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ABSTRACT

BROADBAND WHOLE PACKAGE FDTD SIMULATION

by

Shenjun (Peter) Li

Whole package analysis is becoming more and more important with the rapid expansion

of high frequency electronics. The motivation of this thesis is to find and implement a

new method for broadband whole package simulation. 3-dimension (3-D) whole package

Finite Difference Time Domain (FDTD) simulation result was first reported in detail in

this thesis.

The FDTD method is a widely used full-wave time-domain simulation method used

in the design and analysis for electromagnetic (EM) systems, such as antennas, wave

propagating, and microwave circuits. Absorbing boundary condition (ABC), such as the

perfect matched layer (PML) method, makes it possible to accurately analyze an EM

structure involving complicated wave propagation in three-dimensional domain. Instead

of running simulation at each frequency, time-domain solution gives complete frequency-

domain response including coupling and dispersion effects. Chapter2 introduces the

principle of FDTD and two important boundary condition methods. It also discusses the

nonuniform grid numerical error, and gives the FDTD simulation and theoretical result.

Flip chip package is one of the most important package types. Chapter 3 presents a

wide band approach for characterizing multiple flip chip interconnects by the FDTD

method. Detailed analysis for electrical performance for frequencies up to 40 GHz has

been performed with variations of interconnect bumps (ball cross section and via cross

section). Flip chips of three sizes are studied using FDTD method in detail. The

relationship between reflection loss, via pad length, ball cross-section and via cross



section is tabulated for future packaging design. Based on the simulation results, some

design approaches are proposed for packaging structure operating at near 40 GHz.

FDTD whole package simulation method is introduced at the beginning of Chapter

4, followed by discussion how to implement this method to specific packages. The

packages used to host circuit in chapter 4 are microstrip line and flip chip interconnects.

The embedded circuits are ideal transmission line and an HP amplifier. Transient effects

are observed when an amplifier is hosted in a package. Most of the simulations are

processed under three-dimensional environment; two-dimensional simulation is used for

reference standard. All these results were first reported by the author of this thesis and his

collaborators.
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CHAPTER 1

OVERVIEW OF FDTD AND BROAD BAND PACKAGE SIMULATION

1.1 Introduction of Numerical Electromagnetic Modeling Techniques

Modeling of planar microwave structure has developed at an outstanding speed in the

past decade. Current computer hardware and software technology makes it possible to

implement algorithms based closer to the governing Maxwell equations of the EM system

of interest. These algorithms have found widespread application in the areas of

microwave devices and guiding structures, such as waveguides, resonators, junctions,

microstrip, vias, interconnects, and transmission lines.

Computer methods for analyzing problems in EM generally fall into one of three

categories, analytical techniques, numerical techniques, and expert systems. Their

detailed definitions are as follows by Hubing [22].

Numerical techniques are the most accurate and important methods. They analyze

the entire geometry which encloses the simulation domain as input. These numerical

techniques can be broadly classified as frequency and time domain methods. The FDTD

technique is a major time domain method. The FDTD method discretizes Maxwell's

equations in space and time in a straightforward manner. FDTD results lend themselves

well to scientific visualization methods since they tracks the time-varying fields

throughout a volume of space. The FDTD method is a widely used full-wave time-

domain simulation method used in the design and analysis for EM systems, such as

antennas, wave propagating, and microwave circuits [50]. Berenger's PML method [5]

makes it possible to accurately analyze an EM structure involving complicated wave

propagation in three-dimensional domain. Instead of running simulation at each designs
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frequency like a frequency-domain EM method, a time-domain solution gives full

frequency-domain response up to the frequency of 1/(2Δt), where At is the minimum time

difference. The response includes coupling and dispersion effects [49].

Finite difference frequency domain (FDFD) method and Method of Moments are

frequency domain numerical techniques. FDFD technique results from a finite difference

approximation of Maxwell's curl equations. In this case the time-harmonic versions of

these equations are employed. Method of Moments uses basis and testing functions to

discretize integral equations of electromagnetics. This numerical technique is based on

weighted residuals method. It is not well-suited to the analysis of complex

inhomogeneous geometries. The shortcoming for the frequency domain method is that

one simulation can only obtain the system performance at one frequency. It should be run

for numerous times if the system performance at different frequencies needs to be

obtained.

Analytical techniques and expert systems are the other two computer methods for

analyzing EM problems. Analytical techniques make simplifying assumptions about the

geometry of a problem in order to apply a closed-form (or table look-up) solution. Expert

systems estimate values for the parameters of interest based on a rules database. As

system design and board layout procedures become more automated, analytical technique

and expert system EM software will become more and more important.
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1.2 Finite Difference Time Domain Technique

1.2.1 The Origin of FDTD

The Finite-Difference Time-Domain method, first proposed by Yee [57], is a simple and

elegant way to discretize the differential form of Maxwell's equations. Maxwell

(differential form) equations are simply modified to central-difference equations,

discretized, and implemented in software. The equations are solved in a leap-frog

manner; that is, the electric field is solved at a given instant in time, then the magnetic

field are solved at the next instant in time, and the process is repeated over and over

again. Although FDTD was simple, elegant and can be easily implemented, it did not

gain much attention immediately after its publication. One reason was its high

computational cost, and the others were the inherent limitations at that time, such as

boundary conditions and numerical error.

