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ABSTRACT

PREDICTING THERMODYNAMIC AND TRANSPORT PARAMETERS FOR
METAL CONTAMINANT SORPTION TO HYDRATED METAL OXIDES IN

AQUATIC SYSTEMS

by
Pa ras Trivedi

Hydrated oxides such as HAO, FIFO, goethite, and HMO are prevalent in soils and

sediments as discrete particles or as coatings. These microporous oxides have large

surface areas and high affinity for metal ions, and hence they act as both a sink and a

source for anthropogenically released metal contaminants. To better understand risks

posed by metals in the environment and to develop effective waste management

programs, mechanistic models are needed to accurately predict their fate in soils and

sediments.

To achieve this objective, sorption of metal ions Sr, Cd, Zn, Ni, and Ca to these

oxides were studied with macroscopic as well as spectroscopic experiments, as a function

of pH, ionic strength, concentration, temperature, and reaction time. Macroscopic studies

in combination with the XAS investigations suggest that the sorption of divalent metal

ions to amorphous oxides is a two-step process: rapid adsorption to the external surface

followed by slow intraparticle diffusion along the micropore walls. Adsorption is an

endothermic physical reaction that can be represented by one average mechanism or site

independent of pH and adsorbate concentration. Accordingly, the sorbed ions retain their

primary hydration shell and form an outer sphere complex. Hence, adsorption enthalpies

(ΔH°) can be predicted from their primary hydration number (N) and the hydrated radius

(RH). The site capacities of these oxides are a function of pH and can be estimated from

their surface charge densities.



On the other hand, metal ions form mononuclear inner sphere complexes with

goethite. Although goethite may show a higher affinity for metal ions than HFO, its site

capacity is much smaller than that of HFO. Macroscopic analyses disclosed two sets of

adsorption sites on the goethite surface: a small set of high affinity sites available to

transition metal ions and a large set of low affinity sites to which only alkaline earth

metals bind. This limited availability of high affinity sites induces competitive adsorption

between Ni and Zn, which can be described with the single-site Langmuir model.

XAS investigations of intraparticle diffusion studies revealed that the local

structure of metal ions sorbed to amorphous oxides do not change with time suggesting

that the internal sites are similar to the external ones. Modeling resulted in diffusivities

ranging from 10 -16 to 10-¹º cm²  s-¹ . Therefore, surface diffusion of metal ions along the

micropore walls may take from a few days to few years to reach equilibrium. Based on

site activation theory, surface diffusivities can be estimated knowing the activation

energy and site capacity. From Polanyi relation, EA is linearly proportional to ΔH°, and is

comparable for adsorption of a specific metal to HAO, HFO, and HMO. Furthermore,

because metals of the same group in the Periodic Table form similar sorption complexes,

the Polanyi constant (a) was equivalent. Strong similarities in the local structure of Ni

and Zn ions sorbed to HMO corroborate this hypothesis. Interestingly, surface diffusion

was not important with goethite.

Overall this research renders an insight into the mechanisms by which hydrated

metal oxides control the partitioning and bioavailability of metal contaminants. This

study provides methods that can accurately predict important transport and

thermodynamic parameters for describing the fate of these pollutants.
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CHAPTER 1

INTRODUCTION

Hydrated oxides of aluminum, iron, and manganese are ubiquitous in soils and sediments

as discrete particles or as coatings. These oxides are microporous, have large surface

area, and high affinity for metal ions. Hence they play an important role in controlling the

mobility and bioavailability of toxic and bio-persistent contaminants in the environment.

Metals such as strontium, cadmium, zinc, and nickel that pose a serious threat to

plants, animals, and humans are released into aquatic and soil environments largely from

various anthropogenic activities (Carroll et al., CERCLA, 1997; 1998; U.S. EPA, 1997;

Forstner, 1994; Hesterberg, 1998; Jenne, 1998; Lin, 1997; Rodger et al., 1998,

NESHAPS, 1997; Rubin, 1999; Wilcke et al., 1998). 97; Rubin, 1999; Ross, 1994; Lin,

1997; Wilcke et al., 1998). For example, strontium-90 (t 12— 28.8 y), a carcinogenic

radionuclide frequently released from low-level radioactive waste into the environment,

migrates from waste disposal and nuclear test sites contaminating adjacent aquifers and

showing up as hardness in water (Clark et al. 1999; EPA, 1996, 1997; Inch and Jackson,

1989; Nilsson et al., 1985; Parkman et al., 1998; Toran et al., 1998). "Sr, in partnership

with other high-yield fission products such as 137Cs, has been reported to account for 97%

of the penetrating radiation into the environment, which increases the risk of leukemia,

bone cancer, and/or weakened immune system (Clark et al., 1999; Nilsson et al., 1985).

Therefore, understanding "Sr retention and migration through sorption processes is

critically important.

Likewise, releases of Cd, Ni, and Zn have occurred from industrial activities such

as mining, electroplating and smelting along with poor waste handling practices (Carroll

1
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et al., 1998; EPA, 1997; Rubin, 1999; Ross, 1994; Lin, 1997; Wilcke et al., 1998).

Cadmium has a deleterious and carcinogenic effect on human beings and animals and

ranks 7th amongst the top 20 hazardous substances according to the U.S. EPA (ATSDR

(Cd), 1989; U.S. EPA, 1997; Hesterberg, 1998). High-level exposures of cadmium to

humans and animals cause permanent damage to vital organs and the immune system,

lung cancer, high blood pressure, and painful and crippling disease called `itai-itai'

(ATSDR (Cd), 1989). The U.S. EPA has established a maximum contaminant level

(MCL) of 0.005 mg L -1 for cadmium in drinking water (U.S. EPA, 1999). On the other

hand, zinc, an essential nutrient for most living organisms, can also be harmful to health

at elevated concentrations (ATSDR (Zn), 1989). Long-term effects of exposure to high

levels of zinc include anemia, pancreas damage, infertility, and lower levels of high-

density lipoprotein cholesterol (ATSDR (Zn), 1989). Under the National Secondary

Drinking Water Regulations, the MCL goal (MCLG) for zinc is 5 mg L -1 (U.S. EPA,

1999). Nickel, a carcinogen on the U.S. EPA persistent, bioaccumulative, and toxic

(PBT) Chemicals list, is released primarily from nickel smelting/refining industry,

steelworks industries, electroplating, and various other industrial processes employing

nickel catalysts (U.S. EPA, 1999). Exposure to Ni results in weight-loss, dermatitis, and

permanent damage to heart and lungs (ATSDR (Ni), 1989; U.S. EPA, 1997). Hence, Ni

has also been regulated with de minimis concentration of.0.1 mg L-1 (U.S. EPA, 1999).

Although, Ca (another alkaline earth metal) in aquatic systems, is not a threat to the

environment, it is often present at high concentration levels. Hence, it is important to

account for its interactions with the oxides.
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Once released in the water, the retention and the mobility of these metals in soils

and sediments are controlled by sorption, uptake by plants, immobilization by soil

organisms, and chelation (Hesterberg, 1998; Jenne, 1968; Lion et al., 1982; Ross, 1994).

Of these processes, sorption is one of the most important processes for regulating

contaminant distribution and fate (Hesterberg, 1998; Jenne, 1968; Lead et al., 1999; Lion

et al., 1982; Ross, 1994). To assess risks from these and other metal contaminants to the

surrounding environment and to manage remedial activities requires accurate models and

well-defined transport parameters. The objective of this research is to understand, model,

and predict contaminant distribution mechanisms in soils and sediments. Extensive

research (Anderson and Benjamin, 1990; Apak, 1998; Benjamin and Leckie, 1981;

Coughlin and Stone, 1995; Dzombak and Morel, 1990; Gadde and Laitinen, 1974;

Gamier and Benyahya, 1999; Green-Peddersen et al., 1997; Jenne, 1968; Kanungo, 1999;

Krapiel et al., 1999; Kinniburgh et al., 1976; Lion et al., 1982; Lothenbach et al., 1999;

Martinez and Mc Bride, 1999; McKenzie, 1980; Meima et al., 1999; Meng and

Letterman, 1990; Morgan and Stumm, 1964; Okazaki et al., 1986; Pan and Liss, 1998;

Sigg et al., 1999) has demonstrated that the mobility and bioavailability of these metals

are impacted by sorption to hydrous aluminum (HAO), iron (HFO), and manganese

(HMO) oxides, which are ubiquitous in soils and sediments.

These hydrous oxides exist as both coatings and discrete oxide particles in soils

and sediments (Dzombak and Morel, 1990; Hesterberg, 1998; Jenne, 1968; McCarty et

al., 1998; Ross, 1994; Zevenbergen et al., 1999). They have large surface areas, a high

affinity for metals, and microporous structures; as a result, oxides often act as sinks for

metal ions (Dzombak and Morel, 1990; Hesterberg, 1998; Jenne, 1968; Lion et al., 1999;
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Meima et al., 1999; Ross, 1994). Sorption to these microporous amorphous oxides can be

described as a two-step process (Axe and Anderson, 1995, 1997, 1998; Fuller et al.,

1993; Misak et al., 1996; Papelis et al., 1995; Scheidegger et al., 1998; Strawn et al.,

1998; Waychunas et al., 1993): a rapid and reversible adsorption reaction to the external

surface including the macropores is followed by slow intraparticle diffusion along the

surface sites of the micropore walls. This second step is the rate-limiting mechanism in

the sorption process.

The principal adsorbent properties that influence the sorption and mobility of

trace metals in soils include surface charge density, particle size distribution, surface

area, site density, porosity, and pore size distribution (Dzombak and Morel, 1990; Fuller

et al., 1993; Hesterberg, 1998; Jenne and Zachara, 1987; Stumm 1992). Other conditions

such as background electrolytes, concentration of metal ions, temperature, the presence of

organic matter, and competing ions also have significant effects on distribution and

bioavailability of trace contaminants (Baltpurvins, 1998; Bolan et al., 1999; Dzombak

and Morel, 1990; Hesterberg, 1998; Jenne, 1968; Lee et al., 1996; Martinez and

Benyahaya; 1999; Nelson et al., 1999; Simpson et al., 1998; Sparks et al., 1998).

This research is focussed on understanding distribution mechanisms for metal

contaminants in the presence of ubiquitous HAO, HFO, and HMO. In an effort to

improve modeling capabilities, this research includes developing methods to predict

thermodynamic and transport parameters such as site densities, equilibrium constants,

adsorption enthalpies, activation energies, and surface diffusivities. Accordingly, results

from physical and chemical characterization of these oxides are employed to predict site

densities (CO from the surface charge densities (a) in C Short-term sorption studies to
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the hydrous oxides were conducted to evaluate important parameters such as equilibrium

constants, adsorption enthalpies, and activation energies. These parameters were used to

develop and test correlations that allow parameter prediction for other metal ions.

Furthermore, data from transient sorption experiments were modeled to determine

intraparticle surface diffusion coefficients, which can be explained by and predicted from

site activation theory.

Modeling of macroscopic data alone does not provide sufficient information about

the fundamental reaction mechanism occurring at the mineral/water interface; therefore,

the in situ spectroscopic technique, X-ray absorption spectroscopy (XAS), was employed

to access this information (Brown, 1990). The macroscopic studies are complemented

with XAS to develop mechanistic models based on local atomic structural information for

metal adsorption to hydrous oxides.

This study includes a literature review on sorption and characteristics and

properties of the hydrous metal oxides that affect sorption. In addition, the discussion

includes the impact of solution chemistry, adsorption models invoked to describe the

adsorption mechanism, theories proposed to explain intraparticle transport, and an

introduction to XAS and its application to environmental problems. Subsequently,

hypotheses are presented and experimental procedures to test those hypotheses are

detailed. Finally, results from the studies are presented and followed by conclusions and

future work.



CHAPTER 2

SORPTION AT THE AQUEOUS OXIDE INTERFACE

This chapter begins with a review of physical characteristics and chemical properties of

hydrous metal oxides found in soils and sediments. The chapter continues with a

discussion on the factors influencing sorption, which includes a literature review of metal

sorption to hydrous oxides. Sorption is addressed with respect to adsorption edges,

isotherms, equilibrium models, and the transient process of intraparticle surface diffusion.

Subsequent to the review of macroscopic studies, the chapter concludes with an overview

of the use of in situ XAS in evaluating atomic level adsorption mechanisms, particularly

with respect to the hydrous oxide aqueous interface.

2.1 Characteristics and Properties of Hydrous Metal Oxides

2.1.1 Mineralogy

Oxides of aluminum, iron, and manganese are important components of soils and

sediments and represent a major sink for metals released into the environment from a

variety of anthropogenic sources (Anderson and Benjamin, 1990; Apak, 1998; Benjamin

and Leckie, 1981; Carroll et al., 1998; Coughlin and Stone, 1995; Dzombak and Morel,

1990; Gadde and Laitinen, 1974; Gamier and Benyahya, 1999; Green-Peddersen et al.,

1997; Hesterberg, 1998; Jenne, 1968, 1998; Kanungo, 1999; Kinniburgh et al., 1976;

Krapiel et al., 1999; Lion et al., 1982; Lothenbach et al., 1997; Martinez and Mc Bride,

1999; McKenzie, 1980; Meima et al., 1999; Meng and Letterman, 1990; Morgan and

Stumm, 1964; Okazaki et al., 1986; Pan and Liss, 1998; Rubin, 1999; Sigg et al., 1999).

These oxides occur as discrete particles or as a coating on other mineral surfaces in

6
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aquatic environments; they have large surface areas, microporous structure, and a high

affinity for metal ions (Dzombak and Morel, 1990; Jenne, 1968; Lion et al., 1982; Stahl

and James, 1991; Simpson et al., 1998).

The iron oxides are the most abundant of the metallic oxides in soils and

sediments; some of the most commonly found Fe oxides are ferrihydrite, hematite,

maghemite, magnetite, goethite, lepidocrocite, and feroxyhite (Schwertmann and Taylor,

1989). The basic structural unit for all of these Fe oxides is the octahedron, in which each

atom is surrounded by six O atoms (Schwertmann and Taylor, 1989). Of these iron

oxides, ferrihydrite is the only metastable form and the most poorly ordered Fe 3+ oxide

.often referred to as amorphous ferric hydroxide. Manceau and coworkers (Manceau et al.

1992; Manceau and Charlet, 1994; Manceau and Combes, 1988) found that HFO has a

layered structure similar to goethite but with a short-range order, where each Fe ³+ ion is

surrounded by three O .2 and three OH groups that are located in the alternate

discontinuous layers. However, they observed shorter octahedral chains in hydrous ferric

oxides as compared to goethite, which, they reasoned explains the high site density while

the discontinuity clarifies the high surface area. Further, Rose et al. (1996) demonstrated

that the presence of PO4-³ ions hinders the crystallization of the metastable of Fe

oxyhydroxide. Similarly, Spadini et al. (1994) observed that the in contrast to goethite,

the local structure of two-line ferrihydrite was preserved even with Cd sorbed at a surface

coverage of 1 and 100%. Golden et al. (1997) also observed that Fe oxides in League soil

(Southeast Texas) remained poorly crystallized in presence of P and Si.

The metastability and the rate of transformation of amorphous oxides to

crystalline forms is controlled by various factors such as the rate of oxidation, the
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presence of anions and cations, pH, and temperature (Baltpurvins et al., 1996; Combes et

al., 1990; Golden et al., 1997; Schwertmann et al., 1999). For example, Baltpurvins et al.

(1996) observed that the transformation of ferric hydroxide to hematite was favored at pH

values near the zero point of charge of ferrihydrite and at high temperatures (>90°C)

whereas goethite formation was favored at pH > 12 and at low temperatures (<40°C).

They also observed that the rate of transformation of ferrihydrite to its crystalline

analogues was greater in the presence of nitrate ions than in the presence of chloride or

sulfate ions. In a recent work, Schwertmann et al. (1999) confirmed similar results;

additionally they demonstrated that a fast hydrolysis of ferric nitrate solution produced a

two-line ferrihydrite, while the slow hydrolysis resulted in the six-line ferrihydrite. They

also reported synthesis of a series of ferrihydrites from the two-line to the six-line

varieties by oxidizing a 10 4 M FeCl2 solution at pH 6.5 with varying Si concentrations up

to 0.926 mmolL-¹ .

The mineralogy of HMO is complicated by the large number of oxides and

hydroxides formed, in which substitution of Mn ²+  or Mn³+ for Mn4+ occurs extensively

(McKenzie, 1989). Most Mn oxides are built of MnO6 octahedra and have either a tunnel

structure or a layered structure (Fritsch et al., 1997; McKenzie, 1989; Morgan and

Stumm, 1964). Pyrolussite, ramsdellite, nsutite, hollandite, coronadite, and todorokite are

tunnel-structured oxides formed from single, double, or wider chains of MnO 6 octahedra

that are linked through corner sharing. On the other hand, manganese oxides such as

birnessite, vernadite, and buserite have a layered structure (Fritsch et al., 1997; Manceau

and Combes, 1988; McKenzie, 1989; Morgan and Stumm, 1964). Most Mn oxides found

in soils are amorphous (Fritsch et al., 1997; McKenzie, 1989; Morgan and Stumm, 1964).
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Using X-ray absorption near edge spectroscopy ()CANES), Manceau et al. (1992)

demonstrated that Mn atoms are generally tetravalent in most poorly crystallized hydrous

manganese oxides. They also found that the structure is not strictly related to that of the

subsequent, well-crystallized polymorph. Manceau et al. concluded that Mn gels most

likely consist of a 3-D framework of randomly distributed edge- and corner-sharing

MnO2 octahedra that transform into a large variety of structures. Friedl et al. (1997)

investigated with X-ray absorption fine structure (XAFS) spectroscopy the local

structural environment of oxides with Mn in different oxidation states; they found that the

first shell (Mn-O) for Mn(II) hydroxides had a greater distance than in Mn(IV) oxides.

Additionally, they found in Mn(OH) 2 and Na-birnessite the second shell was symmetric

with a single Mn atom at 2.9 A, which they reported is consistent with a structure of

edge-sharing Mn octahedra sheets. In studying Sr sorption to HMO, Axe et al. (2000)

found the oxide exhibited a highly ordered short-range structure even though the long-

range structure was indiscernible from X-ray diffraction (XRD). They showed that each

Mn atom is surrounded by 3-4 O atoms in the first shell at an average distance of 1.89 A,

while the second shell comprises approximately three Mn atoms at an average distance of

2.86 A. This oxide structure did not vary over 6 months of aging with or without

contaminant sorbed.

A number of crystalline and non-crystalline aluminum hydroxides,

oxyhydroxides, and oxides are also found in nature and are particularly common in

bauxite deposits and soils (Hsu, 1989). The physical and chemical properties of

aluminum oxides depend to a large extent on the temperature reached during its

formation (Simpson et al., 1998). Aluminum hydroxide gel upon crystallization typically



10

forms monohydrate oxyhydroxide called boehmite (a rhombohedral crystal). At higher

temperatures it is transformed into trihydrate bayerite, which with increasing temperature,

reorders to the trihydrate form called gibbsite (Simpson et al., 1998). The crystalline

polymorphs of Al(OH)3 such as gibbsite, bayerite, and nordstrandite are composed of the

same fundamental units: two planes of close-packed OH - with Al³+ sandwiched between

them (Hsu, 1989). Amorphous forms of aluminum oxides are also metastable, however,

the presence of anions and clay minerals can effectively retard their crystallization (Hsu,

1989; Simpson et al., 1998). The dissociation of Al-OH polymers is the rate-limiting step

in the crystallization process of Al(OH) 3 (Simpson et al., 1998). Because this step is very

slow in near neutral conditions, naturally occurring hydrated aluminum oxides remain

stable and amorphous after many years of aging under normal atmospheric conditions.

Hence they play a significant role in retention, mobility, and bioavailability of heavy

metals (Jackson and Inch, 1989; Jenne, 1968; Lion et al., 1982; Papelis et al., 1995;

Tamura et al., 1997).

The crystallinity and the stability of the hydrous oxides used in the present

research are described in Chapters 5 and 6. Other physical characteristics of these

amorphous oxides that are important in the sorption process include their surface area,

porosity, pore size distribution, and particle size distribution. These properties are

discussed in the next sections.

2.1.2 Surface Area

Surface area is an important factor in the adsorption process (Dzombak and Morel, 1990;

Gregg and Sing, 1982; Jenne, 1998). By far the most popular means of measuring surface

areas for finely divided solids is the Brunaer, Emmett and Teller (BET) method (Gregg
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and Sing, 1982). However, with the BET method, the surface areas are measured on

freeze-dried particles, as a result, hydrated ones are expected to be much greater (Bottero

et al., 1993; Dzombak and Morel, 1990; Okazaki et al., 1986). For example, Bottero et

al. (1993) found large variations in surface area of amorphous aluminum oxides where

using adsorbing organic molecules, areas ranged from 600 to 1000 m ² g-¹ , while using N2

gas adsorption areas were <20 m² g-¹ . However, when measuring the surface area of

ferrihydrite, they found 135-163 m² g-¹ using anionic surfactants for in-situ studies and

295 m² g-¹ from argon adsorption isotherms on dried particles. Similarly, Okazaki et al.

(1986) reported surface areas for Al and Fe hydrated oxides to be much greater when

measured with glycerol method than when measured with the BET method. Even though

large variations in the surface area have been reported when using one method, currently,

the BET approach is the standard method recommended for evaluating sorbent surface

area (Dzombak and Morel, 1990). Because the amorphous oxides are microporous, it is

also important to evaluate porosity and pore size distribution.

2.1.3 Porosity and Pore Size Distribution

When a metal ion is transported through the internal pores, pore size and effective radius

of the hydrated cation will determine the type of intraparticle diffusion (Axe and

Anderson, 1995, 1997, 1998; Froment and Bischoff, 1990; Kärger and Ruthven, 1992;

Papelis et al., 1995). Traditionally, the pore size distribution is determined by either

nitrogen desorption or mercury porosimetry; porosity is assessed with mercury

porosimetry as well. However, these methods are employed on freeze-dried sorbents,

which may not accurately represent oxide surfaces in hydrated environments. If the pore

radius is much greater than the effective radius, bulk diffusion is expected. When the
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cation and pore radii are approximately equivalent, then transport is referred to as

configurational or surface diffusion and occurs along the pore walls. In aquatic systems

where layers of water adsorb to porous surfaces resulting in micropores, surface diffusion

dominates the intraparticle transport of metal ions (Axe and Anderson, 1995, 1997, 1998;

Froment and Bischoff, 1990; Kärger and Ruthven, 1992). This type of diffusion has been

observed to occur in HFO (Axe and Anderson, 1995, 1997) and has not been studied to

the same extent for amorphous Al and Mn oxides.

2.1.4 Particle Size Distribution

The particle size distribution (PSD) can be characterized in situ using light scattering

techniques, such as ultra-violet radiation based particle size analyzer. When studying

intraparticle diffusion, it is critical to fully understand the PSD, which is used in the

modeling and fitting of the surface diffusivity (Axe and Anderson, 1995, 1997).

Researchers (Murray et al. 1999; Papelis et al. 1995; Roberts and Cunningham, 1998)

have observed as would be expected that the smaller sized particles resulted in faster

uptake of ions.

2.1.5 Surface Charge Density

When a metal oxide is exposed to water, surface hydroxyl groups are formed by

dissociative sorption of water molecules; these groups can bind and release protons

(Parks and Bruyn, 1962; Morgan and Stumm, 1990; Stumm, 1992):
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where SOH2+, SOH°, and SO" represent surface sites, and K a i aPP and Ka2app are apparent

equilibrium acidity constants.

Potentiometric acid-base titration, in a closed system, is the most common method

for measuring the net surface charge density (a) as a function of pH (Stumm, 1992;

Morgan and Stumm, 1990; Parks and Bruyn, 1962; Dzombak and Morel, 1990):

where F is the Faraday Constant (96485 C moi l ), A the specific surface area of the oxide

(m² g'), S is the oxide concentration (g L-¹ ), ГH is the proton sorption density (mol r11-2),

Foil is the hydroxyl sorption density (mol m-² ), CA and CB are the molar concentrations of

acid and base added, respectively, and [H1 and [OH] are calculated from the pH

measurements. The pH at which the net positive charge equals the net negative (hence the

net surface charge is zero) is called the point of zero net proton charge (pHpzn pc) (Sposito,

1998). For pH< pHpznpc, the net surface charge will be positive and the surface is more

likely to adsorb anions; while for pH> pHpznpc the net surface charge is negative and

cation adsorption will be favored (Dzombak and Morel, 1990).

2.1.6 Surface Site Densities

Surface sites describe any potentially reactive set of functional groups on the adsorbent

surface to which the adsorbates may bind physically or chemically; the number of such

active sites available per unit surface area of the adsorbent is referred as the site density

(C1) (Koretsky et al., 1998). Dzombak and Morel (1990) have classified the sorption site

densities on HFO into two types: Type I sites, which corresponds to a set of high-affinity

cation binding sites; and Type II sites, which are inclusive of the total reactive site§
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available for sorption of protons, cations (Type I sites), and anions. In another approach,

surface sites on an adsorbent have also been classified according to the number of metal

atoms bonded to the surface hydroxyl groups (Koretsky et al., 1998). In Type I sites, only

one metal atom is bound to the Off group; this type of site is considered a high energy,

highly reactive or ionizable site (Koretsky et al., 1998). On the other hand, Type II sites

are low energy or weak ones that result in a physica1 type of adsorption (Koretsky et al.,

1998). Experimental determinations of C t have been accomplished with techniques other

than potentiometric titrations, including tritium-exchange method, H2O isotherm method,

and the weight loss method (Dzombak and Morel, 1990; Koretsky et al., 1998).

Maximum sorption densities observed at constant pH isotherms provide a reliable

estimate of C t as well (Fogler, 1992; Koretsky et al., 1998). Cations like the alkaline earth

metals are potentially good probe ions as they have very high solubilities (Axe and

Anderson, 1995; Dzombak and Morel, 1990; Koretsky et al., 1998). The site densities are

therefore a function of pH, which is a hypothesis that will be tested in this research. Also

the surface charge at a pH is a related to the surface potential through the Poisson-

Boltzmann equation. As a result, in this research, using an alkaline earth metal, a method

will be presented for estimating the site density from the surface charge density.

2.2 Adsorption Affinity

The surface charge resulting from pH is probably the most important factor that affects

the availability of heavy metals. As pH increases, the net negative surface charge

increases and cation adsorption to the oxide surface increases (Axe and Anderson,

1995,1997; Dzombak and Morel, 1990; Gadde and Laitinen, 1974; Jenne, 1968; Johnson,
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1990; Lützenkirchen, 1997; McKenzie, 1980; Mishra and Tiwary, 1995, 1998; Mishra et

al., 1997; Okazaki et al., 1986; Shuman, 1977; Stahl and James, 1991; Tamura et al.,

1997; Toran et al., 1998).

Several studies have revealed the adsorption affinity for metal ions to oxides

follows the order of Pb>Cu>Zn>Cd>Co>Mn>Sr>Ca (Benjamin and Leckie, 1981; Gadde

and Laitinen, 1974; Gamier and Benyahya, 1999; Kinniburgh et al., 1976; Lion et al.,

1982; Martinez and McBride, 1999; McKenzie, 1980; Okazaki et al., 1986; Sigg et al.,

1999). Pan and Liss (1998) proposed that Zn, a much harder Lewis acid than Cd 2+, binds

more strongly to goethite. Morgan and Stumm (1964) and others (Coughlin and Stone,

1995; Gamier and Benyahya, 1999; Krapiel et al., 1999; Lothenbach et al., 1997; Tamura

and Furuichi, 1997) have correlated the adsorption affinities of metal ions to their first

hydrolysis constants. Wehrli et al. (1990) developed a linear free energy relation between

the rate constant for water exchange and the intrinsic adsorption rate constants.

Researchers (Gray, 1981; Gray and Malati, 1979; Malati, 1987) compared the trends of

cation adsorption to Mn and Si oxides with Hofmeister series and showed that the

adsorption affinity for alkaline earth metals and certain heavy metals follows the reverse

order of their hydrated radii. For the most part, correlations developed in previous studies

(Coughlin and Stone, 1995; Krapiel et al., 1999; Lothenbach et al., 1997; Morgan and

Stumm, 1964) were based on one temperature; hence, the relations cannot be used for

other conditions.

In a number of studies (Angove et al., 1998; Axe and Anderson, 1997; Johnson,

1990; Mishra et al., 1997; Mishra and Tiwary, 1995, 1998; Rodda et al., 1996), however,

adsorption of metal ions to oxides has been modeled as a function of temperature to
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obtain the adsorption enthalpies. Enthalpy is related to the bonding energy between the

metal ion and the adsorbent surface and represents the relative adsorption affinity. The

potential energy is sum of integrated intermolecular forces which include electrostatic

ones, weak polarization forces from the dipole moments induced in atoms and molecules,

and the chemical or covalent bonds that result in interaction energies greater than 200 kJ

ma' (de Boer, 1968; Israelachvilli, 1997). In this research, in an effort to predict

enthalpies and activation energies, two correlations are tested with one relating

adsorption enthalpies and hydrated cationic radii and the other relating enthalpies and

activation energies. These correlations can be used to help predict sorption behavior.

2.3 Sorption Modeling

The sorption of a contaminant to hydrous oxides is a two step process: an initial fast

sorption at the mineral-water interface is followed by a much slower uptake that may

continue for a period of days to years (Axe and Anderson, 1995, 1997; Froment and

Bischoff; 1990; Fuller et al., 1993; Jenne, 1998; Kärger and Ruthven, 1992; Papelis et al.,

1995; Raven et al., 1998; Scheidegger et al., 1998; Scheinost et al. 2001; Strawn et al.,

1998; Waychunas et al., 1993; Wehrli et al., 1990). Many models have been invoked to

explain the sorption process (Axe and Anderson, 1995, 1997; Barrow et al., 1981; Farley

et al., 1985; Froment and Bischoff; 1990; Fuller et al., 1993; Jenne, 1998; Kärger and

Ruthven, 1992; Misak et al., 1996; Morgan and Stumm; 1990; Papelis et al., 1995;

Scheidegger et al., 1998; Strawn et al., 1998; Waychunas et al., 1993; Wehrli et al.,

1990); modeling will be discussed in the following sections.
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2.4 Short-term Adsorption

The short-term adsorption mechanisms are generally described either by surface

complexation or the adsorption isotherm models (Dzombak and Morel, 1990; Morgan

and Stumm, 1990). The surface complexation models including constant capacitance

model, diffuse layer model, and triple layer model are based on the surface protonation -

deprotonation reactions (Dzombak and Morel, 1990; Morgan and Stumm, 1990; Stumm,

1992). The differences between the models lie in the description of the electrical double

layer. Adsorbed ions are considered to be part of the solid surface in the diffuse layer

model and constant capacitance model. Proton transfers involving surface acid groups

and the formation of surface complexes with other cations and anions determine surface

charge. The abutting diffuse layer of ions from the surrounding electrolyte balances the

charge. The triple layer and Stern models assign primary potential determining ions (F1+

and Off) to an inner plane, and include a separate, adjacent plane for specifically

adsorbed ions.

The Freundlich isotherm is an example of an empirical adsorption model, which

assumes that adsorption is a physical process, and has the form (Dzombak and Morel,

1990; Morgan and Stumm, 1990; Stumm, 1992):

where C represents the moles of adsorbed species g-¹ of adsorbent, [S] the equilibrium

concentration of species in the bulk aqueous phase (M), KF the equilibrium constant, and

n the constant related to the distribution of bond strengths. Mishra and co-workers

(Mishra and Tiwary, 1995, 1998; Mishra et al., 1997) have demonstrated the applicability

of Freundlich isotherms to describe the sorption of metal ions to manganese oxide over a
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wide range of concentrations. They found that the values of 1/n were less than one and

concluded that manganese oxide used in the studies was heterogeneous in nature with an

exponential distribution of adsorption sites. According to Dzombak and Morel (1990),

Freundlich isotherms with n > 1 are indicative of adsorbents with multiple types of sites.

The Langmuir isotherm was derived on the basis of monolayer coverage (Fogler,

1992). Each type of adsorption site is equal in energy and for one type of site the linear

form of the isotherm can be written as follows:

where C represents the moles of adsorbed species 	 of adsorbent, [S] the equilibrium

concentration of species in the bulk aqueous phase (M), C t is the site density (C t =	 +

C, where	 is the number of sites available), and K is the equilibrium constant. In a

number of studies, the Langmuir model has been employed to describe metal sorption to

oxides: Zn and Pb adsorption to goethite (Johnson et al., 1990; Rodda et al., 1996); Zn

adsorption to Al and Fe hydrous oxides (Shuman, 1977); Cd adsorption to hydrous

manganese oxides (Posselt and Weber, 1974); Pb adsorption to hydrous ferric oxide

(Morgan and Stumm 1964); Cr(III) sorption to hydrous Fe oxides (Crawford et al., 1993);

iron-cyanide adsorption onto γ-Al2 O3 (Huang and Cheng, 1997); Cu, Cd, and Pb

adsorption on red mud (a mixture of Al, Fe, Si, and Ti oxides) (Apak et al., 1998); and Pb

sorption to biogenic Mn oxides (Nelson et al., 1999). Because metal contaminants are

often present at trace concentrations, the site densities are approximately equivalent to the

number of available sites (i.e., when Ct >> C, then Ct N Cy); this has been observed in a

number of studies (Axe and Anderson, 1995, 1997). Under these conditions, when the
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total sites are approximately equivalent to the number of available ones, the Langmuir

isotherm reduces to the linear distribution model:

where Kd is equal to K x C, and is referred to as the linear distribution coefficient.

Equation (6) is similar in form to the Freundlich equation with n = l. Several studies

involving adsorption of heavy metals to sediments, aluminum oxides, iron oxides, and

manganese oxides are described with the help of this model (Axe and Anderson, 1995,

1997; Green-Pedersen et al., 1997;Oakley et al., 1981). All of the above sorption models

are based on short contact times and at a constant temperature; these models do not

account for long-term sorption processes.

2.5 Adsorption Thermodynamics

Temperature is another important factor that governs metal distribution in the

ecosystems. Seasonal variations of in natural water systems including soils are not

uncommon. These thermal variations influence the bioavailability of trace elements

(Johnson, 1990; Ross, 1994). Thus, the effect of temperature on distribution of metals is

important not only in understanding adsorption mechanisms, but also in obtaining useful

thermodynamic information such as adsorption enthalpy and entropy (Angove et al.,

1998; Axe and Anderson, 1997; Johnson, 1990; Rodda et al., 1996). The variation in

equilibrium constant (K) with temperature can be described by the van't Hoff equation

(Smith and van Ness, 1987):
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where ΔH° is the change in enthalpy kcal mol l, and R is the Universal Gas Constant.

From the Polyani relationship, the activation energy is related to the adsorption enthalpy

(Ea) through the proportionality constant a, which is expected to be equivalent for similar

types of reactions (Boudart, 1968). In this research, transition metals are hypothesized to

form analogous complexes with hydrous oxide surfaces; other metal groups like alkaline

earth metals are expected to behave similarly. The Ea can be used to determine the

theoretical surface diffusivity based on site activation theory (Axe and Anderson, 1997;

Kärger and Ruthven, 1992). A detailed description of this prediction method will be

presented in the following section.

2.6 Long -term Sorption

The equilibrium models while important and useful have not been adequate in modeling

contaminant mobility and bioavailability. As mentioned before, sorption is a two-step

process, where the second step is the rate-limiting mechanism. Several mechanisms have

been observed and/or proposed for this second and rate-limiting step of the sorption

process, which include intraparticle diffusion (Axe and Anderson, 1995, 1997; Barrow,

1989; Fuller et al., 1993; Misak et al., 1996; Papelis, 1995; Papelis et al., 1995; Strawn et

al., 1998;Waychunas et al., 1993; Wehrlic et al, 1990), surface precipitation (Farley et al.,

1985), and solid solution formation (Scheidegger et al., 1998). In their kinetic studies

with Cd²+ sorption to hydrous ferric oxide (HFO), Farley et al. (1985) modeled the slow

process as surface precipitation, while Scheidegger et al. (1998) observed a mixed Ni-Al

hydroxide on clay and aluminum oxide particles with increasing reaction time. However,

Fuller et al. (1993) and Waychunas et al. (1993) found from their macroscopic and
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spectroscopic studies that the rate of As(V) sorption to ferrihydrite was limited by

intraparticle diffusion; there was no evidence of either a solid solution or precipitate

formation. Similarly, others have demonstrated intraparticle diffusion as the rate-limiting

mechanism: Axe and Anderson (1995, 1997) modeled Sr ²+ and Cd²+ sorption to HFO;

Misak et al. (1996) estimated diffusivities for Co²+ and Zn²+ in hydrous ferric, stannic,

and ferric-stannic oxides; Papelis et al. (1995) assessed Cd and Se(IV) sorption to micro-

and meso-porous alumina with macroscopic studies which was complemented with

spectroscopic studies (Papelis, 1995); Scheinost et al. (2001) demonstrated

spectroscopically that sorption of Cu and Pb ions onto ferrihydrite is controlled by

intraparticle diffusion; and Strawn et al. (1998) studied Pb2+ sorption to γ-Al2O3.

Hydrous amorphous oxides of Al, Fe, and Mn have significant site capacities

where sorbed concentrations are much less than the site capacity (as is the case for

contaminants in the subsurface), therefore, the adsorbate does not interact with itself. For

these microporous oxides, the slow sorption process of intraparticle diffusion can be

systematically studied. A mathematical model has been previously developed to represent

this intraparticle diffusion (Axe and Anderson, 1995, 1997). Assuming the internal sites

are no different than the external ones, then for an adsorbing species at dilute

concentrations (or constant diffusivities), the mass balance for spherical aggregates yields

the following partial differential equation:
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where C represents the moles of adsorbate metal sorbed g -¹ of hydrous oxide, D s is

surface diffusivity in cm² c is the porosity, p is the bulk density of the oxide in g cm-³ ,

r represents the radial position within the sphere, and K, is the distribution coefficient for

sorption to internal sites. From characterization and isotherm studies, porosity, bulk

density, and the distribution coefficient can be determined, resulting in one unknown —

surface diffusivity — the fitting parameter.

Transient studies to obtain data for modeling require a lengthy period of time, and

therefore predictive methods would be useful for determining surface diffusivities.

Assuming that the potential on the pore surface can be described by a sinusoidal function

(where the minima represent adsorption sites and the maxima signify the energy barrier

or EA for an exothermic reaction [Axe and Anderson, 1997]), the theoretical surface

diffusivity is defined as (Axe and Anderson, 1997; Kärger and Ruthven, 1992):

where X is the mean distance between sites, and m is the molecular weight of the metal

ion. Again, as discussed earlier, from the Polyani relationship, the activation energy (E a)

is related to the adsorption enthalpy through a (Boudart, 1968).

A general problem with macroscopic investigations of sorption phenomena is that

the experimental data are only able to give indirect indication of the solid/solution

interface, while many structural and mechanistic aspects of sorption processes remain

unclear. Researchers such as Sposito (1986) and Brown (1990) have discussed that

modeling macroscopic data alone does not provide conclusive evidence of the adsorption

mechanism, and that in situ spectroscopic studies are needed to better understand

distribution mechanisms at mineral/water interfaces. X-ray absorption spectroscopy is
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one technique that can provide in situ structural information about the sorbate and its

surroundings (Brown, 1990; Bunker, 1999; Stern, 1976)

Even though goethite and HFO may possess similar local structures, they have

different long-range configurations. Hence they may possess different types of surface

sites and their relative ratios of the high affinity to low affinity sites are different.

As a result, these two iron oxides may not be able to represent one another in modeling

the mobility and the bioavailability of contaminants. To better understand adsorption to

the different types of sites, a comparison of metal adsorption to these two oxides (HFO

and goethite) is essential.

2.7 Adsorption to Goethite

In a number of these studies (Christophi and Axe, 2000; Grossl et al., 1997;

Lützenkirchen, 1997), metal adsorption to crystalline iron oxides such as goethite and

hematite has been found to be independent of ionic strength, thus attributing adsorption to

inner-sphere complexation. Metal adsorption to goethite has also been assessed as a

function of the adsorbate concentration through isotherm studies (Ankomah, 1992;

Christophi and Axe, 2000; Forbes et al., 1976; Pan and Liss, 199814-17). Johnson and

coworkers (Angove et al., 1999; Johnson, 1990; Rodda et al., 1993, 1996) demonstrated

from their temperature studies that adsorption of such cations as Cd, Co, Pb, and Zn to

goethite involves an endothermic reaction with chemical bonding between the adsorbate

and the goethite surface. Other researchers have employed techniques such as pressure-

jump relaxation (Grossl et al., 1995, 1997; Grossl and Sparks, 1995) and XAS (Bargar et

al., 1998; Collins et al., 1999; Schlegel et al., 1997; Spadini et al., 1994) to elucidate the
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reaction kinetics and mechanisms for metal adsorption to the goethite surface. Overall,

metal affinities for goethite is generally, with slight variations, found to follow the order

Cu > Pb > Zn> Cd > Co > Ni > Mn > Ca > Mg (Coughlin and Stone, 1995; Mckenzie,

1980; Schwertmann and Taylor, 1989). Schwertmann and Taylor (1989) observed their

trend to be consistent with electronegativity, while Christophi and Axe (2000) found it to

be in agreement with the hydrated radii of the cations.

In natural systems, multiple ions are often present and compete for the adsorbent

surfaces. Most research, however, is limited to the adsorption edges: competitive

adsorption of Cu, Pb, Zn, and Cd in the presence of Mg, phosphate, carbonate, sulfate,

and silicate (Balistrieri and Murray, 1982); competitive adsorption of arsenate with

phosphate and molybdate (Manning and Goldberg, 1996); competition between Cu and

Pb using amorphous iron oxide (Swallow et al., 1980); adsorption competition of Cd, Cu,

Pb, and Zn onto amorphous iron oxyhydroxide (Benjamin and Leckie, 1981 a,b); and,

adsorption of Cd in the presence of alkaline earth metals, Ca, Mg, Ba, and Sr (Cowan et

al., 1991). In these above studies, competition was examined by the shift of a metals

adsorption edge when a second metal of greater concentration was added to the system.

Adsorption edge shifts to greater pHs (or a decrease in adsorption) are indicative of

displacement of the sorbed metal. However, competition is only observed when the total

number of sites is limited. Furthermore, although a number of researchers have used edge

experiments, there are some problems with this approach; surface characteristics such as

site density (maximum sorption density) and net surface charge along with metal

speciation and its solubility change with pH.
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Using isotherms, Gadde and Laitinen (1974) studied adsorption competition

between Cd, Zn, and Pb on hydrous manganese oxides. However, all metal

concentrations used in these experiments exceeded solubility. Vulava et al. (2000)

modeled Ca²+ and Na+ competitive adsorption to a soil comprised of clay, quartz,

chlorite, and goethite using cation-exchange models. To account for surface site

heterogeneity, the authors applied a discrete site affinity distribution. Vulava et al.

demonstrated that valid models for complex systems can be developed without

understanding molecular mechanisms and without knowledge of the site densities. In a

contrast, in competition studies of Cu and Pb adsorption to hematite (Christi and

Kretzschmar, 1999), potentiometric titration were fit with a 2-pK Stern model

employing a range of site densities (2.2 to 16.6 sites nm-²). Christi and Kretzschmar

(1999) concluded that site densities are critical in evaluating competition and that

competition experiments can assist in calibrating surface complexation models. In

another recent competition study of Cu and Pb as well as Zn, adsorption to goethite was

evaluated with in situ voltammetric methods and described with the help of the constant

capacitance model (Palmqvist et al., 1999). For systems close to saturating surface sites,

the constant capacitance model was found to describe Cu and Zn competition; however,

for Pb surface complexation, the equilibrium constant was modified to fit the data. Rather

than testing each potential competition system, model calibration should be achievable

with single adsorbate systems given defined site densities.

Recently, competition of copper, lead, and cadmium adsorption on goethite was

studied where site density was evaluated prior to competition studies to limit the number

of available sites (Christophi and Axe, 2000). Isotherm studies conducted at pH 6
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revealed that a single-site model described the Cu-Cd and Pb-Cd systems within the error

of the model. Furthermore, although the model provided a good fit for Pb and Cd data in

the Pb-Cu and Pb-Cu-Cd systems, it underpredicted copper adsorption. The difference in

site densities between copper and lead revealed a set of sites not available for

competition. Using this approach where copper affinity is equivalent for both sites, the

model provided a good fit for copper adsorption and competition. Manning and Goldberg

(1996) have conducted studies examining arsenate, phosphate, and molybdate adsorption

competition to mineral surfaces. They too could model competition from single adsorbate

data where, similar fits were obtained with either a single-site or two-site approach.

Therefore, among their conclusions, they recommended further experimentation in

assessing surface site densities and evaluating complexation mechanisms from

spectroscopic data. In this research, site densities and sorption mechanisms for goethite

and HFO will be measured and compared. One hypothesis is that although amorphous

oxides have extensive site densities where competition would not be observed, goethite

has much less (as a function of pH), and therefore competition is expected between like

metals such as Ni and Zn.

2.8 X-ray Absorption Spectroscopy (XAS)

XAS is commonly divided into XAFS (> 30 eV above the edge) and XANES (Figure 1);

both have been employed in environmental research. There is no fundamental distinction

between the physics of XAFS and XANES other than one of complexity of the spectra

arising from the dominant electronic processes in each region. For this reason XAFS and

'CANES are now referred to jointly under the term XAS (Bunker, 1999). In the XANES
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As the incident x-ray energy is scanned above the absorption threshold energy of the

central atom, the fluoresced radiation consists of the outgoing backscattered wave

functions (Bunker, 1999; Lee et al., 1981; Wong, 1986); these may interfere

constructively or destructively giving rise to oscillations (Bunker, 1999; Lee et al., 1981;

Wong, 1986). The XAFS spectrum reveals the atomic structure, and for a Gaussian radial

distribution the single scattering signal is given by (Bunker, 1999):

where x(k) is the interference function in photoelectron momentum (k) space, S 02

gives a constant scale factor which accounts for the loss of coherence due to multi-

electron excitations, N is the coordination number, k is the photoelectron wavevector, fell

(k, r) is the effective curved wave backscattering amplitude, R is the average radial

distance, 8 is the phase shift of the central ion, k is the mean free path of the electron, 4) is

the phase of the complex electron scattering amplitude for each atom, and a 2 is the mean

square variation of distances about R and accounts for static and thermal vibration in the

harmonic approximation (Lee et al., 1981). The term e 421" accounts for inelastic losses

in the scattering process (Brown, 1990). For highly disordered systems, higher moments

of distribution can be included, for example, the cumulants C3 and C4 account for the

skewing and Kurtosis of the distribution (Dalba and Fornasini, 1993; Bunker, 1983). The

Fourier transformation of the product k nx(k) in momentum (k) space over a finite k-range

gives rise to a radial structural function p n(r) in distance (r) space (Teo, 1986, Bunker,

1999):
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region, multiple scattering between the absorber and the neighboring atoms has

significant contributions that can provide information about the oxidation state of an

atom, the symmetry, and the local environment (Brown, 1990; Lee et al., 1981; Peterson

et al., 1997). On the other hand, in the XAFS region, single scattering dominates the

atomic oscillations for the first two shells (Brown, 1990; Bunker 1999). These atomic

oscillations are caused by constructive and destructive interference between singly

scattered outgoing and backscattered photoelectron waves (Brown, 1990; Bunker, 1999;

Lee et al., 1981; Wong et al., 1986). Qualitatively, XAFS information comes from

electron interference when the source and the detector of the electron are the target atom

(Stern, 1976). The key features of XAS are that it is (Brown, 1990; Wong, 1986):

(i) Element specific giving information about the average local structural and

compositional environment around the absorbing atom.

(ii) Applicable to dilute aqueous solutions and soil/sediment suspensions

where concentrations can be probed down to parts per million.

(iii)	 Appropriate to systems without any long-range order.

XAFS spectra are obtained by measuring the X-ray absorption or fluorescence of

a given sample as a function of the wavelength. In the transmission mode, for a

homogeneous sample of uniform thickness x, the absorption coefficient (t) is related to

the incident flux (I0) and the transmitted flux (I) by (Bunker, 1999):

This absorption coefficient is a product of the cross section a . (cm² g) and the mass

density p (g cm-³ ). In the fluorescence mode, the absorption coefficient is related to the

incident (Io) and the fluorescence (I f) fluxes as (Lee et al., 1981):
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Figure 1. Schematic representation of a typical X-ray absorption spectrum (fix vs E)

(background not subtracted) for K edge of Zn (E 0 = 9659 eV), in ZnO, collected in

transmission geometry at 77 K.



30

where w(k) is a window function which defines the k range to be transformed. This

Fourier transform is uncorrected for phase shifts. The modulus of par) exhibits peaks

corresponding to the various coordination shells as well as the multiscattering

contributions. The position of the peak corresponds to the average frequency of the

corresponding shell's XAFS, which is related to the average distance of the shell. The

peak height is related to the number of atoms in the shell, the Debye Waller factor 62 , the

number of the atoms in the shell, and the k-space window chosen. In moderate to highly

disordered systems, the disorder can cause significant peak shifts and hence do not

correspond to the actual average distance. Analysis of the XAS data will be detailed in

Experimental Procedures and Analyses Chapter. The following section will focus on the

applications of XAS in environmental systems.

2.9 Role of XAS in Environmental Problems

The primary role of XAFS in the environmental field is to help elicit local structural and

compositional information of metal speciation and complexation at the aqueous mineral

interface. In studies of manganese and iron oxides and other related minerals, Manceau

and co-workers (Friedl et al., 1997; Manceau and Combes, 1988; Manceau et al., 1992)

have differentiated sorbed structures using XAFS. They have shown that most hydrous

Mn gels consist of a 3-D framework of randomly distributed edge- and corner sharing

MnO2 octahedra, which allows them to transform into a large variety of structures.

Further, from the XANES analysis, Manceau et al. (1992) distinguished Mn ions of
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different oxidation states and also noted that in the poorly crystalline hydrous manganese

oxides such as birnessite, vernadite, and absolane, Mn atoms are generally tetravalent.

Axe et al. (2000) found that this structure remained stable for at least 6 months with or

without Sr sorbed to it. Hydrous ferric oxides have also exhibited short-range order but

with a layered structure (Manceau et al. 1992; Manceau and Charlet, 1994; Manceau and

Combes, 1988). Axe et al. (1998), on the other hand, only reported that from the XANES

analysis for Sr sorption to HFO that the Fe environment did not change with or without

Sr sorbed for at least 6 weeks. Likewise other researchers have attempted to test the

metastability of hydrous Fe oxide in the presence of anions, such as PO 4³- (Rose et al.,

1996) and As (V) (Waychunas et al., 1996), and have found that these anions slow down

the rate of crystallization. However, there is a lack of research demonstrating the

minimum concentration required to inhibit crystallization, and furthermore, when these

oxides are present in heterogeneous systems, their interactions with other minerals

inhibits crystallization as well. This research will attempt to further address the effect of

adsorbate on metastability or inhibition of crystallization.

Extensive research efforts have involved studying heavy metal sorption to various

oxide minerals of such as aluminum, iron, and silica, as well as clays including kaolinite

and montmorillonite (Table 1). Metal sorption complexes include outer-sphere surface

complexation where the sorbed metal ion retains its hydration shell; the inner-sphere

complexation where sorbate metal ions may lose their waters of hydration and bind

chemically to the surface; and surface precipitation (Brown, 1990; Stumm, 1992). Often

XAS spectra reveal a "beat pattern" providing evidence of second shell contributions.

