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ABSTRACT

DESIGN OF TRAFFIC SHAPER/SCHEDULER FOR PACKET
SWITCHES AND DIFFSERV NETWORKS:

ALGORITHM AND ARCHITECTURE

by
Surong Zeng

The convergence of communications, information, commerce and computing are

creating a significant demand and opportunity for multimedia and multi-class

communication services. In such environments, controlling the network behavior

and guaranteeing the user's quality of service is required. A flexible hierarchical

sorting architecture which can function either as a traffic shaper or a scheduler

according to the requirement of the traffic load is presented to meet the requirement.

The core structure can be implemented as a hierarchical traffic shaper which can

support a large number of connections with a wide variety of rates and burstiness

without the loss of the granularity in cells' conforming departure time. The hierar-

chical traffic shaper can implement the exact sorting scheme with a substantial

reduced memory size by using two stages of timing queues, and with substantial

reduction in complexity, without introducing any sorting inaccuracy.

By setting a suitable threshold to the length of the departure queue and using

a lookahead algorithm, the core structure can be converted to a hierarchical rate-

adaptive scheduler. Based on the traffic load, it can work as an exact sorting traffic

shaper or a Generic Cell Rate Algorithm (GCRA) scheduler. Such a rate-adaptive

scheduler can reduce the Cell Transfer Delay and the Maximum Memory Occupancy

greatly while keeping the fairness in the bandwidth assignment which is the inherent

characteristic of GCRA. By introducing a best-effort queue to accommodate best-

effort traffic, the hierarchical sorting architecture can be changed to a near work-

conserving scheduler. It assigns remaining bandwidth to the best-effort traffic so



that it improves the utilization of the outlink while it guarantees the quality of

service requirements of those services which require quality of service guarantees.

The inherent flexibility of the hierarchical sorting architecture combined with intel-

ligent algorithms determines its multiple functions. Its implementation not only can

manage buffer and bandwidth resources effectively, but also does not require no more

than off-the-shelf hardware technology.

The correlation of the extra shaping delay and the rate of the connections is

revealed, and an improved fair traffic shaping algorithm, Departure Event Driven plus

Completing Service Time Resorting algorithm, is presented. The proposed algorithm

introduces a resorting process into Departure Event Driven Traffic Shaping Algorithm

to resolve the contention of multiple cells which are all eligible for transmission in

the traffic shaper. By using the resorting process based on each connection's rate,

better fairness and flexibility in the bandwidth assignment for connections with wide

range of rates can be given.

A Dual Level Leaky Bucket Traffic Shaper(DLLBTS) architecture is proposed

to be implemented at the edge nodes of Differentiated Services Networks in order

to facilitate the quality of service management process. The proposed architecture

can guarantee not only the class-based Service Level Agreement, but also the fair

resource sharing among flows belonging to the same class. A simplified DLLBTS

architecture is also given, which can achieve the goals of DLLBTS while maintain a

very low implementation complexity so that it can be implemented with the current

VLSI technology.

In summary, the shaping and scheduling algorithms in the high speed packet

switches and DiffServ networks are studied, and the intelligent implementation

schemes are proposed for them.
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CHAPTER 1

INTRODUCTION

1.1 Background

Broadband networks must accommodate integrated services with a very wide range

of Quality of Service (QoS) requirements, such as voice, video, and data. In order

to utilize network resources effectively while providing a broad range of satisfactory

QoS guarantees to all users on the network, traffic regulation at the network edge

is necessary. Connections are monitored by network operators based on the traffic

contract established during admission control [15]. If a connection does not conform

to the traffic contract, a Usage Parameter Control (UPC) device at the network edge

can discard the violating cells or tag them to a lower priority. It also can employ

traffic shaping to delay non-conforming cells until they are compliant with conditions

described by the traffic contract [45, 61, 88].

The widely used traffic shaping and scheduling algorithm is the Generic Cell

Rate Algorithm (GCRA), which is also known as leaky bucket algorithm [7, 12, 39,

71, 79]. The GCRA is used to judge whether an incoming cell conforms to the

negotiated QoS parameters, and calculate its earliest conformance time. The QoS

parameters for each service are a set of values that pertain to delay and loss of the

transferred cells. These values are negotiated between the user and the network, and

the network promises to guarantee the QoS requirements of the user's service only

when the user conforms to these values. The user has to specify the traffic parameters

of the source so that the network can estimate the bandwidth correctly. These

traffic parameters may include Peak Cell Rate (PCR), Cell Delay Variation Tolerance

(CDVT), Sustained Cell Rate (SCR), and Burst Tolerance (BT) [34]. A different set

of traffic parameters is specified for each service category that the network provides.

1
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In the design of a traffic shaper, three essential attributes should be taken into

consideration: (1) low system delay for incoming cells; (2) simplicity and low cost

in the implementation of sorting time stamps in order to select the cell with the

minimum conformance time; and (3) fairness of bandwidth assignment. Generally,

the delay, and the implementation complexity are the most important criteria for

a system design [82]. The implementation complexity and cost are dominated by

the complexity of sorting and storing time stamps [23]. Based on the GCRA, many

implementations of traffic shapers are proposed, such as direct exact sorting scheme,

rate-based grouping scheme, etc.

1.2 Outline of the Dissertation

A new traffic shaper architecture with hierarchical timing queues is proposed in

this dissertation. In this new architecture, two stages of timing queues are used to

implement the exact sorting algorithm so that this shaper architecture can substan-

tially reduce the number of subqueues needed to store time stamps. Meanwhile,

the exact sorting algorithm is combined with the UPC compliant departure event

driven traffic shaping (DEDTS) algorithm [15], so that there is at most one cell

for every connection in the sorting unit at any given time. Consequently, sorting

unit complexity can be reduced. In contrast to various existing architectures for

implementing a traffic shaper, the proposed implementation can reduce the cost and

complexity greatly by reducing memory size substantially and eliminating complex

arbitration logic of a scheduler.

This hierarchical traffic shaper can be implemented as a hierarchical rate-

adaptive scheduler by using a rate-based lookahead algorithm. When the traffic load

is light, this hierarchical rate-adaptive scheduler can work as a GCRA scheduler to

reduce the Cell Transfer Delay (CTD) and Maximum Memory Occupancy (MMO)
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in comparison with those of the traffic shaper. When the traffic load is heavy, it

performs the shaping function in order to avoid the congestion of the outlink.

This hierarchical sorting architecture can also be implemented as a near

work-conserving scheduler. Generally, in a high speed packet switch hardware

design, a memory limit and a cell loss ratio limit should be given. Under these two

conditions, the maximum accepted traffic which requires QoS guarantees and the

maximum outlink utilization are set. Under the same conditions, a best-effort queue

is introduced to accommodate the best-effort traffic, and the remaining bandwidth

is assigned to it. Such a scheduler not only improves the outlink utilization, but also

relaxes the Connection Admission Control(CAC) constraints.

An improved fair traffic shaping algorithm is also proposed in this dissertation.

It modifies the DEDTS algorithm by adding a process to resort the Completing

Service Time stamps (CT) of all conforming cells. The CT is the sum of the

conforming Departure Time (DT) and the service time of its associated connection.

The service time of a connections is the reciprocal of the rate of the connection. By

resorting the CT stamps, conforming cells can be prioritized based on the rates of

the connections, and the available bandwidth can assigned more fairly so that this

algorithm reduces the shaping delay of high rate connections greatly. This algorithm

can be implemented by modifying the Hierarchical Timing Queues Traffic Shaper

architecture easily.

Currently, the Internet can not support Quality of Service (QoS) requirements.

With the growth of the Internet, more and more applications demand QoS support

from the networks. To meet these demands, the Integrated Services architecture

was proposed first by Internet Engineering Task Force (IETF). In the Integrated

Services (IntServ) networks, all QoS mechanisms are flow-based. However, there

are generally thousands, even ten or hundred thousands of flows in the network at

the same time. The state information and processing capability are proportional
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to the number of flows, therefore, IntServ is definitely unscalable to the Internet.

In order to resolve the scalability problem while keeping the QoS support function,

Differentiated Services (DiffServ) architecture is proposed [4, 91].

In the DiffServ networks, the traffic conditioner is one of the most important

part, and the shaper is one of its components. In the IETF draft, a rate adaptive

shaper for DiffServ networks was proposed [6]. However, it doesn't resolve the fair

resource sharing problem for flows in the same class. In this dissertation, a Dual

Level Leaky Bucket Traffic Shaper (DLLBTS) architecture is proposed for the edge

nodes of DiffServ networks. In DLLBTS architecture, there are two levels of leaky

buckets. The first level is a set of flow-based leaky buckets. It can shape flows based

on the traffic profile of each flow so that it can guarantee that all flows can fairly

share the network resources in the same class when they merge into one class. The

second one is a set of class-based leaky buckets same as all other traffic shapers for

interior nodes of the DiffServ networks. They can guarantee the aggregate behavior

of a class conforming to the Service Level Agreement (SLA). However, two sets of

leaky bucket traffic shaper need two sets of sorting units, and generally, the sorting

unit dominates the complexity of the implementation of a traffic shaper. It is an

expensive solution to implement two sets of complex sorting units in a traffic shaper.

A simplified DLLBTS is proposed, which combines the two levels of leaky buckets

to one stage so that only one set of sorting unit is needed. The simulation results

show that the simplified DLLBTS can reach the goal of DLLBTS while keeping the

low implementation complexity.

The dissertation is organized as follows. The second chapter reviews the

related work, including traffic management, traffic parameters, event-driven traffic

shaping algorithms, and QoS in Internet. The third chapter describes the details

of the proposed hierarchical traffic shaper architecture, and compares it with two

other architectures. It shows that the new architecture has lower implementation
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complexity and cost. In this chapter, the performance evaluation for the hierarchical

traffic shaper is given, and it shows that the simplified implementation performs

as well as the exact sorting scheme. The fourth chapter presents the rate-adaptive

scheduler implemented by hierarchical sorting units with a lookahead algorithm,

and gives the performance evaluation. In the same chapter, the hierarchical near

work-conserving scheduler with best effort traffic is also given. It is implemented by

adding a best-effort queue to accommodate the best effort traffic, and it shows that

the proposed technique improves the outlink utilization without increasing memory

occupancy and cell loss ratio for service with QoS requirements. The fifth chapter

depicts the improved fair traffic shaping algorithm and its implementation. The

performance evaluation shows that this proposed traffic shaping algorithm can give

better fairness performance in the bandwidth allocation. The sixth chapter proposes

DLLBTS for the edge node of DiffServ networks, and a simplified DLLBTS archi-

tecture is proposed for implementation purposes. The last chapter draws conclusions.



CHAPTER 2

RELATED WORK OVERVIEW

The network is becoming ubiquitous, and more and more applications require the

network to support high quality of service which generally has to consume much more

network resources. Although the network capacity is increasing at an astounding

rate, users still suffer from the congested network, and with the development of

the high-bandwidth requirement applications, this situation will not be alleviated

in the near future [4]. In order to enhance the ability of a network to offer high-

quality service guarantees while simultaneously making efficient use of raw network

resources, sophisticated QoS mechanisms have to be adopted. QoS mechanisms

are a set of technologies that enable network administrators to reduce, even avoid

the effects of congestion on application traffic by using network resources optimally,

rather than by continually adding capacity [4]. The most common QoS mechanisms

include scheduling, shaping, policing, admission control, intelligent routing etc. [91].

To meet appropriate differentiated QoS requirements, the ATM Forum proposed a

framework for managing traffic and controlling congestion in ATM networks [34].

The framework consists of many QoS mechanisms, which will be discussed later.

In this chapter, the framework of the traffic management in ATM networks

is described. Traffic regulations, including traffic descriptor, QoS parameters, and

regulation algorithm based on these parameters are also discussed. Users specify the

traffic parameters to describe their traffic in a quantitative means. According to the

characteristics and QoS requirements of the traffic, service classes are defined in the

ATM networks, which are discussed in the third section. Based on the traffic infor-

mation and the current network state, administrators of the network can deploy CAC

to make a connection decision. Once the connection is accepted, there is a traffic

contract constructed. A traffic contract is a legal binding agreement between users

and networks [44]. It is defined by the users' traffic descriptor, QoS requirement, and

6
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connection descriptor. In the whole duration of the communication, administrators

employ Usage/Network Parameter Control (UPC/NPC) to monitor whether the

behavior of the traffic conforms to the traffic contract or not. For the non-conforming

traffic, there are many algorithms and regulations which can be deployed to regulate

it. The widely used policing and shaping algorithm Generic Cell Rate Algorithm

(GCRA) is explained, and the existing event-driven traffic shaping algorithms are

discussed in the fourth section. Finally, the QoS in the Internet is discussed, and

IntServ and DiffServ are described and compared in this chapter.

2.1 Traffic Management Framework

Traffic management is to protect the network and the end-system from congestion

in order to achieve high network performance, provide high QoS guarantees, as well

as promote the efficient use of the network resources [34, 81, 90].

In order to meet such objectives, a framework for managing and controlling

traffic and congestion in ATM networks is proposed by ATM Forum [34]. It consists

of the following QoS mechanisms:

• Connection Admission Control (CAC)

• Usage/Network Parameter Control (UPC/NPC) (traffic policing)

• Cell Loss Priority Control

• Traffic Shaping

• Network Resource Management (NRM)

• Feedback Controls

• Frame Discard (Memory Management)

• ABR Flow Control
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• Other control functions

In this section, the functions in the QoS framework of ATM networks are

discussed as the following, except the traffic shaping which will be studied in details

in the later sections.

• Connection Admission Control (CAC):

Connection admission control is the first line of defense for the network in

protecting itself from excessive loads [81]. It is defined as the set of actions taken

by the network at the call setup phase (or during a call renegotiation phase)

to determine whether the connection can be accepted or not. Only when there

are sufficient network resources to accommodate the new connection without

impacting the performance of other existing connections, the new connection

can be accepted. At the instance of the connection establishment, the traffic

contract is formed by being negotiated with the user. During the whole period

of the connection lifetime, the network resources will be deployed to satisfy

the QoS requirements of the connection if its traffic complies with the traffic

contract [34, 58, 81, 90].

In ATM networks, the CAC is to determine whether a Virtual Channel

Connection (VCC) or a Virtual Path Connection (VPC) can be accepted.

In the multimedia application scenario, one call can require more than one

connection, then the CAC procedures are performed for each VCC or VPC [90].

Some CAC algorithms and schemes are proposed in [31, 29, 37, 53, 75].

• Usage/Network Parameter Control (UPC/NPC)(traffic policing):

The UPC and the NPC are defined as a set of actions taken by the network

to monitor and control traffic conforming to the traffic contract at the User-

Network Interface (UNI) and the Network-Network Interface (NNI), respec-

tively. They are also known as traffic policing, which is one of the most
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important QoS mechanisms. The main role of the UPC/NPC is to protect

network resources from malicious as well as unintentional misbehavior by

detecting violations of negotiated parameters, and taking appropriate action,

such as marking, dropping, or shaping [90]. Networks may use different

UPC/NPC algorithm to police different service classes. Algorithms for the

UPC/NPC are primarily based on the GCRA which will be discussed later

in this chapter. Many traffic policing algorithms are proposed and studied in

[8, 60, 28, 92].

