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ABSTRACT

AN INVESTIGATION OF
CENTRIFUGAL BLOOD-CELL SEPARATION

Timothy Edward Roche

This dissertation investigated the centrifugal, batch separation of whole blood into

subpopulations of red blood cells (erythrocytes) and white blood cells (leukocytes).

Separations took place in a custom-built centrifuge (using a seal-less, anti-twisting

feed/withdrawal system) containing a 25-ml capacity separation chamber. The blood

separation chamber had a dart-shaped geometry in the radial plane and a constant depth

in the axial direction. Separation experiments were performed on whole bovine blood at

varying hematocrit, centrifuge speed, and batch duration. A small, companion study of

whole human blood separation runs also were conducted; they concentrated on batch

duration effect and achieved superior separations.

A new graphical technique—generating accumulated cell-fraction separation

graphs and measuring separation quality—was devised to display experimental

separation runs. Results were presented for both bovine blood and human blood. An

interval, observable between the accumulated cell-fraction curves of red blood cells and

white blood cells, was measured and used to quantify the maximum extent of separation,

allowing for determination of good and bad separations. This measured value was labeled

separation quality (SQ). Measurements of SQ for bovine blood separation runs of various

duration showed that batch duration had a strong correlation to separation quality. The set

of human blood separation runs demonstrated that SQ values may be used as a means to

locate optimal operating parameter values. An optimum was bounded for the human

blood data set.



A one-dimensional volume-diffusion model ha's been derived for the equations of

change of fluid mechanics. The volume-diffusion model extended the original work of

Bird, Curtiss, and Hirshfelder in the area of molecular diffusion to application on

particulate systems where volume diffusion was the predominant driving force. This

model described the binary system of red blood cells (erythrocytes) and plasma.

Expressions for volume flux with respect to stationary coordinates, including

contributions via ordinary diffusion and pressure diffusion, were derived from the

molecular flux expressions for the corresponding diffusion contributions. Due to its high

degree of complexity, the model's system of partial differential equations could not be

solved using a collocation finite element solver. The model was intractable.
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CHAPTER 1

RATIONALE

1.1 Blood Overview

Blood is vital to life. Its function is homeostasis: to maintain the constancy of the internal

environment for the body. The essential tasks it provides vary in importance from

imperative for life to necessary for health. Blood regulates the body's pH levels (about

7.4), facilitating bodily chemical reactions; blood delivers oxygen and removes carbon

dioxide, allowing cellular respiration (without which cells begin to die in 3 minutes);

blood controls body temperature, it is our heat transfer fluid keeping the body core not

too hot or not too cold; blood provides nutrients to every cell, blood sugar (one of many

nutrients) is the primary fuel for the brain, spinal cord, nerves, and the only food source

for red blood cells (which have no mitochondria); blood disposes of waste materials

(excretion); blood defends the body—resisting or destroying and then removing foreign

organisms, dead cells, and other foreign materials, conferring immunity from infectious

agents, producing the inflammatory response, sealing and repairing wounds—its

defensive mechanisms are achieved by a complex interaction of blood cells and plasma

constituents. Truly a remarkable tissue.

Blood is the only tissue in the body which is liquid: a mélange of several types of

specialized cells or formed elements (45 vol%) suspended within liquid plasma (55

vol%). This percentage is called the hematocrit. There are three key types of blood cells:

red blood cells (RBCs or erythrocytes), white blood cells (WBCs or leukocytes), and

platelets (thrombocytes). A collection of tables with details on blood and its constituents

1
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are included in Appendix E. At the end of this chapter one may review concentrations

and sizes of many blood constituents in Table 1-1.

Plasma is the liquid portion of blood. It contains 90% water. By far the largest

body constituent, water is essential to the life processes of every cell and it is freely

exchanged with body cells and other extracellular fluids via the blood vessels. Plasma

contains not just water but proteins, carbohydrates, and fats: to a lesser extent,

electrolytes, organic acids, and non-protein nitrogenous compounds: and in very small

amounts, vitamins, hormones, and enzymes. By weight, proteins are 7% of plasma. The

plasma proteins exert an osmotic pressure which tends to move water from other

extracellular fluids to the plasma. Albumins (4.8 g/ml), globulins (2.5 g/ml), and

fibrinogen (0.3 g/ml) constitute the chief proteins by concentration. Plasma is a complex

solution.

Red blood cells (RBCs) or erythrocytes are the most prevalent cells or formed

elements in blood. (RBCs do not have nuclei, so technically they are not cells.) They

account for 95% of blood cells by number. A human RBC have the form of a biconcave

disc (like a donut with an incomplete hole), a shape that provides a large surface-to-

volume ratio. , except when flowing through capillaries where it is squeezed into a bullet

shape because many capillaries are smaller than the cell diameter. Red blood cells may

flocculate one cell on top of another, not unlike stacked coins, forming a rouleau

structure. The principal function of RBCs is gas transport: 0 2 delivery and CO 2 removal.
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The transport of both, 0 2 and CO.,, is facilitated by the presence of hemoglobin * (a

protoporphyrin-iron-globin complex), which readily associates with either 0, and CO, .

The average life span of a RBC is 120 days.

White blood cells (WBCs) come is a variety of types, each with its separate

functions. They account for 0.13% of blood cells by number. Red blood cells out number

WBCs approximately 1000 to 1. The WBCs are often classified, based on the presence of

granules in their cytoplasm, as either granulocytes (cells with granules) or agranulocytes

(cells sans granules). Another name for granulocytes is polymorphonuclear leukocytes

(white blood cells with a multi-lobed nucleus). Granulocytes account for about 70% of all

WBCs. They are formed in the bone marrow. Three types of granulocytes may be

distinguished, by names based on the color of the cell's granules when stained with a

compound dye: neutrophils (granules stain pink, vast majority of granulocytes),

eosinophils (granules stain red, 2% of granulocytes), and basophils (granules stain blue-

black, 1% of granulocytes). Agranulocytes include monocytes and lymphocytes.

Platelets (or thrombocytes) are the smallest cells of the blood (2 -4µm ,

diameter). Even though platelets out number WBCs approximately 40 to 1, they occupy a

much smaller fraction of the volume fraction. Like RBCs, they lack a nucleus and are

consequently incapable of cell division, but differ from RBCs by virtue of a more

complex metabolism and internal structure. Hemostasis, the prevention and control of

bleeding, is the task of platelets. This function is aided by their ability to adhere to each

* The hemoglobin molecules (68,000 mol wt) are extremely tightly packed within the RBC; they constitute

about 25% of the available volume, the remainder being taken up by water (70%) and other constituents
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other but not to RBCs or WBCs. Within the platelet are tiny granules that contain clot-

promoting substances. The largest bone marrow cells, megakaryocytes, produce the

smallest blood cells, platelets. By the time they reach circulation platelets will remain for

about 10 days before being removed and destroyed.

1.2 Reasons to Separate Blo od

Blood is necessary to life. (One need only hold one's breath to be reminded of blood's

role in delivering oxygen to and removing carbon dioxide from the various organs,

tissues, and diverse cells throughout the body.) And so all reasons for separating blood

ultimately may be reduced to the universal desire to continue living. Effective techniques

for separating, concentrating, and accumulating one or more components of blood can

only improve our ability to understand blood's properties, to ascertain the state of an

individual's health, and to treat diseases of the body. (1) Scientific knowledge, (2)

diagnostic testing, (3) therapeutic treatment are three basic reasons for separating blood.

1.3 Effective Blood Separation

Previous work by graduate students at the University of Oklahoma under the direction of

Dr. Sofer resulted in the construction of a centrifuge incorporating an anti-twister

mechanism, enabling the delivery of blood to and from the separation chamber of the

centrifuge while avoiding the constraint of passing through rotating seals (potentially

causing hemolysis due to mechanical stress on cells). With this existing custom

(5%). One gram of hemoglobin can combine with 1.34 ml of 0 2 . Hence, at a hemoglobin concentration of

15 g/100 mL blood, the 0 2 -carrying capacity of blood is about 20 volume-percent (Kline 1976).
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centrifuge available, it was natural to desire a better understanding of its separation

qualities and, reaching that goal, advance the cause by seeking improvements.

The search for potential improvements focused first on easily adjustable

centrifuge operating conditions—varying initial hematocrit, centrifuge speed, batch

duration—and the focus would later shift to more substantial (laborious, costly) changes.

Specifically, these changes might entail designing and constructing centrifuge chambers

of superior geometry and perhaps devising more elaborate separation schemes

(implementing more complicated fill/withdrawal patterns and/or adding additional

chambers), the result being a staged version of the separation process.

Experimental studies of the existing chamber and its variable operating conditions

may progress only so far until further improvement will be stymied, the hindrance is the

fixed geometry of the chamber. Newly shaped chamber geometries may either be

investigated experimentally, after building and installing a new chamber shape, or be

investigated theoretically, after modeling the separation phenomena and solving the

simulation for a given chamber shape's separation effectiveness. The experimental route

is costly in terms of time and material and labor. So a good model predicting the behavior

of blood undergoing centrifugation is a goal for the complete investigation of blood cell

separation.
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Table 1 -1 Composition of blood (Kline 1976, 142).

Concentration Shape Size or Mol. Weight
Cellular Elements
Erythrocytes 5 x 106̂cells/mm3 discoid 8 pm (diameter)

Leukocytes 5 to 8 x103̂cells/mm3

monocytes polymorphous 16 — 22 pm (diameter)

granulocytes polymorphous 10 —12 pm (diameter)

lymphocytes spherical 7 —12 pm (diameter)

Platelets 2.5 to 5 x10^5cells/mm3 2.5 pm (diameter)

Plasma Molecular constituents
Albumin 3.5-5.3 g/100mL prism 69x 10 3 g/mol

Globulin 2.1-3.3 g/100mL ellipsoid (41-1000) x 10 3 g/mol

Lipoprotein spherical (200 —13000) x 10 3 g/mol

Fibrinogen 0.2-0.4 g/100mL dumbbell 400 x10 3 g/mol

Glucose 70-120 mg/100mL 180 g/mol

Ionic Content of Plasma
Na +

Ca +2

Cl

HCO3 -

HPO 4-2

Other cations
Other anions

145 mEq/L

4.2 mEq/L
4.8 mEq/L

103 mEq/L

29 mEq/L

2 mEq/L

6 mEq/L
21 mEq/L



CHAPTER 2

INTRODUCTION

2.1 Settling and Sedimentation in Particle-Fluid Separation

When a particle is at a sufficient distance from the walls of the container and from other

particles so that its fall is not affected by them, the process is called free settling.

Interference is less than 1% if the ratio of the particle diameter to the container diameter

is less than 1:200 or if the particle concentration is less than 0.2 vol% in the solution.

When the particles are crowded, they settle at a slower rate and the process is called

hindered settling. The separation of a dilute slurry or suspension by gravity settling into a

clear fluid and a slurry of higher solids content is called sedimentation (Geankoplis

1993).

2.1.1 Leukapheresis

Hemapheresis, the selective collection of any blood component, has become practical

with the use of automated equipment—both for obtaining specific components for

transfusion, and for removing pathogenic components in clinical disease (Silvergleid

1983). A large number of diseases, primarily with an immunological basis, have been

treated in this way, but not without adverse reactions (Kennedy and Domen. 1983;

Westphal 1984). Recent reviews of plasmapheresis, cytapheresis, and blood cell

separators are enlightening (Blumberg and Katz 1981; Tan and others 1981).

Continuous flow centrifugation technology is at an advanced state — the

automated, rapid, efficient, and relatively safe procedures are well tolerated by patients.

7
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While the clinical benefit of leukapheresis in chronic myelocytic leukemia is not

conclusive, it can reduce by one-half the WBC count within two or three hours — a task

which may take chemotherapy several days (Mallard 1982).

One function of a centrifugal detoxification scheme is to return healthy

granulocytes to the patient. For patients suffering from hematological malignancies

(Hersh and others 1965; Cheng and others 1976; Russell and Powles 1976) and solid

tumors (Ingaki, Rodriguez, and Bodey 1976) infection remains as the leading cause of

death. In most cases insufficient numbers of functional granulocytes appear to be the

major deterrent in warding off infection (Bodey and others 1975). Improvements in

leukapheresis within recent years have aided in establishing granulocyte transfusion

therapy as an effective therapeutic modality in controlling infection (Steigbigel and others

1978; Winton and Vogler 1978; Higby and Henderson 1975; Graw and others 1972;

Higby and others 1975; Herzig and others 1977; Alavi and others 1977).

