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ABSTRACT

TRANSIT PRODUCTIVITY ANALYSIS IN HETEROGENEOUS CONDITIONS
USING DATA ENVELOPMENT ANALYSIS

WITH AN APPLICATION TO RAIL TRANSIT

by
Manuel J. Martinez

This dissertation extends transit productivity analysis by developing a new method of Data Envelopment

Analysis (DEA), the linear programming approach to productivity analysis. The new model analyzes

productivity of transit working under heterogeneous operating conditions. It is named Two-Farrell DEA for

it applies DEA in two stages, DEA(1), that calculates the productivity frontiers at given operating

conditions and DEA(2), that uses inputs adjusted by multipliers calculated in DEA(1). The model Two-

Farrell DEA calculated productivity benchmarks for each rail transit agency and estimated its potential for

higher revenue or lower expense improvement. Additionally, the results identify two production techniques

of rail transit, the sources of increasing returns to scale, the degree of flexibility to changes in the shadow

prices of the inputs, and a method to prioritize investment for expansion of operations. Its indirect

contribution to transit operations planning consists of checking the consistency and feasibility of new rail

projects. Moreover, this dissertation includes the first correlation analysis made between productivity and

operating conditions related to network form, factor analysis of transit operating conditions, the comparison

of results between the new model to four other methods, and the evaluation of the empirical accuracy of

methods with cluster analysis.
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CHAPTER 1

INTRODUCTION

1.1 Objective and Significance of the Dissertation

This dissertation presents a fairer and more accurate method of transit productivity analysis (Two-Farrell

DEA) under heterogeneous conditions that improves the basis for policy decisions like public ownership,

privatization, public-private partnerships, subsidy allocation, or expansion of transit operations. Transit

productivity analysis studies the productive structure of the industry in order to design policies consistent

with the transit goals. For example, Pucher, Markstedt, and Hirschman (1983) found evidence that subsidy

increases are associated with productivity reductions. This raised concerns in States subsidizing transit, and

California. New York, Michigan, and Pennsylvania linked performance to subsidy allocation to improve

the use of their resources (Fielding 1987). In other examples, transit productivity analysis calculated the

effect of subsidies on transit performance and estimated the impact of privatization and deregulation on

transit efficiency (Chang and Kao 1992; Gómez-Ibáñez and Meyer 1990; Sakano. Azam. and Obeng 1997).

Productivity analysis provides the raw materials to major decision-making processes.

Productivity analysis can contribute indirectly to transit operations planning by evaluating the

consistency and feasibility of new projects. A more direct contribution to operations planning uses a route-

by-route level like in the proposed redistribution of resources from less to more utilized routes of (Pucher

and Brail 1984). This dissertation presents examples of consistency and feasibility evaluation of new

projects but leaves route-by-route analysis to further research.

1.2 Scope of the Dissertation

Transit productivity analysis is a branch of transit performance evaluation. Transit productivity analysis

measures productivity efficiency based on the theory of the firm consistently with the maximization of

output subject to technological and budget constraints. Instead, performance is a more general concept that

includes such variables as on-time performance, regularity, maintenance efficiency, safety and security.

speed, frequency. trip length, daily service hours, air conditioning, vehicle load, etc. Frequently. transit

evaluation involves the use of productivity ratios within a broader pool of measures of performance. Baker,

Dornan, and Schwager (1979) presented a general measure of performance that could be decomposed into

1
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twelve performance-ratios to pinpoint sources of inefficiencies. A method to select the right indicators from

a broad pool of variables was developed by (Fielding and Anderson 1983; Fielding, Babitsky, and Brenner

1985). With the proper adjustments, the new model developed by this dissertation can be extended from

transit productivity analysis to transit performance evaluation in further research.

This dissertation covers some sections of productivity analysis but leaves others for further research.

First, productivity analysis studies productivity efficiency and productivity growth but this dissertation is

limited to the estimation of efficiency and leaves growth to further research. Second, allocation efficiency

calculates the degree of success in the use of inputs relative to their prices but this dissertation is limited to

the estimation of technical efficiency and leaves allocation efficiency to further research. Third, public

funds for operating and capital expenditures have an impact on decisions about the scale of production

while controlled fares and regulated wages have an impact on decisions about costs and direct revenues.

This dissertation assumes that the transit agency maximizes outputs subject to the quantity of available

resources. However, it is worthy to note that in the same scenario other authors have been preferring to

assume that the transit agency minimizes cost subject to its technological constraints (Berechman 1993,

Chapters 3 and 4).

In theory, productivity analysis should include social goals to evaluate the achievement of

governmental funding. In the 1960's transit was thought to alleviate congestion, improve safety, and

promote urban renewal. In the 1970's transit was thought to save energy, mitigate air pollution, and

improve mobility of the poor, minority groups, the elderly, and the handicapped (Altshuler, Womack and

Pucher 1979; Smerk 1991). However, to be completely effective transit needs to be part of comprehensive

policies of urban planning beyond the control of transit managers (Berechman 1993; US-DOL-BLS 1998).

Therefore, this dissertation considers that transit managers control transit service but they do not

completely control the beneficial social externalities of transit.

The transit industry operates in many differentiated modes like bus transit, rail transit, and demand

responsive services. This dissertation applies the new model to heavy and light rail transit because both

modes attracted most of the new transit trips of the recent years and because there is electronic data

available on geographic location of tracks and stations. This dissertation does not include institutional

factors like subsidies or ownership nor attributes of the rail technology like signal systems. automation,
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right of way, train capabilities, trip length, etc. The analysis of attributes, institutional factors, and the

remaining modes is left to further research.

Finally, this dissertation analyzes the three most common frontier methods; partial productivity

analysis, stochastic frontier analysis, and data envelopment analysis. Other methods were excluded because

they have very few applications; Free Disposal Hull (FDH), Artificial Neural Networks (ANN), and Multi-

criteria Goal Programming. Some other methods were excluded because they do not consider frontiers;

Total Factor Productivity (TFP), Linear Discriminant Analysis, and conventional cost functions.

1.3 Definition of Terms

Productivity analysis uses a limited number of inputs and outputs relevant to transit. Inputs are the physical

resources consumed by the productive process of transit and consist primarily of labor, energy, and

vehicles. Rail transit also uses tracks and stations. Transit produces a single output expressed in passenger

miles. However, since passenger miles are counted using periodical surveys this dissertation chooses a pair

of measures of the same output that are counted in the whole population; vehicle revenue miles (VRM)

(service supplied) and unlinked passenger trips (TRIPS) (service consumed).

This dissertation uses a broad definition of operating conditions. They are those factors that are out of

the control of the agency and that affect its productivity. Operating conditions include a variety of factors;

(1) Socioeconomic, like personal income and population density. (2) Institutional, like union presence and

ownership type. (3) Operating characteristics, like peak-to-base ratio and average speed. (4) Regulation,

like fixed prices and subsidy funds. (5) Attributes like network size and fleet age. (6) Management-related

factors, like autonomy and organization. (7) Firm specific conditions. Notwithstanding their variety, all

operating conditions share three characteristics, they are exogenous, heterogeneous, and affect productivity.

This dissertation applies the new model to heavy and light rail transit. Heavy rail is characterized by

high-speed and rapid acceleration with passenger rail cars operating singly or in multiple car trains on fixed

electric rails, with separate rights-of-way from which all other traffic is excluded, with sophisticated

signaling, high platform boarding and a heavy passenger volume. In 1998 there were 14 heavy rails in the

US. Light rail is an electrical railway, with a lighter passenger volume, with passenger cars operating singly

or in two-car trains on fixed rails in shared or exclusive right-of-way, and stops accessible through a low or
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high platform. The vehicle's power is drawn from an overhead electric rail. In 1998 there were 20 light rail

systems in the US (US-DOT-FTA 1985-2000).

1.4 Outline of Research Procedures and Organization of the Dissertation

This dissertation makes a critical review of the literature to determine the approach and the assumptions of

the new model. Chapter 2 formulates the working hypothesis after fmding that transit works in

heterogeneous conditions, that operating conditions affect transit productivity, and that conventional

methods fail to measure efficiency in heterogeneous conditions. Chapter 3 explains three methods of transit

productivity analysis to analyze heterogeneous conditions; partial productivity analysis, stochastic frontier

analysis, and data envelopment analysis finding that a new method is necessary to deal with the specific

reality of transit that works under heterogeneity of several operating conditions.

Chapter 4 develops the new model by explaining its assumptions, by maintaining algebraic coherence,

and by interpreting the meaning of the new information. The adequacy of the new model is based on the

acceptance of its assumptions and on its internal coherence. Chapter 5 applies the new model to rail transit

and checks the expected signs of the results. The evaluation of empirical accuracy goes beyond the scope of

this dissertation because Monte Carlo tests presume that the analyst knows the level of efficiency before its

estimation and this is possible only with simulated data. Chapter 5 presents the results of transit

productivity analysis, its consequences for policy making, and the consistency and feasibility of the

planned figures of new projects. Finally, Chapter 6 concludes the dissertation and suggests further research.



CHAPTER 2

THE PROBLEM OF TRANSIT PRODUCTIVITY ANALYSIS

2.1 Transit Productivity Analysis

According to the theory of the firm, transit productivity analysis estimates the production function as the

maximum output attainable at a given combination of inputs. The firm may maximize output subject to a

budgetary constraint, or it may minimize total cost subject to a technological constraint (Intriligator 1978:

Henderson and Quandt 1971). Once the production function is estimated, the distance from the observed

output to the frontier indicates inefficiency as a proportion of the observed output.

The estimation of efficiency is a byproduct of the theory of duality that says that cost minimization is

the dual formulation of output maximization. Shephard (1953) proved the theory of duality by using the

distance function as a ratio of two distances from the origin of the output space, one distance to the

observed output and the other distance to its radial projection on the production frontier. The inverse

distance function applies as a ratio of two distances from the origin of the input space, one distance to the

observed input and the other distance to its radial projection on the isoquant. The movement of the

observed output toward the production frontier coincided with the movement of the observed input toward

the isoquant, arriving simultaneously when both functions—distance and inverse of distance—took the

value of 1.00 (Fuss and McFadden 1978; Berechman 1993).

Besides efficiency, there are other variables calculated by productivity analysis. The returns to the

quantity of a single input are the derivative on the marginal production of the input. If the industry always

faces increasing returns in one or two inputs, the industry may have a tendency to natural monopoly and it

would need regulations to prevent artificially higher prices. Returns to scale are the proportional

augmentation of output with respect to a given augmentation of inputs. If the agency works under

increasing returns to scale it is desirable to merge or to expand. If the agency works under decreasing

returns to scale it is desirable to split in more than one unit or to downsize. Elasticity of substitution

estimates the proportional change of technical ratios with changes of the ratio of input prices. Inputs can be

substitutable or complementary depending of the sign of the elasticity. If many inputs are complementary

to each other the impact of price increase of one input will be more intense than if many inputs are

substitutes to each other. Finally, the linear production frontier calculates increases in transit outputs caused

5
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by increases in transit inputs showing the most cost-effective ways to expand transit operations (Fuss and

McFadden 1978; Intriligator 1978; Baumol, Panzar and Willig 1982; Berechman 1993).

Of all the aforementioned variables, efficiency scores affect transit policy in the sensitive point of the

allocation of public resources to alternative ends. Latin American governments privatized their public bus

and rail transit agencies because they consumed resources in productive inefficiency. In the United States,

transit policy aims to alleviate externalities produced by the characteristics of the consumption of urban

transportation. Externalities are costs produced by private activities that are not internalized in the price or

in the cost of the service. Examples include the following, 1) Congestion caused by the common use of free

public roads. 2) Pollution produced by private transportation. 3) Energy crises caused by foreign conflicts.

4) Destruction of urban neighborhoods associated with urban expressways. 5) National security concerns

caused by excessive self-reliance in private automobiles. 6) Equity concerns on accessibility and mobility

of large groups of the society. The support for transit to alleviate externalities does not find important

opposition against its current form, which includes public ownership of most of transit agencies, minimum

service, fixed fares, labor protection, safety rules, and subsidies from all governmental levels. A common

approach to productivity analysis has been to leave externalities out because of the difficulties to measure

the external benefits caused by transit activities. However, the most sensitive point of transit policy is

productive efficiency because, in principle, the theory of the firm expects a level of inefficiency out of

regulation and of public ownership. So, if the cost of inefficiency exceeds the benefits of alleviating

externalities, transit policy should be modified (Altshuler, Womack and Pucher 1979; Heilbrum 1987;

Berechman 1993; Naciones Unidas-CEPAL 1992).

Not all agencies are technically efficient in the use of inputs. Some agencies do not work at the

frontier but at the interior of the frontier. The seminal work of Farrell in 1957 used the distance function to

measure the percentage of efficiency of the observations in relation to the production possibility frontier.

Other variables related to efficiency include the following. 1) The improvement path, that is the reduction

of inputs and increase of outputs to reach the frontier. 2) The scale efficiency, that is the percentage of

efficiency due to operations near or far from the optimal point. 3) The efficient peers, or efficient agencies

technically nearer to the evaluated agency (technical nearness is understood as similar ratios between inputs

and outputs). 4) Sources of inefficiency, which can be internal or external. 5) Productivity benchmarks, that
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indicate the efficiency goals in productivity. On the other hand, transit policies to improve overall

efficiency include the following. 1) Promoting privatization and public-private partnerships. 2) Contracting

out. 3) Ensuring free-entry markets. 4) Changes in the scale of production. 5) Attacking external sources of

inefficiency with regulation. 6) Campaigns to emulate the efficient peers that work on the best practice

frontier (Lovell 1993; Kumbhakar and Lovell 2000; Coelli, Rao and Battese 1998; Ali and Seiford 1993;

Shephard 1953; Intriligator 1978). Table 1 presents the variables calculated by productivity analysis.

Table 1 Variables of Productivity Analysis
Variable Consequences
Returns to quantity of a single input Detection of sources of returns to scale
Returns to scale and scale efficiency Supports decisions to merge or to breakdown agencies and regulation to

prevent natural monopoly
Elasticity of substitution between
inputs

Detect vulnerability of agencies due to input price increases

Efficiency, sources of inefficiency,
improvement path, and efficient
peers

Major decisions on ownership, subsidies, and regulation. Major
managerial strategies of re-engineering, downsizing, expansion of
operations, etc.

Production function and
productivity benchmarks

Determines quantity and direction of expansion or reduction of
operations by using cost effectiveness.

If efficiency is the sensitive point of transit productivity analysis, operating conditions are the difficult

points of efficiency estimation. Fuss and McFadden in 1978 considered operating conditions as

determinants of the production function mentioning the following examples, imperfect information, legal

restrictions (patent agreements, pollution control regulations, and safety), non-transferable commodities

(managerial capacity, climate, and environmental factors), and restrictions on contracts on inputs, outputs,

quotas, and rationing. Therefore, a set of values of any of the mentioned variables produces a family of

frontiers of production. In the transit industry some operating conditions frequently mentioned as causing

productivity differentials are urban density, stop spacing, pedestrian accessibility, traffic congestion, and

peaking of the demand (Pushkarev and Zupan 1977).
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2.2 Contribution to Transit Operations Planning

The contribution of productivity analysis to operations planning uses coincidental data for cross-

examination. The theory of the firm and productivity analysis offers indirect ways to check consistency and

feasibility of new projects. On the other hand, methods of operations planning for fixed-route transit

operations involves four steps; estimation of transit demand, planning of rail network and stations, fleet size

design, and labor force design.

Transportation demand is the result of a two-way relationship between land use and transportation

networks. The land use pattern depends on the character of the transportation network and the viability of

the transportation network depends on the land use pattern (Heilbrum 1987). The activities of the individual

can be modeled by the choice he or she makes at several decision levels; life-style aspirations, desired

activity patterns (income, employment), locational choices (employment, neighborhood), and travel choices

(short run decision). All choices are influenced by the socioeconomic characteristics of the individual and

by the attributes of the transportation networks—time, cost, safety, convenience, security, etc. (Manheim

1980; Heilbrum 1987).

There are two major approaches to estimate transit demand. The first approach uses data of aggregated

zones and estimates transit demand in four stages. Trip generation fords the number of trips, produced by or

attracted in one zone, depending on land use, socioeconomic, and demographic characteristics. Trip

distribution determines to what zones the trips are going, given travel time and distance. Modal split

determines what mode of transport will be used from each zone based on trip type, characteristics of the

trip maker, and levels of service. Traffic assignment assigns trips to individual transportation facilities

based on travel times of the transit and highway modes of the network. So, two stages of the process

include socioeconomic and demographic characteristics, while three of the stages include network

attributes of time and distance (Wright and Ashford 1989; Manheim 1980; Stopher and Meyburg 1975).

The second approach uses data of individuals and applies discrete choice models to find the

probability that individuals make decisions through a sequence of stages. The decision stages include work

and residential location, vehicle ownership, trip versus no-trip choice, destination, time of day, and mode

choice. They are embedded in a nested multinomial logit model as a function of transportation attributes

and socioeconomic characteristics of the travelers (Domencich and Mcfadden 1975). Consequently, both
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approaches for demand models use operating conditions to determine transit demand. Since operating

conditions are directly related to the number of transit trips, this dissertation proposes ratios to check

consistency of the planned figures under efficient transit operations like transit trips per capita.

The second step of operations planning is routing. It designs the route and the location of stations

(stops) (Pine, Niemeyer and Chisholm 1998). Consequently, a set of ratios can check consistency of the

number of trips with the length of the transit network and with the number of stops. Productivity ratios

include trips per route mile, and trips per station. The technical ratio stops per route mile can check the

consistency of the chosen production technique.

The third step of operations planning is blocking. It designs the fleet size to supply the service. First,

the demand at the maximum load point of the route is divided by the capacity of the vehicle (including the

policy of load rate of passengers per vehicle) to obtain the number of vehicles desired per period. After

that, the cycle times—round trip travel time plus layover/recovery time—are divided by the desired

headway to set the total number of vehicles (Pine, Niemeyer and Chisholm 1998). Therefore, a set of ratios

can check consistency of the planned number of trips and vehicle revenue miles with the planned fleet size.

Productivity ratios include trips per vehicle. Effectiveness is the ratio of trips per vehicle revenue mile.

Intensity ratios include vehicle revenue miles per unit of input. Technical ratios can check consistency of

fleet size related to network length.

The fourth step of operations planning is runcutting. It calculates the number of runs or daily

operators. Runcutting consists of the assignment of operators to the assignment of vehicles. It minimizes

platform times and split runs (runs with long periods of idle time in the middle) given the work rules and

policy of the agency (Pine, Niemeyer and Chisholm 1998). Therefore, a set of ratios can check consistency

of the planned number of labor hours with the planned trips, vehicle revenue miles, network length, and

fleet size of the agency. The technical ratio labor hours per vehicle is usually taken as a ratio of efficiency

with productivity of trips per labor hours and intensity of use of vehicle revenue miles per labor hour.

Additional procedures could check consistency of labor hours in maintenance and energy, both being a

derived demand of the scale of operations, but no further examination of these inputs is considered. Table 2

presents some ratios that check the consistency of planned new rail projects at current efficiency levels.
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Table 2 Ratios to Check Consistency of Transit Operations Plannin
Variables Ratios (*) Consequences
Transit demand Trips/operating conditions Consistency of planned demand
Routing Trips/route mile

Trips/station
stop route mile/station

Consistency of density of transit demand

Blocking Trips/vehicles Trips/VRM
VRM/vehicle
VRM/route miles
VRM/station

Checks technical ratios and intensity of use of
inputs

Runcutting Labor operator hours/vehicle
VRM/labor operator hours

Checks labor technical ratio and intensity of use

(*) VRM = vehicle revenue miles

2.3 Heterogeneous Conditions of Transit

This section presents evidence of the degree of heterogeneity of the operating conditions of transit. In bus

transit, Fielding, Brenner, and Faust (1985) chose three operating conditions for cluster analysis; size, peak-

to-base ratio, and speed, because they affected transit performance. Table 3 illustrates the high variability

of the chosen variables, all of them affecting bus transit performance. Moreover, the three variables have

low correlation coefficients-0.15 to 0.26—indicating at least three dimensions of heterogeneity in

operating conditions. Bus transit works in very heterogeneous operating conditions.

Table 3 Heterogeneous Conditions – Bus Transit
Size (vehicles) Speed (mph) Peak-to-base (ratio) (*)

Minimum 2 7.7 0.71
Maximum 3246 34.1 7.33
Average 122 14 1.59
Standard deviation 280 2.9 0.72
Group 1 (%, range) 14% 0-10 3% 0-10 18% 0-10
Group 2 (%, range) 57% 10-100 72% 10-15 37% 1.0-1.5
Group 3 (%, range) 27% 100-1000 22% 15-20 27% 1.5-2.0
Group 4 (%, range) 2% 1000+ 3% 20+ 16% 2.0+
(*) Ratio of peak period number of vehicles to base period number of vehicles
(US-DOT-FTA 1985-2000, Tables 26 and 28 of 1997)

Table 4 illustrates the differences in the urban form of selected heavy as well as light rail operations.

Population density in New York is thirteen times higher than in Atlanta and income per capita in PATH is

four times higher than in Miami. Light rail also operates in heterogeneous urban forms; population density
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in San Francisco is six times higher than in St. Louis while income per capita in Cleveland is three times

higher than in Los Angeles.

Value Ratio Agency Value Ratio Agency
Heavy rail
Minimum 3,532 1 Atlanta-MARTA 9,279 1 Miami-CDTA
Maximum 47,492 13 New York-NYCT 32,639 4 New York-PATH
Light rail
Minimum 3,047 1 St. Louis-BSDA 8,301 1 Los Angeles-LACMTA
Maximum 17,576 6 San Francisco-MUNI 22,898 3 Cleveland-GCRTA
(*) Persons per square mile at the served area = within 0.3 miles around stations
National Transportation Atlas, and Bureau of Census (US-DOC-BOC 1992; US-DOT-BTS 2000)

Table 5 shows that rail transit operates in heterogeneous network forms. In heavy rail, San Francisco

has five times longer stop spacing than New York while, in light rail, Los Angeles has eight times longer

stop spacing than Philadelphia. Moreover, heavy rail density of service in New York is twelve times greater

than that of Cleveland while light rail density of service in Boston is three times greater than that of

Cleveland.

Mode Stop Spacing(*) Density of Service(**)
Value Ratio Agency Value Ratio Agency

Heavy rail
Minimum 0.48 1 New York-NYCT 108 1 Cleveland-GCRTA
Maximum 2.24 5 San Francisco-BART 1,254 12 New York-NYCT
Light rail
Minimum 0.15 1 Philadelphia-SEPTA 71 1 Cleveland-GCRTA
Maximum 1.16 8 Los Angeles-LACMTA 236 3 Boston-MBTA
(*) Miles. (**) Annual vehicle revenue miles per line mile. National Transportation Atlas (US-DOT-BTS
2000), and National Transit Database (US-DOT-FTA 1985-2000)

2.4 Effect of Operating Conditions over Transit Productivity

This section describes the effect of operating conditions on transit productivity made by diverse authors

considered as conventional wisdom of transportation research. Meyer, Kain, and Wohl (1965) considered

that station spacing, speed, and frequency affected transit costs and that residential density explained

variations of the construction costs of facilities. Miller (1970) estimated a bus operating cost function that

Table 5 Heterogeneous Operating Conditions — Rail Transit — Network Form
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included indicators of the city setting as explanatory variables. Miller found that schedule speed, density of

service, and city age were relevant to explain cost per bus mile. Pushkarev and Zupan (1977) found a

positive relation between higher residential density and higher vehicle productivity in regular bus service.

Later, Parsons Brinkerhoff Quade & Douglas (1996) found similar relations for light rail and commuter

rail. Giuliano (1981) estimated that operating characteristics were relevant to explain productivity. Size of

the agency, age of firm, peak-to-base ratio, and size of the city affected vehicle revenue hours per employee

while size of the city and population density affected vehicle revenue hours per vehicle. Bladikas and

Papadimitriou (1985; 1986) estimated that the unproductive labor factor, defined as the ratio of total time to

platform time (operating time) was affected by the peak-to-base ratio and that the number of vehicle

maintenance employees correlated to vehicle size, agency size, and speed.

Operating conditions also affect the capacity of rail transit. Demery (1994) observed that tolerance of

the public for maximum vehicle capacity varies between cities and even within the same city, depending of

the time of the day, congestion, parking, and automobile costs. Vehicles carrying relatively small numbers

of standees (15-20) may be "overcrowded" from the passenger perspective. Demery also observed the

association between the number of standing passengers and dwell times with the consequent delays that

affect schedule adherence.