• Cell Loss Priority Control:

Cell loss priority control is a set of priority policy for accepted connections.

The end system may base the policy to mark the traffic from different service

categories different Cell Loss Priority (CLP). If the traffic is treated as

significant, the network may selectively drop cells with low CLPs to protect

the QoS objectives of cells with high CLPs [16, 19, 27, 34, 64].

When a traffic is not conforming to its traffic contract, even its contract

specifies a high CLP for it, it can be marked as low priority to protect other

conforming traffic from performance degradation due to the misbehavior of

some connection.

• Traffic Shaping:

Traffic shaping mechanisms are used to modify the traffic characteristics in a

desired manner [34]. They will be discussed in the later sections.

• Network Resource Management (NRM)

The service classification mode makes the logical separation of connections

according to service characteristics possible, while the Virtual Paths makes

the cell scheduling and resource provisioning to be able to provide appropriate
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isolation and access to resources. VPCs play a key role in network resource

management [34].

VP bandwidth control reduces the required VP bandwidth due to the statistical

multiplexing characteristics, and provides fine bandwidth assignment granu-

larity so that the bandwidth of a VP can be precisely tailored to meet the

demand [90]. The details of the resource management can be found in [17, 52,

56, 77, 80, 85, 86].

• Frame Discard (Memory Management):

In ATM networks, if a cell is discarded, it may lead to upper layer to discard

the whole frame or packet. It is more effective to discard at the frame level

rather than at the cell level. Frame discard may help avoid congestion collapse

and can increase goodput [34].

Partial Packet Discard (PPD) and Early Packet Discard (EPD) are two widely

used frame discard schemes.

—Partial Packet Discard (PPD): If a cell from a packet is dropped from a

switch buffer, the subsequent cells in that packet are also discarded [81].

—Early Packet Discard (EPD): When a switch buffer reaches a threshold

level, but before it is actually required to discard any cells due to buffer

overflow, and entire packet is dropped. Then, when the switch senses

that congestion is beginning and that cell discard may soon be necessary,

it begins to drop some packets with low priority so that it can guarantee

the goodput of packets with higher priority to some extent [81].

Many modified versions of these schemes are proposed and studied in [11, 22,

24, 33, 36, 51, 62].

• Feedback Controls:



11

Feedback control is defined as the set of actions taken by both the network

and users to regulate the traffic submitted to the connections according to the

feedback of the state of network elements. Details of feedback control can be

found in [34, 46, 54, 55, 68].

2.2 Traffic Parameters and QoS Parameters

Traffic parameters describe the characteristics of a connection. They can be

grouped into the source traffic descriptor and the connection traffic descriptor.

The source traffic descriptor describes the intrinsic characteristics of a source. The

connection traffic descriptor describes the traffic characteristics at standardized

network interfaces [10, 34, 44].

• Source Traffic Descriptor

The source traffic descriptor is a set of parameters which captures the intrinsic

characteristics of a source. It is used to request a connection establishment by

the source. The main parameters are Peak Cell Rate (PCR), Sustainable Cell

Rate (SCR), Maximum Burst Size (MBS), and Minimum Cell Rate (MCR).

Types of source traffic descriptors are dependent on the ATM service categories,

which are listed in Fig. 2.2. For the VBR services, PCR, SCR and MBS are all

defined, but for CBR, only the PCR is defined. These parameters are explained

as follows.

1. Peak Cell Rate (PCR) : The PCR specifies the upper bound on the source

rate. Enforcement of this bound by the UPC allows the network operator

to allocate sufficient resources to ensure that the network performance

objectives (e.g., for Cell Loss Ratio) can be achieved. The inverse of PCR

is the peak emission interval of the connection: Tp , which is enforced by

UPC in the real operation [34, 44].
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2. Sustainable Cell Rate (SCR) : The SCR indicates the upper bound on the

conforming average rate of an ATM connection, over time scales which are

long relative to those for which the PCR is defined. Enforcement of this

bound by the UPC could allow the network to allocate sufficient resources,

less than those based on the PCR, and still ensure that the performance

objectives can be achieved. Similarly, the inverse of SCR T3 is enforced

by UPC in the real operation [34, 44].

3. Maximum Burst Size (MBS): The MBS is the maximum number of cells

transmitted in PCR. MBS together with PCR and SCR may determine

the Burst Tolerance (BT).

4. Minimum Cell Rate (MCR) : The MCR is the rate at which the source

is always allowed to send. This is the minimum allocated bandwidth of a

connection.

• Connection Traffic Descriptor

The connection traffic descriptor specifies the traffic characteristics of an

ATM connection. The connection traffic descriptor includes the source traffic

descriptor, the Cell Delay Variation Tolerance (CDVT), Burst Tolerance (BT),

and the conformance definition that is used to specify the conforming cells of

the connection.

1. Cell Delay Variation Tolerance (CDVT): ATM layer functions (e.g., cell

multiplexing), OAM cells, and other physical layer overhead may alter the

traffic characteristics of connections by introducing Cell Delay Variation.

Consequently, the peak emission interval Tp may be affected, which may

lead to cell clumping phenomenon. The upper bound on the "clumping"

measure is the CDVT. CDVT is defined in relation to the PCR according

to the GCRA denoted by GCRA(Tp , CDVT).
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2. Burst Tolerance (BT): BT also specifies the upper bound of cell clumping

phenomenon with respect to the sustainable emission interval T3 . Conse-

quently, BT is defined in relation to the SCR according to GCRA(Ts ,

BT).

3. Conformance Definition: The conformance of cells of a connection is

defined in relation to the conformance algorithm and corresponding

parameters specified in the connection traffic descriptor. In traffic

contract, a conformance definition based on the conformance algorithm

GCRA is defined. We will explain the details of the GCRA later.

• QoS Parameters

In this subsection, the negotiable QoS parameters are described. They are

Maximum Cell Transfer Delay (MaxCTD), Peak-to-Peak Cell Delay Variation

(p-to-p CDV), and Cell Loss Ratio (CLR).

1. MaxCTD: The measured Cell Transfer Delay (CTD) is defined as the

elapsed time between a cell exit event at the source point and the

corresponding cell entry event at the destination point for a particular

connection. It is the sum of the total inter-node transmission delay and

the total node processing delay between these two points. Fig. 2.1 shows

the probability density function of the CTD, and relates it to maxCTD

and p-to-p CDV parameters.

The maxCTD specified for a connection is the (1 — a) quantile of CTD.

2. Peak-to-Peak CDV: The peak-to-peak CDV is the difference between the

maxCTD and the fixed CTD as shown in Fig. 2.1. The fixed CTD

is experienced by any delivered cell on a connection during the entire

connection holding time.

Two methods are defined to measure the CDV:
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Figure 2.1 Cell Transfer Delay Probability Density Model [34]

— One-point CDV: The one-point CDV for k (y k ) at a measurement

point is defined as the difference between the cell's reference time (ck )

and actual arrival time (a k )at the same measurement point:

. The reference time is defined as:

Positive one-point CDV means cell clumping phenomenon observed;

and the negative one corresponds to gaps in the cell stream. The

reference arrival time defined above eliminates the effect of gaps and

provides a measurement of cell clumping.

Two-point CDV: The two-point CDV is the variability in the pattern

of cell arrival events observed at the output of a measurement point

with reference to the pattern of the corresponding events observed at
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the input to another measurement point. The two-point CDV for cell

k (vk ) between two measurement points is the difference between the

absolute CTD of cell k (xk ) between these two points and a defined

reference CTD (d 1 ,2 ) between the same points: v k xk — d1 ,2. The

absolute CTD (xk ) of cell k between two measurement points is the

same as CTD. The reference CTD (d 1 ,2 ) between these two points is

the absolute CTD experienced by a reference cell between the two

measurement points.

3. Cell Loss Ratio: The Cell Loss Ratio is defined for a connection as:

The Cell Loss Ratio parameter is the value of CLR that the network agrees

to offer as an objective over the lifetime of the connection.

2.3 ATM Service Classes

ATM Forum's Traffic Management Version 4.0 specifies four main service classes

based on the traffic characteristics and QoS requirements. They are Constant Bit

Rate (CBR) service, Variable Bit Rate (VBR) service which also includes Real-Time

(RT) and Non-Real-Time (NRT) traffic, Unspecified Bit Rate (UBR) service, and

Available Bit Rate (ABR) service [34].

Fig. 2.2 shows the list of ATM traffic parameters for each service category.

CBR is a service category for connections that request a static amount

of bandwidth that is continuously available during the connection lifetime [34].

The cell intervals in the CBR are almost constant. CBR offers consistent delay

predictability of circuit-switched services or leased line services with guaranteed

bandwidth allocation. CBR traffic (e.g., voice traffic supported by the conventional

telephone network) requires the Peak Cell Rate bandwidth allocation to an ATM
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Attribute
ATM Layer Service Category

CBR rt-VBR nrt-VBR UBR ABR

Traffic
Parameter

PCR
CDVT

PCR, CDVT
SCR, BT
MBS

PCR, CDVT
SCR, BT
MBS

PCR
CDVT

PCR
MCR
CDVT

QoS
Parameter

p-p CDV
maxCTD
CLR

p-p CDVmaxCTD

CLR
CLR CLR

Conformance
Definition

GCRA(1/PCR, CDVT) GCRA(1/PCR, CDVT)
GCRA(1/SCR, BT)

GCRA(1/PCR, CDVT)
GCRA(1/SCR, BT)

GCRA(1/PCR, CDVT) Dynamic_
GCRA

Figure 2.2 ATM Service Category Attributes [34, 44]

connection [90]. CBR service is intended to support real-time applications which are

sensitive to the delay and delay variation [47, 48]. In the CBR capability, the source

may emit idle cells at, or below the PCR. It also may delete those cells which are

delayed beyond the specified maxCTD [34].

VBR is a service category for the variable-bit-rate-type traffic in which the cell

interval is not constant. VBR traffic is described by PCR, SCR, MBS. It does not

always require the allocation of the PCR bandwidth. The bandwidth allocation of

VBR traffic is based on its PCR and SCR, generally between these two value [90].

Therefore, VBR service is good for the bandwidth utilization than CBR service, in

which it is always allocated the PCR bandwidth. VBR includes two types of traffic.

They are:

• Real-Time VBR(rt-VBR) service: it is intended for real-time applications

which require constrained delay and delay variation. Sources are expected

to transmit at a rate which varies with time. It means that the source can be

described as "bursty" [34]. Its QoS requirements include the maxCTD. It can

support statistical multiplexing of real-time sources, and get a relatively high

bandwidth utilization. It was studied in [3, 57, 59, 88].
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• Non-Real-Time VBR(nrt-VBR) service: it is intended for non-real-time appli-

cations which have bursty traffic characteristics. Cells experience a low cell

loss ratio when they are conforming to the traffic contract. No delay bounds

are specified in this service category [34].

UBR is a service category for non-real-time application. In UBR, the CLR and

CTD of each connection are not guaranteed. Although it is also described by PCR,

the value of PCR is just informational. The network may not allocate bandwidth

based on its PCR. The UBR service is served whenever the network resources are

available. It is like a best-effort traffic [1, 49, 50, 65]. The UBR traffic will be dropped

first when the network is congested [34, 90].

ABR is a service that its ATM layer transfer characteristics may change based

on the available network resources during the connection lifetime. A flow control

mechanism must be used to control the source rate in response to changing ATM layer

transfer characteristics [21, 50, 93, 100]. In order to get the information of available

network resources, several types of feedback are supported in ABR capability. The

ABR services doesn't guarantee the delay and delay variation, so it can not be for

real-time applications. The ABR is described by PCR and MCR, which designate

the maximum required bandwidth and a minimum usable bandwidth, respectively.

The available bandwidth of the network may vary, but shall not become less than

MCR [34, 90].

2.4 Traffic Shaping

In ATM networks, if there is any cell non-conforming to the traffic contract estab-

lished at the instance of acceptance of the connection, network operators can drop or

tag the non-conforming cells. They also can use traffic shaper to shape the stream,

that is, delay the non-conforming cell till its conforming Departure Time(DT).

There are many algorithms that can be used to calculate the conforming DT,
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such as, jumping window [60, 72, 92], moving window [44], exponentially weighted

moving average [28, 72] etc.. However, the most widely accepted traffic shaping and

scheduling algorithm is Generic Cell Rate Algorithm (GCRA), also known as Leaky

Bucket Algorithm.

2.4.1 Generic Cell Rate Algorithm

The GCRA is used to define conformance with respect to the traffic contract. It is

well known as Leaky Bucket Algorithm [13, 15]. The GCRA is a virtual scheduling

algorithm or a continuous-state leaky-bucket algorithm. The GCRA is defined with

two parameters: the Increment (I), and the Limit (L), and denoted as GCRA(I, L).

The basic process of this algorithm is described by ATM Forum [34] as in Fig. 2.3.

The explanation for the flowchart follows. The virtual scheduling algorithm

updates the Theoretical Arrival Time (TAT), which is the nominal arrival time of

the cell assuming equally spaced cells when the source is active. If the actual arrival

time of a cell is not too early compared to the TAT, in particular the actual arrival

time is not earlier than TAT — L, then the cell is conforming. Otherwise, the cell

is not conforming. The continuous-state leaky-bucket algorithm can be viewed as

finite-capacity bucket whose real-valued content drains out at a continuous rate of

1 unit of content per time unit and whose content is increased by the increment I

for each conforming cell. If at a cell arrival the content of the bucket is less than

or equal to the limit value, L, then the cell is conforming. Otherwise, the cell is

non-conforming. The capacity of the bucket is L + I [34, 44]. The depiction of the

GCRA(I,L) is shown in the Fig. 2.4.

According to the individual connection's traffic contract, traffic shaper assigns

a conformance time to each incoming cell using the GCRA. When a cell arrives, the

GCRA updates the leaky bucket level X' according to the new arrival time RAT(k)
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VIRTUAL SCHEDULING
ALGORITHM

TAT(k): Theoretical Arrival Time of cell k
RAT(k): Real Arrival Time of cell k
INC: Increment of Leaky Bucket counter
LCT: Last Conforming Time

CONTINUOUS-STATE
LEAKY BUCKET ALGORITHM

X: Value of the Leaky Bucket counter
X': Auxilary variable
LIM: Limit of the Leaky Bucket counter

Figure 2.3 Generic Cell Rate Algorithm [34]

Figure 2.4 Depiction of GCRA(I, L) [81]
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and the Last calculated Compliance Time LCT,

If the updated leaky bucket level X' exceeds the limit of bucket (L), then this is a

non-conforming cell, and should be delayed at least X' — L . Otherwise, this is a

conforming cell, and should be assigned a conformance time equal to RAT(k) [69].

Generally, the dual leaky bucket algorithm is employed to control the bursty

data service [43]. There are four traffic parameters associated with dual leaky bucket

algorithm, PCR, CDVT, SCR, BT. The dual leaky bucket algorithm is denoted by

GC RA(Tp , r, , T,, r3 ), in which, Tp is the Peak Emission Interval, T3 is the Sustained

Emission Interval, Tp = PAR , τp CDVT,  Ts= 1/SCR, Ts= BT.One of the leaky

buckets is defined by Tp and p , which is used to eliminate the sustained high rate

but small burst size phenomenon, another is defined by T3 and re, , which is used

to control the sustained medium rate but with very large burst size phenomenon.