1.2.2 The Development of FDTD

FDTD was initially used to solve the EM scattering problem by Taflove [49] in 1975,

which is the first break-through in FDTD history. Taflove was among the first to

rigorously analyze FDTD numerical errors [49]. Taflove was also the first to present the

correct stability criteria for the original orthogonal-grid Yee algorithm [49]. In his papers,

some critical problems were solved or improved. The correct derivation of the stability

criterion was demonstrated; the lattice truncation conditions were proposed to handle the

unbounded boundary.

ABC is often used to truncate the computational domain in space since the tangential

components of the electric field along the outer boundary of the computational domain



4

cannot be updated using the basic Yee algorithm. The early ABC technique is radiation

conditions [2]. ABC's can be grouped into those that are derived from differential

equation based or material absorber. Mur [32] first applied an ABC technique of acoustic

wave equations used by Engquist and Majda [13] in time domain electromagnetic field

equations. Microstrip line was modeled with Mur's ABCs by Sheen [39]. Mur's ABCs

and Berenger's PML [5] are differential and materials ABCs respectively, which

essentially solved the problems of boundary conditions in FDTD.

PML gained attention immediately after Berenger's publication in 1993 [5].

Waveguide and multilayered planar circuit structure were studied with PML technique by

Bahr [ 1], Reuter [38] and Verdu [55]. Berenger [4] used PML to solve interaction

problems. Afterwards, he also reported evanescent waves in PML's [6] [3]. Katz [25]

extended 2-D PML to 3-D PML, gave 3-D PML expression. Li [ 29] reported microstrip

modeling by PML in non-uniform FDTD grid. Veihl [54], Fang [14] , Sullivan [47] and

Zhao [60] worked to improve PML performance by various formulations. PML makes it

possible for high accuracy simulation and therefore has a major impact upon the FDTD

modeling community.

Lumped elements were modeled into the FDTD formulation by adding an

additional current term, named lumped current, in the Ampere's Law [44]. Dumey [12]

and Picket-May [37] have extended Sui's 2D analysis to model full wave propagation in

3D circuits containing both active and passive elements. Based on Sui and Picket-May's

work, SPICE-like circuit simulator can interface with FDTD simulation in time domain

seamlessly, yielding stable and accurate result for nonlinear and active circuit [29,30].

Zheng [61] and Namiki [33] reported new algorithms that overcame the time step
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restriction in FDTD calculation, thus further enhancing the incorporation of FDTD with

SPICE-like simulator. Kuo [28] reported another lumped elements method, which was

named as lumped voltage approach. This approach employs voltage sources to represent

the lumped devices and generate electromagnetic fields based on Faraday's Law.

1.3 Planar Package Simulation

1.3.1 Flip chip interconnect and FDTD method

Flip-chip interconnect is a popular surface mount packaging technique because it does

not have lateral leads or pins and has advantages, such as low electrical parasitic and low-

cost, easy assembly through self-alignment, the smallest footprint, and the thinnest profile

and weight [17][34] [35].

One important topic for flip-chip package is how to enhance the transition

performance at operating frequency range. There are many parameters which affect the

performance, such as the interconnect bump length and width, the conductor on the board

below the chip, the feeding line width of coplanar waveguide (CPW), and the ground to

ground distance of CPW. Various methods have been applied to tune these parameters for

optimal packaging performance [15] [19] [2004], but they were limited to few structural

variations. Solution of electromagnetic (EM) field is required for most of the packaging

analyses, preferably broadband technique for high-speed circuitry. Flip-chip interconnect

was studied by Sonnet simulation in comparison with experimental measurements [34].

The simulation result was quite different from measured results, probably because

incomplete modeling of the contributing factors to the transition performance, such as via

pad size, via cross section and height, and dielectric layer. Two CPW lines with one



6

interconnect was analyzed recently [15]. They also gave broadband solutions. However,

the structure with three CPW layers connected by two sets of interconnects (via and ball),

which is more complicated and close to actual design, has not been studied in detail.

This thesis presents a wideband approach for characterizing multiple flip-chip

interconnects by the FDTD method. Three different flip chip interconnects are studied in

chapter 3. Detailed analysis for electrical performance for frequency up to 40 GHz has

been performed with variations of interconnect bumps (ball cross section and via cross

section). A three-layer CPW connected by two sets of interconnects (via and ball) is

studied using FDTD method in detail. The relationship between reflection loss, via pad

length, ball cross-section and via cross section is tabulated for future packaging design.