2.1.2 Sedimentation Agents

In order to increase collection efficiency, erythrocyte sedimenting agents such as dextran

(Winton and Vogler. 1978; Aisner, Schiffer, and Wiernik. 1978; Lowenthal and Park.

1975) or hydroxyethyl starch (HES) (Russell and Powles 1976; Winton and Vogler 1978;

Aisner, Schiffer, and Wiernik 1978; McCredie and others 1974; Mischler and others

1974) are sometimes used.

These, sedimenting agents cause rouleau formation to increase, thereby

preferentially increasing the red blood cell sedimentation rate (Mittelman and others

1985), and increasing granulocyte yields to between 1.3 x101° – 5.2 x 10 10 cells (Herzig,
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Root, and Graw 1972; Huestis, and others 1975; Sussman and Colli 1975; McCredie, and

others 1975; Benbunan, and others 1975).

Sedimentation agents are an added complication in a detoxification process.

Strauss (1981) has shown overt bleeding and hemorrhaging following large doses of

HES. Consequently no sedimentation agents or other similar chemicals are used with the

blood processing technique.

2.1.3 Filtration Techniques

Filtration leukapheresis has also been used to increase cell yields. But donors undergoing

filtration leukapheresis often exhibit profound neutropenia sometimes accompanied by

chills, hypotension, and mild respiratory symptoms (Hammerschmidt and others 1978).

One might suspect that the neutropenia may be explained on the basis of filter trapping of

granulocytes, however the decline is much too sharp to be attributed to the filter alone

(Hammerschmidt and others 1978). Herzig and coworkers (1975) have attributed the

effect to complement activation resulting when plasma contacts the polymer surfaces

inside the filter. Once reinfused into the donor the activated complement causes

granulocytes to aggregate and to be sequestered in the lungs causing demonstrable lung

dysfunction. Filtration techniques have therefore also been ruled out for the blood

processing scheme in this investigation.

2.1.4 Shear Damage and the Anti-twister Mechanism

Complement activation problems have long been reported for hemodialysis (Kaplow and

Goffinet 1968). Jacob (1983) reports activation during extracorporeal circulation leading
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to leucoembolization, granulocyte aggregation, and physical problems ranging from

modest pulmonary dysfunction to severe pulmonary damage.

In extracorporeal shunts, blood is generally forced through rotating seals,

exposing the components to high shear stresses. RBC's and WBC's are damaged, and

platelets (Brown, Lemuth, and others 1975; Brown, Leverett, and others 1975) are

particularly susceptible to damage caused by rotating seals (Suaudeau, and others 1978;

Ito, Suaudeau, and Bowman 1977).

Even in low-flow, short-term operations, sufficiently high levels of heparin and

citrate dextrose anticoagulants must be maintained in the centrifuge bowl to prevent

platelet aggregation (Suaudeau, and others 1978; Ito, Suaudeau, and Bowman 1977; Graw

and others 1971; Hester, McCredit, and Freireich 1975; Ruder and Wilson 1975). In

higher-flow, longer-term processes, increased amounts of anticoagulants would be

necessary, thereby increasing the potential for bleeding problems or citrate reactions

(Suaudeau, and others 1978). In fact, occasional citrate reactions (Huestis, and others

1975; Szymanski, Patti, and Kilman 1973; Oon and Hobbs, Clinical applications, 1975;

Oon and Hobbs, Medical problems, 1975) are observed even in low-flow, short-term

processes.

Besides the platelet problem, numerous other complications have been

encountered including frequent leakages and inter-communication between blood

fractions through the rotating seal (Suaudeau and others 1978). These complications

were found to be a consequence of uneven lubrication, swelling and displacement of seal

0-rings, or even sudden changes in animal venous pressure due to postural changes,

sneezing or coughing (Suaudeau, and others 1978).
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A more recent development in continuous centrifuge design developed by Ito and

Kolobow (Ito, Suaudeau, and Bowman 1977) of NIH, circumvents the need for rotating

seals, allowing attachment of continuous tubes directly to the rotating centrifuge head.

Tubes are kept from twisting by an anti-twister mechanism (Ito, Suaudeau, and Bowman

1977; Ito 1976). An additional feature: the centrifuge head contains a blood chamber of

spiral design which allows for adequate separation and mixing of adjacent sedimentation

layers, thereby increasing separation efficiency. Kolobow, Ito, and Suaudeau of NIH

have performed preliminary comparative studies with the seal-less centrifuge and a

centrifuge with rotating seals (Aminco Celltrifuge) (Suaudeau, and others 1978). The

seal-less design showed remarkable improvements over the Aminco Celltrifuge, which

maintained continuous operation for 24 hours at almost twice the rpm and twice the flow

rate with little or no platelet damage or adverse reactions on experimental animals

(Suaudeau, and others 1978; Ito, Suaudeau, and Bowman 1977).

Preliminary centrifugation experiments by Kolobow (1978), although successful

in separating plasma and platelets from erythrocytes, were not successful in producing

granulocyte harvests at high yields, and no rigorous attempts were made to study

optimum operating conditions for granulocyte harvesting.

It was with the close cooperation of Kolobow and Ito that Sofer and Van Wie

constructed several blood processors incorporating the anti-twister mechanisms and the

spiral chamber. The more recent versions (V-3, now at NJIT) are machined to closer

tolerances, and equipped with dynamic balancing systems.
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The anti-twister device allows greater flow rates and operation at higher g forces

allowing for increased efficiency, resolution, and throughput. This will help offset the fact

that sedimentation and density gradient agents are not used in our process.

2.2 Early Work

Our research group first considered centrifugation to separate cells as an adjunct to

extracorporeal detoxification using liver enzyme systems to purify plasma. Next, we

started work on a device to produce lymphokine subsets in a sedimentation chamber. At

an upward flow of fluid equal to the sedimentation velocity, we obtain a gravity-

immobilized white cell bioreactor. Early work in this laboratory, supported by NIH, the

University of Oklahoma, the State of New Jersey and other sources, led to the

development of a centrifugal blood processing technique of high efficiency and

resolution. We tested staging, recycle, and many heads and chamber shapes.

The V-3 blood processor was constructed after Bernie Van Wie (then a student of

Dr. Sofer at the University of Oklahoma) spent some time as a guest worker with Dr. Ito

and Dr. Kolobow of the Laboratory for Technical Development of NIH in Bethesda,

learning to build and operate this type of machine. We developed two-component

(WBC-RBC) material balance calculation techniques for multistage blood processing.

Our theoretical design calculations were supported by encouraging experimental results

(Van Wie and Sofer. 1986).

Specifically, our group discovered that operating in regions of low hematocrit,

introducing- a plasma recycle stream, and increasing the number of stages greatly improve

blood component separations. Our efforts were centered on separating the white cell
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components from the red blood cells, hence we developed the design equations for a two-

component model.

2.3 Sedimentation Theory for Dilute Systems

In the mid-19th century, Stokes studied the motion of immersed bodies in viscous fluids

in a gravitational field (Davidson 1976; Delva Separator Company 1978) and developed

an equation describing the particle terminal settling velocity. Our group started the

theoretical approach by extending this equation to account for blood component

sedimentation velocities (Van Wie and Sofer 1984).

Under a centrifugal force field, the effect of earth's gravity usually becomes

negligible compared to the centrifugal acceleration for the force of gravity; Stokes'

equation becomes:

where:

vi is the terminal settling velocity for component i ,

r is the particle radius,

p i is the particle density,

p f is the fluid density,

µ is the fluid viscosity,

0 is the angular velocity, and

r, is the radial distance from the axis of rotation.

Several limiting assumptions are inherent in this equation and are detailed elsewhere

(Davidson 1976; Maupin 1969).
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Sedimentation theory can be compared to experimental results in actual

centrifugation processes at least for dilute particle suspensions. However, in blood

separations the application of Stokes' sedimentation relationship appears to have some

slight inaccuracies even in dilute suspensions (Zwicker 1972). Some of the inaccuracies

can be attributed to the fact that cell size and density not only vary slightly from

individual to individual, but depend upon age, cellular environment and measurement

technique (Davidson 1976; Van Wie and Sofer 1984). Other inaccuracies may appear

with changes in viscosity, which may affect sedimentation rate. Viscosity changes with

temperature; for non-Newtonian fluids; viscosity also changes with flow rate. Even with

all of the potential for inaccuracies, Stokes' law still provides an understanding of

sedimentation theory and can be used to determine guidelines for centrifuge design.



CHAPTER 3

EXPERIMENTAL METHODS

3.1 Equipment and Materials

The V-3 centrifuge includes a continuous, anti-twisting, feed/withdrawal line. Built on to

the head of the centrifuge is a separation chamber shaped like a kite or dart (within the

plane of the centrifuge head) with a constant depth in the axial direction. An engineering

drawing of the centrifuge head containing the separation chamber is provided in

Appendix F.

A Cole-Parmer Digi-Staltic digital flow/dispensing drive (7527-34) with a

Masterflex pump head was used to fill the chamber and withdraw samples.

A Sysmex (CC-180) Micro-Cell Counter, a semi-automated hematology analyzer

for in vitro diagnostic use in clinical laboratories was used for blood analysis. It provided

the following eight analysis parameters.

1. White Blood Cell (WBC) or Leukocyte Count

2. Red Blood Cell (RBC) or Erythrocyte Count

3. Hemoglobin (Hgb) Concentration

4. Hematocrit (Hct), true relative percentage volume of erythrocytes

5. Mean Corpuscular (Erythrocyte) Volume (MCV)

6. Mean Corpuscular (Erythrocyte) Hemoglobin (MCH)

7. Mean Corpuscular (Erythrocyte) Hemoglobin Concentration (MCHC)

8. Platelet (PLT) Count

Sysmex Quicklyser (QL-20) was used in the preparation of WBC samples for the

blood counter. It is a lysing and hemoglobin reagent.

15
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Sysmex Manoresh (MR-50) detergent was used by the blood counter in its

automatic cleaning cycle and for cleaning the centrifuge chamber after separation runs.

Sysmex disposable sample beakers (DB-1) were used during dilution preparation

steps for analysis of blood samples.

A Digistrobe stroboscope/tachometer is used to determine and set centrifuge

speed.

3.2 Directions for Operating V-3 Batch Blood Centrifuge

Here is a step-by-step list of instructions for operating the V-3 centrifuge.

1. Turn on the power: power switch is located on rheostat.

2. Clean separation chamber. If the chamber is empty, fill the chamber with detergent

solution. Empty the detergent from the chamber and rinse with water; repeat the rinse

at least two times (additional rinses may be necessary if debris is visible inside the

chamber).

Note: in order to empty the contents from the separation chamber, the centrifuge must be

spinning with sufficient speed for the contents to accumulate at the bottom of the

chamber where the feed/withdrawal line connects to the centrifuge head. This allows

the suction head of the pump to work.

1. Charge the chamber with a measured quantity of blood (maximum capacity, 25 ml) of

a known hematocrit. The initial hematocrit may be adjusted to lower values by diluting

with an isotonic solution. We use Acid Citrate Dextrose (ACD *) solution for bovine

blood; heparin-treated vacuum tubes are used for human blood. Using either ACD

solution or heparin arrests the natural coagulating properties of whole blood.

3. If the centrifuge is not spinning at the desired angular velocity, adjust centrifuge spin

speed and verify using the strobe light, then start measuring the duration of the batch

separation with a stop watch.

* ACD anticoagulant consists of 3.95 g citric acid, 10.9 g sodium citrate, and 12.1 g dextrose (all ingredients
anhydrous) diluted in 407 ml distilled water. This quantity is sufficient for treating one gallon of bovine blood.
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4. The separation run may be ended when a desired batch duration has been reached or

when a separation front between plasma and RBC (close observation will identify

WBC in the buffy coat) has become visible using strobe light or if the separation front

has traveled a desired distance down the chamber.

Note: orienting in the spinning chamber: in order to facilitate discussion of blood cell

separations and movement of cells in the chamber, we stipulate that the directions up

and down refer to movement, relative to the chamber boundaries, along radial lines,

such that:

Up, describes movement on a radial line toward the axis of rotation;

Down, describes movement on a radial line away from the axis of rotation.