The impact of the network form on transit productivity has not yet been estimated except for stop

spacing and density of service. One of the most extended concepts is connectivity. It describes the extent of

available routes between two nodes indicating facility of movement and the degree of continuity of flow in

spite of local stoppages (Hay 1961; Schumer 1964). The connectivity index also estimates the degree of

connection between all vertices and it is considered the most important structural property of a network

(Taaffe and Gauthier 1973). Connectivity can tell the degree of branching of the network—used to

maximize areal coverage—and the form of the network—ability of radial, diametral, or grid network to

match the demand (Vuchic 1975; Fox 1978; Musso and Vuchic 1988). Connectivity is a graph theory-index

used by Garrison, Berry, Marble, Nystuen, and Morrill (1959) to describe the topology (form) of a network

without distance nor direction (Nystuen 1968). Two indices can describe transportation networks, the

gamma index and the alpha index (Taaffe and Gauthier 1973). The gamma index of the network is the ratio

of the observed number of edges to the maximum possible number of edges in a given network.
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In formula (1), y is the gamma index, e the number of edges, and v the number of vertices. The alpha

index—called circuitry availability—is the ratio of the number of actual circuits to the maximum number

possible in a given network. The alpha index estimates the degree of alternative paths between nodes in the

network. The number of alternative paths is the number of linkages added to a minimally connected

network. The alpha index is defined as:

The values of both indices, ganuna and alpha, can describe the form of a network as indicated in the

Besides the gamma and alpha indices, Morlok (1967) gathered additional network indicators that may

explain performance of transportation networks. He classified network indicators in five types; access,

comprehensiveness, circuitry, link length, and density of service. Access density is the number of terminals

or access points of the systems per area unit as in equation (4).

In equation (4), N' is the access density, N the number of access points, and A the area of the region

served by the system. The comprehensive accessibility of formula (5) is a dimensionless number that

indicates the fraction of the area a system serves.



In formula (5), Z is the index of comprehensive accessibility, A t the area around the access points of

the network that can be easily reached, and A the area of the region served by the network. The circuitry

index of formula (6) measures the difference between the airline distance and the network distance between

nodes.

In formula (6), C* is the circuitry index, L i, the network distance between nodes i and j, and 	 the

airline distance between nodes i and j. Additional indicators proposed by (Morlok 1967) of the network

structure are the average link length also called stop spacing, and density of service—average flow of

traffic through each vertex per unit of time. Tomazinis (1975) classified descriptors of urban transportation

networks in areal coverage–access density and comprehensiveness—and serviceability and flexibility–

gamma and alpha indices. Finally, (Musso and Vuchic 1988) included network complexity or the ratio of

inter-station spacings to the number of stations, to describe the rail network.

2.5 Conventional Productivity Analysis in Heterogeneous Conditions

Productivity growth is the productivity shift produced by technological changes while productivity

efficiency is the ratio of achieved to achievable production that is equal or smaller than 1.00. Figure 1

describes productivity growth and productivity efficiency. Let the axes be the production of outputs y1 and

Y2 per unit of a common input x. Curve P 1 is the piecewise-linear envelope of the maximum production of

YIN and y2/x during period 1. Two agencies A and B show their position relative to P 1 . B is in the position

of efficiency because it operates at the frontier. A is in a position of inefficiency because some observed

agencies produce higher levels of outputs A' > A. The radial distance function OA'/OA > 1 (larger than

one) measures the efficiency of agency A. The radial distance function is the common proportional

augmentation of outputs achievable by A. Notice that y 1 /x and y2/x increase in the same proportion along

the OA radius to A'. In agency B efficiency is OB'/OB = 1 (equal to one) because B is located at the
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frontier. In period 2 let there be a general increase in the maximum observed productivity of the industry to

the new frontier P2. Productivity growth is the average distance between both curves P 1 and P2.

Figure 1 Efficiency versus Growth in Productivity Analysis

In Figure 2 let PB be the production frontier operating under different conditions than PA. That is, PB

represents operating conditions B. PB represents agencies at better operating conditions than agencies

represented by PA. Let A work under operating conditions PA and let B work under operating conditions PB.

The agency B is not efficient because more output is expected from B since PB permits higher productivity.

Thus, B is indeed inefficient with efficiency score OB"/OB > 1. If each agency has particular values of

operating conditions, there are as many frontiers 13, as agencies and therefore heterogeneous conditions

produce multiple frontiers. Moreover, Figure 2 shows that the frontier of reference for all agencies is PB

A" A'
and as such it produces underestimated efficiency for A and for the industry. In Figure 2 —

A	 A
> — because

A refers to the farthest frontier PB instead of PA and A has an efficiency score overestimated by

A
and therefore conventional methods underestimate the efficiency of A by —

A

A' A" 
andand underestimate the

in this case that the industry has only two systems. Anyefficiency of the industry by
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conventional method of transit productivity analysis underestimates efficiency in the presence of

heterogeneous conditions being unfair to agencies like A because they operate in operating conditions less

advantageous for transit service.

Figure 2 Heterogeneous Operating Conditions Produce Multiple Frontiers

2.6 Transit Productivity Analysis and Heterogeneous Conditions

This section shows evidence that five methods have been applied by transit productivity analysis under

heterogeneous conditions, three of them refer to the frontier and are further explained in Chapter 3. The

first method estimates empirical equations of productivity ratios versus operating conditions. Giuliano

(1981) defined operating conditions as a group of environmental and institutional factors that can affect the

supply or the demand side of transit operations. Anderson (1983) included subsidy and ownership. Systems

of empirical equations permitted the analysis of operating conditions like peak-to-base-ratio, speed, and

agency size that affect productivity components of bus operations and maintenance (Bladikas and

Papadimitrou 1985; 1986).

The second method estimates conventional cost functions. Miller (1970) showed that scheduled speed,

city age, and density of service were relevant in the estimation of the unit cost of US bus service. Wilson

(1977) included subsidy source, ownership type, and weather in the estimation of cost functions of US bus

agencies with the objective to forecast cost for new bus transit operations. A simpler way to estimate the
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effect of operating conditions was to assign a group-specific dummy as applied in (Pozdena and Merewitz

1978) for US rail transit. The firm-specific term also helps to gather the effect of all operating conditions

and to isolate the effect of a single operating condition over costs like in (Karlaftis and Sinha 1997) that

estimated the effect of federal subsidies in the performance of demand responsive systems. More recently,

assets attributes have been included in the cost function like bus size and multi-modal operations to

calculate their influence on costs per bus-kilometer in Norway (Jorgensen, Pedersen, and Solvoll 1995;

Oum, Tretheway and Waters 1992). Wunsch (1996) estimated returns to operating conditions for speed,

vehicle capacity, vehicle age, and peak-to-base ratio of European transit agencies.

The third method estimates frontier cost functions. Hensher (1987) included the union presence to

estimate a cost frontier of bus operations, while Viton (1993) included a firm-specific dummy in the cost

function to account for the operating conditions of rail transit. Gathon (1989) used the same technique in

two steps in which the second one considered operating conditions as sources of inefficiency of European

bus operations. More recently, (Sakano, Obeng and Azam 1997) estimated the effect of subsidies on

allocative efficiency.

The fourth method estimates the total factor productivity growth. For example (Benjamin and Obeng

1990) calculated the effect of subsidies and local conditions on productivity growth for a sample of US bus

agencies. With the same method, Appelbaum and Berechman (1991) included special constraints to the

cost function to account for regulations (fares and minimum service) and for demand conditions

(population density and income). Hensher (1992) included an additional firm-specific term in the

productivity growth estimation of Australian bus transit operations.

The fifth method is data envelopment analysis (DEA). Chu, Fielding, and Lamar (1992) estimated

efficiency and effectiveness of bus agencies. Estimation of effectiveness included variables as if they were

additional inputs in DEA like population density, car-less household proportion, and subsidy per passenger.

Furthermore, the sample used by Chu, Fielding, and Lamar came from within clusters of US bus agencies

formed on the basis of peak-to-base ratio, speed, and agency size (Fielding, Brenner, and Faust 1985).

More recently, Kerstens (1996) considered ownership, subsidy source, stop spacing, population density,

and speed as determinants of efficiency level. Kerstens applied DEA to French bus systems and estimated a

regression of the efficiency scores versus operating conditions to identify the sources of productivity
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inefficiency. Similarly, Nolan (1996) applied DEA for US bus agencies including some internal sources of

inefficiency like the spare ratio and the share of maintenance employees. In summary, five methods have

included operating conditions and therefore the transportation literature recognizes that the operating

conditions are necessary for performance evaluation.

2.7 Working Hypothesis

The working hypothesis is that current methods of transit productivity analysis would not be adequate

because they include a portion of the productivity difference caused by heterogeneous conditions and their

results tend to favor those agencies working in more advantageous operating conditions. As a consequence,

it would be necessary to develop a new method for measuring transit efficiency. Chapter 3 analyzes the

adequacy of current methods to estimate efficiency scores in heterogeneous conditions, Chapter 4 develops

the new model, and Chapter 5 applies the new model to productivity analysis of rail transit.



CHAPTER 3

LITERATURE REVIEW

3.1 Partial Productivity Analysis

3.1.1 Basic Features of Partial Productivity Analysis

Partial productivity is the ratio of a single output to a single input as presented in formula (7) where p is

productivity, x is the quantity of input, and y is the quantity of output (Stevenson 1999).

3.1.2 Partial Productivity Analysis in Heterogeneous Conditions

The following text evaluates the current methods of productivity analysis in heterogeneous conditions.

3.1.2.1 Conventional Partial Productivity Analysis. Users of conventional partial productivity analysis

have found that changes in productivity of the transit industry occurred because of changes in operating

conditions such as population density, auto ownership, personal income, etc. Meyer and Gomez-lbañez

(1977) found that productivity in vehicle revenue miles grew by 1.05 percent per year but that productivity

in revenue passengers decreased by 0.75 per year between 1948 and 1970 because of changes in operating

conditions. Similarly, US-DOT-UMTA (1976) found increases in vehicle revenue miles and decreases in

revenue passengers between 1974 and 1975. The Comptroller General (1981) found that, during 1973-

1978, labor productivity decreased by 6 percent with respect to vehicle miles and by 4 percent with respect

to passenger trips. He observed that subsidies encouraged transit expansion to less dense areas that are

more costly to serve. Consistently, Pickrell (1983) traced 14 percent of the bus operating deficits to

declining passenger miles per seat mile between 1960 and 1980. More recently, US-DOL-BLS (1998)

found that, during 1967-1992, labor productivity declined four times faster in terms of passenger trips than

in terms of vehicle revenue miles, and that expansion of service coincided with the period of expansion of

public ownership and subsidies. Lyons (1995) calculated correlation coefficients between operating

conditions and productivity, and found that labor and vehicle productivity in vehicle hours are significantly

correlated with speed and with vehicle load in bus transit.

19
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3.1.2.2 Cluster Analysis. Since conventional methods have had limited use to evaluate individual

agencies, some States decided to use clusters to monitor performance of recipients of operating subsidies.

Barbour and Zerrillo (1982) explained the way New York State Department of Transportation classified

agencies by mode and by size. Simultaneously, Fielding, Mundle, and Misner (1982) proposed a cluster

system on behalf of the Los Angeles County Transportation Commission to classify agencies by type of

service; local/express service, fixed headway, etc. However, some clusters were too small, so that, some

authors proposed nation-wide clusters to help to evaluate similar agencies by using the technique of cluster

analysis.

Cluster analysis is a group of multivariate techniques whose purpose is to classify objects so that the

resulting clusters maximize internal homogeneity and external heterogeneity. Cluster analysis consists of

choosing the relevant variables that differentiate the groups, selecting a function to measure the distance

between observations, and using an algorithm that maximizes the distance between clusters while

minimizes the distance within clusters (Hair, Anderson, Tatham, and Black 1987).

Vaziri and Deacon (1983) clustered transit agencies in eleven groups by characteristics of city size

(area, population, central-city population). However, some clusters were too small and census data was too

aggregated. In contrast, Fielding, Brenner, and Faust (1985) opted for the use of the National Transit

Database. They clustered bus agencies with four variables; peak vehicles, annual vehicle-miles, average

speed, and peak-to-base ratio to describe the adjustment of the agency to its operating conditions. However,

after observing Tables 1 and 5 of (Fielding, Brenner, and Faust 1985), only four out of twelve clusters are

big enough for standard statistical inferences (clusters 3, 6, 7, and 8). Clusters 3, 6, 7, and 8 registered

variations of operating conditions between 19 and 74 percent of the variation of the whole indicating that

clusters did not eliminate heterogeneity. Moreover, groups 3, 6, 7, and 8 registered variations of

productivity in labor, vehicles, and labor-maintenance between 42 and 94 percent of the variation of the

population. Therefore, since operating conditions correlated to productivity ratios, operating conditions

caused productivity differences within the clusters.

3.1.2.3 Empirical Equations. Empirical equations assume that the productivity ratio is a function of

operating conditions. Giuliano (1981) found that fleet size, fleet age, peak-to-base ratio, and wage rate

explained labor productivity while fleet size and population density explained vehicle productivity.
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Bladikas and Papadimitriou (1985; 1986) found that the operating labor "unproductive" ratio has

significant relations with the peaking of the demand and that personnel productivity of maintenance has

significant relations with "slowness" (1/speed) and with fleet size. Pucher, Markstedt, and Hirschman

(1983) related subsidies to productivity, finding that labor productivity in revenue vehicle hours has a

significant relation with federal operating assistance and fleet size. Similarly, Cervero (1984) estimated

regressions of labor efficiency and vehicle efficiency as a function of subsidies and time.

Empirical equations require a theoretical framework to determine the relevant set of variables in the

regression (Intriligator 1978). Relevant variables could be excluded from empirical equations and the

results would be biased and inconsistent. Irrelevant variables could be included in the empirical equation

increasing the significance of the regression while reducing the significance of relevant variables to the

point of exclusion. Without a theoretical framework, the membership of the relevant set of explanatory

variables is uncertain.

3.1.3 Conclusions on Partial Productivity Analysis

Cluster analysis reduced but did not eliminate the influence of heterogeneous conditions while empirical

equations lacked a theoretical framework necessary to know the relevant set of explanatory variables. In

addition to its limitations in dealing with heterogeneous conditions, partial productivity analysis is limited

to constant returns to scale and to single input and single output analysis (Oum, Tretheway, and Waters

1992).

3.2 Stochastic Frontier Analysis

Stochastic frontier analysis assumes that not all producers use the least possible inputs to produce the

outputs they choose, and that some can operate at the interior of the frontier. The frontier is the maximum

output that can be produced at a given input plus a random effect making the production frontier a

stochastic one (Kumbhakar and Lovell 2000). The upper graph of Figure 3 shows the production y in the

vertical axis and the observed inputs x in the horizontal axis. The square dots y o are the observed outputs,

the curve yd is the deterministic frontier and the rounded dots ys are the stochastic frontier. The lower graph
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shows two probability density functions, the truncated one describes the distribution of efficiency and the

symmetric one describes the distribution of random effects.

Figure 3 Stochastic Frontier and Distribution Function of Efficiency

3.2.1	 Basic Features of Stochastic Frontier Analysis

Production Economics

An agency maximizes output subject to the cost constraint as in the maximization of the objective function

(8) subject to constraint (9) for the case of a single output and two inputs (Henderson and Quandt 1971;

Intriligator 1978).

Where y is the output, x, , x2 the inputs, w 1 , w2 the input prices, and C the total cost. The production

function maps the maximum output bundle y by using the input bundle (x1, x2). The determinants of the
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production function are the state of technological knowledge, physical laws, and operating conditions.

Mathematical conditions ensure that the set of input requirements is convex from below (McFadden 1978).

Functional Forms

Production functions of the general form presented in equation (8) may have a number of functional forms.

Table 6 presents three alternatives, the Cobb-Douglas form ensures constant cost shares of factors, the

Constant Elasticity of Substitution form ensures constant elasticity of substitution between factors, while

Transcendental Logarithmic form is the most flexible.

Table 6 Functional Forms of Production Functions

Traditional Estimation Methods

Two methods are used traditionally to estimate the production function through the average of the

observations. They are the ordinary least squares and the maximum likelihood estimator (Intriligator 1978;

Koutsoyiannis 1978). Ordinary least squares apply the formulation of equation (10)

In equation (10), y is the dependent variable, x the vector of independent variables, is the vector of

parameters, s the disturbance, and X the matrix of observations of the independent variables. The

maximum likelihood estimator finds the I parameter vector, maximizing the probability that the sample

represents the population. Hence, the maximum joint probability of production is the solution to its first

order conditions.
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Maximum Likelihood Estimation is a method described in equations of (11), g is the probability

density function (normal) of the output y, as a function of parameters f 3  and of the variance of the

disturbance σ²є . L is the joint probability density of the sample, and the derivatives o In L are the first-

order conditions that equal zero.

Frontier Estimation Methods

Stochastic frontier formulations decompose the disturbances in two components, a random component "v"

and an efficiency component "u" to make 6 = u + v. Table 7 shows the procedures of two stochastic frontier

methods, maximum likelihood estimator and modified least squares.
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Table 7 Selected Methods to Estimate Stochastic Frontiers
Name
Reference
^te n.c

Problem formulation and
assumptions

Formula estimation

y = output, 13 = parameter vector, x = input vector, 6 = disturbance, u = efficiency component of s,
v = stochastic component of E, N = normal distribution, o = total variance of disturbance E, (7 2„ =
variance of efficiency, o = variance of stochastic component, y = efficiency component of
disturbance variance, E = expected value, V = variance, L = joint density probability function of the
observed outputs, n = size of sample, Φ = normal cumulative distribution function, In = natural
logarithm, = normal standard value of y i , exp = exponential function, Mk = moments k, =
estimated, i = observation i.

3.2.2	 Stochastic Frontier Analysis in Heterogeneous Conditions

The following text makes a critical review of the current methods of productivity analysis in heterogeneous

conditions.

3.2.2.1 Conventional. Transportation studies applied conventional stochastic frontier analysis to compare

methods of estimation and therefore, the operating conditions were explicitly excluded to avoid their
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influence over the differences between methods. For example, Kumbhakar (1987) estimated efficiency of

US railroads to compare four estimation methods and Coelli and Perelman (1999) estimated efficiency of

European railways to compare DEA and stochastic frontier analysis.

3.2.2.2 Two-Step. Two-Step estimates a conventional cost frontier and then uses the efficiency scores as

a dependent variable that is a function of operating conditions. The second step usually estimates a Tobin

regression that is a special method for those dependent variables that are bounded (efficiency should be

larger or equal to zero and smaller or equal to one). The second step implicitly assumes that internal

inefficiency approximates the residual, the constant term, or the parameter of a firm-specific dummy.

Gathon (1989) estimated the cost frontier of European transit agencies and found that speed explained

a significant part of the variation of the efficiency score. Gathon and Pestieau (1995) estimated the

production frontier of European railways, and found that regulation was significant to explain the variation

of efficiency scores. Liu (1995) estimated the production frontier of British ports, and found that ownership

was not significant to explain the variation of efficiency scores although location and size were significant.

Sakano and Obeng (1995) estimated the cost frontier of US bus transit agencies and found that neither

capital nor operating subsidies were significant to explain variations of technical efficiency. McMullen and

Lee (1999) estimated the cost frontier of US motor carriers, and found that seven variables explained the

variation of efficiency scores, except deregulation. In brief, Two-Step measures inefficiency and attributes

it to operating conditions.

The second step usually does not consider internal inefficiency as a variable because this is unknown;

therefore, a relevant variable is excluded from the regression creating a specification error in which

estimators can be biased and inconsistent (Intriligator 1978). Even though the second step may assume that

inefficiency was the constant term or the firm-specific dummy, the second equation is still incomplete.

Dummies are used in cases where there is lack of knowledge about the model and they are limited to

choose between "existence or nonexistence" of internal inefficiency (Pindyck and Rubinfeld 1998). The

specification of the model improves but it cannot completely separate internal inefficiency from the effect

of operating conditions because there can be an internal inefficiency in any agency caused by its culture

management, employees morale, etc.



27

3.2.2.3 Operating Conditions as Inputs. Sarndal and Statton (1975), Sarndal, Own, and Statton (1978),

and Oum, Tretheway, and Waters (1992) demonstrated that output characteristics of the airline industry

were associated to production and cost and concluded that they should be included in the production

functions. Similarly, Rus and Nombela (1997) assumed that speed affected efficiency of Spanish bus

agencies because it contained information about the type of routes of the firm and therefore they included it

in the production function. Schmidt and Sickles (1984) estimated the production frontier of US airlines

including load factor and average stage length while Cornwell, Schmidt, and Sickles (1990) included

season (winter-spring), stage length, and quality of the service. Viton (1993) estimated a cost frontier

function for US rail rapid transit including cars per track mile as a proxy for level of service, technological

variables, and fixed factors and also he included a dummy for firm-specific characteristics.

However, this method has the caveat of correlation of inputs with operating conditions. Xu, Windle,

Grimm, and Corsi (1994) estimated a cost frontier function for the US trucking industry with network

variables and they proved that size and network variables are correlated and that both variables affect

returns to scale in a unique but combined effect. The preceding result suggests that operating conditions do

not affect productivity by themselves but that they do it through their influence on inputs; therefore, it is not

possible to separate the effect of inputs from the effect of operating conditions when both appear in the

same equation. Larger firms, compared to smaller systems, appeared to have advantages in increasing their

length of haul and their average load size. Furthermore, if this interpretation stretches to include speed and

peak-to-base ratio in the transit industry, it affects productivity through labor and vehicles causing

multicollinearity that biases the parameters of inputs and operating conditions.

3.2.2.4 Operating Conditions in Additional Constraints. Additional constraints to equations (8) and (9)

of page 22 transmit the effect of operating conditions to productivity by using an adequate theoretical

framework. Operating conditions have been added in a demand or in a budgetary constraint attached to the

original formulation of the cost minimization problem (Applebaum and Berechman 1991; Obeng and Azam

1997; Berechman 1993, Chapter 6; Sakano, Obeng, and Azam 1997).

The only problem with the additional constraints is that it is difficult to achieve comprehensiveness

because one constraint is necessary to explain the effect of one operating condition while many operating

conditions would reduce the degrees of freedom and complicate the estimation of the model. This method
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can be practical to explain the effect of few operating conditions but it becomes complicated for a large

number of operating conditions.

3.2.2.5 Cost Elasticity of Operating Conditions. This method tries to simplify the inclusion of operating

conditions in additional constraints. The method consists of deriving the algebraic relation between inputs

and operating conditions to later use it to estimate unbiased returns to scale. The method was developed in

Jara-Diaz and Cortes (1996) who related motor carrier returns to scale to several operating conditions.

Savage (1997) applied this method in his estimation of returns to scale for US rail transit. Similarly Marin

(1998) multiplied a linear function of operating conditions as a component of the productivity elasticity of

input for airlines.

However, the cost elasticity of operating conditions seems to present only a partial view of the global

relations between operating conditions, inputs, and outputs. Oum and Zhang (1997) already observed that

the algebraic constructions of Jara-Diaz and Cortes (1996) assumed no relations between attributes

themselves and that output had to remain constant for the relations to hold. The finding of Oum and Zhang

(1997) can also be interpreted as the consequences of applying a partial empirical framework instead of a

global theoretical framework to explain the relations between operating conditions, inputs, and outputs.

3.2.3 Conclusions on Stochastic Frontier Analysis

Stochastic frontier analysis may include operating conditions with additional constraints within a sound

theoretical framework but additional constraints may turn too complicated if all operating conditions were

included simultaneously. Therefore, this approach is adequate to measure the influence of one or two

operating conditions rather than the simultaneous influence of all of them. The other methods have

estimation problems like multicollinearity and specification errors derived from an inadequate theoretical

formulation.
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3.3 Data Envelopment Analysis (DEA)

3.3.1 Basic Features of DEA

DEA is the linear programming approach to productivity analysis developed by Charnes, Cooper, and

Rhodes (1978) to evaluate regulated industries, public utilities, public services, and activities with

nonexistent or regulated prices.

3.3.1.1 The Charnes, Cooper and Rhodes (1978) Model. Charnes, Cooper, and Rhodes (1978) extended

the model made by Farrell (1957) from a model of single outputs to a model of multiple outputs. The

formulation is presented in equations (12).