Based on the simulation results, some design approaches are proposed for packaging

structures operating at near 40 GHz.

1.3.2 Whole Package Simulation

Whole package simulation is the most import part of this thesis. Circuit designers are

faced with the problem of devising packages with sufficient electrical properties for

mounting circuits that perform at high speed. The accurate prediction of the electrical

performance prior to fabrication has been difficult because of its fully three dimensional

structure. The FDTD whole package simulation is strongly expected to aid in designing

the packages more efficiently.

From the point of view of electromagnetic modeling a microwave package is not

only a considerably complex structure. There are different simulation segments. The first

is the simulation of the embedded circuit. To deal with package simulation it needs not to
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go into details of the circuit. The chip is treated as an n-port whereby its global

interaction with the surrounding package is considered. A current flow from one port of

the circuit to another leads to a global EM coupling to the environment. There is no need

to register the local current distribution due to the internal circuitry as long as the chips

are small compared to the package. The second is the package itself containing the

carrier, sealing, feedthrough, and interconnects. Optimization of interconnects is another

important question that is also concerned with different connecting techniques inside and

outside the package. Chapter 3 focuses on how to optimize interconnects by adjusting

some package parameters. Chapter 4 concentrates on whole package simulation.

Circuit simulation was reported by Shibata [39], but he focused more on circuit than

whole package. Pereda [36] also reported linear RLC lumped network FDTD simulation.

A break through of whole package simulation was reported by Sui [45]. A general

method to integrate s-parameter and behavioral block, along with lumped circuit

components, into standard FDTD simulation, was presented by Sui. The convolution

algorithm for s-parameter block requires inverse Fourier series calculation for impulse

response function. The concept of absorbing cube is introduced, in addition to the

induced current to Maxwell's equations, to clearly define the interface between

distributed and lumped circuit. It also revolves the uncertainty of the size and location of

the added subcircuits, either s-parameter block or other lumped components. Since the s-

parameter and behavioral model integration approach follows the same paradigm for

modeling lumped elements, it greatly extended FDTD capability to include both lumped

components and s-parameter block into full-wave time-domain simulation. Accuracy and

stability of the method are verified by excellent comparisons for some two-dimensional
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test circuits. The formulation is derived for three dimensions and its implementation is

straightforward. This method includes industrial standard s-parameter circuit

representation and behavioral module in FDTD simulation and it should find its

application in full-wave solution for RF integrated circuits, chip packaging and many

other high-frequency system designs.



CHAPTER 2

PRINCIPLES OF THE FDTD METHOD AND

NON-UNIFORM GRID NUMERICAL ERROR

2.1 Introduction

The first part of this chapter introduces the principles of the FDTD method. The FDTD

equations for the field components are presented, and the locations of the electric and

magnetic field components on Yee cells are illustrated. The stability condition and

relationship among the spatial and temporal discretization are also discussed.

The second part of this chapter demonstrates the relationship between the non-

uniform grid and numerical error. The non-uniform grid can be used to describe

accurately the complicated geometrical shape of the electromagnetic system. The non-

uniform FDTD grid provides us with flexibility to improve its accuracy. The

characteristics of a plane wave on the boundary of two adjacent media with non-uniform

FDTD rectangular grids are analyzed. The reflection and refraction characteristics of the

wave propagation at the boundary or two adjacent media due to the numerical dispersion

of The FDTD method are demonstrated. In the FDTD simulation, these characteristics are

different from the theoretical solution and cause numerical errors. The magnitude of

numerical errors depends on the FDTD simulation parameters. Knowing these

characteristics would help us manipulate the FDTD cell size distribution in order to

achieve the desired simulation accuracy within the requirement.

Li [29] derived non-uniform numerical error equations in the TE mode when

electrical field is in parallel to the plane of incidence. In this chapter, the non-uniform

numerical error equations when the electrical field is perpendicular to the plane of

9
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incidence were derived. The FDTD simulation results are also given in comparison with

the theoretical ones.

2.2 The Yee FDTD

Kane Yee reported a set of finite difference equations for the time dependent Maxwell's

curl equations system [57]. The Yee algorithm solves for both electric and magnetic

fields in time and space using the coupled Maxwell's curl equations rather than solving

for the electric field alone or magnetic field alone with a wave equation. This is

analogous to the combined-field integral equation formulation of Maxwell, where both E

and H boundary conditions are enforced on the surface of a material structure.

Using information of both E and H, the solution is more liable than using either

alone. Both electric and magnetic material properties can be modeled in a straightforward

manner. This is especially important when modeling radar cross-section migration.

Features unique to each field such as tangential H singularities near edges and corners,

azimuthal (looping) H singularities near thin wires, and radial E singularities near points,

edges and thin wires can be individually modeled if both electric and magnetic fields are

available.