5. Collect samples. This is achieved by withdrawing the contents of the chamber, —

effectively from bottom to top, because the withdrawal line is located at the bottom

and therefore the bottom fluid leaves first, the top fluid leaves last—using the pump

and emptying the drawn off blood into waiting test tubes. Divide the withdrawn

contents of the chamber into six or seven separation fractions: accumulate the first 3

ml of blood withdrawn into the first sample test tube, the next 3 ml into the second

test tube, and so on, until the chamber is completely empty.

6. Count the cells in each separation fraction.

7. Plot the results.

3.3 Directions for using a Sysmex™ (AD-241) Auto Dilutor

3.3.1 WBC Dilution Method

1. Turn auto-dilutor power switch to 'ON' position.

2. If the instrument is new and operating for the first time, or operating after non-use for

several weeks, repeat aspiration and delivery functions 10 times continuously in order

to replace the diluent remaining in the hydraulic lines.

3. Set the select lever to WBC.

4. If a drop of diluent adheres to the pipette tip (sample and bypass pipettes), remove

with a piece of gauze or lintless tissue.
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5. Immerse the tip of the sample pipette into the mixed blood sample.

6. Press the Start Button immediately to initiate sample aspiration.

7. Remove the blood from the pipette tip immediately after aspiration is completed.

8. Remove the blood sample coating the outside of the sample pipette by wiping with

damp gauze or damp lintless tissue. Surrounding the upper part of the sample pipette

with the gauze or tissue, wipe immediately with a downward motion.

Caution: If the gauze touches the sample pipette tip, it will cause a dilution error since

a portion of the sample inside the pipette may be removed by being soaked into the

gauze.

9. Place the pipette tips of the sample and bypass pipettes into an unused sample beaker

and push the Start Button. The aspirated blood sample and diluent are discharged

simultaneously through the pipettes into the beaker.

10. Because the output pressure of the pipette is considerable, it is recommended to tilt

the beaker so the liquid jet from the pipette tip runs along the beaker's inside wall.

This will help maintain cellular integrity.

Caution: Do not immerse the tip of the dilutor pipette into the diluted sample in the

tilted beaker. If the blood sample adheres to the inside wall of the sample beaker, re-

suspend sample with a swirling motion.

11. The diluted sample need not be mixed again if the counting is done immediately

because the blood sample is mixed well during the delivery process. Counting shall

be started after removing the air bubbles.

3.3.2 RBC Dilution Method

1. Set the select lever to RBC.

2. Follow the operating procedure described in WBC Dilution Method.

Note: the Dilution Ratio Select Lever can only be changed to the other position when

"ASP" is observed through the Monitor Window. The Dilution Ratio Select Lever

must never be changed or shifted during the operation of the dilutor or after the

completion of the aspiration process. ("DIL" will be observed through the Monitor

Window when aspiration is completed.)
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3.3.3 Diluent

1. Temperature of the diluent should be maintained at approximately 25°C for stable

counting of white cells.

2. Cycle the dilutor to remove any air in the hydraulic lines when the diluent container is

replaced by a new one, or whenever air is observed in the pipette.

3. After delivery, a small volume of diluent may remain on the tips of the pipettes, but

this will not affect counting result.



CHAPTER 4

RESULTS

4.1 Data Preparation

In the course of a blood separation run, the operator fills the centrifuge chamber with

approximately 20-25 ml of blood, spins the blood for a measured duration, and then

withdraws the separated blood into accumulated fractions of approximately 3 ml each.

(The withdrawal process has the effect of emptying the chamber from the bottom to the

top with very little mixing of the remaining blood in the chamber). The blood cells in

each collected fraction are counted. A typical output from the counter would resemble

Table 4-1, the results of blood cell counts for run B19881212a. All runs are described in

detail in Table 4-4.

Table 4-1 Blood data* and cell counter analysis output.

Sample Volume	 WBC	 RBC
(µL) concentration concentration

	

(10^3/µL)	 (106/µL)

HCT	 PLT Time
(%) concentration 	 (s)

(10114L )

1 2500 3.60 13.20 66.0 652 120

2 2500 11.40 14.56 73.0 670 65

3 3500 4.50 9.60 47.0 771 43

4 3000 2.70 8.68 42.9 765 36

5 3000 2.40 7.61 37.0 866 37

6 2500 10.00 5.05 25.0 961 40

7 3000 0.94 0.30 1.4 100 40

initial 20000 4.40 7.80 38.8 555 1560

20
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Table 4-1 includes seven rows of data for the collected fractional samples of the

separated blood and one row for the original homogenous blood. The column labeled

Volume reports the sample volume (or initial chamber volume) in microliters. WBC

concentration is reported in thousands of cells per microliter, as are platelet

concentration; the RBC concentration is reported in millions of cells per microliter.

Hematocrit (Hct) is the volume fraction of RBCs reported as a percentage.

RBC volume
Hct = 	 .100

whole blood volume

Time refers to the sampling duration in seconds needed to withdrawal the sample (or the

duration of the batch prior to withdrawal in the case of the last row of the table, labeled

initial).

The actual cell concentrations are not graphed, rather, values derived from them

are graphed: accumulated cell fractions. The three necessary values are volume fraction,

WBC fraction, and RBC fraction. The volume fraction is calculated by dividing each

individual sample volume ( V )) by the sum of all the sample volumes, e.g., volume

fraction of sample 1 ( U., ) is the result of this equation: Vf, = V,/ Ev . Using the volume
1

data from Table 4-1, the value for Vf; may be calculated, as follows.

* Example data from separation run B19881212a.
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Fractions—volume, number, or otherwise—have the advantage of being dimensionless

quantities. The calculated volume fraction is also a normalized value—the denominator is

the sum of the sample volumes rather than the original total chamber volume (the two

volumes are not necessarily the same value). Normalizing ensures that the fractions sum

to one.

Similarly, the WBC- and RBC-number fractions are calculated by analogous

formulas, replacing sample volume with the product of sample volume and WBC

concentration to calculate WBC-number fraction; likewise, RBC concentration to

calculate RBC-number fraction. Here is an example calculation to find the WBC-fraction

for sample 1 ( WBCf, ), using volume and WBC concentration data from Table 4-1.

Here is the equivalent example calculation to find the RBC-fraction for sample 1

(RBCf1), again, using volume and RBC concentration data from Table 4-1.



Table 4-2 Volume and number fractions', normalized.

Sample Volume WBC fraction RBC fraction Hematocrit Platelet
fraction ( WBCf ) (RBCf ) fraction fraction

(Vf ) (HCTf ) (PLTf )

1 0.1250 0.0934 0.1995 0.2016 0.1199

2 0.1250 0.2957 0.2201 0.2230 0.1232

3 0.1750 0.1634 0.2032 0.2010 0.1984

4 0.1500 0.0841 0.1574 0.1573 0.1688

5 0.1500 0.0747 0.1380 0.1356 0.1910

6 0.1250 0.2594 0.0763 0.0764 0.1767

7 0.1500 0.0293 0.0054 0.0050 0.0221

Material balance
ratio

1.0000 0.9131 0.9432 0.9483 0.8162

The material balance ratio is the result of dividing the original quantity by the

summation of the sample quantities-in/out -yielding a check on the material balance

of the batch separation process. Ratios greater than one indicate more was measured

going in than was measured coming out; ratios less than one signify the opposite; a ratio

equal to one is material balanced. For instance, the material balance ratio for the WBC-

number fraction column corresponds to the total WBCs initially charged into the

23

t Continuing the example for separation run B19881212a, most of the required data is taken from Table
4-1.
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separation chamber divided by the summation of the total WBCs in each sample. Here is

the calculation of the WBC material balance ratio. (In the calculation V o and WBC0 refer

to the initial volume and initial WBC concentration, respectively.)

The resulting WBC material balance ratio, 0.9131, indicates that the initial WBCs are

nearly 10 percent less than the sum of the sample WBCs—this is only a borderline

acceptable WBC material balance. It preferred that material balance between feed and

withdrawal agree within 10 percent. The RBC material balance ratio, 0.9430, is much

better. Notice, in Table 4-2 that the material balance ratio for platelets is 0.8162, an

unacceptable value, but we are not interested in platelet counts for this investigation. (The

platelet counts for bovine blood are notoriously unreliable, this is likely a result of using a

blood counter tuned for human blood rather than cow blood).

To construct the accumulated cell-fraction graphs, accumulated fractions are

needed for volume fraction, WBC fraction, and RBC fraction. An accumulated number-

fraction or accumulated volume-fraction for a given sample i , follows this simple

formula. Let '∑Fraction' stand for a generic, accumulated fraction (either volume or cell

number).
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For example, the accumulated volume-fraction (EV/ for sample 1 is just the volume

fraction of sample 1, E VI; = Vf1 . But, the accumulated volume-fraction for sample 4 is the

sum of volume fractions of samples 1 through 4, ∑Vf4 = Vi; +Vf2+Vf3+Vf4 . Imagine

pouring the first four fractionated samples, 1 through 4, into a container; that container

would hold the accumulated cells, and the sum of those cells divided by the original total

cells would yield the accumulated cell-fraction. Of necessity, the accumulated fraction

for the last sample will always sum to one, because the sample fractions are normalized.

Table 4-3 Accumulated volume and cell number fractions.
Sample

	

Accumulated	 Accumulated

	

Volume-Fraction	 WBC-Fraction
	( ∑Vf ) 	 (∑WBCf )

Accumulated A = ∑RBCf — ∑WBCf
RBC-Fraction

(∑RBCf )

1 0.1250 	 0.0934 0.1995 0.1061

2 0.2500 	 0.3891 0.4196 0.0305

3 0.4250 	 0.5526 0.6228 0.0702

4 0.5750 	 0.6366 0.7802 0.1436

5 0.7250 	 0.7113 0.9182 0.2069

6 0.8500 	 0.9707 0.9946 0.0238

7 1.0000 	 1.0000 1.0000 0.0000

Maximum A = Separation Quality (SQ) 0.2069

Table 4-3 lists values for accumulated volume-fraction and accumulated cell-

fractions (RBC, WBC) for each fractionated sample. Also, listed is a column of cell

fraction differences entitled A = ∑ RBCf — ∑WBCf ; the values in this column are the

difference between the accumulated RBC-fraction (∑RBCf ) and the accumulated WBC-
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fraction (∑WBCf ). This cell fraction difference ( A ) quantifies the vertical distance

between the plotted data points (usually RBC point above and WBC point below) for an

individual sample data set, in other words.

The best cell fraction difference (A, ) for a run is designated the separation quality (SQ)

for the run. This reflects the practical situation, for the sample at which the accumulated

cell-fraction difference is greatest is where one would define the separation cut for the

run. Everything accumulated up to the cut in one bucket, everything accumulated after

the cut in another bucket.

With the accumulated volume-/cell-fractions compiled the only remaining task is

graphing the results. The graph for the example separation run, B19881212a, used in

Table 4-1, Table 4-2, and Table 4-3 is found in Figure 4-7, below.

Continuing the example for separation run B19881212a, most of the required data is taken from Table 4-1
and Table 4-2.
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Figure 4-1 Hypothetical, ideal, blood-cell separation.

This ideal separation would yield a separation quality, SQ=1.0.

4.2.1 Ideal Separation

Consider a blood separation, RBCs from WBCs, where the population of RBCs is

completely segregated from WBCs, and let the population of RBCs settle into a bed of

cells at the bottom of the chamber with a packing factor of 1.0—the RBCs have squeezed

everything else out of the packed bed—no plasma, no WBCs, no platelets.

This accumulated cell-fraction graph, Figure 4-1, represents a theoretical,

maximum separation for a blood sample with starting hematocrit of 45 percent. The RBC

line assumes an unreachable RBC packing factor of 1.0 and complete separation between
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RBCs and WBCs, also impossible. Because the initial volume fraction (hematocrit) is

0.45, and because the RBCs are packed to the point of squeezing everything else out

(cells, plasma), then the RBC curve will intersect the RBC-fraction=1.0 level at a volume

fraction equal to the initial RBC volume fraction. The X=Y line serves as a reminder of

the opposite extreme—zero separation—if a homogeneous sample were withdrawn, its

RBC and WBC curves would lie superimposed upon the X=Y line.

4.2.2 Bovine Blood Summary

The collected bovine-blood separation-run data are summarized in the tables found in

Appendix C. For convenience, these data are sorted by run date, initial hematocrit,

centrifuge spin speed, batch duration, and separation quality.

4.2.3 Bovine Blood Separation Runs

Initial hematocrit, centrifuge spin speed, batch duration: these are the variables that are

investigated in this study. Other parameters that can and do affect the separation of cells

are held constant; these include chamber geometry, chamber material of construction,

temperature.