DEA Variables of the Primal

In the primal of model (12), zo is the efficiency score, if zo = 1 then agency 0 is efficient, if z o > 1 then

agency 0 could augment outputs in the proportion z o - 1. There are two sets of constraints; the output set

and the input set. The output set has coefficients y,7 describing the output r of agency j, with s outputs and

n agencies. The input set has coefficients x ij describing the input i of the agency j, with in inputs and n

agencies. Variables zo , 2 are the decision variables. Variable z o is the maximum proportional expansion

of outputs to achieve efficiency. Variables λj are the weights of a linear composite of the inputs of the

agencies j to reproduce the inputs used by agency 0. At the optimal solution those A # 0 identify those

efficient agencies that are the technological reference for agency 0.
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Figure 4 shows the role of the decision variables of the primal of model (12), X and z o . In the inputs

plane (left), the input of agency A is equal to a linear composite of the inputs of B and C, Xa = λc Xc +

bXb. In the outputs plane (right), the same linear combination applies to outputs B and C to build frontier

BC where zo multiplies the output of agency A is the necessary proportional augmentation of the output to

reach the frontier BC, zo Ya = c Yc + i1, λb Yb

Figure 4 Decision Variables of DEA

DEA Variables of the Dual

In the dual of model (12), a set of constraints normalizes the outputs of agency 0 to 1.00 to bound the

problem while the other set of constraints build several hyperplanes of linear production functions with the

maximum hyperplane, the binding constraint, describing the frontier. The variable u 1 of the dual is the price

associated to the slack of the primal constraint for y1 . If u 1 = 0 the constraint for y1 of the primal is not

binding since its slack is not zero. If u 1 # 0 the constraint for y 1 of the primal is binding since its slack is

zero. As a result, if the output y 1 of agency 0 increases by one unit, efficiency increases by u 1 units.

Figure 5 shows the hyperplane built by the dual of model (12) with its equation uy — wx = 0, where

u, W are the coefficients of the optimal piecewise linear production function. The value of the objective

function represents the proportional distance between the hyperplane that passes through the agency and

the hyperplane of the efficient frontier.
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Figure 5 Optimal Hyperplane of DEA

DEA Orientation

Figure 6 illustrates that DEA is output oriented if it follows path AB to increase outputs for achieving

efficiency, DEA is non-oriented if it follows path AC, and DEA is input oriented if it follows path AD to

reduce inputs for achieving efficiency.

Figure 6 Orientation of DEA
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Theoretical Framework of DEA

The theoretical framework of DEA is based on the radial distance function that relates observations to the

frontier planes of seemingly related variables. Seemingly related variables are those already considered so

by any theory. For example, the theory of the firm considers the production function as a relation between

inputs and outputs where more input corresponds to more output. Thus, constraint sets of outputs and

inputs of the primal of model (12) are consistent with the general agreement in the positive relation

between input and output. Similarly, the planes formed in the constraints of the dual of model (12) are also

consistent with the implicit linear production functions. Chang and Guh (1991) showed that the dual of

DEA implies a piecewise linear envelope and that for each agency the envelope acts as a piece of a linear

production function that gauges efficiency.

Information Provided by (Charnes, Cooper, and Rhodes 1978)

➢ Efficiency score. The efficiency score indicates overall efficiency. In the case of an output oriented

model, a score larger than one indicates insufficient production and the proportional excess over unity

indicates the proportional increase of outputs needed to achieve efficiency.

➢ Efficient Peers. Efficient peers are those efficient agencies that are technologically near the evaluated

agency. They are identified as those agencies with a lambda different than zero (X, 0).

➢ Improvement Path. The improvement path is the product of the outputs times the efficiency score

minus one plus the output slacks. It is the actual increase of output needed to achieve efficiency.

➢ Linear Production Function. The linear production function is uy — wx = 0 as shown in Figure 5. The

linear production function is a piecewise set of linear equations that relate outputs to inputs at the

production possibility frontier. The coefficients of the inputs are the shadow prices of the agency in

that they express the increase in the production of an output when the input increases in one unit.

Moreover, they are the value of marginal productivity of the input when the coefficient of the output is

unity and the rest of the outputs remain constant. Only those inputs whose constraints are binding in

the primal show a coefficient different than zero in the primal.
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➢ Returns to scale. In the case of output-oriented models, the indicator

the agency operates in decreasing returns to

the agency works in increasing returns to scale.

3.3.1.2 The Banker, Charnes and Cooper (1984) Model. Banker, Charnes, and Cooper (1984) assumed

variable returns to scale but recommended that the decision on returns to scale be based on previous

knowledge of the transit industry. They added a convexity constraint 	 = 1 to the primal of the model
,=1

as indicated in equations (13) to adjust the frontier according to the size of the agency. The dual of the

model augments the unconstrained w 0 that indicates that the implicit frontiers are locally significant to the

observations.

Banker, ,Charnes,Cooper 1984
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Information Provided by (Banker, Charnes and Cooper 1984)

> Scale efficiency score. The scale efficiency score is the ratio of efficiency scores of model (12) to

model (13); z0— where z0 , h0 are the objective functions of the models (12) and (13) respectively
h0

indicating the degree of productivity efficiency caused by the scale of production.

> Technical efficiency score. The technical efficiency score is the variable ho of model (13). It indicates

the degree of productivity efficiency caused by the technical skills of the agency.

3.3.1.3 Applications of DEA to Fields Other than Productivity Analysis. DEA has been used to estimate

efficiency of site location based on travel distance and extent of coverage of sites (Desai, Haynes, and

Storbeck 1994; Desai and Storbeck 1990). More recently, DEA has selected dispatching rules for

scheduling problems in manufacturing and servicing systems (Braglia and Petroni 1999; Ho and Lau 1999).

Haskel and Sanchis (2000) applied DEA to create a bargaining model between labor and management

under certain market conditions. Reinhard, Lovell, and Thijssen (2000) extended the models that evaluate

environmental efficiency with multiple environmentally detrimental inputs. Innovative contributions in

transportation include (Nozick, Borderas, and Meyburg, 1998) that used parking availability and proximity

to transit to evaluate travel demand programs. Also, DEA has used attributes of network links to evaluate

efficiency of non-dominated paths on a road network (Cardillo and Fortuna 2000). A common feature of

the innovative applications of DEA is the positive correlation of two groups of variables that measure the

distance function between the observation and the frontier, a feature that can be extended to operating

conditions and productivity.

3.3.2 DEA in Heterogeneous Conditions

The following text makes the critique of the current methods of productivity analysis in heterogeneous

conditions.

3.3.2.1 Conventional DEA. Conventional DEA explicitly assumes an industry working in homogeneous

operating conditions (Golany and Roll 1989; Boussofiane, Dyson, and Thanassoulis 1991). However,

conventional DEA has been applied to transportation by authors who say that they did not consider

operating conditions in order to compare different methods of DEA because they would bias the
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comparison of methods. For example, Forsund (1992) estimated the efficiency of Norwegian ferries to

compare DEA to stochastic frontier analysis. Tofallis (1997) tested a new method to improve the

discriminating power of DEA in small samples of airlines by estimating input-specific DEAs in cases of

non-substitutable inputs. Therefore, conventional DEA has been applied only to compare methods of

estimation and because operating conditions were not necessary.

3.3.2.2 Two-Step DEA. In 1988, Ray observed that different levels of operating conditions behave like

different levels of technology because by varying their values they build productivity frontiers. He

concluded that operating conditions cannot be included as inputs but that they can be related to efficiency

scores in a separated Tobit regression at a second step. Tobit regression is a special Ordinary Least Squares

applied to a dependent variable is bounded as efficiency is bounded between 0 and 1.00. Oum and Yu

(1994) found that railways of developed countries with higher subsidies were less efficient. Good, Roller,

and Sickles (1995) found that European airlines benefited from deregulation with large productivity gains.

Kerstens (1996) found that ownership and subsidies were important to determine efficiency of French

transit agencies. Nolan (1996) made a similar study for the US bus transit firms and he found fleet age

significant in explaining technical efficiency followed by maintenance practices and operating subsidies.

Gillen and La11 (1997) in their study of American airports found that reducing the movements of general

aviation improved the efficiency on the airside part of the airport, while expanding the number of common

gates improved terminal efficiency. Chapin and Schmidt (1999) found that mergers permitted US rail

freight agencies to operate track networks more efficiently but that total productivity gains between

merging firms and non-merging firms were not different. In summary, Two-Step DEA identified operating

conditions with sources of inefficiency.

However, the second step does not consider internal inefficiency and therefore it produces a

specification error. Also, firm-specific dummies overlap internal inefficiency with other non-controllable

effects. More importantly, Two-Step DEA creates a methodological inconsistency between the

deterministic efficiency score of the first step and the stochastic efficiency score of the second step.
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3.3.2.3 Non-Discretionary Factors DEA. Non-Discretionary Factors DEA considers operating

conditions as if they were fixed factors. Banker and Morey (1986b) developed the model presented in

equations (14).

Banker, Morey - 1986b : Non - discretionary Factors, DEA - ND

Primal

max 00

subject to:

In model (14), y,, is the output r of the unit j, VD the group of discretionary outputs, vF the group of

fixed (non-discretionary) outputs, x the input (m inputs), y the matching multiplier, and 0 0 the

efficiency score of agency 0. The factor 0 0 multiplies only the discretionary outputs of agency 0 because

the agency is responsible for producing the discretionary outputs while maintaining the comparability of at

least similar levels of non-discretionary outputs. The model can also consider non-discretionary inputs.

Cook, Kazakov, Roll, and Seiford (1991) included snowfall for winter cost increases in efficiency of

highway maintenance patrols in Ontario, Canada. Obeng (1994) included subsidies to estimate the

efficiency of American transit firms, but Kerstens and Eeckaut (1995) discussed his work favoring Two-

Step DEA on the same issue. Cowie and Riddington (1996) used population density for the productivity

efficiency of European railways. Viton (1997) included speed and fleet age to estimate the productive

efficiency of American multimodal bus and demand response transit. Parker (1999) included ownership to

estimate technical efficiency of British airports.
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However, Non-Discretionary Factor DEA has been , contested in three areas. Yu (1998) found it

inaccurate because it achieved only a 25 percent correlation with the real efficiency score. Moreover,

adding inputs that are unnecessary increases artificially the estimated efficiency scores (Nunamaker 1985).

Additionally, operating conditions do not behave as inputs and therefore they cannot be included as fixed

inputs (Ray 1988). The three problems are related because the low empirical accuracy of Non-

Discretionary Factors may be caused by the overestimation caused by the inclusion of operating conditions

as unnecessary inputs.

3.3.2.4 Cluster Analysis DEA. There are three models of cluster analysis DEA. The first pre-assigns the

value of a categorical variable to a group and estimates DEA inside the group. The second applies cluster

analysis to form the groups. The third measures efficiency differences between groups called "programs".

The first model is the categorical variables model which assigns a value to each cluster and then includes

the agency if it belongs to the same group of the evaluated agency. This model is represented by equations

(15) (Banker and Morey 1986a).

Banker ,Morey —1986a : DEA and Cluster Analysis, DEA — CL

Primal

min z o

subject to :

In model (15), x is the input i of a total of m, y the output r of a total of s, A the multiplier of

agency j of a total of n, and z the efficiency score, S is a binary variable that activates the comparison of

those agencies of the same cluster. The multipliers Ai are activated by 5 if agencies are in the same
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cluster as the evaluated agency. An extension to model (15) related the value of the categorical variable to

values of operating conditions (Cook, Chai, Doyle and Green 1998). Rouse, Putterill, and Ryan (1997)

applied model (15) to estimate the managerial performance of highway maintenance in New Zealand.

The second model applies cluster analysis and uses its results to estimate DEA using model (15). This

model was developed in (Ruggiero, Duncombe, and Miner 1995) and applied in (Ruggiero 1996; 1998).

Chu, Fielding, and Lamar (1992) used it earlier when they estimated efficiency of American bus transit

agencies presented in the previous work of (Fielding, Brenner, and Faust 1985) on the basis of peak-to-

base-ratio, speed, and size. Charnes, Gallegos, and Li (1996) clustered Latin American airlines in two

groups depending on their environmental characteristics before applying DEA. Karlaftis (2000) clustered

American bus transit agencies by size with the objective to estimate returns to scale.

The third model called "program evaluation" compares efficiency of groups working under different

policy programs. This method uses tests of non-parametric statistics to determine if efficiency scores are

different between groups (Charnes, Cooper and Rhodes 1981; Carrington, Puthucheary, Rose and

Yaisawarng 1997; Ozcan, Watts, Harris and Wogen 1998; Bates 1997; Ozcan 1992).

Chan and Sueyoshi (1991) applied program evaluation to American airlines to measure the effect of

deregulation. Chang and Kao (1992) applied program evaluation to urban bus transit agencies of Taiwan to

measure the effect of ownership. Hjalmarsson and Odeck (1996) estimated productivity efficiency of trucks

in road construction and maintenance in Norway identifying sources of inefficiency. Cowie (1999) applied

program evaluation to Swiss private railways to estimate the effect of ownership on productivity. In all

applications, program evaluation measured the simultaneous effect of one but not the effect of several

operating conditions.

The caveat of the first and second models of cluster analysis DEA is that they reduce the effect of

heterogeneous conditions but that they do not eliminate differences within the cluster causing inaccuracy.

Moreover, since DEA applies to a smaller set of reference it raises the efficiency scores artificially. The

caveat of the third model applies for cases of only one operating condition but does not apply for the case

of many operating conditions.

3.3.2.5 Reversed Two-Step DEA. Reversed Two-Step DEA estimates the effect of heterogeneous

conditions and uses the results to adjust the inputs and outputs to estimate DEA in the second step of the
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model. Fried, Schmidt, and Yaisawarng (1999) applied a Reversed Two-Step DEA to American nursing

homes. The method has five stages; first, it calculates the traditional DEA to find the slacks of the inputs.

Second, it estimates the parameters of input slacks as a linear function of operating conditions. Third, it

uses the estimated equation to calculate the input slacks for each nursing home. Fourth, it calculates an

adjusted input, that is, the observed input plus the maximum estimated slack minus the slack estimated for

each nursing home. Fifth, the method runs DEA one more time using the adjusted inputs.

The combination of stochastic regression and deterministic DEA produces a methodological

inconsistency when it considers that efficiency is deterministic in DEA while it is stochastic in the Tobit

regression. Moreover, the regression between input slacks and operating conditions (second step) does not

consider sources of internal inefficiency (unknown variable) and therefore it has a specification error.

3.3.3 Conclusions on DEA

DEA has not yet developed an adequate model for operating conditions. The Reversed Two-Step DEA

could be extended with a sound but simple theoretical framework to link operating conditions and

productivity. In that way, the new method would avoid the specification errors of the Two-Step DEA, the

overestimation of the Non-Discretionary Factors DEA, and the overestimation and inaccuracy of the

Cluster Analysis DEA.

DEA has additional benefits that make it attractive for transit productivity analysis. It does not require

rigid assumptions regarding production technology or regarding efficiency distribution and it does not

require market prices of inputs or outputs (Oum, Tretheway, and Waters 1992). DEA is a simple approach

for the elevation of multiple outputs relative to other approaches that consider complex relations between

inputs and outputs as in the case of stochastic frontier analysis (Cooper, Seiford, and Tone 2000).

However, DEA has four limitations. First, DEA does not consider stochastic events and therefore

DEA cannot be tested for statistical significance. Second, DEA is sensitive to outliers, so that unusually

good performance of a single unit can push the production frontier to levels that may expose DEA to

inaccuracy. Third, it has been observed that the higher the number of inputs or outputs, the higher the

efficiency scores. Consequently, unnecessary factors increase the general level of estimated efficiency
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artificially (Nunamaker 1985). Fourth, overestimated efficiency occurs after partitioning a sample because

each partition has a lower number of evaluated agencies.

3.4	 Conclusions of the Literature Review

After reviewing the current methods for transit productivity analysis, it was found that all methods have

limitations to measure efficiency in heterogeneous operating conditions and therefore it is necessary to

develop a new model. Since DEA has more advantages to be applied to transit, the new model will build on

DEA. Since the Reversed Two-step DEA estimates first the effect of heterogeneous conditions and later the

productivity efficiency, the new model will build on the Reversed Two-Step DEA.



CHAPTER 4

THE NEW MODEL

4.1 Objectives and Assumptions of the New Model

4.1.1 Objectives of the New Model

The new model aims to accomplish four objectives. First, to extract the effect of heterogeneous conditions

from productivity efficiency by using two steps, one to estimate the effect of heterogeneous conditions and

the other to estimate productivity efficiency. Second, it intends to avoid specification errors caused by

absent variables by solving the apparent conflict of avoiding redundant operating conditions while

including all their effect. Third, to avoid inaccuracy caused by dummy variables intended to describe

internal inefficiency by isolating internal inefficiency in the last step. Finally, the new model aims to use

the theory of the firm to link inputs, outputs, and operating conditions in a sound framework. The adequacy

of the model is based on its assumptions and its internal coherence.

4.1.2 Assumptions of the New Model

4.1.2.1 Operating Conditions Build Multiple Production Frontiers. A technology level determines the

maximum outputs achievable by a given combination of inputs. Therefore, changes in technology will shift

the production frontier (Emery 1984). Similarly, a bundle of operating conditions determines the maximum

outputs achievable by a given combination of inputs such as changes in operating conditions will shift the

production frontier (McFadden 1978). Ray (1988) adopted this approach and applied it to DEA, and this

formulation is the departing point of the development of the new model.

Let the observed production function be a multiplicative and separable function of inputs and

operating conditions working at the efficient frontier. Let the industry have n agencies. The generic agency

j produces 	 observed units of a single output by using a bundle of s inputs working at a bundle of q

operating conditions. Let the s-element vector x be the inputs of the firm. Let the q-element vector c be3

the operating conditions affecting the output. Equation (16) is the observed production as a function of

inputs and operating conditions.

41
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Assume that two efficient and identical agencies, j and h, have the same bundles of inputs,

but produce different levels of outputs, 313. # yh , due to differences in operating conditions,

Equal levels of outputs 	 = j); could only be produced at equal levels of operating conditions,

therefore the formulation allows for shifts in the productivity frontier caused by changes in operating

conditions. Let isolate the effect of the operating conditions c in the observed production of equation3

(17).

Where 3)-- is the observed output and f(xj)b  is the production function of the equivalent output

produced if agency j worked at a bundle of operating conditions called "base" expressed by "b". If

8b (Cj)= 1 for all j agencies, then, the output is the same at both bundles of operating conditions, j and b.

If δb(cj)# 1 the effect of operating conditions acts as a proportional technical change. Expression (18)

converts the observed output to an equivalent output produced at operating conditions "base".

Let C 3 e A such as A is the set of all admissible vectors of operating conditions of agency j.

Assume that 0<=δb(cj )<=M M where M a big number, for any C 1 E A, and therefore,

bounded and positive. After that, let define yj = f(xj)b  the equivalent output of the agency j if its

operating conditions were c b , the vector of operating condition "base". Expression (19) illustrates the

meaning of multiplier δ b(cj) in the relation between output produced at the operating conditions j and b.
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, then, as a result of expression (19), efficient operations

y j represent productivity frontiers y' pi at levels that depend on c in an orderly manner, and
x
i

therefore, different bundles of operating conditions build different production frontiers.

4.1.2.2 Effects of Operating Conditions Are Independent of Scale. This assumption ensures that the

scale of the agency and the size of the city produce differentiated effects on productivity. Large agencies

can benefit from centralized planning or attract more riders with a more extensive network. On the other

hand, large cities have different levels of traffic congestion or downtown employment than small cities. The

independence assumption ensures that the effect of operating conditions does not vary with the size of the

agency and avoids a special value of δb(cj ) for each scale of production. The following text traces the

consequences of this assumption.

Let the production function be the relation of a single output to a single input in a linear function at

constant returns to scale. Let two efficient agencies, j and h, work at the same operating conditions but at

different scale of production. Both agencies may express their observed outputs in terms of a production at

"base" operating conditions and in terms of the expression (20).

If expression (21) holds, the operating conditions at scale h would affect the production more intensely

than at scale j.

If production functions are linear with constant returns to scale, and, if "a" and "b" are technical

coefficients relating inputs to outputs, the equations of expression (22) hold for the observed output 5 -) and

for its equivalent at operating conditions "base" y .

Figure 7 shows that, if expression (21) holds, the production function y would not be linear because
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function would not be linear and there would not be constant returns to scale. The same conclusion holds

for all piecewise linear production functions in the case of variable returns to scale to maintain the same

linear properties of the production function. Therefore independence of heterogeneous conditions versus

scale ensures linear production functions, and that could also be proved for variable returns to scale at the

vicinity of the observations.

Figure 7 Scale and Operating Conditions

4.1.2.3 Effects of Operating Conditions Are Independent of the Level of Efficiency. The assumption of

independence between efficiency and the effects of operating conditions ensures the fairness of the analysis

because the evaluated agency does not control operating conditions. Let two agencies operate at the same

scale and at the same operating conditions but at different levels of efficiency, j at 100% efficiency and h at

0*100% of efficiency; 0 1. Even though efficiency levels were different the multipliers that convert

the outputs to operating conditions "base" are identical δbj=δbh .
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4.2 Formulation of the New Model

4.2.1 Selection of Operating Conditions

Factor analysis is a mutltivariate statistical method whose primary purpose is data reduction and

summarization. It addresses the problem of analyzing the interrelationships among a large number of

variables and explains these variables in terms of their common underlying dimensions called factors. By

using factor analysis the analyst can identify the separate factors being measured by a survey and determine

a factor loading for each variable on each factor. All variables are simultaneously considered. Each variable

is a linear function of an hypothetical set of factors and each factor is a linear function of the original

variables (Karson 1982; Hair, Anderson, Tatham and Black 1987). The selection of operating conditions

follows three steps; collecting operating conditions correlated with transit productivity, applying factor

analysis, and selecting those conditions that represent factors which are not correlated with other selected

operating conditions.

4.2.2 Data Envelopment Analysis Number One—DEA(1)

Model (23) presents the first DEA model relating transit productivity to operating conditions.

Variables ofDEA(1)

In the primal of model (23), j is one of the n agencies that evaluate the agency 0, 0 is the evaluated agency

that prior formulations associated to operating conditions "base". In this model "base" is replaced by the

subscript 0 to describe the evaluated agency. k is one of L productivity ratios such as TRIPS/loper or
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VRM/cars (see Appendix B for variable abbreviations), L is the product of m and s, m being the number of

inputs and s the number of outputs, t is one of q operating conditions, and 00 is the distance function

between the observation and the productivity frontier at operating conditions similar to 0, 00 1.00

because the frontier cannot exist below observed productivity. DEA maximizes 00 because it expresses the

radial extension from the observation to the frontier. λj is the contribution of j to reproduce the operating

conditions and productivity ratios of agency 0 with one linear composite of operating conditions and one of

productivity ratios of efficient agencies, respectively. pko,pkj are the productivity ratios k of agencies 0

and j, respectively, cto , ctj are the operating condition t of 0 and j, and Dkk0Ø0 is the productivity

benchmark achievable at operating conditions similar to 0. In the dual of model (23), u k and w, are the

dual prices associated with the slacks of constraints of productivity k and of operating condition t of the

primal, respectively.

Constraints of DEA(1)

reproduces the operating condition t of agency 0. The constraint

normalizes the productivity of agency 0 to unity. The set of constraints

is the binding constraint that builds the frontier plane of operating conditions

with productivity benchmarks, and I c row, is the objective function that measures the distance from the
t=i

productivity of 0 to the productivity benchmark.

Information Provided by DEA(1)

)=. Productivity Benchmark, pk0Ø0kk0Ø0 in the primal of model (23). It is the maximum productivity

achievable by agency 0 working at operating conditions 0.
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➢ Distance to the Frontier, 00 in the primal of model (23). It multiplies the productivity of 0, po , to

reach the frontier at the operating conditions of agency 0.

➢ Productivity Peers, those agencies j such as j > 0 in the primal of model (23). Those agencies j that

achieve the maximum productivity at operating conditions similar to 0.

➢ Linear Observed Relations Productivity-Operating Conditions, Epkj uk —Ec,w t 0 from the
k=1 	 t=1

dual of model (23). It is the binding constraint that calculates productivity benchmarks at given

operating conditions.

➢ Transforming Multiplier, 6 	 00 Pko . It is the ratio between the productivity benchmarks of two
0jPk,

agencies working at different operating conditions When the 	 multiplies j it transforms the

observed output 	 into the equivalent output y j produced at operating conditions 0. If δj > 1,

agency j is working at less advantageous operating conditions than agency 0. If δj < 1 then j is

working at more advantageous operating conditions than agency 0.

olio
➢ Advantage Factor of Operating Conditions, 	 It indicates the advantage of operating0 	

conditions of agency 0 relative to the operating conditions of the transit industry. If 75 0 > 1, agency 0

is working in more advantageous conditions than the industry. If 6.0 < 1, 0 is working at less

advantageous conditions than the industry.