However, the beat patterns do necessarily represent a particular adsorption complex as
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suggested by Brown (1990). For example, Axe and co-workers (Axe et al.1998, Axe et

al., 2000) have shown that despite the presence of a heavy metal such as Fe or Mn in the

second shell, Sr is physically sorbed to HFO and HMO as the first shell included the

waters of hydration and additional oxygen atoms from the surface. Many studies have

been conducted with crystalline minerals such as y-Al2O3, goethite, kaolinite, and

montmorillonite; only a limited number of studies have been conducted with the

ubiquitous amorphous adsorbents HFO and HMO. In addition, heterogeneous soil

systems examined to date include examining the speciation of metals in contaminated

systems (Carroll et al., 1998; Hesterberg et al., 1997; Manceau et al., 1996; O'Day et al.,

.1998; Ostergren et al., 1999; Szulczewski et al., 1997); these studies have shown that a

significant fraction of the metals in these systems are associated with amorphous oxides.

Clearly, there is a need for establishing molecular level information about sorption of

important transition metals such as Zn and Ni to HFO and HMO. A systematic study of

sorption as a function of pH and sorption density is required to better understand and

model their mobility in aqueous systems.

In addition, to develop, kinetically accurate transport models, metal sorption to

soils and sediments must be evaluated as a function of time. Because amorphous oxides

are complicated, surface complexation mechanisms must be understood with these oxides

before heterogeneous systems are studied. The effect of the contaminant on the local

structure of the oxide is very important for modeling the transformation of the metastable

oxide to its crystalline form. The local structure of Sr sorbed to HFO (Axe et al., 1998)

and to HMO (Axe et al., 2000) did not change with time indicating that these metastable

adsorbents maintain their sorption capacity for as much as six months. Similarly, Strawn



Table 1. Summary of XAS Research
System First 	 Shell (0) Outer Shells I 	 Reference

. N R N R
As(III)/a-FeOOH 3.03-3.12 1 .79 Fe	 2.3-2.45 3.378 Manning et al.. 1998
Cd/a-FeOOH 5.5-6.2 2.3 Fe	 0.6-0.6 3.24 Spadini et al.. 1994

Fe	 0.6-1.2 3.46-3.51
Cd/hyd. Fe Oxide 4.0-6.0 2.28-2.31 Fe	 0.7-0.9 3.26 Spadini et al., 1994

Fe	 0.7-1.0 3.48
Co/y-Al20 3 5.9-6.1 2.07-2.08 Al	 0.8-1.7 3.27-3.31 Chisholm-Brause et al..

1995
Co	 0.9-2.5 3.16-3.21

Co/Kaolinite 5.2-5.6 2.07-2.08 Co	 3.9-5.0 3.11-3.14 O'Day et al., 1994
Co/Quartz 5.3-6.0 2.06-2.08 Co	 2.6-6.0 3.13-3.16 ODay et al.. 1996
Co/Smectite-Clay 6.6 2.09-2.1 Papelis and Hayes, 1996
Co/Smectite-Clay 5.6-7.4 2.1 Co	 4.0-7.0 3.12-3.13 Papelis and Hayes, 1996
Co/Al2O3 6 2.08-2.09 Co	 0.940 3.09-3.12 Towle et al., 1997
Co/TiO2 (Rutile) 5.5-6.9 1.95-1.98 Co	 1.9 3.08 Towle et al.. 1997

Ti	 1.3-6.0 2.96-3.0
Co/α-Al2O3 5.8-7.8 2.05-2.09 Al	 1.0-1.4 2.66-2.71 Towle et al.. 1999

Al	 1.1-1.9 2.95-3.19
Cr(III)/α-FeOOH Fe, Cr 1.1-1.6 3.01 Charlet and Manceau.

1992
Fe, Cr 0.5-0.8 3.45
Fe, Cr 1.2-1.9 3.99

Cr(III)/hyd. Fe Fe, Cr 2.61 3.05
Oxide

Fe, Cr 0.8 3.4-3.5
Fe, Cr 1.5 4.03

Cr(III)/MnOxides Mn	 2.0-4.6 2.9 Charlet and Manceau,
1992

Cr	 1.6-2.5 4.03
Ni/Pyrophyllite 5.5-6 2.05 Ni	 2.0-6.3 3.06 Scheidegger et al., 1998

Al	 1.7-4.0 3.08-3.11
Ni/Soil clay 5.5-6.9 2.05 Ni	 0.8-5.6 3.06 Roberts et al., 1999

Al	 0.9-1.8 3.06
Pb/Al2O 3 1.5-2.4 2.21-2.29 Al	 0.4 3.28-3.32 Bargar et al.. 1997

Al	 0.5-0.8 4.15-4.30
Pb/y-Al 2O3 1.5-1.6 2.23 Al	 0.5-0.6 3.22-3.25 Bargar et al., 1997, and

Al	 0.7 4.16 Chisholm-Brause et al.,
1990

Pb/α-FeOOH 2.2-2.4 2.27-2.28 Fe	 0.2-0.3 3.31-3.35 Bargar et al., 1997
Pb/Fe2O3 2.0-2.2 2.26-2.30 Fe	 ' 0.2-0.5 3.27-3.31 Bargar et al.. 1997
Pb/Montmoriilonite 0.93-1.27 2.30-2.31 O	 5.5-5.9 2.49-2.5 Strawn and Sparks,

1999
Pb	 1.1-1.3 3.76

Pb/Montmorillonite 0.9-2.28 2.28-2.30 O	 0.8 2.49 Strawn and Sparks,
1999

Pb	 1.76 3.76
Sr/HFO 9.46-12.62 2.61-2.68 Fe	 0.7-2.5 3.4-3.75 Axe et al.. 1998

Sr	 7.2-11.8 3.28-3.45
Sr/HMO 10.0-12.0 2.58 Mn	 3 4.12 Axe et al., 2000

Sr	 6 3.88
Sr/Montmorillonite 5.6-7.2 2.56-2.58 Chen et al., 1998
Sr/Kaolinite 6.0-9.0 2.56-2.58 Parkman et al., 1998
Th/Si O2 2 2.33 O 	 6 2.55 Osthols et al., 1997

Si	 2 3.8-3.9
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et al. (1998) observed that for at least 23 days the local structure of lead sorbed to

aluminum oxide did not change with time and hence ruled out the possibility of surface

precipitation. On the other hand, Scheidegger and colleagues studied kinetics of Ni

sorption to aluminum oxide (Scheidegger et al., 1998), pyrophyllite (Scheidegger et al.,

1996), and to a soil clay fraction (Robberts et al., 1999) and observed the precipitation of

a mixed aluminum-nickel hydroxides. Cheah et al. (1998) investigated the effect of time

on copper sorption to amorphous silica, and found that Cu ions initially adsorb as

monomeric species, which diffuse over time on SiO2 surfaces to form dimers. In

microporous oxides, zinc sorption to HAO, HFO, and HMO is expected to be limited by

intraparticle diffusion, which will be tested in this research. Therefore, from XAFS, the

adsorption complex is not expected to vary as a function of time assuming that the

internal sites are equivalent to the external sites.

2.10 Summary of Literature Review

The literature review presented above invoked several queries that are the basis

for the proposed hypotheses. For instance, the surface charge density calculated from

potentiometric titrations and the cation site densities are both functions of pH; as a result

can the site density be predicted for a given pH? Also, if metals of the same group from

the Periodic Table form similar sorption complexes namely physical, can enthalpies be

predicted from structural parameters. If so, then equilibrium constants and activation

energies can also be predicted. Literature has demonstrated the need for such predictions

but most correlations developed to date have employed experimental data recorded at one

temperature and are not necessarily applicable to other conditions.
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Evidence exists demonstrating sorption as a two-step process with the second step

being the rate-limiting mechanism. Systematic studies with microporous hydrous oxides

will be conducted to evaluate intraparticle diffusion in HAO and HMO. Assuming

intraparticle diffusion is significant, can surface diffusivities be theoretically assessed

using site activation theory. The two required parameters are site density and activation

energy. If the correlations developed based on enthalpies and hydrated radii are proven to

predict enthalpy and thus activation energy, how do the theoretical surface diffusivities

compare with experimentally determined ones?

Another important question is how different are these amorphous adsorbents from

crystalline ones such as goethite? Given that goethite has much smaller adsorption

capacity than HFO, can competitive effects in binary metal systems be observed and

predicted?

A survey of XAS studies points out that macroscopic modeling of sorption data

alone is not adequate; complementary information at the atomic level is required to assist

in understanding the speciation and complexation. To complete the picture, sorption of

such metals as Sr, Zn, and Ni to the hydrous metal oxides needs to be examined in situ to

fully understand contaminant distribution mechanisms. The hypotheses proposed in this

research are presented in the next chapter and have been conceived from the literature

review. The results are presented in Chapter 5.



CHAPTER 3

HYPOTHESES TESTED

By and large the objective of the research proposed is to better understand, model, and

predict sorption of contaminants in subsurface systems. The hypotheses include

establishing relations between parameters and investigating their ability to predict

transport and thermodynamic parameters required to describe the sorption of other metals

in similar aquatic environments. The experiments conducted developed to test the

hypotheses are presented in the next chapter, and are followed by the results.

3.1 Prediction of Site Densities

The surface charge is a function of the solution pH and the zero point of charge. Site

densities will be evaluated using a highly soluble probe ion, strontium. In addition,

potentiometric titrations will be used to examine the pH zero point of charge and the

associated surface charge above and below this point. Because oxide site densities (a sum

of external and internal sites) are expected to be a function of the bulk pH, a relationship

between it and surface charge will be developed.

3.2 Prediction of Sorption Parameters

In adsorption to amorphous oxides, enthalpies are expected to be less than 25.0 kcal mol -

¹ , indicating metals sorb physically to hydrous oxides in aquatic environments retaining

their hydration sheath (de Boer, 1968). The physical sorption is primarily due to the

electrostatic forces of attraction. Richens (1997) used structural parameters such as the

primary hydration number, N, and hydrated radius, RH, to develop a correlation for the

36
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Coulombic energy between metal ions and each water molecule in the primary hydration

shell. Typically transition metal ions have a smaller hydration number and hence a tighter

hydration shell (a smaller N/RH ratio) than alkaline earth metal ions. As a result transition

metals will have a greater Coulombic energy of attraction for the amorphous oxides than

alkaline earth metals. Hence, adsorption enthalpies of divalent metal ions with respect to

HAO, HFO, and HMO can be written as a simplified function of their structural

parameters:

where Z is valence charge of a metal ion. This correlation between enthalpy and the

inverse of the hydrated cation radii may elicit an estimation method for enthalpies and is

presented in Chapter 5. If this correlation proves accurate, then equilibrium constants for

other cations can be predicted. From this correlation, adsorption enthalpies for Ca and Ni

sorption to HAO, HFO, and HMO will be estimated and compared with those determined

experimentally from adsorption isotherm studies.

When metals sorb physically to HAO, HFO, and HMO, they retain their hydration

sheath. Accordingly metal sorption is expected to decrease with increase in ionic

strength. More importantly, as stated above, enthalpies are expected to be less than 25

kcal mol-¹. In addition to conducting isotherms at multiple temperatures, adsorption edge

studies will be conducted at 25 °C for two different ionic strengths. Furthermore, XAS

studies will be conducted to determine whether two select metals, Ni and Zn, lose waters

of hydration upon sorption.
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For microporous hydrous oxides, intraparticle diffusion along the pore walls of

the oxide is the rate-limiting mechanism for sorption. Because transient experiments to

determine experimental diffusivities require lengthy periods of time, predicting them

from site activation theory may be very useful. Theoretical diffusivities are a function of

the activation energy (Ea) and site density (C t). From the Polyani relationship, the

activation energy is related to the adsorption enthalpy through the proportionality

constant (a). One hypothesis is that the activation energy for a given metal will be

comparable for all three oxides. Furthermore, for a given oxide the proportionality

constant for a group of metals from the Periodic Table are expected to be equivalent due

to the potential formation of similar sorption complexes. To test this hypothesis, alkaline

earth and transition metals will be studied experimentally and theoretically. As part of

the macroscopic experiments, metal sorption to HAO, HFO, and HMO will be

investigated to determine the surface diffusivities.

According to the site activation theory, surface diffusivity is a function of the

jump frequency — the product of the vibrational frequency and the Boltzmann factor

(Axe and Anderson, 1997; Kärger and Ruthven, 1992). The vibrational frequency is a

function of the force constant k = d 2U/dx2, where U is the surface potential energy.

Assuming a sinusoidal function describes this potential energy, the minima are the

adsorption sites and the maxima are the barriers between sites. This energy barrier is

simply the activation energy for an exothermic reaction where the metal ion desorbs to

jump to the neighboring site (Axe and Anderson, 1997; Kärger and Ruthven, 1992).

Therefore, activation energy can also be expressed as a function of the structural

parameters of the metal ions:



Knowing the site density and activation energy, surface diffusivity based on site

activation theory can predicted.

Even though HFO and goethite are found to have similar local structures (Spadini

et al., 1994) the difference in their long-range order suggests different adsorption

capacities and mechanisms. Metal sorption to goethite is expected to be a chemical type

of reaction and hence the adsorption enthalpies of metal ions sorbed to goethite are

expected be much greater than to HFO. These hypotheses can be tested from isotherms

conducted at multiple temperatures. Additionally, metals from the same group may

behave alike and hence it is expected that high affinity metals like Ni and Zn will sorb to

the same type of sites on the goethite surface while a lower affinity metal such as Ca

sorbs to different ones, potentially of lower energy. Subsequently, in a binary metal

system involving Ni and Zn, competitive effects may be observed, which can be

predicted with the help of potentially the single-site Langmuir isotherm. On the other

hand, in binary systems comprising one transition metal (Ni or Zn) and one alkaline earth

metal (Ca), no competition is anticipated since these metals are likely sorbing to different

types of sites. Adsorption studies in binary systems will be used to corroborate these

hypotheses.

3.3 Local Structure of Sorption Complexes

The adsorption enthalpies represent the degree of bonding of an adsorbate to an

adsorbent. Accordingly transition metals such as Ni and Zn should be more tightly bound

to the oxides than an alkaline earth metal such as Sr. If this is true, the first shell radial
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distances of Ni and Zn sorbed to HFO and HMO, obtained from XAS analyses, should

be smaller than the first shell radial distances of Sr sorbed to HFO and HMO (Axe et al.,

1998, 2000). More importantly, the XAS experiments will also confirm the supposition

that metals are only physically sorbed to HFO and HMO and do not sorb chemically,

undergo surface precipitation, or form solid solutions. Sorption to the microporous

oxides may be limited by intraparticle diffusion. The diffusion model assumes that the

sorption mechanism to the sites located along the micropore walls is no different from

the ones on the external surface (Axe and Anderson, 1995; 1997). If this assumption is

correct, then the local structure of metal ions (Ni and Zn) sorbed to HFO and HMO will

not change with reaction time.

Contrary to the amorphous oxide systems, since metal sorption to goethite is

expected to be a chemical type of reaction, sorbed Zn ions may not retain their fully

hydrated structure. Additionally, because Zn ions are expected to form inner sphere

adsorption complexes with goethite, it is possible to find contributions of Fe atoms in the

second shell around the zinc ion. If only one type of adsorption site is available for zinc

sorption on the goethite surface, then the local structure of zinc will be invariant with pH

and adsorbate concentration. To verify these hypotheses, Zn sorption to goethite will be

studied with the help of XAS at 298 K, as a function of pH and adsorbate concentration.

If the Zn sorption to goethite is a chemical reaction then the thermal contribution to the

Debye Waller factor is expected to be small; this hypothesis can be verified by

conducting XAS studies on these samples at 77 K.
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As seen in the literature review in Chapter 2, even though HFO and goethite have

similar local structures, HFO is viewed as a mosaic of short octahedral chains resulting

in larger sorption capacity and different sorption mechanisms than goethite. This

hypothesis will be verified by comparing the XAS analyses of Zn-HFO systems with

Zn-goethite systems. The above hypotheses are intended to achieve two main goals: one is to

identify sorption mechanisms for different metal-oxide systems and the other is to

establish methods for predicting important thermodynamic and transport parameters that

describe the distribution and fate of metal contaminants in the presence of the hydrated

oxides of Al, Fe, and Mn. Short- and long-term studies will assist in demonstrating the

validity of many of these hypotheses. The others will be confirmed from the XAS

studies. Experimental methods employed in this research are detailed in the Chapter 4.



CHAPTER 4

EXPERIMENTAL METHODS AND ANALYSES

This chapter reviews experimental methods used to test the hypotheses proposed in

previous chapter. The chapter begins with a section on oxide preparation and is followed

by physical and chemical characterization tests. The sorption experiments include batch

studies for assessing the short-term adsorption process, semi-batch experiments for

evaluation intraparticle diffusion, and XAS studies for the development of mechanistic

models of these sorption complexes.

4.1 Syntheses and Characterization of Hydrous Metal Oxides

All chemicals used in oxide precipitation were research grade and only Millipore-Q water

was employed. HAO was synthesized according to the method described by Gadde and

Laitinen (1974) and others (Anderson and Benjamin, 1990; McPhail et al., 2972;

Shuman, 1977), by drop-wise addition of stoichiometric amounts of NaOH to a 2.0 x 10 -²

M aluminum nitrate solution under open system conditions. The 1 g L -¹ of oxide at 6.0 x

10-² ionic strength was aged for 4 hours prior the sorption experiments. Using the method

detailed by Gadde and Laitinen (1974), 1 g L -¹ batches of HMO were prepared by slowly

adding manganese nitrate to alkaline 4.6 x 10 -³ M sodium permanganate solution with a

final molar ratio of 3:2. The HMO suspension was then centrifuged, rinsed, and

redispersed in 1.5 x 10 -² M sodium nitrate solution at pH 7 where it was aged for 16 h.

HFO was precipitated as described by Dzombak and Morel (1986). Briefly, HFO is

precipitated in a carbonate-free atmosphere at 25°C where NaOH is slowly added to a

42
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0.01 M Fe(NO 3) 3 solution. The suspension is aged with constant stirring for 4 hours at a

pH of 7 to 7.5.

Goethite has been synthesized by modification to the Atkinson et al. (1976)

method. Through drop-wise addition to ferric nitrate, 10 N NaOH was added to reach a

pH of 12. The system was completely mixed (Re > 3.0 x 10 5 based on a characteristic

length of the stir bar diameter) for 4 h. Subsequently, the iron oxide was aged for 2 weeks

at 60°C. The oxide was then rinsed with the aid of centrifugation. This process was

continued until the supernatant conductivity reached background. The freeze-dried oxide

was stored in a dessicator.

Characterization of the hydrous oxides included particle size analyses (PSA)

using a Malvern Particle Size Analyzer, sorption studies to assess site density,

potentiometric titrations to evaluate the pH point of zero net proton charge (PHpznpc), and

electrophoretic mobility tests for estimating the isoelectric potential (pHIEP) (Sposito,

1998; Stumm, 1992). Morphology of the hydrous oxides was studied using a Phillips

Electroscan 2020 environmental scanning electron microscope (ESEM). Oxide

mineralogy was characterized by a Phillips X'Pert X-ray diffraction (XRD) with

Ni-filtered Cu K-a radiation; in these studies, XRD was also conducted to study the

influence of metal sorption on the mineralogy of the hydrous oxides.

Surface area was investigated using the Brunuaer-Emmett-Taylor (BET) nitrogen

adsorption method (Gregg and Sing, 1982). This method is based on the determination of

the quantity of nitrogen, which when adsorbed on the surface of a solid, completely

covers the solid with a monolayer of nitrogen molecules. A volumetric procedure is then

used to measure the nitrogen adsorption isotherm near its condensation point of 77 K and
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to calculate the nitrogen surface area using the BET equation (Gregg and Sing, 1982).

The Micrometrics ORR Surface-Area Pore-Volume Analyzer Model 2100D was

employed for this analysis (IGT, 1999). Although the BET method is currently the

standard method for measuring surface area, the BET area may underestimate the area

available when the oxide is hydrated in an aqueous environment. Pore size distribution

was assessed with mercury porosimetry (ASTM C 699) and nitrogen desorption. When

mercury or nitrogen is forced into a pore, the pressure required to fill the pore completely

is inversely proportional to the pore size. Calculations are based on the capillary law

governing liquid penetration into small pores.

4.2 Adsorption Studies

In adsorption studies, metal solutions were tagged with 90Sr, 109Cd, 63Ni and 65Zn in

nitrate-based stock solutions. The radioisotope concentrations in filtrates and suspensions

were measured using a Beckmann liquid scintillation counter (Model LS 6000SE) with a

liquid scintillation cocktail. Ca studies were conducted with untagged stock solutions and

analyzed with the atomic absorption spectrophotometer (AA).

In general, calibration standards were run at concentrations of 10, 20, 40, 60, 80,

and 100 ppb. The instrument, if necessary, automatically dilutes the original standard of

100 ppb to 20%, 40%, 60%, 80%, and 100%. The appropriate amount of matrix modifier

(10 !IL modifier + 10 µL sample), if needed, was added by using the auto sampler to

minimize interference and increase sensitivity. The AA automatically dilutes the samples

if necessary. Ca was analyzed at 422.7 nm wavelength and its detection range with AA

was 2 to 100 ppb. Zn was measured at 213.9 nm with a detection range of 1 to 100 ppb.
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In all sorption studies, bulk aqueous phase concentrations of metals were below

saturation with respect to the most thermodynamically stable precipitate (Appendix A)

(Allison et al., 1991). Also, a turbulent hydraulic regime (Re 3.0 x 10 5) was maintained

resulting in negligible resistance to external mass transfer. Based on the mass balance, the

amount sorbed was calculated. For all adsorption studies with HAO and HFO, the oxide

concentration was maintained 1 g L-¹ , while all adsorption studies with HMO were

conducted with an oxide concentration of 0.1 g L -1 . For single adsorbate experiments

with goethite, an oxide concentration of 1 g L -¹ was used. The binary systems were

studied with 0.1 g L -¹ to limit the number of available sites. Except for adsorption edge

studies, a sodium nitrate based background electrolyte was maintained at 6.0 x 10-² M for

HAO systems, 3.1 x 10-² M for HFO systems, l.5 x 10 -2 M for HMO systems, and 1.0 x

10-³ M for goethite.

All short-term adsorption studies were conducted in Nalgene® containers (with a

contact time of 4 h for amorphous oxide systems and of 2 h for goethite systems) using

an LAB-LINE Orbital water bath shaker (Model 3540) (Axe and Anderson, 1995, 1997).

For isotherm studies, initial metal concentrations ranged from 10 -¹¹ to 10-4 M; this broad

range of concentrations allows for potentially assessing the types of sites present on the

oxide surface. In the isotherm studies with amorphous oxides (Axe and Anderson, 1995,

1997), contact times from less than 1 hour to 168 hours revealed no change in the amount

sorbed, indicating an equilibrium or pseudo-equilibrium between metal adsorbed to the

external surface and that in the bulk aqueous phase. Likewise with the oxides used in this

research, studies demonstrated that there was no difference in the amount sorbed when

contact time ranged from 2 to 4 hours. Adsorption edge studies were conducted at room
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temperature (-S 25 °C) and two ionic strengths. Isotherms were conducted at multiple

temperatures (4°C> T> 25 °C) and three pH values to evaluate equilibrium constants, site

densities, and enthalpies (Angove et al., 1998; Axe and Anderson, 1997; Johnson, 1990;

Mishra et al., 1997; Mishra and Tiwary, 1995, 1998, 1999; Rodda et al., 1996).

Constant boundary condition (CBC) experiments were designed to study the slow

sorption process of intraparticle surface diffusion in a convenient time frame (Axe and

Anderson, 1995, 1997). In short-term studies the adsorbate concentration gradient, which

was the driving force, decreased with time. In CBC studies, the surface concentration was

maintained constant by monitoring and maintaining the bulk aqueous concentration of

metal ion constant (Axe and Anderson, 1995, 1997) (Figure 2). The CBC experiments

were conducted in 1 L Nalgene® containers at room temperature and lasted from 2 -110

days.

Prior to studying competitive adsorption, experiments were conducted to

investigate reversibility. For this purpose, in one set of experiments, 2 x 10 -4 M Ni was

added to the system and allowed to equilibrate with goethite for 2 h at pH 7 and 25 °C.

Then variable quantities of Zn were added and the systems were allowed to reequilibrate

for an additional 2 h at a constant pH of 7. In another set of studies, the sequence of

addition of these metals was reversed.

All the competition studies (for Ni-Zn, Ni-Ca, and Zn-Ca binary systems) were

conducted at 25 °C and 10-³ ionic strength with simultaneous equimolar additions over the

entire adsorbate concentration range and with a 2 h contact time. For each binary system,

competition was studied at pH 5, 6, and 7 with the goethite concentration maintained at

0.1 g L -1 . The range of adsorbate concentrations was the same as the ones selected for the
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Figure 2. Constant Boundary Condition (CBC) Experiments: Intraparticle diffusion of
metal contaminants along the micropore walls of amorphous oxides. Grey spherical area
represents the amorphous oxide particle with micropores and dark points represent the
metal adsorbate.

S (bulk aqueous metal concentration) - - maintained constant

Therefore C s (amount of metal sorbed on external surface) - - maintained constant
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single adsorbate experiments. Also, for the Ni-Ca and Zn-Ca systems, additional molar

ratios of 1:10 and 1:100 were employed. Each binary system was conducted in duplicate

sets, such that one metal was tagged and the other was untagged. Ni and Zn analyses

were conducted with the liquid scintillation counter as described for the single adsorbate

experiments. All Ca studies were conducted with untagged stock solutions and analyzed

with the AA (Greenberg et al., 1995).

4.3 XAS Studies

Adsorption samples were prepared at pH 7 and 25°C for the following sorption densities:

1 x 10-³ and 1 x 10-² moles of Zn g -¹ HFO. To understand the sorption mechanism as a

function of pH, samples with a sorption density of 1 x 1e moles of Zn g' HFO were

studied at pH 6 and 8. Finally, the local structure of Zn ²+ was also examined in a Zn-HFO

coprecipitate sample prepared at pH 7 and 25 °C; the zinc concentration in this sample

was 1 x 10 -³ moles of Zn g -¹ HFO. Zinc adsorption to goethite was studied at the

maximum loading of 1.2 x 10 -5 moles of Zn g' goethite at pH 6 and 2.0 x le moles of

Zn g-¹ goethite at pH 7. Also, adsorption samples were prepared at pH 7 and 25°C for the

following sorption densities: 1 x 10 -4, 1 x 10-3, and 1 x 10-² moles of Zn g' HMO. To

understand the sorption mechanism as a function of pH, samples with a sorption density 1

x 10-² moles of Zn HMO were also prepared at pH 3.5 and pH 5.0. Additionally, to

test the hypothesis that metal sorption to this microporous oxide is limited by intraparticle

diffusion, where the adsorption mechanism on the micropore walls is similar to that on

the external surface, a 32 day old sample was also studied. The sorption density of this

sample was 4 x 10-³ moles Zn g-¹ HMO (where 1.2 x 10"3 moleswere sorbed internally).
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Nickel adsorption to HMO was synthesized at pH 5 and 7 and 25°C for the

following sorption densities: 1 x 10 -³ and 1 x 10 -² moles of Ni g-¹ HMO. To understand

the kinetics of Ni sorption to HMO, samples from a Ni-HMO CBC system, maintained at

pH 7 and 25°C, were collected for XAS studies after contact times of 20 and 110 days. Ni

sorption densities after 20 days and 110 days were 9.8 x 10 -³ moles of Ni g -¹ HMO (8.9 x

10-³ molessorbed internally) and 9.9 x 10-³ molesof Ni g-¹ HMO (8.9 x 10 -³ moles sorbed

internally), respectively.

The sorbed metal concentrations were measured using 65Zn and 63Ni as tracers in

duplicate studies (see Chapter 4), where the activity was measured with a Beckman

LS6000SE liquid scintillation counter. Except where otherwise stated, adsorption

samples were equilibrated for 4 h under turbulent hydraulic conditions (Re > 3.0 x 105

with respect to the reactor length) before the solid phase was separated from the

supernatant by centrifuging at 8000 rpm for 20 minutes. These wet pastes were loaded

into aluminum or acrylic cells and sealed with mylar windows to prevent the loss of

moisture. Nickel oxide (NiO), nickel carbonate hydrate (NiCO3-nH2O), and a 1 x 10 -³ M

Ni(NO3)2 solution at pH 1 were used as standards. For zinc, reference compounds, with

well known structures, included zinc carbonate hydrate or hydrozincite (ZnCO3•nH2O),

zincite or zinc oxide (ZnO), zinc oxide hydrate (ZnO•nH 2O), zinc ferrite (ZnFe 2O4), and a

1 x 10-³ M Zn(NO3)2 solution at pH 1.

XAS data were acquired on beamline X-11A at the National Synchrotron Light

Source (NSLS), Brookhaven National Laboratory where the electron beam energy was

2.528 and 2.8 GeV with an average beam current of 180 mA. The XAS data of the Ni-

HMO adsorption samples were collected at Ni K-edge over the energy range of 8183 —
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9082 eV in fluorescence mode using a Lytle detector filled with Ar gas, while those of

the Zn-HMO and Zn-HFO samples were collected at Zn K-edge over the energy range of

9509 — 10408 eV under similar experimental settings. The samples were placed 45° to the

incident beam. For minimizing the scattered background without attenuating the signal

significantly the following filters were placed between the sample and the soller slits: a

3µm Co filter (Z-1 filter) plus one aluminum foil for Ni studies and a 6 µm Cu filter (Z-1

filter) with one aluminum foil for Zn studies. The soller slits were placed in front of the

detector to block most of the filter refluorescence. Harmonic rejection was achieved by

detuning the monochromator by 20% of I o. For Zn-goethite adsorption samples, XAS

spectra were collected in fluorescence mode using a multielement Ge solid-state detector,

with detector elements tuned to measure Zn. For these samples, the monochromator was

detuned to 70% of the fully tune 10 in order to operate the detector in linear regime.

The XAS data of the reference compounds were collected at the respective K-

edges over the same energy range in transmission mode at room temperature (298K) and

77 K. Prior to data collection, the energy was calibrated to the first inflection of the metal

foil standards (E0 = 8.333 keV for Ni and E. = 9.659 keV for Zn).

The XAS spectra were analyzed using WinXAS 97 (Version 1.0). For each scan,

the background X-ray absorbance was subtracted by fitting a linear polynomial through

the pre-edge region. The edge jump of a background corrected XAS spectrum was

normalized with a zero order polynomial fit between -150 and -50 eV from the K-edge.

The threshold energy (E0) of each spectrum was determined from the first inflection point

in the edge region and was used to convert the spectra from energy to k-space. An

advanced spline function was employed to account for the atomic absorption in the



51

absence of backscattering contributions. This isolated function produced the XAFS

function (x(k)), which was then weighted by k3 to enhance the higher k-space data. The

chi plots were Fourier transformed using the Bessel window function to produce the

radial structural function (RSF). The atomic shells from these RSFs are fItted either in

isolation or together to a model structure (of the reference compound) that was generated

using FEFF7. The resulting fits provide the local coordination of metal ions sorbed to the

oxides.



CHAPTER 5

ADSORPTION TO AMORPHOUS OXIDES

The hypotheses described in Chapter 3 were conceived from literature. The first two

sections begin with characterization of the hydrous metal oxides, and are followed by

adsorption of alkaline earth metal (Sr) and transition metals (Cd and Zn) to these oxides.

The sorption experiments include short- and long-term experiments for evaluating

adsorption and intraparticle diffusion. Subsequently, sorption studies conducted with Ni

and Ca to test correlations developed from theory and based on experimental results.

5.1 Oxide Characteristics and Properties

Using standard methods for characterization of adsorbents as described by Gregg and

Sing (1992), the surface area, porosity, and pore size distribution were evaluated on

freeze-dried particles of HAO and HMO by the Institute of Gas Technology (1997)

(Appendix B). Accordingly, the surface area of HAO was approximately 411 m² g' and

that of HMO was approximately 359 m ² g-¹ (IGT Report, 1997). Because these surface

areas are measured on freeze-dried particles, hydrated ones are expected to be much

greater (Bottero et al., 1993; Dzombak and Morel, 1990; Meng and Letterman, 1993;

Okazaki et al., 1986; Scheidegger et al., 1998). As discussed earlier for example, Bottero

et al. (1993) found large variations in surface area of amorphous aluminum oxides where

using adsorbing organic molecules, areas ranged from 600 to 1000 m ² g-¹ , while using N2

gas adsorption areas were <20 m² g-¹ . However, when measuring the surface area of

ferrihydrite, they found 135-163 m² g-¹ using anionic surfactants for in-situ studies and

295 m² g-¹ from argon adsorption isotherms on dried particles. The porosity of HAO and
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HMO based on pore diameters less than 250 A was 0.4 and 0.3, respectively (IGT

Report, .1997). The associated pore size distribution of HAO was monomodal with mean

pore radius of 1.9 nm; while that of HMO was bimodal with two dominant pore radii of

2.1 and 6.1 nm. Thus, in aqueous systems where layers of water adsorb on the pore walls,

HAO and HMO like HFO (with mean radius 3.8 nm) are microporous oxides (Axe and

Anderson, 1995; Bottero et al., 1993; Kärger and Ruthven, 1992).

The in-situ technique of ESEM revealed irregular topographies for the porous

aggregated particles of freshly precipitated HAO and HMO (Figure 3). The particle size

distributions (PSDs) of HAO and HMO (Figure 4) are monomodal with particle

diameters ranging between 1 and 500 pm; these distributions were measured under the

same hydraulic regime used in sorption studies. The PSDs are almost independent of pH

within the solubility range, and similar to HFO (Figure 4 [Axe and Anderson, 1995]).

Given intraparticle diffusion as the rate-limiting mechanism, the time required to reach

equilibrium is a function of the PSD (Axe and Anderson, 1995, 1997).

From potentiometric titrations, the pH pznpc of HAO was approximately 8.98 ± 0.02

(Figure 5), which is in good agreement with others (Anderson and Benjamin, 1990; Lo

and Leckie, 1993; Manning and Goldberg; 1997; Stumm, 1992). The pH pznpc  of HMO is

approximately 2.60 ±0.05, which lies in the range of pH 1.5 to 3.0 reported by others

(Mishra and Tiwary, 1995; Morgan and Stumm, 1964; Stumm, 1992). The pHp znpc  is 7.60

± 0.5 for HFO, which is consistent with others (Anderson and Benjamin, 1990; Bottero et

al., 1993; Dzombak and Morel, 1990).



Figure 3. ESEM photographs of HAO (top) and HMO (bottom) reveal the spherical
shape and the rough topography of the aggregated particles.
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Figure 4. Particle size distributions of freshly precipitated hydrous metal oxides at 25°C
are independent of suspension pH.
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Figure 5. Potentiometric titrations of hydrous metal oxides at 25 °C: Determination of
pHPZNPC•
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Using Sr²+ as the probe ion and under closed conditions, the site densities (CO of

HAO, which account for external and internal surface sites, were in the order of 10 -² to

1.8 x 1 012 moles Sr g -¹ between pH 6.0 and 8.0, while those for HMO ranged from 3.7 x

1 0-³ to 3.4 x 10-² moles Sr g' between pH 3.5 and 7.0. Likewise, the site density of HFO

increased from 5.7 xl0 -³ moles Sr g -¹ at pH 5.0 to 2.5xl0 -² mol Sr g -¹ at pH 7. Tamura et

al. (1997) determined similar orders of magnitude of site densities for various aluminum,

iron, manganese, and titanium oxides by Grignard reaction of surface hydroxyl groups.

The difference in site densities between results presented here and others (e.g., a

compilation for HFO in Dzombak and Morel, 1990) may be explained in part by the

method used for measurement; in this research, assessment included both external and

internal sites using the probe ion Sr that has a high solubility (Allison et al., 1991).

Figure 6 illustrates the linear relationship between site density and the external

surface charge determined from potentiometric titrations. The first term on the right

hand-side of the equations shown in Figure 6 relates the surface potential to charge

(Murray, 1974). The intercept represents the natural log of the site density at the pHpznpc•

According to this relation, the site density of HFO at its pH pznpc is 2.8x10-² moles Sr g- .

The actual site density of HFO measured at its pHpznpc was 3.0xl0-² moles Sr g -¹ , which

falls within the model and data errors based on the propagation of errors (Ku, 1966). This

result confirms the first hypothesis that site density is a function of pH and hence can be

estimated from the surface charge density. Overall, characteristics and properties of the

hydrous oxides are summarized in Table 2.
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Figure 6. Site densities (C, moles Sr g -¹ ) of hydrous metal oxides correlated to the surface
charge density (a) at 25 °C. The legend shows the ionic strengths at which the C, were
measured



Table 2. Characteristics and Properties of Hydrous Oxides
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Analyses performed by IGT**
HFO data obtained from Axe and Anderson (1995)

Values estimated at pH 7
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5.2 Sorption Studies with Sr, Cd, and Zn

X-ray diffraction (XRD) was conducted to assess the oxide crystallinity (or lack of) and

potentially the type of sorption at higher loadings. The patterns of freshly precipitated

HAO and HMO (Figure 7) indicate that oxides were amorphous. XRD of HFO as studied

by Axe and Anderson (1995) also revealed broad flat patterns indicative of the

amorphous oxide, ferrihydrite, which was stable up to 6 months. Furthermore, XRD

studies with Sr sorbed at mole ratios of 1:1 Sr:oxide metal (Al or Mn) showed no

evidence of a strontium precipitate or strontium solid solution with the oxide surface;

these amorphous oxides were stable for at least 6 months. X-ray diffraction profiles of

hydrous metal oxides (Figure 8) revealed that these oxides remain amorphous when Cd

or Zn was sorbed to their surfaces. There was no evidence of a surface precipitate or solid

solution formation in metal sorption to the hydrous oxides. The diffraction studies

showed that HAO and HMO aged 6 months with and without the adsorbate remained

amorphous. Many other studies (Axe and Anderson, 1995; Baltpurvins et al., 1996; Fuller

et al., 1993; Golden et al., 1997; Jenne, 1968; Waychunas et al., 1993) have found that

sorption may inhibit oxide crystallization; however, for the duration of studies, no

crystallization was observed, with or without contaminant sorbed (Figures 7 and 8).

As seen in Figure 9, adsorption edges used to study Sr adsorption as a function of

pH are broad and typical of alkaline earth metals (Axe and Anderson, 1995; Dzombak

and Morel, 1990; Kinniburgh et al., 1976; Lützenkirchen, 1997; Mishra and Tiwary,

1995). Adsorption edges for Cd and Zn adsorption to hydrous metal oxides (Figure 10)

illustrate the sigmoid curve characteristic of transition metals (Anderson and Benjamin,
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Figure 7. X-ray diffraction profiles of HAO and HMO with and without Sr sorbed reveal
these potentially nanocrystalline oxides remain amorphous for at least 6 months.
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Figure 8. X-ray diffraction profiles of HAO and HMO with and without metal
contaminants sorbed demonstrate that these potentially nanocrystalline oxides remain
amorphous for at least 6 months.
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Figure 9. Adsorption edges of Sr sorption to 1 g L - ' hydrous metal oxides at 25°C: effect
of ionic strengths. For HAO and HMO, [Sr]. = 5 x 10 -5 M and for HFO, [Sr]. = 1 x 104
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Figure 10. Adsorption edges of Cd and Zn adsorption to hydrous metal oxides at 25°C:
effect of ionic strengths. For all studies, [Cd]0 = 5 x 10 -5 M and [Zn] o = 5 x 10-5 M
(except for HFO -- 2 x 10-7 ).
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1990; Apak et al., 1995; Axe and Anderson, 1997; Crawford et al., 1993; Dzombak and

Morel, 1990; Gadde and Laitinen, 1974; Kinniburgh et al., 1976; Lützenkirchen, 1997;

Meng and Letterman, 1993; Misak et al., 1996; Mishra et al., 1997; Mishra and Tiwary,

1998: Shuman, 1977; Tamura et al., 1996). Regardless of metal, a comparison of

adsorption edges for HAO, HFO, and HMO shows that the degree of adsorption is

consistent with the pHpznpc following the order of HMO > HFO > HAO; this result is in

agreement with others (Anderson and Benjamin, 1990; Gadde and Laitinen, 1974; Misak

et al., 1996; Tamura et al., 1997). The adsorption affinity of cations to hydrous metal

oxides follows the trend of Zn > Cd > Sr, and is consistent with that observed by others

(as discussed in Chapter 2).

For any hydrous oxide system, the amount of Sr ²+, Cd²+, and Zn²+ sorbed

decreased with increase in ionic strength, which is suggestive of physical adsorption

where the waters of hydration are not lost upon sorption (Lützenkirchen, 1997; Misak et

al., 1996). Misak et al. (1996) demonstrated that the decrease in the activity coefficient

with increase in ionic strength could explain the adsorption edge shift to the right.

However, in the present study, this change could not describe the decrease in adsorption.

Isotherms for strontium adsorption to HAO and HMO studied at 25 °C and at

different pH values reveal a linear relationship between the sorbed and the bulk aqueous

phase concentrations over five orders of magnitude (Figure 11). This linear relationship

suggests that the range of surface sites can be described with one average type of site.

Isotherm fits resulted in r ² >= 0.97. Because no change in pH was observed during the

adsorption studies at even the greatest loading of 10-² mole g-¹ oxide, Sr²+ may not

displace protons and is likely held electrostatically to the surface. Similarly, isotherms for
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Figure 11. Isotherms of Sr sorption to 1 g L. ' HAO and HMO at 25°C as a function of
pH. Solid lines represent linear distribution model; IC I (L g-¹ ) is the distribution
coefficient (K x co.
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adsorption studies at even the greatest loading of 10-² mole g' oxide, Sr²+ may not

displace protons and is likely held electrostatically to the surface. Similarly, isotherms for

Cd and Zn adsorption to hydrous oxides (Figure 12) demonstrated linear relationships (r ²

>= 0.96) between the sorbed and the bulk aqueous concentrations. Generally for physical

sorption the adsorbate should replace some cation in the diffuse layer. If protons were

released, they could have been re-adsorbed back onto the oxide surface. In working with

trace metal concentrations, the site densities of HAO, HFO, and HMO are approximately

equivalent to the number of sites available, CT Cv (Axe and Anderson, 1997), as such

the Langmuir isotherm reduces to the linear distribution model. Based on

Langmuir-Hinshelwood kinetics, the distribution coefficient K d (L- ' g) is simply the product of the

equilibrium constant and site density, K X CT (Axe and Anderson, 1995, 1997; Fogler,

1992).

In a number of studies, the Langmuir model has been employed to describe metal

sorption to oxides: Zn and Pb adsorption to goethite (Johnson, 1990; Rodda et al, 1996);

Zn adsorption to Al and Fe hydrous oxides (Shuman, 1977); Cd adsorption to hydrous

manganese oxides (Posselt and Weber, 1974); Pb adsorption to hydrous ferric oxide

(Gadde and Laitinen, 1973); Cr(III) sorption to hydrous Fe oxides (Charlet and Manceau,

1992); Sr sorption to ferrihydrite (Cerra and Borkovec., 1996); iron-cyanide adsorption

onto y-Al2O 3 (Huang and Cheng, 1997); Cu, Cd, and Pb adsorption on red mud ( a

mixture of Al, Fe, Si, and Ti oxides) (Apak et al., 1998); and Pb sorption to biogenic Mn

oxides (Nelson et al., 1999). Isotherms were also conducted for all three metals at two

other temperatures besides 25 °C viz. 4°C and 11 °C. Data and fits (r² >= 0.95) are

consistent with results at 25 °C (Table 3). Adsorption enthalpies based on the van't Hoff
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Figure 12. Isotherms of Cd and Zn sorption to hydrous metal oxides at 25 °C and
different pH values. Solid lines are the linear distribution model and Kd is the distribution
coefficient. HAO and HFO concentrations were 1 g L -¹ and HMO was 0.1 g



Table 3. Distribution Coefficients (1(d L g - ') of Hydrous Metal Oxides
Metal Oxide 131-1 25°C 14°C 4°C

Sr HAO 6.0 0.78 0.67 0.58

7.0 0.97 0.76 0.64

8.0 1.05 0.85 0.65

HFO 7.0 0.90 0.64 0.25

HMO 3.5 7.66 4.31 1.56

7.0 114.59 51.61 22.50

Cd HAO 6.0 10.56 5.20 1.20

7.0 27.56 16.99 2.99

8.0 36.77 18.15 4.52

HFO 6.0 1.10 0.20 0.10

7.0 39.00 12.00 1.30

HMO 3.5 65.10 17.34 3.41

7.0 457.82 107.73 24.26

Zn HAO 6.0 11.30 4.60 1.01

7.0 29.50 12.70 2.80

8.0 58.80 23.70 5.40

HFO 6.0 14.40 5.80 0.80

7.0 59.90 20.30 3.70

8.0 109.00 34.00 7.00

HMO 3.5 128.20 26.34 5.30

5.0 478.10 77.16 18.11

7.0 797.40 194.21 34.68
* Estimated parameters have a ± 10% error
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equation (Figures 13 and 14, and Table 4) demonstrate results from temperature studies

conducted at pH 6.0 and 8.0 for HAO and pH 3.5 and 7 for HMO. Metal adsorption to the

hydrous oxides increased with increase in temperature, indicating an entropically driven,

endothermic adsorption reaction. Also, from adsorption enthalpies, metal affinity to the

oxide increases in the order of HAO < HFO < HMO. Other adsorption studies have

revealed endothermic reactions: Sr sorption to hydrous manganese oxide (Mishra and

Tiwary, 1995); Sr and Cd sorption to HFO (Axe and Anderson, 1997); and Cd, Pb, and

Zn sorption to goethite (Johnson, 1990; Rodda et al., 1996; Angove et al., 1998).

In this study as well as in the above systems, the adsorption enthalpies were less

than 25 kcal mole -¹ indicative of physical forces (de Boer, 1968). Adsorption affinities of

metal ions have been correlated to their first hydrolysis constants through Linear Free

Energy Relation (LFER) (Hachiya et al., 1984). Richens (1997) used structural

parameters such as the primary hydration number, N, and hydrated radius, RH, to develop

correlations including one for the coulombic energy between the metal ion and a water

molecule in the primary hydration shell. These structural parameters for some of the

environmentally important divalent metal ions (Table 5) are a result of various

experiments including diffraction and scattering techniques, XAS, infrared and Raman

spectroscopy, mass spectrometry, nuclear magnetic resonance spectroscopy, and various

ab initio approaches. The criteria for selecting structural parameters in this work included

using the most recently obtained data from dilute nitrate or perchlorate based solutions

(Magini et al., 1988; Richens, 1997). Transition metals typically have a smaller primary

hydration number (N = 4-6) and hence a tighter hydration shell (smaller R H) as compared

to alkaline earth metals for which N ranges from 7 to 10. Accordingly, hydrated metal



r figure 1i. Effect of temperature on 	 sorption to nyarous metal oxides. 	 lines
represent the van't Hoff model and reported values are experimental adsorption

enthalpies
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Figure 14. Effect of temperature on Cd and Zn sorption to hydrous metal oxides. Solid
lines represent the van't Hoff model and reported values are experimental adsorption
enthalpies.



Estimated parameters have a ± 10% error. All parameters are based on 25 °C except the enthalpy. * AS° is calculated from the thermodynamic relation,
AG° = Air — T AS°. t Data obtained from reference [Axe and Anderson, 1997]. ‡Ea = α ΔH where α represents the Polanyi relation constant.



Table 5. Structural Parameters of Hydrated Divalent Metal Ions

Metal N RH (A) N/RH

Ca* 9.0 2.53 3.56

Mg* 6.0 2.09 2.93

Be* 4.0 1.67 2.40

Sr* 9.0 2.63 3.42

Ba* 9.7 2.81 3.45

Ra* 8.0 2.87 2.79

Pb* 4.0 2.74 1.46

Co* 6.0 2.09 2.87

Nit 6.6 2.06 3.20

Zn* 6.0 2.17 2.76

Cdt 6.0 2.28 2.63

Hg* 6.0 2.37 2.53

Mn* 6.0 2.18 2.75

Fe* 6.0 2.13 2.82

Cut 6.0 2.07 2.90
*Richens (1997) t Magini et al. (1988).

Error associated with these parameters is 20%.
In addition to these two compilations, the above parameters are in agreement with recent XAS studies
including Pb (Bargar et al., 1997, 1998; Manceau et al., 1996), Zn (Schlegel et al., 1997; Trainor et al.,

2000), Hg (Collins et al., 1999), and Sr (Axe et al., 1998; O'Day et al., 2000).
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ions with smaller N/RH ratios will have a greater coulombic energy of attraction for the

amorphous oxide surfaces than the ones with larger ratios. Consequently, adsorption

enthalpies for divalent metal ions with respect to HAO, HFO, and HMO may be

predicted knowing their structural parameters (as shown in Equation 14):

The adsorption enthalpy-affinity correlation for each oxide is presented in Figure 15. This

correlation is unique from that of Richens in that it represents the interaction between the

hydrated ion and the oxide surface; it may prove useful for predicting other metal

enthalpies as well as predicting activation energies based on the Polanyi relation. The

predictive capabilities are tested in this research once the Polanyi constant, a, is defined.

Therefore, this constant was first studied for Sr, Zn, and Cd, based on surface diffusivities

fitted from experimental data and application of site activation theory in estimating

theoretical surface diffusion coeffIcients.

To study intraparticle surface diffusion in a convenient time frame, CBC studies

were conducted where the adsorbate concentration in the bulk aqueous phase was

monitored and maintained constant. The initial amount of metal sorbed corresponded to

the isotherm results representing adsorption to the external surface, which does not

significantly change initially (Figures 16 a, 17 a, 18 a, and 19 a and c). With time, the

amount of metal ion sorbed to the oxide gradually increased due to intraparticle surface

diffusion. In HAO, transient sorption accounts for 50% of the sites (Figures 16a and 17a).

Likewise, in the CBC studies conducted to assess sorption to HMO, equilibration with

the external surface was followed by the slow intraparticle diffusion that accounted for

approximately 90% of the sorption sites (Figure 18a).
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Figure 15. Correlation between adsorption enthalpy and the structure parameters of the
hydrated metal ions (Table 5). Open points represent the experimental values (with ± 2
S.D.) from which the correlations (solid lines) were developed for each oxide. Solid
points represent the predictions for other divalent metals.
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Figure 16. CBC studies of Sr sorption to 1g/L HAO at pH 7 and 25 °C: (a) Experimental

data and (b) Internal sorption modeled. [Sr]b ulk = 2.6 x 10 -5 M maintained constant.
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Figure 17. CBC studies of Sr sorption to 1 g/L HAO at pH 8 and 25 °C: (a) Experimental

data and (b) Internal sorption modeled. [Sr]bulk = 2.6 x 10 -5 M maintained constant.
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Figure 18. CBC studies of Sr sorption to 1g/L HMO at pH 7 and 25 °C: (a) Experimental

data and (Ill Internal sorntion modeled. [Sr]bulk = 8.7x 10 -5 M maintained constant.
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Figure 19. CBC studies with 1 g/L HAO at pH 7 and 25 °C: (a) Experimental data of Cd
sorption [Cd]bulk = l.5 x 10 -8 M, (b) Cd internal sorption modeled, (c) Experimental data
of Zn sorption [Zn]bulk = 1.3 x 10 -9 M, and (d) Zn internal sorption modeled.
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Figure 20. Modeled CBC studies at pH 7 and 25°C where the externally sorbed
contribution has been subtracted: (a) Cd internal sorption to HFO with [Cd]b u lk = 1.0 x
10-8 M, (b) Zn internal sorption to HFO with [Zn]b ia = 1.5 x 10 -8 M, (c) Cd internal
sorption to HMO with [Cd]bulk = 1.5 x 1 0"9 M, and (d) Zn internal sorption to HMO with
[Zn]bulk = 1.2 x 10-9 M.
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A mathematical model has been previously developed to represent this

intraparticle diffusion (Axe and Anderson, 1995; 1997). Assuming the internal sites are

no different than the external ones, then for spherical particles, insignificant pore

diffusion (see Appendix D: pore diffusion accounts for less than 3% of all sites), dilute

concentrations (or constant diffusivities), and negligible film resistance due to a turbulent

hydraulic regime (Fogler, 1992), the mass balance for the adsorbate metal ion yielded

Equation 8. Integrating the analytical solution to this equation over the volume of the

particle (given boundary conditions including a constant surface concentration) yields the

mass sorbed per particle at a specific time (Axe and Anderson, 1995, 1997; Crank, 1975):

The diffusion coefficient, the only fitting parameter in the model, was obtained by

minimizing the variance between the model and experimental mass of metal ion sorbed.