The original Maxwell's curl equations:

In linear, isotropic, time invariant, non dispersive media, the Maxwell's curl equations

can be written as



In Cartesian coordinates, equations (2.3-2.4) can be rewritten as a system of equations for

all the electromagnetic field components

As illustrated in Figure 2.1, a special spatial discretization scheme named Yee cell,

is used in The FDTD method to discretize the equations (2.5-2.10). The Yee algorithm

centers its E and H components in 3-D space so that every E component is surrounded by

four circulating H components, and every H component is surrounded by four circulating

E components. The placements of the electromagnetic field components are off the grid

nodes of one half cell size. The arrangement of the positions of E and H components is

for the purpose to locate the electrical media more conveniently. In order to locate the

magnetic media conveniently, the positions of E and H components can be exchanged.



Figure2.1 Non-uniform FDTD grid
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This does not change the FDTD equations at all. In time domain, the E and H

components are also defined at different time instants. Specifically, the E field is defined

at the ndt and the H field is defined at (n+1/2)dt, n is a non-negative integer and dt is the

temporal increment.

E and H field component expressions can be obtained with uniform cell size and

only conduction current from equations (2.5-2.10)

where the conduction current is evaluated as forward time average J" = σ(E" + En+En+1)/2

The new value of a field vector component at any space lattice point depends on its

previous value and the previous values of the components of the other field at adjacent

points [50, 51]. In another word, every E components can be calculated based on its
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value at its previous time step and H field values around it at a half time step before.

Every H field component can also be computed according to its value in previous time

step and the E field values around it at a half time step before. Thus, this scheme is also

called leap frog scheme.

The FDTD method is necessary to avoid numerical instability. The stability criteria

of the FDTD method are [51]

Equations (2.16-2.18) are for 1-D, 2-D and 3-D methods respectively. They are

also known as Courant-Eriedrichs-Lewy(CFL) stability criterion.

2.3 Boundary Condition Techniques

The field computation domain must be limited in size because the computer can not store

an unlimited amount of data. The computation domain must be large enough to enclose

the structure of interest, and a suitable boundary condition on the outer perimeter of the

domain must be used to simulate its extension to infinity. The outer boundary condition

must suppress spurious reflections of the outgoing numerical wave analogs to an

acceptable level, permitting the FDTD solution to remain valid for all time steps,

especially after the reflected wave analogs return to the vicinity of the modeled structure.
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These conditions are called absorbing boundary conditions (ABCs). Two ABCs are used

in this thesis, one is Mur's ABC, the other is Berenger's PML.

2.3.1 Mur's ABCs

Mur's ABCs are based on defactoring the second order wave equation into two first order

wave equations, each of which represents the wave in opposite directions. Each

component of the electric field independently satisfies the three-dimensional wave

equation:

where W is any E or H component.

Define three inverse velocity components Sx, Sy and Sz

which satisfy

It is assumed that the mesh is located in the region 0<x, and give boundary conditions for

the plane x=0. The differential equation that describes the outgoing wave is

The first order Mur ABCs can be obtained by first order Taylor's series from Equation

(2.25):



From the second order Taylor's series:

Second order Mur ABCs can be obtained:

Mur's ABCs can keep the reflection coefficient as low as 20dB. But Mur's ABC is

not faultless. A wave is absorbed without reflection only when it is a plane wave

propagating perpendicularly to the boundary. Although the Mur's boundary condition can

be extended to higher order if higher Taylor's series is used, it does not help much on the

reflection and can cause a stability problem.

2.3.2 Perfect Matched Layer (PML)

Berenger [5] published a novel ABC for FDTD meshes in two dimensions with orders of

magnitude of improved performance relative to any earlier technique. For a 2-D problem,

with only Ex, Ey and HZ field components. If there is a medium, with property

where εo and ,u0 are the free space permittivity and permeability, and a and a * denote

electric conductivity and magnetic loss respectively. Then the impedance of the media

equals that of vacuum and no reflection occurs. A plane wave is perfectly matched (zero

reflection) when normally incident on a half space of this media.

But the absorbing medium described above fails perfect match for the EM waves

that are not normally incident on the absorbing layer. The PML approach based upon a

16
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splitting of electric or magnetic field components in the absorbing boundary region with

the possibility of assigning losses to the individual split field components, can absorb EM

waves when oblique incident. The net effect of this is to create a non-physical absorbing

medium adjacent to the outer FDTD mesh boundary that has a wave impedance

independent of the angle of incidence and frequency of outgoing scattered waves. PML

effective reflection coefficient is 1/3000 th of standard second and third order analytical

Mur's ABCs [5,49].

Using PML to terminate 2-D electrical structure having E x, Ey and 1-1, components

[5]. Hz is split into two subcomponents: Hzx and Hzy.