Connection Between DEA(1) and DEA(2) by using Transforming Multiplier 8

Let one observed output be 	 = 	 , e j ,c j ), where x j is the input vector of agency j, e j is the

efficiency level of agency j, and c is the vector of operating conditions of agency j. In expression (24) let

the observed output of j be a composite of three parts (x , e j ,c j )that are separable and multiplicative.

The first component depends on the level of inputs yjfrontier of j 
(X ) , the second depends on the level of
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efficy ofefficiency y cien
j 	(ej)

, 
and the third depends on the operating conditions of agency j relative to

agency 0 y conditions of j lo
 j C )'

4.2.3 Data Envelopment Analysis Number Two—DEA(2)

Model (25) is the primal of model (12) incorporating expression (24). Since the first set of constraints

conditions of j loincludes the term yj 	the linear composite of outputs would not reproduce the output of the

evaluated agency and therefore the model cannot estimate efficiency properly. Note that

conditions of 0 1 0	 \
Yo 	 kco = 1 and it does not appear in model (25). The objective function 19 0 is the efficiency

score of agency 0.

constraints can not be used. Instead, model (25) is replaced by model (26) by including δj the multiplier

that transforms observed outputs of j to equivalent quantities of outputs produced at operating conditions 0.
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In other words, the observed outputs of model (25) are replaced with equivalent outputs as if they were

produced at operating conditions of agency 0. Model (26) replaces model (25) with a formulation that

considers all equivalent outputs at operating conditions of agency 0. One more time, notice that g o = 1 by

definition of the transforming multiplier.

The Meaning of Transforming Multiplier

In expression (24) the multiplier δj eliminated the productivity difference between j and 0 caused by

heterogeneous conditions. Instead, in equation (27) δj is the proportional distance between productivity

frontiers at operating conditions 0 and j. In other words, it expresses the difference between the observed

output y and its equivalent produced at "base" operating conditions 0. In equation (28) the difference

between the equivalent outputs produced at different operating conditions is indeed the difference between

productivity ratios caused by heterogeneous conditions.
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In expression (29) the effect of operating conditions does not depend on scale and the optimal

productivity is unique at a given bundle of operating conditions. Therefore, the productivity of j at the

frontier at operating conditions of agency 0 equals the productivity of 0 at the frontier at the same level of

operating conditions.

In expression (30) 8 equals the proportional distance between the frontier projections of

frontier of 0  p frontier ofproductivity, 0 the objective function of DEA(1) of model (23), and 	 of	 the efficient

productivity at operating conditions of agencies 0 and j, respectively.

Figure 8 illustrates the concept of equation (30) of a unique difference of productivity ratios between

two agencies with independence of scale.
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Figure 8 Productivity Frontier versus Operating Condition

4.2.4 The Multiple Factor Industry

Case of Single Output and Multiple Inputs

Let the transforming multiplier Sj express the productivity differences between the operating conditions of

agency j and agency 0. Let be a single output and two inputs 1 and 2. In expression (31) assume that the

transforming multiplier δj applies for both inputs.

In expression (32) productivity is expressed in ratios of output to inputs.

In expression (33) the level of output disappears from the equation.
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Equation (34) describes the particular case of a unique technique of production for both agencies and

therefore, it is a contradiction that 8j holds for all techniques.

Thus, δj would hold only for one input at a time unless Sj changes to be input-specific Su and that

it changes place from the output set of constraints to the input set of constraints using the value of its

inverse Su l as seen in the adjusted DEA(2) of model (35).

Adjusted DEA(2)

Case of Multiple Outputs and Multiple Inputs

Let expression (36) formulate a multiplier δi j that is common for two outputs, 1 and 2 of agency j, and two

bundles of operating conditions, 0 and j.

Expression (37) presents the productivity as ratios of outputs to inputs



In expression (38), the transforming multiplier δij holds for the two outputs only in the particular case

of fixed joint production of outputs as in expression (38) and therefore it is a contradiction that δij holds

for all output bundles. As an approximate alternative, let the transforming multiplier approximate the

average of the outputs and bounded to the observed range of productivity ratios, as in expression (39) and

expression (40). This dissertation chooses the simple approximation because any alternative for

approximation will not fix the inaccuracy of the model in the multiple output case.



Detailed Formulation of the New Model

Model (41) presents the new model with the expressions (39) and (40).

NEW MODEL
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Variables of DEA (2)

In model (41), 90 is the efficiency score of 0, y ro , yrj are the observed outputs r of 0 and j, and 2 3 is the

multiplier used to reproduce the inputs of 0 with a linear composite of the inputs of j. x 10 , xij are the

I
observed input i of 0 and j, respectively, and 	 the transforming multiplier that adjusts outputs to their

equivalent at operating conditions 0.
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The Global Effect of the Transforming Multiplier δ-¹ij`

So far the transforming multiplier δij-¹ has been applied to pairs of individual agencies, the following text

1
traces the global effect of the multiplier Si; on DEA with the matrix formulation of model (42).

Model (42) simplifies to model (43) where Q is the production matrix, 	 the variable vector, and

To' . the output vector of agency 0.

Let 1.B be the vector of basic variables that excludes those variables whose basic solution is zero.

Q B is the production matrix formed by the columns of those variables present in the basis of comparison.

and 6 the transforming multiplier of DEA(1).

inverse of the basic matrix, the multiplier matrix of the observed inputs and outputs.

Let v be the comparison weights with those product columns not in the basis, transformed as in the

The new dual prices are also modified by

Therefore, the efficiency function of (44) says that 8 is an additional multiplier of the output vector of

agency 0. Since intuitively 8 -B1 would make all agencies closer to agency 0 it is expected that there will be

a reduction of differences in productivity with a general increase of the estimated efficiency.
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4.2.5 The Name of the New Model

A special name will facilitate the reference to the new model henceforth. Since the new model applies two

sequential DEAs and applies accurately to a single output, the model can be named Two Farrell DEA (2F-

DEA) in reference to the single output model developed by Farrell (1957).

4.3 Algorithm of 2F-DEA

1) Let x, be the input i, y r the output r, c, the operating condition t, and pk the productivity k.

and select ctj. such as correlation ρpick > 0.5 for all agencies j.

3) Apply factor analysis to reduce the number of operating conditions to the most significant ones.

4) Estimate DEA(1) with model (41), calculate benchmarks 0313, , repeat [s (outputs) times n (agencies)]

times.

7) Estimate DEA(2) with model (41), repeat [n (agencies) times n (agencies)] times.

4.4 Conclusions on the New Model

The new model, 2F-DEA, consists in the application of DEA in two steps with accurate results for single

output and approximate results for multiple outputs. The model is the first that links both steps of DEA by

using the theory of the firm. The model 2F-DEA requires the additional work of running (s times n) more

simplex algorithms than the conventional DEA. Theoretically, the model DEA(2) includes the effect of

operating conditions as a separable multiplier that reduces the productivity differences between agencies to

those attributed only to productivity efficiency.



CHAPTER 5

THE RESULTS

5.1 Data and Software

5.1.1 National Transit Database

The National Transit Database is the primary source of data for inputs and outputs. It gathers the data of the

annual reports submitted by transit agencies to the Federal Transit Administration in compliance with the

Section 15 reporting system (US-DOT-FTA 1985-2000; US-DOT- UMTA 1989). This database provides

information for the following variables.

Outputs

Annual Vehicle Revenue Miles (000's) (VRM) measures the service supplied.

Annual Unlinked Passenger Trips (000,s) (TRIPS) measures the service utilized.

Inputs

Annual Labor Hours (000's) used in transportation and general administration (loper) and in maintenance

(lmain).

Annual Consumption of Energy (000,s Kilowatt Hours) (ever) expresses the electricity consumed by the

rail system.

Vehicles available for maximum service (cars) is the number of revenue vehicles at the maximum season of

the year, on the week and day that this maximum occurs, not taken at special event or extreme

circumstances. It includes spares, out of service vehicles, and vehicles awaiting maintenance. It does not

include vehicles for sale or emergency contingency use. For 1984 the figure is the active fleet.

Track length (miles) (rails) is the directional track length.

Stations (stats) is the number of stations, considered only for heavy rail.

5.1.2 National Transportation Atlas and Census Tracts Data

A complementary source of data is the National Transportation Atlas. It provides the geographic layout of

rail transit as presented in the example of Figure 9 that shows Chicago,s heavy rail network (US-DOT-BTS

2000). Appendix A contains the list of modifications made to the Atlas for this dissertation.
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Operating Conditions of the Urban Form

The operating conditions of the urban form refer to those socioeconomic variables describing the

environment at the vicinity of the rail stations. They are calculated by combining of the National

Transportation Atlas with the 1990 Census Tract Data within 0.3 miles of the stations, the served area of

rail systems. The following is the list of the variables obtained.

Population is the population residing in the served area.

Household income is the average household income in the served area.

Income per capita is the average income per capita in the served area.

Population density is population per square mile of the served area.

Household size is the average household size in the served area.

Household density is the number of households per square mile in the served area.

Vacant houses is the proportion of vacant houses in the served area.
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Autos per household is the number of autos divided by the number of households in the served area.

Autos per capita is the number of autos divided by the population residing in the served area.

Rush hour concentration is the proportion of workers leaving for work, using a motorized mode (transit or

auto), during rush hour in the served area. One variable corresponds to people going out to work from 6 to

9 a.m. and the other from 8 to 8:30 a.m.

Transit market share is the proportion of people choosing transit to go to work in the served area among

those that use motorized modes.

Population employment is the number of employed persons residing in the served area.

Density of employees is the population employment density of the served area.

Minority population is the number of Blacks and Hispanics living in the served area.

Poor population is the number of people below the line of poverty living in the served area.

Operating Conditions of the Network Form

The operating conditions of the network form are those that describe the graphical form of the network and

its spatial coverage. They are calculated from the National Transportation Atlas with operations available in

the GIS software. The following is the list of the variables related to the network form.

Comprehensive access is the proportion of metropolitan area served by rail.

Density of access is the metropolitan area per access point.

Density of network is the network length per square mile of metropolitan area.

Connectivity index is the observed number of links divided by the maximum possible number of links. It

indicates if network is spinal (1/3 to 1/2), grid (1/2 to 1/3), or delta grid (2/3 to 1).

Density of service is the number of vehicle revenue miles per track mile. It measures frequency and

capacity of the network.

Available circuits index measures the redundancy of the system. It is the ratio of the number of circuits in a

graph to the maximum possible circuits. It indicates if network form is spinal (0), grid (0 to '/2), or delta

grid (1/2 to 1).

Network complexity is the ratio links to vertices in the network.
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Stop spacing is the average length of the links of the network.

Circuitry index is the ratio of network distance to airline distance among access points.

5.1.3	 The State of the Nation's Cities

The State of the Nation's Cities is a database of the Center for Urban Policy Research at Rutgers, the State

University of New Jersey (Glickman, Lahr, and Wyly 1998). The collected variables may refer to the

metropolitan area (m) or to the center-city (c) and they can be expressed in absolute or in density units.

This database provides information for the following variables.

Population is the number of persons residing in the area.

Population employment is the employed population residing in the area.

Jobs is the total number of jobs located in establishments at center city.

Minority population is Black and Hispanic population residing in the area.

5.1.4 Annual Urban Mobility Study

The Urban Mobility Study, published by the Texas Transportation Institute of Texas A&M University

System, analyzes the nation,s highway transportation system by using data from several sources. The report

evaluates travel conditions and operations of the freeway and principal arterial street networks in 68

urbanized areas from 1982 to 1997. The source of data is primarily the Federal Highway Administration's

Highway Performance Monitoring System (HPMS) database with supporting information from various

state and local agencies (Texas A&M University System 2000). The following is the definition of the

congestion index.

Congestion Index is the Travel Rate Index (TRI), that is the average travel time in peak period divided by

the travel time in off peak period, in other words, the amount of extra travel time during the peak period

compared to free-flow travel. This measure considers days without crashes or vehicle breakdowns

calculating delay due to high traffic volumes on freeways and principal arterials.
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5.1.5 Absent Connectivity Data

Absent connectivity data refers to those variables that describe the degree of connection of the rail system

with other modes and agencies that are not included in this dissertation. Absent connectivity data at rail

stations includes the following. (1) Parking spaces, (2) street parking spaces, (3) rail transit connections, (4)

bus and shuttle-bus connections, (5) Dial-a-Ride and taxi-cabs, and (6) operating conditions of additional

connected zones.

5.1.6 Selection of Data Points

Some data points were not used in the analysis. Some systems did not report some of the variables for a

given year, reported them as zero, or recorded unusual productivity levels linked to tourism, opening years,

or major renovation years. Table 8 presents the non-selected data points.

Table 8 Non-selected Data Points
Heavy Rail 
Boston 1984
PATH 1992
Atlanta 1984, 1985, 1993
Los Angeles 1993

Total Data Points Used 179

Light Rail 
Boston 1984, 1987 and 1989
New Orleans 1984 to 1997
Newark 1985, 1986, 1987
San Diego 1986
Sacramento 1987
Baltimore 1992
Denver 1994
San Jose 1988
Dallas 1996
St. Louis 1994 
Total Data Points Used 152

5.1.7 Software, Degrees of Freedom, and Algorithm

Commercial software was developed by researchers in the field of DEA with the following capabilities;

maximum number of observations: 200, maximum number of variables: 15, maximum number of cells:

1500. To maintain an adequate degree of freedom, the minimum number of observations for the application

of DEA should be higher than the sum of the number of inputs plus the number of outputs (Ali 1990;

Golany and Roll 1989). The algorithm consists of the application of the simplex algorithm n times, one per
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agency. For each simplex, the initial feasible solution is 2 0 = 1.00 and zo = 1.00 (Sueyoshi and Chang

1989; Ali 1993; Pitaktong, Brockett, Mote, and Rousseau 1998).

5.2 Results of 2F-DEA

5.2.1 Rail Transit Systems

The application of 2F-DEA involved seventeen light and fourteen heavy rail systems. Table 9 shows that

light rails serve 1 million persons at walking-distance, 55 percent of them served by three systems; Boston,

San Francisco, and Philadelphia. Light rails produce 258 millions of passenger trips per year, 50 percent of

them produced by the aforementioned three systems. Henceforth, the short names of the second column

will represent the full names of the agency.

Table 9 Population and Ridership - Light Rail
System Short name Population (*) (1990) TRIPS (000's) (1997)
Boston-MBTA bos 165,771 67,000
San Francisco-MUNI sfr 191,753 36,738
Philadelphia-SEPTA phi 234,999 25,003
Los Angeles-LACMTA lan 92,621 22,659
San Diego Trolley sdi 56,002 18,287
St. Louis-Bi-State slo 13,895 14,486
Portland Tri-County MTD por 28,722 10,432
Dallas-DART dal 21,293 7,972
Sacramento-RTD sac 27,695 7,862
Pittsburgh-PAT pit 53,592 7,421
Buffalo-Niagara Frontier buf 20,037 6,919
Baltimore-Maryland MTA bal 28,949 6,772
Santa Clara County TD sjo 33,160 6,728
New Orleans Public Svc nor 40,977 5,605
Cleveland-RTA cle 33,168 5,337
Denver-RTD den 10,300 4,428
Newark-NJT new 32,918 4,294
Hudson-Bergen Light Rail HB 96,258 31,200
TOTAL (**) 1,085,132 257,940
(*) Served area within 0.3 miles of a station or a stop. (**) It does not consider Hudson-Bergen

Table 10 presents the population served and annual ridership of heavy rails. They serve 5.3 million persons

at walking distance, 84 percent of them served by three systems; New York, Washington, and Chicago.

Heavy rails transport 2,429 million passenger trips per year, 79 percent of them transported by the three

aforementioned systems. Henceforth, the short names represent the full names of the agencies.



VRM
TRIPS

Annual vehicle miles (000,s)
Annual  passenger boarding (000,s)
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Table 10 Population and Ridership - Heavy Rail
System Short name Population(*) (1990) TRIPS (000,s) (1997)
New York-CTA nyo 3,732,428 1,579,783
Washington-WMTA was 155,623 198,003
Chicago-CTA chi 512,234 151,010
Boston-MBTA bos 168,775 113,715
Atlanta MARTA atl 37,686 90,991
Philadelphia-SEPTA phi 247,894 86,245
San Francisco-BART sfr 112,617 80,490
New York-PATH path 99,990 67,998
Miami-Dade Cnty TA mia 41,699 14,020
Baltimore-MTA bal 41,142 12,600
Los Angeles-LACMTA lan 52,235 11,628
Lindenwold-PATCO patco 33,927 10,660
Cleveland-RTA de 33,797 7,695
Staten Island Rapid Trans sta 44,799 4,618
San Juan Heavy Rail SJ 31,300
TOTAL (**) 5,314,846 2,429,456
(*) Served area within 0.3 miles of a station.
(**) It does not include San Juan Heavy Rail

5.2.2 Inputs, Outputs, and Operating Conditions

This application considers the following inputs, annual labor hours dedicated to operation and

administration in (loper) in thousands, annual labor hours dedicated to maintenance in (Imain) in

thousands, annual kilowatt-hours of electricity in (ener) in thousands, number of rail cars (cars), track

length (rails), and number of stations (stats). This application considers two measures of outputs, annual

vehicle revenue miles in (VRM) in thousands, and annual unlinked passenger trips (TRIPS) in thousands,

they measure the same output from different approaches, VRM the capacity offered and TRIPS the capacity

utilized. The list of inputs and outputs is presented in Table 11.

Table 11 Inputs and Outputs
Factor	 Short name Units

loper
lmain
ener
cars
rails
stats

Outputs
1 Vehicle revenue miles
2 Unlinked passenger trips
Inputs
1 Labor in operations
2 Labor in maintenance
3 Energy
4 Vehicles
5 Track length
6 Stations (only heavy rail)

Annual labor hours in operation and administration (000,s)
Annual labor hours in maintenance (000,s)
Annual kilowatt hours of electricity (000,s)
Number of rail cars
Directional track miles
Number of stations
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Light Rail Operating Conditions

The selection of operating conditions consists of correlation analysis, factor analysis, and planning of the

estimation of DEA(1). Table 12 shows the correlation of productivity with twenty-one operating conditions

with values larger than or equal to 0.5. VRM productivity correlates with stop spacing and rush half-an-hour

concentration and TRIPS productivity correlates with density of service. Note that, contrary to the popular

belief that congestion is associated with higher productivity of rail transit, the congestion index is absent.

Table 12 Correlation between Operating Conditions and Productivity (*) - Light Rail
Operating
Conditions(**) loper

VRM per
lmain	 ener cars loper

TRIPS per
ener	 cars rails

1 Access density .58
2 Network density .58
3 Comprehensive

accessibility
-.51 .51 .53

4 Employment density .53 .69
5 Housing density .60
6 Population density .58 .65
7 Transit share .55 .67
8 Employment -.52 .53
9 Stop spacing .69 .74 .78
10 Density of service .54 .63 .63 .81
11 Employment density (m) .51
12 Jobs density .51
13 Population (c) .55
14 Employment (c) .56
15 Population density (c) .56
16 Employment density (c) .59 .52
17 Auto per household -.54 -.59
18 Auto per capita -.52
19 Income per household -.52 -.53
20 Income per capita -.50 -.54
21 Rush half-an-hour -.66 -.61 -.50 -.63

Concentration
(*) Significant correlation is p 0.50 (**) (m) = metropolitan area, (c) = center city

Table 13 shows the results of factor analysis. Four factors explain 89 percent of the total variance of

the twenty-one operating conditions; served area conditions describing environment near the rail stations,

metropolitan area conditions describing the general environment of the city, car factor, and income and

rush hour concentration. From Tables 12 and 13 served area conditions associate with productivity of VRM

and TRIPS, metropolitan area conditions relate to productivity of VW and TRIPS with ener and rails, car
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factor correlates with TRIPS productivity only, and income and rush hour concentration factor associates

with VRM productivity only.

Table 13 Factor Analysis of Operating Conditions - Light Rail(*)
Operating conditions(**) (1) Served area (2) Metropolitan (3) Car factor (4) Income and rush

conditions(***) area conditions) hour concentration
(89% of variance) (34%) (26%) (15%) (13%)
1 Access density .95 .16 .15
2 Network density .95 .16 .15
3 Comprehensive

accessibility
.90 .31 .14

4 Employment density .78 .12 .45 .27
5 Housing density .77 .18 .54 .21
6 Population density .73 .32 .52 .13
7 Transit share .71 .63 .19
8 Employment .71 -.15 .47 .27
9 Stop spacing -.61 -.19 -.38
10 Density of service .66 .24 -.28
11 Employment density (m) .19 .97
12 Jobs density .24 .96
13 Population (c) .95 .12 -.23
14 Employment (c) .95 .11 -.24
15 Population density (c) .55 .75 .31 .12
16 Employment density (c) .63 .69 .28 .12
17 Auto per household -.29 -.24 -.80 .25
18 Auto per capita -.13 -.49 -.72 .37
19 Income per household .23 -.28 .88
20 Income per capita .20 -.28 .87
21 Rush half-an-hour

concentration
.35 .54 .66

(*) Shows significance larger or equal than 0.1 (smaller or equal to -0.1)
(**) (m) = metropolitan area, (c) = center city
(***) Served area = within 0.3 miles of stops

Table 14 presents the selected seven operating conditions that are highly correlated with productivity,

with one operating condition per factor, and with no correlation between selected operating conditions.

Table 14 Selected Operating Conditions - Light Rail 
Selected operating condition
9 Stop spacing
13 Population (c)
20 Income per capita
21 Rush half-an-hour
concentration
10 Density of service
16 Employment density (c)
17 Auto per household 

Output Input 
VRM loper, lmain, cars
VRM ener
VRM ener
VRM	 loper, lmain, cars

TRIPS	 loper, ener, cars, rails
TRIPS ener, rails
TRIPS loper, ener 

Factor 
(1) Served area
(2) Metropolitan area
(4) Income and concentration factor
(4) Income and concentration factor

(1) Served area
(2) Metropolitan area
(3) Auto factor   
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Table 15 re-orders Table 14 to present the estimation plan for eight DEA(1) models, four of VRM

productivity and four of TRIPS productivity. Note that VRM per rails and TRIPS per lmain do not appear to

be affected by operating conditions of light rail.