When there is a cluster of cells coming at a high speed, even the length of the cluster

is small, it may make the bucket associated with the PCR full. Then, the cells are

delayed so that the rate is reduced, and congestion may be avoided. In another case,

although the rate of the cells are moderate, just little higher than the SCR, however,

if the length of burst is very large, it also may lead to the leaky bucket associated with

the SCR full. Then, this SCR bucket can control such a kind of bursts. Therefore,

the dual leaky bucket algorithm can control the bursty data much more efficient

than single leaky bucket algorithm. The algorithm of each leaky bucket is as same

as Fig. 2.3 describes. The leaky bucket levels are denoted by X8 , X p , and updated

leaky bucket levels are denoted by X's , X; respectively.

For an incoming cell, if it does not conform to anyone of the leaky buckets, it is

judged as non-conforming cell, and should be assigned a conforming departure time
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in which, RT is the Real Time or current time.

2.4.2 Event-Driven Traffic Shaping Algorithms

Based on the GCRA, the traffic shaper assigns conforming DT to each incoming cell

so that it can schedule their transmission. For the assignment of departure time, two

event-driven traffic shaping algorithms are proposed: Arrival Event Driven Traffic

Shaping algorithm and Departure Event Driven Traffic Shaping algorithm [15, 18,

44].

2.4.2.1 Arrival Event Driven Traffic Shaping Algorithm (AEDTS) Arrival

Event Driven Traffic Shaping Algorithm (AEDTS) is the conventional leaky bucket

algorithm which is recommended by ATM Forum [34]. In AEDTS, while a new cell

is received and appended to its associated Virtual Connection Queue (VCQ), its

departure time will be calculated based on the calculated DT of the previous cell

in the same VCQ using GCRA. The leaky bucket level will be updated at the same

time [18, 44]. The algorithm is shown in Fig. 2.5.

An example of AEDTS is shown in Fig. 2.6.

In this example, there is only one connection. This connection's increment

1=4, and the limit L=2, that is T=4, and r = 2, the capacity of the bucket is

T + T = 4 + 2 = 6. The output of the traffic shaper is a strict conforming traffic

flow. No departure cell makes the leaky bucket overflow.

However, for AEDTS, although the output of each connection complies with

its own leaky bucket parameters, as multiplexed on the outlink, each shaped cell

may violate the shaping parameter because of the contention among eligible cells for

transmission [15]. If the previous cell of one VCQ is delayed due to loss of contention,

the successive cell of the same VCQ may be assigned an improper DT based on the

calculated DT of the previous cell which is earlier than its real departure time. Such
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RAT: Real Arrival Time; 	 DT: Departure Time; 	 DT', XP', XS': Auxiliary Variable
XP: Level of the Leaky Bucket associated with Peak_cell_rate;
LIM_P: Limit of the Leaky Bucket associated with Peak_cell_rate;
XS: Level ofthe Leaky Bucket associated with Sustainable_cell_rate;
LIM_S: Limit of the Leaky Bucket associated with Sustainable_cell_rate;
T_S: Increasement interval of the Leaky Bucket associated with PCR
T_P: Increasement interval of the Leaky Bucket associated with SCR;

Figure 2.5 Arrival Event Driven Traffic Shaping Algorithm
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Figure 2.6 An Example of DT Calculation Diagram for AEDTS (L=2, 1=4,
GCRA(4, 2))
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Figure 2.7 Clumping Phenomenon in AEDTS (both connections with L=2, I=4)

improper assignment of DT may clump the successive cell sequence so that it leads

to a larger Cell Delay Variation which may violate the traffic contract CDVT and

BT. This problem is shown in Fig. 2.7.

In this scenario, after the multiplexing, due to the first cell of connection 1 loses

its contention, and has to be delayed one cell slot, the first two cells of connection 1

are clumped together, and violate the traffic contract, overflow the bucket. It shows

that the AEDTS may not guarantee the multiplexed connections strict compliant to

their individual traffic contract any more.
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2.4.2.2 Departure Event Driven Traffic Shaping Algorithm (DEDTS)

In order to strictly limit the CDVT and BT at the output of the shaping multi-

plexer [15, 44], Departure Event Driven Traffic Shaping Algorithm (DEDTS) is

proposed. Compared to the traditional GCRA which is AEDTS, in DEDTS, bucket

level update and DT calculation are performed only when the previous cell of the

same connection departs from the multiplexer. The algorithm is shown in Fig. 2.8.

An example of DT calculation of DEDTS is shown in Fig. 2.9.

In this example, there is only one connection. It is same as in AEDTS in this

scenario. However, when multiple connections are multiplexed together, the DEDTS

resolves the clumping problem which is shown in Fig. 2.10.

Because the DT is calculated based on the real DT of the previous cell of the

same connection, DEDTS can guarantee strict conforming to CDVT value of each

connection. Meanwhile, in each time slot, only one cell is transmitted, so only one

new conformance time DT is calculated, which also eliminates the bottleneck due

to multiple DT calculation for more than one cell arriving at the same cell slot in

AEDTS.

2.5 QoS in Internet

With the Internet evolves from a best effort network to a network supporting QoS,

the IETF has proposed many service models and mechanisms to meet the demand for

QoS. Integrated Services (IntServ) framework and Differentiated Services (DiffServ)

framework are two of the most important proposals.

2.5.1 Integrated Services and RSVP

RSVP is a signaling protocol that can be used by hosts to request resource reser-

vations through a network, and set up paths [4, 91, 101]. The IntServ model is a

framework for providing end-to-end services in the context of RSVP signaling. It is
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RDT: Real Departure Time; 	 XP: Level of the Leaky Bucket associated with PCR;
DT: Assigned Departure Time; 	 LIMP: Limit of the Leaky Bucket associated with PCR;
T_P, T_S: Increasement of Leaky Buckets; 	 XS: Level of the Leaky Bucket associated with SCR;
DT', XP', XS': Auxiliary Variable 	 LIM_S: Limit of the Leaky Bucket associated with SCR;

Figure 2.8 Departure Event Driven Traffic Shaping Algorithm



Figure 2.9 An Example of DT Calculation Diagram of DEDTS (L=2, 1=4)
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Figure 2.10 An Example of DT Calculation of DEDTS in Multiplexing Scenario
(both connections with L=2, 1=4)
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characterized by resource reservation. IntServ assumes that network devices support

traffic handling mechanisms, which guarantee service to each traffic flow in strict

isolation from other traffic flows. In the integrated services model [9], there are three

service classes. They are:

• Guaranteed Service: it is for applications requiring fixed delay bound [76, 91];

• Controlled-load Service: it is for applications requiring reliable and enhanced

best-effort service [89, 91];

• Best-effort Service: it is for the traditional Internet applications.

The philosophy of this model is that "There is an inescapable requirement for

routers to be able to reserve resources in order to provide special QoS for specific user

packet streams, or flows. This in turn requires flow-specific state in the routers" [9,

91]. RSVP was invented to reserve resources for applications. The RSVP signaling

process is illustrated in Fig. 2.11.

The whole process is described as the following:

1. the sender generates RSVP message known as the PATH message. The PATH

message carries the information for the traffic description. It includes the

identity of the sender, the sending application, the traffic profile, and the classi-

fication criteria by which the traffic can be recognized [4].

2. The sender sends this PATH message to the receiver specifying the character-

istics of the traffic. Every intermediate network device, such as a router, along

the path installs the PATH state, and forwards the PATH message to the next

hop determined by the routing protocol.

3. When the receiver gets this PATH message, it responds with a RESV message

to request resources for the flow. Every intermediate router along the path can



Figure 2.11 RSVP Signaling Process

apply admission control to determine whether the request of the RESV message

is accepted or not. If the request is accepted, link bandwidth and buffer space

are allocated for the flow, and related flow state information will be installed

in the network device. When a device rejects a request, error messages are

sent along the data path, notifying other RSVP-aware devices of the admission

control failure [4, 91].

Recently, the RSVP has been modified and extended in several ways to

reserve resources for aggregation of flows, to set up explicit routes (ERs) with QoS

requirements, and to do some other signaling tasks [32, 38, 63].

IETF proposed a reference implementation framework to realize the IntServ/RSVP

model. This framework consists of four components: the packet scheduler, the
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admission control routine, the classifier, and the reservation setup protocol [9]. The

implementation reference model is shown in Fig. 2.12.

Figure 2.12 The Implementation Reference Model of IntServ/RSVP [9]

The packet scheduler manages the forwarding of different packet streams using

a set of queues and queue management policy, and runs some scheduling algorithm.

The classifier classifies or maps each incoming packet into different classes, and

all packets in the same class get the same treatment from the packet scheduler.

The classifying or mapping may be based upon the contents of the existing packet

header(s) and/or some additional classification number added to each packet. The

admission control determines whether there are enough resources for the new flow

without impacting the existing connections in the network. Based on this decision,

the network device chooses to accept or reject the new flow. The fourth component

is the RSVP. It sets up a path for the new flow, as well as creates and maintains
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flow-specific state in the endpoint hosts and in network devices along the path of the

flow [9].

The IntServ network model makes a fundamental change to the concept of the

Internet architecture. It requires that all flow-related information should be in the

end systems. This scheme can guarantee the QoS for each flow [25, 91]. However, it

also leads to some problems:

• The amount of state information increases proportionally to the number of

flows. In the current Internet, there can be thousands, ten thousands, even

hundred thousands of flows simultaneously. This architecture is definitely

unscalable [91].

• The implementation complexity of the network device is very high. Each device

must have the packet scheduler, classifier, admission control, and RSVP. It also

leads to the scalability problem [4, 91].

2.5.2 Differentiated Services

2.5.2.1 Motivation for DiffSery Because of the difficulty in implementing

and deploying the IntServ/RSVP architecture, differentiated services (DiffServ)

architecture is proposed by the IETF to resolve the scalability problem in the

IntServ/RSVP model.

DiffServ is a traffic handling mechanism [4]. It defines a field in packets' IP

headers, called the diffserv codepoint (DSCP). It is six-bit wide in IPv6, and three-bit

wide in IPv4 which is also called type of service (TOS) in IPv4 header. In addition,

it defines a base set of packet forwarding treatments, called the per-hop behavior,

or PHBs [66]. By marking the DSCP of packets differently, the network devices

can classify packets and apply specific queueing behavior based on the results of the

classification. Traffic from multiple flows having similar QoS requirements is marked

with the same DSCP, thus aggregating the flows to a common queue or scheduling
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behavior. The distinguishing feature of DiffServ is its scalability [4]. It is because that

the aggregate traffic handling mechanisms require significantly less state information

and processing capability in network nodes than their per-flow counterparts.

2.5.2.2 Configuration of a DiffSery Network In the DiffServ model proposed

by the IETF, the DiffServ network is configured to provide many services to its

customers. These services are specified by the service level agreement (SLA). The

SLA is defined at the instance that the customers submit traffic to the DiffServ

network's ingress router. An SLA may specify the traffic profile, service class that

the submitted traffic belongs to, QoS requirements, etc. The administrator of the

DiffServ network will use whatever provisioning and configuration tools are available

to meet the SLA for those conforming traffic [4]. An SLA can be static or dynamic.

Static SLAs are negotiated on a regular time interval, which is a generally relative

long term. Customers with dynamic SLAs must use a signaling protocol (e.g. RSVP)

to request services on demand [91].

In a DiffServ network, routers at the ingress point would be configured to

classify traffic based on the IP addresses, ports in packet headers and its SLA. The

routers would be configured to mark the DS field of packets with one of DSCPs based

on the classification results. The internal routers of the DiffServ networks would be

configured to classify packets based on DSCP and direct them to a corresponding

queue. Queues would be configure to satisfy certain service characteristics specified

by the SLAs [4].

In order to provide the QoS guarantee to the conforming traffic, the traffic

conditioning must be executed. The traffic conditioning is a set of control functions

that can be applied to a behavior aggregate, application flow, or other subset of

traffic. They may include metering, policing, shaping, and packet marking as shown

in Fig. 6.1 [5, 66]. The classification, policing, scheduling, and shaping rules used
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at the ingress routers are derived from the SLAs [91]. The traffic conditioning is

typically deployed in the ingress routers. Generally, the packets are classified, policed,

and possibly shaped and scheduled in DiffServ boundary nodes.

2.5.2.3 Service Classes in DiffSery Networks In a DiffServ network, many

services can be provided. They are include:

• Premium Service: It provides low-delay and low-jitter service for customers

that generate fixed peak bit rate traffic. Premium service is suitable for

those real-time applications, such as Internet telephony, videoconferencing,

etc. The SLA for the premium services should specify a desired peak bit-

rate for a specific flow or an aggregation of flows. The Internet service provider

(ISP) guarantees that the contracted bandwidth will be available when the

conforming traffic is sent.

• Assured Service: It is for applications requiring better reliability than best-

effort service even in times of network congestion. The SLAs of assured

services will specify the amount of bandwidth allocated for the customers, and

customers themselves determine how they share that amount of bandwidth.

• Olympic Service: It provides three tiers of services: gold, silver, and bronze,

with decreasing quality [40, 67, 91].

2.5.2.4 Characteristics of the DiffSery Model DiffServ model has two most

distinguishing features different from the IntServ model. They are:

• One is that there are only a small limited number of service classes indicated by

the DS field, and the amount of state information is proportional to the number

of classes rather than the number flows, so the management complexity for the

state information and the device processing power are reduced greatly.
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• Another one is that sophisticated classification, marking, policing, and shaping

operation are only needed at the boundary of the networks. Those core network

devices only have to deal with behavior aggregate (BA) classification. Conse-

quently, it is easier and more cost efficient to implement and deploy DiffServ

networks, and resolve the scalability problem in the IntSery model [4, 91].

2.5.2.5 Access Control at the Edge of the DiffSery Networks In DiffServ

networks, all traffic control mechanisms are class-based. However, access networks,

such as local area networks, may deal with traffic as individual flows, so the

convergence at the edge of the DiffServ network is an important issue. In this

dissertation, the traffic shaping mechanism is extended to the DiffServ network

environment to implement the fair convergence at the edge of the DiffServ networks,

and an implementation scheme for the access control is proposed.



CHAPTER 3

THE HIERARCHICAL TIMING QUEUES TRAFFIC SHAPER

3.1 Motivation for the Hierarchical Timing Queues Traffic Shaper

There are many architectures proposed to implement shaping function. These archi-

tectures are classified as either Direct Exact Sorting [15, 18, 44], or Rate Based

Grouping architectures in this thesis [73]. In this section, the existing traffic shaper

architectures are described, and their problems are pointed out.

3.1.1 Existing Traffic Shaper Architectures

3.1.1.1 Direct Exact Sorting Architecture Direct Exact Sorting architecture

is shown in Fig. 3.1. 	 This architecture employs Per-Virtual-Connection-Queue

Figure 3.1 Direct Exact Sorting Architecture

(Per-VCQ) structure at the input port. Following the Per-VCQ, there is a sorting

unit. It is a set of timing queues which is formed based on the incoming cell's

conforming Departure Time(DT). At the output port, a Departure Queue (DQ) is

used to store cells with the conformance time due or overdue.