For a given time, the mass sorbed internally for each particle size times the number of

particles from the particle size distribution was summed to obtain the total mass of metal

sorbed. This internal amount plus that sorbed to the external surface from isotherms

provided the total amount sorbed. By minimizing the variance, the only fitting parameter

is surface diffusivity; modeling results (Figures 16b, 17b, 18b, 19c and d, and 20; and

Table 4) include Sr and Cd sorption to HFO (Axe and Anderson, 1995, 1997). For HAO

and HMO, surface diffusivities ranged from 10 -¹6 to 10-¹¹ cm² s-¹ . The model errors

shown as standard deviations are based on the errors associated with the parameters

determined from other experimental studies. Barrow et al. (1989) estimated diffusion

parameters for Zn and Cd in goethite to be 6.5 x 10" ¹9 cm² S-¹ and 3 x 10" 20 cm² s-¹,
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respectively. Fuller et al. (1993) evaluated effective diffusivities for As(V) in HFO,

which were in the order of 10 4¹ cm² s-¹ . Papelis et al. (1995) found Cd and Se(IV)

diffusivities in porous aluminas ranged between 10-¹2 and 10-¹0 cm² s-¹ . Axe and.

Anderson (1995, 1997) evaluated Cd and Sr surface diffusivities in HFO, which ranged

from 1(1 ¹4 to 10 13 cm²  s-¹ . Misak et al. (1996) reported self-diffusion coefficients of Co

and Zn in hydrous Fe(III) and Sn(IV) oxides to be in the order of 10 -¹¹ cm2 Theis et.

al (1992) found the surface diffusion coefficient, 5 x 10 - 9 cm² Si , for lead adsorption to

granular iron oxide.

Moreover, as mentioned above modeling of CBC studies for HAO and HMO

showed that nearly 50% to 90% of the sorption sites are located internally; however,

these are not consistent with their respective porosities found on freeze dried particles.

On the other hand, 40% of adsorption sites on HFO were located internally, which was

consistent with its porosity (Axe and Anderson, 1995). Axe and Anderson used Hg

porosimetry, which accounts for pores less than 500 A. In these studies the porosities of

HAO and HMO were measured with nitrogen desorption, and only includes pores less

than 250 A, potentially underestimating porosity.

The CBC studies suggest that hydrous oxides act as long-term sinks for metal ions

introduced in soils and sediments. For each oxide and its associated particle size

distribution, Figure 21 illustrates internal sorption or intraparticle surface diffusion (at pH

7) as a function of the square root of time, where sorption reaches equilibrium in

approximately 3 to 4 months for Sr and 2 to 5 years for Cd. Interestingly, Zn, which has

the greatest affinity for these oxides, requires approximately 5 to 10 years to reach

equilibrium. Thus, in aquatic environments where the oxides are present as discrete
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Figure 21. Predicting equilibrium at pH 7 and 25 °C for Sr, Cd, and Zn sorption to
hydrous metal oxides given their respective particle size distributions.
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particles and coatings, amorphous aluminum, iron, and manganese oxides act as sinks for

trace metal contaminants. Conversely, during desorption these amorphous oxides act as

long-term source for contaminants in ecosystems. Most transport models that employ

distribution coefficients and retardation factors are inadequate for describing metal and

radionuclide mobility in subsurface environments (Mahara, 1993; Oakley et al., 1981;

Ohtsuka et al., 1990). Because the internal sites account for as much as 90% of the total,

accurate modeling requires inclusion of this contribution. However, transient studies

require a lengthy period of time, and therefore predictive methods would be useful for

determining surface diffusivities.

Surface diffusivities decreased with an increase in pH (Table 6), as pH increases

the distance between sites decreases since the site density increases with increasing pH

(Figure 5). This effect is consistent with site activation theory (Axe and Anderson, 1995,

1997; Kärger and Ruthven, 1992) (Equation 9), where the two unknowns are the distance

between sites and activation energy. Because site densities are a function of pH and are

related to surface charge density as shown in Figure (6), given experimental diffusivities,

the only unknown is activation energy, which was estimated for the Sr, Cd, and Zn

systems studied. From the Polanyi relationship, the activation energy (E a) is related to the

adsorption enthalpy through a (Boudart, 1968). Once the activation energies were

determined, they were related to the enthalpy, and a was evaluated (Figure 22). For a

specific metal, the activation energy was found again to be equivalent (within the error

based on the propagation of errors method (Ku, 1966)) for all three oxides (Figure 22).

Furthermore, for a given oxide, a was approximately equivalent for the transition metals



Table 6. Effect of pH on surface diffusivities

Metal Oxide pH X.

(cm)

Experimental Ds

(cm²s-¹)

Sr HAO 7.0 3.30 x 104 l.50 x 10-¹¹

8.0 2.0 x 10-8 8.10 x 10 -¹2

Cd HAO 7.0 3.30 x 10-8 2.50 x 10-¹3

8.0 2.0 x 10-8 2.2 x 10-¹3

Cd HFO 6.0 6.8 x 10-7 6.0 x 10-¹3

7.0 2.0 x 104 1.0 x 10-¹4

A, represents the mean distance between the neighboring sites and is calculated from the site
density and the surface area of the hydrated oxides. Experimental diffusivities fit the data within
± 1-2 S.D.
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Figure 22. Polanyi correlations predicting activation energy from enthalpy: EA = a ΔH°,
where the Polanyi constant (a) is equivalent for a group of metals.
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Cd and Zn (Figure 22); this suggests that metals from the same group in the Periodic

Table exhibit similar sorption properties with respect to HAO, HFO, and HMO. In an

effort to test the predictive capabilities of the enthalpy correlation (Figure 15) and the

proportionality constant found for two groups of metals from the Periodic Table (Figure

22), sorption parameters were estimated for two ions (Table 7): Ca (an alkaline earth

metal) and Ni (a transition metal). Nickel is an important transition metal that has been

reported as a priority pollutant, and Ca is an alkaline earth metal that is abundant in

aqueous systems. The predicted sorption parameters imply that although Ni has a much

greater adsorption affinity for the oxide surfaces than Ca, the barrier or activation

energies are comparable. Therefore, the diffusivities are expected to be similar resulting

in analogous transport behavior.

The objective of this part of the research hence reduces to testing the effectiveness

of these correlations in predicting enthalpies, activation energies, and theoretical surface

diffusivities for Ni and Ca sorption to HAO, HFO, and HMO. The predicted values are

then compared to experimentally determined ones in the following section.

5.3 Sorption Studies with Ni and Ca

Calcium adsorption edges (Figure 23a) to hydrous metal oxides are broad curves

consistent with adsorption edges of other alkaline earth metals (Axe and Anderson, 1995;

Dzombak and Morel, 1990; Lützenkirchen, 1997; Mishra and Tiwary, 1995, 1999; Meng

and Letterman, 1993; Okazaki et al., 1986). On the other hand, Ni adsorption edges for

these same oxides (Figure 23b) are sharp and sigmoid, consistent with other studies of Ni

and transition metals (Axe and Anderson, 1997; Baumgarten and Kirchausen-Düsing,



Table 7. Predicted Sorption Parameters for Ca and Ni

Metal Oxide ΔH° (kcal mol-¹) a EA (kcal mol-¹)* X (nm)** Ds (cm² s-¹)

Ca HAO 2.92 2.91 8.51 3.30 1.2 x 10 ¹°

HFO 8.31 1.17 9.72 2.00 1.1 x 10 -"

HMO 11.39 0.84 9.57 2.29 l.5 x 10 -"

Ni HAO 8.99 0.80 7.19 3.30 7.5 x 10 -¹°

HFO 13.88 0.65 9.03 2.00 1.1 x 10 -"

HMO 16.56 0.60 9.77 2.29 7.3 x 10-¹¹

Estimated parameters have a ± 10% error
*EA = a AH° where a is based on sorption studies of Sr, Cd, and Zn with
hydrous oxides.
**A, (and therefore D s) values are based on pH 7.
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Figure 23. Adsorption edges of (a) Ca ([Ca] ° = 1 x 10-5 M) and (b) Ni ([Ni]0 = 5 X 10 -9

M) at 25 °C and as a funct
i
on of ionic strength (p). HAO and RR) concentrations were 1g

I: and HMO was 0.lg L.
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1997; Crawford et al., 1993; Dzombak and Morel, 1990; Green-Pedersen and Pind, 1997;

Kanungo, 1994; McKenzie, 1980; Okazaki et al., 1986; Tamura and Furuichi, 1997). The

oxides' adsorption capacities follow the order of HMO > HFO > HAO, which is in

agreement with others (Anderson and Benjamin, 1990; Green-Pedersen et al., 1997;

Tamura et al., 1996). Based on the present studies, for each oxide the adsorption affinity

follows the trend of Zn > Cd > Ni > Sr > Ca; this result is in accord with the ones

compiled in Chapter 2.

Adsorption edges also demonstrate that metal adsorption decreased with an

increase in ionic strength suggesting that metal ions do not loose their waters of hydration

upon adsorption (Meng and Letterman, 1993). In XAS studies, Axe and coworkers (1998,

2000) found that Sr ions remained hydrated upon adsorption, therefore sorbing physically

to HFO and HMO surfaces. In other macroscopic studies, Green-Pedersen et al. (1997)

observed Ni adsorption at pH 8 to MnO 2  decreased with increase in ionic strength,

however they did not observe this effect in Ni adsorption to Fe(OH) 3 at the same pH. At

pH 8, the double layer is compressed significantly with increase in ionic strength for

MnO2 but not for Fe(OH) 3 (Green-Pedersen et al., 1997). Interestingly, Green-Pedersen

and Pind (2000) observed significant ionic strength effects for Ni adsorption to

ferrihydrite-coated montmorillonite at pH 8 attributing it to a non-uniform distribution of

the coating on the montmorillonite surface. On the other hand, Posselt and Weber (1974)

found that Cd sorption to hydrous oxides of Al, Fe, and Mn decreased slightly with

increase in ionic strength; they credited it to weak competition between Cd ²+ and Nat . In

other sorption studies with clays (Green-Pedersen and Pind, 2000; Krapiel et al., 1999;

Schlegel et al., 1997), a decrease in metal adsorption with an increase in ionic strength
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has been attributed to an ion exchange mechanism. For many investigations with

crystalline oxide surfaces (Christophi and Axe, 2000; Coughlin and Stone, 1995;

Lützenkirchen, 1997), where no ionic strength effects were observed, the sorption

mechanism was attributed to specific adsorption. The nature of the background

electrolyte also plays an important role in metal adsorption; strong electrolytes such as

NaCl can affect the degree of metal complexation resulting in pronounced ionic strength

effects (Misak et al., 1996). In contrast, less reactive anions like nitrate typically only

contribute to compression of the diffuse layer.

To assess the experimental adsorption enthalpies, isotherm studies for Ca (pH 7)

and Ni (pH 5, 6, and 7) adsorption to hydrous oxides were conducted at 4, 14, and 25 °C.

For both metals, a linear relationship (r2 > 0.97) was observed between the sorbed and the

bulk aqueous concentrations (Figure 24), which is consistent with the single-site

Langmuir isotherm (Fogler, 1992). In the subsurface where contaminants are present at

trace concentrations, the total available sites (C,) on these amorphous oxides are

approximately equivalent to the site densities (CO and therefore as discussed earlier,

based on Langmuir-Hinshelwood kinetics, the distribution coefficient, K d, is simply equal

to K x C1 (Axe and Anderson, 1995, 1997; Fogler, 1992). Previous macroscopic (Axe and

Anderson, 1995;) and spectroscopic (Axe et al., 1998, 2000) research on Sr sorption to

HFO and HMO have demonstrated that the local structure of Sr ²+ is independent of

adsorbate concentrations suggesting that adsorption can be modeled with one average

type of site on the oxide surface. The macroscopic results are in agreement with

adsorption studies of other divalent metals to HAO, HFO, and HMO (Axe and Anderson,

1995, 1997). Krapiel et al. (1999) also observed a linear trend for Zn and Ni adsorption to
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Figure 24. Isotherms for (a) Ca and (b) Ni adsorption to hydrous metal oxides at 25 °C
and pH 7. Solid lines represent the model; IQ (L g-¹ ) = distribution coefficient. HAO and
HFO concentrations were 1g L -¹ and HMO was 0.1g L-'.
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montmorillonite. Tamura and Furuichi (1997) concluded from their isotherms of

numerous divalent metals including Ni to MnO2 that since the slopes of the log-log

isotherm plots did not exceed one, only monomeric ions reacted with surface. Mishra and

Tiwary (1999) modeled Sr and Ba adsorption to hydrous ferric oxide with Freundlich

isotherms; however their log-log slopes were close to unity suggesting that the adsorption

sites may be approximated as homogeneous. In a contrast, Green-Pedersen et al. (1997)

observed a linear trend for Ni adsorption to MnO2, but not for Fe(OH) 3 . Small et al.

(1999) observed a similar linear trend for Sr sorption to ferric oxide and ferric oxide-

bacteria composites.

Adsorption equilibrium constants were evaluated given the oxide site density, and

adsorption enthalpies were subsequently assessed with the van't Hoff relationship (Figure

25). Consistent with other studies of divalent metals (Axe and Anderson, 1997; Johnson,

1990; Mishra and Tiwary, 1999; Rodda et al., 1996), Ca and Ni adsorption is an

endothermic reaction. Furthermore, enthalpies of Ca and Ni are less than 25 kcal mo l-¹ ,

suggesting adsorption is due to physical forces where metal ions retain their waters of

hydration (de Boer, 1968). Most importantly, the experimental adsorption enthalpies for

both Ni and Ca (Figure 25) are in good agreement with the predicted ones given the error

(based on one standard deviation using the propagation of errors method -- (Ku, 1966))

(Table 7). Therefore, these results suggest that adsorption enthalpies or affinities can be

predicted thermodynamically (Figure 15).

Long-term sorption of Ni to hydrous oxide was studied at pH 7 applying CBC

experiments (Figure 26). In these studies, Ni concentration in the bulk aqueous phase was

monitored and maintained constant by measuring the activities of 63Ni in the suspensions
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Figure 25. Effect of temperature on Ca and Ni adsorption to hydrous oxides. Solid lines
represent the van't Hoff model and data points are adsorption equilibrium constants (K)
evaluated from the isotherm studies. Reported values are experimental and predicted
adsorption enthalpies (kcal mol -¹).
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Figure 26. CBC studies at pH 7 and 25°C —
(a) 1 g L-¹ HAO with [Ni]bulk = 2.5 x 10 4 M,
and (c) 0.1 g L -¹ HMO with [Ni]bulk = 3
predictions. Short dashed lines are modeling

modeled (solid lines) Ni internal sorption to
(b) 1 g L-¹ HFO with [Ni]bulk = l.1 x 10 -7 M.
.2 x le M. Long dashed lines represent
errors.
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and the filtrates (Axe and Anderson, 1995, 1997). This procedure allows one to study the

slow sorption process in a convenient time frame. The mass balance over spherically

shaped particles includes the following assumptions: adsorption sites located along the

micropore walls are no different from ones on the external surface, and because of trace

metal concentrations, adsorbate-adsorbate interactions are insignificant resulting in a

constant surface diffusivity. XAS studies (Axe et al., 1998, 2000) potentially support the

former premise, where the average coordination environment for Sr²+ sorption was

invariant as a function of time. Given initial and boundary conditions, integration of the

analytical solution to the partial differential equation provides the amount of metal sorbed

per particle at a given time (Equation 8) (Axe and Anderson, 1995, 1997; Crank, 1975).

Summation of the amount of metal sorbed per particle times the number of the particles

of that radius over the entire particle size distribution provides the theoretical value of

metal sorbed at a given time (Axe and Anderson, 1995, 1997). In this analytical process,

best-fit experimental diffusivities, the only fitting parameter, were obtained as described

earlier by minimizing the variance between the fit and the experimental data (Axe and

Anderson, 1995, 1997).

Experimental surface diffusivities ranged between 10 -n and 10 -¹0 cm² As

demonstrated in earlier studies of metal sorption to these three oxides (Axe and

Anderson, 1995, 1997), internal sorption contributed as much as 50% for HAO, 40% for

HFO, and 90% for HMO. Activation energies used to estimate the theoretical diffusivities

were calculated using the Polanyi relation (EA = a ΔH°) where for each oxide the Polanyi

constant a has been defined for a group of metals from earlier work (Axe and Anderson,

1995, 1997). Because X, the mean distance between the sites is known (Axe and
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Anderson, 1997) the experimental activation energies can be compared to those predicted

(Table 7 and Figure 27) and the theoretical diffusivity can be evaluated with Equation 9.

These diffusivities illustrated in Figure 26 provide a good description (within the errors

of the data and model) of the experimentally observed sorption. The agreement in

activation energies illustrated in Figure 27 supports the hypothesis that the activation

energy of a metal is comparable for all three hydrous oxides. Furthermore for a given

oxide, metals of the same group of the Periodic Table form similar sorption complexes

and hence exhibit an equivalent proportionality constant, a.

Based on site activation theory (Axe and Anderson, 1995, 1997; Kärger and

Ruthven, 1992), where surface diffusivity is a function of the jump frequency — the

product of the vibrational frequency and the Boltzmann factor. As discussed earlier, the

vibrational frequency is a function of the force constant k = d 2U/dx² , where U is the

surface potential energy. Assuming a sinusoidal function describes the potential, the

minima are the adsorption sites and the maxima are the barriers between sites. This

energy barrier is simply the activation energy (Axe and Anderson, 1995, 1997; Kärger

and Ruthven, 1992) and can also be expressed as a function of RH and N as shown in

Equation 15:

Activation energies (Figure 28) are assessed for divalent metal contaminants applying the

relation illustrated in Equation 15. Based on the agreement in experimental and predicted

activation energies for Ca and Ni, potentially activation energies for other metals can be

predicted given their hydrated structure.
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Figure 27. Polanyi correlations predicting EA for (a) alkaline earth metals and (b)

transition metals. EA = a ΔH°, where the Polanyi constant a (slope) is equivalent for a

group of metals.
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Overall, for a specific oxide, diffusivities decrease in the reverse order of the adsorption

enthalpies. These trends suggest that a greater adsorption enthalpy is indicative of tighter

bonding between the adsorbate and the adsorbent, and hence a greater barrier or

activation energy and smaller diffusivity. For a given hydrous oxide, the diffusivity

decreases in the order of Ni > Sr > Cd > Zn. A comparison of Cd and Cu diffusivities in

Fe oxide-coated granular activated carbon (GAC) (Wang, 1995) with those in Mn oxide-

coated GAC (Fan, 1996) also showed similar trends with respect to the metals and

oxides.

5.4 Summary of Amorphous Oxides

Using the activation energy estimated for the divalent metal ion from correlations

presented in Figures 15 and 22, theoretical surface diffusion coefficients have been

predicted and are illustrated in Figure 29. This research demonstrates that thermodynamic

and transport parameters can be predicted, potentially reducing the need for macroscopic

analyses. Additionally, this type of research emphasizes the importance in accounting for

slow sorption processes such as intraparticle diffusion to model contaminant mobility and

bioavailability in aquatic environments.
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Figure 28. Correlation between activation energy and the structural parameters (R H is the
hydrated radius (A) and N is the hydration number of the hydrated metal ions). The
correlation is based on the experimental activation energies of Sr, Cd, and Zn (with ± 2
S.D.).
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Figure 29. Theoretical surface diffusivities based on site activation theory. Solid symbols
with error bars represent the theoretical D s and open symbols represent experimental Ds
(for Sr, Cd, Ni, and Zn).



CHAPTER 6

ADSORPTION TO GOETHITE

Adsorption parameters of divalent metal ions to the amorphous oxides evaluated in the

previous chapter may not apply to crystalline oxides such as goethite. Adsorbent

properties and characteristics play a significant role in determining the nature of

adsorption reaction. Site density of crystalline oxides is generally much smaller than that

of amorphous oxides and hence there is a possibility of site saturation at much lower

metal concentrations. This chapter discusses the metal adsorption to goethite studied for

single adsorbate systems along with characterization of goethite. Next, based on the

parameters of the single adsorbate systems, adsorption in binary systems is predicted and

tested. This research provides parameters that are directly applicable for modeling the

fate of environmentally important divalent metals in the aquatic environments that are

laden in goethite.

6.1 Characterization of goethite

The ESEM images of goethite demonstrate that the crystals are needle shaped or acicular

(Figure 30), which is in agreement with Schwertmann and Taylor (1989). Goethite

crystals like HFO aggregate into a somewhat spherical shape. The aggregates were much

larger than the individual crystals, and were also observed with an optical microscope.

The resuspended (in a turbulent regime Re > 3.0 x 10 5) freeze-dried goethite required at

least 3 h for obtaining a stable size distribution. Results of the particle size analysis

(Figure 31) reveal that the goethite particle size distributions are shifted to the left of that

for the HFO to a smaller size range. As the pH increased, the particle size distribution

103
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Figure 30. Results of (a and b) Environmental Scanning Electron Microscopy and (c)
Optical Microscopy acicular goethite crystals as aggregated spherical particles.
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Figure 31. Comparison of particle size distributions of (a) HFO, (b) goethite at µ 10-³

and (c) goethite at 10 -² reveal goethite particles are smaller than HFO.
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increased slightly; however, the effect of ionic strength was more significant as its

increase from 10 -3 to 10-² resulted in overall larger particles. At the lower ionic strength

of 1013 , the largest aggregates were approximately 10 to 20 1.1M, whereas at 10 -² the

particles ranged up to 100 If microporosity is significant, intraparticle diffusion may

be important.

Nitrogen adsorption (BET) and desorption were used for evaluating surface area

and the pore size distribution. The goethite surface area was 27 m ² Others (Atkinson,

et al., 1967; Palmqvist et al., 1997; Weidler et al., 1998) have found the surface area of

goethite ranges from 7.9 m² g-¹ and 235 m² g-l . Using the nitrogen desorption, the pore

size distribution ranges from 2 nm to 220 nm (Figure 32). Figure 32 also shows the pore

size distribution using mercury porosimetry, where the pores range from 7 nm to 1 p.m;

the distribution indicates that both meso- and macro-pores exist, with the average size

comprising macropores (Greg and Singh, 1982). Thus, the pores range from micro to

macro-pores, with a bimodal distribution. The porosity of goethite however, is

approximately only 0.3%. These results suggest that long-term sorption processes such as

intraparticle diffusion may not be important in goethite systems; however, porosity and

pore size like surface area are evaluated with freeze-dried particles that may not

accurately represent the hydrated structure.

The surface charge distribution of HFO and goethite studied as a function of ionic

strength are compared in Figure 33. The pHPzNPc is 7.8 ± 0.4 for goethite, which is

consistent with other work (Atkinson et al., 1967; Dzombak and Morel, 1990). The

pHPzNPc for goethite has been found to vary between 7.7 and 9 depending upon various

factors like the method of determination, degree of hydration, and method of synthesis
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Figure 32. Goethite pore size distributions as seen from (a) mercury porosimetry and (b)
nitrogen desorption are bimodal distributions (IGT Report, 1999).
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Figure 33. Acid-base potentiometric titrations conducted at 1 g 1,', 25 °C, and under
closed systems conditions for (a) amorphous iron oxide, and (b) Electrophoretic mobility
of goethite at 1 g L-1 and 25°C is shown in (c).
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(Atkinson et al., 1967; Christopher, C. A., 1998; McBride, M. B., 1989). Interestingly,

the surface charge of HFO is as much as 10 times that of goethite suggesting that HFO

has a much greater surface area than goethite and therefore a greater adsorption capacity.

Based on a compilation of HFO data on characteristics and sorption (Dzombak and

Morel, 1990), surface areas have ranged from 159 to 720 m² g' with an estimate of 600

m² g-¹ recommended for use. Electrophoretic mobility measured on goethite at ionic

strengths of 10 -3 and 10-² resulted in a pHIEP of 7.9 ± 0.1 (Figure 32); in this case, it is

almost equivalent to the PHPZNPC for goethite. The approximate agreement of the pHlEp

with the pHPzNPc suggests the absence of Adsorbed Na+ or NO3 - (Hesleitner et al., 1987).

6.2 Single Adsorbate Systems

Adsorption edges of Ni (Figure 34a), Zn (Figure 34b), and Ca (Figure 34c) were studied

between pH 4 and 10 for ionic strengths 10 -³ and 10-² . The sharp and sigmoid edges for

Zn and Ni are typical of transition metals (Balistrieri and Murray, 1982; Christophi and

Axe, 2000; Okazaki et al., 1986). On the other hand, Ca adsorption edges are broad and

consistent with those of other alkaline metals (Lützenkirchen, 1997; Axe and Anderson,

1995; Mishra and Tiwary, 1995). Ni, Zn, and Ca adsorption to goethite is independent of

ionic strength, which is in agreement with the studies of other transition metals such as

Cu (Christophi and Axe, 2000; Okazaki et al., 1986; Swallow et al., 1980), Pb

(Christophi and Axe, 2000; Manceau et al., 1992; Okazaki et al., 1986; Hayes and

Leckie, 1986), and Cd (Balistrieri and Murray, 1982; Christophi and Axe, 2000). In this

earlier work, adsorption was attributed to inner sphere complexation.
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Figure 34. Adsorption edges of (a) Ni, (b) Zn, and (c) Ca adsorption to 1 g	 goethite at
25°C.
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On the other hand, when Lützenkirchen (1997) observed a decrease in Ba adsorption to

goethite with an increase in ionic strength, the reduction was credited to a decrease in the

ion activity. Barrow et al. (1981) also observed a decrease in Ni adsorption with

increasing ionic strength. This effect may be due to the appreciable silicon content in

their goethite, which may not only affect the pHPzNPc but also the surface characteristics.

Interestingly, Balistrieri and Murray (1982) observed that Zn adsorption to goethite was

equivalent whether in a 0.1 M NaNO 3 system or a 0.53 one. However Zn adsorption

decreased in the seawater, which includes not only NaCl, but also Ca, Mg, K, and sulfate

ions suggesting that other ions competed for the same sites.

A comparison of Ca, Ni, and Zn adsorption edges shows that their affinity for the

goethite surface increases in the order of Zn > Ni > Ca, which is consistent with the

reverse order of the inverse of the hydrated radius (R H) multiplied by the number of

waters of hydration (N) (Table 8). Rose and Bianchi-Mosquera (1993) also found that the

adsorption of Zn was greater than that of Ni. On the other hand, Okazaki et al. (1986)

reported the sequence of adsorption to goethite in the order of Cu > Zn > Mg, and

attributed it to their electronegativity. McKenzie et al. (1980) observed the following

trend Cu > Pb > Zn > Co > Ni > Mn, which with the exception of Co is in agreement with

the order of the first hydrolysis constants of these cations. Overall, transition metals have

a much greater affinity for the surface as compared to alkaline earth metals.

Isotherms were conducted to study Ni adsorption to goethite as a function of

adsorbate concentration at 25°C for pH 5, 6, and 7 (Figure 35a-c). Goethite concentration

was typically maintained 1 g L-¹ for Ni concentrations in the range of 10 -¹0 - 104 M;

additionally in an effort to swamp all potential sites, studies were conducted using a 0.1 g



Table 8. Metal Ion Properties
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Metal
Group Eneg* Polar. **

(10-24 cm³)

Ca IIA 1.00 25.00

Mg IIA 1.31 10.60

Be IIA 1.57 5.60

Sr IIA 0.95 27.60

Ba IIA 0.89 39.70

Ra IIA 0.90 38.30

Pb IVA 2.33 6.80

Co VIII 1.88 7.50

Ni VIII l.91 6.80

Fe VIII 1.83 8.40

Cu LB 1.90 6.10

Zn IIB l.65 7.10

Cd IIB 1.69 7.20

Hg IIB 2.00 5.70

Mn VI IB 1.55 9.40

l.22 l.26 1.74 9.0 2.53

2.56 1.03 1.30 6.0 2.09

8.58 0.49 0.90 4.0 l.67

0.71 l.40 1.92 9.0 2.63

0.53 l.56 l.98 9.7 2.81

0.51 1.62 1.92 9.0 2.81

5.20 l.33 l.47 4.0 2.30

3.18 0.79 1.26 6.0 2.09

4.14 0.83 1.21 6.3 2.06

4.50 0.75 l.25 6.0 2.13

6.00 0.71 l.38 6.0 2.15

5.04 0.74 1.31 5.2 2.09

3.92 0.97 1.48 6.0 2.30

11.20 l.10 l.49 6.0 2.37

3.41 0.97 l.39 6.0 2.18

log KMOH Rionic Rcovalent N 	 RH N/RH

(A) 	 (A) 	 (A) 	 (Å-¹)
3.56

2.87

2.40

3.42

3.45

3.20

1.74

2.87

3.06

2.82

2.79

2.49

2.61

2.53

2.75
All properties from CRC Handbook (Lide and Frederikse, 1998) with the exception of log K MOH

Stumm and Morgan (1998) and N and RH Richens (1997).
* Eneg. = electronegativity
** Polar. = polarizability
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Figure 35. Isotherms conducted at 25 °C, and 1 g L -1 to goethite for Ni adsorption at (a)
pH 5, (b) pH 6, and (c) pH 7 and for Zn at (d) pH 5, (e) pH 6, and (f) pH 7. Solid lines
represent the model and dashed lines are the errors (± 2 S.D.).
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L -¹ goethite suspension. In the lower concentration range (10 40 — 10-6 M Ni), isotherms

reveal a linear relation between the metal in the bulk and adsorbed phases suggesting

adsorption can be modeled with one average type of site. For higher concentrations the

isotherm reaches an asymptote indicative of the saturation of adsorption sites. As seen in

Figure 35a-c, site density is a function of the pH. Assuming monolayer adsorption, no

adsorbate-adsorbate interactions, and a uniform driving force, the single-site Langmuir

model is applied to the experimental data as shown in Equation 16 (Fogler, 1992):

where C is the moles of metal adsorbed g-¹ goethite, K is the adsorption equilibrium

constant, Ct  is the site density in moles of metal g -¹ goethite, and [S] is the molar

concentration of metal ions in the bulk liquid phase at equilibrium. This model is based

on Langmuir-Hinshelwood kinetics for a single-site surface reaction mechanism where in

the maximum sorption density represents the site density or capacity (Dzombak and

Morel, 1990; Fogler, 1992). In modeling, the intercept representing (C t)-¹ was constrained

to minimize the sum of the squares of the residuals; the model fits the data well (Figure

34a-c and Table 9). The site densities reported for Ni adsorption are consistent with that

of Christophi and Axe (2000) where Cu, Pb, and Cd adsorption to goethite was studied

(Table 10). Ni site densities for goethite are much smaller than those reported for Ni

adsorption to HFO. Spadini et al. (1994) pointed out from their spectroscopic studies that

HFO ) and goethite have similar local structure but goethite has much less of the high-

energy edge sites per unit surface area and a smaller site density. Interestingly, the

equilibrium constant (Table 9) is independent of pH given the errors, suggesting that the



Table 9. Summary of Isotherm Studies for Single-Adsorbate Systems

Metal 	 pH 	 r2 	 Kt 	 Ct 	 Experimental C1

L mole-¹ Moles g -¹ goethite Moles g - ' goethite

Zn 	 5.0 	 0.998 6.78 x 104 	*7.31 x10-6 	7.88 xl0 -6

	

6.0 	 0.999 6.76 x 104 	*9.86 x10 -6 	1.12 xl0 -5

	

7.0 	 0.994 6.79 x 104 	*2.09 x10 -5 	2.22 x10-5

Ni	 5.0 	 0.991 5.54 x 104 	1.73 x 10 -6 	2.30 x 10 -6

	

6.0 	 0.994 6.81 x 104 	5.5 x 10 -6 	5.80 x 10-6

	

7.0 	 0.989 6.01 x 104 	l.02 x 10 -5 	1.25 x 10 -5

Ca 	 5.0 	 0.979 2.54 x 102 	3.00 x 10-³ 	2.01 x 10-³

	

6.0 	 0.948 2.55 x 102 	3.30 x 10-³ 	2.35 x 10 -³

	

7.0 	 0.941 2.84 x 102 	4.05 x 10-³ 	3.01 x 10-³

*Site densities selected for high affinity site capacity in competition studies.
Experimental errors for Zn and Ni studies are ± 9%, and for Ca it is ± 10%

t Parameters estimated using single-site Langmuir isotherm model
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Table 10. Site Densities of Goethite Reported from the Literature
Reference pHpznpc S. A. (m 2 g-1 ) Adsorbate Studies Model K (L mol-¹) Ct (mol g-1 ) at pH

Christophi and Axe
(2000)

7.8 40.5 Cd AE, Al SSL 2.00 x 106 5.00 x 10 -6 6.00

Cu AE, Al SSL 4.50 x 10 6 9.10 x 10 -6 6.00

Pb AE, Al SSL 1.20 x 10 7 7.20 x 10 -6 6.00
Zachara et al. (2000) NA 55.4 Fe AE, Al NA NA 1.79 x 104 6.50

Co AE, Al NA NA 4.85 x 10 -5 6.50
Angove et al. (1999) 8.2 49.6 Cd AE, AI, T SSL 2.80 x 104 2.68 x 10-5 7.00

Co AE, Al, T TSL (Type I site) 1.63 x 10 5 1.04 x 10 -5 7.00

TSL (Type II site) 5.00 x 103 3.47 x 10 -5 7.00
Nowack and Sigg

(1996)
7.4 21.0 NiEDTA AE, AI SCM 6.61 x 10 5 4.22x 10 -5 3.45

PbEDTA AE, Al SCM 1.82 x 106 3.54 x 10-5 3.40

ZnEDTA AE, Al SCM 5.50 x 10 5 1.78 x 10 -5 5.40
Fe(III)EDTA AE, AI SCM 2.95 x 106 8.95 x 10 -7 3.30

Rodda et al. (1996) 8.1 55.0 Zn AI, T TSL (Type I site), FDM, BET 1.93 x 10 5 1.65 x 10 -5 6.50, 7.50

TSL (Type 11 site) 2.8 x 103 1.60 x 104 6.50, 7.50

Pb AI, T TSL (Type I site), FDM, BET 1.85 x 105 7.76 x 10 -6 5.50

TSL (Type II site) 4.40 x 10 3 5.50 x 10 -5 5.50
Johnson (1990) 9.1 76.0 Cd AE, AI, T SSL for pH <7.5 4.20 x 103 2.28x 10 -5 6.5, 7.0

Cd AE, Al, T TSL (Type I site) for pH 7.5 7.00 x 10 5 1.14x 10 -5 7.50

TSL (Type II site) for pH 7.5 3.60x 104 3.88 x 10 -5 7.50
McKenzie (1980) 7.6 75.0 Cu AE, AI NA NA 1.05 x 104 5.50

Pb AE, AI NA NA 6.00 x 10 -5 5.50
Zn AE, AI NA NA 2.50x 10 -5 5.50

AE = Adsorption edges, AI = Adsorption isotherms, BET = BET model, FDM = Farley, Dzombak, and Morel's surface precipitation model, NA = information not available, SCM = Surface
complexation model, SSL = single-site Langmuir, T = temperature studies, TSL = two-site Langmuir
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Ni adsorption mechanism is invariant between pH 5 and 7. Furthermore, this K is much

greater than the ones reported for other hydrous iron oxides and even other adsorbents as

seen in the previous chapter (Dzombak and Morel, 1990).

Isotherm studies of Zn adsorption to goethite were also conducted at 25 °C for pH

5, 6, and 7. Similar to Ni, Zn adsorption isotherms (Figure 35d-f) demonstrate a linear

relation between the metal in the bulk and adsorbed phases at lower concentrations (< 5 x

10-6 M Zn), while at higher concentrations site saturation is observed. Modeling with the

single-site Langmuir isotherm revealed site densities (Table 9) ranging between 7.31 x

10-6 and 2.09 x 10 -5 moles g -¹ consistent with experimental results; these site densities are

also a function of pH and are slightly greater than those for Ni. Rodda et al. (1996)

estimated site densities of 10 -5 and 10 -4 moles Zn g - ' goethite using the one and two-site

Langmuir models, respectively (Table 10). Recently Angove et al. (1999) also reported

similar orders of site density for adsorption of Cd and Co to goethite at pH 7. On the

other hand, Ankomah (1992) reported Zn adsorption site densities between pH 5.4 and

7.8, an order of magnitude greater than the ones observed in this research. However,

Ankomah (1992) reported using goethite particles present as individual crystals that were

almost an order of magnitude smaller in size than the aggregated ones used here.

The equilibrium constants for Zn adsorption at all pH values are equivalent given

the errors, suggesting that Zn adsorption like Ni is independent of pH. Site densities and

equilibrium constants have been found to increase with temperature indicating that

adsorption of metals such as Cd, Co, Pb, and Zn to goethite is an endothermic process

(Johnson, 1990; Rodda et al., 1993, 1996; Angove et al., 1999). Cd and Zn adsorption to

FIFO as well as other hydrous oxides is also an endothermic reaction. Because Ni and Zn
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are from the same group in the Periodic Table and have similar affinities for goethite, a

hypothesis of this research is that they form similar adsorption complexes competing for

the same type of sites. For competition studies, the site densities selected for modeling

are highlighted in Table 9.

On the other hand, for the alkaline earth metal calcium, site densities are at least

2-3 orders or magnitude greater than those of Ni and Zn (Figure 36a-c and Table 9). The

equilibrium constant is also pH independent, but much smaller than those of Ni and Zn.

The single-site Langmuir model provided a good fit for the data, suggesting that the

range of adsorption sites on goethite can be described by one average type of site (a lower

affinity one). Pivovarov (1998) applied a non-electrostatic model to describe Ali and

Dzombak's (1996) data on Ca adsorption to goethite at 20°C and obtained a site density

of 3.6 x 104 moles g-¹. Ca site densities presented in Table 8 are an order smaller than

those reported for Sr adsorption to goethite (Christophi and Axe, 2000). On the hand,

Vanik and Jedináková(1986) reported the site densities for Ba adsorption to be 5.3 x 10 4

moles g-¹ goethite. Given the observed site densities for Ca with a lower adsorption

affinity as compared to Ni and Zn, it is hypothesized that Ca adsorbs to another set of

sites, and therefore will not compete for the ones occupied by the transition metals. As

seen in Table 10 the equilibrium constants for adsorption to goethite independent of pH

and are much greater than those for HFO. The effect of temperature (Figure 37 and Table

11) further suggests that adsorption to HFO is due to physical forces while for goethite it

is chemisorption. Given these enthalpies and the lack of ionic strength effects,

interactions may be due to chemisorption (de Boer, 1967). Again, with each oxide, Zn

demonstrates a stronger affinity for the surface than does Ni.
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Figure 36. Isotherms of Ca adsorption to 1 g 	 goethite at 25°C. Solid lines represent
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Table 11. Summary of Adsorption Parameters of Goethite and HFO

Metal Adsorbent pH T K C, (mole g-') Δir (kcal mol-¹)

Ni HFO 6.0 25.0 1.11 x 10³ 3.70 x 10 -3 14.85 ± 1.49

14.0 8.36 x 102

4.0 3.65 x 102

HFO 7.0 25.0 1.07 x10³ 2.50 x 10-2

14.0 6.68 x 102

4.0 2.56 x 102

Goethite 5.0 25.0 5.54 x 104 1.73 x 10-6

Goethite 6.0 24.8 6.81 x 104 5.50 x 10-6

Goethite 7.0 24.8 6.01 x 104 1.02 x 10-5 31.07 ± 3.11

14.0 1.93 x 104 9.40 x le

3.9 1.15x 10³ 7.50x 10 -6

Zn HFO 6.0 25.0 3.89 x 10 ³ 3.7 X 10-³ 22.70f 2.27

14.0 1.58 x 10³

4.0 2.39 x 102

HFO 7.0 25.0 4.00 x 10³ 2.50 x 10 .2

14.0 8.12 x 10 2

4.0 1.47x 102

HFO 8.0 25.0 3.41 x 10³ 3.30 x 10 -2

14.0 1.03 x 10 ³

4.0 2.04 x 102

Goethite 5.0 24.7 6.78 x 104 7.31 x 10-6

Goethite 6.0 24.8 6.76 x 104 9.86 x 10 -6

Goethite 7.0 24.6 6.79 x 104 2.09 x 10-5 33.20 ± 3.32

14.0 2.34x 104 l.71 x 10 -5

4.l 1.17 x 10 ³ l.21 x 10-5

Estimated parameters have an error off 10%
Activation energy can be calculated from the Polanyi relation: EA = a Δ H ° (Ref)



Figure 37. van't Hoff plots for Ni and Zn adsorption to (a) goethite and (b) HFO.

121



122

To assess whether intraparticle diffusion is significant in goethite systems, long-

term sorption of Ni and Zn to goethite was studied at pH 7 applying CBC experiments

(Figure 38). In these experiments, the metal concentration in the bulk aqueous phase was

monitored and maintained constant by measuring the activity of the radioisotope in the

suspension and filtrate (Ankomah, 1992; Christophi and Axe, 2000; Forbes et al., 1976;

Grossl et al., 1997; Lützenkirchen, 1997). This procedure allows one to investigate the

slow sorption process in a convenient time frame (Ankomah, 1992; Christophi and Axe,

2000; Forbes et al., 1976; Gross! et al., 1997; Lützenkirchen, 1997).

Although there is a slight increase in the amount of metal adsorbed as a function

of time, the change falls within the analytical errors (± 1 S.D.) indicating that the 2 h

contact time describes equilibrium. This long-term study demonstrates that microporosity

is insignificant and therefore intraparticle (surface) diffusion does not contribute towards

the total amount of metal adsorbed. On the other hand, in the previous chapter, for Ni and

Zn sorption to HFO as much as 40% of the total sites are located internally.

6.3 Binary adsorbate systems

Results of reversibility studies revealed (Figure 39) that after two hours the amount of Ni

adsorbed was equivalent to that for the single adsorbate isotherm. Upon adding Zn, Ni

was displaced and the amount sorbed was predicted by the single-site Langmuir model
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Figure 38. Constant boundary condition studies at 25°C, IS 10 -3 , pH 7, and 1 g L - '

goethite for (a) [Ni]bulk = 1.1 x 10 -6 M and (b) [Zn]bulk = 3.4 x 10 -7 M.
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Figure 39. Competitive adsorption between Ni and Zn to 0.l g L-¹ goethite at pH 7, and
25°C, where one metal is added first at t = 0 h and then at t= 2h the system is titrated with
other metal. Solid lines are single-site Langmuir adsorption model. Dashed lines are
associated errors.
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where Ct,trans represents the site density for transition metals of which both metals

compete. Likewise, in the other set of experiments, upon addition of Ni, Zn was displaced

and again equilibrium was predicted by the single-site Langmuir model. These results

demonstrate adsorption reversibility and that Ni and Zn as well as potentially other

transition metals compete for the same type of sites on the goethite surface. Cowan et al.

(1991) also observed that the adsorption of Ca and Cd to amorphous iron oxide was

reversible; in their case, the large site density of amorphous iron oxides explains the

absence of competition. Gunneriusson (1994) investigated the reversibility of Cd

adsorption to goethite; he found that adsorption was nearly fully reversible where metal

was released by lowering the pH.

Reversibility was observed over a wide range of metal concentrations and

adsorption was well represented by single-site Langmuir model. Results of Ni—Zn

competition studies for pH 5, 6, and 7 are presented in Figure 40. These studies show that

at lower metal concentrations when sites are not limited, no competitive effects between

Ni and Zn are expected or observed. However, competition is observed in the site

saturation region. Furthermore, for each pH, in this site saturation region, the sum of the

total sites occupied corresponds to the maximum number of sites found from the single

adsorbate experiments and modeling. A comparison of the experimental data for these

binary systems with the model for single adsorbate systems demonstrates the competitive

effect, as the data cannot be represented by the single adsorbate isotherm parameters

(Figure 41). On the other hand, assuming Ni and Zn adsorb to the same type of site,

competition is well described by the model (Figure 40). Mesuere and Fish (1992)

reported that in a binary system comprised of anions such as chromate and oxalate,
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Figure 40. Competitive adsorption of Ni and Zn to 0.1 g 	 goethite at 10-³ I.S. and
25°C. Solid lines represent predicted competitive Langmuir model. Dotted and dashed
lines represent associated model errors (± 2 S.D.).
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Figure 41. Competitive adsorption of Ni and Zn to 0.1 g L-¹ goethite at le I.S. and
25°C. Solid lines represent Langmuir isotherms for single adsorbate systems and dotted
and dashed lines represent associated model errors.
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competitive effects were apparent only in the site saturation region. Their modeling

results show that surface complexation models such as the diffuse double layer model

(DDLM) and Triple Layer Model (TLM) provided very good fits for single-adsorbate

systems but eluded the competition systems. Competitive effects were also observed

among Cu and Pb adsorption to hematite between pH 4.5 and 6.3 (Christi and

Kretzschmar, 1999). In the present work, both Ni and Zn adsorption can be adequately

described by a single-site Langmuir model within the errors. These results confirm that

Ni and Zn compete for the same type of adsorption site(s) on the goethite surface and

hence must form similar adsorption complexes. Christophi and Axe (2000) found that the

Cu-Cd and Pb-Cd competition studies with goethite were described very well with a

single-site Langmuir model, concluding that these metals bind to the same types of sites.

However, in Pb-Cu and Pb-Cu-Cd systems, they found that the single-site Langmuir

model failed to describe Cu adsorption to goethite in the presence of Pb. Using an

approach where Cu could bind to another set of sites not available to Pb or Cd with the

difference in site density between Cu and Pb defining this capacity, Christophi and Axe

(2000) were able to model the adsorption competition.

Balistrieri and Murray (1982) did not observe competition when working with

metal concentrations of 3.0 x 10 -6 M; given the goethite site density, this result is not

surprising. Additionally the authors have estimated the site density from potentiometric

titrations as 2.2 x 10 -4 moles g' of oxide, which is greater than the site densities observed

for transition metals. Palmqvist et al. (1999) studied binary competitive adsorption of Cu,

Pb, and Zn to goethite at 25°C within the range 3.5 <= pH <= 8.5 and with only two

adsorbate concentrations (~ 4 xl0 -³ M and ~ 10 -6 M). They used the constant capacitance
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model with the assumption that all three metals had the same site density (Palmqvist et

al., 1999). However, at elevated concentrations like 10 -³ M, these metals exceed their

saturation in the higher pH region. From their surface complexation modeling (SCM) of

Cu and Pb adsorption to hematite in single and binary systems, Christi and Kretzschmar

(1999) found that site density was a key parameter in predicting competition. Further,

using a 2-pK description of the hematite surface, they optimized the model by fitting site

density (5 and 10 sites nm-² ) from competition experiments. Benjamin and Leckie (198la,

b) studied Cd adsorption to amorphous iron oxyhydroxide in the presence of Cu, Pb, or

Zn and found little to no competition between the metals. They concluded that these

metals bind to different types of sites; however amorphous iron oxides have been shown

to exhibit large site densities as observed in Chapter 5 and in other work (Axe and

Anderson, 1995).

Competition studies of Ca and Ni adsorption to goethite were conducted at 25 °C

and pH 5, 6, and 7 for three Ni:Ca molar ratios — 1:l, 1:10, and l:100. Resulting Ni

isotherms (Figure 42) show that for all molar ratios, competition between Ca and Ni was

negligible. These experimental data follow the single system isotherm model for Ni given

the errors. To test the hypothesis that Ca sorbs to another set of sites, a two site model

was employed where Ca not only adsorbed to the sites based on Ni and Zn studies, but

also to a set of lower affinity ones (with a much greater capacity) as defined in the

following expression:

where Ct,Ca and Ct,trans are the site densities of calcium and the competing transition metal

in moles g-¹ goethite; KCa and Kt., are the respective equilibrium constants; and [Cal and
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Figure 42. Isotherms of Ni adsorption to 0.1 g L -¹ goethite at 25°C in the presence of Ca.
Solid lines are single-site Langmuir model for Ni and dashed lines are the associated
errors (± 2 S.D.).
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[trans] are their aqueous phase concentrations in moles L i at equilibrium. The results

suggest that in Ni-Ca systems, only Ni ions adsorbs to the high affinity sites as sorption

did not decrease, which would have been expected with 100x [Ca] additions. Therefore,

Ca ions adsorb to only the lower affinity sites (Figure 43), which is modeled with the site

densities found from the Ca isotherm studies.

Competition studies between Zn and Ca were also conducted in a similar fashion

and are presented in Figures 44 and 45. These studies further demonstrate the lack of

competition between Zn and Ca. Ankomah (1992) observed that for pH < 7, Zn

adsorption to goethite decreased in the presence of Mg; however, at pH values greater

than 7 Mg had no effect on Zn adsorption. Davis and Upadhyaya (1996) noted that Cd

adsorption to goethite was not affected by the presence of Ca. Borah et al. (1989) found

that Zn adsorption to kaolinite and goethite dominated soils was best described by the

Langmuir isotherm. They also found that in Ca-saturated soils, the Langmuir model

based on single adsorbate data accurately described Zn adsorption. Cowan et al. (1991)

investigated Cd adsorption to amorphous iron oxide in the presence of alkaline earth

metal ions (Ba²+ , Ca²+ , Mg²+, and Sr²+). The Cd concentration was approximately 10-6 M,

while the alkaline earth metal concentrations were in the order of 10 -³ M. They noted that

Cd adsorption decreased only slightly in the presence of Ca. From their modeling, Cowan

et al. found that both the TLM and the non-electrostatic model adequately represented the

Ca-Cd competition at higher ionic strengths but not at lower ones.

In contrast, Balistrieri and Murray (1982) studied the influence of Mg ²+ and

SO4²-on the adsorption of Cd, Pb, Cu, and Ni to goethite. Sulfate adsorption was found to

change the electrostatic conditions at the interface and enhance the metal adsorption.
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Figure 43. Isotherms of Ca adsorption to 0.1 g L -¹ goethite at 25°C and 10-³ I.S in the
presence of Ni ion. The single-site Langmuir model (solid lines ± 2 S.D.) is based on C,
available to Ca only.
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Figure 44. Isotherms of Zn adsorption to 0.1 g L- ' goethite at 25°C and 10-³ I.S. in the
presence of Ca. Solid lines are single-site Langmuir model for Zn and dashed lines are
the associated errors (± 2 S.D.).
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Figure 45. Isotherms of Ca adsorption to 0.1 g 	 goethite at 25°C and 10-³ I.S. in the
presence of Zn ion. The single-site Langmuir model (solid lines ± 2 S.D.) is based on C,
available to Ca only_
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On the other hand, in the presence of 0.054 M Mg ions, adsorption of the heavy metals

was suppressed. However, the investigators used adsorption edges and therefore did not

evaluate site density as a function of pH. Ankomah (1992) found that Zn adsorption to

goethite between pH 5.4 and 8.5 decreased in the presence of Mg by as much as 31% in

terms of surface coverage. One reason for the differing results (from those reported here)

may be due to the goethite used in the studies.