If PML region is set according to following rules:

when electrical wave propagates in the +x direction, at maximum x, the electrical wave

meet with PML that has o and σ*x matched with σy=σ*y  =0. The PML permits

transmission across the vacuum-PML interface without reflection, as shown in Figure
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2.2. It is assumed that the loss in PML region increases quadratically with depth d. The

loss a will reach to its maximum value when d=6. The loss in PML can be chosen to

bound the reflection coefficient [47]

So reflection coefficient can be kept to some desired level.

In three dimensional cases, all six Cartesian field vector components are split. The

resulting PML modification of Maxwell's equations yields 12 equations [25], as follows:



Figure 2.2 Three layers: vacuum, PML, conducting wall.
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Since the electromagnetic field changes rapidly in a PML medium in space but not

in time, the exponential scheme in time does not improve stability. Thus, the central

discretization scheme to discretize the time derivative is also used.

The electric and magnetic conductivity profile in a PML layer is also an important

factor to influence the performance of the PML. Constant, linear, parabolic, and

geometric profiles are all used to define the conductivity profile from the interface

between PML and Yee cell to the outer boundary, normally perfect electrical conductor

(PEC) wall. The parabolic profile is much better than the linear and constant profile, but

for the simulation with a large number of iterations, the parabolic profile causes a

significant error. The geometric profile can avoid this problem, but a more careful design

must be made to define the PML boundary laryers.

Generally, the performance of PML is much better than Mur's ABCs. According

to Berenger's work [5], the reflection coefficient of PML is 20 dB less than that of

Mur's ABCs. The shortcoming of PML is its higher computational cost because of the

splitting of the electromagnetic field components and additional layers in the FDTD grid.

In the microwave and high frequency circuit analysis, involving complicated

electromagnetic phenomena, such as near field phenomena and high order modes, PML is
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generally accepted as the main approach to handle boundary conditions in FDTD

simulation.

2.4 PEC cell type

FDTD simulation sometimes needs to treat very thin conductor layer with zero thickness.

So an artificial property, which is called PEC type is created to stand for zero thickness

conductor. The PEC property fixes some of the E components in a Yee cell to zero

during all the computational time. There are 7 PEC types [29],

PEC Type Description

0 No Components are fixed to 0

1 Ex=0

2 Ey=O

3 Ez=0

4 Ex=Ey=0

5 Ex=Ez=0

6 Ey=Ez=0

7 Ey=Ez=Ez=0

Table 2.1 PEC type

Figure 2.3 is thin conductor rectangle that is expressed by PEC cell types. The four

thin conductor cells are PEC type 4, which keep Ex and Ey to zero. Its boundary PEC

cells are type 1 and 2; type 1 keeps Ex to zero, and type 2 keep Ey to zero. PEC is a very



Figure 2.3 Thin conductor rectangle's PEC type

22



23

useful property for FDTD. With its help, lumped elements can be added in between one

or two cells. PEC is used default in this thesis. Non-PEC type is stated when it is used.

2.5 Numerical Error for Non-uniform Grid of Electromagnetic System

The non-uniform FDTD grid provides us flexibility to improve accuracy of simulation. It

is often desirable to have a refined lattice in localized regions such as near sharp edges or

corners to accurately model the local field phenomena. This section analyzes the

characteristics of a plane wave on the boundary of two adjacent media with non-uniform

FDTD rectangular grids. The reflection and refraction equations of the wave propagation

at the boundary or two adjacent media due to the numerical dispersion of The FDTD

method are derived. In the FDTD simulation, these equations are different from the

theoretical solution due to numerical errors. The magnitude of numerical errors depends

on the FDTD simulation parameters.

There are two regions for non-uniform grid reflection, as it is shown in Figure 2.4:

Region One: incident wave and reflected wave

Region Two: transmitted wave
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Figure 2.4 TM mode wave propagates in the interface of two different media



using Ampere's Law near the interface

Substituting (2.48)—(2.53) into (2.55), the numerical reflection coefficient can be

obtained as follows

By using the same procedure as above, the reflection coefficient for E in the incident

plane can also be attained [29]:

Two FDTD simulations are run to verify the reflection coefficient equation. The

simulation area is 100X18 cells, with minimum grid size of 1 mm.
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Case One: the whole simulation area is divided by two, the first half has uniform grid

size 1 mmX 1 mm, the second half has uniform grid 10mmX 1 mm, the monitor point is in

the middle of the interface of the two areas. Figure 2.5 is the FDTD simulation and

theoretical result, directly calculated from the equations derived above.

Case Two: the first half has uniform grid size 1 mm X 1 mm, and the second has uniform

grid 20mm X 1 mm. The monitor point is the same as case one. Figure 2.6 is the FDTD

simulation as well as the theoretical result.

