evaluation approach is replaced by the proposed rate-

based one and the ensuing investigation goes onto a different route. Another lesson

learned from the research is to start the investigation from the simplest case whenever

possible.

It may seem that the analysis on binary symmetric channel (BSC) cases

(Chapter 3) should appear after the discussions on FSMC channel cases (Chapter

4). Such an arrangement might be more concise since both the BSC and related

analytical results are special cases of what is obtained for FSMC channels. However,

the investigation process can not be reflected with such an order and the current

ordering shows the development of error sequence analysis (ESA) from an implicit

use of error sequence to an explicit one.

104
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6.1 Conclusions and Major Contributions

The major theme of the research is the joint source-channel coding design for

progressive image transmission in noisy channels. First, a general first error-free run

length (FEFRL) model for the embedded image sources transmitted over general

noisy channels was set up and explanations were provided for it. With such a model,

a new system performance metric called average error-free source rate Rsef was then

developed. The relationship between the proposed and conventional performance

evaluation approach is then explained.

Based on the proposed approach, we move one step further by obtaining

the average FEFRLs in BSCs for equal error protection (EEP) and unequal error

protection (UEP) schemes, all in closed form. The new models provide an easy way to

solve the optimization problem linked with such joint source-channel coding design.

In the dissertation, optimization algorithms for EEP and UEP are presented. The

UEP optimization problem for progressive image transmission were clearly defined

and complete solutions provided on BSCs. In addition, the necessary condition for

UEP gains was proved and the theoretical performance limits derived. Simulation

results show about 0.3 dB performance improvements over the optimal EEP schemes

under the same channel condition.

Memory or FSMC channels are extensively used to approximate the multipath

fading channels in wireless communications. The idea of obtaining average FEFRLs

is extended to the FSMC channel cases in the research by conducting error sequence

analysis (ESA) on the input/output bit streams for the FSMC channels. It was

further shown that existing techniques for the joint source-channel coding problem

on memory channels such as single BSC based and multiple state based approaches

are all special cases of the results from ESA. And it is clear that the method used

to obtain source models in BSCs is also ESA with error sequences implied in the

derivation process. The performances of the system are then optimized with the
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proposed approach and significant PSNR improvements are achieved in some channel

conditions.

Since the analytical results for FSMC channels are general enough to include

previous ones on BSCs, the model was then used in the feedforward channels in

the automatic repeat request (ARQ) schemes . By adding a water-filling like rate

control algorithm, the forward error correction (FEC) scheme is turned into a hybrid

FEC/ARQ protocol with stop-and-wait strategy. With optimization, optimal type-I

hybrid ARQ schemes achieve about 1.4 dB system performance gain over the optimal

EEP schemes on the feed forward channel alone. With code combining techniques,

the full potentials of the concatenated CRC-RCPC scheme is fully exploited and the

optimal performance is about 0.3 dB better than that of type-I hybrid ARQ schemes.

To conclude the research, it is claimed that with the rate-based system

performance evaluation approach, the average FEFRL model obtained for the FSMC

channels include BSC as a special case. Furthermore, the performance optimization

algorithms for progressive image transmissions over memoryless, memory channels

and channels with feedback information are quite similar.

6.2 Future Work

With such a general approach, the next target is to obtain general guidelines

for protecting strategies on fading channels. For simple channel models such as BSCs,

such a goal is easy to achieve with a BER-RCPC code rate plot. However, for fading

channels and their FSMC model approximations, even a two-state G-E model will

need at least four independent parameters and a general guideline on such multi-

dimensional space has to be based on more investigations and experiments with the

proposed method.

Another interesting topic might be the extension of the idea or even the

approach to scalable video transmission problems.
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