36
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In each cell slot, if the DQ is not empty, its Head of Line (HoL) cell with

connection ID i will be served. Then, according to the traffic contract of connection

i, a new DT of this connection will be calculated by its associated dual leaky buckets.

Based on the new DT, the next HoL cell of connection i will be appended to one of

timing queues. Once the real time pointer RT points to a timing queue, all cells in

the queue become due. Hence, they are appended to the DQ. In the Direct Exact

Sorting architecture, all cells with the same DT are appended to the same timing

queue, so the DT of a cell becomes the sequence number indicating which timing

queue the cell should be appended to. This is the key point of this architecture.

The timing queue scheme can reduce the implementation complexity of the

exact sorting of time stamps. Especially, it avoids comparison and insertion

operations which are time-consuming. Due to DEDTS, it only needs to calculate one

time stamp value per cell slot. However, for hardware implementation, the number

of the timing queues can not be infinite. The timing queue sequence numbers should

be reused to represent the time stamps. If the maximum sequence number is M-1,

there can only be M timing queues. In order to avoid confusion between RT and

RT+M, it should guarantee that the farthest DT of a cell being appended into the

timing queues is not larger than RT+(M-1). If the rate of a connection is denoted

by p, then, the head of line (HOL) cell of the slowest connection can be assigned a

DT at most 1 into the future. If only one cell from each connection is kept to
Pmin

stay in the sorting unit, only cells which are at most  1/pmin ahead of the RT should

be accommodated in the sorting unit. In order to satisfy the high speed connection

performance accuracy, 1/pm ax should be chosen as the timing queue granularity.

Therefore, in the design of this system, the number of timing queues M should

satisfy the inequality below,
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There is a shortcoming in the scalability of this architecture. When a

broadband network should accept a great number of connections with very wide

range of rates, the value M will be very large. With the range of rates increasing,

the value of M will increase linearly, which means that the complexity of the

implementation of this architecture is

So this architecture is not suitable for accommodating connections with a very wide

range of rates.

3.1.1.2 Rate-Based Grouping Architecture In order to improve the scalability

and reduce the complexity of implementation of the Direct Exact Sorting, Rate-Based

Grouping Architecture was proposed in [73], as shown in Fig.3.2.

Figure 3.2 Rate-Based Grouping Traffic Shaper

In this scheme, all connections are grouped based on their rates so that each

group only needs to shape its connections with a small range of rates. Each group
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uses a separate shaper that consists of timing queues and a departure queue as shown

in Fig. 3.1.

Let p i be the granularity parameter of group i (which is used to control the

granularity of its group), pi, min,  pi,max be the minimum and maximum connection

rates of group i, and n be the number of groups in the whole system. Then, group i

so the number of timing queues of

group i will be

If we divide the rates uniformly, such that for all i, pi,max /pi,min = 771, then the total

number of timing queues will be E 7:_ i mtti . In contrast to the number of timing

queues of the Direct Exact Sorting, which is

this scheme really reduce the number of timing queues. Because there are more

than one group of connections, and each group has its own DQ, there should be a

group arbitration logic to arbitrate which group can transmit its HoL conforming cell.

Additionally, in order to keep the number of timing queues small enough for low rate

connections, large timing queue granularity should be chosen. Consequently, for the

low rate connection, the average cell delay increases. The larger the granularity, the

worse the performance for connections. The details of the timing queue granularity

problem will be explained in the next subsection.

3.1.2 Problems in the Existing Traffic Shaper Architecture

In order to understand the problems in the existing traffic shaper architecture, timing

queue granularity should be explained in details. The timing queue granularity means

the range of time slots that each timing queue represents. Examples are shown in

Fig. 3.3. If the timing queue granularity is chosen as one slot, then kth timing
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queue represents slot k, and all cells in this timing queue have same DT which is

equal to k, and all cells in this timing queue will be appended into the DQ at slot

k which is their exact assigned DT. Therefore, it is said that the exact sorting is

implemented. If the timing queue granularity is chosen as 100 slots, then kth timing

queue represents slot k to slot k+99. All cells with DT equal to value between k and

k+99 will be appended into this timing queue, and they will be appended into DQ

at slot k+99, even one cell with DT equal to k. Consequently, the larger the timing

queue granularity, the larger the system delay for the incoming cell.

Figure 3.3 Timing Queue Granularity Depiction

The Direct Exact Sorting architecture implements the exact sorting, and

guarantees low system delay for all connections without extra delay due to the

coarse sorting. However, it is not scalable to the network with a wide range of the

rates distribution because its implementation complexity is

The Rate-Based Grouping traffic shaper reduces number of timing queues,

but the timing queue granularities for the low rate groups are larger than that

for the high rate groups. It leads to the performance degradation for connections
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belonging to the low rate groups. The Rate-Based Grouping architecture reduces

the implementation complexity at the price of the performance degradation of the

low rate connections. This architecture also requires the implementation of a group

arbitrator which increases the implementation complexity. More importantly, this

scheme requires a reconfiguration of timing queues and rate groups whenever there

is a significant change in overall connection mixture. Otherwise, the performance is

degraded substantially.

In order to resolve these problems in the existing traffic shaper architectures, a

new traffic shaper architecture with hierarchical timing queues is proposed as shown

in Fig. 3.4. It can support individual connection rates from a few kbits/s to several

gigabits/s, a 106 ratio without the loss of granularity of the departure time (DT).

The proposed architecture reduces the number of timing queues greatly without any

reduction of performance for all connections. In the proposed architecture, DEDTS

algorithm is used to assign DT, which guarantees the multiplexed output stream still

satisfying with QoS requirements [95, 94].

3.2 The Architecture Description for the Hierarchical Traffic Shaper

In the proposed architecture, the Per-VCQ structure is still employed at the front of

the shaper because Per-VCQ can easily provide flow isolation as well as fair sharing of

the link bandwidth among contending connections [23, 10]. Following the Per-VCQ,

there is a sorting unit. In this sorting unit, there are two stages of Timing Queues.

As discussed in the second section, if only the HoL cell from a VCQ is assigned a DT

according to the traffic parameters and the old DT of the most recently departed cell

of the same connection, then the possible largest DT is RT + 1min , so finite number
Pm

of timing queues can be used to sort all cells based on their DT. In this scheme, the

values of Departure Time (DT) and Real Time (RT) are divided into two parts, as

shown in Fig. 3.5.



Figure 3.4 Traffic Shaper with Hierarchical Timing Queues

The high part from bit M to bit 2M-1 is called Coarse Pitch Time part, and the

low part from bit 0 to bit M-1 is called Fine Pitch Time part, in which, M = log2 K,

and K is the number of timing queues in one set of FPTQ or CPTQ. The DT and

can be denoted by (DT _ct , DT _f t), and

, and the RT can be denoted by

. Similarly, we divide timing queues into two stages. One stage is sequenced

by using coarse pitch time value, called Coarse Pitch Timing Queues(CPTQs),

which accommodate cells with DT satisfying the inequality: DT > RT + K. The
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Time_ct: Coarse Pitch Timing Part; Time_ft: Fine Pitch Timing Part

Figure 3.5 Data Structure of Time Register

other stage is sequenced by using fine pitch time value, called Fine Pitch Timing

Queues(FPTQs), which accommodate cells with DT satisfying the inequality: DT <

RT + K. Assuming the maximum value of DT_ct=DT_ft=RT_ct=RT_ft=K, then

the number of each set of timing queues is K. FPTQs accommodate those eligible

HoL cells of VCQs which need to be served in the next K time slots. Each queue of

FPTQs is associated with one cell slot. CPTQs store other HoL cells whose DTs are

far away from current RT more than K cell slots. The largest sorting range of the

two stages of timing queues is

, so the total number of the timing queues will be

when ρmax/ρmin is given. However, b has to be at least equal to 3K for the correct

operation of our sorting unit. We will explain it later.

Although in each CPTQ, all cells have same DT_ct, they are out of order

due to their different DT_ft. In order to sort the cells in the CPTQs, all cells

will be appended to FPTQs based on their DT_ft. In every cell slot, the HoL cell

of the CPTQ pointed by the coarse pitch real time (RT_ct) is appended into the

corresponding FPTQ based on the cell's DT_ft. As the real time advances, linked

list of cells in the FPTQ pointed by fine pitch real time RT _ft pointer are appended

into a FIFO Departure Queue(DQ) where they are served at the line rate. In order
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to sort cells correctly while they are being appended from the CPTQs to the FPTQs,

a prefetching scheme is employed. Correct sorting of these appended cells requires

to employ 2K FPTQs when the maximum value of DT_ft is K. Hence, the total

number of timing queues that guarantees the correct sorting of cells based on their

DTs is

. This ensures that while the one half of FPTQs are being served, only the other

half are appended with cells from CPTQs. These newly appended cells do not fall

behind the fine pitch real time pointer. The process is shown in Fig. 3.6. One set of

FPTQs accommodate cells with DT _ct = RT _ct, and another one set accommodate

cells with DT _ct = RT _ct + 1.

The real implementation of the prefetching scheme is shown in Fig. 3.7. One

set of FPTQs are used to accommodate cells with even DT _ct (called even FPTQs'

unit), and another set of FPTQs are used to accommodate cells with odd DT _ct

(called odd FPTQs' unit). The correctness will be shown in an example later.

3.3 The Algorithm Description for the Hierarchical Traffic Shaper

In our scheme, the Departure Event Driven Traffic Shaping Algorithm (DEDTS) is

employed. In the whole shaping process, two events trigger a series of operation for

cells' moving from VCQ to CPTQ or FPTQ. They are one cell's arrival and one cell's

departure. At least one cell is moved from CPTQ to FPTQ in every cell slot if the

CPTQ pointed by RT_ct+1 is not empty.

The number of queues in FPTQs and in CPTQs are 2K and K, respectively.

Cells in CPTQs with even DT _ct will be appended to FPTQ[DT_ft], and others will

be appended to FPTQ[DT_ft K] once their DT _ct = RT_ct +1.

1. Fig. 3.8 describes the operations performed when a cell arrives.
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When a cell with Connection ID (CID) i arrived, if there is a cell with the

same CID in the sorting unit, the new incoming cell is appended to its VCQ[i].

Otherwise, it is assigned a DT. If the DT _ct RT _ct or RT _ct + 1, it is

appended to CPTQ[DT_ct]. Otherwise it is appended to FPTQ[DT_ft] if DT_ct

is even or appended to FPTQ[DT_ft+K] if DT_ct is odd.

2. When a cell leaves, the process described in Fig. 3.9 is followed.

When a cell with CID i departs from DQ, a new DT for the next cell with

the same CID is calculated using DEDTS. If the VCQ[i] is empty, the new DT

is stored for the future incoming cell. Otherwise, the HoL cell of VCQ[i] is

assigned the new DT. Based on the value of DT, the cell is appended to CPTQ

or FPTQ same as the process triggered by the arrival event.

3. In each cell slot, the state of FPTQ[RT_f t] is checked. If it is not empty, all cells

in this queue are appended to DQ, and the HoL cell of DQ is served. Meanwhile,

the state of CPTQ[RT_ct + 1] needs to be checked. If it is not empty, its HoL

cell should be appended into FPTQ[DT_ft] or FPTQ[DT_ft+K] depending on

the DT _ct + 1 even or odd, where the DT_ft is the fine departure time of the

cell being moved.

When RT_ct is about to be incremented to RT _ct + 1, if there are unserved

cells in CPTQ[RT_ct+1], they will be all appended to either FPTQ[K-1] or

FPTQ[2K-1] depending on RT_ct+1 being even or odd.

An example of this process is shown in Fig. 3.10, Fig. 3.11, Fig. 3.12, Fig. 3.13,

and Fig. 3.14. In this example, there are four connections, and Amax I Nan = 16.

Based on the algorithm described before, K is equal to 4, and in FPTQs' unit, there

are 8 timing queues, and in CPTQs' unit, there are 4 timing queues. FPTQ[0] to

FPTQ[3] are the even FPTQs', and FPTQ[4] to FPTQ[7] are odd FPTQs' unit.
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In Fig. 3.10 (cell slot 0), cells in FPTQ[0] pointed by RT_ft=0 are appended

to DQ, and the HoL cell of DQ that belongs to connection 0 is served. Then,

the HoL cell of connection 0 is assigned a new Departure Time (DT), which is a

binary value 0110. Because its DT_ct=01 which is equal to RT_ct+1=00, and its

DT_ft=10(Binary), it is appended to FPTQ[2+K]=FPTQ[2+4]=FPTQ[6]. In the

same slot, CPTQ[RT_ct+1]=CPTQ[1] is checked. It is not empty, so its HoL cell

is inserted to odd FPTQs' unit. Since its DT_ft=11(Binary), it is appended to

FPTQ [3+K]=FPTQ [3+4] =FPTQ [7].

In Fig. 3.11 (cell slot 1), cells in the FPTQ[1] pointed by RT_ft=1 are

appended to DQ, and the HoL cell of DQ is served. This cell's Connection ID

(CID) is 3, so the HoL cell of connection 3 is assigned a new DT, say 1000.

Its DT_ct =10(Binary), is unequal to RT_ct or RT_ct+1, so it is appended to

CPTQ[DT_ct]=CPTQ[2]. Meanwhile, the HoL cell of CPTQ[1] is appended to odd

FPTQs' unit FPTQ[0+K]=FPTQ[4] since its DT_ft=0 and DT_ct=1.

In Fig. 3.12 (cell slot 2), RT_ft=2 is pointing to an empty FPTQ[2], and DQ is

also empty, so there is no cell which needs to be served. But there is a new cell with

CID=0 arriving. Because there is another cell with same CID in the sorting unit,

the new cell can not be assigned a DT, so it is appended to VCQ[0].

Similarly, in Fig. 3.13 (cell slot 3), a new cell with CID 1 is received, and

append it to VCQ[1]. In Fig. 3.14 (cell slot 4), as RT_ct increases from 0 to 1,

we begin to serve odd FPTQ unit, and append all cells in FPTQ[4] to DQ, and

serve the HoL cell of DQ whose CID is 2. Then, a new DT is assigned to HoL of

connection 2. Because the new DT=0101 (binary) with a DT_ct = 01 = RT_ct, it

should be appended to current served FPTQs' unit FPTQ[1+K]=FPTQ[5]. In the

same cell slot, it finds that CPTQ[RT_ct+1]=CPTQ[2] is not empty, so its HoL cell

is appended to FPTQ[0] since the cell's DT_ft=0. These five slot operations show

that all cells' time stamps in FPTQs' unit are sorted successfully although they have



47

a wrong order in CPTQs' unit originally. This example also shows that two sets of

FPTQs are needed to prefetch and sort time stamps correctly.

This prefetching scheme guarantees that all cells with the same DT _ct have

been ready in the FPTQs to be served just before RT _ct is incremented by one to

become this DT _ct , and improves the efficiency for this architecture. This archi-

tecture only needs b >= 3Vρmax/ρmin timing queues to satisfy the exact sorting, which

is much less than the number of timing queues in the Direct Exact Sorting Traffic

Shaping architecture. It doesn't need complex logic arbitration as in the case of

grouping architecture, but still implements the exact sorting of all time stamps, and

keeps the performance for each connection as good as in the Direct Exact Sorting

architecture.