Efforts at deciding nonuniform cell size can be very time consuming. Our work

shows that the nonuniform numerical error can be kept at very low level by varying the

size of the grid intervals slowly and monotonically. It can be concluded that the

difference between two adjacent non-uniform cells should not be more than 10 times,

otherwise it will cause great numerical reflection, which can be proved by Figure 2.5 and

2.6. The reflection also increases as the simulation frequency increases.



Figure 2.5 FDTD simulation result against theoretical result for non-uniform grid 1mm
to 10mm
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Figure 2.6 FDTD simulation result against theoretical result for non-uniform grid 1mm
to 20mm



CHAPTER 3

BROADBAND TIME-DOMAIN CHARACTERIZATION

OF MULTIPLE FLIP CHIP INTERCONNECTS

3.1 Introduction

This chapter presents a comprehensive approach for the characterization of multiple flip-

chip interconnects by 3-D FDTD method. The behaviors of transition discontinuities in

CPW layers and flip-chip bump interconnects are investigated for optimal packaging

performance. The relationship between the reflection loss, the via pad length and the

cross-section of bumps is discussed in detail. Three types of flip-chip interconnects,

which are quite different in size and structure, are simulated. Results in this chapter

shows that FDTD is a reliable simulation method, which may be used as a design tool for

complicated packaging structures.

3.2 Using FDTD Method on the Flip Chip Simulation

Maxwell's equations are the starting point for solving electromagnetic field distribution.

Since the general three-dimensional finite-difference expressions are well known

[51], for reference purpose only the equations for z-components in Cartesian coordinate

system are listed here.
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During FDTD simulation, the voltage between the feeding line and ground is

recorded at every FDTD iterations. The voltage is the integral of the electrical field from

the ground to the feeding line. The observation point is between the discontinuity and the

source. This position should be set to match the simulation results to the measurement

ones.

Scattering (S) parameters of a given structure can be obtained by FDTD simulation.

S parameters for a two port network are defined as:

where v is a component of the EM field, superscripts 1 and 2 are port indices, and

subscripts i and r refer to incident and reflected signals, respectively .

In order to obtain the S parameters at port 1, namely Si] and S12, FDTD simulation

should be run twice. First, the input signal v i1 is obtained for the distributed structure that

has only the feeding CPW. Second, the total signal vtl is calculated, which is the

summation of the input and reflected signals with the effects of interconnects and other

discontinuities in the system. Then the reflected signal can be calculated from the total
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signal and input signal. The reflection parameter can then be obtained by Fourier

transform [29].

where fft is the fast Fourier transform.

3.3 Simulation and Discussion

3.3.1 Small size flip chip

Small size flip chip is referred to the structure with which CPW ground to ground spacing

is 120 p.m in this thesis. Heinrich [20,21] reported 3-D the FDFD simulation results first.

Then Jentzsch [24] reported the different possibilities to improve the return loss of the

small size flip chip with FDFD method. The dielectric layer they used is GaAs. FDTD

was used to simulate this structure in this chapter for the first time, and different

dielectric fillers (GaAs, Sapphire) were used in simulation. Wide range frequency

performance is evaluated from DC to 100 Ghz in this chapter.

Structure parameters: ground to ground distance is 12012m , feeding line width 50

μm , gap between feeding line and ground 35 μm , air above the layer is 200 pm ,

dielectric layer below the layer is 100 pm with dielectric constant =12.3, as the structure

is shown is Figure 3.1. Reflection loss and insertion loss are displayed in Figure 3.2 and

3.3. By using FDTD Si I can be obtained with different dielectric fillers. When dielectric

constant is changed from 12.3 to 9.6, other parameter is kept the same as above, the

reflection loss is as shown in Figure 3.4.



Figure 3.1 Flip chip interconnect structure side view and top view.
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Figure 3.2 Return loss of small size CPW with dielectric constant=12.3, bump
pad=25pm, 35 μm, 45 μm.
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Figure 3.3 Insertion Loss of Small size CPW

34



Figure 3.4 Small size CPW with dielectric filler, z=9.6
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From our simulation result, it can be concluded that the bump-pad length (1p) is one

of the most important parameters in the mm-wave frequency range. The return loss and

insertion loss given above are excellent and demonstrate the potential of this type of flip-

chip for mm-wave applications. Sapphire filler has better reflection performance than

GaAs as shown by our simulation results.

3.3.2 Middle size flip chip

For a middle size flip chip the CPW ground to ground spacing is about 0.36mm in this

thesis. Ghouz [15] reported FDTD simulation for this structure, followed by the work of

wang [56], who tried to optimize some parameters such as the bump numbers, and the

bump to bump distance to find structure with less reflection at high frequency range.

Wang [56] continued his FDTD work combined with PML and found some good

transition structure.