B19890421 a
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Figure 4-2 Bovine blood separation run B19890421a.

Separation run parameters:	 blood collected 1 day(s) prior to run;
initial hematocrit, HCT=37.00;	 centrifuge spin speed, RPM=910 min -1 ;
batch duration, 0=4740 s;	 separation quality, SQ=0.4833.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation. This accumulated cell-fraction graph represents the best bovine-blood separation
achieved in this investigation.

Batch Duration

In the bovine separation runs, B19890421a, B19890420a, and B19890424a, (graphs

found in Figure 4-2, Figure 4-3, and Figure 4-4, respectively) we see three separations,

each with similar initial hematocrit, and similar centrifuge spin speed, but with differing

batch duration. For these three runs the separations improve with increased batch

duration. This is evident in the change of SQ values for the three runs listed in Table 4-4,

right-most column.



Table 4-4 Varying batch duration separation runs.
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Run Graph Initial Centrifuge Batch Separation
hematocrit spin speed duration quality

(min-1 ) (s)

B19890421a Figure 4-2 37 910 4740 0.48

B19890420a Figure 4-3 37 1000 2820 0.39

B19890424a Figure 4-4 37 1019 2160 0.29

General observations for separations

Here are some observations that were found during the performance of the separation

runs or while preparing the separation graphs.

Scanning from left to right on an accumulated cell-fraction graph corresponds to

moving from the bottom of the separation chamber to the top, because the chamber

contents are removed from bottom to top. RBCs dominate the movements of all particle

types due to sheer numbers. RBCs out number WBCs approximately 1000 to 1. This is a

point to keep in mind while viewing the accumulated cell-fraction graphs. The graphs

represent RBCs and WBCs equally as fractions (These values are relative to the total

number of cells for a given sub-population, not relative to the total particle population:

RBCs compare to total RBCs, WBCs compare to total WBCs.)

Accumulated cell-fraction graphs can usually be divided into two predominant

parts: the packed RBC portion and plasma plateau portion. The packed RBC portion

starts at zero RBCs removed (at the left most side of the graph, ∑RBCf = 0) and

continues until all the RBCs have been withdrawn (someplace within the interior of the

graph, ∑RBCf =1). The point at which the packed RBC portion ends is also the

beginning of the plasma plateau. The plateau starts within the interior, where the

accumulated RBC-fraction first reaches its limit, ∑ RBCf =1; the plasma plateau extends
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to the right, out to the limit of the graph. RBCs settle during the dynamic batch and

collect in a bed of cells at the bottom of the chamber. As the bed of mostly red blood cells

first forms it will have graduated density distribution: densely packed at the bottom of the

bed and significantly less densely packed toward the top of the bed. With extended batch

duration the RBC bed becomes more uniformly packed, eventually reaching some

maximum packing factor and a corresponding maximum volume-fraction of RBCs

(hematocrit).



B19890420a
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Figure 4-3 Bovine blood separation run B19890420a.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=37.00;	 centrifuge spin speed, RPM=1000 min';
batch duration, 0=2820 s;	 separation quality, SQ=0.3908.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

Prior to achieving the separation limit for RBCs, while the RBC bed is still

forming, the plotted RBC data points will curve reflecting the non-homogeneous bed

density at the bottom of the chamber. As the separation reaches its limit and the RBC bed

reaches its maximum packed hematocrit, the plotted RBC data points in the accumulated

cell-fraction graph straighten out and rotates toward the packed-RBC line. The required

duration forthe RBC bed to pack is a function of the initial hematocrit (how many cells

have to settle?) and centrifuge spin speed (how powerful is the predominant driving force

of the pressure gradient?).
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Figure 4-4 Bovine blood separation run B 19890424a.

Separation run parameters:	 blood collected 4 day(s) prior to run;
initial hematocrit, HCT=38.8;	 centrifuge spin speed, RPM=1019	 ;
batch duration, 0=2160 s;	 separation quality, SQ=0.2920.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

WBC separation curve will generally lag the RBC separation curve. In the best

separations one sample point will contain a majority of the WBCs. This large slug of cells

is a consequence of the formation of a buffy coat (WBC rich layer) in the chamber

between the RBC bed at the bottom of the chamber and the plasma supernatant at the top

of the chamber.
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Figure 4-5 Bovine blood separation run B19890427a.

Separation run parameters:	 blood collected 1 day(s) prior to run;
initial hematocrit, HCT=6.43;	 centrifuge spin speed, RPM=900 min';
batch duration, 0=2100 s;	 separation quality, SQ=0.1869.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

Low Initial Hematocrit

The plasma plateau portion of the accumulated cell-fraction graph is identifiable by the

change in direction of the cell-fraction curves, both of which will become horizontal.
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Figure 4-6 Bovine blood separation run B19890614a.
Separation run parameters: 	 blood collected 5 day(s) prior to run;
initial hematocrit, HCT=8.02; 	 centrifuge spin speed, RPM=860 min -1 ;
batch duration, 0=1500 s; separation quality, SQ=0.4253.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

At low initial hematocrit the RBC dominant portion of the graph is shifted to the

left and compressed. With a smaller number of cells, there is a smaller RBC bed. The

plateau of the plasma dominant portion of the graph is also shifted to the left and the

plateau extends across the top of the accumulated cell-fraction graph.

Separations, good and bad, still happen at low initial hematocrit, as illustrated in

the two low-initial-hematocrit graphs: good separation run B19890427a in Figure 4-5,

and bad separation run B19881212a. in Figure 4-6.
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Figure 4-7 Bovine blood separation run B19881212a.

Separation run parameters: 	 blood collected 11 day(s) prior to run;
initial hematocrit, HCT=38.8;	 centrifuge spin speed, RPM=1161 min - ';
batch duration, 0=1560 s;	 separation quality, SQ=0.2069.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.
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Table 4-5 Low initial hematocrit separation runs

Run Graph Initial Centrifuge Batch Separation
hematocrit spin speed duration quality

(min-1 ) (s)

B19890427a Figure 4-5 8.02 860 1500 .4253

B19881212a Figure 4-6 6.43 900 2100 .1869

Due to the low initial hematocrit these two graphs both appear to be dramatically

different from the higher initial hematocrit runs presented in this chapter. But, on closer

examination they have all the characteristics of the others, only shifted to the left and

compressed because of the vastly smaller proportion of cells relative to the total volume

of whole blood.

At low hematocrit values (< 15), characterizing separation runs becomes

problematic; not because separations are not occurring, but because the small volume

fraction of RBCs, when accumulated and packed by the centrifuge, occupies less than the

volume of one sample (around 3 ml). Whether or not a significant separation (large SQ)

occurs in the batch chamber, when the first sample is collected from the bottom of the

chamber, containing the total volume of RBCs and likely most of the WBCs, all

resolution is lost through mixing of the blood components. The subsequent analysis on

this sample blurs the actual separation achieved in the chamber by re-mixing the

components. Low initial hematocrit separation runs require smaller sample sizes,

especially in the RBC dominant portion of the chamber (the first few samples off the

bottom). Perhaps surprisingly, the achieved separation quality recorded for run

B19890614a was the second best (SQ=0.4027).
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Figure 4-8 Bovine blood separation run B19890605a.

Separation run parameters:	 blood collected 4 day(s) prior to run;
initial hematocrit, HCT=31.50; 	 centrifuge spin speed, RPM=1033 min';
batch duration, 0=1620 s;	 separation quality, SQ=0.4072.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

4.2.4 Varying initial hematocr it

For a fixed centrifuge spin speed and batch duration, better separations favor low initial

hematocrit. Less cells to settle take less time to separate. Or looked at from a different

angle, higher initial hematocrit increases the influence of hindered settling, retarding the

separation.



Table 4-6 Variable initial hematocrit, separation runs.

Run Graph Initial Centrifuge Batch Separation
hematocrit spin speed duration quality

(min -1 ) (s)

B19881212a Figure 4-7 38.8 1161 1560 0.2069

B19890605a Figure 4-8 31.5 1033 1620 0.4072

4.3 Human blood runs

Having optimized the V-3 centrifuge with bovine blood runs, the "best" operating

conditions were selected, and the centrifuge, as part of an NJIT mini-lab, was taken to

UMDNJ for human blood runs. Four separation runs were completed. The operating

conditions are summarized in Table 4-7.

Table 4-7 Human blood separation runs.

Run Graph Initial Centrifuge Batch Separation
hematocrit spin speed duration quality

(min-1 ) (s)

H19900127a Figure 4-9 46.3 892 1460 0.7148

H19900127b Figure 4-10 46.3 892 1340 0.8295

H19900127c Figure 4-11 46.3 892 780 0.8361

H19900127d Figure 4-12 46.3 892 630 0.7508

Peak separations such as shown in the accumulated cell-fraction graphs below, are

far superior to those experienced with bovine blood runs. The reasons could include

rouleaux formation kinetics, Boycott effect, boundary interactions, cell morphology,

differences in RBC/WBC densities for human versus bovine blood. It is stunning that

human blood separation graphs look more like the hypothesized, ideal separation graph

of Figure 4-1 than like any of the bovine blood runs.
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Run H19900127d, the shortest duration batch has a SQ=0.7508. Run

H19900127c, being some what longer batch duration has an increased SQ=0.8361. Run

H19900127b, is close to twice the duration of the run C, yet its SQ=0.8295—it has

reversed the trend, though only slightly, the separation quality has diminished. Now, run

H19900127a, is about 2 minutes longer than run B, but the separation quality has

substantially diminished, SQ=0.7148. Why? The RBC packed bed has reached maximum

packing factor at approximately 9 = 780 seconds (run C). Increases in batch duration

have little to no effect on the RBC bed, but it does effect the WBC separation line (check

the slope of the WBC line in the graphs): the result is a decrease in SQ after having

passed some optimum batch duration between 780 and 1340 seconds.



H19900127a
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Figure 4-9 Human blood separation run H19900127a.

Separation run parameters: 	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min -1 ;
batch duration, 0=1460 s;	 separation quality, SQ=0.7148.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



H19900127b
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Figure 4-10 Human blood separation run H19900127b.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min';
batch duration, 0=1340 s;	 separation quality, SQ=0.8295.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



Figure 4-11 Human blood separation run H19900127c.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892
batch duration, 0=780 s;	 separation quality, SQ=0.8361.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.
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H 19900127d
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Figure 4-12 Human blood separation run H19900127d.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min -1 ;
batch duration, 0=630 s; separation quality, SQ=0.7508.
The X=Y line (dashed) and packed-RBC line (dotted) provide visual guides for evaluating the
separation: the X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.

Figure 4-13, Figure 4-14, Figure 4-15, and Figure 4-16 show a regressed least-

squares fitted line through the first four sample data points in each of the four human

separation runs. The conditions are similar, and the closeness of the initial slopes shows

repeatability among the four runs.

Notice that the slopes of the fitted line for runs Ha—Hc are basically the same, but

the shortest batch duration run H19900127d has a different slope. The slope of the line is

directly attributable to the condition of the RBC packed bed. For a maximum packed bed
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the RBC line will also be a maximum, increased batch duration will have little to no

effect. This is the case for the three longest batch runs: the slope is the same, because the

RBC bed has reached maximum packing factor at or around 780 seconds. The increased

batch runs can not squeeze the cells in the packed bed any tighter.

Table 4-8 Regressed line through first four data points.

Run Slope R2

H19900127a 1.6763 0.9984

H19900127b 1.6945 0.9986

H19900127c 1.6258 0.9989

H19900127d 1.5003 0.9989



Figure 4-13 Initial slope for human blood separation run H19900127a.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min -1 ;
batch duration, 0=1460 s;	 separation quality, SQ=0.7148;
slope=1.6763*RBC;	 correlation coefficient, R2=0.9984.
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H19900127b (slope)
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Figure 4-14 Initial slope for human blood separation run H19900127b.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min -1 ;
batch duration, 0=1340 s;	 separation quality, SQ=0.8295.
slope=1.6945*RBC;	 correlation coefficient, R2=0.9986.



H19900127c (slope)
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Figure 4-15 Initial slope for human blood separation run H19900127c.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min"';
batch duration, 0=780 s;	 separation quality, SQ=0.8361.
slope=1.6258*RBC;	 correlation coefficient, R2=0.9989.



H19900127d (slope)
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Figure 4-16 Initial slope for human blood separation run H19900127d.