6.4 Summary of Goethite Studies

Adsorption of Ni, Zn, and Ca to goethite involves strong chemical forces. The adsorption

affinity of these metals followed the order: Zn > Ni > Ca, where the transition metals

bind to one type of site — a high affinity one. As such, these metals compete for

adsorption sites on the goethite surface, which can be modeled and predicted by single-

site Langmuir model. On the other hand, alkaline earth metals bind to a lower affinity site

and therefore in binary systems they do not compete with the transition metals. Iron oxide

minerals are prevalent in the subsurface as discrete particles and coatings. Although both

amorphous and crystalline oxides exhibit microporosity, the relative contribution in

goethite is not significant as potentially predicted from characterization studies on the

freeze-dried particles. Also, because of the smaller particle size distribution, less time is

required for the metal ions to adsorb and diffuse in a micropore system. Modeling of

macroscopic experiments provides information on bulk equilibrium and kinetic

processes, however, to determine the molecular mechanisms, XAS is needed. In the next

chapter, results of XAS studies have been discussed to elucidate the sorption mechanisms

of some of the systems studied in this chapter as well as in Chapter 5.



CHAPTER 7

XAS STUDIES

Macroscopic experiments provide information on bulk equilibrium and kinetic processes,

however, to determine the molecular mechanisms, XAS is needed. XAS has proven to be

a powerful tool in environmental research as it selectively probes the local coordination

environment of a species over a wide range of concentrations. This structural

information, including the identification of neighbors, their coordination numbers, and

bond distances, provides contaminant sorption mechanisms under environmentally

relevant conditions.

To complement the macroscopic studies, presented in Chapters 5 and 6, sorption

to metal oxides were systematically studied using XAS analysis as a function of pH,

adsorbate loading, method of contact (adsorption versus coprecipitation), and reaction

time. One of the primary objectives was to identify and compare Zn sorption mechanisms

to FIFO and goethite. This objective aides in distinguishing different types of adsorption

complexes such as inner- and outer-sphere ones, which are crucial in understanding

contaminant mobility and bioavailability in subsurface systems. Another important

objective was to discern sorption mechanisms of Ni and Zn with HMO. This objective

supports the hypothesis that metals of a periodic group exhibit similar adsorption

behavior with amorphous oxides. Additionally, XAS studies assist in demonstrating the

slow sorption process of intraparticle diffusion.

136
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7.1 Zinc Standards

The XAS spectra of zinc standards in Figure 46 show that for each standard the )(-

amplitude decreased with increase in temperature as a result of the increase in

contributions from thermal vibrations. Unlike other zinc standards, the spectra of aqueous

zinc nitrate show only first shell contributions as would be expected. Figure 46 also

includes chalcophanite, which was generated theoretically using FEFF7. Resultant

Fourier transforms along with the fits for these standards are presented in Figure 47 and

in Table 12 where their structural parameters generated from the fits are compared with

those of their known structure (shown in parentheses). For aqueous zinc nitrate the first

shell consists of 5.83 ± 0.4 O atoms at an average radial distance of 2.18 ± 0.04 A; these

parameters are indicative of the octahedral coordination of Zn by O in the aqueous

solution. Recently, Trainor et al. (2000) reported 6.1 O atoms at 2.07 A around Zn from

XAFS studies with a 10 mM Zn(NO 3)2 at pH 3.6; Numako and Nakai (1999) estimated

the Zn-0 distance in 0.1 M Zn(NO3) 2 to be approximately 2.09 A when they fixed the

number of O atoms to 6. From XAFS studies with an aqueous ZnEDTA solution at pH 3,

Schlegel et al. (1997) found two sets of O atoms contributing towards the first shell: 3.5

atoms at 2.01 A and 3.2 atoms at 2.19 A.

For ZnO and for ZnOnH2O, the first shell was consistent with a tetragonal

structure comprising of 3.3-4 O atoms (R = l.96 A) with a second shell of 11.7-14.3 Zn

atoms (R = 3.21-3.22 A), consistent with Trainor et al. (2000). Pandya et al. (1995)

investigated the local structure of Zn²+ in concentrated aqueous hydroxide solutions.
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Figure 46. Background subtracted, normalized, and averaged k 3-weighted XAS spectra
of Zn standards studied at Zn K-edge in transmission mode as a function of temperature.
ZnMn3O7 structure is generated from crystallographic data using FEFF7 [(Post and
Appleman, 1988j.
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Figure 47. Fourier transforms (solid lines) of Zn standards studied at (a) 298 K and (b)
77 K, filtered over 2.65-13.65 (except Zn(NO 3 )2,..1 2.3-9.2 A- ') and fitted (dashed
lines) with ZnMn3O7 over 1.0-3.65 A (except ZnCO3 .nH2O with hydrozincite over 0.6-3.8
A and Zn(NO3)2, aq with ZnMn3O7 over 0.5-2.20 A).



Table 12. Structural Parameters of Ni and Zn Standards
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Using single and multiple scattering, they determined that the Zn ions are in a tetrahedral

configuration with a Zn-O bond distance of 1.96 A, however, no satisfactory fits were

obtained for the second shell. In the present research, the XAS spectra of ZnCO 3 -nH2 O

were fitted with hydrozincite, where the second shell coordination numbers were fixed.

The resultant first shell includes 5.2 to 5.6 O atoms at 2.12 A, while the second shell

showed good fits for four zinc atoms at 3.14 A and two O atoms at 3.24 A. No stable fits

were obtained when carbon was included in the second shell; this may be due to the

smaller single scattering contributions from carbon as compared to zinc and oxygen.

Hesterberg et al. (1997) reported the first shell for ZnCO 3 (fitted with zincite) to consist

of 6.2 O at 2.09 A, while that of zinc carbonate hydroxide (also fitted with zincite) was

comprised of 6.2 O atoms at 2.01 A. For ZnO-nH2O at 298 K and ZnCO3.nH2O at all

temperatures, stable fits were obtained only when the third cumulant (C 3) was included,

which is indicative of moderate disorder in their structures. For all other standards, the

fits were well described by a Gaussian distribution. Temperature studies revealed a

decrease in the Debye-Waller factor (a 2) with a decrease in temperature.

7.2 Zn-HFO Adsorption Samples

The XAS spectra for Zn-HFO adsorption systems studied as a function of pH, adsorbate

loading, and scanning temperature appear to be similar to each other (Figure 48) as well

as to that of the aqueous Zn²+ . These spectra exhibit a glitch at 10.2 A 4 , which is due to

the presence of a fracture in the Si(111) crystal at the X-11A beamline. The data are

noisier in the higher k range due to the highly disordered structure from HFO. Except for
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Figure 48. Background subtracted, normalized, and averaged k 3-weighted XAS spectra
of Zn sorbed to 1 g 1: l HFO studied at Zn K-edge in fluorescence mode as a function of
pH, adsorbate loading, and temperature compared with that of aq. Zn(NO3)2 collected in
transmission mode.
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their magnitudes, these spectra resemble each other as a function of loading suggesting a

similar adsorption reaction. Furthermore, adsorption does not appear to be a function of

pH. Because these spectra are similar to aqueous Zn ²+ spectra, it appears the only

backscattering contribution is from the first shell of oxygen atoms. Fourier transforms of

these spectra filtered over the k-range 2.3-9.2 A 4 show only one broad shell for all

samples irrespective of adsorbate concentration, method of contact (Figure 48), and pH

(Figure 49). Fitting this shell between 0.5 and 2.2 A suggests the presence of 5.9-6.2

highly disordered oxygen atoms at an average radial distance of 2.18 A. This distance is

much shorter than those found for Sr, an alkaline earth metal, which was also found to be

physically sorbed to FIFO (Axe et al., 1998); this result explains the higher affinity of

transition metals to HFO in comparison with that of alkaline earth metals (Axe and

Anderson, 1997; see Chapter 5). Absence of a second shell rules out the formation of any

well-ordered zinc precipitates or a Zn-Fe solid solution. The results demonstrate the

adsorption mechanism is best represented as an outer-sphere complex. Temperature

dependence (Table 13 and Figure 48) also confirms the physical type of adsorption due to

a significant contribution by the thermal component of the Debye-Waller factor.

Additionally, because these structural parameters (Table 13) did not vary with the

adsorbate loading or pH, an earlier hypothesis that Zn sorbs to HFO through one average

type of site is corroborated here as well as in the isotherm studies. The Zn-HFO

coprecipitate was also found to exhibit a local structure consistent with the adsorption

samples suggesting that Zn is only physically sorbed on the microporous surface of

amorphous HFO. Interestingly, through macroscopic studies, Crawford et al. (1993)

demonstrated that although the coprecipitation of metal ions like Zn and Ni with
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Figure 49. Fourier transforms (solid lines) of Zn K-edge XAS spectra of Zn sorbed to 1 g
1: ¹ HFO at pH 7, presented as a function of zinc concentration, method of contact. and
temperature, each filtered over k-range 2.3-9.2 A4 and fitted with chalcophanite (dashed
lines) from 0.5 to 2.20 A.



145

Figure 50. Fourier transforms (solid lines) of Zn K-edge XAS spectra of 10 -³ moles of Zn
sorbed to FIFO (1 g L') at 25 °C, presented as a function of pH, each filtered over k-range
2.3-9.2 A- ' and fitted with chalcophanite (dashed lines) from 0.5 to 2.20.



Table 13. XAS Parameters of Zn-HFO and Zn-Goethite Adsorption Samples Filtered from 2.3 to 9.2 Å-¹**.
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amorphous iron oxide is more efficient than adsorption, the free energy changes of these

two processes are comparable. Spadini et al. (1994) found from their XAFS studies that

Cd sorption complexes with a "two-line ferrihydrite" type of hydrous ferric oxide are

independent of pH and adsorbate loading as well. They observed approximately one Fe

atom at 3.32 A and 3.50 A from the central Cd atom. Similarly, Scheinost et al. (2001)

could fit one Fe atom at 3.3 A from either Cu or Pb sorbed to two types of two-line

ferrihydrite (freshly precipitated and resuspended freeze-dried oxide). They further

observed that this local structure of sorbed Cu or Pb ion was invariant of time (up to 8

weeks), type of ferrihydrite, and presence of competing ions or fulvic acid.

7.3 Zn-Goethite Adsorption Samples

Zinc sorption to goethite was studied as a function of pH in the site saturation range as

determined from macroscopic isotherm studies. The averaged XAS spectra are similar in

phase suggesting that the zinc sorption mechanism does not change with pH (Figure 51).

Interestingly, these spectra do not resemble those of aqueous Zn(NO3)2 or of Zn-HFO

systems suggesting that the local structure of zinc changes upon sorption to goethite.

These chi spectra appear to be a result of at least two backscattering envelopes: one

probably from a lighter element such as O in the lower k-space, and an additional one

from a heavier atom such as Fe or Zn in the higher k-space. Thermodynamic analyses

from macroscopic experiments suggested that Zn adsorption to goethite is an

endothermic chemical type of reaction resulting in the formation of inner-sphere

complexes (see Chapter 5; Rodda et al., 1996). To further test the type of adsorption

mechanism, the XAS spectra were fitted with a theoretical standard generated by
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Figure 51. Background subtracted, normalized, and averaged k 3-weighted XAS spectra
of Zn sorbed to goethite (1 g L - ') studied in fluorescence mode using Ge solid state
detector presented as function of pH and temperature.



149

substituting Mn ions in chalcophanite with Fe ions as described in the XAS analyses

section (Chapter 4). Accordingly, fitting of the Fourier transforms (Figure 52 and Table

13) shows that the first shell is disordered and consists of approximately four oxygen

atoms at an average radial distance of l.97 A. These structural parameters suggest that Zn

ions do not retain their octahedral hydration shell upon sorption to goethite. Waychunas

et al. (1995) also found Zn²+ ions upon adsorption to ferrihydrite were converted from

octahedral configuration to a tetrahedral one. Recently, Trainor et al. (2000) observed

that at low sorption densities (< l.1 µmol m-²) Zn ²+ sorbs to alumina as a mononuclear

innersphere complex with tetragonal first shell coordination and an average Zn-O

distance of 1.96 A. Trainor et al. (2000) also observed two additional oxygen atoms in the

first shell at the higher sorption densities; however, they argue that given the short Zn-O

distances (2.01-2.04 A) in the first shell, these additional oxygen may be from the

alumina surface resulting in a distorted octahedra. In contrast, Zn sorbed to HFO (see

section 7.2), to goethite (Schlegel et al., 1997), and to pyrophyllite (Ford and Sparks,

2000) appeared to retain its six-fold oxygen coordination.

In the Zn-goethite systems, the second shell was best fitted with 1.7 to 2.4 Fe ions

at 2.49-2.51 A (Table 13) suggesting that Zn ions are chemically sorbed to goethite

forming an inner-sphere complex. These results are in agreement with the high

adsorption enthalpies noted for Zn and Ni sorption to goethite (see Chapter 5). No fits

were obtained with oxygen or zinc in the second shell. The structural parameters for

Zn-goethite systems show very little temperature dependence (Table 13) suggesting greater

static contributions as compared to thermal ones. This temperature effect is consistent

with chemical bonding.
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Figure 52. Fourier transforms (solid lines) of Zn-goethite adsorption sample XAS spectra
fitted with (dashed lines) Fe substituted chalcophanite standard generated with FEFF7.
The k-range for Fourier transforms is 2.3-9.2 Å-¹ while the R-window for multishell
fitting is 0.5 4.20 A.
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The Zn-Fe distances observed in this research, are comparable to many other systems

studied (Table 14); for example Cd-Fe distances found for Cd adsorption to goethite are

3.26 and 3.48 A, where the Fe coordination number at 3.48 A is three times greater than

at 3.26 A (Spadini et al., 1994). Using y-FeOOH to fit the second shell for Zn sorbed to

goethite, Schlegel et al. (1997) estimated 0.9 Fe atoms at 3.00 A and l.2 Fe atoms at 3.20

A. On the other hand, ZnEDTA, upon sorption to goethite, maintained its local structure

similar to that in the aqueous phase (Schlegel et al., 1997). As discussed above, Scheinost

et al. (2001) conducted kinetic studies for Cu and Pb sorption to two-line ferrihydrite in

single and binary systems, where one Fe atom was observed in the second shell for either

Cu or Pb. Mercury was also found to form an inner-sphere adsorption complex with

goethite at pH 4.6, where its first shell contained approximately two oxygen atoms at

2.04 A and the second shell consisted of approximately one Fe atom at 3.28 A and 3.82 A

(25). From XAS studies of Pb sorption to goethite and hematite, Bargar et al. (1997,

1998) proposed that Pb ions formed mononuclear sorption complexes with Fe ions in the

second shell at 3.27-3.31 A for hematite and at 3.31-3.36 A for goethite. However, no Pb

atoms were observed in the second shell for Pb and Pb-chloro -adsorption complexes

indicative of the absence of Pb precipitates. In chromate sorption to goethite, second shell

contributions included two Fe atoms with one at 2.91 A and the other at 3.29 A, while in

As(V)-goethite system, Fe atoms were observed at 2.85 A, 3.24 A, and 3.59 A (Fendorf

et al., 1997). For arsenite, a bidentate complex was found with Fe atoms located at 3.378

A (Manning et al., 1998). On the other hand, O'Day et al. (1998) studied a zinc-iron

oxyhydroxide coprecipitate,
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where they fitted the first shell with two oxygens at 1.92 and 2.04 A and the second shell

with a mixture of l.2 Zn at 3.54 A and 0.7 Fe at 3.12 A. Trainor et al. (2000) also

observed that in low sorption density samples (< l.3 x 10 4 moles Zn g -¹ ) second shell

contributions were consistent with either Zn atoms or Zn as well as Al at an average

distance of 3.10 A. At higher sorption densities with alumina, a mixed Zn/Al second shell

was observed at 3.05 A where the coordination number increased with sorption density

(Trainor et al., 2000). In another interesting study, Manceau et al. (2000) prepared Zn-

goethite by aging Zn-ferrihydrite coprecipitate under alkaline conditions at 70°C for 93

days. The resultant oxide was found to have a first shell comprising two O subshells: N I

= 1.1 at 1.87 A and N2 = 5.4 at 2.05 A, while the second shell exhibited a wide

distribution of Fe atoms with radial distances ranging from 3.0 to 3.48 A.

Overall these results demonstrate that even though the local structures of FIFO

and goethite are similar, they form different sorption complexes with Zn. Hence they

cannot represent each other in aquatic systems. To evaluate whether sorption to other

amorphous oxides is consistent with HFO and to compare macroscopic observations with

spectroscopic studies, Zn and Ni sorption to HMO has been investigated.

7.4 Zn-HMO Adsorption Samples

The average spectra for Zn sorbed to HMO presented (Figure 53) as a function of pH,

adsorbate loading, temperature, and contact time reveal a glitch at 10.2 Å-¹ like that

observed in the other adsorption samples and standards. The backscattering envelopes of

these spectra appear to be similar as a function of pH, adsorbate loading, and contact time
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Figure 53. Background subtracted, normalized, and averaged k 3-weighted XAS spectra
of Zn-HMO adsorption samples studied at Zn K-edge in fluorescence mode as a function
of pH, adsorbate loading, temperature, and contact time.
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suggesting that the local coordination environment for zinc, and hence its adsorption

mechanism with respect to HMO, is independent of these factors. In all of these samples,

between 2.4 and 9.2 A' the spectra show similar envelopes indicative of a light atom

such as O occupying the first shell. The amplitudes of the spectra increase with loading;

also in higher k-space the background noise increases as the adsorbed zinc concentration

decreases. The spectra from 77 K were found to have better signal-to-noise ratio and

greater amplitude than those at 298 K.

The Fourier transformed data were fit using FEFF7 generated chalcophanite. The

resulting first shell for all Zn-HMO adsorption samples revealed a broad distribution

consisting of 6-7 O atoms at an average radial distance of 2.19 A (Table 15 and Figures

54-56). Application of the third cumulant (C 3) to the fits indicates a disordered oxygen

shell (Bunker, 1983). These parameters are in agreement with those of Zn ²+ ions in

aqueous solution (Table 12) as well as of Zn ²+ sorbed to HFO suggesting that zinc is

physically sorbed to HMO where it retains its waters of hydration upon sorption. Beyond

the first shell, in the samples with higher zinc loadings and for samples with lower

1oadings studied at 77K, a second shell was also observed. This second shell is best fitted

with 7-9 O atoms at 3.49-3.50 A; these oxygen may be from functional groups on the

hydrous oxide surface and/or from the hydrated oxide surface. No reasonable fits were

obtained with Zn in the second shell suggesting the lack of precipitation or polynuclear

complex formation. Similarly, no Zn-Mn pairing could be identified in the second shell

further demonstrating that sorption is consistent with physical forces. An imprecision of

±20% is estimated with these coordination numbers for the first shell; this variance is

expected to be greater for the second shell.



Table 15. XAS Fits for Zn-HMO Samples Filtered over 2.4-9.2 A-¹ .
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Figure 54. Fourier transforms (solid lines) of Zn K-edge XAS spectra of Zn-HMO
adsorption samples at pH 7 and 298K, presented as a function of zinc concentration, each
filtered over k-range 2.4-9.4 A' and fitted with chalcophanite (dashed lines) from 0.5 to
3.78 A (except single shells were fitted between 0.5 and 2.2 A).
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Figure 55. Fourier transforms (solid lines) of Zn K-edge XAS spectra of Zn-HMO
adsorption samples at 298K, presented as a function of pH, each filtered over k-range
2.4-9.4 A- ' and fitted with chalcophanite (dashed lines) from 0.5 to 3.78 A (except single
shells were fitted between 0.5 and 2.2 A).
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Figure 56. Fourier transforms (solid lines) of Zn K-edge XAS spectra of Zn-HMO
adsorption samples at pH 7, presented as a function of temperature, each filtered over k-
range 2.4-9.4 A- ' and fitted with chalcophanite (dashed lines) from 0.5 to 3.78 A (except
single shells were fitted between 0.5 and 2.2 A).
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Temperature dependence (Table 15 and Figure 56) also confirms the physical type

of adsorption due to a significant contribution by the thermal component of the Debye-

Waller factor. Given the error, the local structure of adsorbed Zn ions is independent of

adsorbate loading (Figure 54) and pH in the range of 3.0 to 7.0 (Figure 55), suggesting

that the adsorption mechanism can be represented by one average type of site. This result

is consistent with macroscopic studies (see Chapter 5). Interestingly, the long-term (32

days of reaction time) sample with an adsorbate loading of 4 x 10 -³ moles of Zn

HMO, as shown in Figure 54, was found to have a similar local structure to that of those

with a 4 h contact time. Because the data represent a volume average where 30% of Zn is

located internally, when Zn diffuses along the micropore walls of HMO, its sorption is

similar to that of the 4 h contact time where the adsorption is restricted to the external

surface. Axe and coworkers (1998, 2000) have demonstrated from their spectroscopic

studies with Sr-HMO and Sr-HFO systems that the local structure of Mn in HMO and of

Fe in HFO did not change in the presence or absence of Sr upto months.

One of the hypotheses from the macroscopic studies is that a group of metals from

the Periodic table must form similar adsorption complexes. To test this hypothesis, the

sorption mechanism of Ni to HMO is discussed in the next section; this work

complements earlier macroscopic studies.

7.5 Nickel Standards

A comparison of the XAS spectra of all Ni standards (Figure 57) shows that except for

aqueous nickel nitrate all other standards have second shell contributions. The XAS

spectrum of Ni6MnO 8 is generated from crystallographic data using FEFF7 (Porta et al.,
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Figure 57. Background subtracted, normalized, and averaged k ³-weighted XAS spectra
of Ni standards studied at 298 K and Ni K-edge in transmission mode. Ni 6MnO8  structure
is generated from crystallographic data using FEFF7 (Porta et al., 1991).
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1991). Ni6MnO8 is isomorphous to Mg6MnO8 where octahedrally coordinated Ni 2+ and

Mn4+ are located in a cubic lattice with space group Fm3m (Porta et al., 1991).

Accordingly, the first shell around Ni consists of two oxygen atoms at 2.077 A and four

oxygen atoms at 2.083 A, with a second shell of four Mn atoms at 2.421 A and eight Ni

atoms at 2.937 A (Porta et al., 1991). Resultant Fourier transforms of the other three

standards presented in Figure 58 along with the fits (Table 15) show only one shell

surrounding the Ni ion in aqueous nickel nitrate. This shell is comprised of 6.08 O atoms

at 2.07 A for the 10-³ M nickel nitrate solution at pH 1. Solution speciation shows Ni2+ as

the dominant species for this sample (Allison et al., 1991). Consistently, Magini et al.

(1988) reported the primary shell radius for Ni2+ to be 2.07 A. This value is based on a

compilation of various experiments including diffraction and scattering techniques, XAS,

infrared and Raman spectroscopy, mass spectrometry, nuclear magnetic resonance

spectroscopy, and various ab initio approaches.

The fits for the standards are shown in Table 12, and reveal that the local

coordination environment is consistent with their known crystalline structure. Pandya et

al. (1990) investigated the structure of a-Ni(OH)2 and found 5.8 oxygen atoms in the first

shell at 2.04 A and approximately 5.7 Ni atoms in the second shell at an average radial

distance of 3.07 A. Scheidegger et al. (1998) presented a compilation of the structural

parameters of ß-Ni(OH)2, Ni(OH)2, and a coprecipitated phase containing Ni and Al

(Ni:Al = 3:l) that was determined using XAFS, XRD, and neutron diffraction. They

found that Ni2+ in these three standards has an octahedral first shell coordination with R.

0 = 2.04-2.07 A while the second shell in nickel hydroxides was composed of 5-6 Ni

atoms at 3.09-3.13 A. A second shell was also observed with
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Figure 58. Fourier transforms (solid lines) of Ni standards studied at 298 K, each filtered
over k-range 2.4-9.22A (except NiO — 2.4-13.3 A-¹ ) and fitted with NiO (dashed lines)
over 0.41-3.20 A for NiO, 0.41-3.70 A for NiCO3 .nH2O, 0.41-2.20 A for Ni(NO3)2,aq
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Ni-Al coprecipitate where it was comprised of 3.8-4.8 Ni atoms at 3.03-3.06 A

(Scheidegger et al., 1998). On the other hand, nickel carbonate hydrate was found to have

6.74 oxygens at an average radial distance of 2.04 A and 5.47 Ni atoms at an average

distance of 3.54 A. These results are in agreement with the XRD findings of Pertlik

(1985) who found six 0 atoms in the first shell located at 2.08 A in NiCO 3 , while the

second shell consisted of six Ni atoms at an average radial distance of 3.62 A.

7.6 Ni-HMO Adsorption Samples

The local structure of nickel sorbed to HMO was investigated with XAS as a function of

pH, adsorbate concentration, and the reaction time. The spectra (Figure 60) of all the

samples are similar suggesting that the adsorption mechanism is independent of these

parameters. These spectra also reveal second shell contributions as well. The amplitude

and the signal-to-noise ratio of these spectra improved with the adsorbate loading. Best

fits the Fourier transforms of these samples revealed (Table 15 and Figures 61 and 62)

5.8-6.2 O in a disordered first shell at an average bond distance of 2.07 A. The first shell

parameters are similar to those of the aqueous Ni ion suggesting that the primary

hydration shell of the Ni ion remains intact upon adsorption to HMO. Scheidegger et al.

(1996) reported six oxygens at 2.02-2.04 A around Ni sorbed to pyrophyllite at all

sorption densities up to 2.99 x 10 4 mol g-¹. Roberts et al. (1999) observed a first shell

coordination of 5.4-6.9 O atoms at 2.05-2.06 A for Ni sorbed to a clay, and found this

shell to be independent of pH and contact time. Present analyses also suggested that the

second shell was best represented with 5.6-8.4 oxygens at 3.32-3.35 A.
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Figure 59. Background subtracted, normalized, and averaged k 3-weighted XAS spectra
of Ni sorbed to HMO studied at 298 K and Ni K-edge in fluorescence mode as a function
of pH, adsorbate loading, and contact time.



Table 16. Ni-HMO Samples Fitted with NiO Model
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Figure 60. Fourier transforms (solid lines) of Ni K-edge XAS spectra of Ni sorbed to
HMO (l g U') studied at 298 K presented as a function of pH and adsorbate
concentration, each filtered over k-range 2.45-9.21 Å-¹ and fitted with Ni6MnO8 (dashed
lines) over 0.41-4.00 A.
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Figure 61. Fourier transforms (solid lines) of Ni K-edge XAS spectra of Ni sorbed to
HMO (1 g L -¹ ) studied at pH 7 and 298 K, presented as a function of contact time, each
filtered over k-range 2.45-9.21 A - ' and fitted with Ni6MnO8 (dashed lines) over 0.41-4.00
A.
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These oxygen are most likely contributing from the HMO surface. Surface precipitation

of Ni is excluded since there was no evidence of Ni in the second shell. Similarly, second

shell fits with Mn atoms revealed no plausible fits. Thus, Ni sorption to HMO can be best

described as an outer sphere mechanism, which is independent of pH and adsorbate

concentration. Figure 59 also presents the effect of reaction time on nickel adsorption to

HMO. Fits (Table 15) show that the local structure of Ni did not change between 4 h and

110 days; thus eliminating the possibility of precipitation, polymerization, or

coprecipitation. The continuous adsorption as a function of time is consistent with

intraparticle surface diffusion. Therefore, these internal adsorption sites constituting as

much as 98% of the total sorbed are no different from the external ones. This study

supports macroscopic results (See Chapter 5). Other spectroscopic studies that support

intraparticle diffusion as the rate limiting sorption mechanism in microporous oxides

include: As(V) sorption to ferrihydrite (Waychunas et al et al., 1993); Cd and Se(IV) to

alumina (Papelis, 1995); Sr sorption to HFO (Axe et al., 1998) and HMO (Axe et al.,

2000); Pb sorption to aluminum oxide (Strawn et al.1998); and Cu and Pb sorption to

ferrihydrite (Scheinost et al., 2000).

On the other hand, Sparks and coworkers (Scheidegger et al., 1996, 1998; Ford et

al., 1999; Scheinost et al., 1999: Elzinga and Sparks, 1999) found from extensive kinetic

studies of Ni sorption to clays including pyrophyllite, gibbsite, montmorillonite, talc,

silica, and pyrophyllite-montmorillonite mixtures that Ni forms a coprecipitate phase

with Al known as Ni-Al layered double hydroxide (LDH). In such precipitates, the

second shell is generally a result of contributions from Ni at 3.05-3.06 A and Al at 3.06-

3.12 A with Ni/Al coordination ratios ranging l-3 depending upon the initial conditions.
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The striking similarity in the local structures of Ni 2+ and Zn²+ sorbed to HMO as a

function of pH, adsorbate concentration, and reaction time confirms that a group of from

the Periodic Table form similar adsorption complexes with HMO. A comparison of Sr

sorption to HMO with Ni and Zn sorption to HMO also confirms the higher affinity of

transition metals for adsorbents.

7.7 Summary of XAS Studies

The above spectroscopic work demonstrates that the divalent transition metal ions such as

Ni and Zn are sorbed to amorphous manganese oxides such as HMO as fully hydrated

ions and are attached to the oxide surface through physical forces. Absence of

contributions from Mn atoms in the second shell suggests a highly disordered outer

sphere type of adsorption mechanism that is independent of pH and adsorbate

concentration. Additionally, there is no evidence for the formation of polynuclear

complexes or any well-ordered precipitates of these adsorbates. Strong similarities in the

local structures of Ni and Zn sorbed to HMO suggest that a group of metals from the

Periodic Table exhibit similar adsorption behavior. Furthermore, the XAS analyses of the

long-term samples support that sorption of these divalent metal ions is limited by

intraparticle diffusion, where the sites located along the micropore walls are no different

from those on the external surface. This research substantiates the need to include surface

diffusion in estimating the bioavailability and mobility of the metal contaminants in soils

and sediments.

Likewise based on the spectroscopic evidence, the Zn ion is physically sorbed to

amorphous oxides such as HFO where it retains its hydration shell upon adsorption.
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Absence of Zn contributions in the second shell rules out the possibility of formation of

polynuclear complexes or any well-ordered zinc precipitates. Absence of contributions

from Fe in the HFO systems suggests an outer sphere type of adsorption mechanism that

is independent of pH and adsorbate concentration. Similarly, the local structure from the

coprecipitate sample suggests that Zn is only physically sorbed in the micropores of

amorphous HFO and does not appear to form any solid solution with ferric ions. On the

other hand, zinc ions form strongly bonded mononuclear adsorption complexes with

goethite where they do not retain their octahedral hydration shell. Overall, the results

presented in this paper demonstrate that even though the local structure of HFO and

goethite are found to have similarities (Spadini et al., 1994), they do not exhibit similar

sorption properties. HFO is viewed as a mosaic of short octahedral chains resulting in

larger sorption capacity than goethite. Most importantly, this research aids in selection of

mechanistic models for describing the fate of zinc and nickel in soils and sediments that

are rich in oxides.



- CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Hydrated oxides of Al, Fe, and Mn are prevalent in soils and sediments as discrete

particles or as coatings. These microporous oxides have large surface areas and high

affinity for metal ions, and hence they act as both a sink and a source for

anthropogenically released metal contaminants. To understand their associated risks to

the environment and to develop effective waste management programs, mechanistic

models are needed to accurately predict their fate in soils and sediments.

To achieve this objective, sorption of Sr, Cd, Zn, Ni, and Ca to amorphous oxides

were studied with short- and long-term experiments, as a function of pH, ionic strength,

concentration, temperature, and reaction time. Results from these macroscopic

experiments were complemented with the XAS studies. This chapter summarizes all the

experimental and modeling results. Additionally, questions that would lead to more

hypotheses and hence future research are also briefly proposed here.

Characterization studies showed that amorphous oxides of aluminum, iron, and

manganese oxides have large surface areas and are microporous. As such, intraparticle

diffusion is the rate limiting mechanism in the sorption process. On the other hand, even

though crystalline oxides such as goethite are also microporous, their porosity is much

smaller than that of amorphous oxides. As a result, metal sorption occurs on external (or

macropore) surfaces. A comparison of potentiometric titration of HFO and goethite

shows that the surface charge density of HFO is as much as 10 times that of goethite

suggesting that HFO has a much greater adsorption capacity. This difference in site

capacity was demonstrated in isotherms, where the HFO density was over three orders of
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magnitude greater than that for goethite. Furthermore, a correlation was developed

relating site capacity (CI) and surface charge density.

Macroscopic studies in combination with the XAS investigations suggest that the

sorption of divalent metal ions to amorphous oxides is a two-step process: rapid

adsorption to the external surface followed by slow intraparticle (surface) diffusion along

the micropore walls. Adsorption is an endothermic physical reaction and can be

represented by one average mechanism that is independent of pH and adsorbate

concentration. Based on enthalpies, XAS, and the effect of ionic strength, the sorbed ions

retain their primary hydration shell in forming an outer sphere adsorption complex. A

second correlation was developed relating adsorption enthalpies (AH°) and their

structural parameters: the primary hydration number (N) and the hydrated radius (RH).

On the other hand, metal ions chemically sorb to the goethite surface to form

mononuclear inner sphere complexes. Although goethite may show a higher affinity for

metal ions than HFO, their site capacity is much smaller than that of HFO. Macroscopic

analyses disclosed two sets of adsorption sites on the goethite surface: a small set of high

affinity sites available to transition metal ions and a large set of low affinity sites to

which only alkaline earth metals such as Ca bind. This limited availability of high affinity

sites induces competitive adsorption in a binary system of Ni and Zn, which was

accurately described with the single-site Langmuir model. In contrast, no competition

was observed in binary systems composed of one alkaline earth metal (Ca) and one

transition metal (Ni or Zn). If Ni and Zn ions compete for the same type of sites, they

may have similar local structures when sorbed to goethite. Therefore, the local structures

of transition metals such as Ni and Zn sorbed to the goethite surface could be compared
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with each other and with the local structure of an alkaline earth metal, Ca. Additionally to

further demonstrate that sorption of Zn and Ni ions is not affected by the presence of Ca

ions, the local structures of these metal ions could be studied with the help of XAS in the

presence of Ca and compared to their local structures in single adsorbate systems.

The transient long-term studies demonstrated surface diffusion (the second step)

as the rate-limiting mechanism where the internal surfaces accounted for as much as 90%

of the total sites. XAS investigations of long-term (intraparticle diffusion) studies

revealed that the local structure of metal ions sorbed to amorphous oxides do not change

with time suggesting that the adsorption mechanism on the micropore walls is similar to

the one on the external surface. Modeling results revealed surface diffusivities ranged

from 1046 to le' cm² s-¹ . Based on these surface diffusivities, sorption of metal ions to

these microporous oxides may take a few days to few years to reach equilibrium. Based

on the site activation theory, the surface diffusivities (D s) can be estimated knowing the

activation energy (EA) and the site capacity (C1). From Polanyi relation, this EA is linearly

related to ΔH° through a proportionality constant a. This EA for a specific metal is

comparable for HAO, HFO, and HMO. Likewise, one average value of a was found for a

group of metals from the Periodic Table, suggesting similar sorption complexes. Strong

similarities in the local structure of Ni and Zn ions sorbed to HMO fortify this hypothesis.

Interestingly, no significant diffusion of metals ions was observed with goethite.

A combination of site density and thermodynamic studies suggests that site

densities are a function of temperature. This phenomenon is already observed in this

research for goethite (Table 11 Chapter 6). Hence the correlation developed here for

predicting site density can be modified to include the effects of temperature. This
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correlation would allow a transport model to account for effects of seasonal variations in

aquatic systems. Correspondingly, it would also be interesting to validate diffusivities as

a function of temperature. Soils and sediments are affected by naturally occurring organic

compounds such as humic acids as well as anthropogenically released toxic compounds

such as TCE, benzene, other aromatic and chlorinated compounds. In such systems, how

is intraparticle diffusion effected, is competitive diffusion possible between the organics

and the metal contaminants? Again, are all the sites located along the micropore walls of

the amorphous oxides available? To answer these and questions, transient studies for

metal contaminants sorbing to oxides must be conducted in the presence of

environmentally important organic compounds. Similar to the divalent metal ions, is it

possible to predict the adsorption of other multivalent metal ions such as uranium,

cesium, chromium, arsenic, and selenium? Temperature studies may be useful in

demonstrating the validity of the correlations developed in the current research for

divalent ions.

Hydrous metal oxides occur in nature as either discrete particles and as coatings

on other mineral surfaces. This research has established a baseline for understanding

sorption mechanisms to the discrete oxide particles. As a result, the next step is to

evaluate these oxides as coatings, where sorption can be studied macroscopically and

spectroscopically. Also, it would be useful to test the correlations developed for the

discrete particles in this research and assess whether they are applicable to the oxide

coatings as well. Prior to sorption studies, it would be important to study the mineralogy

and characteristics of these oxides in the presence of other minerals. It is equally

important to assess their mineralogy in the presence of metal adsorbates, as a function of
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pH, adsorbate loading, and time. Natural soils and sediments are generally a mixture of

various oxides. In such systems is the total adsorption capacity a function of the site

capacities of the individual oxides? Can the fate of metal ions be predicted in mixed

oxide systems based on the single oxide studies?

Overall this research renders an insight into the mechanisms by which hydrated

metal oxides control the partitioning and the bioavailability of metal contaminants. This

study provides methods that can accurately predict important transport and

thermodynamic parameters for describing the fate of metal pollutants in soils and

sediments abundant in HAO, FIFO, and HMO.



APPENDIX A

SOLUBILITY AND SPECIATION DIAGRAMS FOR CA, CD, NI, ZN, AND SR
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Calcium speciation in 5 x 104 M Ca(NO3)2 aqueous solution at 298 K
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Calcium solubility diagram in open system conditions at 298 K
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Cadmium solubility in open systems (P 	 = 10 -3.46 atm) at 298 K.
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-6Nickel speciation in 5 x 10 M Ni(NO 
3 )2 aqueous solution at 298 K.
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Ni solubility in open system (P 
CO2 = 1 0

-3 46 atm) at 298 K
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Strontium speciation in 5 x 10 -4 M Sr(NO 
3 )2

 aqueous solution at 298 K.
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Strontium solubility in open system (P
CO2 

= 10 -3.46 
atm) at 298 K.
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Zinc speciation in 5 x 10 -7 m Zn(NO3)2 aqueous solution at 298 K.
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Zn solubility in open system (P 
CO2 = 10

-3
.46 atm) at 298 K.
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APPENDIX B

CHARACTERIZATION OF HYDRATED METAL OXIDES
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Pore size distribution of freeze-dried goethite from N2 desorption method (IGT Report, 1999)
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Pore size distributions of freeze-dried HAO N2 desorption method (IGT Report, 1995)
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Particle size distributions of HAO, HFO (Axe and Anderson, 1995), and HMO
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Particle size distributions of goethite
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Potentiometric titrations of HFO under closed system condition
For all three studies initial vol. of 0.1 N NaOH added = 13 ml
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9.951 3.30 -84.971
9.941 3.40 -84.203
9.930 3.50 -83.449
9.917 3.60 -82.726
9.904 3.70 -81.996
9.891 3.80 -81.259
9.879 3.90 -80.499
9.865 4.00 -79.766
9.852 4.10 -79.010
9.839 4.20 -78.247
9.824 4.30 -77.508
9.810 4.40 -76.748
9.800 4.50 -75.924
9.787 4.60 -75.139
9.773 4.70 -74.362
9.760 4.80 -73.566
9.745 4.90 -72.789
9.733 5.00 -71.971
9.717 5.10 -71.194
9.705 5.20 -70.367
9.692 5.30 -69.546
9.680 5.40 -68.711
9.667 5.50 -67.882
9.653 5.60 -67.059
9.640 5.70 -66.222
9.629 5.80 -65.363
9.616 5.90 -64.519
9.600 6.00 -63.698
9.584 6.10 -62.872
9.570 6.20 -62.025
9.556 6.30 -61.174
9.542 6.40 -60.319
9.526 6.50 -59.476
9.510 6.60 -58.628
9.490 6.70 -57.804
9.470 6.80 -56.973
9.451 6.90 -56.130
9.430 7.00 -55.294
9.411 7.10 -54.440
9.396 7.20 -53.560
9.378 7.30 	 -52.693
9.360 7.40 -51.821
9.340 7.50 -50.956
9.319 7.60 -50.091

201



9.299 7.70 -49.216
9.276 7.80 -48.351
9.253 7.90 -47.480
9.230 8.00 -46.604
9.206 8.10 -45.727
9.182 8.20 -44.846
9.161 8.30 -43.950
9.138 8.40 -43.057
9.110 8.50 -42.175
9.079 8.60 -41.296
9.048 8.70 -40.411
9.017 8.80 -39.520
8.985 8.90 -38.627
8.953 9.00 -37.728
8.921 9.10 -36.825
8.887 9.20 -35.921
8.854 9.30 -35.010
8.821 9.40 -34.096
8.789 9.50 -33.176
8.756 9.60 -32.255
8.723 9.70 -31.330
8.690 9.80 -30.403
8.656 9.90 -29.474
8.622 10.00 -28.542
8.589 10.10 -27.606
8.555 10.20 -26.670
8.523 10.30 -25.730
8.491 10.40 -24.788
8.459 10.50 -23.844
8.426 10.60 -22.899
8.385 10.70 -21.958
8.335 10.80 -21.018
8.306 10.90 -20.067
8.281 11.00 -19.113
8.248 11.10 -18.162
8.214 11.20 -17.210
8.180 11.30 -16.257
8.142 11.40 -15.304
8.104 11.50 -14.351
8.065 11.60 -13.397
8.029 11.70 -12.441
7.987 11.80 -11.486
7.945 11.90 -10.529
7.902 12.00 -9.573
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7.859 12.10 -8.615
7.818 12.20 -7.657
7.778 12.30 -6.698
7.737 12.40 -5.738
7.699 12.50 -4.778
7.662 12.60 -3.817
7.622 12.70 -2.856
7.584 12.80 -1.895
7.548 12.90 -0.934
7.512 13.00 0.028
7.476 13.10 0.990
7.442 13.20 1.953
7.408 13.30 2.915
7.384 13.40 3.879
7.348 13.50 4.841
7.313 13.60 5.804
7.279 13.70 6.767
7.248 13.80 7.730
7.233 13.90 8.695
7.209 14.00 9.658
7.178 14.10 10.621
7.145 14.20 11.585
7.117 14.30 12.548
7.084 14.40 13.512
7.052 14.50 14.475
7.020 14.60 15.438
6.985 14.70 16.402
6.950 14.80 17.365
6.921 14.90 18.329
6.890 15.00 19.292
6.862 15.10 20.256
6.830 15.20 21.219
6.799 15.30 22.182
6.768 15.40 23.146
6.739 15.50 24.109
6.720 15.60 25.073
6.696 15.70 26.036
6.664 15.80 26.999
6.632 15.90 27.962
6.603 16.00 28.925
6.574 16.10 29.888
6.546 16.20 30.851
6.519 16.30 31.814
6.491 16.40 32.777
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6.462 16.50 33.739
6.434 16.60 34.702
6.414 16.70 35.665
6.389 16.80 36.627
6.363 16.90 37.590
6.338 17.00 38.552
6.315 17.10 39.514
6.293 17.20 40.476
6.266 17.30 41.438
6.242 17.40 42.400
6.220 17.50 43.362
6.199 17.60 44.324
6.175 17.70 45.285
6.152 17.80 46.246
6.129 17.90 47.207
6.106 18.00 48.168
6.084 18.10 49.129
6.061 18.20 50.089
6.038 18.30 51.050
6.019 18.40 52.011
5.998 18.50 52.971
5.976 18.60 53.931
5.955 18.70 54.890
5.933 18.80 55.850
5.909 18.90 56.808
5.886  19.00 57.766
5.863 19.10 58.724
5.840 19.20 59.682
5.818 19.30 60.639
5.798 19.40 61.597
5.780 19.50 62.556
5.763 19.60 63.514
5.741 19.70 64.470
5.721 19.80 65.427
5.699 19.90 66.382
5.681 20.00 67.339
5.661 20.10 68.294
5.641 20.20 69.249
5.622 20.30 70.204
5.601 20.40 71.157
5.582 20.50 72.112
5.565 20.60 73.066
5.544 20.70 74.018
5.531 20.80 74.975
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5.530 20.90 75.939
5.513 21.00 76.892
5.499 21.10 77.847
5.479 21.20 	 78.798
5.465 21.30 79.752
5.453 21.40 80.708
5.431 21.50 81.655
5.412 21.60 82.604
5.406 21.70 83.563
5.386 21.80 84.510
5.369 21.90 85.459
5.349 22.00 86.405
5.338 22.10 87.359
5.324 22.20 88.309
5.311 22.30 89.260
5.299 22.40 90.211
5.288 22.50 91.164
5.276 22.60 92.115
5.268 22.70 93.070
5.257 22.80 94.022
5.248 22.90 94.975
5.239 23.00 95.929
5.229 23.10 96.881
5.220 23.20 97.833
5.211 23.30 98.786
5.203 23.40 99.740
5.195 23.50 100.694
5.188 23.60 101.648
5.179 23.70 102.600
5.170 23.80 103.552
5.162 23.90 104.504
5.154 24.00 105.457
5.149 24.10 106.414
5.141 24.20 107.366
5.134 24.30 108.319
5.120 24.40 109.261
5.110 24.50 110.209
5.101 24.60 111.158
5.094 24.70 112.111
5.088 24.80 113.065
5.082 24.90 114.018
5.076 25.00 114.972
5.070 25.10 115.926
5.063 25.20 116.877
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5.056  25.30 117.829
5.050 25.40 118.782
5.042 25.50 119.730
5.036 25.60 120.683
5.030 25.70 	 121.636
5.023 25.80 122.586
5.016 25.90 123.536
5.011 26.00 124.490
5.006 26.10 125.444
5.001 26.20 126.398
9.890 0.00 -117.941
9.882 0.10 -117.113
9.876 0.20 -116.249
9.870 0.30 -115.383
9.863 0.40 -114.533
9.855 0.50 -113.697
9.850 0.60 -112.811
9.843 0.70 -111.955
9.837 0.80 -111.083
9.830 0.90 -110.224
9.822 1.00 -109.378
9.812 1.10 -108.559
9.804 1.20 -107.708
9.797 1.30 -106.842
9.788 1.40 -106.001
9.780 1.50 -105.144
9.767 1.60 -104.351
9.759 1.70 -103.489
9.748 1.80 -102.662
9.739 1.90 -101.808
9.727 2.00 -100.988
9.715 2.10 -100.163
9.703 2.20 -99.335
9.691 2.30 -98.502
9.680 2.40 -97.656
9.667 2.50 -96.827
9.655 2.60 -95.985
9.642 2.70 -95.148
9.629 2.80 -94.308
9.618 2.90 -93.446
9.609 3.00 -92.563
9.600 3.10 -91.679
9.592 3.20 -90.784
9.583 3.30 -89.897



9.573 3.40 -89.016
9.563 3.50 -88.133
9.554 3.60 -87.241
9.546 3.70 -86.339
9.538 3.80 -85.436
9.529 3.90 -84.540
9.520 4.00 -83.642
9.511 4.10 -82.742
9.502 4.20 -81.842
9.494 4.30 -80.933
9.485 4.40 -80.030
9.475 4.50 -79.132
9.464 4.60 -78.239
9.454 4.70 -77.338
9.443 4.80 -76.442
9.431 4.90 -75.550
9.417 5.00 -74.668
9.403 5.10 -73.783
9.386 5.20 -72.912
9.370 5.30 -72.032
9.355 5.40 -71.144
9.339 5.50 -70.258
9.322 5.60 -69.374
9.305 5.70 -68.487
9.284 5.80 -67.614
9.265 5.90 -66.728
9.246 6.00 -65.840
9.228 6.10 -64.944
9.210 6.20 -64.045
9.191 6.30 -63.147
9.170 6.40 -62.253
9.152 6.50 -61.346
9.137 6.60 -60.428
9.123 6.70 -59.505
9.108 6.80 -58.584
9.091 6.90 -57.666
9.072 7.00 -56.752
9.054 7.10 -55.834
9.040 7.20 -54.903
9.018 7.30 -53.991
8.998 7.40 -53.071
8.978 7.50 -52.150
8.960 7.60 -51.222
8.939 7.70 -50.299
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8.918 7.80 -49.373
8.898 7.90 -48.445
8.878 8.00 -47.514
8.854 	 8.10 -46.588
8.831 8.20 -45.659
8.805 8.30 -44.732
8.782 8.40 -43.799
8.757 8.50 -42.867
8.732 8.60 -41.933
8.708 8.70 -40.996
8.685 8.80 -40.057
8.661 8.90 -39.117
8.636 9.00 -38.177
8.609 9.10 -37.237
8.581 9.20 -36.297
8.554 9.30 -35.354
8.526 9.40 -34.411
8.499 9.50 -33.466
8.471 9.60 -32.520
8.442 9.70 -31.573
8.413 9.80 -30.626
8.384 9.90 -29.677
8.355 10.00 -28.727
8.323 10.10 -27.778
8.295 10.20 -26.826
8.267 10.30 -25.873
8.239 10.40 -24.919
8.211 10.50 -23.965
8.183 10.60 -23.010
8.155 10.70 -22.054
8.127 10.80 -21.098
8.099 10.90 -20.141
8.071 11.00 -19.184
8.043 11.10 -18.226
8.015 11.20 -17.268
7.987 11.30 -16.310
7.959 11.40 -15.351
7.931 11.50 -14.392
7.903 11.60 -13.432
7.875 11.70 -12.472
7.847 11.80 -11.512
7.819 11.90 -10.551
7.791 12.00 -9.590
7.763 12.10 -8.629
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7.735 12.20 -7.668
7.707 12.30 -6.707
7.679 12.40 -5.745
7.651 12.50 -4.783
7.623 12.60 -3.821
7.596 12.70 -2.859
7.569 12.80 -1.897
7.542 12.90 -0.934
7.516 13.00 0.029
7.490 13.10 0.992
7.464 13.20 1.954
7.438 13.30 2.917
7.413 13.40 3.881
7.388 13.50 4.844
7.363 13.60 5.807
7.348 13.70 6.771
7.323 13.80 7.735
7.296 13.90 8.698
7.278 14.00 9.662
7.251 14.10 10.625
7.225 14.20 11.589
7.198 14.30 12.552
7.175 14.40 13.516
7.147 14.50 14.479
7.122 14.60 15.443
7.099 14.70 16.407
7.072 14.80 17.371
7.051 14.90 18.334
7.029 15.00 19.298
7.007 15.10 20.262
6.985 15.20 21.226
6.963 15.30 22.190
6.942 15.40 23.154
6.920 15.50 24.118
6.898 15.60 25.082
6.876 15.70 26.045
6.854 15.80 27.009
6.831 15.90 27.973
6.810 16.00 28.937
6.787 16.10 29.901
6.768 16.20 30.864
6.748 16.30 31.828
6.728 16.40 32.792
6.709 16.50 33.756
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6.690 16.60 34.720
6.668 16.70 35.683
6.650 16.80 36.647
6.634 16.90 37.611
6.616 17.00 38.575
6.600 17.10 39.538
6.581 17.20 40.502
6.560 17.30 41.465
6.556 17.40 42.430
6.537 17.50 43.394
6.519 17.60 44.357
6.500 17.70 45.320
6.483 17.80 46.284
6.466 17.90 47.247
6.449 18.00 48.211
6.432 18.10 49.174
6.415 18.20 50.138
6.398 18.30 51.101
6.381 18.40 52.064
6.365 18.50 53.027
6.349 18.60 53.991
6.333 18.70 54.954
6.316 18.80 55.917
6.299 18.90 	 56.880
6.272 19.00 57.841
6.250 19.10 58.803
6.229 19.20 59.765
6.213 19.30 60.728
6.197 19.40 61.691
6.181 19.50 62.653
6.166 19.60 63.616
6.151 19.70 64.578
6.136 19.80 65.541
6.121 19.90 66.503
6.106 20.00 67.465
6.090 20.10 68.427
6.075 20.20 69.389
6.060 20.30 70.351
6.044 20.40 71.313
6.030 20.50 72.275
6.015 20.60 73.236
6.001 20.70 74.198
5.986 20.80 75.160
5.972 20.90 76.121
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5.957 21.00 77.082
5.937 21.10 78.042
5.920 21.20 79.003
5.905 21.30 79.963
5.883 21.40 80.922
5.867 21.50 81.882
5.850 21.60 82.841
5.835 21.70 83.802
5.816 21.80 84.760
5.797 21.90 85.718
5.778 22.00 86.676
5.759 22.10 87.634
5.745 22.20 88.593
5.729 22.30 89.551
5.713 22.40 90.510
5.699 22.50 91.468
5.685 22.60 92.427
5.670 22.70 93.385
5.656 22.80 94.343
5.641 22.90 95.300
5.627 23.00 96.258
5.614 23.10 97.216
5.599 23.20 98.172
5.585 23.30 99.129
5.571 23.40 100.086
5.558 23.50 101.043
5.544 23.60 101.999
5.531 23.70 102.955
5.511 23.80 103.907
5.493 23.90 104.859
5.481 24.00 105.815
5.468 24.10 106.770
5.455 24.20 107.725
5.444 24.30 108.681
5.432 24.40 109.636
5.420 24.50 110.591
5.408 24.60 111.546
5.395 24.70 112.499
5.384 24.80 113.454
5.373 24.90 114.409
5.362 25.00 115.363
5.352 25.10 116.318
5.342 25.20 117.273
5.332 25.30 118.228
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212

	5.322	 25.40 	 119.182

	

5.312 	 25.50 	 120.136

	

5.303 	 25.60 	 121.091

	

5.293 	 25.70 	 122.045

	

5.283 	 25.80 	 122.998

	

5.271 	 25.90 	 123.949

	

5.261 	 26.00 	 124.902

	

5.252 	 26.10 	 125.855

	

5.242 	 26.20 	 126.808

	

5.233 	 26.30 	 127.761

	

5.223 	 26.40 	 128.713

	

5.214 	 26.50 	 129.665

	

5.205 	 26.60 	 130.618

	

5.196 	 26.70 	 131.570

	

5.188 	 	 26.80 	 132.524

	

5.180 	 26.90 	 133.477

	

5.174 	 27.00 	 134.433



4.233 2.6 9.795269
4.211 2.7 10.46693
4.204 2.8 11.33534
9.651 0 -4.37384
9.573 0.1 -4.10922
9.471 0.2 -3.89994
9.347 0.3 -3.64398
9.186 0.4 -3.34364
8.98 0.5 -2.93808

8.738 0.6 -2.36694
8.448 0.7 -1.65936

8.1 0.8 -0.84415
7.681 0.9 0.044276
7.15 1 0.971648

6.811 1.1 1.921035
6.445 1.2 2.862608
6.132 1.3 3.789511
5.889 1.4 4.700414
5.538 1.5 5.509883
5.299 1.6 6.269457
5.137 1.7 7.015115
5.017 1.8 7.755939
4.898 1.9 8.428295
4.811 2 9.122474
4.728 2.1 9.773324
4.655 2.2 10.40779
4.599 2.3 11.07876
4.504 2.4 11.44963
4.466 2.5 12.13804
4.426 2.6 12.78455
4.378 2.7 13.32659
4.308 2.8 13.58473
4.275 2.9 14.17478
4.218 3 14.42123
4.191 3.1 15.01145
9.445 0 -6.96035
9.391 0.1 -6.3098
9.32 0.2 -5.70299

9.262 0.3 -4.99016
9.172 0.4 -4.35546
9.057 0.5 -3.72416
8.913 0.6 -3.06982
8.774 0.7 -2.32131
8.538 0.8 -1.59697
8.06 0.9 -0.85491

7.824 1 0.06289
7.441 1.1 0.98799
7.065 1.2 1.932599
6.812 1.3 2.885933
6.546 1.4 3.835347
6.322 1.5 4.780307

213



6.08 1.6 5.710007
5.89 1.7 6.630402
5.65 1.8 7.503228
5.45 1.9 8.34158
5.24 2 9.093454
5.06 2.1 9.773112

4.898 2.2 10.358
4.806 2.3 11.03491
4.744 2.4 11.76831
4.655 2.5 12.33749
4.608 2.6 13.05828
4.533 2.7 13.57461
4.467 2.8 14.07533
4.428 2.9 14.73087
4.373 3 15.2095
4.35 3.1 15.95204
4.308 3.2 16.47928
4.246 3.3 16.71561
4.202 3.4 17.09659
4.182 3.5 17.77585
4.144 3.6 18.16048
4.108 3.7 18.52677
4.084 3.8 19.06412
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7.669 2.3 0.332413
7.595 2.4 0.42146
7.52 2.5 0.51146

7.487 2.6 0.605378
7.403 2.7 0.695984
7.332 2.8 0.788111
7.204 2.9 0.877766
7.151 3 0.971695
7.063 3.1 1.064144
6.894 3.2 1.153063 .