3.4 Performance Evaluation for the Hierarchical Traffic Shaper

In this section, the performances of the traffic shaper with Hierarchical Timing

Queues, the traffic shaper with the Direct Exact Sorting algorithm, and the traffic

shaper with Rate-Based Grouping algorithm are compared. The objective of this

study is to demonstrate that the proposed traffic shaper can reduce the imple-

mentation complexity while keeping good performance for all connections. The

performance metrics used in this evaluation is the average cell delay for all three

cases.

In the simulation experiments, Line Bit Rate LBR is chosen as 155.52Mbps, and

ρmax/ρmin = 106 , so the Direct Exact Sorting Traffic Shaper needs pmax/ρmin = 10 6

timing queues to work properly, while our traffic shaper with Hierarchical Timing

timing queues to get the same performance

as the Direct Exact Sorting Traffic Shaper. For the Rate-Based Grouping Traffic

Shaper, in the experiment, all connections are divided into two groups. First group

contains high speed connections with rates from 10 ³pmin to pmax• Second group
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contains low speed connections, rates are from Amin to 10³pmin. As discussed in

the section 2, the total number of sorting bins is E:1_, mµi , and in this experiment,

m = 10³ , µo = 1, and µ = 2. Therefore, for the group of high rate connections, the

granularity is 1, which is as same as the exact sorting scheme. For the group of low

rate connections, the granularity is m/µ1  = 500, which is 500 times worse than that

of the exact sorting scheme, and introduces large inaccuracy for low rate connections

as shown in the simulation result of Fig. 3.15. Consequently, the total number of

sorting queues in the Rate-Based Grouping Traffic Shaper is also 3000, same as the

Hierarchical Timing Queues Traffic Shaper.

In the experiment, 8 VBR sources with diverse rate distribution are used, and

the grouping parameters described above are chosen as:

VBR0: PCR = 0.68LBR = 250kcells/sec, MBS = 500;

VBR1 : PCR = 0.27LBR = 100kcells/sec, MBS = 200;

VBR2: PCR = 0.14LBR = 50kcells/sec, MBS = 100;

VBR3: PCR = 0.03LBR = 10kcells/sec, MBS = 50;

VBR4: PCR = 0.003LBR = 1kcells/sec, MBS = 40;

VBR5: PCR = 0.0003LBR = 100cells/sec,MBS = 20;

VBR6 : PCR= 0.00003LBR = 10cells/sec, MBS = 10;

VBR7 : PCR = 0.000003LBR = 1cells/sec, MBS = 5.

Fig. 3.15 (a) shows the average shaping delay of high rate connection with PCR=50k

cells/sec, and Fig. 3.15 (b) shows the average shaping delay of low rate connection

with PCR=100 cells/sec.

Fig. 3.15(a) shows that all the three models have the almost identical

performance for the high rate connections because all of them choose the same

timing queue granularity. While, for the low rate connections, Fig. 3.15(b) shows

that the traffic shaper with Hierarchical Timing Queues and the traffic shaper with

Direct Exact Sorting algorithm have almost same performance, but the Rate-Based
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Grouping traffic shaper has much worse performance whose average delay for the

low rate groups is more than twice larger than that in Direct Exact Sorting and

Hierarchical Timing Queues traffic shaper. The reason is that the Rate-Based

Grouping traffic shaper chooses the large granularity for the low rate connections.

The larger the granularity, the worse the performance. In experiments, it finds that

the performance of connections in the Rate-Based Grouping traffic shaper depends

on the traffic characteristic. When the traffic falls in groups with large granularity,

its performance will degrade.

The simulation experiments show that the traffic shaper with hierarchical

timing queues architecture keeps the performance as good as the traffic shaper

with direct exact sorting algorithm while it reduces the implementation complexity

greatly. Compared with the traffic shaper with direct exact sorting architecture, the

hierarchical timing queues architecture reduces the number of timing queues substan-

tially. Compared with the rate-based grouping traffic shaper, it avoids the implemen-

tation of the complex scheduler, and keeps the comparable number of timing queues.

For the rate-based grouping traffic shaper, although it also reduces the number of

sorting queues, its performance for low rate connection degrades greatly. It requires

hardware reconfigurations since the number of groups depends on the continuously

changing traffic distribution. But, for the traffic shaper with hierarchical timing

queues, although it reduces the implementation complexity greatly, it still maintains

the performance for all connections as good as the traffic shaper with direct exact

sorting architecture. Its simplicity of implementation, good performance for very

diverse traffic parameters, and implementation structure independent on the traffic

distribution make it more practical and attractive for ATM switch designers.



Figure 3.6 The Process of the Prefetching Scheme
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Figure 3.7 The Real Implementation of the Prefetching Scheme
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Figure 3.8 The Process Triggered by the Arrival of A Cell with the Connection ID
i
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Figure 3.9 The Process Triggered by the Departure of A Cell with the Connection
ID i from DQ
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Figure 3.10 The Process of Moving Cells between VCQ, CPTQ, FPTQ (Slot 0)



Figure 3.11 The Process of Moving Cells between VCQ, CPTQ, FPTQ (Slot 1)
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Figure 3.12 The Process of Moving Cells between VCQ, CPTQ, FPTQ (Slot 2)
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Figure 3.13 The Process of Moving Cells between VCQ, CPTQ, FPTQ (Slot 3)
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Figure 3.14 The Process of Moving Cells between VCQ, CPTQ, FPTQ (Slot 4)



Figure 3.15 Mean Cell Delay for these three schemes

59



CHAPTER 4

THE RATE-ADAPTIVE SCHEDULER IMPLEMENTED BY
HIERARCHICAL SORTING UNITS WITH LOOKAHEAD

ALGORITHM

4.1 Introduction

A high speed packet switch should be capable of satisfying QoS requirements of each

kind of services while it is being fair in the bandwidth assignment. Cell Transfer Delay

(CTD) and Cell Delay Variation (CDV) are two of most important issues related to

QoS requirements. In order to reduce CTD and CDV while keeping the fairness in

the bandwidth assignment, many scheduling schemes are proposed [2, 14, 35, 69, 70,

74, 78, 83]. FCFS is the simplest scheduler scheme, and is implemented widely. But

it doesn't consider CDV and the fairness of the bandwidth assignment [84]. Round

Robin(RR) takes the service fairness into consideration, but when all connections

do not have the same bandwidth requirements, RR method becomes unfair [20].

Weighted round-robin (WRR) resolves the unfairness in RR [74, 87], but it doesn't

consider CDV which can lead to high cell violation at User Parameter Control(UPC).

In [20], scheduler schemes FCFS, RR, EDF, WRR and LDBE are compared, and

LDBE is proved to be the best algorithm. Its essence is to use GCRA to assign DT

to each cell, and schedule cells based on their DT order. In this paper, it is named

as GCRA scheduler. Using GCRA, the scheduler can satisfy the QoS requirements

for various traffic and support a fair bandwidth assignment [20].

In this case, the scheduler does not care whether a cell is due or overdue, it

sorts cells according to their DTs, and sends them one by one starting with the

lowest DT. Fast and efficient sorting of these DTs is the bottleneck in this scheduler,

especially, when the number of connections is very large, which makes it impractical

in the real system implementation. For the proposed hierarchical sorting unit, we

can implement the fast sorting efficiently. In this section, the algorithm described in

the previous section is redesigned so that the hierarchical sorting unit works like a
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rate-adaptive GCRA scheduler. When the traffic is light, it can work like a GCRA

scheduler to reduce the CTD as much as possible. When the traffic is heavy, it

can function as a shaper to shape the input traffic to avoid the congestion on the

outlink [94, 99]. It is named as Hierarchical Rate-Adaptive Scheduler (HRAS). From

the implementation viewpoint, it is a practical scheme.

4.2 Algorithm Description of the Hierarchical Rate-Adaptive GCRA
Scheduler with Lookahead Algorithm

The proposed hierarchical sorting unit can naturally realize the sorting of DTs which

is calculated by GCRA. When it acts as a scheduler, it should avoid the starvation

of the outlink. Consequently, when the current FPTQ which is pointed by the RT_ft

pointer is empty, Lookahead algorithm can be used to find the nearest nonempty

FPTQ and catch the cell with the smallest DT in FPTQs' unit. By using the

lookahead algorithm in the hierarchical sorting units, it can be close to an ideal

GCRA scheduler.

For practical hardware implementation, it is impossible to lookahead too deep

in one cell slot. The more FPTQs to lookahead, the more the memory access

operations in one cell slot, which is bounded by the memory technology used.

Assuming n to be the largest number of FPTQs that can be lookaheaded in one

cell slot, then in the limited n steps, two ways are used to improve the efficiency of

the lookahead algorithm so that its performance can approach to the ideal GCRA

scheduler which can essentially be considered as a scheduler with an unlimited

lookahead depth in one cell slot.

One way is to avoid pulling the lookahead pointer back. A direct design of the

lookahead scheme is to lookahead from the current FPTQ, and continue to check

successive n FPTQs in each lookahead action. If one nonempty FPTQ is found, the

lookahead action ends. This operation limits the range the lookahead pointer can
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reach. If the nonempty FPTQ is far away from the one pointed by RT_ft, it can not

be reached quickly. In order to "visit" more FPTQs in a short time, this scheme

avoids to pull the lookahead pointer back to the current FPTQ pointed by RT_ft.

After each lookahead action, it is kept where it is, then, in the next slot, another

lookahead action begins from this position. The process is shown in Fig. 4.1.

Figure 4.1 An Example of Moving the Lookahead Pointer

In each lookahead action, although the lookahead pointer just moves at most

n steps, it finally can lookahead far away from the FPTQ pointed by the current

RT_ft.

When a cell is appended into FPTQs from either Per-VCQs or CPTQs, its

position is checked. If it is appended to a FPTQ whose position is higher than the

real time pointer RT_ft, but lower than the lookahead pointer, which means this

is the nearest nonempty FPTQ, so this cell will be appended to DQ directly. By

allowing this operation, an inaccuracy of time stamp sorting may be led in DQ. In
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order to reduce the chance of the inaccuracy while maintaining the outlink utilization,

a threshold is set to the length of DQ. Only when the length of DQ is shorter than the

threshold, the operation explained above will be performed, otherwise, the lookahead

pointer is backuped to the FPTQ where the cell is appended to. An example is shown

in Fig. 4.2. In this example, a new incoming cell is appended to the FPTQ which

is located between RT_ft and Lookahead-pointer, and the length of DQ reaches the

threshold which is equal to 1, the Lookahead-pointer has to be pulled back to the

FPTQ where the cell is appended.

Figure 4.2 The Scenario of Backing Up the Lookahead Pointer

Another way is that the DT assignment is adjusted based on the traffic load

so that more cells can enter FPTQs from VCQs directly, and become easy to be

accessed by the lookahead pointer. When the traffic load is not very heavy, we hope

all traffic can be served as soon as possible to keep the cell transfer delay (CTD)

small. In this case, the level of leaky buckets' update operation is bypassed so that

a small DT can be assigned to our traffic, and let them be inserted into FPTQs.

By this way, lookahead algorithm can be used in FPTQs to catch the cell with the
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smallest DT in the current sorting unit, and serve received cells earlier. Because the

outlink is to be idle in this case, serving the cell with the smallest DT in advance

will not interfere with other conforming cells. On the contrary, sending them in

the idle slot can reduce the backlogged cells in the sorting unit so that the memory

occupancy will be reduced. In addition, using such an algorithm, the starvation of

the outlink can be avoided so that the scheduler is close to work-conserving.

When the traffic load is heavy, in order to avoid the congestion of the outlink,

the scheduler switches back to leaky bucket algorithm to calculate DTs, and shapes

the input traffic so that it can smooth the out stream. In this case, because of the

heavy traffic load, there are always enough cells in FPTQs so that the efficiency of

lookahead algorithm can be preserved.

The rate-adaptive scheduling algorithm is described as follows:

1. The process which is triggered by an arrival of a cell is shown in Fig. 4.3.

It is almost same as the process triggered by an arriving cell in the hierarchical

traffic shaper. But when the incoming cell is assigned a DT which makes the cell

be appended to a FPTQ located between RT_ft and the Lookahead-pointer,

it can be appended to DQ directly or pulled back the Lookahead-pointer to

point to this FPTQ depending on the length of DQ larger or smaller than the

threshold.

2. The process which is triggered by a departure of a cell is shown in Fig. 4.4.

Compared to the process triggered by cell's departure in the hierarchical traffic

shaper, the main difference is in the DT calculation algorithm. In the rate-

adaptive scheduling algorithm, we change the DT calculation algorithm based

on the traffic load. There are two cases:

• The length of DQ > Threshold, which means the traffic load is heavy,

and there are many backlogged cells in the DQ. The same DT calculation
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Figure 4.3 Process Triggered by the Arrival of A Cell in HRAS
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Figure 4.4 Process Triggered by the Departure of A Cell in HRAS
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and bucket level update as the traffic shaper are used, which are shown

in Fig. 2.8.

• The length of DQ < Threshold, which means the traffic load is not heavy,

and the outlink is to be idle, the DT assignment algorithm is adjusted:

Step1: Update the leaky bucket by decreasing the level X by the number

of the cell slots passes since the last cell's departure;

Step2: Without increasing the level of the leaky bucket X by TI , the next

slot RT+1 is assigned as the new DT.

By this way, the sorting unit can act as a rate-adaptive scheduler by using

different algorithm to assign DT. Meanwhile, it also can perform the shaping

function when the traffic is heavy.

3. In each time slot, beside serving FPTQ pointed by RT_ft and moving HoL cell

of CPTQ pointed by RT_ct+1 to its associated FPTQ, it is also necessary to

judge whether the lookahead operation should be started: If the length of DQ

< Threshold, or LookAhead-Pointer(LAP) is pointing to an empty FPTQ, then

increase LAP one by one, and check each FPTQ pointed by the LAP empty or

not. If the LAP finds a nonempty FPTQ, it stops moving. Otherwise, it keeps

moving consecutive n FPTQs, where n is the lookahead depth limit.

4.3 Performance Evaluation of the Hierarchical Rate-Adaptive
Scheduler with Lookahead Algorithm

The performances of HRAS with Hierarchical Exact Sorting Shaper, FCFS, RR,

and Ideal GCRA scheduler under heavy traffic load and under light traffic load are

compared in this section. Results show that it really can work like a GCRA scheduler

under light traffic load, and perform shaping function when the traffic load is heavy.

In both scenarios, the lookahead limit is chosen to be 5 (which is practical for current

VLSI techniques), and the threshold for the length of DQ is 4. In all experiments,
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0C3 outlink rate is used, which is 155.52Mbps. Fig. 4.5 shows the effect of the

selection of the threshold of the DQ length on the average cell transfer delay and

maximum memory occupancy.

When a large threshold is chosen, the scheduler can lookahead more FPTQs to

move more cells into DQ so that it can decrease the maximum memory occupancy

and average delay of all connections. However, there may be more non-conforming

cells from low speed connections inserted in front of cells from high speed connections

when the threshold is increased over some value. Consequently, the average cell delay

of high speed connections will increase. This scenario can be observed.

In heavy traffic load scenario, 4000 low speed sources and 4 high speed sources

are used. All of them are VBR sources. Their source parameters are:

All low speed sources: PCR=366 cells/sec, SCR=45 cells/sec, MBS=20;

All high speed sources: PCR=366000 cells/sec, SCR=45000 cells/sec, MBS=20.