Separation run parameters:	 blood collected 0 day(s) prior to run;
initial hematocrit, HCT=46.3;	 centrifuge spin speed, RPM=892 min -1 ;
batch duration, 0=630 s;	 separation quality, SQ=0.7508.
slope=1.5003*RBC; 	 correlation coefficient, R2=0.9989.

Additional Separation Runs

The remaining bovine and human blood separations are collected in the Appendix B for

the sake of completeness.

4.4 Optimum

Under the influence of gravity or centrifugal force, the formed elements of blood within a

container sediment toward the bottom. After adequate time the cells are completely
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settled. The cells accumulate at the bottom making layers of cells, from bottom to top:

RBCs, WBCs, platelets, plasma.

The cells fall at different rates due to their individual properties: their shape, their

density, their size, tendency to flocculate (clumping and rouleaux formation), drag

coefficient, concentration of neighboring cells. Between the start of the sedimentation

process of a mixture and the eventual end point, the sedimentation process is dynamic.

So, if a batch sedimentation is stopped prior to complete settling (as is the case with the

present study), the resulting separation may be successful or not as a function of all the

independent variables that describe the system.

During the sedimentation process, three dynamic zones are forms in the

separation chamber—packed-cell-bed or precipitate zone, constant-velocity settling zone,

plasma supernatant zone. At the bottom of the chamber, settling cells come to rest and

build up into a packed bed of resting cells. The cells pack down, closer and closer; the

bed builds up, higher and higher. Above the bed are all the settling cells falling at their

respective constant settling velocity (assuming sedimentation in a constant gravitational

field). Just as accumulating cells form a packed bed of cells at the bottom of the chamber,

similarly, the cells evacuating from the top of the chamber leave and plasma replaces the

abandoned space making a plasma supernate.

While cells are falling at respective settling velocity in the settling zone, the faster

cells will separate from the slower cells; the longer they settle the more they separate. But

the cells must eventually reach the bottom of the chamber and come to a halt. Here is

where competing phenomena come into play and allow the possibility of an optimum.

The fastest settling cells separate from the slower settling cells as time progresses; yet,



51

the same fastest settling cells also reach the bottom of the chamber first followed

subsequently by the slower settling cells, as time progresses the separated slower cells

approach the arrested, faster settling cells. Hence, the distinct possibility that an optimum

set of operating conditions exist and may be found.

Table 4-9 Human blood separation quality (SQ) values

Run Initial HCT RPM Batch duration SQ

A 46.3 892 1460 0.7148

B 46.3 892 1340 0.8295

C 46.3 892 780 0.8361

D 46.3 892 630 0.7508

Human Blood versus Bovine blood

It is evident that the human blood cell separations far exceeded those of even the best

bovine blood cell separations. This is undoubtedly a combination of factors associated

with the properties of bovine blood cells compared to human blood cells. The two most

likely reasons for human blood's high SQ performance are (1) more extensive human-

blood rouleaux formation and (2) larger human RBC.



CHAPTER 5

MATHEMATICAL MODELING

5.1 History

Mathematical simulation of centrifuging blood, whether using a simple model or

sophisticated, is a problem of compounded difficulty—a complex fluid yields a complex

modeling problem. Fluids do not come much more complicated than blood. The model

described below and in Appendix A is presented for the purpose of documentation: a

history of the work, as far as it went. The system of partial differential equations

generated from this model was unsolvable using a collocation, finite element method

solver with options for stiff systems. We do not recommend pursuing the solution of this

model further, nor do we recommend attempting alterations in the model itself in search

of a solvable system of equations. All evidence suggests that this volume-diffusion model

is intractable.

5.2 Basis in Molecular Diffusion

The math model starts with the description of multicomponent fluxes in terms of

transport properties in section 18.4 of Transport Phenomena (TP) by Bird, Stewart, and

Lightfoot (1960). The equations presented in this section of TP are based on two

publications: (1) the article Fluid Mechanics and the Transport Phenomena by Bird,

Curtiss, and Hirschfelder (1955), and (2) the book Molecular Theory of Gases and

Liquids by-Hirschfelder, Curtiss, and Bird (1954). In these works expressions for the

mass flux, A, in a multicomponent system are developed based on the molecular theory
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of gases and liquids. Bird, Stewart, and Lightfoot summarize the most general expression

of mass flux (TP 18.4-7-18.4-11) broken into contributions for ordinary diffusion, ji( x ) ,

pressure diffusion, ji(p), forced diffusion, ji( g ) , and thermal diffusion, 11 7.) . They also

provide a simplification for a binary system (TP 18.4-14, 18.4-15), which was the starting

point for the volume-diffusion model (VDM) developed here.

The volume-diffusion model extends the original expressions for mass flux, j„

and to volume flux, j: . The diffusion of RBCs and WBCs in plasma is not the movement

of molecules but of blood cells: volume diffusion. As a RBC settles the volume of the

cell relocates to its new position and the previous location becomes occupied by plasma

equal to the volume of the cell. This is a volumetric process; molar flux and mass flux do

not describe the phenomena.

5.3 Volume Diffusion Model

Equation of Motion

Equation of Continuity

Volume flux with respect to stationary coordinates
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Boundary Conditions

The binary model, as expressed here, in terms of time, t, space, r, and density, pi ,

should be rearranged in terms of one component and with the density replaced by volume

fraction of RBCs (or hematocrit), O bi . This may be accomplished by way of these simple

substitutions,

In order to conserve space, the complete volume-diffusion model with all appropriate

substitutions is included in the Appendix A.

Notation

c = ca + cb =1/(MaVa  + MbV b )=molar concentration of mixture (scalar), mole/L3 ;

Dab = binary diffusivity for system A-B (scalar), L^2/t ;

= molar mass of species i (scalar), M/mole;

n7 = volume flux of component i with respect to stationary coordinates (vector), M/L^2t ;

= volume fraction of i (scalar), L3 /L3 [Note: for red blood cells, volume fraction

equals hematocrit.];

p= fluid pressure (scalar), M/Lt 2 ;

r radial distance in cylindrical coordinate system (scalar), L;

p= fluid density of mixture (scalar), M/L3 ;

p, = mass concentration of species i (scalar), M/L3 [Note: mass is relative to mixture

volume; this is not a pure-component density.];
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ve* = volume-average velocity in the 6) direction (scalar), Lit [Angular velocity of the

spinning centrifuge.];

= pure-component specific volume of i (scalar), OM [inverse of pure-component

density].

5.4 Solver

The VDM had to be solved by a numerical method due to the complexity of the system of

partial differential equations (PDE). A general collocation software package for PDEs

developed by Madsen and Sincovec (1979) and published in Transactions of

Mathematical Software (ACM-TOMS), algorithm 540, called PDECOL. The PDECOL

computer software package is designed to solve coupled systems of nonlinear partial

differential equations in one space and one time dimension. (This describes the VDM

system.) the package implements finite element collocation methods based on piecewise

polynomials for the spatial discretization techniques. The time integration process is then

accomplished using the method of lines and standard time stepping algorithms. The code

was written in Fortran.

The PDECOL algorithm was unable to converge to a solution for the VDM.

Because the original code was written in single precision, we converted the code to

double precision hoping that the added precision would allow the program to converge to

a solution, but the result was unchanged—no convergence. Several attempts were made

to circumvent the convergence problem: varying the convergence criteria, rechecking all

physical constants, simplified versions of the VDM.

In the end, it was concluded that the VDM system cannot be solved with

PDECOL. It might be solved sometime in the future, by an alternative numerical method.
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The investigators suspect that the VDM system may be intractable because of the

extreme complexity of the system of equations and the necessity of including parameters

representing the molecular weights of RBCs and plasma, which are very large numbers

and could contribute to the stiffness of the system and resulting difficulty reaching a

solution. It is believed that the volume-diffusion model should be abandoned as a viable

mathematical model for simulating the sedimentation of blood cells in plasma.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

Concerning operating parameters (initial hematocrit, centrifuge spin speed, batch

duration): even though initial hematocrit is a critical operating parameter, especially with

its large influence on rouleaux formation, its practical usefulness as an operating

parameter is diminished by the relative difficulty of adjusting its value via dilution.

Therefore, while the importance of adjusting the starting hematocrit was initially stressed,

it is no longer recommended that initial hematocrit be manipulated by dilutions prior to

running V-3.

The difference between a good separation and a bad separation is often just a

matter of time. When separations have not reached completion, one may expect better

separation with increased batch duration, everything else staying the same. The same is

also true for centrifuge spin speed. Faster centrifuge spin speed results in better

separation, if separation has not reached completion. This is to be expected given the

effect of centrifuge spin speed on the sedimentation rate of RBCs and WBCs—as spin

speed increases, sedimentation rate increases, and required batch duration for a given SQ

decreases. The experimental operating procedure for batch separations developed in this

investigation yields good separations when the values of the operating parameters allow

it.

The accumulated cell-fraction graphical technique for displaying separation

results developed here is a useful method for compact presentation of and identification

of good or bad separations. A separation may be quantified by viewing the maximum
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separation between the RBC fraction and WBC fraction curves; alternatively and

conveniently, this value may be calculated from the sample cell fractions.

Separation quality (SQ) values have been calculated for the 15 bovine blood

separation runs and are summarized in variously sorted tables included in appendix C; a

graph of the bovine runs may be viewed in figures G-1 through G-3 (in the Appendix G).

In figure G-1 the three lowest SQs are present in the runs with shortest batch duration.

Also, for the low-duration runs, the best separations are the low-initial-hematocrit runs.

For runs greater than 2500 seconds duration, general separation quality is best, regardless

of initial hematocrit or centrifuge spin speed (rpm).

Separation quality (SQ) values have also been calculated for the four human

blood runs. Figure G-4 (located in Appendix G) compares SQ with batch duration. The

small human blood study was restricted to constant initial hematocrit (46.3%) and

constant centrifuge spin speed (892rpm). The graph in figure G-4 clearly shows an

optimum between 780 seconds and 1340 seconds duration: the optimum is bounded.

The volume diffusion model does not work. A finite element collocation method

numerical solution was attempted for the binary system of RBC and plasma. The solver

could not converge to an answer. It may be that another numerical method will be able to

solve the volume diffusion model's system of partial differential equations. In lieu of a

future solution, the system appears to be intractable. This situation is likely a

consequence of the transformation from the original molecular flux terms into volume

flux (that describe RBCs in plasma) and the conversion requirement of including

molecular weight terms for the RBCs and plasma. The inability to cancel out the many
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similar terms in the expression for volume flux, because of the molecular weight terms

littering the expression, yields a cumbersome system of partial differential equation.

Modeling is useful and important, and another mathematical model should be

pursued. The human blood separations were very successful. Expanded studies in this

area are warranted and highly recommended. The optimization of chamber shapes should

be pursued.



APPENDIX A

VOLUMETRIC-DIFFUSION MODEL AND FLUX TERMS

A.1 Volumetric-Diffusion Model

A.1.1 Equation of Motion

A.1.2 Equation of Continuity

A.1.3 Boundary Conditions

A 1-D initial-boundary-value problem requires three boundary conditions; the specific

boundary conditions (IC= initial condition, BC= boundary condition) for this problem are

the following:

A.2 Volume flux and its derivative

Reminder: some helpful and necessary rules of differentiation. These four equations will

be used either explicitly or implicitly, as they are rudimentary to the task at hand,

especially (A.5).

Product rule



A.3 Partial derivative of volu me flux with respect to radius

To find the partial derivative of volume flux with respect to radius for a stationary coordinate system, we begin with the volume flux.

Where:



C Ca Cb 	(MaVa M bb ) = molar concentration of
	 p = fluid density of mixture (scalar), MA' ;

mixture (scalar), mole/L3 ;
	 = mass concentration of species i (scalar), MA' [Note:

Dab = binary diffusivity for system A-B (scalar), L2/t ;
	 mass is relative to mixture volume; this is not a pure-

M = molar mass of species i (scalar), M/mole ;
	 component density.];

v; = volume-average velocity in the e direction (scalar), Lit
n: = volume flux of component i with respect to stationary 	

[Angular velocity of the spinning centrifuge.];
coordinates (vector), M/L2t ;	

= pure-component specific volume of i (scalar), OM
= volume fraction of i (scalar), LIE [Note: for red blood	

[inverse of pure-component density].

cells, volume fraction equals hematocrit.];

p = fluid pressure (scalar), M/Lt 2 ;

r = radial distance in cylindrical coordinate system (scalar), L ;

Equation (A.4) is rather large. Rewrite it in a more manageable size by substituting abbreviations for the larger terms in the

expression.