Table 15 Estimation Plan for DEA(1)  - Light Rail 
Output	 Input	 Operating condition	 Short name
VRM 	 loper 	 Stop spacing 	 Stopsp

Rush half-an-hour concentration 	 Rushalf
lmain 	 Stop spacing 	 Stopsp

Rush half-an-hour concentration 	 Rushalf
ener 	 Population cc 	 PopCC

Income per capita 	IncoPC
cars 	 Stop spacing 	 Stopsp

Rush half-an-hour concentration 	 Rushalf
TRIPS 	 loper 	 Density of service 	 Densery

Autos per households 	AutoPH
ener 	 Density of service 	 Densery

Autos per households 	 AutoPH
Employment density (c) 	 EmpCCD

cars 	 Density of service 	 Densery
rails 	 Density of service 	 Densery

Employment density (c) 	 EmpCCD

Heavy Rail Operating Conditions

The selection of operating conditions of heavy rail follows the same process followed for light rail. Table

16 shows that productivity correlates with twenty-seven operating conditions with coefficients larger than

or equal to 0.5. Productivity of the inputs rails and stats correlates with several operating conditions, both

are the fixed inputs of the rail network. Productivity of cars does not correlate with any of the operating

conditions, and density of service correlates with several TRIPS productivity ratios.
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Table 16 Correlation between Operating Conditions and Productivity (*) - Heavy Rail
Operating conditions(**)

loper
VRM per
rails stats loper

TRIPS per
lmain 	 ener rails stats

1 Jobs Density (c) .53
2 Employment (c) .53
3 Employment density (m) .53
4 Population (c) .52
5 Employment density (c) .55 .52
6 Population (m) .53 .52
7 Jobs .55 .54
8 Employment (m) .52 .52
9 Transit share .83 .51 .81 .76
10 Population .77 .69
11 Employment .78 .69
12 Density of network .76 .73
13 Density of service .54 .50 .60 .88 .77
14 Population density .88 .82 .58
15 Comprehensive

accessibility
.63 .68

16 Housing density .88 .82 .68
17 Employment density .89 .83 .71
18 Household size -.56 -.64
19 Rush half-an-hour .65 .63 .51 .65 .67

Concentration
20 Income per capita .68
21 Network complexity .76 .76 .50 .52 .65 .80
22 Connectivity index .52 .59
23 Auto per capita -.65 -.65
24 Auto per household -.72 -.70 -.63
25 Circuit availability .61 .74 .53 .81
26 Density of access .59
27 Stop spacing .61 .50
(*) Significant correlation is p 0.50
(**) (m) = metropolitan area, (c) = central city

Table 17 shows the results of factor analysis. Five factors explain 94 percent of the total variance of

operating conditions; metropolitan area conditions, served area conditions, income and rush hour

concentration, car factor, and stop spacing. From Tables 15 and 16, metropolitan area conditions associate

with rails productivity while the served area conditions relate with rails and stats productivity, although

density of service associates also with other TRIPS productivity. Income and rush hour concentration

correlates with productivity of both outputs and several inputs, car factor relates with rails and stats

productivity, and stop spacing factor associates with VRM productivity.
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Table 17 Factor Analysis of Operating Conditions - Heavy Rail
Operating conditions(*) (1) Metropo (2) Served area (3) Income (4) Car (5) Stop

litan area (4,4) and rush hour
concentration

factor spacing

(94% of variance) (30%) (24%) (15%) (13%) (11%)
1 Jobs Density (c) .91 .29 .18
2 Employment (c) .91 .28 .21 .15
3 Employment density (m) .91 .30 .19
4 Population (c) .91 .28 .20 .15
5 Employment density (c) .85 .30 .21 .13 .11
6 Population (m) .79 .22 .26 .12 .42
7 Jobs .77 .21 .33 .39
8 Employment (m) .73 .20 .32 .44
9 Transit share .56 .43 .47 .45 .17
10 Population .25 .95 .13
11 Employment .26 .95 .13
12 Density of network .32 .82 .12 .37
13 Density of service .29 .78 .42 .26
14 Population density .43 .76 .18 .41 .17
15 Comprehensive

accessibility
.34 .73 -.14 .10 .52

16 Housing density .45 .63 .32 .52 .14
17 Employment density .50 .60 .34 .50 .12
18 Household size -.91 -.27 .13
19 Rush half-an-hour

concentration
.14 .33 .87 .13

20 Income per capita .45 -.12 " .83 .19
21 Network complexity .37 .31 .56 .27 -.27
22 Connectivity index .38 -.21 .26 .80 -.19
23 Auto per capita -.14 -.51 -.79 -.24
24 Auto per household -.47 -.40 -.73 -.18
25 Circuit availability .44 .49 .62 -.28
26Density of access -.22 -.20 -.88
27 Stop spacing -.25 -.26 -.87
(*) (m) = metropolitan area, (c) = center city.
(**) Served area is within 0.3 miles of stations

Table 18 selects four operating conditions using three criteria; (1) highest correlation index, (2) one

operating condition per factor, and (3) no correlation between selected operating conditions. Since the

operating conditions of factor (1) correlated with factor (2), none of factor (1) was selected.

Table 18 Selected Operating Conditions - Heavy Rail 
Operating condition	 Output Input
27 Stop spacing 	 VRM 	 loper, stats
17 Employment density VRM 	 rails
21 Network complexity VRM 	 stats 
13 Density of service 	 TRIPS	 loper, lmain, ener, rails, stats

Dimension
(5) Stop spacing
(2) Served area
(3) Income and concentration factor
(2) Served area
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Table 19 presents the plan to estimate eight DEA(1) models for heavy rail, three with VRM and five

with TRIPS productivity. Density of service is the surrogate of operating conditions related to all TRIPS

productivity ratios. Note that the productivity of cars is not present and it may indicate that the observation

of Demery (1994) that vehicle loading varies with socioeconomic conditions is not detected by the

considered operating conditions.

Table 19 Estimation Plan for DEA(1) - Heavy Rail
Output Intput Operating condition Short name
VRM loper Stop spacing Stopsp

rails Employment Density EmpDen
stats Network Complexity NetCom

Stop spacing Stopsp
TRIPS loper Density of service Densery

lmain Density of service Densery
ever Density  of service Densery
rails Density of service Densery
stats Density of service Densery

5.2.3 Results of DEA(1)

Light Rail Productivity Benchmarks

Productivity benchmarks are the projections of the frontier estimated in DEA(1) after the application of the

plan of Table 19. Table 20 shows that Boston can produce 8.3 VRM/loper,, Philadelphia 6.6, and Los

Angeles 28.5. VRM productivity benchmarks are lower for Boston, San Francisco, and Philadelphia; but

higher for San Diego and Los Angeles.
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Table 20 Productivity Benchmarks for VRM- 1997 - Light Rail
VRM per Loper lmain ener cars

Condition (Stopsp & Rushalf) (Stopsp & Rushalf) (PopCC & IncoPC) (Stopsp & Rushalf)
bos 8.3 6.9 0.14 32.1
sfr 7.1 6.7 0.15 28.0
Phi 6.6 8.2 0.21 26.3
lan 28.5 27.0 0.25 88.8
sdi 28.5 27.0 0.21 88.8
slo 22.3 24.3 0.15 83.9
por 24.1 16.3 0.19 60.3
dal 24.2 24.8 0.21 84.8
sac 26.5 19.7 0.19 68.2
pit 13.2 11.1 0.15 36.4
buf 15.4 12.7 0.10 48.5
bal 15.4 15.8 0.17 66.1
sjo 24.9 18.8 0.17 64.1
de 13.7 12.4 0.07 48.1
den 21.7 14.9 0.20 49.2
new 22.3 13.7 0.28 50.1

VRM per ... Labor hour Labor hour Kw-h 000,s per car

Table 21 shows the productivity benchmarks in TRIPS. This time Boston, San Francisco, Philadelphia,

and Newark have higher benchmarks than Los Angeles or San Diego. Productivity benchmarks have

similar extreme differences in TRIPS productivity as in VRM productivity suggesting that operating

conditions have a balanced incidence on VRM and TRIPS.

Table 21 Productivity Benchmarks for TRIPS - 1997 - Light Rail
TRIPS per loper ener cars rails

Condition (Densery & AutoPH) (Denserv, AutoPH & (Denserv) (Densery &
EmpCCD) EmpCCD)

bos 88.6 2.8 520.9 1915
sfr 75.6 1.7 461.3 1145
phi 83.5 1.5 398.8 675
lan 70.1 1.2 420.1 772
sdi 68.3 1.0 442.7 686
slo 77.5 1.4 471.3 839
por 72.9 1.1 409.8 575
dal 64.0 0.5 391.9 472
sac 70.7 1.2 412.2 653
pit 69.4 1.1 402.8 606
buf 80.7 1.8 461.8 1045
bal 77.5 1.5 420.8 785
sjo 35.8 0.4 403.2 611
cle 66.0 1.0 378.8 424
den 88.6 0.9 422.5 425
new 88.6 2.2 476.7 1290

TRIPS per... Labor hour Kw-h 000's per car 000's per mile
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First Observation of DEA (1) for Multip/e Outputs

This observation confirms the adequacy of estimating individual productivity ratios rather than estimating a

group of productivity ratios in DEA(1). If DEA(1) includes all operating conditions in one model, some of

them would associate with productivity ratios that they do not affect. Figure 10 illustrates this observation

by showing the values of productivity benchmark VRM/loper found in three different estimations. The

lowest curve corresponds to the estimate of VRM/loper when DEA(1) includes eight productivity

benchmarks (four VRM productivity ratios and four TRIPS productivity ratios of Table 15), the

intermediate curve is the result of DEA(1) when it includes two productivity benchmarks (VRM/loper and

TRIPS/loper), and the highest curve is the productivity ratio VRM/loper when DEA(1) includes only that

ratio. Since the plateaus of productivity of the highest curve have more stable values corresponding to

relevant operating conditions and since the other curves show variability unrelated to the value of operating

conditions, the highest curve renders more realistic results. The corollary of a single productivity estimation

of DEA(1) is that benchmarks apply for single-output to single-input relations but the agency may not

necessarily reach all benchmarks simultaneously.

Figure 10 Ascending Profile of Benchmarks by DEA(1) - VRM/loper (maximum=100%) - Light Rail
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Light Rail Advantage Factor

The advantage factor indicates the higher (or lower) proportion of productivity achievable at the operating

conditions of the agency with respect to the average of the industry. Table 22 shows the advantage factor of

the evaluated light rail S; 0 , the average of the transforming multipliers of DEA(1)

factor δi0 indicates how advantageous are the operating conditions of 0 to produce high productivity. If the

index is greater than 1.00, like Loper Sacramento = 1.20, the operating conditions allow 20 percent higher15 

productivity of loper in Sacramento. If the index is less than 1.00, say Ener Buffalo = 0 .97 operating

conditions allow 3 percent below average of productivity of ener in Buffalo.

Boston, San Francisco, and Philadelphia have operating conditions with lower advantage factors in the

productivity of loper, lmain and cars although they have a better potential for ener and rails. Two systems,

Pittsburgh and Cleveland have all advantage factors below 1.00 indicating low advantage in all inputs. On

the other hand, four systems have all advantage factors greater than one, so that they have high advantage

in all inputs; Los Angeles, St. Louis, Baltimore, and Newark. The advantage factor summarizes the effect

of operating conditions on productivity.

Table 22 Advantage Factor of Operating Conditions - Light Rail
Agency loper lmain ener cars rails
bos 0.69 0.61 1.03 0.78 1.07
sfr 0.61 0.65 1.15 0.83 1.37
phi 0.53 0.71 1.22 0.65 0.92
lan 1.36 1.37 1.42 1.38 1.15
sdi 1.34 1.39 1.05 1.38 0.93
slo 1.27 1.32 1.07 1.42 1.14
por 1.25 1.12 1.04 1.11 0.90
dal 1.14 1.33 0.45 1.26 0.84
sac 1.20 1.22 0.95 1.16 0.80
pit 0.85 0.90 0.83 0.83 0.91
buf 1.08 0.98 0.97 1.07 1.22
bal 1.02 1.10 1.08 1.17 1.01
sjo 0.48 1.20 0.35 0.90 0.72
cle 0.88 0.97 0.60 0.96 0.80
den 1.37 1.07 0.98 1.00 0.75
new 1.39 1.03 1.87 1.11 1.31
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Second Observation for Multiple Outputs

The second observation refers to the inaccuracy tolerated by the transforming multipliers 8 in the case of

multiple outputs. The value of 	 holds for two outputs and therefore DEA(1) estimates two multipliers

per input,	 VRM  ,151:1 'Rips , described by the average of two productivity-ratios

A weighted average or a ratio of TRIPS per VRM, would not improve the approximation. Consequently,

δij is an approximation with three possibilities; (1) both partial deltas are either greater than one or both

are smaller than one, (2) one is greater than one and the other is smaller than one, or (3) both are near one.

Figure 11 shows that the transforming multiplier 6 conceals different effects for each output.

Figure 11 Consequences of the Approximation of δi j in the Multiple Output Case - Light Rail
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Heavy Rail Productivity Benchmarks

Productivity benchmarks determine the upper limits of productivity achievable at the operating conditions

of individual agencies. For example, Table 23 shows that Philadelphia can produce 13.7 VRM/loper that is

only 72 percent of the benchmark of San Francisco, 18.9 VRM/loper. San Francisco and PATCO are better

suited for high VRM productivity than New York and Philadelphia. In terms of VRM/loper, the highest

benchmarks correspond to BART and PATCO, in VRM/rails the highest benchmarks correspond to New

York and PATH, while in VRM/stats the highest benchmarks correspond to San Francisco and PATH. The

lowest benchmarks correspond to Philadelphia and Staten Island.

Table 23 Productivity Benchmarks for VRM - 1997 - Heavy Rail
VRM per loper rails stats

Condition (Stopsp) (EmpDens) (Stopsp & NetCom)
nyo 12.9 638 673
was 17.2 350 862
chi 15.9 402 752
bos 16.0 390 661
atl 16.9 299 895
phi 13.7 373 227
sfr 18.9 359 1264
path 16.7 611 1023
mia 17.0 320 676
bal 17.0 342 621
lan 16.1 476 319
patco 18.6 371 636
cle 17.0 311 665
sta 15.9 333 502
VRM per ... Labor hour 000's per mile 000's per station

Table 24 shows the TRIPS productivity benchmarks for heavy rail. They are lower for both Cleveland

and Staten Island while higher for both New York and PATH.
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Table 24 Productivity Benchmarks for TRIPS - 1997 - Heavy Rail
TRIPS per loper lmain ener rails stats

Condition (Denserv) (Denserv) (Denserv) (Denserv) (Denserv)
nyo 47.7 107.1 1.27 3421 5440
was 43.1 101.0 1.06 2047 3228
chi 46.1 106.2 1.16 2267 3714
bos 46.8 107.1 1.26 2477 4177
atl 46.8 107.1 1.24 2429 4071
phi 42.6 100.4 1.05 2024 3176
sfr 46.7 106.8 1.20 2357 3912
path 47.2 107.1 1.27 2892 5440
mia 33.7 73.5 0.81 1580 2195
bal 35.6 80.2 0.86 1675 2406
lan 38.9 91.8 0.95 1839 2767
patco 35.1 78.4 0.84 1650 2350
cle 19.0 42.0 0.35 400 638
sta 23.0 50.0 0.55 1049 1306

TRIPS per... Labor hour Labor hour Kw-h 000's per 000,s per
mile station

Heavy Rail Advantage Factor

The advantage factor summarizes the effect of operating conditions on productivity benchmarks. Table 25

shows that some factors are larger than one (higher productivity) and some smaller than one (lower

productivity). Four systems have all advantage factors smaller than one, Miami, Baltimore, Cleveland, and

Staten Island. Five systems have all advantage factors larger than one, Washington, Chicago, Boston, San

Francisco, and PATH. The application of DEA(2) finds efficiency levels by taking into account the

individual differences in operating conditions.

Table 25 Advantage Factor of Operating Conditions - Heavy Rail
Agency loper Imain ener rails stats
nyo 0.90 1.14 1.19 1.94 1.43
was 1.17 1.11 1.11 1.08 1.35
chi 1.07 1.13 1.16 1.24 1.24
bos 1.07 1.13 1.16 1.20 1.25
atl 1.17 1.12 1.12 0.97 1.33
phi 0.97 1.10 1.09 1.10 0.46
sfr 1.28 1.13 1.15 1.15 1.82
path 1.18 1.14 1.19 1.74 1.91
mia 0.94 0.89 0.90 0.86 0.90
bal 0.98 0.94 0.94 0.93 0.88
lan 0.85 0.89 0.89 1.03 0.39
patco 1.02 0.97 0.97 0.99 0.95
cle 0.56 0.55 0.41 0.30 0.32
sta 0.65 0.71 0.67 0.69 0.56
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5.2.4 Results of DEA(2)

Light Rail Efficiency

The model DEA(2) adjusts the value of inputs to calculate scores of overall, technical, and scale efficiency.

Table 26 shows that San Francisco and St. Louis are overall efficient. The least efficient agencies are Los

Angeles, Sacramento, Pittsburgh, and Cleveland with less than 80 percent efficiency. Most of the

inefficiency of Los Angeles is scale inefficiency. Most of the inefficiency of Sacramento, Pittsburgh, and

Cleveland is technical inefficiency. Light rail is 88.7 percent overall efficient, and it reaches 95.4 percent of

the possible scale efficiency and 93.2 percent of the technical efficiency. In general, the results show mild

levels of inefficiency equally balanced between scale and technical.

Table 26 Efficiency Level - 1997 - Light Rail
Agency Efficiency (%)

Overall	 Scale	 Technical
bos 99.6 99.6 100.0
sfr 100.0 100.0 100.0
phi 94.3 99.1 95.2
lan 78.1 78.9 99.0
sdi 93.5 93.5 100.0
slo 100.0 100.0 100.0
por 93.5 100.0 93.5
dal 89.3 96.4 92.6
sac 75.2 99.2 75.8
pit 70.9 96.5 73.5
buf 90.9 93.6 97.1
bal 86.2 96.6 89.3
sjo 90.1 93.7 96.2
cle 79.4 100.0 79.4
den 90.9 90.9 100.0
new 87.7 88.6 99.0
Average 88.7 95.4 93.2

Heavy Rail Efficiency

The levels of efficiency are similar in the case of heavy rail. Table 27 shows that the most efficient

agencies are New York, Atlanta, San Francisco, and PATH. The least efficient agencies are Washington

(88.5 percent), Chicago (75.8 percent), Los Angeles (88.5 percent), and Staten Island (84 percent). The

inefficiency of Los Angeles and Staten Island is mostly scale inefficiency, while the inefficiency of

Philadelphia, Boston, Washington, and Miami is mostly technical inefficiency. Heavy rail is 92.4 percent
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overall efficient and it reaches 94.8 percent of the possible scale efficiency, and 97.5 percent of the

technical efficiency. Levels of inefficiency are mild and similarly distributed between technical and scale.

Table 27 Efficiency Level - 1997 - Heavy Rail
Agency Efficiency (%)

Overall	 Scale	 Technical
nyo 100.0 100.0 100.0
was 88.5 97.3 90.9
chi 75.8 81.1 93.5
bos 89.3 99.1 90.1
atl 100.0 100.0 100.0
phi 92.6 100.0 92.6
sfr 100.0 100.0 100.0
path 100.0 100.0 100.0
mia 98.0 100.0 98.0
bal 90.1 90.1 100.0
lan 88.5 88.5 100.0
patco 92.6 92.6 100.0
cle 94.3 94.3 100.0
sta 84.0 84.0 100.0
Average 92.4 94.8 97.5

5.2.5 Efficiency in Absolute Figures

Efficiency in absolute terms indicates the dollar amount in improvement achievable in the hypothetical case

of total efficiency. Table 28 summarizes the potential for improvement in higher revenues and in its

equivalent in savings of resources. At 55 cents per trip, as the average revenue published in (APIA 2001),

light rail can improve efficiency by $ 2 million of revenue per year, mostly in Los Angeles, Sacramento,

and Pittsburgh. From the resources point of view the potential improvement is equivalent to 585 thousand

labor hours in operations and administration, 89 vehicles, and 70 track miles, totaling $ 55 million per year.

Of the $55 million only $ 14 millions correspond to expenses per year while the rest is annual capital cost,

sometimes considered as sunk cost.
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Table 28 Potential for Improvement - Light Rail
Agency Revenue ($ 1M) loper	 cars rails Cost ($ 1M)
bos
sfr
phi

0.012

0.096

4

36

1

8 4

0.160

3.380
lan 0.534 205 15 18 15.025
sdi 0.181 22 6 3 2.410
slo 0
por 0.056 18 2 2 1.570
dal 0.105 25 4 4 2.865
sac 0.253 43 9 9 6.115
pit 0.275 86 17 11 8.670
buf 0.045 10 2 1 0.870
bal 0.174 40 5 6 4.300
sjo 0.103 26 5 4 2.950
cle 0.134 52 10 6 4.900
den 0.032 10 2 1 0.870
new 0.044 8 3 1 0.880
Total 2.045 585 89 70 54.965

Prices / Unit Cost
Output
TRIPS $ 0.55 per trip
Input
loper $ 50,000 per person year
lmain $ 50,000 per person year
ever $ 63.70 per thousand of KW-h
cars $ 1.5M per car
rails $ 20 M per track mile
Sources of Prices / Unit Cost: (APTA 2001; CUTA 1993, Vuchic 1981)

Table 29 presents the potential for improvement for heavy rails. Revenues could improve in $ 79

million per year at an average fare of 96 cents per trip, as published by (APTA 2001), mostly by

Washington, Chicago, and Boston. From the resources point of view the inefficiency level of heavy rail is

equivalent to 2,161 thousands of labor hours in operations and administration, 474 vehicles, 99 track miles,

and 63 stations, summarized in $ 189 million per year. A total of $ 54 million correspond to annual

expenses while the rest is usually considered sunk cost.
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Table 29 Potential for Improvement - Heavy Rail
Agency Revenue ($ 1M) loper 	 cars rails 	 stats Cost ($ 1M)
nyo
was 21.859 428 	 88 21 	 9 38.105
chi 35.083 1192 	 278 50 	 34 100.730
bos
atl
phi
sfr
path
mia

11.681

6.127

0.269

	

238 	 44

	

126 	 26

	

7 	 3

8 	 6

6 	 6

1 	 1

17.340

11.460

1.355
bal 1.197 41 	 10 3 	 1 4.750
lan 1.284 37 	 3 1 	 1 2.230
patco 0.757 23 	 9 2 	 1 3.240
cle 0.421 22 	 3 2 	 1 2.855
sta 0.709 47 	 10 5 	 4 7.275
Total 79.388 2,161 	 474 99 	 63 189.340

Price / Unit Cost
Output
TRIPS $ 0.96 per trip
Input
loper $ 50,000 per person year
lmain $ 50,000 per person year
ener $ 63.70 per thousand of KW-h
cars $ 1.5 M per car
rails $ 40M per track mile
stat $ 5 A I per station
Sources for Price / Unit Cost: (APTA 2001; CUTA 1993, Vuchic 1981)

5.3 Comparison of 2F-DEA to Other Methods

5.3.1 Accuracy of Cluster Analysis

Clusters of Rail Transit

Cluster analysis is currently used to compare transit productivity in heterogeneous conditions because it

reduces the bias in favor of the agencies working at more advantageous conditions. Cluster analysis can be

adequate at given levels of accuracy and therefore the levels of accuracy should be presented to the reader

during the application of 2F-DEA. This dissertation uses cluster analysis with a hierarchical algorithm to

build four groups based on similarities and differences in operating conditions affecting productivity. Table

30 shows that cluster 2, Southern Californian systems, and cluster 4, Newark, are so small that they do not

support standard statistical analyses within the clusters. Accuracy should be calculated as the difference due

to operating conditions within clusters 1 and 3.
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Table 30 Typology of Light Rail
Cluster 1 2 3 4

Stop spacing (miles) 0.24 0.99 0.54 0.41
Rush concentration (%) 17 8 13 13
Income per capita ($) 16,700 9,400 15,600 9,500
Car ownership (per household) 0.9 1.2 1.2 0.7
Density of service (000' VRM per track
mile)

121 115 92 151

Employment density (workers per
square mile)

5,900 2,300 2,400 10,200

Members bos, sfr,
phi, den

lan, sdi slo, por, dal, sac,
pit, hub, cle

new

Observations 41 20 80 11

Table 31 presents the typology of heavy rail transit. The tests of empirical accuracy consist of the

estimation of productivity differences due to operating conditions within clusters 2 and 3.

Table 31 Typology of Heavy Rail
Cluster 1 2 3 4

Stop spacing (miles) 0.7 1.0 0.8 2.0
Density of service (000' VRM per track
mile)

1040 210 480 530

Employment density (workers per
square mile)

20,300 4,100 5,500 5,400

Members nyo, path sta, cle, patco,
lan, bal, mia

bos, phi, chi,
atl, was

sfr

Observations 27 73 65 14

Test of Clustering in Partial Productivity Analysis

Table 32 shows that stop spacing and density of service have statistically significant correlation with

productivity within the cluster.
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Table 32 Trends of Productivity versus Operating Conditions within Selected Clusters
Mode Cluster Productivity Operating condition Trend (t-statistics)
Light rail 1 VRM/loper Stop spacing 2.9 (1.9, 94%)

Light rail 3 VRM/loper Stop spacing 6.7 (5.2, 99%)

Light rail 3 TRIPS/loper Density of service 0.45 (10.5, 99%)

Heavy rail 2 VRM/loper Stop spacing 9.1 (4.7, 99%)

Heavy rail 3 VRM/loper Stop spacing 5.3 (6.5, 99%)

Heavy rail 2 TRIPS/rails Density of service 1.6 (4.9, 99%)

Table 33 shows that operating conditions caused a productivity difference of 5 to 36 percent of

inaccuracy to be accepted by the user of cluster analysis.