The grid size used in this section is about 0.06mm, 8 PML cells are used to truncate

the out boundary of the simulation domain. The original middle size flip chip structure is

show on Figure 3.5, which is also called flat structure. Figure 3.6 is our simulation result.

Ghouz' result [15] and our simulation are in excellent agreement with each other.

A new design named Single Resonance Design was reported by Wang [56]. The

top view of the structure is shown on Figure 3.7 . Two vias are placed along the feeding

line in this structure. The scattering from the two via will interfere with each other and

optimum transition may be achieved when two vias are in suitable resonant separation,

which is the original purpose of this design. Figure 3.8 is our FDTD simulation result



Figure 3.5 Flat flip chip structure
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Figure 3.6 Flap structure simulation result



Figure 3.7 Top view of Single Resonant Structure



Figure 3.8 Single resonance flip-chip transition design
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when Lstg=0.48mm. The reflection loss becomes bigger than flat flip chip when

operating frequency is near 20 Ghz. However, this structure has better transition at the

frequency range of 35 to 80 Ghz.

Another design to overcome the high reflection in high frequency range is the

staggered structure, as shown in Figure 3.9. Figure 3.10 is the FDTD simulation result

for Lstg=0.24 and 0.48mm. It seems that reflection loss can not be lower at low

frequency and high frequency at the same time. 40Ghz is a turning point for this

structure. Lstg should be kept short if the transition frequency is at DC to 40 Ghz range.

But it should be kept long if 40 to 70 Ghz is the frequency range.

Although a great amount of FDTD simulation results are displayed in this section,

it is hard to get a concise rule for the choice of optimized structure parameters at an

arbitrary desired frequency band. The reason is parasitic resonance phenomenon in these

structures. Detailed discussion of this phenomenon will be pursued in our future work.

3.3.3 Large size flip chip

The multiple flip-chip interconnect structure used in this section is based on thin film

ceramic ball grid array (BGA) package [33]. The original structure has 3 RF and 5 DC

I/O's. Figure 3.10 shows the side and top views of the simplified structure used for this

study. There are three 50S) CPWs and three associated dielectric layers. Layer substrates

are alumina for the top and bottom layers, and air for the middle one, with heights of H1,

H2 and H3, respectively. The dielectric constant for alumina is 9.6. Both input and output

ports are on the bottom CPW lines as shown in Figure 3.11 and 12. The metal layers



Figure 3.9 Staggered flip chip structure
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Figure 3.10 FDTD simulation of staggered structure with staggered distance 0.24,

0.48mm
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Figure 3.11 Side view of the three-layer structure. H1, H2, and H3 are 15 mils. The

single arrow stands for the signal feeding direction.
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are assumed perfect conductors (PEC) and of negligible thickness. There are two types of

interconnect bumps: ball connecting CPW line 1 and line 2, and via connecting CPW line

2 and line 3. The round ball geometry is approximated as square and the RF via is also

simplified as having a rectangular cross section. PML boundary condition in a non-

uniform FDTD grid, 160x54x31 with average grid size of 50.8 mils, follows algorithm

described in [30,31]. The workstation used for simulation is a Sun E5500 server; the

average simulation time is 6-8 hours.

Figure 3.13 shows a comparison of reflection loss S 11 between FDTD simulation

and measurement, as well as reported Sonnet simulation [34]. The close match between

FDTD result and measured data demonstrates the accuracy of the FDTD method. It

proves that FDTD is an effective package simulation method. In the following we will

use FDTD to optimize some interconnect bump packaging structures.

Ball and via interconnects can be described as an equivalent circuit of capacitance

and inductance [19,20]. Changing ball cross section will change capacitance and

inductance in the system, therefore causing reflection loss change at certain frequency

range. FDTD simulation results demonstrated this behavior, as shown in Figure 3.14,

where S11 is plotted versus different ball cross sections when via cross section is set at

4 x 4 mil. The reflection coefficient becomes smaller as the ball cross-area increases from

4 x 4 to 16 x 16 mil. The reflection coefficient increases with the increase of the cross

section area when it is larger than 16x 16 mil. This suggests that the package in this



Figure 3.12 Top view of three CPW layers. W1, W2, W3 and W4 are 30, 10, 6, and 16
mils, respectively.
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Figure 3.13 Comparison of S11, in dB vs. frequency in unit of GHz, from measurement and
Sonnet simulation with FDTD result. W5, W6, W7, W8 and L1 are 4, 8, 24, 16 and 40 mils,
respectively.



Figure 3.14 Reflection Loss for Different ball cross section
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BGA format is useable in the frequency range of DC to 36 GHz if appropriate ball cross-

section is chosen.

As shown in Figure 3.11, the via bump connects CPW line 2 and line 3. In order to

study its effects to the packaging performance, its cross section is changed in parallel and

perpendicular to feeding direction respectively. The effective inductance becomes larger

when via size is increased along the signal propagating direction. The larger inductance

degrades signal transition for flip chip. This is in agreement with FDTD simulation result

as shown in Figure 3.15 where S11 changes with via length along propagating direction.