Where:

(  d(r)) (d(r) f (r) In pi}n'a a(r){ b(r)  Dab [ 8
c(r) 	 ar e(r) 	 e(r) g(r) 1 ar

(A.5)

a(r) = Oa (f7'1, j sc, ) 4_ pa ; 	 b(r) = —(0 a (M — M fa ) M fa ) 2
	

c(r) = (M fa M bfr‘b)(0 a b — 12a ) + fla ) ;

d(r) = cbaM/b ;



A.3.1 Partial derivative of the volume flux, δna /δr
First, symbolically write the expression using the above alphabetic, inter-equation functions and a convenient shorthand of empty

braces and empty brackets to represent the corresponding braced and bracketed terms in (A.5) (which is repeated here).



Now express the partial derivative of the volume flux, δnaVδr , using the product rule of differentiation. Combining these substitutions

yields an abbreviated, yet exploded, skeleton of the partial derivative of the volume flux; the result illustrates the order of

differentiation.

Find the more conventional, but still abbreviated, representation of the partial derivative by collapsing the skeletal set of equations for

volume flux, (A.7) and substituting the appropriate empty-braced or empty-bracketed term from (A.6).

There are, however, unknown terms in the shorthand partial derivative, (A.8); all the differential terms are unknown; all the terms

involving pressure, p , are unknown. So before proceeding, equivalent expressions are required. To fulfill that requirement all the



differential terms must be derived along with any expressions that involve pressure, p . We already know the expressions for the

algebraic functions or can find them from (A.5); for convenience they are repeated here.

A.3.2 Partial derivative of the function a(r)

Now we begin finding the unknown terms to fill in the skeleton, (A.7). First, find the partial derivative of a(r) --recall the expression

of the function from (A.9).



A.3.3 Partial derivative of the expression b(r)/c(r)

Next, derive the expression for the partial derivative of the ratio b(r)/c(r) as defined in (A.9).

This derivation follows the product rule for a ratio, (A.1). As the denominator (bottom) is simply the square of the original

denominator, we will concentrate on the numerator (top).

Collect common terms of the numerator, (A.11).

Concentrating on the expression within the brackets in (A.12); expand it;



then cancel and simplify.

Put the bracketed expression back into the numerator (top).

The term, (MaVaM bV b ) , which appears in both the numerator and the denominator may be canceled out. The result is the partial

derivative.

A.3.4 Partial derivative of d(r)/e(r)

Derive the partial derivative of the ratio, d(r)/ e(r) , which is defined in (A.9).

Concentrating on the numerator (top),
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and recombine numerator (top) and denominator (bottom).

A.3.5 Partial of the partial derivative of d (r) I e(r)

Continuing with the ratio d(r) I e(r) , we derive the second partial derivative with respect to the radius (the partial derivative of the

partial derivative). Start from where we left off with the first partial derivative, (A.20).

Focus on the numerator (top).



Collect common terms.

Substitute the new expression for the numerator (A.23) into (A.21),

A.3.6 Partial derivative of f (01 g(r)

Derive the partial derivative of the ratio f	 g(r) .

As has been the pattern, focus on the numerator (top),



collect the common terms

and simplify.

Substituting the new expression for the numerator (A.29) into (A.26).

A.3.7 Handling the pressure term, δ(Inp)/δr

The volume flux contains a deferential pressure term that must be replaced, because pressure is an independent variable, which is a

function of space and time. Begin with the continuity equation.



Separate the variables (in differential form).

Express the differential equation, (A.32), in integral form—integrating the left-hand-side from p min (or pat.) to p and the right-hand-

side from rmin to r . Here pmin is the minimum pressure, which happens to be atmospheric pressure (	 ). The variable rmin is the

corresponding radius at which the minimum pressure occurs.

After integrating (A.33) over the indicated bounds,

This equation, (A.35), is required for a substitution (below) to eliminate pressure, p .

Starting again with the equation of continuity, (A.31), divide both sides by pressure.



Substitute (A.35) into (A.37),

and rearrange; this yields the partial derivative of the natural logarithm of pressure with respect to the radius.



A.3.8 Second partial derivative of the pressure term

Begin with (A.39)

Differentiate, using the product rule, applied to a ratio.

Rearrange (A.41). This is the partial derivative of the partial derivative of the pressure term in the volume flux.



A.3.9 Returning to the partial derivative of the volume flux, δna/δr

This is a reminder of the shape of the partial derivative of the volume flux in skeletal form. The skeleton uses the same parentheses-,

bracket-, and brace-structure as the filled-in partial derivative (below).

Having derived all the terms of the partial derivative of the volume flux, combine them for the completed expression. After some

simplification we arrive at the following equation.
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Rewrite the partial derivative of volume flux, replacing many of the algebraic coefficients with representative functions (defined

Where (note that in the list f, and f6 are out of order, because of the size of f,):



f3 (lnr)= f5 (0.)=
_a On p)

at-

f (cb a) =

1

r Pat'2ll(Pa +Pb )+(lnr—lnr.i.)
V0

(maPambPb) 
f4 (Oa) =

(Mb Vb —Ma Va )+Ma Pa ) 2

Pa Pb 

(0„ ( Pb — P. ) ± P. ) 2

—(0. (Afxb —m.P.)-+- maq

(AlaPami,Pb)(o.(Pb P.) ± P.)

16 (o.)=
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(A 1 lam bPb)(0.( 12b — P.) +
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Rearrange (A.45) for readability.

an: = a2°`: II (0 e°') 2ar	 ar2 	 a ar

+f2 (Oa ) (ln r) (jr- + f3 On r))

-4- (T 	 f5)(f4(0.) — (0a MI; (in t))

± Z.1.4(0a)± f2(0a)(f3 On 0)1( 
 aka f6 (pa )

+ {f7(0a)DabT) f4 (Oa) .2 (Oa) ( f3( 1nr))1}r a,°:)(Pb

Collect common differential terms.

V)



Focus on coefficients. First look at the coefficient of the non-linear term, (avia /arY .



Cancel and simplify. This is the coefficient of the non-linear term, (a0a/ar)2



Second, look at the coefficient of the first partial derivative, (a0a/ar).



Collect common terms and simplify. The coefficient of the first partial derivative is.

Having made all the above substitutions, here is the partial derivative of the volume flux. Arranged according to the magnitude of the

volume fraction term.



11
Pb

joa (Pb -4a )

δn: δ20a

δr 	 δr2
( 	 2(mb Pb — ma Pa )

joa (mb Pb — my. ) mar'. ) ,
(  (—(mb Pb — ma r,. )(oa (Pb — 	 2 T a ) + m va 	—

(0,7 (mbPb—ma r )±mar2.)(0.( Pb—P)+ 0 2

„ 1 	 1
+17,(Vb —Va) 1

r P:2 (Pa + P,,)+(lnr —1nrm , n )
e 	 Ji

—1

,(0.(r2, — r2,7 )+ P ),

,	 \.. ve

r

, 

pat
	(Pa 47;,)+(lnr—lnr, ) )

(

(Oa (Mb Pb —Ma Pa) +Ma Pa) 	 OaMbr21: 	 0„Pb 

JAIY.Mb Pb)(°a( r>1—Pa) +P.))Øa(Mb Vb —Ma Va) +Ma Va Ca( Pb —Pa) +Pa)

4 (( 1bPb —Ma Pa)(0a( Pb —Pa) +2P.) —m. P. ( Pb 	 )) pab (p-b 	)(0a (mbp,

(c6a( Pb —Pa)".)

— Ma

I/

Oa Mb
\ ( 1                     

(A.52)         
(mbPb — ma r'. ) + ma Pa 0. (Pb — r ) +V  (       

r Pa"2	 ( + ) + On r — ln rmm ) Patm

.2
V\ 0       

a 4- 	 r — ln rinin )
/)       



r

} (A.53)

	P a" (T?' -4-- 	 + 	 r— ln rmin	\ a ' 	 b 	 '
\ V 0 	 J

1cbam/b 	 o/b
oa(m/b —mla)-i- mfa oa(Pb —Pa)+ Pa,

A.3.10 Volume flux revisited

Here is the volume flux equation (A.4), with appropriate substitutions.

— (0a (MA — Mar'la)+ MA )2 

(MaPaM/b)(0a (Pb Pa )±

a°.(mPAIP)ar 	a a bb
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Equation (A.53) may be rearranged and simplified.

a0a
ar

( Cba Mlb (0 a (M Ma Va) + M fa) OA (0 a ( 111 	MaVa) M a Pa) 

(Ma Va M 	(MaJaMbVb)(0a(Pb—Pa)+Pa)

Dab

na = —Dab

11: -=(0,,(Pb—a)-1-Pa)

1

r Pa.h2' (Pa +Pb )+(lnr—lnrm; „ )
vo JJ

(A.54)



APPENDIX B

ADDITIONAL BOVINE-BLOOD GRAPHS

Here may be found the graphical results of bovine blood separation runs that were not

included as examples within the body of the dissertation. These graphs, which we call

accumulated cell-fraction graphs, represent the results of separation runs conducted on

the NJIT Biotechnology Laboratory's V-II centrifuge.
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619890425a
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Figure B-1 Bovine blood separation run B19890425a.
Separation run parameters: 	 blood collected 5 day(s) prior to run;
initial hematocrit, HCT=36.00; 	 centrifuge spin speed, RPM=1380 min';
batch duration, 0=1380 s; 	 separation quality, SQ=0.3274.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



B19890426a
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Figure B-2 Bovine blood separation run B19890426a.
Separation run parameters: 	 blood collected 6 day(s) prior to run;
initial hematocrit, HCT=36.20; 	 centrifuge spin speed, RPM=1350 min d ;
batch duration, 0=3300 s; 	 separation quality, SQ=0.3607.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



Figure B-3 Bovine blood separation run B19890505a.

Separation run parameters:	 blood collected 1 day(s) prior to run;
initial hematocrit, HCT=37.7;	 centrifuge spin speed, RPM=1010 min -1 ;
batch duration, 0=2940 s;	 separation quality, SQ=0.3208.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.
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B19890508a
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Figure B-4 Bovine blood separation run B19890508a.

Separation run parameters: 	 blood collected 4 day(s) prior to run;
initial hematocrit, HCT=42.20;	 centrifuge spin speed, RPM=1000 min';
batch duration, 0=3240 s;	 separation quality, SQ=0.2918.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



B19890510a
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•
Figure B-5 Bovine blood separation run B19890510a.
Separation run parameters: 	 blood collected 6 day(s) prior to run;
initial hematocrit, HCT=11.30; 	 centrifuge spin speed, RPM=1040 min -1 ;
batch duration, 0=1380 s; 	 separation quality, SQ=0.1428.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



B19890602a
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Figure B-6 Bovine blood separation run B19890602a.

Separation run parameters: 	 blood collected 1 day(s) prior to run;
initial hematocrit, HCT=41.10;	 centrifuge spin speed, RPM=993 min -1 ;
batch duration, 0=3240 s;	 separation quality, SQ=0.3399.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



B19890605a
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Figure B-7 Bovine blood separation run B19890605a.

Separation run parameters: 	 blood collected 4 day(s) prior to run;
initial hematocrit, HCT=31.50;	 centrifuge spin speed, RPM=1033 min';
batch duration, 0=1620 s;	 separation quality, SQ=0.4072.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.



Figure B-8 Bovine blood separation run B19890620a.

Separation run parameters:	 blood collected 5 day(s) prior to run;
initial hematocrit, HCT=39.50;	 centrifuge spin speed, RPM=800 min - ';
batch duration, 0=4500 s;	 separation quality, SQ=0.3367.
The X=Y dashed line and packed-RBC dotted line provide visual guides for evaluating the
separation: The X=Y line corresponds to zero separation; the packed-RBC line represents ideal
RBC separation.
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APPENDIX C

BOVINE SEPARATION RUN SUMMARIES

Tabular summaries of the bovine separation runs included in this investigation

may be found in this appendix.