9.086 0 -2.58685
9.06 0.1 -2.55872

9.034 0.2 -2.52661
9.001 0.3 -2.50648
8.985 0.4 -2.44498
8.947 0.5 -2.4266
8.914 0.6 -2.39261
8.895 0.7 -2.33001
8.862 0.8 -2.28897
8.839 0.9 -2.22871
8.811 1 -2.17382
8.799 1.1 -2.09435
8.768 1.2 -2.03972
8.732 1.3 -1.98824
8.704 1.4 -1.92427
8.684 1.5 -1.84976
8.643 1.6 -1.79528
8.607 1.7  -1.73255
8.586 1.8 -1.65451
8.541 1.9 -1.59466
8.509 2 -1.52201
8.482 2.1 -1.44432
8.439 2.2 -1.37547
8.411 2.3 -1.29556
8.387 2.4 -1.21246
8.344 2.5 -1.13819
8.301 2.6 -1.06183
8.275 2.7 -0.97659
8.228 2.8 -0.8988
8.18 2.9 -0.81945

8.124 3 -0.74072
8.085 3.1 -0.65533
8.044 3.2 -0.56949
8.02 3.3 -0.4788
7.99 3.4 -0.38912
7.945 3.5 -0.30203
7.899 3.6 -0.21421
7.857 3.7 -0.1249
7.833 3.8 -0.03222
7.804 3.9 0.059926
7.789 4 0.154272
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7.751 4.1 0.245641
7.727 4.2 0.339105
7.703 4.3 0.43272
7.65 4.4 0.523363
7.6 4.5 0.614898

7.55 4.6 0.70691
7.5 4.7 0.79934

7.45 4.8 0.892135
7.35 4.9 0.98214
7.3 5 1.075751

7.213 5.1 1.167668
7.181 5.2 1.262582
7.144 5.3 1.357306
7.112 5.4 1.452307
7.089 5.5 1.547742
7.052 5.6 1.642561
7.014 5.7 1.737352
9.044 0 -3.1777
9.017 0.1 -3.14558
9.007 0.2 -3.07194
8.997 0.3 -2.99777
8.981 0.4 -2.93595
8.97 0.5 -2.86257

8.941 0.6 -2.82425
8.912 0.7 -2.78218
8.89 0.8 -2.72462

8.861 0.9 -2.67652
8.834 1 -2.62228
8.812 1.1 -2.55832
8.788 1.2 -2.49549
8.76 1.3 -2.43599
8.73 1.4 -2.37657

8.705 1.5 -2.30909
8.682 1.6 -2.23784
8.655 1.7 -2.16934
8.626 1.8 -2.10103
8.595 1.9 -2.03265
8.566 2 -1.96071
8.538 2.1 -1.88642
8.514 2.2 -1.80786
8.49 2.3 -1.72833
8.464 2.4 -1.64919
8.437 2.5 -1.56966
8.415 2.6 -1.48622
8.388 2.7 -1.40489
8.359 2.8 -1.32366
8.322 2.9 -1.24522
8.275 3 -1.16956
8.244 3.1 -1.08563
8.211 3.2 -1.00157
8.184 3.3 -0.91458
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8.157 3.4 -0.82702
8.13 3.5 -0.73893
8.072 3.6 -0.65881
8.043 3.7 -0.56974
8.009 3.8 -0.48135
7.975 3.9 -0.39236
7.928 4 -0.30533
7.891 4.1 -0.21563
7.854 4.2 -0.12538
7.826 4.3 -0.03329
7.804 4.4 0.059926
7.778 4.5 0.152747
7.753 4.6 0.2459
7.727 4.7 0.339105
7.706 4.8 0.433071
7.685 4.9 0.527148
7.642 5 0.619021

7.6 5.1 0.711383
7.54 5.2 0.802552
7.48 5.3 0.894308

7.424 5.4 0.986828
7.389 5.5 1.081025
7.346 5.6 1.174873
7.312 5.7 1.269392
7.265 5.8 1.363309
7.204 5.9 1.456676
7.178 6 1.551892
7.144 6.1 1.646761
7.101 6.2 1.741258
7.071 6.3 1.836384
7.03 6.4 1.931034

7.002 6.5 2.026274
6.887 6.6 2.117592

Potentiometric titrations of HMO under closed system condition with 0.1 N HNO 3
Initial 0.1 N NaOH added	 5 ml	 8.1 ml	 14 ml

pH	 u = 0.015	 µ=0.150.15	 11 = 1.50
0.92 122.5
0.93 119.6
0.94 116.9
0.95 114.2
0.96 111.5
0.98 106.4
0.99 103.8
1.00 101.6
1.05 90.6
1.10 80.8
1.16 70.5
1.23 60.1
1.30 51.2
1.42 39.0
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1.55 29.1
1.77 17.8
2.35 5.2
2.55 3.4
3.21 1.1
5.26 0.4
8.45 0.3
10.34 0.0
0.95 120.2
0.96 117.2
0.97 114.2
1.00 106.6
1.03 99.4
1.10 85.0
1.13 79.3
1.19 69.2
1.20 67.7
1.22 64.7
1.23 63.3
1.24 61.8
1.25 60.4
1.26 59.1
1.27 57.7
1.28 56.4
1.29 55.1
1.30 53.7
1.31 52.4
1.32 51.2
1.33 50.0
1.34 48.8
1.35 47.7
1.37 45.6
1.38 44.5
1.40 42.6
1.42 40.7
1.43 39.6
1.45 37.8
1.47 36.1
1.49 34.5
1.51 32.9
1.53 31.5
1.56 29.4
1.58 28.0
1.61 26.2
1.64 24.5
1.67 22.8
1.71 20.8
1.76 18.6
1.82 16.3
1.88 14.2
1.96 11.9
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2.06 	 9.6
2.33 	 5.4
2.51 	 3.7
3.23 	 1.1
5.34 	 0.5
9.10 	 0.3
9.89 	 0.2
10.17 	 0.0
11.07 	 0.0
10.87 	 0.9
10.61 	 1.8
10.21 	 2.5
9.54 	 3.1
8.35 	 3.7
6.90 	 4.2
5.95 	 4.7
4.86 	 5.2
3.61 	 5.9
2.95 	 7.3
2.63 	 9.0
2.44 	 10.8
2.32 	 12.5
2.22 	 14.2
2.14 	 15.9
2.07 	 17.7 	
2.00 	 19.7
1.95 	 21.4
1.90 	 23.3
1.86 	 25.0
1.82 	 26.8
1.78 	 28.8
1.75 	 30.5
1.71 	 32.7
1.69 	 34.1
1.66 	 36.0
1.63 	 38.1
1.61 	 39.7
1.59 	 41.4
1.56 	 43.7
1.54 	 45.5
1.52 	 51.4
1.50 	 53.3
1.49 	 54.5
1.47 	 56.6
1.45 	 58.6
1.52 	 38.4
1.55 	 35.8
1.61 	 31.6
1.70 	 26.4
1.85 	 20.0
0.99 	 108.2



1.20
1.36
1.46
1.62
1.95
2.03
2.17
2.41
3.00
5.44
9.96
10.85
9.75
8.68
7.07
5.90
4.69
3.55
2.96
2.65
2.30
2.19
2.10
2.02
1.96
1.90
1.85
1.81
1.77
1.73
1.70
1.67
1.64
1.61
1.58
1.56
1.54
1.52
1.50
1.48
1.46
1.45
0.97
0.99
1.02
1.04
1.06
1.09
1.12
1.15
1.18

68.5
48.6
39.1
27.9
14.7
12.7
10.0
7.1
4.1
3.0
2.8
2.1
0.0
0.6
1.1
1.6
2.1
2.8
4.2
5.8
9.1
11.0
13.0
15.1
17.0
19.1
21.2
23.0
25.0
27.2
29.0
30.9
33.0
35.1
37.4
39.1
40.9
42.7
44.7
46.7
48.7
50.0
107.2
102.4

100.0
95.6
91.4
85.4
79.8
74.8
70.0
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1.22 64.1
1.25 60.0
1.30 53.8
1.34 49.3
1.39 44.2
1.45 38.8
1.51 34.2
1.58 29.5
1.66 24.9
1.76 20.3
1.89 15.8
2.04 11.9
2.27 8.1
2.76 4.3
4.15 2.6
6.56 2.4
9.63 2.3
10.92 1.4
7.68 0.0
5.84 0.5
4.43 1.0
3.34 2.0
2.77 3.7
2.47 5.9
2.28 8.2
2.14 10.7
2.03 13.3
1.94 16.0
1.87 18.5
1.81 21.0
1.75 23.8
1.70 26.4
1.65 29.4
1.61 32.0
1.58 34.3
1.54 37.3
1.51 39.9
1.48 42.6
1.46 44.7
1.43 47.6
1.41 49.9
1.39 52.2

Potentiometric titrations of HAO under closed system conditions with 0.1 N HNO 3
Initial 0.1 NaOH 20 ml 	 38.1 ml 	 44 ml

pH IA = 0.061 	 IA = 0.61 	 p. = 1.20
9.45 0.0
9.34 2.1
9.22 4.1
9.08 6.2

9 8.2
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8.85 	 10.2
8.52 	 12.2
8.31 	 14.3
8.08 	 16.3
7.86 	 18.3
7.61 	 20.3
7.39 	 22.3
7.17 	 24.3
6.97 	 26.3
6.79 	 28.3
6.62 	 30.3
6.51 	 32.3
6.42 	 34.3
6.24 	 36.3
6.1 	 38.3
5.97 	 40.3
5.82 	 42.3
5.67 	 44.3
5.5 	 46.2
5.4 	 48.2
5.32 	 50.2
5.23 	 52.2
5.16 	 54.2
5.1 	 56.2

5.04 	 58.2
4.98 	 60.2
4.94 	 62.2
4.9 	 64.1

4.89 	 66.1
4.88 	 68.1
9.43 	 0.0
9.39 	 2.0
9.34 	 4.0
9.26 	 6.1
9.19 	 8.1
9.13 	 10.1
9.07 	 12.2
8.98 	 14.2
8.96 	 16.2
8.86 	 18.2
8.77 	 20.2
8.67 	 22.2
8.54 	 24.2
8.41 	 26.2
8.27 	 28.2
8.1 	 30.3

7.92 	 32.3
7.72 	 34.3
7.54 	 36.3

	

7.34 	 38.3

	

7.13 	 40.3



6.97
6.77
6.62
6.46
6.29
6.12
5.94
5.77
5.61
5.45
5.3
5.18
5.07
4.98
4.91
4.86
4.8

4.76
4.72
4.69
4.66
4.65
9.41
9.38
9.33
9.29
9.21
9.16
9.11
9.06
8.98
8.95
8.88
8.81
8.73
8.63
8.53
8.42
8.3
8.16
8.02
7.86
7.7
7.52
7.39
7.22
7.05
6.91
6.75
6.59
6.44

42.3
44.3
46.3
48.3
50.3
52.3
54.2
56.2
58.2
60.2
62.2
64.2
66.2
68.2
70.1
72.1
74.1
76.1
78.1
80.1
82.0
84.0

0.0
2.0
4.0
6.1
8.1
10.1
12.1
14.1
16.2
18.2
20.2
22.2
24.2
26.2
28.2
30.2
32.2
34.2
36.2
38.2
40.2
42.2
44.2
46.2
48.2
50.2
52.2
54.2
56.2
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6.29 58.2
6.13 60.2
5.98 62.2
5.82 64.2
5.66 66.2
5.51 68.2
5.36 70.2
5.23 72.2
5.12 74.2
5.03 76.2
4.96 78.1
4.9 80.1

4.85 82.1
4.8 84.1

4.77 86.1
4.73 88.1
4.72 90.1
4.71 92.0
4.7 94.0
4.7 96.0
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APPENDIX C

SORPTION STUDIES WITH AMORPHOUS OXIDES
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Strontium Studies with Amorphous Oxides

Strontium adsorption edges at 25°C

-pH µ=0.060.06 u = 0.60 pH la = 0.015 u = 1.50
5.18 15.42 1.88 34.63
6.07 45.86 2.52 38.51
7.01 47.06 3.06 40.80
7.01 46.93 3.55 43.71
8.03 45.96 4.07 51.56
8.07 46.99 4.53 64.37
9.04 60.09 5.08 79.60
10.01 96.20 5.57 87.09
10.43 97.52 6.01 90.84
4.99 8.59 6.58 91.88
5.89 39.65 7.01 91.95
6.97 44.34 2.00 22.84
6.97 44.12 2.54 29.51
8.04 45.36 3.06 31.65
8.06 46.19 3.49 34.14
8.88 51.32 4.01 38.19
9.98 96.16 4.51 45.58
10.51 98.85 5.05 60.02
5.15 8.22 5.53 68.69
5.23 10.58 6.04 77.21
6.01 34.10 6.47 80.54
6.08 36.16 7.01 81.49
7.02 40.85
7.02 40.86
7.05 43.12
7.05 43.83
8.09 41.85
8.14 45.26
9.02 44.58
9.05 48.59
9.07 49.95
9.09 55.27
10.04 68.92
10.11 71.27
10.44 75.26
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Strontium adsorption isotherms with HAO at pH 6 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Sr

(M)
[Sr] (M) C (moles Sr/

g HAO)
Initial Sr

(M)
[Sr] (M) C (moles Sr/

g HAO)
[Sr] (M) C (moles Sr/

g HAO)
1.00E-07 5.77E-08 4.23E-08 1.00E-07 5.95E-08 4.05E-08 6.41E-08 3.59E-08
5.00E-07 2.97E-07 2.03E-07 5.00E-07 2.86E-07 2.14E-07 3.11E-07 1.89E-07
1.00E-06 5.91E-07 4.09E-07 1.00E-06 6.02E-07 3.98E-07 6.40E-07 3.60E-07
5.00E-06 3.04E-06 1.96E-06 5.00E-06 2.98E-06 2.02E-06 3.22E-06 1.78E-06
1.00E-05 5.98E-06 4.02E-06 1.00E-05 5.94E-06 4.06E-06 6.21E-06 3.79E-06
5.00E-05 3.13E-05 1.87E-05 5.00E-05 2.93E-05 2.07E-05 3.19E-05 1.81E-05
1.00E-04 5.94E-05 4.06E-05 1.00E-04 6.21E-05 3.79E-05 6.54E-05 3.46E-05
2.00E-04 1.22E-04 7.84E-05 1.00E-04 6.21E-05 3.79E-05 6.22E-05 3.78E-05
1.00E-03 5.83E-04 4.17E-04 2.00E-04 1.22E-04 7.84E-05 1.36E-04 6.40E-05
1.00E-02 5.41E-03 4.59E-03 1.00E-03 5.83E-04 4.17E-04 7.60E-04 2.40E-04
4.00E-02 2.27E-02 1.73E-02 5.00E-03 2.92E-03 2.08E-03 3.12E-03 1.88E-03

1.00E-02 6.06E-03 3.94E-03 6.40E-03 3.60E-03
5.00E-02 3.00E-02 2.00E-02 2.52E-02 1.48E-02

Strontium adsorption isotherms with HAO at pH 7 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Sr [Sr] (M) C (moles Sr/ Initial Sr

g HAO)
[Sr] (M) C (moles Sr/

g HAO)
[Sr] (M) C (moles Sr/

g HAO)
2.00E-02 1.04E-02 9.59E-03 1.00E-07 5.49E-08 4.51E-08 6.15E-08 3.85E-08
1.00E-02 4.68E-03 5.32E-03 5.00E-07 2.64E-07 2.36E-07 3.10E-07 1.90E-07
5.00E-03 2.34E-03 2.66E-03 1.00E-06 5.31E-07 4.69E-07 6.20E-07 3.80E-07
2.00E-03 1.02E-03 9.82E-04 5.00E-06 2.78E-06 2.22E-06 3.10E-06 1.90E-06
2.00E-03 9.98E-04 1.00E-03 1.00E-05 5.38E-06 4.62E-06 5.55E-06 4.45E-06
1.90E-03 8.95E-04 1.01E-03 5.00E-05 2.75E-05 2.25E-05 3.08E-05 1.92E-05
2.00E-04 8.57E-05 1.14E-04 1.00E-04 5.62E-05 4.38E-05 6.00E-05 4.00E-05
1.50E-04 8.40E-05 6.60E-05 1.00E-04 5.47E-05 4.53E-05 1.22E-04 7.77E-05
1.00E-04 4.81E-05 5.19E-05 2.00E-04 1.16E-04 8.38E-05 5.84E-04 4.16E-04
5.90E-05 3.00E-05 2.90E-05 5.00E-03 2.72E-03 2.29E-03 3.17E-03 1.83E-03
2.00E-05 9.80E-06 1.02E-05 1.00E-02 5.49E-03 4.52E-03 6.04E-03 3.96E-03
1.50E-05 8.43E-06 6.57E-06 5.00E-02 2.77E-02 2.23E-02 3.06E-02 1.94E-02
1.00E-05 4.52E-06 5.48E-06
1.00E-05 4.48E-06 5.52E-06
5.00E-06 3.16E-06 1.84E-06
2.00E-06 8.09E-07 1.19E-06
1.50E-06 6.95E-07 8.05E-07
1.00E-06 6.02E-07 3.98E-07
5.00E-07 2.87E-07 2.13E-07
2.00E-07 1.18E-07 8.19E-08
1.00E-07 5.78E-08 4.22E-08
1.00E-07 5.81E-08 4.19E-08
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Strontium adsorption isotherms with HAO at pH 8 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Sr

(M)
[Sr] (M) C (moles Sr/

g HAO)
Initial Sr

(M)
[Sr] (M) C (moles Sr/

g HAO)
[Sr] (M) C (moles Sr/

g HAO)
1.00E-07 5.02E-08 4.98E-08 1.00E-07 5.37E-08 4.63E-08 6.19E-08 3.81E-08
5.00E-07 2.64E-07 2.36E-07 5.00E-07 2.43E-07 2.57E-07 3.03E-07 1.97E-07
1.00E-06 5.22E-07 4.78E-07 1.00E-06 5.32E-07 4.68E-07 6.09E-07 3.91E-07
5.00E-06 2.79E-06 2.21E-06 5.00E-06 2.77E-06 2.23E-06 3.01E-06 1.99E-06
1.00E-05 3.27E-06 6.73E-06 1.00E-05 5.48E-06 4.52E-06 6.10E-06 3.90E-06
5.00E-05 2.57E-05 2.43E-05 5.00E-05 2.70E-05 2.30E-05 3.07E-05 1.93E-05
1.00E-04 5.59E-05 4.41E-05 1.00E-04 5.99E-05 4.01E-05 6.14E-05 3.86E-05
1.00E-03 5.10E-04 4.90E-04 1.00E-04 5.89E-05 4.11E-05 5.96E-05 4.04E-05
1.00E-02 5.40E-03 4.60E-03 2.00E-04 1.06E-04 9.36E-05 1.19E-04 8.12E-05
5.00E-02 2.43E-02 2.57E-02 5.00E-03 2.77E-03 2.23E-03 3.09E-03 1.91E-03

1.00E-02 6.16E-03 3.84E-03 6.05E-03 3.95E-03
4.00E-02 2.14E-02 1.86E-02 2.42E-02 1.58E-02

Strontium adsorption isotherms with HAO at pH 3.5 and multiple temperatures measured with liquid
scintillating counter

T= 4°C T = 14°C T = 25°C
Initial Sr [Sr] (M) C (moles

Sr/ g
HMO)

Initial Sr [Sr] (M) C (moles Sr/ g
HMO)

[Sr] (M) C (moles
Sr/ g

HMO)
1.00E-07 8.67E-08 1.33E-07 1.00E-07 6.81E-08 3.19E-07 5.71E-08 4.29E-07
2.00E-07 1.73E-07 2.73E-07 2.00E-07 1.40E-07 6.00E-07 1.12E-07 8.83E-07
5.00E-07 4.33E-07 6.71E-07 5.00E-07 3.71E-07 1.29E-06 2.83E-07 2.17E-06
1.00E-06 8.71E-07 1.29E-06 1.00E-06 6.95E-07 3.05E-06 5.65E-07 4.35E-06
5.00E-06 4.30E-06 7.05E-06 5.00E-06 3.46E-06 1.54E-05 2.81E-06 2.19E-05
5.00E-06 4.31 E-06 6.90E-06 5.00E-06 3.47E-06 1.53E-05 2.83E-06 2.17E-05
1.00E-05 8.61E-06 1.39E-05 1.00E-05 6.86E-06 3.14E-05 5.68E-06 4.32E-05
5.00E-05 3.86E-05 1.14E-04 5.00E-05 3.51 E-05 1.49E-04 2.93E-05 2.07E-04
1.00E-04 8.59E-05 1.41E-04 1.00E-04 6.86E-05 3.14E-04 5.58E-05 4.42E-04
1.00E-03 8.64E-04 1.36E-03 1.00E-03 6.99E-04 3.01E-03 5.66E-04 4.34E-03
2.00E-03 1.73E-03 2.69E-03
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Strontium adsorption isotherms with HAO at pH 3.7 and multiple temperatures measured with liquid
scintillating counter

T= 4°C T = 14°C T = 25 °C
Initial Sr [Sr] (M) C (moles Sr/

g HAO)
Initial Sr [Sr] (M) C (moles Sr/ g [Sr] (M)

HAO)
C (moles Sr/

g HAO)
1.00E-07 3.17E-08 6.83E-07 1.00E-07 1.62E-08 8.38E-07 7.91E-09 9.21E-07
2.00E-07 6.20E-08 1.38E-06 2.00E-07 3.13E-08 1.69E-06 1.65E-08 1.84E-06
5.00E-07 1.59E-07 3.41E-06 5.00E-07 8.65E-08 4.13E-06 4.21E-08 4.58E-06
1.00E-06 3.10E-07 6.90E-06 1.00E-06 1.65E-07 8.35E-06 9.23E-08 9.08E-06
5.00E-06 1.68E-06 3.32E-05 5.00E-06 9.54E-07 4.05E-05 3.65E-07 4.64E-05
5.00E-06 1.58E-06 3.42E-05 5.00E-06 8.12E-07 4.19E-05 3.09E-07 4.69E-05
1.00E-05 3.04E-06 6.96E-05 1.00E-05 1.66E-06 8.34E-05 1.33E-06 8.67E-05
5.00E-05 1.62E-05 3.38E-04 5.00E-05 7.54E-06 4.25E-04 3.96E-06 4.60E-04
1.00E-04 3.10E-05 6.90E-04 1.00E-04 1.64E-05 8.36E-04 9.13E-06 9.09E-04
1.00E-03 3.13E-04 6.87E-03 1.00E-03 1.61E-04 8.39E-03 8.08E-05 9.19E-03
2.00E-03 6.12E-04 1.39E-02 2.00E-03 3.25E-04 1.67E-02 1.60E-04 1.84E-02

Site density studies for HAO at pH 7 using liquid scintillating counter

total cpm final cpm % Sorbed Initial Sr [Sr] (M) C mol Sr / 0.1g
9103.22 7029.49 0.23 5.00E-02 3.86E-02 1.14E-02
9023.82 6992.96 0.23 5.00E-02 3.87E-02 1.13E-02
7803.34 5714.61 0.27 4.00E-02 2.93E-02 1.07E-02
5525.74 3662.30 0.34 3.00E-02 1.99E-02 1.01E-02
5716.75 3769.54 0.34 3.00E-02 1.98E-02 1.02E-02
4252.26 2387.79 0.44 2.00E-02 1.12E-02 8.77E-03
2923.66 1487.68 0.49 1.00E-02 5.09E-03 4.91E-03
2938.53 1474.70 0.50 1.00E-02 5.02E-03 4.98E-03

Site density studies for HAO at pH 8 using liquid scintillating counter

total cpm final cpm % Sorbed Initial Sr S mol/L C mo1/0.1g
9103.22 5774.47 0.37 5.00E-02 3.17E-02 1.83E-02
7175.49 4176.75 0.42 4.00E-02 2.33E-02 1.67E-02
5696.14 3138.53 0.45 3.00E-02 1.65E-02 1.35E-02
4179.86 2126.30 0.49 2.00E-02 1.02E-02 9.83E-03
2937.31 1409.05 0.52 1.00E-02 4.80E-03 5.20E-03

Site density - surface charge density correlation calculations
Oxide pH a (C/ g) Ct (moles Sr/ g HAO) Ct (moles Sr/ g HAO) lnCt lnCt
HMO 3.50 -240.00 8.00E-03 -4.83
HMO 5.00 -363.78 2.00E-02 -3.91
HMO 7.00 -569.17 3.40E-02 -3.38
HFO 7.00 63.11 2.50E-02 -3.69
HFO 6.00 207.96 1.10E-02 -4.51
HFO 5.00 399.51 5.70E-03 -5.17
HAO 8.00 86.37 2.00E-02 -3.91
HAO 7.00 179.49 1.20E-02 -4.42
HAO 6.00 270.20 1.00E-02 -4.61
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Fortran Code for Estiamting Experimental Surface Diffusivity

PROGRAM CBCHMO
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
IMPLICIT INTEGER (I-N)

C THIS PROGRAM ESTIMATES SURFACE DIFFUSIVITY
OPEN (3,FILE ='OPSR7M.DAT')
OPEN (4,FILE ='VARS7M.DAT')
OPEN (5,FILE ='ERRS7M.DAT')
WRITE(*,*)'WHAT IS APPROX DS IN CM2/S?'
READ (*,*)DS
WRITE(*,*)'WHAT IS CBC IN MOLE/LT
READ (*,*)CBC

C DEFINE PARAMETERS
PI = 4*ATAN(1.)

C RHO IS HMO DENSITY IN G/CC
RHO = 1.75

C E IS POROSITY OF HMO
E = 0.35
WRITE(*,*)'WHAT IS EXTERNAL KD IN L/G?'
READ (*,*)EKDE
EKD = 1000.0 * EKDE
DK = E*EKD/(1-E)
DO 50, M =1,100
SUM1 = 0.0
SUM2 = 0.0
DS = DS
OPEN (1, FILE = 'CBCSRM.DAr)
DO 40 K =1,41
OPEN (2, FILE = 'PSAHMO.DAT')
READ (1,*) T, EM

C T IS IN SECONDS, EM IS IN MOL/G
TOTMASS = CBC
DO 30 1=1,29
READ (2,*) RP, PN

C RP IS IN CM, PN IS NO OF PARTICLES
DN = (DS)*(PI**2)*(RHO)*DK
DD = (RP**2)*(RHO*DK+E)
D = DN/DD
SM = 4.0*PI*(RP**3)/3.0
DO 20 N =1,100
SF =8.0*((RP**3.0)/(P1*(N**2)))*EXP(-D*(N**2)*T)
SM = (SM-SF)

20 CONTINUE
SUBM = SM*PN*CBC*RHO
TOTMAS=TOTMAS + SUBM

30 CONTINUE
TOTMAS = TOTMAS +CBC

C TO ACCOUNT FOR VARIANCE
DIFF = ABS(TOTMAS-EM)
PERCENT = (DIFF/EM)* 100.0
DIFF2 = DIFF**2
SUM1 =SUM1 +DIFF
SUM2= SUM2 +DIFF2
PERSUM =PERCENT + PERSUM
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Fortran Code for Estimating Experimental Surface Diffusivity (Contd.)

WRITE (3,*) T, TOTMAS, EM
40 CONTINUE

VAR = ((SUM2-((SUM1)**2)/30.0))/29.0
AVEER = PERSUM/29.0
WRITE(4,*) T, VAR
WRITE (5,*) T, AVEER
DS = DS * 0.1

50 CONTINUE
END
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CBC of Sr sorbed to 0.1 g/L HMO at pH 7 and 25°C

Time (d) Total CPM Final CPM Sr ml Add Sr Total Sr M CBC Sr Sr/g HMO
0.000 0 0 0.0 0.00 0.00E+00 0.00E+00 0.00E+00

0.0003 1993.05 238.02 2.0 0.00 1.00E-05 1.19E-06 8.81E-05
0.001 1995.36 217.1 2.0 0.00 1.00E-05 1.09E-06 8.91E-05
0.003 1995.56 199.05 2.0 0.00 1.00E-05 9.97E-07 9.00E-05
0.010 2038.31 214.05 2.0 0.00 1.00E-05 1.05E-06 8.95E-05
0.021 1938.39 178.04 2.0 0.00 1.00E-05 9.18E-07 9.08E-05
0.042 2037.09 176.34 2.0 0.00 1.00E-05 8.66E-07 9.13E-05
0.083 1995.53 171.12 2.0 0.00 1.00E-05 8.58E-07 9.14E-05
0.167 2001.37 172.45 2.0 0.00 9.98E-06 8.60E-07 9.12E-05
1.000 1924.05 180.01 2.0 0.00 9.96E-06 9.32E-07 9.03E-05
2.000 1951.24 153.33 2.0 0.01 9.96E-06 7.83E-07 9.18E-05
2.000 1946.02 110.1 2.0 0.05 1.00E-05 5.67E-07 9.45E-05
3.000 2061.35 175.49 2.1 0.00 1.03E-05 8.76E-07 9.42E-05
5.000 2051.05 100.01 2.1 0.20 1.03E-05 5.02E-07 9.79E-05
5.007 2209.06 168.45 2.3 0.00 1.13E-05 8.61E-07 1.04E-04
6.000 2209.06 90.01 2.3 1.00 1.13E-05 4.60E-07 1.08E-04
6.007 2309.18 173.06 3.3 0.00 1.63E-05 1.22E-06 1.51E-04
7.000 2335.49 119.08 3.3 0.50 1.63E-05 8.31E-07 1.55E-04
7.007 2705.06 170.21 3.8 0.00 1.88E-05 1.18E-06 1.76E-04
8.000 2646.2 91 3.8 0.50 1.88E-05 6.46E-07 1.81E-04
8.007 3009.56 170.01 4.3 0.00 2.13E-05 1.20E-06 2.01E-04
10.007 3028.07 64.07 4.3 1.00 2.13E-05 4.51E-07 2.08E-04
10.014 3839.07 166.42 5.3 0.00 2.63E-05 1.14E-06 2.52E-04
13.014 3880.01 31.01 5.3 1.00 2.63E-05 2.10E-07 2.61E-04
13.021 4850.68 166.22 6.3 0.00 3.13E-05 1.07E-06 3.02E-04
16.021 4916.65 38.13 6.3 1.00 3.13E-05 2.43E-07 3.10E-04
16.028 5782.54 168.44 7.3 0.00 3.63E-05 1.06E-06 3.52E-04
18.028 5766.37 40.28 7.3 1.00 3.63E-05 2.54E-07 3.60E-04
18.035 6770.29 167.14 8.3 0.00 4.13E-05 1.02E-06 4.03E-04
20.035 6768.35 39.49 8.3 1.00 4.13E-05 2.41E-07 4.11E-04
20.042 7775.02 169.33 9.3 0.00 4.63E-05 1.01E-06 4.53E-04
23.042 7775.53 34.11 9.3 0.50 4.63E-05 2.03E-07 4.61E-04
23.049 8412.36 171.58 9.8 0.00 4.88E-05 9.95E-07 4.78E-04
26.049 8403.22 53.92 9.8 0.50 4.88E-05 3.13E-07 4.85E-04
26.056 8815.74 179.17 10.3 0.00 5.13E-05 1.04E-06 5.03E-04
29.056 8799.78 43.17 10.3 0.50 5.13E-05 2.52E-07 5.10E-04
29.063 9414.24 168.74 10.8 0.00 5.38E-05 9.64E-07 5.28E-04
32.063 9445.26 37.88 10.8 0.50 5.38E-05 2.16E-07 5.36E-04
32.069 9968.19 170.33 11.3 0.00 5.63E-05 9.62E-07 5.53E-04
35.069 10012.41 40.15 11.3 0.50 5.63E-05 2.26E-07 5.61E-04
35.076 10563.19 179.99 11.8 0.00 5.88E-05 1.00E-06 5.78E-04
38.076 10549.08 39.79 11.8 0.50 5.88E-05 2.22E-07 5.86E-04
38.083 11187.35 170.55 12.3 0.00 6.13E-05 9.34E-07 6.04E-04
41.083 11179.84 46.01 ' 	 12.3 0.50 6.13E-05 2.52E-07 6.10E-04
41.090 11656.18 191.32 12.8 0.00 6.38E-05 1.05E-06 6.27E-04
44.090 11634.21 45.37 12.8 0.50 6.38E-05 2.49E-07 6.35E-04
44.097 12207.5 188.37 13.3 0.00 6.63E-05 1.02E-06 6.53E-04
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CBC of Sr sorbed to 0.1 g/L HMO at pH 7 and 25°C (contd.)

Time (d) Total CPM Final CPM Sr ml Add Sr Total Sr M CBC Sr Sr/g HMO
47.097 12196.64 43.17 13.3 0.50 6.63E-05 2.35E-07 6.61E-04
47.104 12400.04 180.61 13.8 0.00 6.88E-05 1.00E-06 6.78E-04
50.104 12372.15 44.04 13.8 0.50 6.88E-05 2.45E-07 6.85E-04
50.111 12685.2 184.15 14.3 0.00 7.13E-05 1.03E-06 7.03E-04
53.111 12678.12 36.01 14.3 0.50 7.13E-05 2.02E-07 7.11E-04
53.118 12945.59 181.37 14.8 0.00 7.38E-05 1.03E-06 7.28E-04
56.118 13316.25 43.27 14.8 0.50 7.38E-05 2.40E-07 7.36E-04
56.125 13895.24 188.34 15.3 0.00 7.63E-05 1.03E-06 7.53E-04
59.125 13882.16 38.24 15.3 0.50 7.63E-05 2.10E-07 7.61E-04
59.132 14315.3 175.44 15.8 0.00 7.88E-05 9.66E-07 7.78E-04

CBC of Sr sorbed to 1 g/L HAO at pH 7 and 25°C with [Sr] bulk = 2.6 x 10 -5 M maintained constant

Time (h) Time (d) Moles Sr / g HAO
0.00 0.000 1.12E-05
0.03 0.001 2.01E-05
0.07 0.003 2.19E-05
0.08 0.003 2.25E-05
0.17 0.007 2.36E-05
0.25 0.010 2.47E-05
0.33 0.014 2.48E-05
0.50 0.02 2.52E-05
0.53 0.02 2.52E-05
0.75 0.03 2.56E-05
0.78 0.03 2.56E-05
1.00 0.04 2.57E-05
1.25 0.05 2.55E-05
1.75 0.07 2.51E-05
2.00 0.08 2.52E-05
2.25 0.09 2.54E-05
2.50 0.10 2.54E-05
4.00 0.17 2.52E-05
28.00 1.17 2.54E-05
52.00 2.17 2.55E-05
76.00 3.17 2.54E-05
100.00 4.17 2.56E-05
148.00 6.17 2.62E-05
148.17 6.17 2.65E-05
220.17 9.17 2.89E-05
220.33 9.18 2.90E-05
292.18 12.17 3.13E-05
292.34 12.18 3.16E-05
388.34 16.18 3.48E-05
388.51 16.19 3.54E-05
460.51 19.19 3.81E-05
460.66 19.19 3.81E-05
556.66 23.19 3.97E-05
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CBC of Sr sorbed to 1 g/L HAO at pH 7 and 25°C with [Sr] bulk = 2.6 x	 maintained constant
(Contd.)

Time (h) 	 Time (d) 	 Moles Sr / g HAO
556.82 23.20 3.97E-05
676.99 28.21 4.13E-05
772.99 32.21 4.22E-05
773.16 32.22 4.23E-05
869.16 36.22 4.34E-05
869.33 36.22 4.36E-05
965.33 40.22 4.44E-05
965.50 40.23 4.46E-05
1061.50 44.23 4.52E-05
1061.66 44.24 4.53E-05
1157.66 48.24 4.55E-05
1157.83 48.24 4.58E-05
1253.66 52.24 4.60E-05
1253.83 52.24 4.62E-05
1349.83 56.24 4.66E-05
1350.00 56.25 4.67E-05
1446.00 60.25 4.67E-05
1542.00 64.25 4.66E-05
1662.00 69.25 4.66E-05
1758.00 73.25 4.65E-05
1854.00 77.25 4.66E-05
1950.00 81.25 4.66E-05
2046.00 85.25 4.66E-05
2118.00 88.25 4.66E-05

CBC of Sr sorbed to 1 g/L HAO at pH 8 and 25°C with [Sr] = 2.6 x 10 -5 M maintained constant

Time (h) 	 Time (d) 	 Moles of Sr/ g HAO
0.00 0.000 1.31E-05
0.03 0.001 2.44E-05
0.07 0.003 2.68E-05
0.10 0.004 3.10E-05
0.17 0.007 3.11E-05
0.25 0.010 3.12E-05
0.33 0.014 3.12E-05
0.50 0.02 3.14E-05
0.75 0.03 3.15E-05
1.00 0.04 3.16E-05
1.50 0.06 3.14E-05
2.50 0.10 3.16E-05
3.00 0.13 3.22E-05
4.00 0.17 3.23E-05
5.00 0.21 3.24E-05

24.00 1.00 3.24E-05
48.00 2.00 3.31E-05
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CBC of Sr sorbed to 1 g/L HAO at pH 8 and 25 °C with [Sr] 	 = 2.6 x 10 -5 M maintained constant
(Contd.)

Time (h) Time (d) Moles of Sr/ g HAO
72.00 3.00 3.38E-05
72.17 3.01 3.36E-05
168.00 7.00 3.51E-05
168.17 7.01 3.53E-05
216.17 9.01 3.87E-05
216.33 9.01 3.89E-05
576.17 24.01 4.44E-05
576.34 24.01 4.45E-05
648.34 27.01 4.58E-05
648.50 27.02 4.58E-05
744.50 31.02 4.78E-05
744.67 31.03 4.79E-05
936.50 39.02 4.95E-05
936.67 39.03 4.95E-05
1128.67 47.03 5.14E-05
1128.84 47.04 5.16E-05
1224.84 51.04 5.34E-05
1225.01 51.04 5.36E-05
1321.01 55.04 5.51E-05
1321.18 55.05 5.51E-05
1465.18 61.05 5.57E-05
1465.34 61.06 5.55E-05
1561.34 65.06 5.62E-05
1561.49 65.06 5.64E-05 -
1657.49 69.06 5.65E-05
1729.49 72.06 5.64E-05
1825.51 76.06 5.66E-05
1969.51 82.06 5.64E-05
2065.49 86.06 5.65E-05
2161.49 90.06 5.66E-05
2233.51 93.06 5.66E-05



Cadmium Studies with Amorphous Oxides

Cadmium adsorption edges at 25 °C
HAO HMO

pH g = 0.060 µ=1.20 pH µ=0.0150.015 la =0.15
5.50 76.18 2.50 96.61
6.00 90.25 3.00 97.44
6.50 94.71 4.00 97.71
7.00 96.22 5.00 97.89
7.50 97.13 6.00 97.83
7.60 97.22 7.00 97.76
8.00 97.84 7.00 98.09
9.00 97.95 8.00 98.24
9.50 98.33 2.50 87.88
5.00 71.92 3.00 92.20
6.20 89.55 4.00 96.76
6.70 93.92 5.00 96.61
7.20 96.33 6.00 96.71
7.20 96.11 7.00 97.22
7.70 96.81 7.00 98.09
8.10 97.72 8.00 98.24
8.50 97.52
8.80 97.58
9.30 97.74
10.00 97.94
5.06 41.63
5.52 44.94
6.02 54.24
6.50 76.27
7.00 91.45
7.00 91.19
7.56 93.30
8.07 94.25
8.51 95.11
9.00 95.21
9.54 95.24

236



Cadmium adsorption isotherms with HAO at pH 6 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Cd

(M)
[Cd] (M) C (moles Cd/

g HAO)
Initial Cd

(M)
[Cd] (M) C (moles Cd/

g HAO)
[Cd] (M) C (moles Cd/

g HAO)
1.00E-06 7.90E-08 9.21E-07 1.00E-06 1.60E-07 8.40E-07 4.62E-07 5.38E-07
1.00E-06 8.81E-08 9.12E-07 8.00E-07 1.27E-07 6.73E-07 3.55E-07 4.45E-07
8.00E-07 7.20E-08 7.28E-07 5.00E-07 8.15E-08 4.19E-07 2.22E-07 2.78E-07
8.00E-07 7.16E-08 7.28E-07 3.00E-07 4.82E-08 2.52E-07 1.38E-07 1.62E-07
5.00E-07 4.50E-08 4.55E-07 1.00E-07 1.63E-08 8.37E-08 4.75E-08 5.25E-08
3.00E-07 2.80E-08 2.72E-07 8.00E-08 1.29E-08 6.71E-08 3.65E-08 4.35E-08.
1.00E-07 1.19E-08 8.81E-08 5.00E-08 8.08E-09 4.19E-08 2.27E-08 2.73E-08
8.00E-08 6.69E-09 7.33E-08 5.00E-08 8.00E-09 4.20E-08 2.26E-08 2.74E-08
5.00E-08 4.32E-09 4.57E-08 3.00E-08 4.82E-09 2.52E-08 1.34E-08 1.66E-08
5.00E-08 4.30E-09 4.57E-08 1.00E-08 1.59E-09 8.41E-09 4.52E-09 5.48E-09
3.00E-08 2.49E-09 2.75E-08 8.00E-09 1.29E-09 6.71E-09 3.60E-09 4.40E-09
1.00E-08 9.19E-10 9.08E-09 8.00E-09 1.28E-09 6.72E-09 3.62E-09 4.38E-09
8.00E-09 7.21E-10 7.28E-09 5.00E-09 8.20E-10 4.18E-09 2.29E-09 2.71E-09
8.00E-09 7.38E-10 7.26E-09 3.00E-09 4.82E-10 2.52E-09 1.46E-09 1.54E-09
5.00E-09 4.76E-10 4.52E-09 1.00E-09 1.60E-10 8.40E-10 4.44E-10 5.56E-10
3.00E-09 2.57E-10 2.74E-09
1.00E-09 1.10E-10 8.90E-10

Cadmium adsorption isotherms with HAO at pH 7 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 11 °C T = 4°C
Initial Cd

(M)
[Cd] (M) C (moles Cd/

g HAO)
Initial Cd [Cd] (M) C (moles Cd/

(M)	 g HAO)
[Cd] (M) C (moles Cd/

g HAO)
1.00E-06 3.57E-08 9.64E-07 1.00E-06 5.79E-08 9.42E-07 2.54E-07 7.46E-07
8.00E-07 2.91E-08 7.71E-07 8.00E-07 4.35E-08 7.57E-07 1.95E-07 6.05E-07
5.00E-07 1.70E-08 4.83E-07 5.00E-07 2.73E-08 4.73E-07 1.27E-07 3.73E-07
3.00E-07 1.10E-08 2.89E-07 3.00E-07 1.68E-08 2.83E-07 7.98E-08 2.20E-07
1.00E-07 5.50E-09 9.45E-08 1.00E-07 5.60E-09 9.44E-08 2.48E-08 7.52E-08
8.00E-08 2.98E-09 7.70E-08 8.00E-08 4.43E-09 7.56E-08 2.05E-08 5.95E-08
5.00E-08 1.84E-09 4.82E-08 5.00E-08 2.79E-09 4.72E-08 1.19E-08 3.81 E-08
5.00E-08 1.80E-09 4.82E-08 5.00E-08 2.78E-09 4.72E-08 1.25E-08 3.75E-08
3.00E-08 1.04E-09 2.90E-08 3.00E-08 1.69E-09 2.83E-08 7.64E-09 2.24E-08
1.00E-08 3.89E-10 9.61E-09 1.00E-08 5.66E-10 9.43E-09 2.49E-09 7.51E-09
8.00E-09 2.88E-10 7.71E-09 8.00E-09 4.49E-10 7.55E-09 2.00E-09 6.00E-09
8.00E-09 2.96E-10 7.70E-09 8.00E-09 4.44E-10 7.56E-09 2.01E-09 5.99E-09
5.00E-09 1.84E-10 4.82E-09 5.00E-09 2.81E-10 4.72E-09 1.23E-09 3.77E-09
3.00E-09 1.08E-10 2.89E-09 3.00E-09 1.66E-10 2.83E-09 7.60E-10 2.24E-09
1.00E-09 3.98E-11 9.60E-10 1.00E-09 5.61E-11 9.44E-10 2.45E-10 7.55E-10

237



Cadmium adsorption isotherms with HAO at pH 8 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T= 11 °C 	 T = 4°C
Initial Cd

(M)
[Cd] (M) C (moles Cd/

g HAO)
Initial Cd [Cd] (M) C (moles Cd/ [Cd] (M) C (moles Cd/

(M)	 g HAO)	 g HAO)
1.00E-06 9.73E-07 2.67E-08 1.00E-06 5.26E-08 9.47E-07 1.82E-07 8.18E-07
1.00E-06 9.74E-07 2.62E-08 8.00E-07 4.18E-08 7.58E-07 1.45E-07 6.55E-07
8.00E-07 7.79E-07 2.12E-08 5.00E-07 2.72E-08 4.73E-07 9.41E-08 4.06E-07
8.00E-07 7.79E-07 2.15E-08 3.00E-07 1.53E-08 2.85E-07 5.66E-08 2.43E-07
5.00E-07 4.87E-07 1.29E-08 1.00E-07 5.05E-09 9.50E-08 1.77E-08 8.23E-08
3.00E-07 2.92E-07 7.98E-09 8.00E-08 4.26E-09 7.57E-08 1.51E-08 6.49E-08
1.00E-07 9.70E-08 3.03E-09 5.00E-08 2.59E-09 4.74E-08 9.35E-09 4.06E-08
8.00E-08 7.79E-08 2.08E-09 5.00E-08 2.54E-09 4.75E-08 9.14E-09 4.09E-08
5.00E-08 4.87E-08 1.33E-09 3.00E-08 1.58E-09 2.84E-08 5.30E-09 2.47E-08
5.00E-08 4.87E-08 1.34E-09 1.00E-08 5.18E-10 9.48E-09 1.87E-09 8.13E-09
3.00E-08 2.92E-08 8.15E-10 8,00E-09 4.19E-10 7.58E-09 1.44E-09 6.56E-09
1.00E-08 9.73E-09 2.70E-10 8.00E-09 4.17E-10 7.58E-09 1.46E-09 6.54E-09
8.00E-09 7.79E-09 2.12E-10 5.00E-09 2.65E-10 4.73E-09 9.24E-10 4.08E-09
8.00E-09 7.78E-09 2.16E-10 3.00E-09 1.55E-10 2.85E-09 5.36E-10 2.46E-09
5.00E-09 4.87E-09 1.34E-10 1.00E-09 5.27E-11 9.47E-10 1.82E-10 8.18E-10
3.00E-09 2.92E-09 8.10E-11
1.00E-09 9.73E-10 2.68E-11