In order to observe the behavior of the rate-adaptive scheduler, it is tested under

heavy traffic. When the measured traffic load p = 0.9, the performance comparison

is shown in Fig. 4.6.

In light traffic load scenario, 1600 low speed sources and 4 high speed sources

are used. For each source, parameters are same as previous scenario. Then, the

measured traffic load p = 0.6. The performance comparison is shown in Fig. 4.7.

From these two tables, it is found that, in the heavy traffic scenario, the HRAS'

cell violation ratio is much smaller than other scheduler schemes, which reflects its

shaping function. Its violation ratio is just half of FCFS scheduler, and one third of

RR scheduler. Meanwhile, it reduces the MMO about 30% compared to the traffic

shaper, which is comparable with other work-conserving schedulers. In the light

traffic scenario, HRAS' high speed connections get obvious gain in the average CTD,

which is comparable with other schedulers. Although its low speed connections' CTD

is larger than other scheduler schemes, it's trivial compared to the rate of low speed
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erformance
scheme 	 item Averagege

CTD (ms)
HC CTD_

(ms)
LC_CTD

(ms) MMO
Violation
Ratio

Shaper 16.6 9.72 23.5 12886 0

HRAS 6.754 5.147 8.355 8965 0.10

FCFS 5.51 5.512 5.506 8118 0.19

RR 5.473 5.176 5.773 8118 0.34

GCRA Scheduler 5.164 1.898 8.458 8118 0.12

HC_CTD: High Rate Connections' Cell Transfer Delay;
LC_CTD: Low Rate Connections' Cell Transfer Delay;
MMO: Maximum Memory Occupancy.

Figure 4.6 The Performance Comparison under Heavy Traffic Load p = 0.9

connection, and it is just 3% of the traffic shaper's low speed connections' CTD.

This also reflects the fairness in bandwidth assignment: HRAS gives the high speed

connections higher priority. In the light traffic scenario, HRAS' average CTD and

MMO are smaller than the shaper, and closer to those work-conserving scheduler

schemes, which reflects its scheduling function. From these results, we can say that

this algorithm performs a Hierarchical Rate-Adaptive Scheduler with good fairness

and traffic smoothing features.

4.4 The Hierarchical Near Work-Conserving Scheduler with Best
Effort Traffic

4.4.1 The Architecture of Hierarchical near Work-Conserving Scheduler
with Best Effort Traffic

Currently, with the exponential growth of the Internet traffic, there is more and

more best effort traffic which has no QoS requirements. For our proposed hierar-

chical traffic shaper, it is very easy to reconstruct it to a hierarchical near work-

conserving scheduler by using a FIFO queue to accommodate the best effort traffic.

This proposed scheduler not only can guarantee QoS requirement for those services
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erformance
scheme 	 item Average

CTD (ms)
HC_CTD

(ms)
LC_CTD

(ms) MMO
Violation
Ratio

Shaper 7.11 0.042 24.82 3018 0

HRAS 0.244 0.0174 0.804 249 0.107

FCFS 0.0182 0.01754 0.01984 88 0.114

RR 0.0182 0.01687 0.0215 88 0.116

GCRA Scheduler 0.0182 0.0123 0.0328 88 0.11

HC_CTD: High Rate Connections' Cell Transfer Delay;
LC_CTD: Low Rate Connections' Cell Transfer Delay;
MMO: Maximum Memory Occupancy.

Figure 4.7 The Performance Comparison under Light Traffic Load p = 0.6

who require QoS guarantee, but also can improve the outlink utilization to about

100 percent by introducing best effort traffic.

The hierarchical near work-conserving scheduler keeps the structure of the

traffic shaper portion, and adds one Best Effort Queue(BEQ) which can be a FIFO

to accommodate the best effort traffic. In the new architecture, the portion of the

traffic shaper can provide QoS guarantee, and the BEQ can serve the best effort

traffic. The structure is shown in Fig. 4.8.

The algorithm is:

• For the traffic with QoS requirements, this scheduler shapes it same as in the

hierarchical traffic shaper.

• For the best effort traffic, once the outlink is empty, the HoL cell of the BEQ

can be sent so that the hierarchical traffic shaper can be changed to a near

work-conserving scheduler. When the shared memory is full, the best effort

traffic is dropped at first.



Figure 4.8 Hierarchical Work-Conserving Scheduler with BEQ

4.4.2 Performance Evaluation for the Hierarchical Work-Conserving
Scheduler with Best Effort Traffic

In simulation experiments, the maximum memory occupancy is kept to be 2500 cells.

From the simulation experiment, two ways to improve the utilization of the outlink

are compared: one is by increasing the input traffic load of the traffic shaper, another

way is by introducing best effort traffic. It can be found that the former one increases

cell loss ratio much more given the same shared memory limit.

In the first experiment, about 80% of 0C3 input load is applied to the hierar-

chical traffic shaper. In the second experiment, about 80% of 0C3 input load and

72
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25% 0C3 best effort traffic is applied to the hierarchical scheduler with best effort

traffic. The cell loss ratio for QoS traffic in both experiments is same, 7.907 x 10 -³ ,

but the output link utilization in the traffic shaper is about 80% of 0C3, and in the

near work-conserving scheduler, it is about 94.2% of 0C3. The proposed scheduler

can reach 100% outlink utilization by increasing the best effort traffic load. Of course,

the loss of the best effort traffic will increase. In the third experiment, in order to get

94.8% of 0C3 output utilization in the traffic shaper without BEQ, the QoS traffic

input load has to be increased to 1.08 of 0C3. However, it leads to the 0.116 cell

loss ratio for QoS traffic as observed from our simulations. It is much bigger than

the scheme with BEQ. Results of these three experiments are listed in Fig. 4.9.

QoS Traffic Input BE Traffic Input QoS Cell Loss Ratio Outlink Utilization

0.82 0 0.007907 0.81

0.82 0.25 0.007907 0.942

1.08 0 0.116092 0.948

(Normalized by the outlink LCR)

Figure 4.9 Performance Comparison between the Scheduler with BEQ and the
Traffic Shaper



CHAPTER 5

AN IMPROVED FAIR TRAFFIC SHAPING ALGORITHM AND
IMPLEMENTATION

The widely used traffic shaping and scheduling algorithm is the GCRA, which is

also known as leaky bucket algorithm. This traditional GCRA proposed in ATM

Forum is an Arrival Event Driven Traffic Shaping Algorithm (AEDTS). The new

theoretical conforming departure time is calculated at the instance of a cell's arrival,

and its calculation is based on the last theoretical conformance time. However, the

contention of multiple connections at the output of the multiplexer may lead to the

multiplexed out stream not to conform to their traffic contract.

In order to make the multiplexed out stream strictly conforming, a Departure

Event Driven Traffic Shaping Algorithm (DEDTS) is proposed [15]. In DEDTS, the

new theoretical conforming departure time is calculated at the instance of a cell's

departure, and its calculation is based on the real departure time of the previous

cell from the same connection which guarantees that the successive cell will strictly

conform to its associated traffic contract. Nevertheless, when the traffic load is high,

and there are many conforming cells waiting for the service in the Departure Queue

(DQ), the cells may get high shaping delay due to losing contention at the output of

the multiplexer. It is especially unfair for connections with high rate which usually

require small shaping delay.

In this chapter, a new traffic shaping algorithm is proposed, which modifies the

DEDTS algorithm by adding a process to resort the Completing Service Time stamps

(CT) of all conforming cells. The CT is the sum of the conforming Departure Time

(DT) and the service time of its associated connection. By resorting the CT stamps,

the conforming cells can be prioritized based on their connection rate, and assign

the available bandwidth more fairly, thus reducing the shaping delay of high rate
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connections. This algorithm can be easily implemented by modifying the Hierarchical

Timing Queues Traffic Shaper architecture [94

The following sections of this chapter are arranged as below. In the second

section, two existing traffic shaping algorithms, AEDTS and DEDTS, are described.

In the third section, the details of the proposed traffic shaping algorithm Departure

Event Driven plus Completing Service Time reSorting Traffic Shaping Algorithm

(DED+CTS) are described, and a hardware implementation architecture for this

algorithm is given. The fourth section presents the performance evaluation of these

traffic shaping algorithms, and shows that our algorithm reduce the shaping delay

of high rate connections without introducing any cell violation monitored by UPC.

5.1 Revisit Existing Shaping Algorithms

Based on the GCRA, the traffic shaper assigns conforming departure time DT to

each incoming cell so that it can schedule their transmission. For the assignment

of departure time, two event-driven traffic shaping algorithms are proposed: Arrival

event driven traffic shaping algorithm and Departure event driven traffic shaping [15,

18, 44].

• Arrival Event Driven Traffic Shaping Algorithm (AEDTS)

In AEDTS, while a new cell is received and appended to its associated Virtual

Connection Queue (VCQ), its departure time will be calculated based on the

last calculated departure time of the previous cell in the same VCQ using

GCRA. The leaky bucket level will be updated at the same time [18]. The

algorithm is describe below:

1. When a cell comes into the traffic shaper, it is assigned a theoretical DT,

and then it is inserted into a sorting unit to wait for its DT due;
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2. When a cell's DT is due, it is append to a Departure Queue (DQ) which

is a FIFO queue. If it is the HoL of the DQ, it will be served immediately.

Otherwise, it has to wait for its service till all conforming cells before it

are served. In each cell slot, there is only one cell to be served.

The DT calculation and buckets' level update in AEDTS are shown in Fig. 2.5.

For AEDTS, although each connection complies with its own leaky bucket

parameters before multiplexing, as converging with other connections on the

outlink, each shaped cell may violate the shaping parameter because of the

contention among eligible cells for transmission [15]. If the previous cell of

one VCQ is delayed due to loss of contention, the successive cell of the same

VCQ may be assigned an improper departure time based on the calculated

departure time of the previous cell which is earlier than its real departure time.

Such improper assignment of departure time may clump the successive cell

sequence so that it leads to a larger Cell Delay Variation which may violate the

traffic contract CDVT and BT at the User Parameter Control (UPC). Another

shortcoming of AEDTS is that, in each cell slot, there may be more than one

cell coming, then, multiple conforming departure times have to be calculated

in one cell slot. In this case, it may become a bottleneck when the traffic load

is high. It also requires a large memory for storing such a large number of time

stamps.

• Departure Event Driven Traffic Shaping Algorithm (DEDTS)

In order to strictly limit the CDVT and BT at the output of the shaping multi-

plexer [15, 44], Departure Event Driven Traffic Shaping Algorithm (DEDTS)

was proposed. In DEDTS, the new departure time DT is calculated based on

the real departure time of the previous cell while its departure, and the leaky

bucket level is updated at the same time. The algorithm is described below:
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1. A cell arrives: if there is no other cell from the same connection in the

traffic shaper, the new coming cell is assigned a DT, and insert into the

sorting unit to wait for its DT due. Otherwise, it will be appended to its

associated VCQ;

2. A cell leaves: the new theoretical DT is calculated based on the last real

DT. If the leaving cell's associated VCQ is not empty, then the HoL of this

VCQ will be assigned the new calculated DT, and insert to the sorting

unit to wait for its DT due. Otherwise, the new calculated DT will be

stored for the next cell from the same connection;

3. A cell's DT due: it will be appended to the DQ. If the DQ is empty, it

will be served immediately. Otherwise, it has to wait for the service till

all cells before it are served.

The DT calculation and buckets' level update in DEDTS are shown in

Fig. 2.8. Because the DT is calculated based on the real departure time

of the previous cell, DEDTS can guarantee strict conformance to CDVT value

of each connection. Meanwhile, in each time slot, only one cell is transmitted,

so only one new conformance time DT is calculated, which also eliminates the

bottleneck due to multiple DT calculation for more than one cell arriving at the

same cell slot in AEDTS. However, when the traffic load is heavy, there may

be many conforming cells in DQ waiting for service. Cells losing contention

have to wait some extra time for transmission. It is shown that the extra delay

may be accumulated for high rate connections which can lead to high shaping

delay. This is an undesired result, that may lead to unfair treatment especially

for the high rate connections.



Figure 5.1 Functional Model of Conventional DEDTS algorithm

5.2 Departure Event Driven plus Completing Service Time ReSorting
(DED+CTS) Traffic Shaping Algorithm

In order to avoid the extra shaping delay accumulation for high rate connections

while keeping zero cell violation monitored by UPC, we propose a new traffic

shaping algorithm: Departure Event Driven plus Completing Service Time Resorting

(DED+CTS) Traffic Shaping Algorithm.

5.2.1 Motivation and Description of the Algorithm

Fig. 5.1 shows the functional model of conventional DEDTS algorithm.

Let us assume the current time is RT, all cells with DT equal to RT will be

appended DQ. In the DQ, the order of cells is based on FIFO discipline. In each

cell slot, only one cell can be sent when the DQ is not empty. When the traffic

load is heavy, the DQ may be very long which leads to a large shaping delay. For

high rate connections, when the length of DQ is larger than the buckets' increment,

which is equal to the reciprocal of connection's rate, their leaky buckets will become
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ineffective. The reason is that the extra shaping delay in DQ makes cells from same

connection depart far away from each other, and the level of buckets always keeps

around zero. In this scenario, due to the extra shaping delay in the DQ, the high rate

connection has to reduce its output rate passively, and can not get a fair bandwidth

assignment. In addition, because the increment of a high rate connection's buckets

is much smaller than that of a low rate connection's, a high rate connection has

much larger chance to suffer when the length of DQ is larger than its bucket' level

increment. This leads to an unfair bandwidth assignment. An example of this

problem is shown in Fig. 5.2.

When the total amount of bandwidth is set, the number of high rate connections

is much smaller than the number of low rate connections. For example, when the

bandwidth is 2Mbps, there can be 10 connections with the rate 10^5bps, and 1000

connections with the rate 1000bps, and their increments I's are 20 and 2000, respec-

tively. The high rate is 100 times of the low rate. In this scenario, if there are only

high rate connections, the length of DQ can not be larger than their increment 20

because the maximum DQ length is only the number of connections 10. However,

when there are another 1000 low rate connections multiplexed with these 10 high

rate connections, the maximum DQ length can be more than 1000. It means that

cells from high rate connections may get 1000 slot time extra queueing delay from the

DQ. In this case, the DQ length will affect the performance of high rate connections

seriously, but the low rate connections will not be affected obviously because the

length of the DQ is definitely smaller than their increment 2000. This example

shows that the conflict is between the high rate connection group and the low rate

connection group, not among the high rate connections or low rate connections

themselves. In Appendix I, the analysis for the length of the DQ will be given.

It has higher probability that the length of the DQ will reach and be beyond the

incremental intervals of connections as the load becoming heavier. In order to resolve



80

Figure 5.2 Extra Shaping Delay in DEDTS (L=2, 1=2, GCRA(2,2))
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the conflict, and let the high rate connection get its deserved bandwidth, an improved

fair traffic shaping algorithm is proposed in this chapter.