Table C-1 Summary of bovine separation runs-Chronological

Run

Initial

HCT

Spin

Speed

Batch

Duration Age

WBC

Balance

RBC

Balance SQ

B19881212a 38.80 1161 1560 11 0.9131 0.9432 0.2069

B19890420a 37.00 1000 2820 0 1.5644 0.9839 0.3908

B19890421a 37.00 910 4740 1 1.0890 1.0212 0.4833

B19890424a 38.80 1019 2160 4 0.8402 0.9570 0.2920

B19890425a 36.00 1380 1380 5 0.9116 1.0816 0.3274

B19890426a 36.20 1350 3300 6 0.7755 1.0087 0.3607

B19890427a 6.43 900 2100 1 2.0280 4.4922 0.1869

B19890505a 37.70 1010 2940 1 1.5831 0.9519 0.3208

B19890508a 42.20 1000 3240 4 1.4685 1.0364 0.2918

B19890509a 38.80 810 4860 5 1.7555 1.1327 0.3057

B19890510a 11.30 1040 1380 6 0.7935 0.8065 0.1428

B19890602a 41.10 993 3240 1 0.9292 0.9270 0.3399

B19890605a 31.50 1033 1620 4 0.9922 1.0666 0.4072

B19890614a 8.02 860 1500 5 0.8550 1.0706 0.4253

B19890620a 39.50 800 4500 10 1.0303 0.9033 0.3367
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Table C-2 Summary of bovine separation runs-increasing initial hematocrit

Run

Initial

HCT

Spin

Speed

Batch

Duration Age

WBC

Balance

RBC

Balance SQ

B19890427a 6.43 900 2100 1 2.0280 4.4922 0.1869

B19890614a 8.02 860 1500 5 0.8550 1.0706 0.4253

B19890510a 11.30 1040 1380 6 0.7935 0.8065 0.1428

B19890605a 31.50 1033 1620 4 0.9922 1.0666 0.4072

B19890425a 36.00 1380 1380 5 0.9116 1.0816 0.3274

B19890426a 36.20 1350 3300 6 0.7755 1.0087 0.3607

B19890420a 37.00 1000 2820 0 1.5644 0.9839 0.3908

B19890421a 37.00 910 4740 1 1.0890 1.0212 0.4833

B19890505a 37.70 1010 2940 1 1.5831 0.9519 0.3208

B19881212a 38.80 1161 1560 11 0.9131 0.9432 0.2069

B19890424a 38.80 1019 2160 4 0.8402 0.9570 0.2920

B19890509a 38.80 810 4860 5 1.7555 1.1327 0.3057

B19890620a 39.50 800 4500 10 1.0303 0.9033 0.3367
B19890602a 41.10 993 3240 1 0.9292 0.9270 0.3399

B19890508a 42.20 1000 3240 4 1.4685 1.0364 0.2918
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Table C-3 Summary of bovine separation runs-increasing centrifuge spin speed

Run

Initial

HCT

Spin

Speed

Batch

Duration Age

WBC

Balance

RBC

Balance SQ

B19890620a 39.50 800 4500 10 1.0303 0.9033 0.3367

B19890509a 38.80 810 4860 5 1.7555 1.1327 0.3057

B19890614a 8.02 860 1500 5 0.8550 1.0706 0.4253

B19890427a 6.43 900 2100 1 2.0280 4.4922 0.1869

B19890421a 37.00 910 4740 1 1.0890 1.0212 0.4833

B19890602a 41.10 993 3240 1 0.9292 0.9270 0.3399

B19890508a 42.20 1000 3240 4 1.4685 1.0364 0.2918

B19890420a 37.00 1000 2820 0 1.5644 0.9839 0.3908

B19890505a 37.70 1010 2940 1 1.5831 0.9519 0.3208

B19890424a 38.80 1019 2160 4 0.8402 0.9570 0.2920

B19890605a 31.50 1033 1620 4 0.9922 1.0666 0.4072

B19890510a 11.30 1040 1380 6 0.7935 0.8065 0.1428

B19881212a 38.80 1161 1560 11 0.9131 0.9432 0.2069

B19890426a 36.20 1350 3300 6 0.7755 1.0087 0.3607

B19890425a 36.00 1380 1380 5 0.9116 1.0816 0.3274
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Table C-4 Summary of bovine separation runs-increasing batch duration

Run

Initial
HCT

Spin
Speed

Batch
Duration Age

WBC
Balance

RBC

Balance SQ

B19890510a 11.30 1040 1380 6 0.7935 0.8065 0.1428

B19890425a 36.00 1380 1380 5 0.9116 1.0816 0.3274

B19890614a 8.02 860 1500 5 0.8550 1.0706 0.4253

B19881212a 38.80 1161 1560 11 0.9131 0.9432 0.2069

B19890605a 31.50 1033 1620 4 0.9922 1.0666 0.4072

B19890427a 6.43 900 2100 1 2.0280 4.4922 0.1869

B19890424a 38.80 1019 2160 4 0.8402 0.9570 0.2920

B19890420a 37.00 1000 2820 0 1.5644 0.9839 0.3908

B19890505a 37.70 1010 2940 1 1.5831 0.9519 0.3208

B19890508a 42.20 1000 3240 4 1.4685 1.0364 0.2918

B19890602a 41.10 993 3240 1 0.9292 0.9270 0.3399

B19890426a 36.20 1350 3300 6 0.7755 1.0087 0.3607

B19890620a 39.50 800 4500 10 1.0303 0.9033 0.3367

B19890421a 37.00 910 4740 1 1.0890 1.0212 0.4833

B19890509a 38.80 810 4860 5 1.7555 1.1327 0.3057
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Table C-5 Summary of bovine separation runs-increasing separation quality (SQ)

Run

Initial

HCT

Spin

Speed

Batch
Duration Age

WBC
Balance

RBC

Balance SQ

B19890510a 11.30 1040 1380 6 0.7935 0.8065 0.1428

B19890427a 6.43 900 2100 1 2.0280 4.4922 0.1869

819881212a 38.80 1161 1560 11 0.9131 0.9432 0.2069

B19890508a 42.20 1000 3240 4 1.4685 1.0364 0.2918

B19890424a 38.80 1019 2160 4 0.8402 0.9570 0.2920

B19890509a 38.80 810 4860 5 1.7555 1.1327 0.3057

B19890505a 37.70 1010 2940 1 1.5831 0.9519 0.3208

B19890425a 36.00 1380 1380 5 0.9116 1.0816 0.3274

B19890620a 39.50 800 4500 10 1.0303 0.9033 0.3367

B19890602a 41.10 993 3240 1 0.9292 0.9270 0.3399

B19890426a 36.20 1350 3300 6 0.7755 1.0087 0.3607

B19890420a 37.00 1000 2820 0 1.5644 0.9839 0.3908

B19890605a 31.50 1033 1620 4 0.9922 1.0666 0.4072

B19890614a 8.02 860 1500 5 0.8550 1.0706 0.4253

B19890421a 37.00 910 4740 1 1.0890 1.0212 0.4833
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CHAPTER D

BLOOD COUNTER SPECIFICATIONS

Sysmex™ CC-180 Microcell Counter

The Sysmex™ CC-180 is a semi-automated hematology analyzer for in vitro diagnostic

use in clinical laboratories. It provides the following eight analysis parameters.

1. White Blood Cell (WBC) or leukocyte Count

2. Red Blood Cell (RBC) or Erythrocyte Count

3. Hemoglobin (Hgb) Concentration

4. Hematocrit (Hct), true relative percentage volume of erythrocytes

5. Mean Corpuscular (Erythrocyte) Volume (MCV)

6. Mean Corpuscular (Erythrocyte) Hemoglobin (MCH)

7. Mean Corpuscular (Erythrocyte) Hemoglobin Concentration (MCHC)

8. Platelet (PLT) Count

Specifications

Name: Microcell Counter

Model Number: CC-180

Parameters: RBC, WBC, Hgb, Hct, MCV, MCH, MCHC, and PLT

Principles,

• WBC, RBC, & PLT: electric resistance detection

• Hemoglobin: Cyanmethemoglobin; light absorbance at 535 nm center frequency,

with a glass bandpass filter, approximately 60 nm.

• Hematocrit: RBC signals converted to the pulse heights according to the sizes,

and accumulated to give Hct value.

• MCV: computed from RBC and Hct

• MCH: computed from RBC and Hgb

• MCHC: computed from Hct and Hgb

Accuracy,
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• RBC: error less than ±2.5%

• WBC: error less that ±3.0%

• Hematocrit: error less than ±2.0 Hct%

• PLT: error less than ±5.0%

• (Except for Hematocrit, accuracy is determined by comparing the test results of a

normal control blood obtained on a CC-180 with those obtained on a standard

instrument. Hematocrit accuracy is determined by comparing the results with

those obtained on the centrifuged microhematocrit method.)

Precision,

• RBC: reproducibility C.V. less than 1.0%

• WBC: reproducibility C.V. less than 1.5%

• Hemoglobin: reproducibility C.V. less than 1.0%

• Hematocrit: reproducibility C.V. less than 1.0%

• PLT: reproducibility C.V. less than 1.0%

• (C.V.: A coefficient of variation is calculated from five consecutive counts by

recounting a normal control blood.)

• Linearity,

• RBC: Deviation ±3% for the range of 0.00 —9.99 x10 6 /mm 3

• WBC: Deviation ±3% for the range of 0.0 —99.9 x103 /mm3

• Hemoglobin: Deviation ±0.2g/dl for the range of 0.0 — 20.0 g/dl , or

Deviation ±0.3g/dl for the range of 20.1— 30.0g/dl

• Hematocrit: Deviation ±3% for the range of 0.0 — 60.0%

• PLT: Deviation ±10 x10 3 / mm3 for the range of 50 —100 x10 3 / mm 3 , or

Deviation ±5% for the range of 101-600 x10 3 /mm 3

• (Condition: RBC count is in the range of 2.01— 5.99 x10 6 /mm 3 .)

• (Conditions: (1) The background count is assumed as zero. (2) When counting in

the range of RBC less than or equal to 0.50 x 10 6 /mm 3 , or Hgb less than or equal

to 1.0g/dl, the sample I.D. number is set to zero so that the sample threshold limit

will not function.)
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Detection Sensitivity,

• WBC: Cell size over 4,u in diameter for 100,u aperture

• RBC: Cell size over 4,u in diameter for 80,u aperture

• Hemoglobin: 0.1g/dl

• Hematocrit: 0.1 Hct%

• PLT: Cell size over 1.6,u in diameter for 80,u aperture

Counting Time,

• Hemoglobin: approximately 8 seconds per test

• WBC: approximately 11.5 seconds per test

• RBC: approximately 19 seconds per test

Sample Volume,

• For counting cells: 	 0.50ml ± 1%

• For Hgb determination: 	 approximately 3.2 ml

• Assuming a whole blood WBC count of 5000/mm 3 , a total of 5,000 cells are

counted.

• Assuming a whole blood RBC count of 5,000,000/mm3 , a total of 50,000 cells are

counted.



APPENDIX E

HUMAN BLOOD PROPERTIES

Table E-1 Hemogram—Hematology Normal Values

Male Both Female

WBC 2.5 — 8.0 x10^3/µL 2.5 — 9.0 x10^3/µL

WBC-SCR 16.0 — 40.0 /µL
WBC-SCC 0.6 — 2.4 /µL
WBC-MCR 0.0 —14.0 /µL
WBC-MCC 0.0 — 0.8 /µL
WBC-LCR 48 — 80 /µL
WBC-LCC 1.1— 5.7 /µL
RBC 4.40 — 5.80 x106̂/µL 3.90 —5.30 x10 6/4
HGB 13.0 —16.5 g/dL 11.5 —14.7 g/dL
HCT 38-48% 34 — 44%
MCV 75 — 92 fL 76 — 92 fL
MCH 25 —32pg 24 —31pg
MCHC 32.0 — 36.0 g/dL
PLT 150 — 400 x10^3/µL
RDW SD 35 — 45 fL 35-47th
RDW CV 11.5-14.5%
MPV 8.8-12.0th
Source (Tables E-1–E-4): Walters, Jerelyn G. and Patricia F. Garrity. 1987. Case studies in the
new morphology. American Scientific Products: McGaw Park, IL p150.

Table E-2 Manual Differential

seg percent 	 14-62
band percent 	 0-10
lymph percent 	 25-40
mono percent 	 0-14
eos percent 	 0-6
baso percent 	 0-2
reticulocyte count 	 0.5-1.5%
solubility 	negative
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Table E-3 Hemostasis t normal values
prothrombin time	 11.0-13.0 sec
activated partial thromboplastin time	 23.0-34.0 sec
fibrinogen normal 	 150-400 mg/dL
fibrin degradation products	 < 10 ug/mL
bleeding time 	 2.5-9.5 min
t The stoppage of bleeding or hemorrhage: blood clotting.