Cadmium adsorption isotherms with HMO at pH 7 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Cd (M) [Cd] (M) Moles Cd/g

HMO
Cd] (M) Moles

Cd/g
HMO

Cd] (M) Moles Cd/g
HMO

2.00E-10 4.12E-12 1.96E-09 1.77E-11 1.82E-09 5.83E-11 1.42E-09
5.00E-10 1.66E-11 4.83E-09 4.23E-11 4.58E-09 1.34E-10 3.66E-09
1.00E-09 1.99E-11 9.80E-09 1.12E-10 8.88E-09 2.81E-10 7.19E-09
5.00E-09 9.87E-11 4.90E-08 4.32E-10 4.57E-08 1.36E-09 3.64E-08
1.00E-08 4.39E-10 9.56E-08 8.24E-10 9.18E-08 2.66E-09 7.34E-08
5.00E-08 1.25E-09 4.88E-07 3.97E-09 4.60E-07 1.20E-08 3.80E-07
1.00E-07 2.10E-09 9.79E-07 9.18E-09 9.08E-07 2.87E-08 7.13E-07
5.00E-07 8.63E-09 4.91E-06 8.31E-08 4.17E-06 1.49E-07 3.51E-06
1.00E-06 2.43E-08 9.76E-06 8.50E-08 9.15E-06 2.89E-07 7.11E-06
4.00E-06 8.58E-08 3.91E-05 3.44E-07 3.66E-05 1.14E-06 2.86E-05
8.00E-06 1.71E-07 7.83E-05 6.72E-07 7.33E-05 2.35E-06 5.65E-05
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Cadmium adsorption isotherms with HMO at pH 3.5 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Cd (M) [Cd] (M) Moles Cd/g

HMO
Cd] (M) Moles

Cd/g
HMO

Cd] (M) Moles Cd/g
HMO

2.00E-10 2.92E-11 1.71E-09 7.27E-11 1.27E-09 1.46E-10 5.35E-10
5.00E-10 7.07E-11 4.29E-09 1.82E-10 3.18E-09 3.74E-10 1.26E-09
1.00E-09 2.01E-10 7.99E-09 3.61E-10 6.39E-09 7.45E-10 2.55E-09
5.00E-09 7.02E-10 4.30E-08 1.89E-09 3.11E-08 3.82E-09 1.18E-08
1.00E-08 1.24E-09 8.76E-08 4.29E-09 5.71E-08 7.27E-09 2.73E-08
5.00E-08 6.98E-09 4.30E-07 1.58E-08 3.42E-07 3.73E-08 1.27E-07
1.00E-07 1.42E-08 8.58E-07 3.68E-08 6.32E-07 7.27E-08 2.73E-07
5.00E-07 6.78E-08 4.32E-06 1.80E-07 3.20E-06 3.83E-07 1.17E-06
1.00E-06 1.35E-07 8.65E-06 3.74E-07 6.26E-06 7.37E-07 2.63E-06
4.00E-06 5.54E-07 3.45E-05 1.47E-06 2.53E-05 3.02E-06 9.85E-06
8.00E-06 1.06E-06 6.94E-05 2.92E-06 5.08E-05 5.95E-06 2.05E-05
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CBC of Cd sorbed to 0.1 g/L HMO at pH 7 and 25 °C

Time (d) Total CPM Final CPM Cd ml Add Cd Total Cd M CBC Cd Cd/g HMO
0.000 0.00 0 0.0 0.0 0.00E+00 0.00E+00 	 0
0.000 2766.11 73.02 7.0 0.0 7.00E-08 1.85E-09 6.8152E-07
0.001 2766.11 70.56 7.0 0.0 7.00E-08 1.79E-09 6.8214E-07
0.003 2766.11 68.23 7.0 0.0 7.00E-08 1.73E-09 6.8273E-07
0.01 2766.11 64.25 7.0 0.0 7.00E-08 1.63E-09 6.8374E-07
0.02 2766.11 61.04 7.0 0.0 7.00E-08 1.54E-09 6.8455E-07
0.04 2766.11 62.37 7.0 0.0 7.00E-08 1.58E-09 6.8422E-07
0.08 2766.11 61.79 7.0 0.0 7.00E-08 1.56E-09 6.8436E-07
0.17 2766.11 62.5 7.0 0.0 7.00E-08 1.58E-09 6.8418E-07
0.35 2766.11 58.33 7.0 0.0 7.00E-08 1.48E-09 6.8524E-07
1.00 2766.11 57.44 7.0 0.1 7.00E-08 1.45E-09 6.8546E-07
1.01 3034.26 62.04 7.1 0.0 7.10E-08 1.45E-09 6.9548E-07
2.01 3078.04 10.53 7.1 1.5 7.10E-08 2.43E-10 7.0757E-07
2.01 4000.65 68.66 8.6 0.0 8.64E-08 1.48E-09 8.4875E-07
3.01 4008.74 40.31 8.6 1.5 8.64E-08 8.68E-10 8.5489E-07
3.02 4859.22 72.04 10.1 0.0 1.01E-07 1.50E-09 9.9854E-07
4.02 4913.18 47.05 10.1 2.0 1.01E-07 9.71E-10 1.0039E-06
4.03 5466.05 73.21 12.1 0.0 1.21E-07 1.63E-09 1.1973E-06
5.03 5454.07 43.45 12.1 2.0 1.21E-07 9.67E-10 1.2039E-06
5.03 6035.66 66.89 14.1 0.0 1.41E-07 1.57E-09 1.3979E-06
6.03 6738.15 41.26 14.1 2.0 1.41E-07 8.66E-10 1.4049E-06
6.04 7313.14 69.25 16.1 0.0 1.61E-07 1.53E-09 1.5983E-06
7.04 7257.68 40.11 16.1 1.5 1.61E-07 8.92E-10 1.604'7E-06
7.05 7646.35 70.37 17.6 0.0 1.76E-07 1.62E-09 1.7473E-06
8.05 7332.16 33.14 17.6 0.5 1.76E-07. 7.97E-10 1.7556E-06
8.06 7757.65 80.23 18.1 0.0 1.81E-07 1.88E-09 1.7948E-06
9.05 7741.14 28.16 18.1 0.6 1.81E-07 6.60E-10 	 1.807E-06
9.06 8103.26 71.22 18.7 0.0 1.87E-07 1.65E-09 1.8571E-06
10.05 8120.56 34.22 18.7 0.5 1.87E-07 7.90E-10 1.8657E-06
10.06 8427.61 74.16 19.2 0.0 1.92E-07 1.69E-09 1.9066E-06
11.05 8333.33 24.97 19.2 1.0 1.92E-07 5.76E-10 1.9159E-06
11.06 8717.09 70.25 20.2 0.0 2.02E-07 1.63E-09 2.0054E-06
12.05 8700.69 28.05 20.2 1.0 2.02E-07 6.51E-10 2.0138E-06
12.06 8974.26 68.42 21.2 0.0 2.12E-07 1.62E-09 2.1042E-06
14.05 8744.16 16.13 21.2 1.0 2.12E-07 3.91E-10 2.1153E-06
14.06 9104.22 66.17 22.2 0.0 2.22E-07 1.61E-09 2.2031E-06
16.05 9380.37 17.14 22.2 1.0 2.22E-07 4.05E-10	 2.214E-06
16.06 9799.61 65.42 23.2 0.0 2.32E-07 1.55E-09 2.3026E-06
18.05 9883.26 22.8 23.2 1.0 2.32E-07 5.35E-10 2.3122E-06
18.06 10024.07 68.17 24.2 0.0 2.42E-07 1.64E-09 2.4011E-06
21.06 9891.45 17.05 24.2 1.0 2.42E-07 4.17E-10 2.4134E-06
21.06 10014.69 68.32 25.2 0.0 2.52E-07 1.72E-09 2.5004E-06
24.06 10037.99 11.14 25.2 1.0 2.52E-07 2.79E-10 2.5148E-06
24.07 10430.47 66.25 26.2 0.0 2.62E-07 1.66E-09	 2.601E-06
28.07 10683.15 10.84 26.2 1.0 2.62E-07 2.65E-10 2.6133E-06
28.08 11005.49 64.23 27.2 0.0 2.72E-07 1.59E-09 2.7001E-06
32.08 10744.53 10.09 27.2 2.5 2.72E-07 2.55E-10 2.7126E-06
32.08 11179.50 59.06 29.7 0.0 2.97E-07 1.57E-09 2.9494E-06
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CBC of Cd sorbed to 0.1 g/L HMO at pH 7 and 25 °C (contd.) .

Time (d) Total CPM Final CPM Cd ml Add Cd Total Cd M CBC Cd Cd/g HMO
35.08 11791.35 10.36 29.7 1.5 2.97E-07 2.61E-10 2.9625E-06
35.09 11954.54 61.45 31.2 0.0 3.12E-07 1.60E-09 3.0991E-06
39.09 12007.16 16.27 31.1 2.0 3.11E-07 4.22E-10 3.1099E-06
39.10 12141.75 68.34 33.1 0.0 3.31E-07 1.87E-09 3.2954E-06
42.10 12088.01 14.22 33.1 1.0 3.31E-07 3.89E-10 3.3065E-06
42.10 12370.24 67.23 34.1 0.0 3.41E-07 1.85E-09 3.3919E-06
45.10 12370.20 15.06 34.1 1.0 3.41E-07 4.15E-10 3.4063E-06
45.11 12715.40 67.54 35.1 0.0 3.51E-07 1.86E-09 3.4918E-06
48.11 12646.19 10.41 35.1 1.0 3.51E-07 2.89E-10 3.5076E-06
48.12 12900.33 64.25 36.1 0.0 3.61E-07 1.80E-09 3.5925E-06
51.12 12832.72 10.53 36.1 1.0 3.61E-07 2.96E-10 3.6075E-06
51.13 12991.03 64.93 37.1 0.0 3.71E-07 1.85E-09 3.6919E-06
55.13 13037.06 12.1 37.1 0.5 3.71E-07 3.44E-10 	 3.707E-06
55.13 13149.09 63.56 37.6 0.0 3.76E-07 1.82E-09 3.7423E-06
58.13 13144.35 15.38 37.6 0.5 3.76E-07 4.40E-10 	 3.756E-06
58.14 13200.00 60.53 38.1 0.0 3.81E-07 1.75E-09 	 3.793E-06
61.14 13184.51 15.41 38.1 0.2 3.81E-07 4.45E-10 	 3.806E-06
61.15 13285.26 60.41 38.3 0.0 3.83E-07 1.74E-09 	 3.813E-06

CBC of Cd sorbed to 1 g/L HAO at pH 7 and 25°C with [Cd]bulk = 1 x 104 M maintained constant

Time (h) Time (d) Moles of Cd/ g HAO
0.000 0.0000 4.855E-07
0.017 0.0007 5.361E-07
0.083 0.0035 5.385E-07
0.167 0.0069 5.414E-07
0.167 0.0069 5.409E-07
0.250 0.0104 5.419E-07
0.333 0.0139 5.418E-07
0.500 0.0208 5.417E-07
0.667 0.0278 5.415E-07
0.750 0.0313 5.418E-07
0.833 0.0347 5.417E-07
1.000 0.0417 5.419E-07
1.500 0.0625 5.415E-07
2.000 0.0833 5.419E-07
3.000 0.1250 5.413E-07
4.000 0.1667 5.419E-07
24.000 1.0000 5.418E-07
48.000 2.0000 5.417E-07
72.000 3.0000 5.418E-07
120.000 5.0000 5.418E-07
144.000 6.0000 5.418E-07
168.000 7.0000 5.419E-07
192.000 8.0000 5.420E-07
216.000 9.0000 5.432E-07
216.166 9.0069 5.767E-07
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CBC of Cd sorbed to 1 g/L HAO at pH 7 and 25 °C with [Cd]bulk  = 1 x 104 M maintained constant
(Contd.)

Time (h) Time (d) Moles of Cd/ g HAO
288.168 12.0070 5.781E-07
288.336 12.0140 6.067E-07
336.336 14.0140 6.079E-07
336.504 14.0210 6.370E-07
408.504 17.0210 6.378E-07
408.672 17.0280 6.570E-07
480.672 20.0280 6.575E-07
480.840 20.0350 6.769E-07
528.840 22.0350 6.773E-07
529.008 22.0420 6.966E-07
577.008 24.0420 6.973E-07
577.176 24.0490 7.163E-07
649.176 27.0490 7.171E-07
721.176 30.0490 7.364E-07
769.176 32.0490 7.374E-07
769.344 32.0560 7.492E-07
817.344 34.0560 7.577E-07
817.488 34.0620 7.768E-07
913.488 38.0620 7.777E-07
913.656 38.0690 7.965E-07
961.656 40.0690 7.976E-07
961.824 40.0760 8.168E-07
1009.824 42.0760 8.175E-07
1009.992 42.0830 8.317E-07
1057.992 44.0830 8.324E-07
1058.160 44.0900 8.413E-07
1106.160 46.0900 8.425E-07
1106.328 46.0970 8.567E-07
1154.328 48.0970 8.575E-07
1154.496 48.1040 8.719E-07
1202.496 50.1040 8.723E-07
1202.928 50.1220 8.818E-07
1250.928 52.1220 8.823E-07
1251.336 52.1390 8.917E-07
1299.336 54.1390 8.923E-07
1300.008 54.1670 9.018E-07
1372.008 57.1670 9.023E-07
1372.656 57.1940 9.117E-07
1468.656 61.1940 9.125E-07
1469.328 61.2220 9.218E-07
1565.328 65.2220 9.223E-07
1566.000 65.2500 9.318E-07
1662.000 69.2500 9.324E-07
1662.672 69.2780 9.419E-07
1758.672 73.2780 9.424E-07
1759.344 73.3060 9.518E-07

242



CBC of Cd sorbed to 1 g/L HAO at pH 7 and 25°C with [Cd] bulk = 1 x 104 M maintained constant
(Contd.)

Time (h) Time (d) Moles of Cd/ g HAO
1831.344 76.3060 9.523E-07
1831.992 76.3330 9.569E-07
1927.992 80.3330 9.574E-07
1928.664 80.3610 9.620E-07
1976.664 82.3610 9.626E-07
1977.336 82.3890 9.672E-07
2073.336 86.3890 9.675E-07
2074.008 86.4170 9.720E-07
2170.008 90.4170 9.725E-07
2170.656 90.4440 9.769E-07
2218.656 92.4440 9.770E-07
2219.328 92.4720 9.770E-07
2339.328 97.4720 9.772E-07
2340.000 97.5000 9.817E-07
2436.000 101.5000 9.820E-07
2436.720 101.5300 9.827E-07
2532.720 105.5300 9.830E-07
2533.440 105.5600 9.840E-07
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Zinc Studies with Amorphous Oxides

Zinc adsorption edges at 25 °C

HAO HFO HMO
pH m = 0.060 m =1.50 pH m = 0.031 m =1.50 pH m = 0.015 m=1.50

5.02 64.87 4.43 36.47 2.15 68.92
5.52 81.89 5.01 66.65 2.54 81.56
6.04 91.74 5.47 85.18 2.99 89.92
6.53 92.47 6.06 93.46 3.47 92.49
7.04 97.28 6.56 94.53 4.05 95.20
7.57 97.46 7.02 98.36 4.51 97.88
8.07 98.02 7.53 98.91 5.04 98.31
8.54 98.88 8.04 99.09 5.51 98.48
9.00 99.15 8.51 99.51 6.10 98.74
9.49 99.15 9.06 99.63 7.06 98.85
9.91 99.20 9.57 99.66 2.08 59.29
5.05 13.62 10.00 99.65 2.51 66.57
5.51 38.51 4.43 13.28 3.02 74.45
6.06 55.68 5.09 28.18 3.51 82.88
6.52 85.24 5.44 53.06 4.00 90.79
7.06 87.80 6.00 65.08 4.49 93.51
7.56 89.29 6.52 80.66 5.01 94.28
8.04 93.39 7.04 89.31 5.55 95.00
8.51 90.65 7.51 90.05 6.03 95.02
9.05 91.24 8.01 92.11 7.03 95.23
9.53 91.36 8.51 92.41
10.01 91.33 9.02 92.61

9.47 93.83
9.98 93.84

Zinc adsorption isotherms with HAO at pH 6 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
1.00E-05 8.09E-07 9.19E-06 1.71 E-06 8.29E-06 4.92E-06 5.08E-06
8.00E-06 6.80E-07 7.32E-06 1.40E-06 6.60E-06 3.93E-06 4.07E-06
8.00E-06 6.86E-07 7.31E-06 1.39E-06 6.61E-06 3.87E-06 4.13E-06
5.00E-06 4.08E-07 4.60E-06 8.78E-07 4.12E-06 2.32E-06 2.68E-06
3.00E-06 2.29E-07 2.77E-06 5.06E-07 2.49E-06 1.57E-06 1.43E-06
1.00E-06 8.85E-08 9.11E-07 1.90E-07 8.10E-07 4.77E-07 5.23E-07
5.00E-07 4.74E-08 4.52E-07 &86E-08 4.11E-07 2.13E-07 2.86E-07
3.00E-07 2.63E-08 2.74E-07 4.93E-08 2.51E-07 1.47E-07 1.53E-07
1.00E-07 8.74E-09 9.13E-08 1.78E-08 8.22E-08 4.81E-08 5.19E-08
1.00E-07 4.83E-09 9.52E-08 1.74E-08 8.26E-08 5.09E-08 4.91E-08
8.00E-08 8.37E-09 7.17E-08 1.50E-08 6.51E-08 4.06E-08 3.94E-08
5.00E-08 3.98E-09 4.61E-08 9.05E-09 4.10E-08 2.41E-08 2.60E-08
3.00E-08 2.43E-09 2.75E-08 4.86E-09 2.51E-08 1.39E-08 1.61E-08
1.00E-08 8.06E- I 0 9.19E-09 1.90E-09 8.10E-09 5.50E-09 4.50E-09
8.00E-09 7.37E-10 7.27E-09 1.40E-09 6.60E-09 3.80E-09 4.20E-09
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Zinc adsorption isotherms with HAO at pH 7 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
1.00E-05 3.15E-07 9.68E-06 7.17E-07 9.28E-06 2.64E-06 7.36E-06
8.00E-06 2.65E-07 7.73E-06 5.86E-07 7.41E-06 2.21E-06 5.79E-06
8.00E-06 2.66E-07 7.73E-06 5.62E-07 7.44E-06 2.23E-06 5.77E-06
5.00E-06 1.67E-07 4.84E-06 4.30E-07 4.57E-06 1.24E-06 3.77E-06
3.00E-06 1.15E-07 2.88E-06 2.01E-07 2.80E-06 6.32E-07 2.37E-06
1.00E-06 2.73E-08 9.73E-07 7.45E-08 9.25E-07 2.69E-07 7.31E-07
5.00E-07 1.99E-08 4.80E-07 2.67E-08 4.73E-07 1.35E-07 3.65E-07
3.00E-07 7.47E-09 2.93E-07 2.15E-08 2.79E-07 8.71E-08 2.13E-07
1.00E-07 3.31E-09 9.67E-08 7.33E-09 9.27E-08 2.87E-08 7.14E-08
1.00E-07 3.72E-09 9.63E-08 7.75E-09 9.23E-08 3.34E-08 6.67E-08
8.00E-08 2.63E-09 7.74E-08 5.46E-09 7.46E-08 1.84E-08 6.16E-08
5.00E-08 1.60E-09 4.84E-08 4.32E-09 4.57E-08 1.51E-08 3.49E-08
3.00E-08 1.44E-09 2.85E-08 1.93E-09 2.80E-08 7.68E-09 2.23E-08
1.00E-08 6.49E-10 9.35E-09 7.68E-10 9.23E-09 2.89E-09 7.11E-09
8.00E-09 1.36E-10 7.87E-09 5.67E-10 7.44E-09 1.74E-09 6.26E-09
5.00E-09 1.94E-10 4.81E-09 1.74E-10 4.83E-09 1.47E-09 3.53E-09
3.00E-09 1.07E-10 2.89E-09 2.40E-10 2.76E-09 8.41E-10 2.16E-09
1.00E-09 3.37E-11 9.66E-10 8.24E-11 9.17E-10 2.78E-10 7.21E-10

Zinc adsorption isotherms with HAO at pH 8 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
[Zn] (M) Moles Zn/g

HAO
1.00E-05 1.79E-07 9.82E-06 4.87E-07 9.51E-05 1.61E-06 8.39E-06
8.00E-06 1.26E-07 7.87E-06 3.85E-07 7.61E-05 1.32E-06 6.68E-06
8.00E-06 1.32E-07 7.87E-06 3.97E-07 7.60E-05 1.26E-06 6.74E-06
5.00E-06 9.79E-08 4.90E-06 2.47E-07 4.76E-05 7.15E-07 4.29E-06
3.00E-06 4.20E-08 2.96E-06 1.50E-07 2.85E-05 6.02E-07 2.40E-06
1.00E-06 2.29E-08 9.77E-07 8.91E-08 9.11E-06 1.64E-07 8.36E-07
5.00E-07 9.00E-09 4.91E-07 2.11E-08 4.79E-06 6.57E-08 4.34E-07
3.00E-07 5.31E-09 2.95E-07 1.42E-08 2.86E-06 4.53E-08 2.55E-07
1.00E-07 1.71E-09 9.83E-08 4.38E-09 9.57E-07 1.46E-08 8.55E-08
1.00E-07 1.62E-09 9.84E-08 4.50E-09 9.55E-07 1.51 E-08 8.49E-08
8.00E-08 1.14E-09 7.89E-08 4.21E-09 7.58E-07 1.27E-08 6.73E-08
5.00E-08 7.05E-10 4.93E-08 2.86E-09 4.72E-07 7.58E-09 4.25E-08
3.00E-08 5.40E-10 2.94E-08 2.41E-09 2.76E-07 4.60E-09 2.54E-08
1.00E-08 1.71E-10 9.83E-09 5.01E-10 9.50E-08 1.12E-09 8.88E-09
8.00E-09 1.33E-10 7.87E-09 4.01E-10 7.60E-08 1.24E-09 6.76E-09
5.00E-09 9.13E-11 4.91E-09 2.38E-10 4.76E-08 6.76E-10 4.33E-09
3.00E-09 3.32E-11 2.97E-09 1.89E-10 2.81E-08 4.60E-10 2.54E-09
1.00E-09 1.56E-11 9.84E-10 8.01E-11 9.20E-09 1.42E-10 8.58E-10
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Zinc adsorption isotherms with HFO at pH 6 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
1.00E-05 6.52E-07 9.35E-06 1.43E-06 8.57E-06 5.23E-06 4.76E-06
8.00E-06 5.43E-07 7.46E-06 1.17E-06 6.83E-06 4.27E-06 3.73E-06
8.00E-06 5.01E-07 7.50E-06 1.18E-06 6.82E-06 4.37E-06 3.63E-06
5.00E-06 3.36E-07 4.67E-06 7.67E-07 4.24E-06 2.69E-06 2.31E-06
3.00E-06 1.70E-07 2.83E-06 4.53E-07 2.55E-06 1.63E-06 1.36E-06
1.00E-06 5.69E-08 9.43E-07 1.51E-07 8.49E-07 5.36E-07 4.64E-07
5.00E-07 2.90E-08 4.71E-07 7.60E-08 4.24E-07 2.79E-07 2.21E-07
3.00E-07 2.39E-08 2.76E-07 5.17E-08 2.49E-07 1.65E-07 1.35E-07
1.00E-07 7.32E-09 9.27E-08 1.57E-08 8.43E-08 5.42E-08 4.58E-08
1.00E-07 3.17E-09 9.68E-08 1.55E-08 8.45E-08 5.50E-08 4.50E-08
8.00E-08 6.55E-09 7.35E-08 1.52E-08 6.48E-08 4.23E-08 3.77E-08
5.00E-08 2.86E-09 4.72E-08 7.14E-09 4.29E-08 2.70E-08 2.30E-08
3.00E-08 1.61E-09 2.84E-08 5.31E-09 2.47E-08 1.59E-08 1.41E-08
1.00E-08 4.18E-10 9.58E-09 1.71E-09 8.29E-09 4.56E-09 5.44E-09
8.00E-09 6.20E-10 7.38E-09 1.26E-09 6.74E-09 4.39E-09 3.61E-09
5.00E-09 7.82E-10 4.22E-09 2.77E-09 2.23E-09
3.00E-09 5.00E-10 2.50E-09 1.54E-09 1.46E-09
1.00E-09 1.80E-10 8.20E-10 5.58E-10 4.42E-10

Zinc adsorption isotherms with HFO at pH 7 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
1.00E-05 4.41 E-07 9.56E-06 2.09E-06 7.91 E-06
8.00E-06 1.18E-07 7.88E-06 4.08E-07 7.59E-06 1.74E-06 6.26E-06
8.00E-06 1.24E-07 7.88E-06 3.94E-07 7.61E-06 1.73E-06 6.27E-06
5.00E-06 1.04E-07 4.90E-06 1.74E-07 4.83E-06 1.09E-06 3.91E-06
3.00E-06 5.31E-08 2.95E-06 1.56E-07 2.84E-06 6.46E-07 2.35E-06
1.00E-06 1.87E-08 9.81E-07 5.02E-08 9.50E-07 1.73E-07 8.27E-07
5.00E-07 9.11E-09 4.91E-07 2.50E-08 4.75E-07 1.06E-07 3.93E-07
3.00E-07 4.40E-09 2.96E-07 1.60E-08 2.84E-07 7.64E-08 2.24E-07
1.00E-07 1.30E-09 9.87E-08 5.05E-09 9.50E-08 2.26E-08 7.75E-08
1.00E-07 1.37E-09 9.86E-08 4.92E-09 9.51E-08 2.30E-08 7.70E-08
8.00E-08 1.48E-09 7.86E-08 4.42E-09 7.56E-08 1.97E-08 6.03E-08
5.00E-08 9.89E-10 4.90E-08 2.05E-09 4.80E-08 9.97E-09 4.01E-08
3.00E-08 5.87E-10 2.94E-08 1.44E-09 2.85E-08 6.72E-09 2.33E-08
1.00E-08 2.30E-10 9.77E-09 5.00E-10 9.50E-09 2.18E-09 7.82E-09
8.00E-09 1.24E-10 7.88E-09 2.86E-10 7.72E-09 1.72E-09 6.29E-09
5.00E-09 1.10E-10 4.89E-09 2.26E-10 4.78E-09 1.06E-09 3.94E-09
3.00E-09 4.96E-11 2.95E-09 1.71E-10 2.83E-09 7.00E-10 2.30E-09
1.00E-09 2.42E-11 9.76E-10 5.06E-11 9.49E-10 2.28E-10 7.72E-10
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Zinc adsorption isotherms with HFO at pH 8 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn (M) [Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
[Zn] (M) Moles Zn/g

HFO
1.00E-05 9.14E-08 9.91E-06 2.70E-07 9.73E-06 1.31E-06 8.68E-06
8.00E-06 7.11E-08 7.93E-06 2.53E-07 7.75E-06 9.82E-07 7.02E-06
8.00E-06 6.96E-08 7.93E-06 2.28E-07 7.77E-06 9.95E-07 7.01E-06
5.00E-06 4.91E-08 4.95E-06 1.30E-07 4.87E-06 6.19E-07 4.38E-06
3.00E-06 2.94E-08 2.97E-06 6.51E-08 2.93E-06 3.09E-07 2.69E-06
1.00E-06 9.17E-09 9.91E-07 2.72E-08 9.73E-07 1.17E-07 8.83E-07
5.00E-07 5.26E-09 4.95E-07 1.59E-08 4.84E-07 5.35E-08 4.46E-07
3.00E-07 2.94E-09 2.97E-07 1.00E-08 2.90E-07 4.09E-08 2.59E-07
1.00E-07 6.39E-10 9.94E-08 1.77E-09 9.83E-08 1.08E-08 8.93E-08
1.00E-07 4.74E-10 9.95E-08 1.87E-09 9.81E-08 1.10E-08 8.90E-08
8.00E-08 6.86E-10 7.94E-08 1.74E-09 7.83E-08 9.66E-09 7.04E-08
5.00E-08 4.76E-10 4.96E-08 1.47E-09 4.86E-08 5.71E-09 4.43E-08
3.00E-08 3.53E-10 2.96E-08 9.65E-10 2.90E-08 4.24E-09 2.57E-08
1.00E-08 6.48E-11 9.94E-09 3.67E-10 9.63E-09 1.10E-09 8.90E-09
8.00E-09 8.87E-11 7.91E-09 1.96E-10 7.81E-09 1.04E-09 6.96E-09
5.00E-09 4.81E-11 4.95E-09 1.34E-10 4.87E-09 6.15E-10 4.39E-09
3.00E-09 2.51E-11 2.97E-09 8.94E-11 2.91E-09 5.53E-10 2.45E-09
1.00E-09 8.81E-12 9.91E-10 3.18E-11 9.68E-10 1.23E-10 8.77E-10

Zinc adsorption isotherms with HMO at pH 7 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn

(M)
[Zn] (M) C molesZn/ g

HMO
[Zn] (M) C molesZn/

g HMO
[Zn] (M) C molesZn/

g HMO
1.00E-05 1.07E-07 9.89E-05 4.87E-07 9.51 E-05 2.24E-06 7.76E-05
8.00E-06 1.12E-07 7.89E-05 3.85E-07 7.61E-05 1.77E-06 6.23E-05
8.00E-06 1.00E-07 7.90E-05 3.97E-07 7.60E-05 1.82E-06 6.18E-05
5.00E-06 6.64E-08 4.93E-05 2.47E-07 4.76E-05 1.13E-06 3.87E-05
3.00E-06 2.99E-08 2.97E-05 1.50E-07 2.85E-05 6.89E-07 2.31E-05
1.00E-06 1.69E-08 9.83E-06 8.91E-08 9.11E-06 4.10E-07 5.90E-06
5.00E-07 4.68E-09 4.95E-06 2.11E-08 4.79E-06 9.73E-08 4.03E-06
3.00E-07 4.49E-09 2.96E-06 1.42E-08 2.86E-06 6.52E-08 2.35E-06
1.00E-07 1.41E-09 9.86E-07 4.38E-09 9.57E-07 2.02E-08 7.99E-07
1.00E-07 1.31E-09 9.87E-07 4.50E-09 9.55E-07 2.07E-08 7.93E-07
8.00E-08 1.10E-09 7.89E-07 4.21E-09 7.58E-07 1.94E-08 6.07E-07
5.00E-08 6.25E-10 4.94E-07 2.86E-09 4.72E-07 1.31E-08 3.69E-07
3.00E-08 4.25E-10 2.96E-07 2.41E-09 2.76E-07 1.11E-08 1.89E-07
1.00E-08 1.52E-10 9.85E-08 5.01E-10 9.50E-08 2.30E-09 7.70E-08
8.00E-09 1.01E-10 7.90E-08 4.01E-10 7.60E-08 1.84E-09 6.16E-08
5.00E-09 4.88E-11 4.95E-08 2.38E-10 4.76E-08 1.09E-09 3.91E-08
3.00E-09 3.87E-11 2.96E-08 1.89E-10 2.81E-08 8.71E-10 2.13E-08
1.00E-09 1.17E-11 9.88E-09 8.01E-11 9.20E-09 2.29E-10 7.71E-09
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Zinc adsorption isotherms with HMO at pH 5 and multiple temperatures measured with liquid scintillating
counter

T= 25°C T = 14°C T = 4°C
Initial Zn

(M)
[Zn] (M) C molesZn/ g

HMO
[Zn] (M) C molesZn/

g HMO
[Zn] (M) C molesZn/

g HMO
1.00E-05 2.05E-07 9.80E-06 1.08E-06 8.92E-05 3.56E-06 6.43E-05
8.00E-06 1.60E-07 7.84E-06 9.07E-07 7.09E-05 2.92E-06 5.08E-05
8.00E-06 1.68E-07 7.83E-06 9.41E-07 7.06E-05 2.99E-06 5.01E-05
5.00E-06 9.88E-08 4.90E-06 6.10E-07 4.39E-05 1.36E-06 3.64E-05
3.00E-06 6.78E-08 2.93E-06 4.47E-07 2.55E-05 8.98E-07 2.10E-05
1.00E-06 1.99E-08 9.80E-07 1.02E-07 8.98E-06 6.08E-07 3.92E-06
5.00E-07 1.03E-08 4.90E-07 5.82E-08 4.42E-06 1.72E-07 3.28E-06
3.00E-07 5.51E-09 2.94E-07 3.84E-08 2.62E-06 1.10E-07 1.91E-06
1.00E-07 2.12E-09 9.79E-08 1.27E-08 8.74E-07 4.25E-08 5.76E-07
1.00E-07 1.77E-09 9.82E-08 1.29E-08 8.71E-07 3.87E-08 6.13E-07
8.00E-08 1.84E-09 7.82E-08 1.00E-08 7.00E-07 2.89E-08 5.11E-07
5.00E-08 1.20E-09 4.88E-08 4.17E-09 4.59E-07 2.26E-08 2.74E-07
3.00E-08 5.89E-10 2.94E-08 3.32E-09 2.67E-07 2.12E-08 8.73E-08
1.00E-08 2.02E-10 9.80E-09 1.14E-09 8.86E-08 3.53E-09 6.47E-08
8.00E-09 9.52E-11 7.90E-09 9.19E-10 7.08E-08 2.73E-09 5.27E-08
5.00E-09 8.70E-11 4.91E-09 5.80E-10 4.42E-08 1.83E-09 3.17E-08
3.00E-09 4.02E-11 2.96E-09 3.39E-10 2.66E-08 1.47E-09 1.53E-08
1.00E-09 2.40E-11 9.76E-10 1.09E-10 8.91E-09 2.62E-10 7.38E-09
5.00E-10 1.28E-11 4.87E-10

Zinc adsorption isotherms with HMO at pH 3.5 and multiple temperatures measured with liquid
scintillating counter

T= 25°C T = 14°C T = 4°C
Initial Zn

(M)
[Zn] (M) C molesZn/ g

HMO
[Zn] (M) C molesZn/

g HMO
[Zn] (M) C molesZn/

g HMO
1.00E-05 7.73E-07 9.23E-05 3.00E-06 7.00E-05 6.47E-06 3.53E-05
8.00E-06 5.39E-07 7.46E-05 2.47E-06 5.53E-05 5.41E-06 2.58E-05
8.00E-06 5.67E-07 7.43E-05 2.36E-06 5.64E-05 5.40E-06 2.60E-05
5.00E-06 3.20E-07 4.68E-05 1.43E-06 3.58E-05 3.08E-06 1.92E-05
3.00E-06 2.35E-07 2.77E-05 6.29E-07 2.37E-05 1.73E-06 1.27E-05
1.00E-06 7.43E-08 9.26E-06 3.77E-07 6.23E-06 6.13E-07 3.87E-06
5.00E-07 2.17E-08 4.78E-06 1.47E-07 3.53E-06 3.25E-07 1.74E-06
3.00E-07 1.68E-08 2.83E-06 8.45E-08 2.16E-06 1.92E-07 1.09E-06
1.00E-07 9.27E-09 9.07E-07 3.00E-08 7.01E-07 5.86E-08 4.14E-07
1.00E-07 8.77E-09 9.12E-07 2.93E-08 7.07E-07 6.68E-08 3.32E-07
8.00E-08 9.01E-09 7.10E-07 2.16E-08 5.84E-07 5.46E-08 2.54E-07
5.00E-08 3.70E-09 4.63E-07 1.30E-08 3.70E-07 3.41E-08 1.59E-07
3.00E-08 1.98E-09 2.80E-07 1.10E-08 1.90E-07 2.30E-08 7.01E-08
1.00E-08 8.17E-10 9.18E-08 3.01E-09 6.99E-08 6.71E-09 3.29E-08
8.00E-09 6.78E-10 7.32E-08 2.35E-09 5.65E-08 5.01E-09 2.99E-08
5.00E-09 4.55E-10 4.55E-08 1.58E-09 3.42E-08 3.61E-09 1.39E-08
3.00E-09 1.84E-10 2.82E-08 7.89E-10 2.21E-08 2.89E-09 1.06E-09
1.00E-09 9.03E-11 9.10E-09 3.06E-10 6.94E-09 8.07E-10 1.93E-09



CBC of Zn sorbed to HAO at pH 7 and 25°C

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HAO
0 0 0 0.000 0.00 0.00E+00 0.00E+00 0.00E+00

30 2400.26 150 4.100 0.00 4.10E-08 2.56E-09 3.84E-08
60 2400.26 97 4.100 0.00 4.10E-08 1.66E-09 3.93E-08
300 2400.26 78.6 4.100 0.00 4.10E-08 1.34E-09 3.97E-08
900 2400.26 86.22 4.100 0.00 4.10E-08 1.47E-09 3.95E-08
1800 2400.26 81.43 4.100 0.00 4.10E-08 1.39E-09 3.96E-08
3600 2400.26 82.35 4.100 0.00 4.10E-08 1.41E-09 3.96E-08
7200 2400.26 80.42 4.100 0.00 4.10E-08 1.37E-09 3.96E-08
14400 2400.26 79.09 4.100 0.00 4.10E-08 1.35E-09 3.96E-08
86400 2589.48 10.34 4.100 0.60 4.10E-08 1.64E-10 4.08E-08
87000 3250.09 91.77 4.700 0.00 4.70E-08 1.33E-09 4.57E-08
172800 3264.16 27.95 4.697 0.50 4.70E-08 4.02E-10 4.66E-08
173400 3638.21 95.26 5.197 0.00 5.20E-08 1.36E-09 5.06E-08
259200 3638.21 43.25 5.197 0.40 5.20E-08 6.18E-10 5.14E-08
259800 4105.23 100.01 5.597 0.00 5.60E-08 1.36E-09 5.46E-08
345600 4135.69 47.02 5.597 0.20 5.60E-08 6.36E-10 5.53E-08
346200 4623.07 101.44 5.797 0.00 5.80E-08 1.27E-09 5.67E-08
432000 4584.31 32.09 5.797 0.10 5.80E-08 4.06E-10 5.76E-08
432600 4788.5 97.44 5.897 0.00 5.90E-08 1.20E-09 5.78E-08
518400 4760.33 52.15 5.897 0.10 5.90E-08 6.46E-10 5.83E-08
519000 4952.12 94.03 5.997 0.00 6.00E-08 1.14E-09 5.88E-08
604800 4907.36 26.04 5.997 0.00 6.00E-08 3.18E-10 5.97E-08
605400 5217.61 96.11 5.997 0.00 6.00E-08 1.10E-09 5.89E-08
691200 5220.16 21.41 5.997 0.10 6.00E-08 2.46E-10 5.97E-08
691800 5608.14 96.42 6.097 0.00 6.10E-08 1.05E-09 5.99E-08
777600 5574.42 20.64 6.097 0.00 6.10E-08 2.26E-10 6.07E-08
778200 6000.14 99.03 6.097 0.00 6.10E-08 1.01E-09 6.00E-08
864000 6012.79 23.25 6.097 0.10 6.10E-08 2.36E-10 6.07E-08
864600 6254.37 102.76 6.197 0.00 6.20E-08 1.02E-09 6.10E-08
950400 6303.28 20.26 6.197 0.10 6.20E-08 1.99E-10 6.18E-08
951000 6581.24 104.84 6.297 0.00 6.30E-08 1.00E-09 6.20E-08
1036800 6560.19 21.54 6.297 0.10 6.30E-08 2.07E-10 6.28E-08
1037400 6797.25 104.92 6.397 0.00 6.40E-08 9.87E-10 6.30E-08
1123200 6791.42 21.89 6.397 0.08 6.40E-08 2.06E-10 6.38E-08
1123800 6935.01 105.62 6.477 0.00 6.48E-08 9.86E-10 6.38E-08
1209600 6941.31 18.44 6.477 0.05 6.48E-08 1.72E-10 6.46E-08
1210200 7188.09 104.27 6.527 0.00 6.53E-08 9.47E-10 6.43E-08
1296000 7091.64 20.24 6.527 0.05 6.53E-08 1.86E-10 6.51E-08
1296600 7240.65 101.32 6.577 0.00 6.58E-08 9.20E-10 6.49E-08
1382400 7227.16 22.49 6.577 0.05 6.58E-08 2.05E-10 6.56E-08
1383000 7404 103.75 6.627 0.00 6.63E-08 9.29E-10 6.53E-08
1468800 7379.31 20.61 6.627 0.05 6.63E-08 1.85E-10 6.61E-08
1469400 7461.22 100.29 6.677 0.00 6.68E-08 8.98E-10 6.59E-08
1555200 7426.48 21.37 6.677 0.05 6.68E-08 1.92E-10 6.66E-08
1555800 7608.79 101.18 6.727 0.00 6.73E-08 8.95E-10 6.64E-08
1900800 7502.13 11.01 6.727 0.15 6.73E-08 9.87E-11 6.72E-08
1901400 7914.45 99.26 6.877 0.00 6.88E-08 8.63E-10 6.79E-08
1987200 7922.06 14.55 6.877 0.05 6.88E-08 1.26E-10 6.86E-08
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CBC of Zn sorbed to HAO at pH 7 and 25°C (contd.)

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HAO
1987800 8202.06 100.02 6.927 0.00 6.93E-08 8.45E-10 6.84E-08
2073600 8241.26 8.05 6.927 0.05 6.93E-08 6.77E-11 6.92E-08
2074200 8522.35 100.13 6.977 0.00 6.98E-08 8.20E-10 6.90E-08
2160000 8600.09 12.85 6.977 0.05 6.98E-08 1.04E-10 6.97E-08
2160600 8874.32 98.52 7.027 0.00 7.03E-08 7.80E-10 6.95E-08
2246400 8891.02 20.16 7.027 0.05 7.03E-08 1.59E-10 7.01E-08
2247000 9063.14 101.33 7.077 0.00 7.08E-08 7.91E-10 7.00E-08
2419200 9071 28.2 7.077 0.05 7.08E-08 2.20E-10 7.06E-08
2419800 9122.02 100.64 7.127 0.00 7.13E-08 7.86E-10 7.05E-08
2592000 9200.34 15.83 7.127 0.05 7.13E-08 1.23E-10 7.12E-08
2592600 9500.31 101.37 7.177 0.00 7.18E-08 7.66E-10 7.10E-08
2764800 9606.36 11.04 7.177 0.05 7.18E-08 8.25E-11 7.17E-08
2765400 9887.17 100.77 7.227 0.00 7.23E-08 7.37E-10 7.15E-08
2851200 9757.11 26.55 7.227 0.05 7.23E-08 1.97E-10 7.21E-08
2851800 9834.26 105.89 7.277 0.00 7.28E-08 7.84E-10 7.20E-08
3024000 9604.15 16.6 7.277 0.05 7.28E-08 1.26E-10 7.26E-08
3024600 9830.09 101.33 7.327 0.00 7.33E-08 7.55E-10 7.25E-08
3283200 9771.49 21.07 7.327 0.05 7.33E-08 1.58E-10 7.31E-08
3283800 9894.27 97.09 7.377 0.00 7.38E-08 7.24E-10 7.30E-08
3542400 9825.25 20.25 7.377 0.05 7.38E-08 1.52E-10 7.36E-08
3543000 10041.07 98.16 7.427 0.00 7.43E-08 7.26E-10 7.35E-08
3715200 10124.38 3.7 7.427 0.05 7.43E-08 2.71E-11 7.42E-08
3715800 10889.34 85.21 7.477 0.00 7.48E-08 5.85E-10 7.42E-08
3974400 10802.63 16.91 7.477 0.05 7.48E-08 1.17E-10 7.47E-08
3975000 11263.57 98.25 7.527 0.00 7.53E-08 6.57E-10 7.46E-08
4147200 11310.04 78.09 7.527 0.05 7.53E-08 5.20E-10 7.48E-08
4147800 11349.5 102.67 7.577 0.00 7.58E-08 6.85E-10 7.51E-08
4406400 11275.17 36.12 7.577 0.05 7.58E-08 2.43E-10 7.55E-08
4407000 11421.01 101.39 7.627 0.00 7.63E-08 6.77E-10 7.56E-08
4579200 11388.14 21.09 7.627 0.05 7.63E-08 1.41E-10 7.61E-08
4579800 11508.45 103.16 7.677 0.00 7.68E-08 6.88E-10 7.61E-08
4752000 11526.2 80.19 7.677 0.05 7.68E-08 5.34E-10 7.62E-08
4752600 11642 112.59 7.727 0.00 7.73E-08 7.47E-10 7.65E-08
4838400 11599.61 107.42 7.727 0.00 7.73E-08 7.16E-10 7.66E-08
4839000 11734.1 80.5 7.727 0.00 7.73E-08 5.30E-10 7.67E-08
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CBC of Zn sorbed to HFO at pH 7 and 25°C

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HFO
0 0 0 0.00 0.000 0.00E+00 0.00E+00 0.00E+00
30 2961.01 160.52 9.00 0.000 9.00E-07 4.88E-08 8.51E-07
60 2961.01 122.22 9.00 0.000 9.00E-07 3.71E-08 8.63E-07

300 2961.01 80.48 9.00 0.000 9.00E-07 2.45E-08 8.76E-07
900 2961.01 61.59 9.00 0.000 9.00E-07 1.87E-08 8.81E-07
1800 2961.01 53.02 9.00 0.000 9.00E-07 1.61E-08 8.84E-07
3600 2961.01 50.11 9.00 0.000 9.00E-07 1.52E-08 8.85E-07
7200 2961.01 51.65 9.00 0.000 9.00E-07 1.57E-08 8.84E-07
14400 2961.01 50.32 9.00 0.000 9.00E-07 1.53E-08 8.85E-07
30000 2961.01 52.38 9.00 0.000 9.00E-07 1.59E-08 8.84E-07
86400 2961.01 32.18 9.00 0.050 9.00E-07 9.78E-09 8.90E-07
87000 3188.71 54.04 9.05 0.000 9.05E-07 1.53E-08 8.90E-07
172800 3168.04 34.29 9.05 0.000 9.05E-07 9.80E-09 8.95E-07
173400 3416.16 64.22 9.05 0.000 9.05E-07 1.70E-08 8.88E-07
259800 3383.22 54.07 9.05 0.000 9.05E-07 1.45E-08 8.91E-07
346200 3375.12 50.19 9.05 0.000 9.05E-07 1.35E-08 8.92E-07
432600 3395.43 50.12 9.05 0.050 9.05E-07 1.34E-08 8.92E-07
433200 3528.04 64.33 9.10 0.000 9.10E-07 1.66E-08 8.93E-07
519600 3508.04 31.66 9.10 0.000 9.10E-07 8.21E-09 9.02E-07
520200 3731.11 64.26 9.10 0.000 9.10E-07 1.57E-08 8.94E-07
606000 3706.15 56.07 9.10 0.000 9.10E-07 1.38E-08 8.96E-07
692400 3719.09 44.25 9.10 0.050 9.10E-07 1.08E-08 8.99E-07
693000 3990.99 68.09 9.15 0.000 9.15E-07 1.56E-08 8.99E-07
778800 3997.13 63.71 9.15 0.000 9.15E-07 1.46E-08 9.00E-07
865200 3984.75 53.08 9.15 0.060 9.15E-07 1.22E-08 9.03E-07
865800 4102.97 68.34 9.21 0.000 9.21E-07 1.53E-08 9.06E-07
951600 4087.56 44.91 9.21 0.050 9.21E-07 1.01E-08 9.11E-07
952200 4351.16 72.03 9.26 0.000 9.26E-07 1.53E-08 9.11E-07
1038000 4319.48 64.49 9.26 0.000 9.26E-07 1.38E-08 9.12E-07
1124400 4350.84 50.67 9.26 0.030 9.26E-07 1.08E-08 9.15E-07
1038600 4577.11 76.12 9.29 0.000 9.29E-07 1.54E-08 9.14E-07
1210800 4558.23 71.29 9.29 0.000 9.29E-07 1.45E-08 9.14E-07
1297200 4500.87 56.02 9.29 0.030 9.29E-07 1.16E-08 9.17E-07
1297800 4722.36 79.92 9.32 0.000 9.32E-07 1.58E-08 9.16E-07
1470600 4688.05 60.37 9.32 0.030 9.32E-07 1.20E-08 9.20E-07
1471200 4641.29 82.5 9.35 0.000 9.35E-07 1.66E-08 9.18E-07
1730400 4617.02 63.25 9.35 0.020 9.35E-07 1.28E-08 9.22E-07
1731000 4823.44 104.83 9.37 0.000 9.37E-07 2.04E-08 9.17E-07
1990200 4750.36 81.34 9.37 0.000 9.37E-07 1.60E-08 9.21E-07
1990800 4750.36 81.34 9.37 0.000 9.37E-07 1.60E-08 9.21E-07
2336400 4693.43 59.32 9.37 0.020 9.37E-07 1.18E-08 9.25E-07
2337000 4737.57 75.49 9.39 0.000 9.39E-07 1.50E-08 9.24E-07
2596200 4701.09 76.77 9.39 0.010 9.39E-07 1.53E-08 9.24E-07
2596800 4701.09 76.77 9.40 0.000 9.40E-07 1.54E-08 9.25E-07
2856000 4652.34 67.24 9.40 0.000 9.40E-07 1.36E-08 9.26E-07
2856600 4684.15 72.34 9.40 0.000 9.40E-07 1.45E-08 9.25E-07
3115800 4600.32 66.49 9.40 0.010 9.40E-07 1.36E-08 9.26E-07
3116400 4652.78 74.26 9.41 0.000 9.41E-07 1.50E-08 9.26E-07
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CBC of Zn sorbed to HFO at pH 7 and 25°C (contd.)