In the proposed algorithm, the FIFO DQ is replaced with a sorting DQ which

resorts all conforming cells in DQ based on their Completing Service Time(CT). The

CT is equal to the cell's DT plus its associated connection's bucket level increment

T1 which is the reciprocal of the connection's assigned bandwidth, which is its SCR,

CT = DT + TI , and T1 = 1/SC R. The increment T1 also represents the service

time of a connection. Because only conforming cells are resorted, there is no cell

violation introduced by this operation. The underlying principle of resorting on CT

is to prioritize all conforming cells based on their rates: high rate connections can

get higher priority so that their shaping delay can be reduced accordingly, and low

rate connections get lower priority and higher extra shaping delay. Because CTs

include the rate information, such a prioritization process can reflect better fairness

in bandwidth assignment, and avoid the rigid prioritization which may favor some

groups much more than others unfairly.

5.2.2 Implementation of the Algorithm

For the implementation of the algorithm, the Hierarchical Timing Queues Traffic

Shaper architecture (HTQTS) proposed in [95] can be modified by replacing the

FIFO DQ with a sequencer [18] DQ. Because only conforming cells are resorted in

DQ, the sorting capability requirement is not very high, the sequencer series can

be used to implement the resorting. The architecture is shown in Fig. 5.3. The

sequencer is a sorting queue. It can sort cells based on their CTs.

The overall operation process is described below:

1. At the instance of a cell's arrival, if there is no other cell from the same

connection in the traffic shaper, the new coming cell is assigned a DT, and insert



Figure 5.3 The Implementation Architecture of DED+CTS Algorithm

into the sorting unit to wait for its DT due. Otherwise, it will be appended to

its associated VCQ;

2. When a cell leaves, the new theoretical DT is calculated based on the last real

DT. If the leaving cell's associated VCQ is not empty, then the HoL of this

VCQ will be assigned the new calculated DT, and inserted to the sorting unit

to wait for its DT due. Otherwise, the new calculated DT will be stored for

the next cell from the same connection;
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3. When a cell's DT is due: its DT is updated to CT by adding its service time

TI = 1/SCR to its DT. Then the cell is inserted to the sequencer DQ based

on its CT.

4. In each cell slot, if the DQ is empty, the HoL cell will be served.

5.3 Performance Evaluation for DED+CTS Algorithm

In this section, the performance of DED+CTS algorithm and DEDTS algorithm is

compared, in which, DEDTS algorithm is implemented by the HTQTS with a FIFO

DQ at the output of the shaper. The performance evaluation includes two scenarios

via simulations: a heavy traffic load scenario and a light traffic load scenario. In the

experiments, 4040 VBR sources are used. In the heavy traffic load scenario, 40 of

them are high speed sources with the PCR 10000 cells/sec, and SCR 7500 cells/sec;

4000 of them are low speed sources with the PCR 100 cells/sec, and SCR 75 cells/sec.

Meanwhile, the measured traffic load in the simulation is p= 0.95. In the light traffic

load scenario, the high speed sources are with the PCR 6000 cells/sec, and SCR 3800

cells/sec; the low speed sources are with the PCR 70 cells/sec, and SCR 40 cells/sec.

In an ideal shaping multiplexer,

Ti is the increasement of the leaky bucket i, and the Tsi is the average shaping delay

of connection i. Ti represents the bandwidth requirement of connection i, and T 3i

reflects the bandwidth occupancy of the connection i, based on the fairness principle

of GPS [69], this proposition stands. In the Appendix II, the GPS is summarized,

and it shows that the proposed algorithm is a special implementation case of the

GPS, and it inherits the fair scheduling feature of GPS.

Based on the discussion above, it can be got that in a fair shaping multiplexer,
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for all i, j, and connection i, j are active connections in the shaping multiplexer.

For comparison purposes, let us define the fairness coefficient

in which, Ri is the committed rate of this connection, and the increment of the leaky

bucket for this connection Ti = 1/Ri , as we discussed in the previous section. When

the FCs for all connections are equal, the network resources allocation gets to the

most fair point. Therefore, the fairness of the resources allocation between any two

connections i and j can be defined as the ratio: F = FCi/FCj  (F=1 corresponds to

the optimal fairness). The emphasis of this performance analysis is placed on the

comparison of the fairness characteristics of the two traffic shaping algorithms.

The corresponding results are presented in Fig. 5.4

SCR
(Cells/sec)

Average Delay
(seconds)

F
(FC1/FCh) Violation

Heavy 
Load

(Load=

0.95)

DEDTS

High Speed
Connection Groin

7500 7.60e-03
0.02 0

Low Speed
Connection Groin

75 1.16e-02

DED+CTS

High Speed
Connection Group 7500 1.92e-04

0.99 0 
Low Speed

Connection Groin 75 1.91e-02

Light

Load

(Load=

0.55)

DEDTS

High Speed
Connection Groin 3800 1.06e-04

1.04 0
Low Speed

Connection Groin 40 1.05e-02

DED+CTS

High Speed
Connection Group 3800 1.05e-04

1.03 0Low Speed
Connection Groin 40 1.05e-02

Figure 5.4 The Performance Comparison for DED+CTS and DEDTS

From this figure, it is observed that the performance of DEDTS and DED+CTS

are similar in the light traffic load scenario. However, in the heavy traffic load
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scenario, the delay of the high speed connections in the DEDTS algorithm increases

significantly (about 4 times larger than in the DED+CTS algorithm). In DED+CTS

algorithm, the delay of the high speed connections are decreased at the price of slight

increase of the delay of the low speed connections. The value of F in the DED+CTS

is 0.99, which is much closer to 1 than in the DEDTS algorithm. Observing the

value of F for the two algorithms under the heavy load scenario, it can be concluded

that the DED+CTS algorithm can achieve almost the optimal fairness (i.e. F=0.99),

while the corresponding value of the DEDTS (i.e. F=0.02) indicates that the DEDTS

algorithm results in a very unfair resource assignment. Meanwhile, the DED+CTS

doesn't introduce any violation of CDVT and BT in the UPC.

In the proposed algorithm, by adding the completing service time stamp

resorting for those conforming cells, higher priorities can be naturally given to those

high speed connections, while their conformance can be guaranteed. Consequently,

the serious performance degradation of the high speed connections in the heavy

traffic load can be avoided without increasing total available bandwidth. The

performance improvement of those high speed connections only introduces slight

performance degradation of those low speed connections. The simulations show that

this proposed algorithm DED+CTS can give a better fairness performance without

introducing any violation at the UPC. In addition, it can be implemented easily by

replacing the FIFO DQ of the HTQTS [95] with a small sorting unit which can be

a sequencer [18].



CHAPTER 6

A DUAL LEVEL ACCESS CONTROL ARCHITECTURE FOR
DIFFSERV NETWORKS

6.1 Motivation for Dual Level Access Control Architecture for DiffSery
Networks

Currently, the Internet can not support any Quality of Service (QoS) requirements.

With the growth of the Internet, more and more applications demand QoS support

from the networks. To meet these demands, Internet Engineering Task Force (IETF)

developed the Integrated Services architecture and its associated signaling protocol

Resource Reservation Setup Protocol (RSVP). Intserv assumes that networks can

guarantee service requirements to each traffic flow in an isolated way [4]. It turned

out that such a flow-based architecture is unscalable because there can be thousands,

even ten thousands of flows in the Internet at the same time. In order to resolve

the scalability problem, IETF propose the Differentiated Services (DiffServ) archi-

tecture [4, 91]. In DiffServ networks, all flows are merged to a small number of classes

based on their QoS requirements and characteristics. All traffic control mechanisms

are deployed to guarantee QoS to the traffic class level so that the architecture can

scale for the Internet.

In the DiffServ networks, the traffic conditioner is one of the most important

parts. It includes meter, marker, shaper, and dropper. A traffic stream is classified

by a classifier, then forwarded to a traffic conditioner. The meter measures the

traffic stream against a traffic profile. The state of the meter may trigger a marking,

dropping or shaping action [5]. The logic architecture of a packet classifier and traffic

conditioner is shown in Fig. 6.1.

In the IETF draft, some policing schemes have been proposed [41, 42]. Recently,

a shaper scheme for the DiffServ networks is proposed in IETF RFC [6, 26]. However,

it doesn't resolve the problem of the flows fair sharing of the resources in the

same class. In this chapter, we propose a Dual Level Leaky Bucket Traffic Shaper
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Figure 6.1 Logic Architecture of a Packet Classifier and Traffic Conditioner [5]

(DLLBTS) architecture for the edge nodes of Diffserv networks. In DLLBTS archi-

tecture, there are two levels of leaky buckets. The first level is a set of flow-based

leaky buckets. It can shape flows based on the traffic profile of each flow so that

it can guarantee that all flows can fairly share the network resources in the same

class when they merge into one class. The second level is a set of class-based leaky

buckets same as all other traffic shapers for interior nodes of the DiffServ networks.

They can guarantee the aggregate behavior of a class conforming to the Service Level

Agreement (SLA). However, two sets of leaky bucket traffic shaper need two sets of

sorting units, and generally, the sorting unit dominates the complexity of the imple-

mentation of a traffic shaper. It is impractical to implement two sets of complex

sorting units in a traffic shaper unit. We propose a simplified DLLBTS which

combines the two levels of leaky buckets to one stage so that only one set of sorting

unit is needed. From the simulation results, we show that the simplified DLLBTS

can reach the goal of DLLBTS while keeping the low implementation complexity [96].

The following sections of the chapter are arranged as follows. The second

section proposes the DLLBTS architecture, and gives the packet version leaky bucket

algorithm. The third section describes the simplified DLLBTS architecture. The

fourth section gives the performance analysis. The last section draws the conclusion.
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6.2 Dual Level Leaky Bucket Traffic Shaper for DS Networks
6.2.1 Leaky Bucket Traffic Shaping Algorithm for Variable Length

Packet

Leaky Bucket Traffic Shaping Algorithm is generally used in ATM networks to shape

the traffic based on the traffic contract which was constructed when the connection

was accepted by the network. Now, we extend it into DiffServ networks to regulate

the accepted traffic. However, in the DiffServ Networks, the traffic consists of packets

with variable length. The leaky bucket algorithm has to be revised to work in the

DiffServ networks.

In this dissertation, only the discrete-time leaky bucket algorithm is discussed.

It means that the time is discretized into small operation time units which are called

time slots. In ATM networks, the time is discretized into the cell slot time units.

The cell slot time is the reciprocal of the Line Cell Rate (LCR). This section briefly

outlines the basic changes required for the operation of the Packet-version Leaky

Bucket algorithm. For a detailed description of the conventional Leaky Bucket

Algorithm, the interested reader is referred to [44]. In the Packet-version Leaky

Bucket (P-LB) algorithm, the time is discretized into the byte slot time units. The

byte slot time unit is the reciprocal of the Line ByTe Rate (LBTR). Assuming that

the LBTR is Ro bytes/sec, the negotiated rate of the flow is R bytes/sec, and the

packet size is B bytes, then the increment of the leaky bucket I = R0/R, and the

P-LB algorithm is shown in Fig. 6.2.

6.2.2 Dual Level Leaky Bucket Traffic Shaper

In the DiffServ network frame, all proposed traffic regulations are class-based,

including the traffic shaping mechanism. However, class-based traffic shaping

mechanism only can control the aggregate behavior, and guarantee the aggregate

traffic conforming to the Service Level Agreement (SLA) which is the negotiated

traffic profile constructed when the traffic is accepted by the network. Generally,
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Figure 6.2 Packet-Version Leaky Bucket Algorithm

there are more than one traffic flow in a class. All flows in the same class have to

share the limited network resources assigned to this class by the network operator.

If no traffic control mechanism is employed to regulate these flows, simply using

First In First Out (FIFO) scheme to merge all flows into one class may lead to some

unfair network resources occupancy by some malicious flows.

In order to guarantee that all flows share the resources in a class fairly, we

proposed a Dual Level Leaky Bucket Traffic Shaper (DLLBTS) architecture for the

edge nodes of DiffServ networks. The architecture is shown in Fig. 6.3.
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Figure 6.3 Dual Level Traffic Shaper Architecture in the Edge Node of DiffServ
Network

In this figure, the left part is the local access network, the right part is the

DiffServ backbone network, and at the input port of the edge node, there are a

set of per-flow queues (PFQs) for all flows coming from the local access network.

The first level leaky buckets are a set of flow-based token buckets. It controls the

bandwidth occupancy of each flow based on the traffic contract constructed at the

instance of the admission of the flow. In this figure, b i represents the bucket limit or

burst size of the flow, and r i represents the committed rate of the flow. Therefore,

all flows can share the resources in one class fairly. For each packet, a flow-based

conforming Departure Time (DT) is calculated by its associated flow-based leaky

bucket on its arrival. All packets are sorted by the first level leaky bucket traffic

shaper, and all sorted packets of the same class are inserted into their commonly
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associated Per-Class Queue (PCQ). In the PCQ, a class-based DT is calculated for

each packet. The second level leaky buckets are a set of class-based ones which are

used to restrain the aggregate behavior of a class. Their parameters are bci and rci

which represents the bucket size and the committed rate for each class respectively.

They sort these class-based DTs. When these DTs are due, their associated packets

are sent to Departure Queue (DQ) to wait for serving [98].

6.3 Practical Implementation DLLBTS Architecture

The DLLBTS architecture described in the previous section requires two sets of

sorting units to sort these two sets of DTs. However, the implementation complexity

and cost of a shaper are dominated by the complexity of sorting time stamps [95].

Two sets of sorting units increase the implementation complexity of DLLBTS. In the

following we refer to this architecture as Ideal_DLLBTS (I_DLLBTS). In order

to reduce the implementation complexity while implementing both flow-based and

class-based control on the traffic, we propose a simplified practical implementation

DLLBTS architecture (referred to as S_DLLBTS), as shown in Fig. 6.4.

In this architecture, there is only one set of time-stamp sorting unit which

reduce the implementation complexity. At the input of the architecture, there are

a set of Per-Flow-Queues (PFQ). At the output of the sorting unit, there are a set

of Per-Class-Queues (PCQ) and a Departure Queue (DQ). The sorting unit can use

the hierarchical timing queue architecture which is proposed in [95]. The operation

processes of this architecture are explained as the following.

1. The operation process triggered by the arrival of a packet is shown in Fig. 6.5.

When a packet with Flow ID (FID) i and Class ID (CID) j is received by the

shaper, if its Per-Flow-Queue i (PFQ(i)) is not empty or the flow-based DT

(FDT) of the previous packet of the same flow is not due, then it is appended

to PFQ(i) to wait for its previous packet of the same flow due. If its PFQ(i)
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is empty, and the FDT of the previous packet of the same flow has been due,

then a new FDT is calculated, and assigned to this new packet. This packet is

inserted into the sorting unit to be sorted and stored till its FDT is due. Then

it is output from the sorting unit, and sent to Per-Class-Queue (PCQ(j)). If

its PCQ(j) is not empty or the new class-based DT (CDT) is not ready, it

is appended into PCQ(j) to wait for its CDT assignment. If its PCQ(j) is

empty, and a new CDT is ready, then the pre-calculated CDT is assigned to

this packet. If this CDT is equal to or smaller than the current time, then this

CDT is due or overdue, and this packet should be appended into DQ directly.

Otherwise, it should be insert back into the sorting unit for resorting based on

its CDT, and stored in the sorting unit till its CDT is due. When its CDT is
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due, it is output from the sorting unit again, and sent to the DQ to wait for

serving.