Table 33 Productivity Difference due to Operating Conditions within Selected Clusters
Sample Cluster Operating

condition
difference
(z)

Rate of
change
(a)

Maximum
productivity
difference
(p, = a*z)

Maximum
(best)
productivity
(P)

Productivity
difference owed to
"z"
(T — Pz /(2*P))

Light rail 1 Stop spacing 2.9 VRM/loper 5.72 5 %
0.19 0.54

Light rail 3 Stop spacing 6.7 VRM/loper 15.51 18 %
0.84 5.64

Light rail 3 Density of service 0.45 TRIPS/loper 73 36 %
118 53

Heavy rail 2 Stop spacing 9.1 VRM/loper 16.53 14 %
0.50 4.53

Heavy rail 3 Stop spacing 5.3 VRM/loper 14.68 12 %
0.68 3.59

Heavy rail 2 Density of service 1.6 TRIPS/rails 1278 18 %
254 	 460

Test of Clustering in Data Envelopment Analysis (DEA)

DEA was estimated at the interior of clusters 1 and 3 of light rail and clusters 2 and 3 of heavy rail using

the outputs VRM and TRIPS and the inputs loper, lmain, ener, cars, rails, and stats. Table 34 shows that

efficiency scores are correlated with operating conditions in both modes, light rail and heavy rail.
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Table 35 shows that there exists significant correlation between operating conditions and productivity

within the clusters, all are statistically different from zero.

Table 35 Trends of DEA Efficiency Score versus Operating Conditions within selected Clusters 

Finally, Table 36 estimates that operating conditions caused 13 to 27 percent of the differences of

productivity to be accepted by the user of cluster analysis.

Table 36 Efficiency Difference due to Heterogeneous Operating Conditions in Selected Clusters 
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5.3.2 Comparison of DEA-C (Conventional) to 2F-DEA

Light Rail

The conventional DEA (DEA-C) underestimates efficiency because it compares productivity against the

best practice at the most advantageous operating conditions. The amount of overestimation can be

calculated by the difference of efficiency between the scores of DEA-C and the scores of 2F-DEA. Table

37 shows that DEA-C underestimated 41 percent of Cleveland's efficiency, 43 percent on San Jose,s, 28

percent in Pittsburgh,s, and 30 percent in San Francisco,s. DEA-C underestimated 17.6 percent of the

efficiency of light rail on the average.

Table 37 2F-DEA versus DEA-C (Conventional) (%) - Light Rail 
Agency	 Difference DEA-C minus 2F-DEA	 DEA-C (conventional)

Overall	 Scale	 Technical	 Overall	 Scale	 Technical
bos 	 -7 	 -6.1 	 -1 	 92.6 	 93.5 	 99.0
sfr 	 -29.6 	 -2.8 	 -27.5 	 70.4 	 97.2 	 72.5
phi	 -39.4 	 -10.6 	 -33.1 	 54.9 	 88.5 	 62.1
lan 	 -2.9 	 -3.7 	 1 	 75.2 	 75.2 	 100.0
sdi	 0.8 	 0.8 	 94.3 	 94.3 	 100.0
slo 	 100.0 	 100.0 	 100.0
por 	 -12.9 	 -2.4 	 -10.9 	 80.6 	 97.6 	 82.6
dal 	 -36.4 	 1 	 -38.3 	 52.9 	 97.4 	 54.3
sac 	 -5.8 	 0.1 	 -5.9 	 69.4 	 99.3 	 69.9
pit 	 -28.3 	 0.5 	 -29.6 	 42.6 	 97.0 	 43.9
buf 	 -6.2 	 2.2 	 -8.6 	 84.7 	 95.8 	 88.5
bal 	 -15.8 	 -5.8 	 -11.8 	 70.4 	 90.8 	 77.5
sjo 	 -42.9 	 0.6 	 -46.2 	 47.2 	 94.3 	 50.0
cle 	 -40.8 	 -4.2 	 -39.1 	 38.6 	 95.8 	 40.3
den 	 -23.3 	 -17.9 	 -7.4 	 67.6 	 73.0 	 92.6
new 	 9.4 	 8.5 	 1 	 97.1 	 97.1 	 100.0 
Average	 -17.6	 -2.5	 -16.1	 71.2	 92.3	 77.1 

Heavy Rail

Table 38 shows that DEA-C underestimated the efficiency level of Philadelphia by 13 percent, Baltimore's

by 18 percent, PATCO,s by 14 percent, Cleveland's by 54 percent, and Staten Island,s by 40 percent. On

the average, DEA-C underestimated heavy rail efficiency by 11 percent.
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Table 38 2F-DEA versus DEA-C (Conventional) (%) - Heavy Rail 
Agency	 Difference DEA-C minus 2F-DEA	 DEA-C (conventional)

Overall	 Scale	 Technical	 Overall	 Scale Technical
nyo 	 100 	 100 	 100
was 	 -4 	 3 	 -6 	 85 	 100 	 85
chi 	 -2 	 -2 	 74 	 79 	 93
bos 	 -1 	 -1 	 88 	 99 	 89
atl 	 100 	 100 	 100
phi 	 -13 	 -1 	 -13 	 79 	 99 	 80
sfr 	 -1 	 -1 	 99 	 99 	 100
path 	 100 	 100 	 100
mia 	 -5 	 -5 	 -1 	 93 	 95 	 97
bal 	 -18 	 -18 	 72 	 72 	 100
lan 	 -4 	 -4 	 85 	 85 	 100
patco 	 -14 	 -14 	 -1 	 78 	 79 	 99
de 	 -54 	 -54 	 40 	 40 	 100
sta 	 -40 	 -40 	 44 	 44 	 100 
Average '	 -11 	 -10  	 -2	 81	 85	 96

5.3.3 Comparison of DEA-CL (Cluster Analysis) to 2F-DEA

Light Rail

Besides the reduction of the effect of operating conditions in cluster analysis, DEA-CL may overestimate

efficiency by considering a smaller sample for the comparison. Table 39 shows that DEA-CL

underestimates the efficiency of six agencies and overestimates the efficiency of four agencies. Overall, the

total efficiency of light rail was overestimated by 4.7 percent.

Table 39 2F-DEA versus DEA-CL (Cluster Analysis) (%) - Light Rail 
Agency (cluster	 Difference DEA-CL minus 2F-DEA	 DEA-CL (cluster analysis)

number) Overall	 Scale	 Technical	 Overall	 Scale Technical

-7.4
-10.5

1.0

6.5
-23.2

4.2
-6.8
2.9

-0.8
-23.2
-29.1

-5.3

bos (1) 	 0.4 	 0.4
sfr (1) 	 -8.3 	 -0.9
phi (1) 	 -11.0 	 -0.8
lan (2) 	 13.6 	 12.8
sdi (2) 	 0.8 	 0.8
slo (3)
por (3) 	 6.5
dal (3) 	 -28.3 	 -8.6
sac (3) 	 4.2 	 0.0
pit (3) 	 -11.7 	 -7.7
buf (3) 	 -1.6 	 -4.3
bal (3) 	 -6.8 	 -6.9
sjo (3) 	 -25.2 	 -4.7
cle (3) 	 -29.1
den (1) 	 9.1 	 9.1 
Average	 -4.7	 0.0

	100.0	 100.0 	 100.0

	

91.7 	 99.1 	 92.6

	

83.3 	 98.3 	 84.7

	

91.7 	 91.7 	 100.0

	

94.3 	 94.3 	 100.0

	

100.0 	 100.0 	 100.0

	

100.0 	 100.0 	 100.0

	

61.0 	 87.8 	 69.4

	

79.4 	 99.2 	 80.0

	

59.2 	 88.8 	 66.7

	

89.3 	 89.3 	 100.0

	

79.4 	 89.7 	 88.5

	

64.9 	 89.0 	 73.0

	

50.3 	 100.0 	 50.3

	

100.0 	 100.0 	 100.0
	84.0 	 95.5	 87.8



Difference DEA-CL minus 2F-DEA
Overall	 Scale	 Technical

DEA-CL (cluster analysis)
Overall	 Scale	 Technical

100 100 100
4 -5 9 93 93 100
7 2 6 83 83 99

11 1 10 100 100 100
100 100 100

-9 -3 -7 83 98 85
n.a. n.a. n.a. n.a. n.a. n.a.

100 100 100
98 100 98

10 10 100 100 100
12 12 100 100 100
7 7 100 100 100
2 2 96 96 100

-4 -4 80 80 100
3 2 1 95 96 99

Table 40 2F-DEA versus DEA-CL (Cluster Analysis) (%) - Heavy Rail
Agency (cluster

number)
nyo (1)
was (3)
chi (3)
bos (3)
atl (3)
Phi (3 )
sfr (4)
path (1)
mia (2)
bal (2)
lan (2)
patco (2)
cle (2)
sta (2) 
Average
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Heavy Rail

Table 40 shows that DEA-CL model overestimates efficiency of almost all agencies because the cluster

implies a lower number of observations. For example, clusters 1 and 4 (New York and San Francisco) will

always be efficient in their corresponding clusters because they are composed of one or two systems.

Cluster 2 (systems in medium-size cities) charges all overestimated efficiency to apparent "scale

efficiency". DEA-CL overestimated the overall efficiency of heavy rail by 3 percent.

5.3.4 Comparison of DEA-ND (Non-Discretionary Factors) to 2F-DEA

Light Rail

DEA-ND may overestimate efficiency caused by the inclusion of operating conditions as if they were

"inputs" or it may underestimate efficiency caused by the remaining effect of heterogeneous conditions in

DEA. The final result is unpredictable. Table 41 shows that DEA-ND did not find any technical

inefficiency in light rail and that DEA-ND overestimates technical efficiency, although it overestimates the

overall efficiency by 3.7 percent. This is due to the increase in the number of "inputs" from five to twelve

including stop spacing, density of service, rush-half-an-hour concentration of demand, income per capita of

served area, and employment density of center-city.
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Table 41 2F-DEA versus DEA-ND (Non-Discretionary Factors) (%) - Light Rail
Agency Difference DEA-ND minus 2F-DEA

Overall	 Scale	 Technical
DEA-ND (non-discretionary factors)
Overall	 Scale	 Technical

bos 0.4 0.4 100.0 100.0 100.0
sfr	 , 100.0 100.0 100.0
phi -4.8 4.8 94.3 94.3 100.0
Ian 21.9 21.1 1.0 100.0 100.0 100.0
sdi 6.5 6.5 100.0 100.0 100.0
slo 100.0 100.0 100.0
por -10.9 -17.4 6.5 82.6 82.6 100.0
dal -26.4 -33.5 7.4 62.9 62.9 100.0
sac 4.2 -19.0 23.2 79.4 80.2 99.0
pit 7.8 -17.8 26.5 78.7 78.7 100.0
buf -6.2 -8.9 2.9 84.7 84.7 100.0
bal 8.1 -2.3 10.7 94.3 94.3 100.0
sjo -27.6 -31.2 3.8 62.5 62.5 100.0
de -23.2 -43.8 20.6 56.2 56.2 100.0
den -22.4 -22.4 68.5 68.5 100.0
new 9.4 8.5 1.0 97.1 97.1 100.0
Average -3.7 -10.3 6.8 85.1 85.1 99.9

Heavy Rail

Table 42 shows that DEA-ND underestimates overall efficiency of almost all heavy rail agencies. The new

"inputs" were stop spacing and density of service. DEA-ND underestimated overall efficiency by 10

percent that is mostly contributed by scale efficiency.

Table 42 2F-DEA versus DEA-ND (Non-Discretionary Factors) (%) - Heavy Rail
Agency Difference DEA-ND minus 2F-DEA

1 Overall	 Scale	 Technical
DEA-ND (non-discretionary factors)
Overall	 Scale	 Technical

nyo 100 100 100
was -3 -3 85 97 88
chi 20 18 4 96 99 97
bos -1 -11 10 88 88 100
atl 100 100 100
phi -13 -21 7 79 79 100
sfr 100 100 100
path 100 100 100
mia -5 -6 93 94 98
bal -18 -18 72 72 100
lan -4 -4 85 85 100
patco -14 -14 78 78 100
cle -54 -54 40 40 100
sta -40 -40 44 44 100
Average -10 -11 1 83 84 99
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5.3.5 Comparison of DEA-2S (Two-Step) to 2F-DEA

Light Rail

The method DEA-2S (Two-Step) assumes that some operating conditions are sources of inefficiency and as

such they are correlated with the efficiency scores that result from the conventional DEA (DEA-C).

Consequently, a low correlation between efficiency and operating conditions indicates an empirical success

of 2F-DEA. Table 43 shows that operating conditions correlation with efficiency are noticeably higher for

DEA-C than for 2F-DEA. All correlation coefficients of 2F-DEA are lower than 0.5 suggesting that 2F-

DEA successfully extracted the effect of heterogeneous operating conditions from efficiency.

Table 43 2F-DEA versus DEA-2S (Two-Step) - Light Rail 
	Efficiency scores	 Inefficiency scores

Overall	 Technical	 Overall	 Scale	 Technical
2F- DEA-	 2F- DEA-	 2F- DEA-	 2F- DEA-	 2F- DEA-

DEA	 2S DEA	 2S DEA	 2S DEA	 2S DEA	 2S
Auto factor
Per capita 	 0.14 	 0.46 	 0.31 	 0.54 	 0.13 	 0.49 	 -0.45 	 -0.26 	 0.32 	 0.63
Per household 	 0.11 	 0.48 	 0.23 	 0.58 	 0.11 	 0.47 	 -0.31 	 -0.20 	 0.23 	 0.59
Income factor
Per household 	 0.22 	 0.54 	 0.18 	 0.60 	 0.00 	 0.50 	 -0.42 	 -0.16 	 0.17 	 0.60
Supply quality
Density of sere.	 -0.29	 -0.55	 -0.32	 0.47	 -0.31	 -0.57	 0.04	 -0.23	 -0.34	 -0.49 

Heavy Rail

Table 44 shows that operating conditions have higher correlation with DEA-C scores than with 2F-DEA

scores. Correlation with 2F-DEA scores have values lower than 0.5 suggesting that the effect of operating

conditions on productivity has been successfully extracted by DEA(1). Neither DEA-2S nor 2F-DEA

detects any correlation in the case of technical efficiency suggesting that the effect of heterogeneous

conditions in heavy rail cause apparent "scale inefficiency."
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Table 44 2F-DEA versus DEA-2S (Two-Step) - Heavy Rail
Efficiency scores

Overall	 Technical
2F-	 DEA-	 2F-	 DEA-

DEA	 2S	 DEA	 2S

Inefficiency scores
Overall	 Scale

2F-	 DEA-	 2F-	 DEA-
DEA	 2S	 DEA	 2S

Demand factor
Rush half-an-hour

Concentration -0.18 -0.68 -0.04 -0.44 -0.17 -.66 -0.21 -.60
Network factor
Circuit availability -0.31 -0.42 -0.13 -0.28 -0.33 -.51 -0.34
Network complexity -0.32 -0.58 -0.02 -0.23 -0.34 -.66 -0.44 -.68
Supply quality
Density of service -0.32 -0.65 -0.14 -0.40 -0.35 -.72 -0.35 -.64
Circuity index -0.15 -0.51 0.01 0.25 -0.17 -.52 -0.43 -.66

5.4 Application of 2F-DEA to Productivity Analysis

Transit productivity analysis estimates the maximum possible production given the available resources

determined by transit policy. Variables useful for policy include the returns to the consumption of one

input, returns to scale, substitutability between inputs, and the production function itself. Policies may

include increasing the use of those inputs that permit faster increases of the outputs, producing at the

optimal scale of the transit firm, decreasing dependence on one production technique, and maximizing the

effectiveness of additional funding to the transit industry.

5.4.1 Returns to the Consumption of One Input

Returns to the consumption of a single input are the changes of the marginal productivity of the input when

its consumption increases. This variable estimates the law of diminishing returns which states that, when

the quantity of one input increases, its marginal productivity decreases continually after a certain threshold.

The curve of the output as a function of input usually consists of three sections representing increasing,

constant, and decreasing returns to the scale. The more inputs that have values in the increasing returns to

scale region the more favorable will be to expand operations. Usually this is a characteristic cited to explain

the increase of production achieved by rail operations that use the track length more intensely. The returns

to scale for a single input is the change of marginal productivity and therefore it is the trend of the marginal

productivity when the quantity of the input increases. The method of calculating marginal productivity
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consists of taking the coefficients of the linear production function and calculating their trend with ordinary

least squares using a small sample. Since the application presented here has two outputs, two analyses are

possible.

Table 45 indicates that marginal production of trips will be decreasing by —0.013 trips for each

additional hour of labor in operations. Vehicle revenue miles on the other hand, will increase by 0.319 for

each additional hour of labor in operations. Light rail has increasing returns to scale with respect to energy

and decreasing returns with respect to rail tracks. Vehicles generate decreasing returns in the production of

trips and increasing returns in the production of vehicle revenue miles.

Table 45 Returns to Quantity of a Single Input (*) — Light Rail
Input

TRIPS
Trend of marginal productivity

VRM
loper -0.013 +0.319
lmain 0 -0.063
ener +0.000006 +0.00005
cars -0.16 +3.53
rails -3.78 -10.79
(*) Rate of change of the marginal productivity of the input when input increases.

Table 46 shows that heavy rail has increasing returns for both outputs not only with respect to energy

but also with respect to rail tracks. On the other hand, expanding labor hours in operation will always

produce decreasing returns. Notice that the expansion of stations generates increasing returns with respect

to trips but decreasing returns with respect to vehicle revenue miles consistent with the fact that the number

of stations affects operating speed when stop spacing is reduced below a threshold.

Table 46 Returns to Quantity of a Single Input (*) — Heavy Rail
Input

TRIPS
Trend of marginal productivity

VRM
loper -0.017 -0.0003
lmain +0.115 -0.0002
ener +0.0000001 +0.00000005
cars -0.237 +0.023
rails +9.35 +6.28
stats +16.93 -0.595
(*) Rate of change of the marginal productivity of the input when input increases
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5.4.2 Returns to Scale

Returns to scale compares the expansion of outputs to the expansion of inputs. The expansion of outputs

may be larger, equal, or smaller than the expansion of inputs corresponding to increasing, constant, or

decreasing returns to scale, respectively. The optimal size corresponds to the point of scale efficiency, right

at the point of constant returns to scale. The proposition that an agency should break down in systems of

less than 150-buses each, to increase the efficiency of the system was based on returns to scale arguments

(Naciones Unidas-CEPAL 1992). In another application, the 1947 Transport Act that nationalized the

British Railways assumed that central planning of a large organization increased efficiency over several

independent private railways (Gwilliam 1964). Policy makers sometimes break down giant organizations in

smaller more efficient units as in the case of the Japanese Railways (Hughes 1994). The method of

z o
obtaining returns to scale consists of estimating scale efficiency with the ratio — (Charnes, Cooper and

ho

Rhodes 1978 efficiency score to Banker, Charnes and Cooper 1984 efficiency score of formulas (12) and

(13)). Another way to check optimal size is with the constant term w o calculated in the dual of the model

(12). The optimum size occurs simultaneously with a change in sign of the constant w o . Scale efficiency

means that the company may be technically efficient, but if it operates in the non-optimal region, the loss of

productivity is the percentage of scale inefficiency. Two optimal sizes are expected, one for trips and the

other for vehicle revenue miles, both optimal sizes indicate the existence of two techniques of production,

one technique intensely producing trips and the other technique intensely producing vehicle revenue miles.

A technique of production is defined in this dissertation as a particular set of technical ratios like labor per

vehicle, stop spacing, and others.

Figure 12 shows the optimal size for light rail. The two upper curves describe the envelope of scale

efficiency, with respect to the right-hand scale, of two groups of agencies versus network length. Following

the leaders of each group, San Francisco and St. Louis, the rest of the agencies have been assigned to two

groups, traditional and newer systems. The lower curve represents the constant term of the linear

production function. The optimal size occurs when this curve crosses the zero level. One optimal size

corresponds to the first crossing at a network of approximately 35 miles. Systems of that size usually

operate fleets of 30 to 50 vehicles. Another optimal size corresponds to the second crossing at a 50-mile
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network (135-vehicle fleet). The optimal sizes are associated with different system reliance on trips, with

San Francisco experiencing more intense trip making than St. Louis. Also, the optimal sizes are associated

with different technical ratios of vehicles per track mile (2.7 in San Francisco versus 1.1 in St. Louis).

Figure 12 Graphic Determination of Optimal Size — Light Rail

Figure 13 presents the graphical estimation of the optimal size for heavy rail. The upper curves are the

envelopes of scale efficiency of two groups of agencies, those that are more intensive in producing trips

(traditional group) and those that are more intensive in producing vehicle revenue miles (newer group). The

lower curve represents the value of the constant term in the linear production function for vehicle revenue

miles. The optimal size occurs when this curve crosses the zero level. One optimal size is between a 300

and 600-vehicle fleet that usually operates on a 100 to 200-mile network represented by systems like

Miami, Atlanta, and San Francisco, with a technical ratio of 1.1 vehicles per track mile. Another optimal

size corresponds to the size of New York with a fleet larger than 5,000 vehicles and a network larger than

450 miles, with a technical ratio of 2.5 vehicles per track mile. Note that the graphical estimation of optimal

size is more precise in the case of light rail than it is for heavy rail.
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Figure 13 Graphic Determination of Optimal Size — Heavy Rail

5.4.3 Substitutability, Technical Ratios, and Scale of Production

Substitutability measures the degree to which one input can be used to replace another for the production of

an output. An input is a substitute of other input if its consumption increases when the marginal production

of the other input increases. DEA estimates piecewise linear production functions and therefore it assumes

that all inputs are perfect complements to each other at a given scale. This dissertation assumes that an

approximation to the elasticity of substitution refers to a variable scale by using the coefficients of the

production function when the coefficient of output is 1.00.

This section also confirms the existence of two techniques of production by using the ratio between

the values of technical ratios between both groups. Finally, the elasticity of substitution is the change of the

logarithm of the technical ratio caused by changes of the logarithm of the ratios of marginal productivity.

Table 47 contains a list of the traditional light rail systems where production is more intensive in trips

and where there is a high number of vehicles per track mile. It also shows the list of the newer light rail
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systems where production is more intensive in vehicle revenue miles and where there is a low number of

vehicles per track mile.

Table 47 Technical Groups for Light Rail
Traditional	 Newer
Boston	 Los Angeles
San Francisco San Diego
Philadelphia	 St. Louis
Pittsburgh	 Portland
Buffalo	 Dallas
Newark	 Sacramento

Baltimore
San Jose
Cleveland
Denver

Table 48 presents the proportional difference between the values of technical ratios of the groups.

Each number is the ratio of the technical ratio of the traditional system over the technical ratio of the newer

system. The technical ratio is the input numerator of the first row to the input denominator of the first

column of Table 48. A value larger than one says that the traditional system uses a technical ratio more

intense in the input of the denominator that is at the first column of the table. A value smaller than one says

that the newer system uses a technical ratio more intense in the input of the denominator that is in the same

first column of the table. Therefore, the table shows that the row of rails (track miles) indicates that

traditional systems have a technique of production that uses tracks intensely while from the row of cars

(number of vehicles) indicates that newer systems use vehicles intensely.

Table 48 Proportional Difference of Technical Ratios between Traditional and Newer Light Rails
loper lmain ener cars

lmain 0.74
ener 1.24 1.52
cars 0.76 0.94 0.61
rails 1.60 1.96 1.31 2.03

Table 49 presents selected results of the trend of the technical ratio with respect to size. The positive

results of the trends indicate that the intensity of use of the network might also be linked with size while

there are no trends on the intensity of use of vehicles. Therefore, since traditional systems are also the
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larger and since there are no trends on the intensity of use of vehicles, this trend is indeed a coincidence

because of the production technique chosen by the traditional systems.

Table 49 Trends of Technical Ratios versus Scale — Light Rail
Technical ratio Trend (size in Trips) R 2

loper/rail	 0.0002	 0.55
lmain/rail	 0.0001	 0.33
ener/rail	 0.009	 0.66
car/rail	 0.00003	 0.35

Table 50 presents the elasticity of substitution for light rail systems. Six out of ten indicators are

negative and therefore indicate mostly complementary inputs. The most complementary of all are the labor

hours in maintenance (lmain) and vehicles (cars). Four pairs of inputs have positive elasticity and therefore

they are substitute, all related to labor hours in operations and to labor hours in maintenance, which has the

highest value between these two inputs.

Table 50 Elasticity of Substitution (Allowing for Varying Size) (*) — Light Rail
loper lmain cars ener

lmain -0.11
cars +0.005 -0.173
ener +0.09 +7.957 -0.053
Rail -0.046 +0.231 -0.067 -0.123

Elasticity of substitution of loper to lmain. Substitute if > 0, complement if < 0.

d In 
ma rginal _ product _Imain)

Table 51 presents the members of two groups of heavy rails, the traditional, with more intense

production in trips and higher ratio vehicles per track mile, and the newer, with more intense production in

vehicle revenue miles and lower ratio vehicles per track mile.