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HFO
3462600 4666.27 76.48 9.42 0.000 9.42E-07 1.54E-08 9.27E-07
3721800 4610.5 74.22 9.42 0.000 9.42E-07 1.52E-08 9.27E-07
3722400 4585.34 84.5 9.42 0.000 9.42E-07 1.74E-08 9.25E-07
3981600 4613.48 72.48 9.42 0.000 9.42E-07 1.48E-08 9.27E-07
3982200 4613.48 72.48 9.42 0.000 9.42E-07 1.48E-08 9.27E-07
4241400 4568.79 68.35 9.42 0.010 9.42E-07 1.41E-08 9.28E-07
4242000 4622.04 74.19 9.43 0.000 9.43E-07 1.51E-08 9.28E-07
4501200 4609.17 68.83 9.43 0.010 9.43E-07 1.41E-08 9.29E-07
4501800 4649.17 70.83 9.44 0.000 9.44E-07 1.44E-08 9.30E-07
4761000 4633.58 69.8 9.44 0.000 9.44E-07 1.42E-08 9.30E-07
4761600 4643.58 72.38 9.44 0.000 9.44E-07 1.47E-08 9.29E-07
5193600 4620.45 69.02 9.44 0.000 9.44E-07 1.41E-08 9.30E-07
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CBC of Zn sorbed to 0.1 el. HMO at pH 7 and 25 °C

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HMO
0 0 0 0.0 0.0 0.00E+00 0.00E+00 0.00E+00

30 6620.11 60 12.5 0.0 1.25E-07 1.13E-09 1.24E-06
60 6624.17 73 12.5 0.0 1.25E-07 1.38E-09 1.24E-06

300 6704.15 71 12.5 0.0 1.25E-07 1.32E-09 1.24E-06
900 6683.55 74 12.5 0.0 1.25E-07 1.38E-09 1.24E706
1800 6686.15 84 12.5 0.0 1.25E-07 1.57E-09 1.23E-06
3600 6749.56 84 12.5 0.0 1.25E-07 1.56E-09 1.24E-06
7200 6749.56 85 12.5 0.0 1.25E-07 1.57E-09 1.23E-06
14400 6642.01 80 12.5 0.0 1.25E-07 1.51E-09 1.24E-06
30000 6671.25 83 12.5 0.0 1.25E-07 1.56E-09 1.24E-06
86400 6618.02 41 12.5 0.1 1.25E-07 7.75E-10 1.24E-06
87000 7195.12 92 12.6 0.0 1.26E-07 1.61E-09 1.24E-06
172800 7228.04 49 12.6 0.1 1.26E-07 8.53E-10 1.25E-06
259200 7436.16 91.22 12.7 0.1 1.27E-07 1.55E-09 1.25E-06
259800 7783.22 104 12.8 0.0 1.28E-07 1.70E-09 1.26E-06
346200 7165.12 47 12.7 0.1 1.27E-07 8.35E-10 1.27E-06
346800 7765.43 91 12.8 0.0 1.28E-07 1.50E-09 1.27E-06
433200 7728.04 63 12.8 0.1 1.28E-07 1.04E-09 1.27E-06
433800 8200.61 113.45 12.9 0.0 1.29E-07 1.79E-09 1.27E-06
606600 8376.04 99 12.9 0.0 1.29E-07 1.53E-09 1.28E-06
607200 8383.02 101.26 12.9 0.0 1.29E-07 1.56E-09 1.28E-06
780000 8241.2 46.04 12.9 0.1 1.29E-07 7.21E-10 1.28E-06
780600 8856.17 110.17 13.0 0.0 1.30E-07 1.62E-09 1.28E-06
953400 8773.43 56.49 13.0 0.1 1.30E-07 8.37E-10 1.29E-06
954000 8801.05 106.44 13.1 0.0 1.31E-07 1.58E-09 1.29E-06
1213200 8757.65 49.64 13.1 0.1 1.31E-07 7.41E-10 1.30E-06
1213800 8799.21 100.03 13.2 0.0 1.32E-07 1.50E-09 1.30E-06
1386600 8843.01 25.1 13.2 0.2 1.32E-07 3.74E-10 1.31E-06
1387200 9423.16 112.16 13.3 0.0 1.33E-07 1.59E-09 1.32E-06
1560000 9305.5 46.12 13.3 0.1 1.33E-07 6.60E-10 1.33E-06
1560600 9305.5 110.48 13.4 0.0 1.34E-07 1.59E-09 1.33E-06
1819800 9262.15 58.52 13.4 0.1 1.34E-07 8.48E-10 1.33E-06
1820400 9633.71 115.92 13.5 0.0 1.35E-07 1.63E-09 1.34E-06
1993200 9633.71 57.89 13.5 0.1 1.35E-07 8.12E-10 1.34E-06
1993800 9527.04 108.42 13.6 0.0 1.36E-07 1.55E-09 1.35E-06
2166600 9433 68.44 13.6 0.1 1.36E-07 9.88E-10 1.35E-06
2167200 9854.37 119.01 13.7 0.0 1.37E-07 1.66E-09 1.36E-06
2340000 9731.03 83.66 13.7 0.1 1.37E-07 1.18E-09 1.36E-06
2340600 10041.22 119.62 13.8 0.0 1.38E-07 1.64E-09 1.36E-06
2772600 9435.02 31.43 13.8 0.1 1.38E-07 4.60E-10 1.38E-06
2773200 9786.17 112.05 13.9 0.0 1.39E-07 1.59E-09 1.38E-06
3032400 9470.15 68.32 13.9 0.1 1.39E-07 1.00E-09 1.38E-06
3033000 9770.15 110.1 14.0 0.0 1.40E-07 1.57E-09 1.38E-06
3292200 9791.26 71.03 14.0 0.1 1.40E-07 1.01E-09 1.39E-06
3292800 10089.63 118.04 14.1 0.0 1.41E-07 1.65E-09 1.39E-06
3552000 10113.56 77.23 14.1 0.0 1.41E-07 1.07E-09 1.40E-06
3552600 10113.56 111.4 14.1 0.0 1.41E-07 1.55E-09 1.40E-06
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CBC of Zn sorbed to 0.1 g/L HMO at pH 7 and 25 °C (contd.)

Time s Total CPM Final CPM Zn ml Add Zn Total Zn M CBC Zn Zn/g HMO
3811800 10092.17 89.66 14.1 0.1 1.41E-07 1.25E-09 1.40E-06
3812400 11546.12 117.36 14.2 0.0 1.42E-07 1.44E-09 1.41E-06
3985200 11703.59 101.22 14.2 0.0 1.42E-07 1.23E-09 1.41E-06
3985800 11683.47 116.89 14.2 0.0 1.42E-07 1.42E-09 1.41E-06
4245000 10439.25 68.34 14.2 0.1 1.42E-07 9.32E-10 1.41E-06
4245600 11733.28 131.54 14.3 0.0 1.43E-07 1.61E-09 1.42E-06
4418400 11502 91.66 14.3 0.1 1.43E-07 1.14E-09 1.42E-06
4419000 12032.4 134.55 14.4 0.0 1.44E-07 1.61E-09 1.43E-06
4591800 11760.79 90 14.4 0.1 1.44E-07 1.10E-09 1.43E-06
4592400 12487.02 141.05 14.5 0.0 1.45E-07 1.64E-09 1.44E-06
4851600 11331.16 117.23 14.5 0.0 1.45E-07 1.50E-09 1.44E-06
4852200 12006.34 123.05 14.5 0.0 1.45E-07 1.49E-09 1.44E-06
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Calcium Studies with Amorphous Oxides .

HAO HFO HMO
pH g = 0.060 µ=1.50 pH µ= 0.0310.031	 p. =1.50 pH g = 0.015 µ=1.50

5.02 23.00 4.49 36.50 2.02 40.00
5.49 25.25 5.00 36.85 2.50 42.50
6.06 31.25 5.50 38.50 3.02 47.50
6.55 38.50 6.02 45.25 3.51 53.00
7.00 45.50 6.50 47.25 4.00 59.50
7.00 47.75 6.98 52.00 4.51 70.00
7.50 54.50 6.98 53.25 5.00 76.50
8.00 60.50 7.58 61.00 5.51 90.00
8.56 63.25 8.04 68.75 6.02 97.50
9.01 70.25 8.62 72.25 7.00 98.25
9.46 72.75 9.00 78.95 8.00 98.75
10.01 73.25 9.51 81.48 2.02 35.00
4.87 14.25 9.99 86.10 2.50 37.50
5.50 17.00 4.51 31.00 3.02 40.00
6.00 22.00 5.00 32.38 3.51 44.00
6.48 27.75 5.50 34.75 4.00 50.00
7.00 38.50 6.02 37.40 4.51 61.50
7.50 43.50 6.50 41.25 5.00 70.00
8.01 51.00 7.01 46.25 5.51 76.50
8.52 56.50 7.01 46.25 6.02 85.00
9.04 66.25 7.58 49.50 7.00 90.00
9.99 71.50 8.04 59.50 8.00 94.00

8.62 64.75
9.00 75.80
9.51 76.83
9.99 82.38
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Calcium adsorption isotherms with HAO at pH 7 and multiple temperatures

T = 25°C T = 14.1 °C T = 3.8°C
Initial Ca

(M)
C (M) S (moles

Ca/g )
C (M) C (moles

Ca/g )
S (M) C (moles

Ca/g)
5.00E-04 2.66E-04 2.34E-04 2.93E-04 2.07E-04 3.10E-04 1.90E-04
2.50E-04 1.33E-04 1.17E-04 1.47E-04 1.03E-04 1.57E-04 9.30E-05
1.00E-04 5.37E-05 4.63E-05 5.85E-05 4.15E-05 6.30E-05 3.70E-05
5.00E-05 2.75E-05 2.25E-05 2.91E-05 2.09E-05 3.13E-05 1.88E-05
2.50E-05 1.35E-05 1.15E-05 1.45E-05 1.05E-05 1.55E-05 9.55E-06
2.50E-05 1.31E-05 1.19E-05 1.49E-05 1.01E-05 1.57E-05 9.30E-06
1.00E-05 5.70E-06 4.30E-06 5.83E-06 4.18E-06 6.35E-06 3.65E-06
5.00E-06 2.53E-06 2.48E-06 2.95E-06 2.05E-06 3.15E-06 1.85E-06
2.50E-06 1.33E-06 1.17E-06 1.46E-06 1.04E-06 1.58E-06 9.25E-07
1.00E-06 4.95E-07 5.05E-07 5.88E-07 4.13E-07 6.25E-07 3.75E-07
5.00E-07 2.63E-07 2.38E-07 2.90E-07 2.10E-07 3.13E-07 1.88E-07

5.00E-04 2.53E-04 2.47E-04 3.08E-04 1.93E-04 3.73E-04 1.27E-04
2.50E-04 1.25E-04 1.25E-04 1.55E-04 9.55E-05 1.84E-04 6.60E-05
1.00E-04 5.06E-05 4.94E-05 6.20E-05 3.80E-05 7.40E-05 2.60E-05
5.00E-05 2.53E-05 2.47E-05 3.05E-05 1.95E-05 3.75E-05 1.25E-05
2.50E-05 1.30E-05 1.20E-05 1.54E-05 9.60E-06 1.90E-05 6.00E-06
1.00E-05 5.05E-06 4.95E-06 6.13E-06 3.88E-06 7.50E-06 2.50E-06
5.00E-06 2.50E-06 2.50E-06 3.15E-06 1.85E-06 3.70E-06 1.30E-06
2.50E-06 1.24E-06 1.26E-06 1.56E-06 9.38E-07 1.86E-06 6.38E-07
1.00E-06 5.13E-07 4.88E-07 6.00E-07 4.00E-07 7.45E-07 2.55E-07
5.00E-07 2.50E-07 2.50E-07 3.15E-07 1.85E-07 3.63E-07 1.38E-07

Calcium adsorption isotherms with HMO at pH 7 and multiple temperatures
T = 24.5°C T = 13.7°C T = 4°C

Initial Ca (M) S (M) C (moles
Ca/g )

S (M) C (moles
Ca/g )

S (M) C (moles
Ca/g )

5.00E-04 4.57E-05 4.54E-03 8.80E-05 4.12E-03 1.62E-04 3.38E-03
2.50E-04 2.28E-05 2.27E-03 4.39E-05 2.06E-03 8.60E-05 1.64E-03
1.00E-04 9.20E-06 9.08E-04 1.70E-05 8.30E-04 3.24E-05 6.76E-04
5.00E-05 4.50E-06 4.55E-04 8.60E-06 4.14E-04 1.67E-05 3.33E-04
2.50E-05 2.28E-06 2.27E-04 4.25E-06 2.08E-04 8.40E-06 1.66E-04
1.00E-05 9.13E-07 9.09E-05 1.80E-06 8.20E-05 3.20E-06 6.80E-05
5.00E-06 4.63E-07 4.54E-05 8.63E-07 4.14E-05 1.80E-06 3.20E-05
2.50E-06 2.50E-07 2.25E-05 4.25E-07 2.08E-05 7.75E-07 1.73E-05
1.00E-06 9.00E-08 9.10E-06 1.75E-07 8.25E-06 3.25E-07 6.75E-06
5.00E-07 4.00E-08 4.60E-06 8.25E-08 4.18E-06 1.75E-07 3.25E-06
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Nickel Studies with Amorphous Oxides

Nickel adsorption edges at 25 °C

HAO HFO HMO
pH µ= 0.0600.060 II =1.50 pH	 II = 0.031	 ti =1.50 pH	 IA = 0.015	 µ=1.50

5.00 39.94 5.00 27.40 2.00	 43.24
5.50 46.50 5.50 30.28 2.50 48.78
6.00 68.21 6.00 48.43 3.00 63.17
6.50 77.24 6.50 79.19 3.50 78.99
7.00 90.54 7.00 89.31 4.00 90.34
7.50 96.81 7.50 96.03 4.50 92.89
8.00 96.54 8.00 96.74 5.00 95.38
8.50 97.82 8.50 96.70 5.50 96.27
9.00 98.06 9.00 96.85 6.00 97.57
9.50 98.13 9.50 96.93 7.00 97.67
5.00 9.99 5.00 49.66 8.00 97.69
5.50 18.13 5.50 57.09 2.00 36.12
6.00 30.88 6.00 81.04 2.50 41.82
6.50 50.72 6.50 94.37 3.00 54.51
7.00 60.50 7.00 96.06 3.50 67.33
7.50 82.33 7.50 97.36 4.00 79.53
8.00 90.62 8.00 97.90 4.50 88.22
8.50 91.53 8.50 97.84 5.00 91.07
9.00 92.42 9.00 97.95 5.50 93.29
9.50 93.23 9.50 97.82 6.00 95.59

7.00 95.77
8.00 96.44
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Nickel adsorption isotherms with HAO at pH 7 and multiple temperatures analyzed with liquid scintillating
counter

T = 25°C T= 14.1 °C T = 3.8°C
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HAO

[Ni]aq M moles Ni
Adsorbed / g

HAO

[Ni]aq M moles Ni
Adsorbed / g

HAO
1.00E-04 9.51E-06 9.05E-05 1.87E-05 8.13E-05 2.09E-05 7.91E-05
5.00E-05 4.69E-06 4.53E-05 7.72E-06 4.23E-05 1.32E-05 3.68E-05
1.00E-05 1.03E-06 8.97E-06 1.80E-06 8.20E-06 2.24E-06 7.76E-06
5.00E-06 4.76E-07 4.52E-06 7.38E-07 4.26E-06 1.01E-06 3.99E-06
1.00E-06 9.26E-08 9.07E-07 1.54E-07 8.46E-07 2.13E-07 7.87E-07
5.00E-07 4.85E-08 4.52E-07 7.82E-08 4.22E-07 1.07E-07 3.93E-07
1.00E-07 9.63E-09 9.04E-08 1.60E-08 8.40E-08 2.05E-08 7.95E-08
5.00E-08 3.74E-09 4.63E-08 5.80E-09 4.42E-08 1.05E-08 3.95E-08
1.00E-08 1.12E-09 8.88E-09 1.58E-09 8.42E-09 1.88E-09 8.12E-09
5.00E-09 4.59E-10 4.54E-09 7.74E-10 4.23E-09 9.59E-10 4.04E-09
1.00E-09 9.76E-11 9.02E-10 1.55E-10 8.45E-10 2.22E-10 7.78E-10
5.00E-10 4.72E-11 4.53E-10 7.82E-11 4.22E-10 1.04E-10 3.96E-10

Nickel adsorption isotherms with HAO at pH 6 and multiple temperatures analyzed with liquid
scintillating counter

T= 25°C 	 T= 14.1 °C 	 T = 3.8°C
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HAO

[Ni]aq M moles Ni
Adsorbed / g

HAO

[Ni]aq M moles Ni
Adsorbed / g

HAO
1.00E-04 3.08E-05 6.92E-05 4.26E-05 5.74E-05 5.53E-05 4.47E-05
5.00E-05 1.56E-05 3.44E-05 1.75E-05 3.25E-05 2.73E-05 2.27E-05
1.00E-05 4.08E-06 5.92E-06 4.25E-06 5.75E-06 6.41E-06 3.59E-06
5.00E-06 1.53E-06 3.47E-06 2.18E-06 2.82E-06 2.74E-06 2.26E-06
1.00E-06 3.29E-07 6.71E-07 3.67E-07 6.33E-07 5.70E-07 4.30E-07
5.00E-07 9.24E-08 4.08E-07 2.13E-07 2.87E-07 2.73E-07 2.27E-07
1.00E-07 3.18E-08 6.82E-08 5.69E-08 4.31E-08 5.44E-08 4.56E-08
5.00E-08 1.66E-08 3.34E-08 2.00E-08 3.00E-08 2.73E-08 2.27E-08
1.00E-08 3.20E-09 6.80E-09 4.17E-09 5.83E-09 4.37E-09 5.63E-09
5.00E-09 1.61E-09 3.39E-09 2.16E-09 2.84E-09 2.80E-09 2.20E-09
1.00E-09 3.21E-10 6.79E-10 4.64E-10 5.36E-10 5.17E-10 4.83E-10
5.00E-10 1.61E-10 3.39E-10 2.12E-10 2.88E-10 2.76E-10 2.24E-10
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Nickel adsorption isotherms with HFO at pH 7 and multiple temperatures analyzed with liquid scintillating
counter

T = 25°C T = 14.1°C T = 3.8°C
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HFO

[Ni]aq M moles Ni
Adsorbed / g

HFO

[Ni]aq M moles Ni
Adsorbed / g

HFO
1.00E-04 3.52E-06 9.65E-05 5.60E-06 9.44E-05 1.32E-05 8.68E-05
5.00E-05 1.86E-06 4.81E-05 2.86E-06 4.71E-05 6.89E-06 4.31E-05
1.00E-05 5.02E-07 9.50E-06 1.01E-06 8.99E-06 1.25E-06 8.75E-06
5.00E-06 2.35E-07 4.77E-06 3.10E-07 4.69E-06 6.79E-07 4.32E-06
1.00E-06 3.39E-08 9.66E-07 5.86E-08 9.41E-07 1.36E-07 8.64E-07
5.00E-07 1.95E-08 4.80E-07 1.92E-08 4.81E-07 6.70E-08 4.33E-07
1.00E-07 4.86E-09 9.51E-08 5.20E-09 9.48E-08 2.12E-08 7.88E-08
5.00E-08 2.66E-09 4.73E-08 3.53E-09 4.65E-08 6.73E-09 4.33E-08
1.00E-08 2.49E-10 9.75E-09 5.56E-10 9.44E-09 1.31E-09 8.69E-09
5.00E-09 1.78E-10 4.82E-09 3.29E-10 4.67E-09 5.44E-10 4.46E-09
1.00E-09 5.38E-11 9.46E-10 6.12E-11 9.39E-10 1.30E-10 8.70E-10
5.00E-10 2.37E-11 4.76E-10 3.06E-11 4.69E-10 6.89E-11 4.31E-10

Nickel adsorption isotherms with HFO at pH 6 and multiple temperatures analyzed with liquid scintillating
counter

T= 25°C T= 14.1 °C T = 3.8-c
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HFO

[Ni]aq M	 moles Ni
Adsorbed / g

HMO

[Ni]aq M moles Ni
Adsorbed / g

HFO
1.00E-04 2.14E-05 7.86E-05 2.24E-05 7.76E-05 4.29E-05 5.71E-05
5.00E-05 9.21E-06 4.08E-05 1.50E-05 3.50E-05 2.02E-05 2.98E-05
1.00E-05 1.62E-06 8.38E-06 2.07E-06 7.93E-06 4.48E-06 5.52E-06
5.00E-06 9.87E-07 4.01E-06 1.07E-06 3.93E-06 2.67E-06 2.33E-06
1.00E-06 1.55E-07 8.45E-07 2.19E-07 7.81E-07 4.24E-07 5.76E-07
5.00E-07 1.67E-07 3.33E-07 1.16E-07 3.84E-07 1.37E-07 3.63E-07
1.00E-07 1.99E-08 8.01E-08 3.07E-08 6.93E-08 4.23E-08 5.77E-08
5.00E-08 7.55E-09 4.25E-08 1.11E-08 3.89E-08 2.21E-08 2.79E-08
1.00E-08 2.42E-09 7.58E-09 2.26E-09 7.74E-09 4.61E-09 5.39E-09
5.00E-09 1.37E-09 3.63E-09 9.02E-10 4.10E-09 2.11E-09 2.89E-09
1.00E-09 1.78E-10 8.22E-10 2.58E-10 7.42E-10 4.25E-10 5.75E-10
5.00E-10 8.89E-11 4.11E-10 8.27E-11 4.17E-10 2.45E-10 2.55E-10



260

Nickel adsorption isotherms with HMO at pH 7 and multiple temperatures analyzed with liquid scintillating
counter

T = 25°C T = 14.1 °C T = 3.8°C
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HMO

[Ni]aq M moles Ni
Adsorbed / g

HMO

[Ni]aq M moles Ni
Adsorbed / g

HMO
1.00E-04 2.19E-06 9.78E-04 5.99E-06 9.40E-04 9.52E-06 9.05E-04
5.00E-05 1.30E-06 4.87E-04 2.53E-06 4.75E-04 4.53E-06 4.55E-04
1.00E-05 3.14E-07 9.69E-05 6.23E-07 9.38E-05 9.40E-07 9.06E-05
5.00E-06 1.90E-07 4.81E-05 3.52E-07 4.65E-05 4.47E-07 4.55E-05
1.00E-06 2.22E-08 9.78E-06 6.24E-08 9.38E-06 9.76E-08 9.02E-06
5.00E-07 1.18E-08 4.88E-06 2.12E-08 4.79E-06 4.70E-08 4.53E-06
1.00E-07 2.84E-09 9.72E-07 6.11E-09 9.39E-07 9.88E-09 9.01E-07
5.00E-08 1.11E-09 4.89E-07 3.10E-09 4.69E-07 4.83E-09 4.52E-07
1.00E-08 1.72E-10 9.83E-08 5.09E-10 9.49E-08 9.26E-10 9.07E-08
5.00E-09 1.16E-10 4.88E-08 2.93E-10 4.71E-08 4.86E-10 4.51E-08
1.00E-09 1.84E-11 9.82E-09 5.90E-11 9.41E-09 9.52E-11 9.05E-09
5.00E-10 1.91E-11 4.81E-09 2.36E-11 4.76E-09 4.58E-11 4.54E-09

Nickel adsorption isotherms with HMO at pH 5 and multiple temperatures analyzed with liquid scintillating
counter

T = 25°C T = 14.1 °C T = 3.8°C
Initial
Conc.

[Ni]aq M moles Ni
Adsorbed /

g HFO

[Ni]aq M 	 moles Ni
Adsorbed / g

HFO

[Ni]aq M moles Ni
Adsorbed / g

HFO
1.00E-04 4.56E-06 9.54E-04 7.62E-06 9.24E-04 1.87E-05 8.13E-04
5.00E-05 1.71E-06 4.83E-04 4.00E-06 4.60E-04 9.02E-06 4.10E-04
1.00E-05 5.96E-07 9.40E-05 9.35E-07 9.07E-05 1.73E-06 8.27E-05
5.00E-06 3.36E-07 4.66E-05 3.81E-07 4.62E-05 1.01E-06 3.99E-05
1.00E-06 4.01E-08 9.60E-06 8.03E-08 9.20E-06 1.86E-07 8.14E-06
5.00E-07 2.24E-08 4.78E-06 3.96E-08 4.60E-06 5.85E-08 4.42E-06
1.00E-07 5.68E-09 9.43E-07 6.38E-09 9.36E-07 2.01E-08 7.99E-07
5.00E-08 2.55E-09 4.74E-07 3.73E-09 4.63E-07 9.19E-09 4.08E-07
1.00E-08 4.22E-10 9.58E-08 7.97E-10 9.20E-08 1.74E-09 8.26E-08
5.00E-09 1.82E-10 4.82E-08 4.02E-10 4.60E-08 1.19E-09 3.81E-08
1.00E-09 6.06E-11 9.39E-09 7.87E-11 9.21E-09 1.82E-10 8.18E-09
5.00E-10 3.35E-11 4.67E-09 4.25E-11 4.57E-09 9.87E-11 4.01E-09



CBC of Ni sorbed to HAO at pH 7 and 25°C

Time (h) Total CPM Final CPM Ni ml Add Zn Total Ni M CBC Ni Ni Sorbed
0 0 0 0.0 0.00 0.00E+00 0.00E+00 0.000E+00

0.5 4238.1 400 5.2 0.00 2.60E-06 2.45E-07 2.355E-06
1 4238.1 382.25 5.2 0.00 2.60E-06 2.35E-07 2.365E-06
2 4238.1 402.83 5.2 0.00 2.60E-06 2.47E-07 2.353E-06
3 4238.1 399.52 5.2 0.00 2.60E-06 2.45E-07 2.355E-06
4 4238.1 398.75 5.2 1.00 2.60E-06 2.45E-07 2.355E-06

4.5 4993.26 394.02 6.2 1.00 3.10E-06 2.45E-07 2.855E-06
5 5767.75 414.89 7.2 0.00 3.60E-06 2.59E-07 3.341E-06

5.5 5767.75 392.14 7.2 0.50 3.60E-06 2.45E-07 3.355E-06
6 6161.38 422.13 7.7 0.00 3.85E-06 2.64E-07 3.586E-06

6.5 6161.38 391.74 7.7 0.40 3.85E-06 2.45E-07 3.605E-06
7 7145.65 434.58 8.1 0.00 4.05E-06 2.46E-07 3.804E-06

7.5 7145.65 430.54 8.1 0.30 4.05E-06 2.44E-07 3.806E-06
8 7602.43 438.16 8.4 0.10 4.20E-06 2.42E-07 3.958E-06
9 7800.01 449.51 8.5 0.10 4.25E-06 2.45E-07 4.005E-06

9.5 8003.35 461.29 8.6 0.05 4.30E-06 2.48E-07 4.052E-06
10 8120 460 8.7 0.05 4.33E-06 2.45E-07 4.080E-06
11 8211.42 462.41 8.7 0.05 4.35E-06 2.45E-07 4.105E-06
12 8470.35 507.23 8.8 0.00 4.38E-06 2.62E-07 4.113E-06
13 8470.35 491.05 8.8 0.00 4.38E-06 2.54E-07 4.121E-06
14 8470.35 474.29 8.8 0.05 4.38E-06 2.45E-07 4.130E-06
15 8725.13 494.22 8.8 0.00 4.40E-06 2.49E-07 4.151E-06
17 8777.64 488.71 8.8 0.05 4.40E-06 2.45E-07 4.155E-06
19 8992.66 521.27 8.9 0.00 4.43E-06. 2.57E-07 4.168E-06
21 9000.76 512.45 8.9 0.00 4.43E-06 2.52E-07 4.173E-06
27 9000.7 520.49 8.9 0.00 4.43E-06 2.56E-07 4.169E-06
30 9000.7 524.71 8.9 0.00 4.43E-06 2.58E-07 4.167E-06
33 9000.7 517.5 8.9 0.00 4.43E-06 2.54E-07 4.171E-06
36 9000.7 508.38 8.9 0.00 4.43E-06 2.50E-07 4.175E-06
40 9000.7 525.14 8.9 0.00 4.43E-06 2.58E-07 4.167E-06
50 8982.16 526.39 8.9 0.00 4.43E-06 2.59E-07 4.166E-06
60 8982.16 531.45 8.9 0.00 4.43E-06 2.62E-07 4.163E-06
72 9010.2 528.11 8.9 0.00 4.43E-06 2.59E-07 4.166E-06
84 9084.16 526.03 8.9 0.00 4.43E-06 2.56E-07 4.169E-06
96 8995.28 520.93 8.9 0.00 4.43E-06 2.56E-07 4.169E-06
110 9000 523.19 8.9 0.00 4.43E-06 2.57E-07 4.168E-06
125 9000 522.65 8.9 0.00 4.43E-06 2.57E-07 4.168E-06
138 9000 519.85 8.9 0.00 4.43E-06 2.56E-07 4.169E-06
144 8984.53 520.49 8.9 -22.70 4.43E-06 2.56E-07 4.169E-06
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CBC of Ni sorbed to HFO at pH 7 and 25 °C

Time (h) Total CPM Final CPM Ni ml Add Zn Total Ni M CBC Ni Ni Sorbed
0 0 0 0.0 0.00 0.00E+00 0.00E+00 0.000E+00

0.5 4238.1 180.29 5.2 0.00 2.60E-06 1.11E-07 2.489E-06
1 4238.1 177.31 5.2 0.00 2.60E-06 1.09E-07 2.491E-06
2 4238.1 174.78 5.2 0.00 2.60E-06 1.07E-07 2.493E-06
3 4238.1 176.38 5.2 0.00 2.60E-06 1.08E-07 2.492E-06
4 4238.1 174.5 5.2 0.50 2.60E-06 1.07E-07 2.493E-06

4.5 5170.28 183.26 5.7 0.30 2.85E-06 1.01E-07 2.749E-06
5 5542.44 187.6 6.0 0.20 3.00E-06 1.02E-07 2.898E-06

5.5 5999.06 197.12 6.2 0.20 3.10E-06 1.02E-07 2.998E-06
6 6396.2 202.45 6.4 0.40 3.20E-06 1.01E-07 3.099E-06

6.5 6925.25 205.27 6.8 0.60 3.40E-06 1.01E-07 3.299E-06
7 7760.04 213.11 7.4 0.10 3.70E-06 1.02E-07 3.598E-06

7.5 8017.29 214.66 7.5 0.10 3.75E-06 1.00E-07 3.650E-06
8 8202.21 216 7.6 0.10 3.80E-06 1.00E-07 3.700E-06

8.5 8438.1 220.75 7.7 0.10 3.85E-06 1.01E-07 3.749E-06
9 8614.26 221.03 7.8 0.10 3.90E-06 1.00E-07 3.800E-06

9.5 8624.01 221.36 7.9 0.00 3.95E-06 1.01E-07 3.849E-06
10 8600.5 220.2 7.9 0.10 3.95E-06 1.01E-07 3.849E-06
11 8784.91 223.01 8.0 0.05 4.00E-06 1.02E-07 3.898E-06
12 8894.61 226.17 8.1 0.00 4.03E-06 1.02E-07 3.923E-06
13 8880.15 228.87 8.1 0.10 4.03E-06 1.04E-07 3.921E-06
14 9000.12 245.13 8.2 0.00 4.08E-06 1.11E-07 3.964E-06
15 9000.12 244.4 8.2 0.00 4.08E-06 1.11E-07 3.964E-06
16 9000.12 238.33 8.2 0.00 4.08E-06 1.08E-07 3.967E-06
17 9000.12 221.48 8.2 0.10 4.08E-06 1.00E-07 3.975E-06
18 9256.17 232.26 8.3 0.00 4.13E-06 1.04E-07 4.021E-06
22 9256.17 227.67 8.3 0.10 4.13E-06 1.01E-07 4.024E-06
24 9508.32 288.31 8.4 0.00 4.18E-06 1.27E-07 4.048E-06
27 9480.24 308.83 8.4 0.00 4.18E-06 1.36E-07 4.039E-06
30 9512.37 282.17 8.4 0.00 4.18E-06 1.24E-07 4.051E-06
33 9540.16 310.27 8.4 0.00 4.18E-06 1.36E-07 4.039E-06
36 9484.16 310.66 8.4 0.00 4.18E-06 1.37E-07 4.038E-06
39 9480.78 320.19 8.4 0.00 4.18E-06 1.41E-07 4.034E-06
45 9503.26 302.79 8.4 0.00 4.18E-06 1.33E-07 4.042E-06
48 9510.83 298.76 8.4 0.00 4.18E-06 1.31E-07 4.044E-06
54 9480.18 308.64 8.4 0.00 4.18E-06 1.36E-07 4.039E-06
72 9524.36 296.26 8.4 0.00 4.18E-06 1.30E-07 4.045E-06
84 9447.13 277.14 8.4 0.00 4.18E-06 1.22E-07 4.053E-06
96 9484.01 318.35 8.4 0.00 4.18E-06 1.40E-07 4.035E-06
108 9517.22 347.46 8.4 0.00 4.18E-06 1.52E-07 4.023E-06
132 9501.27 307.37 8.4 0.00 4.18E-06 1.35E-07 4.040E-06
144 9492.45 292.67 8.4 0.00 4.18E-06 1.29E-07 4.046E-06
156 9503.17 316.17 8.4 0.00 4.18E-06 1.39E-07 4.036E-06
168 9521.46 323.17 8.4 0.00 4.18E-06 1.42E-07 4.033E-06
180 9506.25 295.57 8.4 0.00 4.18E-06 1.30E-07 4.045E-06
192 9440.16 287.75 8.4 -51.52 4.18E-06 1.27E-07 4.048E-06
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CBC of Ni sorbed to HMO at pH 7 and 25°C

Time (h) Total CPM Final CPM Zn ml Add Zn Total Ni M Aqueous Ni moles Ni
sorbed/g
HMO

0 0 0 0.000 0.0 0.00E+00 0.00E+00 0.000E+00
0.5 1288.45 36.28 2.700 0.0 1.35E-06 3.80E-08 1.312E-05

1 1288.45 30.05 2.700 0.0 1.35E-06 3.15E-08 1.319E-05
2 1288.45 31.18 2.700 0.0 1.35E-06 3.27E-08 1.317E-05
3 1368.77 30.45 2.700 0.0 1.35E-06 3.00E-08 1.320E-05
4 1368.77 30.79 2.700 0.4 1.35E-06 3.04E-08 1.320E-05

4.5 1995.23 40.5 3.100 0.4 1.55E-06 3.15E-08 1.519E-05
5 2374.13 39.01 3.500 0.3 1.75E-06 2.88E-08 1.721E-05

5.5 2600.09 44.12 3.800 0.3 1.90E-06 3.22E-08 1.868E-05
6 3092.41 48.3 4.100 0.3 2.05E-06 3.20E-08 2.018E-05

6.5 3501.16 46.19 4.400 0.4 2.20E-06 2.90E-08 2.171E-05
7 3950.04 50 4.800 0.3 2.40E-06 3.04E-08 2.370E-05

7.5 4303.18 51.01 5.100 0.2 2.55E-06 3.02E-08 2.520E-05
8 4698.65 54.37 5.300 0.2 2.65E-06 3.07E-08 2.619E-05

8.5 4945.02 56.8 5.500 0.1 2.75E-06 3.16E-08 2.718E-05
9 5148.12 61.18 5.600 0.3 2.80E-06 3.33E-08 2.767E-05

9.5 5589.25 60.47 5.900 0.3 2.95E-06 3.19E-08 2.918E-05
10 6086.2 63.6 6.200 0.1 3.10E-06 3.24E-08 3.068E-05

10.5 6209.75 62.98 6.300 0.1 3.15E-06 3.19E-08 3.118E-05
11 6477.09 65.01 6.400 0.2 3.20E-06 3.21E-08 3.168E-05

11.5 6622.17 68.26 6.600 0.1 3.30E-06 3.40E-08 3.266E-05
12 6814.45 67.84 6.700 0.1 3.35E-06 3.34E-08 3.317E-05

12.5 7048.52 70.46 6.800 0.0 3.40E-06 3.40E-08 3.366E-05
13 7048.52 65.3 6.800 0.1 3.40E-06 3.15E-08 3.369E-05

13.5 7200.6 67.11 6.900 0.1 3.45E-06 3.22E-08 3.418E-05
14 7459.52 68.05 7.000 0.1 3.50E-06 3.19E-08 3.468E-05

14.5 7666.13 68.46 7.100 0.2 3.55E-06 3.17E-08 3.518E-05
15 8074.27 75.04 7.300 0.1 3.65E-06 3.39E-08 3.616E-05

15.5 8201.35 69.48 7.400 0.1 3.70E-06 3.13E-08 3.669E-05
16 8195.19 68.8 7.500 0.2 3.75E-06 3.15E-08 3.719E-05
17 8462.21 70.38 7.700 0.6 3.85E-06 3.20E-08 3.818E-05
22 9141.02 70.04 8.300 0.2 4.15E-06 3.18E-08 4.118E-05
23 9515.66 70.54 8.500 0.1 4.25E-06 3.15E-08 4.218E-05
24 9723.04 71.7 8.600 0.2 4.30E-06 3.17E-08 4.268E-05
25 9965.53 70.99 8.800 0.2 4.40E-06 3.13E-08 4.369E-05
27 10348.22 71.37 9.000 0.2 4.50E-06 3.10E-08 4.469E-05
29 10688.12 72.39 9.200 0.3 4.60E-06 3.12E-08 4.569E-05
32 11129 75.59 9.500 0.2 4.75E-06 3.23E-08 4.718E-05
35 11400.16 74.03 9.700 0.2 4.85E-06 3.15E-08 4.819E-05
38 11626.9 73.92 9.900 0.2 4.95E-06 3.15E-08 4.919E-05
41 11901.25 74.49 10.100 0.2 5.05E-06 3.16E-08 5.018E-05
42 12196.24 74.31 10.300 0.3 5.15E-06 3.14E-08 5.119E-05
48 12607.19 74.62 10.600 0.1 5.30E-06 3.14E-08 5.269E-05
51 12822.67 76.01 10.700 0.2 5.35E-06 3.17E-08 5.318E-05
54 13252.04 77.09 10.900 0.2 5.45E-06 3.17E-08 5.418E-05
60 13466.24 77.34 11.100 0.2 5.55E-06 3.19E-08 5.518E-05
64 13689.18 78.56 11.300 0.3 5.65E-06 3.24E-08 5.618E-05
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Time (h) Total CPM Final CPM Zn ml Add Zn Total Ni M Aqueous Ni moles Ni
sorbed/g

HMO
72 13900.03 80.01 11.600 0.0 5.80E-06 3.34E-08 5.767E-05
78 13921.78 75.79 11.600 0.1 5.80E-06 3.16E-08 5.768E-05
84 14172.75 77.85 11.700 0.0 5.85E-06 3.21E-08 5.818E-05
87 14137.59 85.48 11.700 0.2 5.85E-06 3.54E-08 5.815E-05
98 14539.17 79.83 11.900 0.1 5.95E-06 3.27E-08 5.917E-05
114 15149.56 84 12.000 0.1 6.00E-06 3.33E-08 5.967E-05
125 15499.13 85.17 12.100 0.1 6.05E-06 3.32E-08 6.017E-05
138 15700.28 85.49 12.200 0.1 6.10E-06 3.32E-08 6.067E-05
150 15937.14 84.03 12.300 0.1 6.15E-06 3.24E-08 6.118E-05
162 16280.88 82.47 12.400 0.1 6.20E-06 3.14E-08 6.169E-05
174 16599 83.9 12.500 0.1 6.25E-06 3.16E-08 6.218E-05
189 16944.16 87.59 12.600 0.0 6.30E-06 3.26E-08 6.267E-05
204 17000.15 85.2 12.600 0.1 6.30E-06 3.16E-08 6.268E-05
216 17313.25 90.84 12.700 0.0 6.35E-06 3.33E-08 6.317E-05
240 17287.04 86.03 12.700 0.1 6.35E-06 3.16E-08 6.318E-05
252 17402.16 88.74 12.750 0.0 6.37E-06 3.25E-08 6.342E-05
270 17414.92 85.97 12.750 0.0 6.37E-06 3.15E-08 6.344E-05
288 17386.01 85.09 12.750 0.6 6.37E-06 3.12E-08 6.344E-05
314 15700.28 85.17 13.349 -9.4 6.67E-06 3.62E-08 6.638E-05
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CBC Studies of Sr sorption to 1 g HAO at pH 7 and 25 °C
modeled wih pore diffusion model. Figure demonstrates pore

diffusion may be not significant in amoprhous oxides.
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APPENDIX D

GOETHITE SORPTION STUDIES
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Nickel adsorption edges at 25 °C

Nickel Adsorption Studies

pH total cpm
Ionic Strength = 10 -2

final cpm 	 %sorbed total cpm
Ionic Strength = le

final cpm 	 %sorbed
4.11 167.43 165.77 0.991459 168.12 162.23 3.50345
4.57 167.43 150.25 10.261 168.12 149.15 11.28361
5.05 167.43 105.53 36.97067 168.12 106.88 36.42636
5.55 167.43 52.02 68.9303 168.12 50.77 69.80133
6.06 167.43 32.51 80.58293 168.12 30.51 81.85225
6.54 167.43 22.45 86.59141 168.12 23.3 86.14085

7 167.43 21.68 87.05131 168.12 20.22 87.97288
7.59 167.43 16.68 90.03763 168.12 14.18 91.56555
8.12 167.43 14.47 91.35758 168.12 16.97 89.90602
8.53 167.43 12.78 92.36696 168.12 14.94 91.11349
9.02 167.43 15.08 90.99325 168.12 13.21 92.14252

10 167.43 12.39 92.59989 168.12 12.13 92.78492
11.07 167.43 12.82 92.34307 168.12 12.47 92.58268

Nickel adsorption isotherms at pH 5 and 25 °C (* marked samples were studied with 0.1 g/L goethite)

Total CPM Filtered CPM Initial Conc. 	 Equilibrium Conc Moles Ni/g Gt
303.01 184.79 1.00E-09 6.10E-10 3.90E-10
676.52 378.65 5.00E-09 2.80E-09 2.20E-09
1322.21 892.60 1.00E-08 6.75E-09 3.25E-09
3165.20 1836.13 2.00E-08 1.16E-08 8.40E-09
3002.06 1888.30 4.00E-08 2.52E-08 1.48E-08
2080.71 1203.14 1.00E-07 5.78E-08 4.22E-08
345.50 216.34 2.00E-07 1.25E-07 7.48E-08
647.91 468.56 5.00E-07 3.62E-07 1.38E-07
594.72 459.00 1.00E-06 7.72E-07 2.28E-07

2254.94 1801.40 2.00E-06 1.60E-06 4.02E-07
3001.47 2457.50 4.00E-06 3.28E-06 7.25E-07
362.49 284.77 1.00E-05 7.86E-06 2.14E-06
656.22 614.81 2.00E-05 1.87E-05 1.26E-06
635.75 611.25 4.00E-05 3.85E-05 1.54E-06
1483.52 1448.82 1.00E-04 9.77E-05 2.34E-06
3044.73 3008.26 2.00E-04 1.98E-04 2.40E-06

* 336.14 329.55 1.00E-05 9.80E-06 1.96E-06
* 641.18 634.00 2.00E-05 1.98E-05 2.24E-06
* 990.63 980.85 3.00E-05 2.97E-05 2.96E-06
* 1296.59 1289.00 4.00E-05 3.98E-05 2.34E-06
* 1313.93 1309.77 8.00E-05 7.97E-05 2.53E-06
* 3147.64 3141.02 1.00E-04 9.98E-05 2.10E-06
* 3072.50 3070.00 2.00E-04 2.00E-04 1.63E-06
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Nickel adsorption isotherms at pH 6 and 25 °C (* marked samples were studied with 0.1 g/L goethite)

Total CPM Filtered CPM Initial Conc. Eqlbm Conc Ni/gGt
356.96 85.54 1.00E-09 2.40E-10 7.60E-10
660.79 125.26 5.00E-09 9.48E-10 4.05E-09
1592.41 308.69 1.00E-08 1.94E-09 8.06E-09
3335.46 663.86 2.00E-08 3.98E-09 1.60E-08
3172.88 683.42 4.00E-08 8.62E-09 3.14E-08
2052.49 384.66 1.00E-07 1.87E-08 8.13E-08
376.60 78.19 2.00E-07 4.15E-08 1.58E-07
672.75 152.27 	 - 5.00E-07 1.13E-07 3.87E-07
537.09 204.51 1.00E-06 3.81E-07 6.19E-07

2115.26 847.67 2.00E-06 8.01E-07 1.20E-06
3043.50 1458.18 4.00E-06 1.92E-06 2.08E-06
355.28 261.34 1.00E-05 7.36E-06 2.64E-06
634.81 524.77 2.00E-05 1.65E-05 3.47E-06
588.14 510.69 4.00E-05 3.47E-05 5.27E-06
1601.86 1532.93 1.00E-04 9.57E-05 4.30E-06
3341.10 3232.48 2.00E-04 1.93E-04 6.50E-06

* 328.96 310.00 1.00E-05 9.42E-06 5.76E-06
* 586.98 568.22 2.00E-05 1.94E-05 6.39E-06
* 986.13 961.25 3.00E-05 2.92E-05 7.57E-06
* 1390.20 1370.23 4.00E-05 3.94E-05 5.75E-06
* 1343.75 1332.74 8.00E-05 7.93E-05 6.55E-06
* 3404.15 3378.18 1.00E-04 9.92E-05 7.63E-06
* 3300.16 3290.91 2.00E-04 1.99E-04 5.61E-06

Nickel adsorption isotherms at pH 7 and 25°C (* marked samples were studied with 0.1 g/L goethite)

Total CPM 	 Filtered CPM 	 Initial Conc. 	 Eqlbm Conc 	 Ni / g Gt
100.67 12.05 1.00E-09 1.20E-10 8.80E-10
304.98 34.76 5.00E-09 5.70E-10 4.43E-09
311.55 41.30 2.00E-08 2.65E-09 1.73E-08
320.69 37.24 4.00E-08 4.64E-09 3.54E-08
103.27 10.03 1.00E-07 9.71E-09 9.03E-08
186.97 30.81 2.00E-07 3.30E-08 1.67E-07
279.25 40.11 5.00E-07 7.18E-08 4.28E-07
477.35 53.94 1.00E-06 1.13E-07 8.87E-07
181.89 24.29 2.00E-06 2.67E-07 1.73E-06
462.32 69.74 4.00E-06 6.03E-07 3.40E-06
104.54 47.85 1.00E-05 4.58E-06 5.42E-06
143.64 86.39 2.00E-05 1.20E-05 7.97E-06
184.92 150.47 5.00E-05 4.07E-05 9.31E-06
458.36 408.76 1.00E-04 8.92E-05 1.08E-05
1306.94 1226.96 2.00E-04 1.88E-04 1.22E-05

* 328.96 299.82 1.00E-05 9.11E-06 8.86E-06
* 644.15 629.56 2.00E-05 1.95E-05 4.53E-06
* 1004.02 966.78 3.00E-05 2.89E-05 1.11E-05
* 1338.76 1292.95 4.00E-05 3.86E-05 1.37E-05
* 1302.11 1264.45 8.00E-05 7.77E-05 2.31E-05
* 3160.14 3114.10 1.00E-04 9.85E-05 1.46E-05
* 3239.19 3218.80 2.00E-04 1.99E-04 1.26E-05
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Nickel adsorption isotherms at pH 7 and 3.9°C

Total CPM Filtered CPM Initial Conc. Equilibrium Conc Moles Ni/g Gt
602.05 590.88 1.00E-08 9.81E-09 1.86E-10
1446.55 1434.50 2.00E-08 1.98E-08 1.67E-10
2564.23 2539.73 5.00E-08 4.95E-08 4.78E-10
3313.18 3291.60 1.00E-07 9.93E-08 6.51E-10
405.06 401.19 4.00E-07 3.96E-07 3.82E-09
917.09 908.76 1.00E-06 9.91E-07 9.08E-09

2435.06 2412.68 4.00E-06 3.96E-06 3.68E-08
2903.94 2878.90 4..00E-06 3.97E-06 3.45E-08
368.31 364.72 1.00E-05 9.90E-06 9.75E-08
499.19 494.63 2.00E-05 1.98E-05 1.83E-07
675.88 670.03 3.00E-05 2.97E-05 2.60E-07
938.61 930.93 4.00E-05 3.97E-05 3.27E-07

Nickel adsorption isotherms at pH 7 and 14°C

Total CPM Filtered CPM Initial Conc. Equilibrium Conc Moles Ni/g Gt
602.05 512.01 1.00E-08 8.50E-09 1.50E-09
1446.55 1206.37 2.00E-08 1.67E-08 3.32E-09
2564.23 2168.25 5.00E-08 4.23E-08 7.72E-09
3313.18 2806.00 1.00E-07 8.47E-08 1.53E-08
405.06 342.89 4.00E-07 3.39E-07 6.14E-08
917.09 780.12 1.00E-06 8.51E-07 1.49E-07
2435.06 2088.43 4.00E-06 3.43E-06 5.69E-07
2903.94 2440.82 4.00E-06 3.36E-06 6.38E-07
368.31 310.20 1.00E-05 8.42E-06 1.58E-06
499.19 440.34 2.00E-05 1.76E-05 2.36E-06
675.88 604.02 3.00E-05 2.68E-05 3.19E-06
938.61 848.22 4.00E-05 3.61E-05 3.85E-06
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CBC studies of Nickel at pH 7 and 25 °C (Run 1)

Time (h) Total CPM Final CPM Ni
ml

Add Zn Total Ni M CBC Ni Ni Sorbed

0 0 0 0.0 0.00 0.00E+00 0.00E+00 0.00E+00
0.05 669.26 120.12 20.0 0.00 1.00E-06 1.79E-07 8.21E-07

1 669.26 90.75 20.0 0.00 1.00E-06 1.36E-07 8.64E-07
2 669.26 80.11 20.0 0.00 1.00E-06 1.20E-07 8.80E-07

2.5 669.26 77.54 20.0 0.00 1.00E-06 1.16E-07 8.84E-07
3 669.26 73.18 20.0 0.10 1.00E-06 1.09E-07 8.91E-07

3.5 694.35 64.03 20.1 0.30 1.01E-06 9.27E-08 9.12E-07
4 802.59 76.59 20.4 0.20 1.02E-06 9.73E-08 9.23E-07

4.5 852.59 83.79 20.6 0.10 1.03E-06 1.01E-07 9.29E-07
5 874.35 87.5 20.7 0.10 1.04E-06 1.04E-07 9.31E-07

5.5 890.52 93.21 20.8 0.00 1.04E-06 1.09E-07 9.31E-07
6 890.52 94.17 20.8 0.00 1.04E-06 1.10E-07 9.30E-07
7 890.52 91.55 20.8 0.00 1.04E-06 1.07E-07 9.33E-07
8 890.52 94.82 20.8 0.00 1.04E-06 1.11E-07 9.29E-07
9 890.52 97.93 20.8 0.00 1.04E-06 1.14E-07 9.26E-07
10 890.52 90.99 20.8 0.00 1.04E-06 1.06E-07 9.34E-07
11 890.52 95.95 20.8 0.00 1.04E-06 1.12E-07 9.28E-07
12 890.52 103.42 20.8 0.00 1.04E-06 1.21E-07 9.19E-07
13 890.52 93.26 20.8 0.00 1.04E-06 1.09E-07 9.31E-07
20 890.52 91.01 20.8 0.00 1.04E-06 1.06E-07 9.34E-07
22 890.52 94.79 20.8 0.00 1.04E-06 1.11E-07 9.29E-07
24 890.52 107.41 20.8 0.00 1.04E-06 1.25E-07 9.15E-07
27 890.52 103.5 20.8 0.00 1.04E-06 1.21E-07 9.19E-07
30 890.52 98.35 20.8 0.00 1.04E-06 1.15E-07 9.25E-07
33 890.52 96.21 20.8 0.00 1.04E-06 1.12E-07 9.28E-07
42 890.52 92.22 20.8 0.00 1.04E-06 1.08E-07 9.32E-07
48 890.52 93 20.8 0.00 1.04E-06 1.09E-07 9.31E-07
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CBC studies of Nickel at pH 7 and 25 °C (Run 2)

Time (h) Total CPM Final CPM Ni
ml

Add Zn Total Ni M CBC Ni Ni Sorbed

0 0 0 0.0 0.00 0.00E+00 0.00E+00 0.00E+00
0.05 720.36 78.62 20.0 0.00 1.00E-06 1.09E-07 8.91E-07

1 720.36 77.16 20.0 0.00 1.00E-06 1.07E-07 8.93E-07
2 720.36 76.55 20.0 0.00 1.00E-06 1.06E-07 8.94E-07
3 720.36 75.79 20.0 0.00 1.00E-06 1.05E-07 8.95E-07
4 720.36 72.44 20.0 0.00 1.00E-06 1.01E-07 8.99E-07
6 720.36 76.47 20.0 0.00 1.00E-06 1.06E-07 8.94E-07
8 720.36 79.99 20.0 0.00 1.00E-06 1.11E-07 8.89E-07
10 720.36 72.24 20.0 0.10 1.00E-06 1.00E-07 9.00E-07