2. The operation process triggered by the departure of a packet is shown in

Fig. 6.6.

When a packet with FID i and CID j departs from the DQ, a new CDT of this

class is calculated. If the PCQ(j) is empty, then the CDT is stored to wait for

the next packet of the same class coming. Otherwise, this CDT is assigned to

the HoL packet of PCQ(j). Then this packet is inserted back to the sorting

unit till its CDT is due.

In the packet format, there will be a field to differentiate the packets which

are inserted to the sorting unit from the PFQ, and which are from the PCQ. By

this way, two sets of DTs are sorted in a single set of sorting unit successfully, and

DLLBTS is realized.

6.4 Performance Evaluation for Dual Level Leaky Bucket Traffic
Shaper Architecture

In this section, the performances of our proposed architectures and mechanisms

(both the I_DLLBTS and S_DLLBTS) with the corresponding performances of a

single level Class-Based Leaky Bucket Traffic Shaper (CBLBTS) and a single level

Flow-Based Leaky Bucket Traffic Shaper (FBLBTS) are compared.

S_DLLBTS, CBLBTS, and FBLBTS have the similar implementation

complexity because all of them have only single level sorting unit which dominates

the implementation complexity, while I_DLLBTS has a double implementation

complexity due to its two levels sorting units.

The objective of this study is to demonstrate that both I_DLLBTS and

S_DLLBTS can protect the conforming traffic from the impact of the malicious

flows while guarantee the zero class-based violation. The performance metrics used
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throughout this evaluation are the average packet delays of flows and the class-based

violation at the output port.

Before proceeding with the presentation of the results of our comparative study,

the experimental scenarios and the specific details of the traffic characteristics of the

individual flows and classes considered in this evaluation are described. Specifically,

there are 8 groups of bursty traffic, that belong to 4 different classes. Each group

consists of 100 flows. The flow traffic shaping parameters are same for each flow:

Peak Rate=16000 bytes/sec, Sustainable Rate=12000 bytes/sec, and their associated

burst sizes, Peak Burst Size=15000 bytes, and Committed Burst Size=80000 bytes

respectively. The length of packets varies from 40 bytes to 1500 bytes. Group 0 and

group 1 belong to class 0, group 2 and group 3 belong to class 1, group 4 and group

5 belong to class 2, and group 6 and group 7 belong to class 3. The outlink rate is

0C3, 155.52Mbps, or 19.44Mbytes/sec. The length of the byte slot is the reciprocal

of the outlink byte rate.

The class traffic shaping parameters are also same for all classes: Peak

Rate=3300000 bytes/sec, Sustainable Rate=2500000 bytes/sec, Peak Burst Size=15000

bytes, Committed Burst Size=80000 bytes. The class traffic shaping parameters

are used to control the aggregate behavior of a class. The behavior of each traffic

shaper architecture was investigated under two scenarios: one is that all flows are

conforming to the traffic contracts, and the other one is that all flows of group

0 are not conforming to the traffic contracts, while the remaining flows are still

conforming. In this study, we observed the average delays for different groups

and the class-based violation for each group. Because only the aggregate behavior

is monitored in the DiffServ networks, only low class-based violation should be

guaranteed. The class-based violation may lead the violated traffic dropped in the

DiffServ networks.
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Fig. 6.7 presents the average packet delay of each group under the scenario that

all flows are conforming, for all the four different architectures.

Fig. 6.7 presents the average packet delay of each group under the scenario

that all flows are conforming, for all the four different architectures. From this figure

it is observed that in each scheme, all groups have similar delay performance when

all flows are conforming to the corresponding traffic contracts. The FBLBTS has

lower delays, but it leads to high class-based violation ratio, 4.80% as can be seen in

Fig. 6.9, while the other schemes give zero violation ratio.

Similarly, Fig. 6.8 presents the corresponding results under the scenario that

the flows of the group 0 are non-conforming to their contracts.

Fig. 6.8(a) shows that although only flows of the group 0 are non-conforming,

the performance of both group 0 and group 1 is degraded significantly. The reason

is that the CBLBTS can not differentiate the flows belonging to the same class.

Therefore once some flows are non-conforming, all flows in the same class will be

affected, and therefore those misbehaving flows will impact negatively the QoS of

other conforming flows of the same class.

Fig. 6.8(b)(c)(d) show that FBLBTS, I_DLLBTS, S_DLLBTS can all isolate

the non-conforming flows from affecting the performance of conforming traffic

belonging to the same class. In each of these three schemes, all conforming traffic

has almost same performance in both cases, and only the non-conforming flows

are punished heavily. The S_DLLBTS scheme has a similar performance to the

FBLBTS. However, FBLBTS can not guarantee the aggregate behavior of a class.

Its class-based violation is very high, as shown in Fig. 6.9, which is 4.82%, and

therefore it is not suitable for the DiffServ networks. Comparing the Fig. 6.8(c) and

(d), it is found that although the both schemes have similar performance for those

conforming traffic, the I_DLLBTS does have a better performance for the non-

conforming traffic because in I_DLLBTS, the non-conforming traffic can occupy
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available bandwidth in the class after the conforming one occupied its share. While

the I_DLLBTS has high implementation complexity, and may not be a practical

implementation architecture. S_DLLBTS reduces the implementation complexity

only at the expense of the degradation of the performance of the non-conforming

traffic. It can be concluded that the S_DLLBTS can realize both flow-based and

class-based traffic control while maintains low implementation complexity.
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Figure 6.5 The Operation Process Triggered by The Arrival of A Packet



Figure 6.6 The Operation Process Triggered by The Departure of A Packet
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Figure 6.7 The Average Packet Delay of Each Group (all flows conforming)
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Figure 6.8 The Average Packet Delay of Each Group (flows of group 0 non-
conforming)

All Flows Conforming Group 0 Non-conforming

Class-
based

Violation
Ratio

CBLBTS 0 0

FBLBTS 4.80% 4.82%

I_DLLBTS 0 0

S_DLLBTS 0 0

CBLBTS: single level Class-Based Leaky Bucket Traffic Shaper; FBLBTS: single level Flow-Based Leaky Bucket Traffic Shaper;

I_DLLBTS: Ideal Dual Level Leaky Bucket Traffic Shaper; S_DLLBTS: Simplified Dual Level Leaky Bucket Traffic Shaper.

(Violation Ratio = Number of Violation Packets/Number of the Total Number of Output Packets)

Figure 6.9 Class-Based Violation Comparison in All Schemes



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In order to utilize the network resources effectively while providing a wide range of

satisfactory QoS guarantees, QoS mechanisms should be deployed. This dissertation

studies the traffic shaping mechanism, which is one of the most important QoS

mechanisms, and proposed algorithms and implementation architectures for it.

A novel hierarchical sorting unit is proposed to simplify the implementation

of the time stamp sorting in the traffic shaper of a high speed packet switch. By

utilizing different scheduling algorithms, it can be implemented as a Hierarchical

Exact Sorting Traffic Shaper, or a Hierarchical Rate-Adaptive Scheduler. When

it is used as a traffic shaper, it can implement exact sorting whose implementation

reduces the number of timing queues substantially. In comparison with the rate-based

grouping traffic shaper, it avoids the implementation of the complex scheduler, while

keeping the comparable number of timing queues. Although the rate-based grouping

traffic shaper reduces the number of sorting queues, its performance for low rate

connection degrades greatly. Additionally, it requires hardware reconfigurations since

the number of groups depends on the continuously changing traffic distribution. The

traffic shaper with hierarchical timing queues maintains the good performance for all

connections as the traffic shaper with direct exact sorting architecture but reduces

the implementation complexity significantly.

When the architecture is used as a hierarchical rate-adaptive scheduler, it

reduces the Cell Transfer Delay and maximum memory occupancy while taking other

QoS requirements and fairness into consideration. The most distinctive feature is

that it can work as a shaper or a scheduler based on the traffic load: When the

traffic load is heavy, it functions as a shaper, and when the traffic load is light,

it performs the GCRA scheduling function. In addition, by introducing a FIFO

queue to accommodate the best effort traffic in the hierarchical sorting unit, we
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can implement a near work-conserving scheduler without increasing the loss ratio

for the QoS traffic. In this way, the proposed scheduler can not only improves the

link utilization, but also guarantees QoS requirements for the RSVP traffic. This

novel hierarchical sorting unit's simplicity of implementation, good performance for

very diverse traffic parameters, flexible feature, and independence of implementation

structure on the traffic distribution make it practical and attractive for high speed

packet switch designers.

An improved fair traffic shaping algorithm, called DED+CTS is proposed.

It modifies the DEDTS algorithm by adding a process to resort the CT of those

conforming cells. This algorithm can naturally give those high speed connections

higher priority while guarantee their conformance. Consequently, the serious

performance degradation of the high speed connections due to the loss of contentions

in the heavy traffic load is avoided without increasing total available bandwidth.

The performance improvement of those high speed connections only introduces slight

performance degradation of those low speed connections. This algorithm can be

implemented easily by replacing the FIFO DQ of the HTQTS with a small sorting

unit which can be a sequencer.

The DiffServ framework is proposed to support QoS requirements in the

Internet. In order to provide the QoS requirements, the access control at the edge

of the DiffServ network is necessary. DLLBTS architecture is proposed to meet

this requirement. This architecture can guarantee the traffic conforming to both

flow-based and class-based traffic regulation when flows merge into different classes

at the DiffSery network boundary. A practical implementation architecture is also

proposed for the DLLBTS scheme, named S.DLLBTS. It can be implemented

efficiently with off the shelf hardware technology. By the simulation results, we

can see that this architecture can successfully realize not only the flow-based traffic
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control, but also the class-based traffic shaping. It is a practical traffic shaper

architecture for the edge nodes of DiffServ networks.

The following issues should be further studied. The studies of this dissertation

concentrate on the traffic shaping under lossless scenario. In the future work, the

buffer management should be taken into consideration for the loss of traffic due to the

shortage of buffer space, which exists in the real system. Strategies for congestion

detection and traffic dropping should be combined into the design of the traffic

shaping algorithms and implementations. For the proposed improved fair traffic

shaping algorithm, the further theoretical analysis will be performed. In addition,

the proposed dual level access control architecture only considers the bandwidth

allocation, no priorities for different classes are considered. In the further study,

scheduling algorithms should be implemented at the output of the dual level access

control architecture to differentiate the QoS requirements for different classes which

is one goal of the DiffServ networks.



APPENDIX A

NUMBER OF THE BACKLOGGED CONFORMING CELLS IN A
SHAPING MULTIPLEXER

In the previous discussion, it concludes that there is a correlation between the rate of

a connection and the length of DQ. When the number of the backlogged conforming

cells is larger than the incremental interval I of the leaky bucket of a connection,

then the leaky bucket loses its function, in which I is the reciprocal of the committed

rate of the connection. In this appendix, it shows that the number of the backlogged

conforming cells in a shaping multiplexer can be larger than the incremental interval

of a leaky bucket associated with a connection as the admitted traffic increasing.

Elwalid and Mitra have analyzed the lossless multiplexing in a shaping multi-

plexer in [30], and gave a tight bound for the number of backlogged cells and the

number of admissible connections. Here, the analysis in [30] is briefly reviewed, and

a lower bound of the number of admissible connections which will lead to the loss of

the function of a leaky bucket is derived.

The single source shaping system and the multiple source shaping multiplexer

are shown in Fig. A.1 and Fig. A.2, respectively.

In Fig. A.1, the shaping parameters for one connection is (r, B t , P), in which,

P is the PCR, r is the SCR, and Bt is the limit of the leaky bucket representing

the maximum delay variance. The actual bandwidth occupied by this connection is

denoted by c < c < P), and the number of present available token is denoted by

x(t). Let A(t, t + 'r) denote the total cells in any interval [t, t + T], then,

A proposition for the buffer size of single source shaping system y(t) is given in [30],
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Figure A.1 Single Source Shaping System Model
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Figure A.2 Multiple Source Shaping Multiplexer
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Fig. A.2 depicts the shaping multiplexer with multiple sources. The total buffer

size of the multiplexer is denoted by B, and the total output link capacity is denoted

by C. Elwalid and Mitra considered a multiplexer with K shaped traffic streams,

which all have same shaping parameter (r, B t , P) [30]. Based on the single source

shaping system result, they derive a tight bound on the content of the multiplexing

buffer in the shaping multiplexer, Y(t),

Hence, for lossless multiplexing, the buffer size B should satisfy the inequality,

From this bound, the lower bound for number of the accepted connections, K, can

be derived so that the buffer size is larger than the 1/r, which is the incremental

interval of the leaky buckets associated with these connections.

From this inequality, we get when

the buffer size can reach the 1/r, and as the K increases, the buffer size will increase

linearly. Higher K means more accepted connections and heavier load, therefore we

can conclude that the length of the output queue can be larger than 1/r. In the

scenario of a multiplexer with heterogeneous sources, similar results can be derived.

The shaping parameters for connection i are denoted by (r i , Bti , Pi ), then we can get

the inequality

These inequalities give the bounds of the length of the DQ. They can give us

the clue in design the size of the sequencer.



APPENDIX B

CONFORMING DEPARTURE TIME BASED PGPS

Parekh and Gallager proposed Generalized Processor Sharing (GPS) approach in [69]

to guarantee the fair sharing of the output link between competing connections.

It's the basis of the packet scheduler. It divides output link among K competing

connections proportional to a set of weights,

denotes the rate requirements of the K connections, then, when øi a r i , GPS can

guarantee

1. The bandwidth occupancy of connection i to be ri , independent of other

connections' requirements;

2. The delay bound of the connection i only related to its own queue length,

independent of other connections' queue [69].

However, GPS can not be implemented because it requires the server can serve

all connections at the same time as if all traffic can interleave with each other as a

fluid model. The packet-by-packet GPS (PGPS) was proposed to simulate GPS [69],

and it proved that for all times i- and connection i:

in which, Si (T, t) and Si(τ, t) are the amount of connection i traffic served under

GPS and PGPS [69]. Parekh and Gallager proposed Virtual Time Implementation

of PGPS [69]. In this virtual time system, a virtual time V(t) is maintained as

in which, B j is the number of active connections. Suppose that the Kth connection i

packet with length Li^k arrives at time αi^k, then the virtual times at which the packet
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begins and finishes service (denoted by St and F ik respectively) are defined as below,

and following the notations in [69]

When a packet enters the PGPS system, it is assigned a starting service time. If

it is the HoL packet of this connection, then its starting service time is the current

virtual system time V(αi^k), otherwise, the starting service time is the finishing service

time of the last packet in the same connection. At the same time, the finishing time

for this packet is assigned as the sum of the starting service time and the service

time. The server will pick the packet with the smallest finishing time to serve when

multiple packets compete for the service.

The algorithm DED+CTS proposed in the dissertation is a special case of the

virtual time PGPS implementation. It choose the conforming departure times (DTs)

of cells as the virtual time, and sustainable cell rates as the weights in the bandwidth

sharing among competing connections, and all packets are cells with fixed length 1,

so this conforming departure time based PGPS can be represented as

Therefore, DED+CTS inherits all characteristics of the PGPS, implementing the fair

scheduling among the backlogged cells, while keeping all cells strictly conforming to

the traffic contracts. Consequently, we can conclude that it is a fair traffic shaping

algorithm.
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