Table E-4 Chemistry normal values

102

creatininet
blood urea nitrogen
total bilirubin
adult
neonate
methemoglobin
alkaline phospatase
protein total
albumin
serum vitamin B 12
serum folate
serum iron
serum UIBC
serum ferritin
AST
ALT
LD
GGT
FEP
(free erythrocyte protoporphyrin)

0.0-1.3 mg/dL
10.0-20.0 mg/dL

0.0-1.0 mg/dL
1.0-10.5 mg/dL

1.0-10.5
43.0-122.0 u/L

6.0-7.9 g/dL
3.4-4.6 g/dL
>200 pg/mL
>2.0 ng/mL

35-145 ng/dL
100-325 ng/dL
36-262 ng/dL
5.0-35.0 U/L
7.0-56.0 U/L
297-537 U/L

8-52 U/L
0-59 uL/dL

t A creatine anhydride, C4H7N3O, formed by the metabolism of creatine, that is found in muscle tissue and
blood and normally excreted in the urine as a metabolic waste.



Table E-5 Physical properties of human blood (normal adult mean values)

Whole blood
pH	 7.35-7.40
Viscosity (37°C)	 3.0 cP (at high shear rates)
Specific gravity (25/4°C)	 1.056
Venous hematocrit: Male 	 0.47

Female	 0.42
Whole blood volume	 —78 mL/kg body wt

Plasma (or serum)
Colloid osmotic pressure	 —330 mm H20
pH	 7.3-7.5
Viscosity (37°)	 1.2 cP
Specific gravity (25/4°C) 	 1.0239

Formed elements
Erythrocytes

pH	 7.396
Specific gravity (25/4°C)	 1.098
Count: Male	 5.4 x 10^9/mL whole blood

Female	 4.8 x 10^9/mL whole blood
Mean corpuscular volume	 87 µm3
Diameter	 8.4 um
Maximum thickness 	 2.4 um
Minimum thickness 	 1.0 um
Surface area	 163 µm2
Life span	 120 days
Production rate	 4.5 x10^7/mL whole blood
Hemoglobin concentration 	 0.335 g/mL whole blood per day

Leukocytes
Count	 ~ 7.4 x 10 6/mL whole blood
Diameter	 7-20 pm

Platelets
Count	 ~ 2.8 x 10^8/mL whole blood
Diameter	 —2-5 urn
Source: Cooney, David 0. 1976. Biomedical engineering principles: an introduction to fluid,
heat, and mass transport processes. New York: Marcel Dekker. p39.
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APPENDIX F '

VAMPIRE 3 CENTRIFUGE HEAD
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APPENDIX G

SEPARATION QUALITY CORRELATION GRAPHS

Bovine Blood Runs

Figure G-1 Separation Quality Correlation to Batch Duration (Bovine Blood Runs)
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Bovine Blood Runs
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Figure G-2 Separation Quality Correlation to Initial Hematocrit (Bovine Blood Runs)



Bovine Blood Runs
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Figure G-3 Separation Quality Correlation to Spin Speed (Bovine Blood Runs)



Human Blood Runs
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Figure G-4 Separation Quality Correlation to Batch Duration (Human Blood Runs)



GLOSSARY '

Adoptive Transfer—Form of passive immunization where previously sensitized
immunologic agents (cells or serum) are transferred to non-immune recipients.
When transfer of cells is used as a therapy for the treatment of neoplasms, it is
called adoptive immunotherapy (immunotherapy, adoptive).

Anticoagulant— <haematology, pharmacology> Any substance that prevents blood
clotting.

Those drugs administered for prophylaxis or treatment of thromboembolic
disorders are heparin, which inactivates thrombin and several other clotting
factors and which must be administered parenterally and the oral anticoagulants
(warfarin, dicumarol and congeners) which inhibit the hepatic synthesis of
vitamin K dependent clotting factors.

Anticoagulant solutions used for the preservation of stored whole blood and blood
fractions are acid citrate dextrose (ACD), citrate phosphate dextrose (CPD),
citrate phosphate dextrose adenine (cPDA 1) and heparin.

Anticoagulants used to prevent clotting of blood specimens for laboratory analysis
are heparin and several substances that make calcium ions unavailable to the
clotting process, including EDTA (ethylenediaminetetraacetic acid), citrate,
oxalate and fluoride.

Basophils— Granular leukocytes characterized by a relatively pale-staining, lobate
nucleus and cytoplasm containing coarse dark-staining granules of variable size
and stainable by basic dyes.

Blood— <haematology> Considered a circulating tissue composed of a fluid portion
(plasma) with suspended formed elements (red blood cells, white blood cells,
platelets).

Buffy coat <haematology>—Thin yellow white layer of leucocytes on top of the mass of
red cells when whole blood is centrifuged.

Buffy coat—the coagulated plasma of blood when the red corpuscles have so settled out
that the coagulum appears nearly colorless. This is common in diseased
conditions where the corpuscles run together more rapidly and in denser masses
than usual. --Huxley.

Complement activation—The sequential activation of serum components cl–c9, initiated
by an erythrocyte-antibody complex or by microbial polysaccharides and
properdin, and producing an inflammatory response.

Cytapheresis— Separation of one or more kinds of cells from whole blood with the return
of other blood cell constituents to the patient or donor. This is accomplished with
an instrument that uses centrifugation to separate the cells into different layers
based on the differences in cell density (displacement) or drag coefficients in a
current (elutriation). The procedure is commonly used in adoptive transfer to
isolate nk cells, lymphocytes, or monocytes.

109



110

Elutriation— <ecology> Separation of particles on the basis of their differential
sedimentation rate.

Embolization— A treatment that clogs small blood vessels and blocks the flow of blood,
such as to a tumor.

Eosinophils— A type of polymorphonuclear leukocyte containing eosin-staining
granules. Although the activity of eosinophils is not entirely clear, they are known
to destroy parasitic organisms and play a major role in allergic reactions. They
also secrete chemical mediators that can cause bronchoconstriction in asthma.
Eosinophils make up one to three percent of the total white blood cell count.

Erythrocyte— A red blood cell.

Granulocyte— <haematology> Leukocyte with conspicuous cytoplasmic granules. In
humans the granulocytes are also classified as polymorphonuclear leucocytes and
are subdivided according to the staining properties of the granules into
eosinophils, basophils and neutrophils (using a Romanovsky type stain), some
invertebrate blood cells are also referred to, not very helpfully, as granulocytes.

Hematocrit— <haematology, investigation> Relative volume of blood occupied by
erythrocytes. An average figure for humans is 45m1 per cent, i.e. A packed red
cell volume of 45ml in 100m1 of blood.

(also haematocrit)—Relative volume of blood occupied by erythrocytes. An
average figure for humans is 45 ml per cent, i.e. A packed red cell volume of
45ml in 100m1 of blood.

Heparin— <drug> Sulphated mucopolysaccharide, found in granules of mast cells, that
inhibits the action of thrombin on fibrinogen by potentiating antithrombins,
thereby interfering with the blood clotting cascade. Platelet factor IV will
neutralise heparin.

Leucoembolization—embolization caused by leukocytes (WBCs).

Leukapheresis— The preparation of leukocyte concentrates with the return of red cells
and leukocyte-poor plasma to the donor.

Leukocyte—White blood cell.

Lymphocytes—White blood cells that fight infection and disease.

Lymphokine— <growth factor> Substance produced by a leukocyte that acts upon
another cell.

Examples are interleukins, interferon alpha, lymphotoxin (tumour necrosis factor
alpha), granulocyte monocyte colony stimulating factor (GM-CSF). The term is
becoming less common and cytokine, a more general term, is taking over.
Cytokines include lymphokines.

Lysing— lyse (1s, lz) v. intr. and tr. lysed, lys•ing, lys•es. To undergo or cause to undergo
lysis.

Lysis— <cell biology> Rupture of cell membranes and loss of cytoplasm.
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Macrophages, Round, granular, mononuclear phagocytes found in the alveoli of the
lungs. They ingest small inhaled particles resulting in degradation and
presentation of the antigen to immunocompetent cells.

Macrophages—Relatively long lived phagocytic cell of mammalian tissues, derived from
blood monocyte. Macrophages from different sites have distinctly different
properties. Main types are peritoneal and alveolar macrophages, tissue
macrophages (histiocytes), Kupffer cells of the liver and osteoclasts. In response
to foreign materials may become stimulated or activated. Macrophages play an
important role in killing of some bacteria, protozoa and tumour cells, release
substances that stimulate other cells of the immune system and are involved in
antigen presentation. May further differentiate within chronic inflammatory
lesions to epithelioid cells or may fuse to form foreign body giant cells or
Langhans giant cells.

Mitochondria—<cell biology> A small intracellular organelle which is responsible for
energy production and cellular respiration.

Monocyte—<haematology> Mononuclear phagocyte circulating in blood that will later
emigrate into tissue and differentiate into a macrophage.

Monocytes—One of three types of white blood cells. Monocytes are precursors to
macrophages.

Mononuclear Phagocyte—<haematology> Monocytes and their differentiated products,
macrophages. Mononuclear cells are leucocytes other than polymorphonuclear
cells and include lymphocytes.

Neutropenia— <haematology> Leucopenia in which the decrease in white blood cells is
chiefly in neutrophils.

Neutrophils— Granular leukocytes having a nucleus with three to five lobes connected
by slender threads of chromatin, and cytoplasm containing fine inconspicuous
granules and stainable by neutral dyes.

Plasmapheresis— <procedure> Centrifuging blood that has been removed from the body
to separate the cellular elements from the plasma.

Platelet—<haematology> A discoid cell ( 3µm diameter) found in large numbers in
blood, important for blood coagulation and for haemostasis by repairing breaches
(small breaks) in the walls of blood vessels.

Platelet granules contain lysosomal enzymes, dense granules contain ADP (a
potent platelet aggregating factor) and serotonin (a vasoactive amine). They also
release platelet-derived growth factor which presumably contributes to later repair
processes by stimulating fibroblast proliferation.

Synonym: thrombocytes.

Polymorphonuclear Leucocytes —Mammalian blood leucocyte (granulocyte) of myeloid
series in distinction to mononuclear leucocytes: See: neutrophil, eosinophil,
basophil.
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Red blood cell— <haematology> Cell specialized for oxygen transport, having a high
concentration of haemoglobin in the cytoplasm (and little else). Biconcave,
anucleate discs, 7µm diameter in mammals, nucleus contracted and chromatin
condensed in other vertebrates. Acronym: RBC

Romanovsky type stain—<technique> Composite histological stains including methylene
blue, Azure A or B and eosin, sometimes with other stains.

Rouleau— <haematology> Cylindrical masses of red blood cells. Horse blood will
spontaneously form rouleaux, in other species it can be induced by reducing the
repulsion forces between erythrocytes.

sedimentation rate, or sed rate , is a blood test that detects and monitors inflammation
activity. It is measured by recording the rate at which red blood cells (rbcs)
sediment in a tube over time. It increases (the rbcs sediment faster) with more
inflammation.

White blood cells (WBCs) are cells which circulate in the blood and lymphatic system
and harbor in the lymph glands and spleen. They are part of the immune system
responsible for both directly (t cells and macrophages) and indirectly (b cells
producing antibodies) attacking foreign invaders of the body.

White Blood Cell <haematology> White corpuscles in the blood. They are spherical,
colorless and nucleated masses involved with host defenses.

Normal white blood cell counts are variable with age and sex. Normal adult range
is 4, 500 to 11,000 cells per cubic millimetre of blood. Slightly higher counts are
seen in children. Elevated counts can be seen in cases of inflammation and
infection.

Acronym: WBC

On-line Medical Dictionary

OMD is a searchable dictionary created by Dr Graham Dark
(<dark@www.graylab.ac.uk>) and contains terms relating to biochemistry, cell biology,
chemistry, medicine, molecular biology, physics, plant biology, radiobiology, science and
technology. It includes: acronyms, jargon, theory, conventions, standards, institutions,
projects, eponyms, history, in fact anything to do with medicine or science.

This dictionary is Copyright Academic Medical Publishing & CancerWEB 1997-99.

This edition is distributed by CancerWEB under licence from Academic Medical
Publishing. Permission is granted for individuals to use definitions from this dictionary or
translations into another language, provided that no more than twenty are used in any one
work.
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