Table 51 Technical Groups  for Heavy Rail
Traditional	 Newer
New York	 Washington
Chicago	 Atlanta
Boston	 San Francisco
Philadelphia	 Miami
PATH	 Baltimore
Cleveland	 Los Angeles
Staten Island	 PATCO

,ma rginal _ product _loper,ma rginal _ product _loper
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Table 52 presents the proportional difference between the values of technical ratios of the groups.

Each number is the ratio of the technical ratio of the traditional system over the technical ratio of the newer

system. The technical ratio is the input numerator of the first row to the input denominator of the first

column of Table 52. A value larger than one says that the traditional system uses a technical ratio more

intense in the input of the denominator that is at the first column of the table. A value smaller than one says

that the newer system uses a technical ratio more intense in the input of the denominator that is in the same

first column of the table. Therefore, Table 52 indicates that the traditional and newer groups confirm their

different techniques of production. Traditional systems use tracks more intensely than newer while newer

systems use vehicles and stations more intensely.

Table 52 Proportional Difference of Technical Ratios between Traditional and Newer Heavy Rails
Loper Lorain ener cars rails

lmain
ener
cars
rail
stats

1.17
1.15
0.88
1.51
0.93

0.97
0.76
1.41
0.88

0.66
1.15
0.80

1.82
1.08 0.60

Table 53 shows positive trends for technical ratios when network length increases revealing that larger

agencies also tend to be more intense in the use of track length, as it was the case of light rail. There is no

tendency for the intensity of use of vehicles and stations indicating that the tendency is a coincidence with

size. Since New York is the largest system and also an efficient representative of the traditional systems,

the trend is expressing the difference in production techniques of the groups rather than the effect of size.

Table 53 Trends of Technical Ratio versus  Scale — Heavy Rail
Technical ratio Trend (size in Trips)	 R2

car/rail 	 0.000005 	 0.43
lmain/rail 	 0.00002 	 0.45
loper/rail 	 0.00002 	 0.48

Table 54 shows that all of the substitution elasticity indicators of heavy rail have positive values. They

show that most of the inputs are substitutable, contrary to the case of light rail. The only complementary
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relation exists between stations (stats) and labor hour in operations (loper)—including personnel in stations

and security. Heavy rail shows more signs of flexibility in the use of resources than light rail.

Table 54 Elasticity of Substitution (Allowing for Varying Size) (*) – Heavy Rail
Loper lmain cars ener

lmain 0.181
cars 0.07 0.101
ener 0.095 0.169 0.028
rails 0.136 0.138 0.121 0.178
stats -0.007 0.314 0.011 0.695

5.4.4 Piecewise Linear Production Function

The model 2F-DEA estimates piecewise linear production functions that are valid at the vicinity of

individual observations. The production function calculates the increase of output achieved after marginal

increases in inputs, indicating that it is possible to calculate the optimal direction of expansion. Answers

can be provided to questions on whether additional miles of rail tracks should be built or more vehicles

should be bought. The coefficients of the linear production function answer those questions because they

are the marginal products when the coefficient of the output is 1.00. Since the marginal products are the

shadow prices of the firm, they indicate the optimal direction of expansion, and, if the cost of the inputs is

added, the most cost effective way of expansion. This analysis assumes that it is feasible to add inputs such

as an additional mile of track or to buy one additional vehicle.

Table 55 presents the marginal production of labor hours in operation (/ Loper), in maintenance

(/lmain), in energy (/ ener), in vehicles (/cars), and in track miles (/rails). The smaller systems of Denver

and Newark show the highest increase in trips caused by an additional mile of track. Also, Portland and

Baltimore show the highest increase in trips with additional vehicles. Finally, Denver and St. Louis yield

the highest increase in trips by expanding the labor hours in operations.
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Table 55 Marginal Production of Trips per Unit Increase of Input — Light Rail
Agency TRIPS

(`000)
VRM
(`000)

TRIPS/
VRM

/loper
(`000)

/lmain
(`000)

/ener
(`000)

/cars /rails Total
TRIPS

Total
VRM

bos 67000 5435 12 4 10 0 14 1
sfr 36738 3740 10 4 2 1 7 1
phi 25003 3049 8 5 5 1
lan 22659 4436 5 29 29 6
sdi 18287 5059 4 0 28 28 8
slo 14486 2585 6 22 2 0 4 29 5
por 10432 1579 7 0 81 81 12
dal 7972 1794 4 0 18 18 4
sac 7862 1852 4 5 5 17 28 7
pit 7421 1718 4 0 0 0
buf 6919 897 8 10 0 1 11 1
bal 6772 2296 3 68 68 23
sjo 6728 1888 4 0 0 0
de 5337 1181 5 0 0 0
den 4428 648 7 24 13 219 255 37
new 4294 656 7 5 1 0 7 109 122 19

Cost effectiveness is the number of trips achieved per dollar spent on one additional unit of input.

Table 56 shows that, excluding labor hours in maintenance (lmain) and energy (ever), the most cost-

effective options for expansion are buying additional vehicles for Portland and Baltimore, and expanding

the labor force in operations in Denver and St. Louis.
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Table 56 Cost Effectiveness in Trips per Additional Dollar Spent in Inputs - Light Rail
Agency loper lmain	 ener cars	 rails Total

TRIPS
Total
VRM

bos 0.14 0.16 0.31 0.02
sfr 0.15 0.10 0.02 0.26 0.03
phi 0.20 0.20 0.02
lan 0.49 0.49 0.10
sdi 1.93 0.06 1.99 0.55
slo 0.88 0.09 	 1.00 0.01 1.98 0.35
por 1.53 1.35 2.88 0.44
dal 6.98 0.29 7.27 1.64
sac 0.22 0.21 0.29 0.71 0.17
pit 3.14 3.14 0.73
buf 0.39 2.56 0.01 2.96 0.38
bal 1.13 1.13 0.38
sjo 2.30 2.30 0.65
de 1.94 1.94 0.43
den 0.94 0.21 	 0.44 1.59 0.23
new 0.18 0.05 	 0.69 0.12 	 0.22 1.26 0.19
Avrg 0.19 0.03 	 1.38 0.25 	 0.05 1.90 0.39

Expansion costs (*)
Input Unit cost ($) Life (years) Annual cost ($)

loper 50,000 1 25,000
lmain 50,000 1 25,000
ener 63.7 1 63.70
cars 1.5M 25 60,000
rails 20M 40 500,000
(*) (APTA 2001; CUTA 1993; Vuchic 1981)

As a result a priority list can be made with the fifteen more cost-effective ways to expand light rail as

shown in the Table 57. Priority also permits ordering options for expansion of individual agencies. For

example, Newark would like to expand first with additional tracks (rails) and then with larger labor force in

operations (toper). On the other hand, Sacramento would choose a combination of increasing fleet size

(cars) and labor force in operations (loper). This analysis assumes that there are sufficient funds to finance

the minimum lump sums for each input, say $ 50,000 to hire an additional driver or $ 20 million to finance

the construction of an additional mile of track (rails).
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Table 57 Priority of Investment for Expansion Using Cost Effectiveness — Light Rail
Priority Cost effectiveness Agency Input

(TRIPS per $)
1 1.35 Portland cars
2 1.13 Baltimore cars
3 0.94 Denver loper
4 0.88 St. Louis loper
5 0.49 Los Angeles cars
6 0.44 Denver rails
7 0.39 Buffalo loper
8 0.29 Dallas cars
9 0.29 Sacramento cars
10 0.22 Newark rails
11 0.22 Sacramento loper
12 0.21 Denver cars
13 0.20 Philadelphia loper
14 0.18 Newark loper
15 0.16 Boston cars

Table 58 indicates that most of the heavy rail systems have high incremental production of trips with

respect to stations. Also, high marginal production is generated by expanding the track mileage for Boston

and Atlanta and by purchasing new vehicles for Los Angeles. In the case of heavy rail the larger systems

seem to be capable of becoming more productive by expansion.

Table 58 Marginal Production of Trips per Unit Increase of Input — Heavy Rail
TRIPS VRM TRIPS/

VRM
/loper /lmain /ener /cars /rails /stats Total

TRIPS
Total
Mil

ny 1579783 304094 5 10 2 1 296 308 59
was 198003 37984 5 16 46 1590 1653 317
chi 151010 50687 3 38 0 38 13
bos 113715 22934 5 20 27 12 538 596 120
atl 90991 27101 3 2 19 0 552 574 171
phi 86245 15640 6 13 0 16 853 882 160
sfr 80490 48523 2 2 0 1393 1395 841
path 67998 12834 5 47 8 0 3 500 558 105
mia 14020 5739 2 19 4 98 206 327 134
bal 12600 4231 3 3 6 0 14 399 421 141
lan 11628 1737 7 480 480 72
patco 10660 4017 3 20 11 0 6 268 304 115
cle 7695 2046 4 10 7 0 5 22 6
sta 4618 2104 2 11 7 0 9 3 29 13

Table 59 indicates that besides energy and labor hours directed to maintenance, the more cost-

effective ways to expand heavy rail systems are increasing the number of stations (stats) and the labor
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hours for operations (loper). Noticeable is the high cost effectiveness of expanding stations in San

Francisco and Washington.

Table 59 Cost Effectiveness in Trips per Additional Dollar Spent in Inputs - Heavy Rail
Agency loper lmain ener cars	 rails scats Total

TRIPS
TotalVRM

nyo 0.40 0.06 10.91 2.36 13.74 2.64
was 0.63 0.77 12.72 14.13 2.71
chi 1.51 0.35 1.86 0.62
bos 0.78 1.07 0.20 	 0.54 2.59 0.52
atl 0.08 0.78 3.83 0.55 5.24 1.56
phi 0.51 0.12 0.27 6.83 7.72 1.40
sfr 0.09 1.03 11.14 12.26 7.39
path 1.89 0.31 0.78 0.05 4.00 7.02 1.33
mia 0.78 0.14 0.10 1.65 2.67 1.09
bal 0.10 0.22 5.42 0.24 3.19 9.17 3.08
lan 8.01 8.01 1.20
patco 0.79 0.43 1.16 0.09 2.15 4.62 1.74
cle 0.40 0.27 1.78 0.09 2.54 0.68
sta 0.42 0.26 0.79 0.15 	 0 1.63 0.74
Avrg 0.48 0.37 1.87 0.70 	 0.09 3.15

Expansion costs (*)
Input Unit cost ($)	 Life (years) Annual cost ($)

loper 50,000 1 25,000
lmain 50,000 1 25,000
ener 63.70 1 63.70
cars 1.5 M 25 60,000
rails 40M 40 1 M
stat 5 M 40 125,000
(*) (APTA 2001; CUTA 1993; Vuchic 1981)

Table 60 shows that eight out of twenty prioritized options include stations, two include vehicles, ten

expand labor hours in operations, and two expand track length. Additionally, nine of the systems are

traditional and eleven are newer systems. Besides that, individual systems can order their own priorities in

investment programs. For example, Washington may want to increase its number of stations and later

expand in vehicles and labor force.



Table 60 Priority of Investment for Expansion Using Cost Effectiveness – Heavy Rail
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Priority Cost effectiveness Agency Input
(TRIPS per $)

1 12.72 Washington stats
2 11.14 San Francisco stats
3 8.01 Los Angeles cars
4 6.83 Philadelphia stats
5 4.00 PATH stats
6 3.19 Baltimore stats
7 2.36 New York stats
8 2.15 PATCO stats
9 1.89 PATH loper
10 1.65 Miami stats
11 0.79 PATCO loper
12 0.78 Boston loper
13 0.78 Miami loper
14 0.77 Washington cars
15 0.63 Washington loper
16 0.55 Atlanta rails
17 0.54 Boston rails
18 0.51 Philadelphia loper
19 0.42 Staten Island loper
20 0.40 New York loper

5.5 Application of 2F-DEA to Transit Operations Planning (Scheduling)

Operations planning are a blend of industrial engineering concepts with general management, quantitative

methods, and statistics applied to operational activities. Techniques of operations planning help to locate

garages, to design service, to plan fleet size, network length, and labor force. They optimize the resources

allocated to the production of the transit service although there can be ways to improve the checking of the

consistency of planned technical ratios. Notwithstanding that 2F-DEA can be extended to the more specific

route-by-route analysis, this is left to further research. The contribution of productivity analysis to

operations planning consists of checking the planned figures for new projects.

Transit operations planning (scheduling) designs transit service in stages called demand forecasting,

routing, blocking (fleet size), and runcutting (labor force). Demand forecasting estimates transit demand

based on the operating conditions of an urban area. Routing calculates the length of the route and the

number of stops (stations) needed for optimal service. Blocking calculates the number of vehicles needed to

supply the demand at the maximum load point of the route. Runcutting calculates the optimal number of

operators that are adequate for the number of vehicles. The basic assumption of this analysis is that planned

figures of new systems—Hudson Bergen Light Rail and San Juan Heavy Rail—are consistent if they fall
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within the ranges of currently efficient systems. The evidence is presented graphically to illustrate easily

the concept of ranges.

5.5.1 Ratios Related with the Planning of Transit Demand

Light Rail

Transit demand forecasting estimates the number of trips according to operating conditions. It uses two

major approaches, a four-step model and a discrete choice model. Figure 14 presents the density of transit

demand per track mile as a function of the density of service (vehicle revenue miles per track mile). The

positive trend with density of service means that agencies are successfully adjusting their service to

demand. The Hudson Bergen density of service (as by May 2000) does not seem to be enough to supply the

density of demand of stages 2 and 3. The stages of Hudson-Bergen are described in the Appendix C. Range

of traditional systems is the area within the observations of Boston, Newark, Pittsburgh, and Philadelphia.

The range for newer systems is the area enveloped by the observations of St. Louis, Cleveland, Dallas,

Denver, and Baltimore. Those planned figures outside the areas will need an explanation why the forecast

is unique to the system or why it behaves like an outlier. In this case the evidence says that probably

Hudson Bergen will increase its density of service in the future. Current operations of the Hudson Bergen

system (stage minimum initial) is slightly out of the range of the expected density of transit demand.

Figure 15 presents the number of trips versus number of employees residing in the area served by the

system (0.3 miles around the stops). In this case, stage 3 of Hudson-Bergen is in the range of the traditional

systems and the result is consistent with existent efficient operations. Also the range of the newer systems

is smaller than the range of the traditional systems.



Figure 14 Density of Demand versus Density of Service — Light Rail
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Figure 15 Transit Trips versus Employment Served around Stops — Light Rail
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Figure 16 presents some evidence that groups of light rails correspond to the operating conditions of

their respective urban areas. Traditional systems serve areas with lower demand per household and less

autos per household. Notice how the range areas are almost separated. The Hudson Bergen system falls in

the area of traditional systems.

Heavy Rail

Figure 17 presents the density of demand versus density of service for heavy rails. This time traditional and

newer systems are all mixed and there is no evidence for a differentiated operating condition set for each

heavy rail group. San Juan heavy rail assumes 4 minutes headway for peak hour with six-car trains and 8

minutes for off-peak hour but they are not consistent with existent efficient operations. Very probably the

frequency during off-peak hours needed for San Juan is lower than the one assumed in this dissertation.

Figure 18 shows that the planned figures of the transit demand of the San Juan system are consistent with

the observed efficient operations of heavy rail.

5.5.2 Ratios Related with Route Design (Routing)

Light Rail

Routing is the stage of determining the route mileage and the number of stops (stations) of the transit

service. Routing is determined by the location of residential areas, the location of trip generators (attracting

centers) like downtown areas, job centers, retail centers, recreation centers, and other land uses that

generate transit demand. Two ratios are useful to analyze routing, stops per track mile and density of

demand versus size. Figure 19 shows that traditional systems increase their ratio stops per track mile with

track length while newer systems decrease their ratio with track length. This is evidence that both groups

serve different operating conditions to supply the demanded service. From Figure 19, Hudson Bergen has

the supply of a newer system although, from Figures 15 and 16, its demand corresponds to the range of

traditional systems. Figure 20 presents the density of demand versus track length. Traditional systems tend

to be above newer systems with an overlapping zone. Hudson Bergen in stage 3 is far above the existing

newer system behaving consistently like a traditional system. Figure 21 shows the density of transit

demand versus the number of stops. This time the Hudson Bergen observations for stages 3 and 4 fall

slightly above any efficient operation observed in reality.



Figure 16 Trips per Household versus Autos per Household — Light Rail
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Figure 17 Density of Demand versus Density of Service - Heavy Rail



Figure 18 Demand versus Population of the Served Area (0.3 miles around stations) — Heavy Rail
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Figure 19 Ratio Stops per Track Mile versus Track Length — Light Rail



Figure 20 Density of Demand versus Track Length — Light Rail
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Figure 21 Density of Demand versus Number of Stops — Light Rail
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Heavy Rail

Figure 22 shows that the ratio stations per track mile determines the difference between traditional and

newer heavy rails. Traditional systems tend to increase their ratio stations per track mile with increases in

track length. Newer systems tend to decrease their ratio stations per track mile with increases in track

length, similar to the case of light rail. Notice that San Juan falls near the overlapping zone of both groups.

Figure 23 shows that traditional systems are almost completely separated from the newer systems with

higher demand per station in a short range of the graph while traditional systems have lower demand per

station for a broader range of size. PATH has exceptionally higher demand per station than any other

system. The San Juan system appears small with 15 stations and near the area of newer systems, so high

demand per station is expected.

5.5.3 Ratios Related with Fleet Size Planning (Blocking)

Light Rail

Blocking consists of developing vehicle assignments to specific routes. Consistency of blocking checks the

density of demand per vehicle, the intensity of use of vehicles, the effectiveness ratio of trips per vehicle

revenue mile, and the technical ratios of vehicles per track length and per stop. Figure 24 shows that newer

systems can be less effective than traditional systems while effectiveness in traditional systems tends to

increase with fleet size. Effectiveness planned for the Hudson Berger in stages 2 and 3 appear far higher

than any observed efficient system in existence. Hudson Bergen may need more vehicles to cope with the

demand of stages 2, 3. Figure 25 shows more signs of technical differences between traditional and newer

groups. Newer systems use vehicles more intensely than traditional systems, while traditional systems tend

to decrease the intensity of use of vehicles when fleet size increases. Also, Hudson-Bergen falls short in the

intensity of use of vehicles and therefore it would need to adjust its density of service or to adjust its spare

ratio assumed here as zero.



Figure 22 Ratio Stations per Track Mile versus Track Length — Heavy Rail
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Figure 23 Density of Demand versus number of Stations — Heavy Rail



Figure 24 Effectiveness (TRIPS per VRM) versus Fleet Size — Light Rail
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Figure 25 Intensity of Use of Vehicles versus Fleet Size - Light Rail
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Figure 26 shows further evidence of the technical difference between traditional and newer systems.

Traditional systems use more vehicles per track length than newer systems. Notice that Hudson-Bergen

operates in the small overlapping zone between traditional and newer light rails. Currently, Hudson Bergen

works with more vehicles per track mile than most of the newer systems. Figure 27 presents the intensity in

the use of vehicles versus the ratio stops per track mile. Newer systems are clearly located at a lower

number of stops per track mile but with more intense use of vehicles. Traditional systems work with higher

number of stops per track mile but less intense use of vehicles. Consistently, Hudson Bergen shows that the

current density of service will not be maintained if the system is to be as intense as others.

Heavy Rail

Figure 28 shows that the areas of newer and traditional heavy rails suggest a differentiated behavior

between both groups. Newer systems tend to decrease their effectiveness when working at larger fleet size

while traditional systems tend to increase effectiveness when working with larger fleet size. San Juan heavy

rail is a small system that seems to be planned as effective as the most effective of the newer systems.

Figure 29 shows that newer heavy rails tend to make more intense use of vehicles than traditional systems.

The San Juan system seems to be designed more like a newer system than a traditional one. Figure 30

describes that newer heavy rails have less stations but higher number of vehicles per station. Traditional

systems have more stations but work with a smaller ratio of vehicles per station although the ratio increases

with fleet size. The PATH system behaves as an outlier due to its exceptionally higher number of vehicles

per station. The San Juan system seems to be in between the newer and the traditional systems.

5.5.4 Ratios Related with Labor Force Design (Runcutting)

Light Rail

Figure 31 shows the assumed intensity of use of labor hours in operations per vehicle for Hudson Bergen.

They are based on similarities with Newark, Dallas, or an average of both. Under any of the assumptions of

the systems is near the range of current light rails. Figure 32 shows that Hudson-Bergen assumptions of

labor with respect to vehicles are far from the range of existing efficient operations. Figure 33 shows that

traditional light rails increase the ratio of labor in operations when fleet size increases, while newer systems

decrease the ratio when fleet size increases. Los Angeles appears to be an outlier in this graph.



Figure 26 Ratio Vehicles per Track Mile versus Track Length — Light Rail
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Figure 27 Intensity of Use of Vehicles versus the Ratio Stops per Track Mile — Light Rail
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Figure 28 Effectiveness versus Fleet Size — Heavy Rail

Figure 29 Intensity of Use of Vehicles versus Fleet Size — Heavy Rail



Figure 30 Ratio Vehicles per Station versus Number of Stations — Heavy Rail
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Figure 31 Intensity of Use of Labor in Operations versus Fleet Size — Light Rail



Figure 32 Trips per Labor Hour in Operations versus Fleet Size — Light Rail
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Figure 33 Ratio Labor in Operations per Vehicle versus Fleet Size — Light Rail
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Heavy Rails

Figure 34 shows that San Juan works near the range of newer heavy rails in the intensity of use of labor

hours versus fleet size. Figure 35 shows that the San Juan figures are above any agency. This dissertation

assumes that San Juan uses a labor force ratio to fleet size similar to the average of the heavy rail industry

in 1992. Notice the high productivity of TRIPS similar to PATH and New York. Finally, Figure 36 shows

that there is no difference between traditional and newer heavy rails in the relation between labor force and

fleet size.

5.6 Application of 2F-DEA to New Rail Projects

The new rail projects were designed to expand in stages. Four stages were considered for Hudson-Bergen

light rail and one initial stage for San Juan heavy rail. For each stage there are planned a number of

stations, a number of vehicles, and so on. Also, data on labor is assumed based on similarities to current

operation or to the average of the industry. The following is the list of the cases considered.

5.6.1 Hudson-Bergen Light Rail

This application considers four segments, the initial operating segment as of May 2000 from Exchange

Place in Jersey City to 34th Street in Bayonne (New Jersey). The first segment extends the northern tip to

Hoboken as planned to operate in 2001, the second, and the third segments as published (US-DOT-FTA

1999). In this section, a case is feasible if it operates within the range of efficient current operations. Table

61 shows three cases, of the initial and first segments, that are feasible because they do not exceed observed

productivity benchmarks. To achieve feasibility, Hudson-Bergen would need more or larger cars as well as

labor resources as intensive as in the Dallas operations. Its efficient peers are Boston, St. Louis, Newark

and San Diego. Feasible productivity benchmarks are; 8.4 VRM/loper, 6.6 VRM/Imain, 87 TRIPS/loper, and

39.5 thousands TRIPS/cars.



Figure 34 Intensity of Use of Labor in Operations versus Fleet Size — Heavy Rail
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Figure 35 Trips per Labor Hour in Operations versus Fleet Size — Heavy Rail



Figure 36 Ratio of Labor in Operations per Vehicle versus Fleet Size — Heavy Rail

Table 61 Hudson-Bergen Light Rail — Feasibility by using Results of DEA(1)
Case (*) VRM/Floper VRM/lmain TRIPS/loper TRIPS/cars Feasible?
3NJ No No No No No
3DA No No
3AV No No No
2NJ No No No No No
2DA No No
2AV No No No
1NJ No No No
1DA
lAV No

YES
No

0Njcon No No No
0Dacon No No
0Avcon No No
0Nj op No No No
0Daop YES
0Avop YES
Efficient Boston Boston Boston Boston
peers St. Louis Newark San Diego St. Louis
Productivity 8.4 6.6 87 39.5
benchmark per labor hour per labor hour per labor hour 000's per vehicle

(*) Appendix C contains the definition of these cases.
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1DA

1.30

0Daop

0.78
0.73
1.22
0.85
0.81

Case
Labor in operations
Labor in maintenance
Energy
Vehicles
Track length 	

0Avop

0.85

119

Table 62 displays the advantage factor of Hudson-Bergen light rail and shows that its operating

conditions are not as advantageous as the rest of the transit agencies but it is at least similar to Boston, San

Francisco and Philadelphia as registered in Table 22 of page 72 of this dissertation.

Table 62 Hudson-Bergen Light Rail — Advantage Factor of Operating Conditions 

Table 63 presents the efficiency of the three feasible cases of Hudson-Bergen. Planning figures

assume technical efficiency while implying a certain degree of scale inefficiency.