10.33 734.11 76.55 20.1 0.00 1.01E-06 1.05E-07 9.00E-07
12 734.78 81.39 20.1 0.00 1.01E-06 1.11E-07 8.94E-07
24 741.76 78.75 20.1 0.00 1.01E-06 1.07E-07 8.98E-07
35 741.76 81.01 20.1 0.00 1.01E-06 1.10E-07 8.95E-07
50 737.42 76.95 20.1 0.00 1.01E-06 1.05E-07 9.00E-07
60 737.42 80 20.1 0.00 1.01E-06 1.09E-07 8.96E-07
70 740 82.16 20.1 0.00 1.01E-06 1.12E-07 8.93E-07
81 728.25 77.25 20.1 0.00 1.01E-06 1.07E-07 8.98E-07
92 735.32 79.77 20.1 0.00 1.01E-06 1.09E-07 8.96E-07
104 756.18 79.5 20.1 0.00 1.01E-06 1.06E-07 8.99E-07
114 756.18 83.13 20.1 0.00 1.01E-06 1.10E-07 8.95E-07
126 742.04 85.33 20.1 0.00 1.01E-06 1.16E-07 8.89E-07
138 742.04 78.79 20.1 0.00 1.01E-06 1.07E-07 8.98E-07
188 733.5 79.99 20.1 0.00 1.01E-06 1.10E-07 8.95E-07
198 733.5 76.15 20.1 0.00 1.01E-06 1.04E-07 9.01E-07
238 745.52 78.41 20.1 0.00 1.01E-06 1.06E-07 8.99E-07
249 745.52 80.26 20.1 0.00 1.01E-06 1.08E-07 8.97E-07

264.5 731.68 77.45 20.1 0.00 1.01E-06 1.06E-07 8.99E-07
286 731.68 78.32 20.1 0.00 1.01E-06 1.08E-07 8.97E-07
300 736.25 81.75 20.1 0.00 1.01E-06 1.12E-07 8.93E-07
311 736.25 78.99 20.1 0.00 1.01E-06 1.08E-07 8.97E-07
337 743.32 79 20.1 0.00 1.01E-06 1.07E-07 8.98E-07

383.5 733.52 78.5 20.1 0.00 1.01E-06 1.08E-07 8.97E-07
416 729.5 79.12 20.1 0.00 1.01E-06 1.09E-07 8.96E-07
439 733.32 77.44 20.1 0.00 1.01E-06 1.06E-07 8.99E-07
456 733.32 80.56 20.1 0.00 1.01E-06 1.10E-07 8.95E-07
481 742.04 80.17 20.1 0.00 1.01E-06 1.09E-07 8.96E-07
510 742.04 80.5 20.1 0.00 1.01E-06 1.09E-07 8.96E-07
549 742.04 79.36 20.1 0.00 1.01E-06 1.07E-07 8.98E-07
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272

Zinc Adsorption Studies

Zinc adsorption studies at 25 °C

pH p, = 10 -3, [Zn] = 5 x10-6 	pH ti. = 10 -2, [Zn] = 5 x10-6 	pH	 u = 10 -2, [Zn] = 5 x10 -6

3.54 14.771 3.61 12.342 3.83 14.013
4.08 18.327 4.17 16.679 4.18 16.685
4.54 22.085 4.53 21.284 4.38 22.315
5.08 32.237 5.23 33.9 5.18 35.134
5.54 40.227 5.63 46.063 5.31 50.336
6.01 66.157 6.28 69.107 6.19 66.443
6.58 72.327 6.68 74.44 6.68 93.289
7.01 88.71 7.11 81.93 7.25 97.315
7.53 92.137 7.65 87.85 7.41 96.604
8.24 92.369 8.19 92.078 8.06 99.329
8.92 92.722 8.68 96.094 8.72 99.329

Zinc adsorption isotherms at pH 5 and 25 °C

[Zn]o [Zn]o ppm [S] ppb [S] ppm [S] M C (Moles/g)
3.06E-04 2.00E+01 1.95E+04 1.95E+01 2.98E-04 7.94E-06
1.99E-04 1.30E+01 1.25E+04 1.25E+01 1.91E-04 7.95E-06
1.07E-04 7.00E+00 6.51E+03 6.51E+00 9.95E-05 7.49E-06
7.65E-05 5.00E+00 4.50E+03 4.50E+00 6.88E-05 7.64E-06
4.59E-05 3.00E+00 2.52E+03 2.52E+00 3.85E-05 7.34E-06
3.06E-05 2.00E+00 1.54E+03 1.54E+00 2.35E-05 7.03E-06
9.99E-06 6.54E-01 4.31E+02 4.31E-01 6.60E-06 3.40E-06
7.95E-06 5.20E-01 3.43E+02 3.43E-01 5.25E-06 2.70E-06
5.00E-06 3.27E-01 2.16E+02 2.16E-01 3.30E-06 1.70E-06
3.06E-06 2.00E-01 1.32E+02 1.32E-01 2.02E-06 1.04E-06
9.99E-07 6.54E-02 4.31E+01 4.31E-02 6.60E-07 3.40E-07
7.99E-07 5.23E-02 3.45E+01 3.45E-02 5.28E-07 2.72E-07

Zinc adsorption isotherms at pH 6 and 25°C

[Zn]o [Zn]o ppm [S] ppb ES] ppm [5] M C (Moles/g)
3.06E-04 2.00E+01 1.93E+04 1.93E+01 2.95E-04 1.07E-05
1.99E-04 1.30E+01 1.23E+04 1.23E+01 1.88E-04 1.08E-05
1.07E-04 7.00E+00 6.26E+03 6.26E+00 9.57E-05 1.13E-05
7.65E-05 5.00E+00 4.25E+03 4.25E+00 6.50E-05 1.15E-05
4.59E-05 3.00E+00 2.30E+03 2.30E+00 3.52E-05 1.07E-05
3.06E-05 2.00E+00 1.46E+03 1.46E+00 2.23E-05 8.26E-06
9.99E-06 6.54E-01 3.79E+02 3.79E-01 5.80E-06 4.20E-06
7.95E-06 5.20E-01 3.02E+02 3.02E-01 4.61E-06 3.34E-06
5.00E-06 3.27E-01 1.90E+02 1.90E-01 2.90E-06 2.10E-06
3.06E-06 2.00E-01 1.16E+02 1.16E-01 1.77E-06 1.28E-06
9.99E-07 6.54E-02 3.79E+01 3.79E-02 5.80E-07 4.20E-07
7.99E-07 5.23E-02 3.03E+01 3.03E-02 4.64E-07 3.36E-07



Zinc adsorption isotherms at pH 7 and 25°C

[Zn]o [Zn]o ppm [S] ppb [S] ppm [S] M C (Moles/g)
3.06E-04 2.00E+01 1.86E+04 1.86E+01 2.84E-04 2.14E-05
1.99E-04 1.30E+01 1.16E+04 1.16E+01 1.77E-04 2.22E-05
1.07E-04 7.00E+00 5.53E+03 5.53E+00 8.46E-05 2.25E-05
7.65E-05 5.00E+00 3.55E+03 3.55E+00 5.43E-05 2.22E-05
4.59E-05 3.00E+00 1.68E+03 1.68E+00 2.57E-05 2.02E-05
3.06E-05 2.00E+00 7.80E+02 7.80E-01 1.19E-05 1.87E-05
9.99E-06 6.54E-01 2.60E+02 2.60E-01 3.98E-06 6.02E-06
7.95E-06 5.20E-01 2.00E+02 2.00E-01 3.06E-06 4.89E-06
5.00E-06 3.27E-01 1.11E+02 1.11E-01 1.70E-06 3.30E-06
3.06E-06 2.00E-01 7.40E+01 7.40E-02 1.13E-06 1.93E-06
9.99E-07 6.54E-02 2.48E+01 2.48E-02 3.79E-07 6.20E-07
7.99E-07 5.23E-02 1.83E+01 1.83E-02 2.80E-07 5.20E-07

Zinc adsorption isotherms at pH 7 and 14°C

Total CPM Filtered CPM Initial Conc. Equilibrium Conc Moles Ni/g Gt
80.17 57.21 1.00E-08 7.14E-09 2.86E-09
188.53 144.03 5.00E-08 3.82E-08 1.18E-08
460.89 336.40 1.00E-07 7.30E-08 2.70E-08
1009.68 743.68 5.00E-07 3.68E-07 1.32E-07
1038.25 737.34 1.00E-06 7.10E-07 2.90E-07
2850.65 2005.01 4.00E-06 2.81E-06 1.19E-06
2721.51 1957.22 4.00E-06 2.88E-06 1.12E-06
151.04 111.49 1.00E-05 7.38E-06 2.62E-06
392.48 326.12 5.00E-05 4.15E-05 8.45E-06
717.22 627.54 8.00E-05 7.00E-05 1.00E-05
1520.56 1332.75 1.00E-04 8.76E-05 1.24E-05
2702.40 2496.75 2.00E-04 1.85E-04 1.52E-05

Zinc adsorption isotherms at pH 7 and 4.2°C

Total CPM Filtered CPM Initial Conc. Equilibrium Conc Moles Nilg Gt
80.17 78.57 1.00E-08 9.80E-09 2.00E-10
188.53 185.50 5.00E-08 4.92E-08 8.04E-10
460.89 450.00 1.00E-07 9.76E-08 2.36E-09
1009.68 990.66 5.00E-07 4.91E-07 9.42E-09
1038.25 997.12 1.00E-06 9.60E-07 3.96E-08
2850.65 2768.19 4.00E-06 3.88E-06 1.16E-07
2721.51 2690.76 4.00E-06 3.95E-06 4.52E-08
151.04 147.91 1.00E-05 9.79E-06 2.07E-07
392.48 387.18 5.00E-05 4.93E-05 6.75E-07
717.22 707.04 8.00E-05 7.89E-05 1.14E-06
1520.56 1501.95 1.00E-04 9.88E-05 1.22E-06
2702.40 2672.88 2.00E-04 1.98E-04 2.18E-06
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CBC studies of Zinc at pH 7 and 25 °C

Time (h) Total CPM Final CPM Ni
ml

Add Zn Total Ni M CBC Ni Ni Sorbed

0.001 0 0 0.0 0.00 0.00E+00 0.00E+00 0.00E+00
0.05 660.12 237.45 20.0 0.00 1.00E-06 3.60E-07 6.40E-07
0.10 660.12 227.8 20.0 0.00 1.00E-06 3.45E-07 6.55E-07

1 660.12 224.35 20.0 0.00 1.00E-06 3.40E-07 6.60E-07
2 660.12 224.77 20.0 0.00 1.00E-06 3.40E-07 6.60E-07

2.5 660.12 227.02 20.0 0.00 1.00E-06 3.44E-07 6.56E-07
3 660.12 222.67 20.0 0.10 1.00E-06 3.37E-07 6.63E-07

3.5 674.33 226.85 20.1 0.00 1.01E-06 3.38E-07 6.67E-07
4 674.33 225.9 20.1 0.00 1.01E-06 3.37E-07 6.68E-07

4.5 674.33 234.78 20.1 0.00 1.01E-06 3.50E-07 6.55E-07
5 674.33 227.29 20.1 0.00 1.01E-06 3.39E-07 6.66E-07

5.5 674.33 233.42 20.1 0.00 1.01E-06 3.48E-07 6.57E-07
6 674.33 232.17 20.1 0.00 1.01E-06 3.46E-07 6.59E-07
7 674.33 230.55 20.1 0.00 1.01E-06 3.44E-07 6.61E-07
8 674.33 228.62 20.1 0.00 1.01E-06 3.41E-07 6.64E-07
9 674.33 224.75 20.1 0.10 1.01E-06 3.35E-07 6.70E-07
10 688.56 236.51 20.2 0.00 1.01E-06 3.47E-07 6.63E-07
11 688.56 234.84 20.2 0.00 1.01E-06 3.44E-07 6.66E-07
12 688.56 240.11 20.2 0.00 1.01E-06 3.52E-07 6.58E-07
15 688.56 233.19 20.2 0.00 1.01E-06 3.42E-07 6.68E-07
20 688.56 229.02 20.2 0.10 1.01E-06 3.36E-07 6.74E-07
26 704.26 244.5 20.3 0.00 1.02E-06 3.52E-07 6.63E-07
32 704.26 238.75 20.3 0.00 1.02E-06 3.44E-07 6.71E-07
36 704.26 239.59 20.3 0.00 1.02E-06 3.45E-07 6.70E-07
42 704.26 240.31 20.3 0.00 1.02E-06 3.46E-07 6.69E-07
48 704.26 245.19 20.3 0.00 1.02E-06 3.53E-07 6.62E-07
57 704.26 240.26 20.3 0.00 1.02E-06 3.46E-07 6.69E-07
63 704.26 243.21 20.3 0.00 1.02E-06 3.51E-07 6.64E-07
72 704.26 239.78 20.3 0.00 1.02E-06 3.46E-07 6.69E-07
84 704.26 238.56 20.3 0.00 1.02E-06 3.44E-07 6.71E-07
96 704.26 240 20.3 0.00 1.02E-06 3.46E-07 6.69E-07
108 704.26 238.12 20.3 0.00 1.02E-06 3.43E-07 6.72E-07
120 704.26 238.7 20.3 0.00 1.02E-06 3.44E-07 6.71E-07
135 704.26 238 20.3 0.00 1.02E-06 3.43E-07 6.72E-07
150 704.26 238 20.3 0.00 1.02E-06 3.43E-07 6.72E-07
164 704.26 239.28 20.3 0.00 1.02E-06 3.45E-07 6.70E-07

274



Calcium Adsorption Studies

Calcium adsorption edges at 25°C

Ionic Strength = 10 -³

pH In ppb
Filterate Concentrations
In ppm 	 In M % Adsorbed

4 220.00 0.2200 5.39E-06 10.13
4.5 187.50 0.1875 4.60E-06 23.41
5.01 132.00 0.1320 3.24E-06 46.08
5.55 124.50 0.1245 3.05E-06 49.14
6.07 122.50 0.1225 3.00E-06 49.96
6.49 122.00 0.1220 2.99E-06 50.16
7.02 121.00 0.1210 2.97E-06 50.57
7.5 120.00 0.1200 2.94E-06 50.98
8.1 118.50 0.1185 2.90E-06 51.59

8.51 110.00 0.1100 2.70E-06 55.07
9.13 90.50 0.0905 2.22E-06 63.03
9.89 33.15 0.0332 8.13E-07 86.46

Ionic Strength = 10 -2

PH In ppb
Filterate Concentrations
In ppm 	 In M % Adsorbed

4.1 228.00 0.2280 5.59E-06 6.86
4.5 185.00 0.1850 4.53E-06 24.43
5.11 142.00 0.1420 3.48E-06 41.99
5.44 134.00 0.1340 3.28E-06 45.26
5.95 133.00 0.1330 3.26E-06 45.67
6.47 135.00 0.1350 3.31E-06 44.85
7.07 128.00 0.1280 3.14E-06 47.71
7.56 130.00 0.1300 3.19E-06 46.90
8.08 129.00 0.1290 3.16E-06 47.30
8.43 124.50 0.1245 3.05E-06 49.14
9.01 107.00 0.1070 2.62E-06 56.29
10.1 45.00 0.0450 1.10E-06 81.62
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Calcium adsorption isotherms at pH 5 and 25 °C (* marked samples were studied with 0.1 g/L goethite)

in M
Initial Concentration
in ppm 	 in ppb in ppb

S
in ppm in M

C
moles Ca/g

Gt.
*	 5.00E-03 200.00 200000 194000.00 194.00 4.85E-03 1.50E-03
*	 4.00E-03 160.00 160000 153600.00 153.60 3.84E-03 1.60E-03
* 	 3.00E-03 120.00 120000 114000.00 114.00 2.85E-03 1.50E-03
*	 2.00E-03 80.00 80000 74900.00 74.90 1.87E-03 1.28E-03
* 	 1.00E-03 40.00 40000 37800.00 37.80 9.45E-04 5.50E-04
*	 8.00E-04 32.00 32000 30000.00 30.00 7.50E-04 5.00E-04

5.00E-03 200.00 200000 141000.00 141.00 3.53E-03 1.48E-03
4.00E-03 160.00 160000 108000.00 108.00 2.70E-03 1.30E-03
1.00E-03 40.00 40000 22800.00 22.80 5.70E-04 4.30E-04
5.00E-04 20.00 20000 10800.00 10.80 2.70E-04 2.30E-04
3.00E-04 12.00 12000 6690.00 6.69 1.67E-04 1.33E-04
1.00E-04 4.00 4000 2350.00 2.35 5.88E-05 4.13E-05
5.00E-05 2.00 2000 1020.00 1.02 2.55E-05 2.45E-05
2.50E-05 1.00 1000 524.00 0.52 1.31E-05 1.19E-05
1.00E-05 0.40 400 218.00 0.22 5.45E-06 4.55E-06
5.00E-06 0.20 200 108.00 0.11 2.70E-06 2.30E-06
1.00E-06 0.04 40 21.00 0.02 5.25E-07 4.75E-07
5.00E-07 0.02 20 11.00 0.01 2.75E-07 2.25E-07

Calcium adsorption isotherms at pH 6 and 25 °C (* marked samples were studied with 0.1 g/L goethite)

in M
Initial Concentration

in ppm 	 in ppb 	 in ppb 	 .
S

in ppm in M
C

moles Ca/g Gt.
* 	 5.00E-03 200.00 200000 191000.00 191.00 4.78E-03 2.25E-03
* 	 4.00E-03 160.00 160000 151600.00 151.60 3.79E-03 2.10E-03
* 	 3.00E-03 120.00 120000 111000.00 111.00 2.78E-03 2.25E-03
* 	 2.00E-03 80.00 80000 71400.00 71.40 1.79E-03 2.15E-03
* 	 1.00E-03 40.00 40000 37200.00 37.20 9.30E-04 7.00E-04
* 	 8.00E-04 32.00 32000 25200.00 25.20 6.30E-04 1.70E-03

8.00E-03 320.00 320000 219000.00 219.00 5.48E-03 2.53E-03
4.00E-03 160.00 160000 96000.00 96.00 2.40E-03 1.60E-03
1.00E-03 40.00 40000 21330.00 21.33 5.33E-04 4.67E-04
5.00E-04 20.00 20000 10400.00 10.40 2.60E-04 2.40E-04
3.00E-04 12.00 12000 5225.00 5.23 1.31E-04 1.69E-04
1.00E-04 4.00 4000 2130.00 2.13 5.33E-05 4.68E-05
5.00E-05 2.00 2000 888.00 0.89 2.22E-05 2.78E-05
2.50E-05 1.00 1000 494.00 0.49 1.24E-05 1.27E-05
1.00E-05 0.40 400 204.00 0.20 5.10E-06 4.90E-06
5.00E-06 0.20 200 104.00 0.10 2.60E-06 2.40E-06
1.00E-06 0.04 40 19.00 0.02 4.75E-07 5.25E-07
5.00E-07 0.02 20 10.00 0.01 2.50E-07 2.50E-07
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Calcium adsorption isotherms at pH 7 and 25°C (* marked samples were studied with 0.1 g/L goethite)

in M
Initial Concentration

in ppm 	 in ppb 	 in ppb
S

in ppm in M
C

moles Ca/g Gt.
* 	 5.00E-03 200.00 200000 188000.00 188.00 4.70E-03 3.00E-03
*	 4.00E-03 160.00 160000 148800.00 148.80 3.72E-03 2.80E-03
*	 3.00E-03 120.00 120000 110400.00 110.40 2.76E-03 2.40E-03
* 	 2.00E-03 80.00 80000 72000.00 72.00 1.80E-03 2.00E-03
* 	 1.00E-03 40.00 40000 37200.00 37.20 9.30E-04 7.00E-04
* 	 8.00E-04 32.00 32000 26400.00 26.40 6.60E-04 1.40E-03

8.00E-03 320.00 320000 219000.00 219.00 5.48E-03 2.53E-03
4.00E-03 160.00 160000 96000.00 96.00 2.40E-03 1.60E-03
1.00E-03 40.00 40000 19200.00 19.20 4.80E-04 5.20E-04
5.00E-04 20.00 20000 8570.00 8.57 2.14E-04 2.86E-04
3.00E-04 12.00 12000 6180.00 6.18 1.55E-04 1.46E-04
1.00E-04 4.00 4000 1560.00 1.56 3.90E-05 6.10E-05
5.00E-05 2.00 2000 816.00 0.82 2.04E-05 2.96E-05
2.50E-05 1.00 1000 472.00 0.47 1.18E-05 1.32E-05
1.00E-05 0.40 400 192.00 0.19 4.80E-06 5.20E-06
5.00E-06 0.20 200 96.00 0.10 2.40E-06 2.60E-06
1.00E-06 0.04 40 19.00 0.02 4.75E-07 5.25E-07
5.00E-07 0.02 20 9.00 0.01 2.25E-07 2.75E-07
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Binary Systems

Reversibility studies in Ni-Zn systems: Ni added first, then aged 2 h, and then Zn added

Case 1: [Ni]0 = 2 x 104 M and [Zn]o = 1 x 104 M

Time (min) Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt

15 3456.12 3432.12 1.99E-04 1.389E-05
30 3456.12 3432.05 1.99E-04 1.393E-05
45 3456.12 3431.81 1.99E-04 1.407E-05
60 3456.12 3431.26 1.99E-04 1.439E-05
75 3456.12 3431.44 1.99E-04 1.428E-05
90 3456.12 3431 1.99E-04 1.454E-05
105 3456.12 3431.03 1.99E-04 1.452E-05
120 3456.12 3432 1.99E-04 1.396E-05 2050.19 2040.03 9.95E-05 4.956E-06
135 3456.12 3432.78 1.99E-04 1.351E-05 2050.19 2039.05 9.946E-05 5.434E-06
150 3456.12 3433.06 1.99E-04 1.334E-05 2050.19 2037.81 9.94E-05 6.038E-06
165 3456.12 3432.75 1.99E-04 1.352E-05 2050.19 2037.47 9.938E-05 6.204E-06
180 3456.12 3432.84 1.99E-04 1.347E-05 2050.19 2037.24 9.937E-05 6.316E-06
195 3456.12 3432.91 1.99E-04 1.343E-05 2050.19 2037.2 9.937E-05 6.336E-06
210 3456.12 3432.98 1.99E-04 1.339E-05 2050.19 2037.28 9.937E-05 6.297E-06
225 3456.12 3433 1.99E-04 1.338E-05 2050.19 2036.96 9.935E-05 6.453E-06
240 3456.12 3432.95 1.99E-04 1.341E-05 2050.19 2037.13 9.936E-05 6.37E-06

Case 2: [Ni]o = 2 x 104 M and [Zn]0 = 2 x 104 M

Time (min) Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt

15 3456.12 3432.12 1.986E-04 1.389E-05
30 3456.12 3432.05 1.986E-04 1.393E-05
45 3456.12 3431.81 1.986E-04 1.407E-05
60 3456.12 3431.26 1.986E-04 1.439E-05
75 3456.12 3431.44 1.986E-04 1.428E-05
90 3456.12 3431 1.985E-04 1.454E-05
105 3456.12 3431.03 1.985E-04 1.452E-05
120 3456.12 3432.29 1.986E-04 1.379E-05 4026.32 4010.25 1.992E-04 7.982E-06
135 3456.12 3434.65 1.988E-04 1.242E-05 4026.32 4008.52 1.991 E-04 8.842E-06
150 3456.12 3437.08 1.989E-04 1.102E-05 4026.32 4006.84 1.990E-04 9.676E-06
165 3456.12 3438.98 1.990E-04 9.919E-06 4026.32 4005.62 1.990E-04 1.028E-05
180 3456.12 3439.2 1.990E-04 9.791E-06 4026.32 4005.09 1.989E-04 1.055E-05
195 3456.12 3439.08 1.990E-04 9.861E-06 4026.32 4004.77 1.989E-04 1.07E-05
210 3456.12 3438.89 1.990E-04 9.971E-06 4026.32 4004.36 1.989E-04 1.091E-05
225 3456.12 3439.13 1.990E-04 9.832E-06 4026.32 4004.2 1.989E-04 1.099E-05
240 3456.12 3439 1.990E-04 9.907E-06 4026.32 4004.31 1.989E-04 1.093E-05
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Reversibility studies in Ni-Zn systems: Zn added first, then aged 2 h, and then Ni added

Case 1: [Zn]o = 2 x 104 M and [Ni]o 1 x 104 M

Time (min) Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt

15 4084.2 4043.05 1.98E-04 2.015E-05
30 4084.2 4042.64 1.98E-04 2.035E-05
45 4084.2 4042.03 1.98E-04 2.065E-05
60 4084.2 4041.51 1.98E-04 2.09E-05
75 4084.2 4041.29 1.98E-04 2.101E-05
90 4084.2 4041.4 1.98E-04 2.096E-05
105 4084.2 4041.5 1.98E-04 2.091E-05
120 3524.16 3517.96 9.982E-05 1.759E-06 4084.2 4045.13 1.98E-04 1.913E-05
135 3524.16 3510.84 9.962E-05 3.78E-06 4084.2 4049.07 1.98E-04 1.72E-05
150 3524.16 3508.32 9.955E-05 4.495E-06 4084.2 4050.85 1.98E-04 1.633E-05
165 3524.16 3505.28 9.946E-05 5.357E-06 4084.2 4052.37 1.98E-04 1.559E-05
180 3524.16 3504.11 9.943E-05 5.689E-06 4084.2 4053 1.98E-04 1.528E-05
195 3524.16 3502.63 9.939E-05 6.109E-06 4084.2 4053.84 1.99E-04 1.487E-05
210 3524.16 3500.9 9.934E-05 6.6E-06 4084.2 4054.98 1.99E-04 1.431E-05
225 3524.16 3500.32 9.932E-05 6.765E-06 4084.2 4055.42 1.99E-04 1.409E-05
240 3524.16 3500.59 9.933E-05 6.688E-06 4084.2 4055.31 1.99E-04 1.415E-05

Case 2: [Zn]o = 2 x 10 -4 M and [Ni]o = 2 x 10 -4 M

Time
(min)

Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt

15 4084.2 4043.05 1.980E-04 2.015E-05
30 4084.2 4042.64 1.980E-04 2.035E-05
45 4084.2 4042.03 1.979E-04 2.065E-05
60 4084.2 4041.51 1.979E-04 2.09E-05
75 4084.2 4041.29 1.979E-04 2.101E-05
90 4084.2 4041.4 1.979E-04 2.096E-05
105 4084.2 4041.5 1.979E-04 2.091E-05
120 7368.25 7357.82 1.997E-04 2.831E-06 4084.2 4047.03 1.982E-04 1.82E-05
135 7368.25 7350.49 1.995E-04 4.821E-06 4084.2 4051.36 1.984E-04 1.608E-05
150 7368.25 7344.81 1.994E-04 6.362E-06 4084.2 4054.5 1.985E-04 1.454E-05
165 7368.25 7340.28 1.992E-04 7.592E-06 4084.2 4057.35 1.987E-04 1.315E-05
180 7368.25 7336.63 1.991E-04 8.583E-06 4084.2 4059.24 1.988E-04 1.222E-05
195 7368.25 7333.54 1.991E-04 9.422E-06 4084.2 4061.01 1.989E-04 1.136E-05
210 7368.25 7332 1.990E-04 9.84E-06 4084.2 4061.52 1.989E-04 1.111E-05
225 7368.25 7331.64 1.990E-04 9.937E-06 4084.2 4061.93 1.989E-04 1.091E-05
240 7368.25 7331.89 1.990E-04 9.869E-06 4084.2 4061.81 1.989E-04 1.096E-05



Ni-Zn competition as a function of concentration

Case 1: Ni concentration fixed and Zn concentration varied
Initial Ni added = 2 x 104 M

Initial Zn. Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt

0.00E+00 0 0 0.00E+00 0.00E+00 3456.12 3429.03 1.9843E-04 1.6E-05
1.00E-04 2050.19 2037.13 9.94E-05 6.37E-06 3456.12 3432.95 1.9866E-04 1.3E-05
1.25E-04 2479.99 2464.18 1.24E-04 7.97E-06 3456.12 3434.67 1.9876E-04 1.2E-05
1.50E-04 3056.07 3037.25 1.49E-04 9.24E-06 3456.12 3436.22 1.9885E-04 1.2E-05
1.75E-04 3539.91 3519.67 1.74E-04 1.00E-05 3456.12 3437.75 1.9894E-04 1.1E-05
2.00E-04 4026.32 4004.31 1.99E-04 1.09E-05 3456.12 3439 1.9901E-04 9.9E-06
2.25E-04 4400.12 4377.05 2.24E-04 1.18E-05 3456.12 3439.34 1.9903E-04 9.7E-06

Case 2: Zn concentration fixed and Ni concentration varied
Initial Zn added = 2 x 104 M

Initial Ni. Total
CPM

Filter
CPM

Eqlbm Ni Ni/g Gt Total
CPM

Filter
CPM

Eqlbm Zn Zn/g Gt

0.00E+00 0 0 0.000E+00 0 4084.2 4042.36 1.980E-04 2E-05
1.00E-04 3524.16 3500.59 9.933E-05 6.7E-06 4084.2 4055.31 1.986E-04 1.4E-05
1.25E-04 4348.01 4320.72 1.242E-04 7.8E-06 4084.2 4057.16 1.987E-04 1.3E-05
1.50E-04 5200.58 5169.87 1.491E-04 8.9E-06 4084.2 4059.34 1.988E-04 1.2E-05
1.75E-04 6264.38 6230.87 1.741E-04 9.4E-06 4084.2 4060.95 1.989E-04 1.1E-05
2.00E-04 7368.25 7331.89 1.990E-04 9.9E-06 4084.2 4061.81 1.989E-04 1.1E-05
2.25E-04 8109.2 8073.25 2.240E-04 1E-05 4084.2 4063.18 1.990E-04 1E-05
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Competitive Isotherms of Ni and Zn at pH 5

Initial Concentrations

[M of Ni]	 Total CPM Filtered CPM

At Equilibrium

[Ni]eqlbm	 Moles of Ni/g Gt

2.00E-04 3004.28 2999.98 1.997E-04 2.863E-06

1.50E-04 2396.45 2391.79 1.497E-04 2.917E-06

1.00E-04 1858.04 1852.89 9.972E-05 2.772E-06

5.00E-05 452.56 450.2 4.974E-05 2.607E-06

2.00E-05 333.33 329.85 1.979E-05 2.088E-06

1.00E-05 148.92 146.21 9.818E-06 1.820E-06

4.00E-06 3917.33 3807.84 3.888E-06 1.118E-06

2.00E-06 1500.16 1458.01 1.944E-06 5.619E-07

1.00E-06 1172.35 1134.42 9.676E-07 3.235E-07

8.00E-07 1800.63 1731.75 7.694E-07 3.060E-07

5.00E-07 2360.12 2280.12 4.831E-07 1.695E-07

2.00E-07 800.16 770.6 1.926E-07 7.389E-08

1.00E-07 540.33 520.56 9.634E-08 3.659E-08

5.00E-08 170.69 165.79 4.856E-08 1.435E-08

2.00E-08 120.26 116.1 1.931E-08	 • 6.918E-09

1.00E-08 98.5 94.95 9.640E-09 3.604E-09

Initial Concentrations

[M of Zn]	 Total CPM Filtered CPM

 At Equilibrium

[Zn]eqlbm	 Moles of Zn/g Gt

2.00E-04 1750.33 1746.8 1.996E-04 4.034E-06

1.50E-04 1430.21 1426.35 1.496E-04 4.048E-06

1.00E-04 1209.14 1204.29 9.960E-05 4.011E-06

5.00E-05 542.15 538.3 4.964E-05 3.551E-06

2.00E-05 390.12 384.25 1.970E-05 3.009E-06

1.00E-05 200.04 194.81 9.739E-06 2.614E-06

4.00E-06 2736.22 2636.94 3.855E-06 1.451E-06

2.00E-06 1388.39 1314.59 1.894E-06 1.063E-06

1.00E-06 700.85 667.72 9.527E-07 4.727E-07

8.00E-07 1850.41 1741.04 7.527E-07 4.728E-07

5.00E-07 1380.33 1309.58 4.744E-07 2.563E-07

2.00E-07 572.16 542.5 1.896E-07 1.037E-07

1.00E-07 282.39 267.75 9.482E-08 5.184E-08

5.00E-08 144.2 138.04 4.786E-08 2.136E-08

2.00E-08 100.35 94.62 1.886E-08 1.142E-08

1.00E-08 72.14 68.25 9.461E-09 5.392E-09
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Competitive Isotherms of Ni and Zn at pH 6

Initial Concentrations

[M of Ni]	 Total CPM Filtered CPM

At Equilibrium

[Ni]eqlbm	 Moles of Ni/g Gt

2.00E-04	 3001.63 2995.25 1.996E-04 4.251E-06

1.50E-04	 2400.5 2393.75 1.496E-04 4.218E-06

1.00E-04	 1880.33 1872.64 9.959E-05 4.090E-06

5.00E-05	 825.45 819.52 4.964E-05 3.592E-06

2.00E-05	 320.16 315 1.968E-05 3.223E-06

1.00E-05	 151.65 147.98 9.758E-06 2.420E-06

4.00E-06	 3907.24 3780.14 3.870E-06 1.301E-06

2.00E-06	 1799.12 1725.95 1.919E-06 8.134E-07

1.00E-06	 1002.26 957.9 9.557E-07 4.426E-07

8.00E-07	 2800.77 2685.01 7.669E-07 3.307E-07

5.00E-07	 2111.05 2014 4.770E-07 2.299E-07

2.00E-07	 790.25 745.01 1.886E-07 1.145E-07

1.00E-07	 412.88 394.44 9.553E-08 4.466E-08

5.00E-08	 216.56 205.85 4.753E-08 2.473E-08

2.00E-08	 133.4 127 1.904E-08 9.595E-09

1.00E-08	 76.37 72.74 9.525E-09 4.753E-09

Initial Concentrations At Equilibrium
[M of Zn]	 Total CPM Filtered CPM [Zn]eqlbm Moles of Zn/g Gt

2.00E-04 1700.46 1695.5 1.994E-04 5.834E-06

1.50E-04 1344.29 1339.22 1.494E-04 5.657E-06

1.00E-04 970.75 965.55 9.946E-05 5.357E-06

5.00E-05 500.61 495.5 4.949E-05 5.104E-06

2.00E-05 190.12 186.01 1.957E-05 4.324E-06

1.00E-05 187.85 181.91 9.684E-06 3.162E-06

4.00E-06 2736.22 2636.94 3.855E-06 1.451E-06

2.00E-06 1388.39 1314.59 1.894E-06 1.063E-06

1.00E-06 700.85 667.72 9.527E-07 4.727E-07

8.00E-07 1850.41 1741.04 7.527E-07 4.728E-07

5.00E-07 1300.25 1215.84 4.675E-07 3.246E-07

2.00E-07 560.37 524.5 1.872E-07 1.280E-07

1.00E-07 272.45 255 9.360E-08 6.405E-08

5.00E-08 121.28 116.28 4.794E-08 2.061E-08

2.00E-08 80.35 74.92 1.865E-08 1.352E-08

1.00E-08 70.35 65.82 9.356E-09 6.439E-09
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Competitive Isotherms of Ni and Zn at pH 7

Initial Concentrations
[M of Ni] 	 Total CPM Filtered CPM

At Equilibrium
[Ni]eqlbm 	 Moles of Ni/g Gt

2.00E-04 	 2971.18 2957.6 1.991E-04 9.141E-06
1.00E-04 	 1781.67 1765.34 9.908E-05 9.166E-06
5.00E-05 	 450.37 442.27 4.910E-05 8.993E-06
2.00E-05 	 320.21 309.15 1.931E-05 6.908E-06
4.00E-06 	 3808.94 3511.01 3.687E-06 3.129E-06
2.00E-06 	 1469.4 1341.5 1.826E-06 1.741E-06
1.00E-06 	 1138.08 999.99 8.787E-07 1.213E-06
8.00E-07 	 1812.35 1667.24 7.359E-07 6.405E-07
5.00E-07 	 2487.35 2227.45 4.478E-07 5.224E-07
2.00E-07 	 843.09 734.92 1.743E-07 2.566E-07
1.00E-07 	 549.02 482.1 8.781E-08 1.219E-07
5.00E-08 	 167.25 147.57 4.412E-08 5.883E-08
2.00E-08 	 111.23 97.35 1.750E-08 2.496E-08
1.00E-08 	 102.88 91.08 8.853E-09 1.147E-08

Initial Concentrations At Equilibrium
[M of Zn] 	 Total CPM Filtered CPM [Zn]eqlbm Moles of Zn/g Gt
2.00E-04 1740.85 1731.36 1.989E-04 1.090E-05
1.00E-04 1393.09 1377.81 9.890E-05 1.097E-05
5.00E-05 563.87 551 4.886E-05 1.141E-05
2.00E-05 350.47 335.04 1.912E-05 8.805E-06
4.00E-06 2722.28 2460.25 3.615E-06 3.850E-06
2.00E-06 1520.85 1320.43 1.736E-06 2.636E-06
1.00E-06 1026.32 878.49 8.560E-07 1.440E-06
8.00E-07 2151.25 1858.66 6.912E-07 1.088E-06
5.00E-07 999.99 846.21 4.231E-07 7.689E-07
2.00E-07 574.4 490.28 1.707E-07 2.929E-07
1.00E-07 294.32 249.05 8.462E-08 1.538E-07
5.00E-08 154.85 134.19 4.333E-08 6.671E-08
2.00E-08 113.54 91.8 1.617E-08 3.829E-08
1.00E-08 76.63 65.75 8.580E-09 1.420E-08
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Calcium-Nickel systems at pH 5 with 0.1 g/L goethite

[M of Ca]
At Equilibrium

[Ca] ppb 	 [Ca] M 1Ni:1Ca
Moles of Ca/g Gt

1Ni:10Ca 	 1Ni:100Ca
2.00E-04 7525.50 1.881E -04 1.186E-04
1.00E-04 3687.75 9.219E-05 7.806E-05
5.00E-05 1806.80 4.517E-05 4.830E-05
1.00E-05 378.83 9.471E-06 5.294E-06
5.00E-06 183.20 4.580E-06 4.200E-06
2.00E-03 75855.00 1.896E-03 1.036E-03
1.00E-03 37312.50 9.328E-04 6.719E-04
5.00E-04 18852.00 4.713E-04 2.870E-04
1.00E-04 3770.25 9.426E-05 5.744E-05
5.00E-05 1888.00 4.720E-05 2.800E-05
2.00E-02 787800.00 1.970E-02 3.050E-03
1.00E-02 391050.00 9.776E-03 2.238E-03
5.00E-03 192800.00 4.820E-03 1.800E-03
1.00E-03 37650.00 9.413E-04 5.875E-04
5.00E-04 18880.00 4.720E-04 2.800E-04

Initial Concentrations
[M of Ni] 	 Total CPM Filtered

CPM

At Equilibrium
[Ni]eqlbm 	 1Ni:1Ca 1Ni:10Ca 1Ni:100Ca

2.00E-04 3107.35 3104.91 1.998E-04 1.570E-06
1.00E-04 1611.56 1609.06 9.984E-05 1.551E-06
5.00E-05 875.75 873.42 4.987E-05 1.330E-06
1.00E-05 150.16 149.21 9.937E-06 6.327E-07
5.00E-06 3882.36 3852.29 4.961E-06 3.873E-07
2.00E-04 3107.35 3104.78 1.998E-04 1.654E-06
1.00E-04 1611.56 1608.94 9.984E-05 1.626E-06
5.00E-05 875.75 873.5 4.987E-05 1.285E-06
1.00E-05 150.16 149.27 9.941E-06 5.927E-07
5.00E-06 3882.36 3853 4.962E-06 3.781E-07
2.00E-04 3107.35 3105.36 1.999E-04 1.281E-06
1.00E-04 1611.56 1609.52 9.987E-05 1.266E-06
5.00E-05 875.75 873.61 4.988E-05 1.222E-06
1.00E-05 150.16 149.25 9.939E-06 6.060E-07
5.00E-06 3882.36 3853 4.962E-06 3.781E-07
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Calcium-Nickel Systems at pH 6

285

Initial
[M of Ca]
2.00E-04
1.00E-04
5.00E-05
1.00E-05
5.00E-06
2.00E-03
1.00E-03
5.00E-04
1.00E-04
5.00E-05
2.00E-02
1.00E-02
5.00E-03
1.00E-03
5.00E-04

At Equilibrium
[Ca] ppb 	 [Ca] M 1Ni:1Ca

Moles of Ca/g Gt
1Ni:10Ca 	 1Ni:100Ca

7369.50 1.842E-04 1.576E-04
3642.75 9.107E-05 8.931E-05
1836.00 4.590E-05 4.100E-05
360.00 9.000E-06 1.000E-05
186.00 4.650E-06 3.500E-06

75780.00 1.895E-03 1.055E-03
37305.00 9.326E-04 6.738E-04
18480.00 4.620E-04 3.800E-04
3682.50 9.206E-05 7.938E-05
1836.00 4.590E-05 4.100E-05

787500.00 1.969E-02 3.125E-03
389250.00 9.731E-03 2.688E-03
192400.00 4.810E-03 1.900E-03
37125.00 9.281E-04 7.188E-04
18400.00 4.600E-04 4.000E-04

Initial Concentrations
[M of Ni] 	 Total CPM Filtered CPM

At Equilibrium
[Ni]eqlbm 	 INi:1Ca 1Ni :10Ca 1Ni :100Ca

2.00E-04 3108.32 3100.38 1.995E-04 5.109E-06
1.00E-04 1610.15 1601.94 9.949E-05 5.099E-06
5.00E-05 870.87 863 4.955E-05 4.518E-06
1.00E-05 153.33 149.97 9.781E-06 2.191E-06
5.00E-06 3890.65 3775.23 4.852E-06 1.483E-06
2.00E-04 3108.32 3100.24 1.995E-04 5.199E-06
1.00E-04 1610.15 1602.23 9.951E-05 4.919E-06
5.00E-05 870.87 862.79 4.954E-05 4.639E-06
1.00E-05 153.33 150.09 9.789E-06 2.113E-06
5.00E-06 3890.65 3776 4.853E-06 1.473E-06
2.00E-04 3108.32 3101.49 1.996E-04 4.395E-06
1.00E-04 1610.15 1603.25 9.957E-05 4.285E-06
5.00E-05 870.87 863.94 4.960E-05 3.979E-06
1.00E-05 153.33 150.16 9.793E-06 2.067E-06
5.00E-06 3890.65 3775.59 4.852E-06 1.479E-06



Calcium-Nickel Systems at pH 7

[M of Ca]

At Equilibrium

[Ca] ppb	 [Ca] M 1Ni:1Ca

Moles of Ca/g Gt

1Ni:10Ca	 1Ni:100Ca

2.00E-04 7170.00 1.793E-04 2.075E-04

1.00E-04 3525.00 8.813E-05 1.188E-04

5.00E-05 1788.00 4.470E-05 5.300E-05

1.00E-05 363.20 9.080E-06 9.200E-06

5.00E-06 176.40 4.410E-06 5.900E-06

2.00E-03 73200.00 1.830E-03 1.700E-03

1.00E-03 36075.00 9.019E-04 9.813E-04

5.00E-04 18160.00 4.540E-04 4.600E-04

1.00E-04 3615.00 9.038E-05 9.625E-05

5.00E-05 1800.00 4.500E-05 5.000E-05

2.00E-02 784500.00 1.961E-02 3.875E-03

1.00E-02 387750.00 9.694E-03 3.063E-03

5.00E-03 191200.00 4.780E-03 2.200E-03

1.00E-03 36000.00 9.000E-04 1.000E-03

5.00E-04 18400.00 4.600E-04 4.000E-04

Initial Concentrations

[M of Nil	 Total CPM Filtered CPM

At Equilibrium

[Ni]eqlbm .	 1Ni:1Ca 1Ni:10Ca 1Ni :100Ca

2.00E-04 3108.32 3093.66 1.991E-04 9.433E-06

1.00E-04 1610.15 1594.78 9.905E-05 9.546E-06

5.00E-05 870.87 857.51 4.923E-05 7.670E-06

1.00E-05 153.33 147.44 9.616E-06 3.841E-06

5.00E-06 3865.11 3684.12 4.766E-06 2.341E-06

2.00E-04 3108.32 3094 1.991E-04 9.214E-06

1.00E-04 1610.15 1595.24 9.907E-05 9.260E-06

5.00E-05 870.87 857.99 4.926E-05 7.395E-06

1.00E-05 153.33 147.57 9.624E-06 3.757E-06

5.00E-06 3865.11 3682.85 4.764E-06 2.358E-06

2.00E-04 3108.32 3096.12 1.992E-04 7.850E-06

1.00E-04 1610.15 1597.75 9.923E-05 7.701E-06

5.00E-05 870.87 858.48 4.929E-05 7.114E-06

1.00E-05 153.33 147.51 9.620E-06 3.796E-06

5.00E-06 3865.11 3687.02 4.770E-06 2.304E-06
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Calcium-Zinc systems at pH 5

Initial
[M of Ca]

At Equilibrium
[Ca] ppb [Ca] M 1Zn:1Ca

Moles of Ca/g Gt
1Zn:10Ca 	 1Zn:100Ca

2.00E-04 7320.000 1.830E-04 1.700E-04
1.00E-04 3682.500 9.206E-05 7.938E-05
5.00E-05 1908.000 4.770E-05 2.300E-05
1.00E-05 369.000 9.225E-06 7.750E-06
5.00E-06 187.200 4.680E-06 3.200E-06
2.00E-03 75600.000 1.890E-03 1.100E-03
1.00E-03 37500.000 9.375E-04 6.250E-04
5.00E-04 18680.000 4.670E-04 3.300E-04
1.00E-04 3682.500 9.206E-05 7.938E-05
5.00E-05 1856.000 4.640E-05 3.600E-05
2.00E-02 789000.000 1.973E-02 2.750E-03
1.00E-02 390750.000 9.769E-03 2.313E-03
5.00E-03 192800.000 4.820E-03 1.800E-03
1.00E-03 37500.000 9.375E-04 6.250E-04
5.00E-04 18480.000 4.620E-04 3.800E-04

Initial Concentrations
[M of Zn] 	 Total CPM Filtered CPM

At Equilibrium
[Zn]eqlbm 	 1Zn:1Ca 1Zn:10Ca 1Zn:100Ca

2.00E-04 1740.15 1734.05 1.993E-04 7.011E-06
1.00E-04 902.74 896.71 9.933E-05 6.680E-06
5.00E-05 440.37 435.25 4.942E-05 5.813E-06
1.00E-05 150.16 146.18 9.735E-06 2.651E-06
5.00E-06 2725.33 2631.97 4.829E-06 1.713E-06
2.00E-04 1740.15 1734.33 1.993E-04 6.689E-06
1.00E-04 902.74 897.04 9.937E-05 6.314E-06
5.00E-05 440.37 435.28 4.942E-05 5.779E-06
1.00E-05 150.16 146.04 9.726E-06 2.744E-06
5.00E-06 2725.33 2634.09 4.833E-06 1.674E-06
2.00E-04 1740.15 1734.81 1.994E-04 6.137E-06
1.00E-04 902.74 897.3 9.940E-05 6.026E-06
5.00E-05 440.37 435.29 4.942E-05 5.768E-06
1.00E-05 150.16 145.71 9.704E-06 2.964E-06
5.00E-06 2725.33 2628.74 4.823E-06 1.772E-06
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Calcium-Zinc systems at pH 6

Initial
[M of Ca]

At Equilibrium
[Ca] ppb [Ca] M 1Zn:1Ca

Moles of Ca/g Gt
1Zn:10Ca 	 1Zn:100Ca

2.00E-04 7350.000 1.838E-04 1.625E-04
1.00E-04 3607.500 9.019E-05 9.813E-05
5.00E-05 1864.000 ' 4.660E-05 3.400E-05
1.00E-05 373.600 9.340E-06 6.600E-06
5.00E-06 184.400 4.610E-06 3.900E-06
2.00E-03 75900.000 1.898E-03 1.025E-03
1.00E-03 37875.000 9.469E-04 5.313E-04
5.00E-04 18920.000 4.730E-04 2.700E-04
1.00E-04 3615.000 9.038E-05 9.625E-05
5.00E-05 1872.000 4.680E-05 3.200E-05
2.00E-02 787500.000 1.969E-02 3.125E-03
1.00E-02 390000.000 9.750E-03 2.500E-03
5.00E-03 192400.000 4.810E-03 1.900E-03
1.00E-03 36450.000 9.113E-04 8.875E-04
5.00E-04 18200.000 4.550E-04 4.500E-04

Initial Concentrations
[M of Zn] 	 Total CPM Filtered CPM

At Equilibrium
[Zn]eqlbm 1Zn:1Ca 1Zn:10Ca 1Zn:100Ca

2.00E-04 1756.42 1748.08 1.991E-04 9.497E-06
1.00E-04 912.79 904.17 9.906E-05 9.444E-06
5.00E-05 450.03 442.88 4.921E-05 7.944E-06
1.00E-05 138.17 133.25 9.644E-06 3.561E-06
5.00E-06 2713.5 2581.38 4.757E-06 2.434E-06
2.00E-04 1756.42 1748.2 1.991E-04 9.360E-06
1.00E-04 912.79 904.45 9.909E-05 9.137E-06
5.00E-05 450.03 443.08 4.923E-05 7.722E-06
1.00E-05 138.17 132.84 9.614E-06 3.858E-06
5.00E-06 2713.5 2575.22 4.745E-06 2.548E-06
2.00E-04 1756.42 1749.42 1.992E-04 7.971E-06
1.00E-04 912.79 905.83 9.924E-05 7.625E-06
5.00E-05 450.03 443.28 4.925E-05 7.500E-06
1.00E-05 138.17 132.91 9.619E-06 3.807E-06
5.00E-06 2713.5 2588.72 4.770E-06 2.299E-06
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Calcium-Zinc systems at pH 7

Initial
[M of Ca]

At Equilibrium
[Ca] ppb [Ca] M 1Zn:1Ca

Moles of Ca/g Gt
1Zn:10Ca 	 1Zn:100Ca

2.00E-04 7110.00 1.778E-04 2.225E-04
1.00E-04 3555.00 8.888E-05 1.113E-04
5.00E-05 1800.00 4.500E-05 5.000E-05
1.00E-05 352.80 8.820E-06 1.180E-05
5.00E-06 178.00 4.450E-06 5.500E-06
2.00E-03 74400.00 1.860E-03 1.400E-03
1.00E-03 36525.00 9.131E-04 8.688E-04
5.00E-04 18400.00 4.600E-04 4.000E-04
1.00E-04 3637.50 9.094E-05 9.063E-05
5.00E-05 1816.00 4.540E-05 4.600E-05
2.00E-02 786000.00 1.965E-02 3.500E-03
1.00E-02 387750.00 9.694E-03 3.063E-03
5.00E-03 190800.00 4.770E-03 2.300E-03
1.00E-03 37050.00 9.263E-04 7.375E-04
5.00E-04 18480.00 4.620E-04 3.800E-04

Initial Concentrations
[M of Zn] 	 Total CPM Filtered CPM

At Equilibrium
[Zn]eqlbm 	 1Zn:1Ca 1Zn:10Ca 1Zn:100Ca

2.00E-04 1708.54 1692.56 1.981E-04 1.871E-05
1.00E-04 892.11 875.43 9.813E-05 1.870E-05
5.00E-05 450.95 437.5 4.851E-05 1.491E-05
1.00E-05 132.39 121.69 9.192E-06 8.082E-06
5.00E-06 2702.28 2436.55 4.508E-06 4.917E-06
2.00E-04 1708.54 1693.11 1.982E-04 1.806E-05
1.00E-04 892.11 876.85 9.829E-05 1.711E-05
5.00E-05 450.95 437.5 4.851E-05 1.491E-05
1.00E-05 132.39 123.25 9.310E-06 6.904E-06
5.00E-06 2702.28 2441.74 4.518E-06 4.821E-06
2.00E-04 1708.54 1695.02 1.984E-04 1.583E-05
1.00E-04 892.11 878.21 9.844E-05 1.558E-05
5.00E-05 450.95 438.11 4.858E-05 1.424E-05
1.00E-05 132.39 122.09 9.222E-06 7.780E-06
5.00E-06 2702.28 2436.99 4.509E-06 4.909E-06
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