Table 63 Hudson-Bergen Light Rail - Efficiency by using DEA(2) (%)
Case	 Technical efficiency	 Overall efficiency 

1DA 	 100.0 	 86.2
0Daop 	 96.2 	 76.3

0Avop 	 100.0 	 86.2 

5.6.2 San Juan Heavy Rail

San Juan heavy rail planning figures that correspond to a unique initial stage that has been publicized.

Appendix C indicates the cases included in this analysis. Table 64 indicates that two out of six San Juan

cases are feasible, they consider 15,000 daily trips and 64 or 74 cars. As a result there are three benchmarks

of VRM and TRIPS productivity ratios that can be used to check future operations of the project. Notice that

planned figures of San Juan are within the acceptable ranges for stats, cars or rails, but not of the average

ratios assumed for loper and lmain. San Juan heavy rail will need more than average labor resources, loper

and lmain per VRM and per TRIPS to be feasible.
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Table 64 San Juan Heavy Rail — Feasibility by using Results of DEA(1) 
Case (*)	 VRM/loper	 TRIPS/loper	 TRIPS/lmain 	 Conclusion, Feasible? 
14low 	 No 	 No 	 No
14high 	 No 	 No 	 No 	 No
64low 	 YES
64high 	 No 	 No 	 No
74low 	 YES
74high 	 No 	 No 	 No 
Efficient peers 	 Boston 	 Atlanta 	 Chicago

	

New York 	 Washington
Productivity 	 I3.40 	 47.0 	 I07.0
benchmark

(*) Appendix C contains the definition of these cases.

Table 65 shows the advantage factor of San Juan heavy rail and shows that it enjoys very

advantageous operating conditions to develop high productivity in five inputs.

Table 65 San Juan Heavy Rail — Advantage Factor  of Operating Conditions
Case	 64low & 74low 
Labor in operations 	 1.04
Labor in maintenance 	 1.14
Energy 	 1.19
Track Length 	 1.37
Stations 	 1.09

Table 66 indicates that the resources planned for San Juan assume technical efficiency and overall

efficiency.

Table 66 San Juan Heavy Rail - Efficiency by using DEA(2) (%) 
Case	 Technical efficiency	 Overall efficiency 

64low 	 100 	 94
74low 	 100 	 85

5.7 Conclusions on the Results

The results of the application of 2F-DEA indicate that the new model extracted the effect of heterogeneous

conditions achieving fairer and more accurate estimation of efficiency, with a minimum of additional

effort. Additionally, 2F -DEA provided productivity benchmarks tailored to the operating conditions of
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individual agencies. The new model also provided the advantage factor in operating conditions of an

agency with respect to the average of the industry.

Also, this chapter calculated the correlation of productivity with operating conditions including for the

first time those related to network form. Those network descriptors that refer to the access of passengers

explained productivity of track miles in the same dimension as socioeconomic variables of the served area.

Besides, connectivity indices explained productivity of track miles and of stations in the case of heavy rail

in a dimension associated with auto availability. Factor analysis organized operating conditions in few

well-defined dimensions; conditions of the served area, conditions of the metropolitan area, auto

availability, and income and rush hour concentration of demand.

Efficiency is high in light rail (89 percent) and in heavy rail (92 percent). The opportunity for

improvement is $ 2 million for light rail and $ 79 million for heavy rail in unachieved revenues. The

equivalent improvement in the use of resources reaches $ 14 million in possible annual savings in expenses

for light rail and $ 54 million for heavy rail.

Cluster analysis left a level of between 5 and 36 percent of productivity differences and between 13

and 27 percent of efficiency differences attributable to heterogeneous conditions, indicating that the effect

of operating conditions continued within the cluster at considerable levels. Conventional DEA

underestimates efficiency by 17 percent in light rail and by 11 percent in heavy rail, justifying the

development of 2F-DEA. Finally, 2F-DEA extracted the effect of the operating conditions before the

estimation of efficiency up to the point that none of the correlation between efficiency and operating

conditions reached 0.5 or higher.

The results of productivity analysis made evident the existence of two techniques of production, one

adopted by traditional (older) transit agencies and the other by newer. Traditional agencies specialize in the

production of trips with higher use of their track length, while newer systems specialize in the production

of vehicle revenue miles with intense use of vehicles and stations. The inputs that are sources of increasing

returns to scale are the use of the rail tracks and the use of energy. Results of 2F-DEA built a method for

investment priority for expansion in which light rail would achieve high cost effectiveness in expanding

number of vehicles, labor force in operations and administration, and, in the case of smaller systems,
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expanding rail tracks. Heavy rail achieves the highest cost effectiveness in expanding stations, labor force

in operations, and, in the case of larger systems, expanding rail tracks.

Productivity analysis can check the consistency and feasibility of new rail projects. For example,

Hudson Bergen light rail faces a demand typical of a traditional system while it plans a supply typical of a

newer system. It would be advisable to study if more cars would be necessary for stages 2 and 3. Another

example, San Juan heavy rail is planned like a newer system, although by some indicators a high

production of trips per labor in operations is expected as in PATH or New York. Additional evidence on

the production techniques of rail transit indicates that not only ratios of stops per track mile differ between

traditional and newer systems, but also that the difference increases with size. Finally, feasibility analysis

found that the first segment of Hudson Bergen could have productivity benchmarks near those of Boston

and that their advantage factor indicates low advantage of operating conditions. The San Juan labor force

would achieve productivity benchmarks of vehicle revenue miles like traditional systems and its advantage

factor indicates high advantage in operating conditions.



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

This dissertation improves the accuracy and fairness in the estimation of transit productivity efficiency, a

point that motivates major policy decisions on privatization, deregulation, contracting out, expansions, etc.

Conventional methods underestimate efficiency under heterogeneous operating conditions because all

observations refer to the performance of the most advantageous operating conditions while being unfair to

all other agencies. The problem of transit productivity analysis arose because of the fact that transit

operates under heterogeneous conditions with evident influence on productivity while current methods of

productivity analysis do not calculate this influence in an adequate manner.

This dissertation discussed several methods of productivity analysis finding their limitations in the

case of heterogeneous conditions. Cluster analysis reduced but did not eliminate the effect of heterogeneous

conditions within the clusters. Empirical equations used an uncertain set of variables with the possible

exclusion of relevant ones or the inclusion of irrelevant ones. Current Two-Step methods forget the

estimation of internal inefficiency or assume the contradiction that efficiency is stochastic and deterministic

at the same time. Other methods include operating conditions as if they were other inputs—that is not

true—generating a source of redundancy with those inputs affected by the operating conditions. A

theoretically correct method includes operating conditions in constraints for one-step estimation but

becomes complicated for the case of many operating conditions, and methods to simplify it hold only for

particular cases. Consequently, the dissertation found that a new method was necessary for productivity

analysis for the case of heterogeneous conditions.

The approach of the new model is based on the Reversed Two-Step DEA approach, a method that

estimates first the productivity differences caused by heterogeneous conditions and then it estimates the

productivity efficiency. The formulation of 2F-DEA departs from (Ray 1988) who correctly assumed that

operating conditions impose limits to the production process as if they were technological strata. The

assumption of independence between the effect of operating conditions with scale and with efficiency

complements the formulation of 2F-DEA. In a preliminary step, factor analysis gathers the relevant set of

operating conditions for the analysis. A transforming multiplier is the connector between DEA(1) (applied

to each productivity ratio versus operating conditions) and DEA(2) (applied to outputs versus adjusted

123
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inputs). The transforming multiplier is the ratio of productivity of the agencies at the frontier calculated by

DEA(1). It is used to adjust those inputs included in DEA(2). The model 2F-DEA enriches transit

productivity analysis with two new indicators, productivity benchmarks and advantage factors. Productivity

benchmarks are standards tailored to the unique reality of each individual agency while the advantage

factors calculate the degree of goodness of the operating conditions of one agency with respect to the

industry.

The application of 2F-DEA found that those operating conditions of the network form do correlate

with transit productivity, including access density, network density, comprehensive accessibility,

connectivity index, circuit availability, stop spacing, and density of service. Factor analysis reduced those

operating conditions that correlated with transit productivity to few main factors. They are the served area

conditions computed within 0.3 miles of the rail station, the metropolitan area conditions computed for the

whole metropolitan area, the car factor that refers to auto availability, income and rush hour concentration

of the demand, and stop spacing in the case of heavy rail.

The first stage DEA(1) calculated the productivity benchmarks for individual agencies indicating that

some agencies could reach standards of vehicle revenue miles and of passenger trips well below other

agencies adding to the evidence of the increased fairness of comparison of 2F-DEA. The advantage factors

of light rail showed that Pittsburgh and Cleveland operated on less advantageous conditions than the

industry in all their inputs, while this was true for the heavy rail systems of Miami, Baltimore, Cleveland,

and Staten Island.

The second stage DEA(2) estimated that light rail systems are 89 percent efficient on the average, and

identified two efficient agencies, San Francisco and St. Louis. The room for improvement is still

considerable. Light rail systems could increase their revenues by $ 2 million per year, at a 55-cent average

fare, or save $ 14 millions from the annual expenses of the used resources. The new method estimated the

overall efficiency of heavy rail systems at 92 percent. Four agencies, New York, Atlanta, San Francisco,

and PATH, reached the efficiency frontier. In this case, the potential for improvement reaches $ 79 million

per year in revenues at a 96-cent average fare, or an annual expense savings of $ 54 million.

The results of 2F-DEA were very useful in interpreting the estimated production function. Returns to

the consumption of a single input indicated sources for increasing returns to scale in heavy rail because the
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most intense use of the tracks occurred at longer networks, while in light rail this source of increasing

returns to scale does not exist. Since larger light rails operate extensively on the streets, these systems did

not show increasing returns in the use of rail tracks.

The analysis of returns to scale of light rail indicated two optimal sizes associated with the intensity of

production of two outputs, trips and vehicle revenue miles. The optimal trip intensive size corresponds to

San Francisco (50-directional mile network) and the optimal vehicle-mile intensive size corresponds to St.

Louis (35-directional mile network and 30 to 50-vehicle fleet). The analysis of returns to scale of heavy rail

indicated that the optimal size is between a 300 to 600-vehicle fleet and a 100 to 200-directional mile

network, with representative systems being Miami, Atlanta, and San Francisco. The other optimal size

corresponds to New York, the largest system by far, consistent with the existence of increasing returns to

scale in heavy rail.

Further evidence of the different techniques of production was demonstrated by grouping all agencies

around two groups differentiated by the year of their opening. Traditional (older) systems use intensely

their rail tracks while the newer systems use intensely their vehicles and their stations. Analysis of the

substitutability of inputs found a slight difference between heavy rail and light rail. While in light rail most

of the inputs are complementary, in heavy rail most of them are substitutable.

The linear production function provided a method for prioritizing the expansion of inputs, based on

their marginal productivity and cost effectiveness. A list of the most cost effective ways to expand light rail

includes the purchase of more vehicles in Portland and Baltimore, the hiring of more operators in Denver

and St. Louis, and the expansion of the rail tracks in Denver and Newark, among others. The most cost

effective ways to expand heavy rail includes the building of more stations in Washington and San

Francisco, the purchasing of more vehicles in Los Angeles and Washington, the hiring of more operators in

PATCO and Boston and the expansion of the rail tracks in Atlanta and Boston.

The indirect contribution of productivity analysis to transit operations planning provided more

information on the techniques of production. There is evidence that the different production techniques of

rail transit have their origin in the different characteristics of their demand. In the graphic of trips per

household versus autos per household, traditional and newer light rail systems occupy two separate areas.

Furthermore, the ratios of stops per track mile for traditional systems are not only higher, but they also
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increase with network length, while, for newer systems, these ratios are smaller and decrease with network

length.

The analysis of the planned figures for systems under development, indicated that the Hudson-Bergen

light rail may face operating conditions similar to traditional systems (high density of demand), and a

supply similar to newer systems (low density of service). On the other hand, the San Juan heavy rail is

planned like a newer system although some demand indicators are near those of traditional systems.

Finally, 2F-DEA estimated achievable productivity benchmarks and advantage factors for the new rail

projects. Hudson Bergen operates in less advantageous operating conditions for almost all inputs, while the

San Juan heavy rail operates in more advantageous operating conditions.

Suggestions for Further Research

The application of 2F-DEA to a single output model using the output measure of passenger-miles would be

the most desirable extension of this research. This is an immediate application possible for rail as well as

for bus transit. Another research area is the application of Monte Carlo analyses to evaluate the empirical

accuracy of 2F-DEA in comparison to other methods. An additional research area is the relaxation of the

assumptions of 2F-DEA to allow for input-specific shifts in the production frontier and to allow for

variable returns to scale in the relation between the productivity frontier and operating conditions. The new

models will apply a generalized 2F-DEA.

A necessary research is the generation of a database of indicators of connectivity between the

evaluated systems and the other transportation modes to ensure a higher level of comprehensiveness.

Another area is the generation of a database of attributes of inputs (automation, right of way, train

formation capabilities, etc.) and of characteristics of outputs (comfort, safety, security, reliability, on-time

performance, etc.) Another research area is the managerial application of 2F-DEA to transit performance

evaluation to satisfy the most immediate needs of transit practitioners for optimal allocation of internal

resources among alternative routes, modes, capital projects, etc.

A final research area is the further extension of the managerial application of 2F-DEA to facilitate

those decision-making processes that are complex. An example is the implementation and integration of

intelligent transportation systems (ITS) in transit operations. Decisions in ITS for transit may involve

simultaneous decisions on technology, customer satisfaction, operating conditions effect, labor-
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management relations, and alternative financing. DEA models can provide simple, exact and stratified

criteria that enrich the decision possibility set with a minimum effort in linear programming. In summary,

the application of DEA to transit becomes more practical because the effect of heterogeneous operating

conditions is isolated permitting an accurate evaluation of performance.



APPENDIX A

MODIFICATIONS TO THE RAIL TRANSIT NETWORKS OF THE NATIONAL

TRANSPORTATION ATLAS

The National Transportation Atlas provided the geographic location of the rail networks and stations of rail

systems, at the year 1997 or, in some cases, the future planned whole network. Before applying 2F-DEA,

the networks were adapted to represent the operations at each of the years between 1984 and 1997. A

special research traced the successive expansions and changes of each network that rendered the following

list of modifications.

Heavy rail

New York-NYCT: Three stations opened in the Archer Avenue segment in 1988, two stations opened in the

Long Island City CBD, and one in the Midtown area in 1989. In 1985, two stations closed in the Jamaica

segment and one in 1995 in the Franklin Avenue segment.

Washington-WMATA: Eight stations did not operate during the period. Four stations opened in 1985, four

in 1986, six in 1991, three in 1992, and four in 1994.

Chicago-CTA: In 1985 opened the O,Hare Airport station. In 1994 opened Orange line to Midway Airport.

Green line closed during 1994-1995 for repairs. In the Loop, the Library station opened in 1997, in 1993

opened Lake Av. station linked with State station (red and blue lines), in 1995 opened Washington station,

in 1989 opened Clark station, Madison station closed in 1995, and Quincy station closed 1985-1987 for

renovations. A group of stations closed in the green line during 1994 for renovations of the line.

Boston-MBTA: In 1987 Orange line opened new alignment and stations to the south. In 1985 opened three

stations of the red line to Harvard station. Add Mattapan high speed line.

Atlanta-MARTA: In 1985 opened five stations, one in 1987, three in 1988, four in 1993, and three in 1996.

Philadelphia-SEPTA: In 1986 Norristown High Speed line shut down for two months, operated limited and

bus service for two months, and finally restored full service. In the early 1990,s, the reconstruction program

of the Frankford Elevated occurred during weekends. This dissertation considers 1986 and early 1990's as

normal years (Vigrass 1990; Palmer 1998).

San Francisco-BART: Two stations opened in 1996 and three in 1997.

Miami-DCTA: Five stations opened in 1985 and one in 1989.
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Baltimore-WTA: Three stations opened in 1987 and two in 1995.

Los Angeles-LACMTA: Metro-rail began operations in 1993. Three stations opened in 1996.

Light Rail

Boston-MBTA: Add stops at street level. Modify branch to Arborway 1986 and 1989.

San Francisco-MUNI: Add stops at street level. J line extended to Balboa Park Transportation Center in

1990. Add F line and stations in 1995 with walking links to Market Street Tunnel stations.

Philadelphia-SEPTA: Add stops at street level to Green, Median, and Sharon Hill lines.

Los Angeles-LACMTA: Green line opened in 1996.

St. Louis-BSDA: Modify location of two stations at the Airport

Portland-TCMTDO: Correct the number of stations.

Sacramento-RTD: Modify line.

Buffalo-NFTS: Add two stations in 1987.

Baltimore-MMTA: Exchange stations opened in 1998.

Pittsburgh-PAT: Add stops at street level. Overbrook line closed 1994. Allentown line closed 1992-1994.

New Orleans-RTA: Add stops at street level. Add link to River Front line opened since 1988.

Cleveland-GRTA: Extend Waterfront line to South Harbor in 1996.

Denver-RTD: Exclude a station.

Hudson Bergen Light Rail: Add line and stations.

San Diego Trolley: Add a stop in downtown to reproduce early operations. Four stations opened in 1985,

eight in 1987, four in 1989, three in 1990, one in 1994, three in 1995, and three in 1996.



APPENDIX B

ABBREVIATIONS FOR VARIABLES, AGENCIES, AND MODELS

Throughout the dissertation many abbreviations are used for variables, observations and models. Following
is a list of those abbreviations.

Outputs

VRM = Annual vehicle revenue miles (000's)
TRIPS = Annual unlinked passenger trips (000,s)

Inputs

Loper = Annual labor hours in operation and in administration (000's)
lmain = Annual labor hours in maintenance (000's)
ener = Annual kilowatt hours of electricity (000's)
cars = Number of rail vehicles
rails = Number of directional track miles
stats = Number of stations (only for heavy rail)

Selected operating conditions

Stopsp = Stop spacing, average distance between stations
Rushalf = Highest concentration of demand of motorized trips to go to work in half an hour
PopCC = Population residing in center city
IncoPC = Income per capita of the served area, around 0.3 miles of the stations

Denserv = Density of service in vehicle revenue miles per track mile
AutoPH = Number of autos per household of the served area ,around 0.3 miles of the stations
EmpCCD = Density of employees residing in center city
EmpDen = Density of employees residing in the served area, around 0.3 miles of the stations
NetCom = Network complexity, ratio of number of links to number of stops

Agencies

Light Rail Short name Heavy Rail Short name
Boston-MBTA bos New York-CTA nyo
San Francisco-MUNI sfr Washington-WMTA was
Philadelphia-SEPTA phi Chicago-CTA chi
Los Angeles-LACMTA lan Boston-MBTA bos
San Diego Trolley sdi Atlanta MARTA atl
St. Louis-Bi-State slo Philadelphia-SEPTA phi
Portland Tri-County MTD por San Francisco-BART sfr
Dallas-DART dal New York-PATH path
Sacramento-RTD sac Miami-Dade Cnty TA mia
Pittsburgh-PAT pit Baltimore-MTA bal
Buffalo-Niagara Frontier buf Los Angeles-LACMTA lan
Baltimore-Maryland MTA bal Lindenwold-PATCO patco
Santa Clara County 113 sjo Cleveland-RTA cle
New Orleans Public Svc nor Staten Island Rapid Trans sta
Cleveland-RTA
Denver-RTDNewark-NJT

cle
den
new

San Juan Heavy Rail SJ

Hudson-Bergen Light Rail HB
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Models of Data Envelopment Analysis

2F-DEA = Two Farrell Data Envelopment Analysis
DEA(1) = Data Envelopment Analysis Number One
DEA(2) = Data Envelopment Analysis Number Two
DEA-C = Data Envelopment Analysis Conventional
DEA-ND = Data Envelopment Analysis with Non Discretionary Factors
DEA-2S = Data Envelopment Analysis Two-Step
DEA-CL = Data Envelopment and Analysis Cluster Analysis
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APPENDIX C

PLANNED PRODUCTIVITY OF NEW RAIL PROJECTS

Hudson-Bergen Light Rail

The assumptions are as follows.

1) Energy consumption is comparable to the Dallas system that uses similar vehicles, 464 thousands Kw-

h per vehicle per year.

2) VRM derives from the scheduled vehicle revenue miles of the first initial segment valid in May 22,

2000 and extrapolated to the length of the line of the other segments. Hudson-Bergen Light Rail plans

for 683 thousands of VRM per year for the initial operational segment.

3) Published planned TRIPS for the other segments are the following; 18,000 daily unlinked trips for the

initial operating segment to Exchange Place, 25,000 for the first segment to Hoboken, 72,360 for the

second segment and 100,000 for the third. The first segment to Exchange Place considered two

approaches, the optimistic assumes 18,000 trips for 365 days while the conservative assumes 50

percent for Saturdays and Sundays (conservative).

4) Published track length figures are the following; 8.1 miles in the initial segment to Exchange Place, 9.5

in the first segment, 15.4 in the second, and 20.1 in the third segment.

5) This dissertation assumed three approaches for the relation Labor/Vehicles, one similar to Newark

system, other similar to Dallas system, and a third as the average of both.

6) Published number of vehicles are the following; 29 for the first segment, 43 for the second and 66 for

the third. As a result, Table A presents fifteen cases with all the alternatives.
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Table A Hudson-Bergen Light Rail - Cases
Case Segment Labor Planned TRIPS on Weekends
3NJ Third Newark-like Conservative
3DA Third Dallas-like Conservative
3AV Third Average Conservative
2NJ Second Newark-like Conservative
2DA Second Dallas-like Conservative
2AV Second Average Conservative
1NJ First Newark-like Conservative
1DA First Dallas-like Conservative
lAV First Average Conservative
0Njcon Initial Newark-like Conservative
0Dacon Initial Dallas-like Conservative
0Avcon Initial Average Conservative
0Nj op Initial Newark-like Optimistic
0Daop Initial Dallas-like Optimistic
0Avop Initial Average Optimistic

San Juan Heavy Rail

San Juan Heavy Rail is to operate in Puerto Rico. Planned operational data for the San Juan system was

collected from published data of San Juan Department of Transportation, Federal Transit Administration,

Siemens, and other providers of the project (US-DOT-FTA 2000).

1) VRM is calculated by using the track length of first segment and planned headway of 4 minutes in

peak hour and 8 minutes during off-peak hours for a total of 20 daily hours and 50 percent during

weekends.

2) Published planned TRIPS data from a low of 15,000 trips to a high of 100,000 trips on weekday.

3) Published average productivity of Loper, lmain and ever (US-DOT-FTA 1992), Tables 2-5, 2.8.

4) Published number of cars, 14, 64 and 74.

5) Published track length 10.2 miles on each direction, a total of 20.4 miles on both.

6) Published number of stations, 15 for the first stage.

As a result Table B presents six cases.

Table B San Juan Heavy Rail - Cases 
Case	 cars	 TRIPS per weekday
14low 	 14 	 15,000
14high 	 14 	 100,000
64low 	 64 	 15,000
64high 	 64 	 100,000
741ow 	 74 	 15,000
74high	 74	 100,000 



APPENDIX D
DATABASE OF RAIL TRANSIT PRODUCTIVITY ANALYSIS

Vehicle Revenue Miles
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Labor used in Maintenance Vehicles
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Labor used on Non-Vehicle Maintenance



Labor used in General Administration
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Labor used in Transportation and General Administration
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Total Labor
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Number of Vehicles
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Number of Stations

Density of service
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Available Circuits

Circuitry Index
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Network Complexity

Connectivity Index
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Stop Spacing

Density of Network



Density of Access

143

Comprehensive Accessibility



Employment Density

144

Total Number of Employment



Transit Share on the Journey to Work (Motorized Trips)

145

Rush Hour Proportion (Proportion of initiating trips between 6 and 9 am)
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Autos per Capita



Proportion of Vacant Housing

147

Housing Density



Household Size

148

Population Density



Proportion of Minorities in the Population

149

Proportion of the Population below Poverty



Average Per Capita Income

150

Average Household Median Income
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Population



Half Rush Hour Proportion (Proportion of initiating trips between 8 and 8:30 am)

152

Jobs Density of Metropolitan Area



Congestion Index

153

Employed Population of Center City



Percentage of Black Population in Center City

154

Percentage of Black Population in Metropolitan Area



Percentage of Hispanic Population in Center City

155

Percentage of Hispanic Population in Metropolitan Area



Number of Jobs in Metropolitan Area
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Population of Center City

157

Population of Metropolitan Area



Employed Population Density of Center City
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Population Density of Center City
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Consumption of Electric Energy
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