The structure with via size 8x 4 mil has better transition at higher frequency near 30 GHz.

However, the structure with 4 x 4 mil has an overall better performance near lower

frequency range.

Tuning effective via capacitance can improve flip chip interconnect transition, the

parameters which can contribute to via capacitance are via pad length [19,20] and via

width perpendicular to feeding direction. Figure 3.16 shows that Su changes with via

width perpendicular to the propagating direction. Structure with via size of 4x12mil has

the lowest reflection near 30 GHz, but 4x8mil structure has the best performance from 0-

40 GHz.

It is reported by Kim that the cross-section area of bump or via does not affect S

parameter significantly [26]. In their structure, there was only one via along the feeding

line that connects two CPW lines and it was only half of the structure studied here along

the feeding direction. There are two sets of balls and vias which vertically connect three

CPW in this thesis. Ball to ball, via to via and ball to via resonance affect S parameter
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Figure 3.15 S11 for different via size along propagating direction. Via sizes are 4x4, 8x4
and 12x4 mil.
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Figure 3.16 S11 for different via size perpendicular to propagating direction. Via sizes are
4x4, 4x8 and 4x12 mil.
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significantly. Simulation results presented here indicate that S it parameter is sensitive to

ball and via cross section and they illustrate that several flip-chip structures can achieve a

good transition design of 80% bandwidth over which the return loss is smaller than -

20DB.

3.4 Conclusions

FDTD simulation results show that via and ball effects can change the designed

packaging structure performance significantly. S11 can be optimized for certain frequency

by changing the size and shape of the ball and via. However, it is difficult to obtain a

precise rule for choosing the optimized via or ball cross section at an arbitrary desired

frequency band; FDTD method, nevertheless, provides an accurate and efficient approach

to study the performance of the interested structure.



CHAPTER 4

WHOLE PACKAGE SIMULATION WITH LUMPED ELEMENT METHOD

4.1 Introduction

The rapid expansion of high-frequency electronics demands more powerful analysis tool

that can include both mixed signals from lumped elements and field effects in circuit

design. Sui [44] extended FDTD method to include distributed electromagnetic systems

with lumped elements (a hybrid system) as well as voltage and current sources in 2-D

system. FDTD equations that include nonlinear elements such as diodes and transmitters

are derived. Calculation of driving-point impedance is described. The extended FDTD

method should prove useful in the design and analysis of complicated distributed systems

with various active, passive, linear and nonlinear lumped electrical components.

Sui [45] also first reported an effective method for whole package simulation. The

whole package includes the package interconnects and embedded circuits. It presents a

generalized formulation for incorporating a lumped sub circuit, described by its current-

voltage (I-V) relation, an n-port scattering parameters (S-parameters) or a behavioral

model, into full-wave time-domain field simulator, FDTD method. The concept of

absorbing cube is introduced for including any sub circuit in the FDTD grid. For a sub

circuit described by S-parameters, the convolution formulae are based on its physical

interpretation, and its numerical implementation requires additional computation and

storage.

In this chapter lumped current algorithm and 3-D whole package simulation
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algorithm are introduced. How to implement the whole package algorithm is the next

topic for this chapter. Embedded circuit is modeled as a lumped block. 3-D simulation

results from some test circuits can illustrate the accuracy and stability of the algorithm.

This method provides a general approach for integrating n-port s-parameter and

behavioral model representation into time-domain FDTD simulation.

4.2 Lumped Current Algorithm

Maxwell's equations are the fundamental equations for any field calculation and their

FDTD solution can be found in many references [51]. Additional current term has been

added to the total current integration, as shown in Eq (4.2), in order to take into account

the contribution of any "alias system", as previously introduced in [43]. The current due

to a lumped block can be added to the integration in Equation (4.2) to account for the

current contribution to the total electromagnetic field.

Additional current term 'a in Equation (4.2) contributed by an alien system and it

usually is related to other variables by a mathematical equation.
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Since the general finite-difference expressions for Equation (4.1) are well known

[43, 51], only the equations for z-component in Cartesian coordinate system are listed

here for reference purpose. Field components in other directions can be written in similar

equations.

The lumped resistor, inductor or capacitor can be modeled easily by substituting in to the

above equations for each component. In finite-difference terms, these relations take the

following forms for the resistor, inductor, and capacitor, respectively [37]:

where R, L and C are given per unit length, and zero values are assumed for both

inductor current and capacitor voltage at time zero.
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Forward time averages have been taken in the above equations to be consistent with

the treatment of the conductance. However, the forward difference form of the difference

equations will lead to instabilities for certain values of R if no time averaging is used for

the currents [44].

4.3 Broad Band Package with Lumped Elements

4.3.1 S parameter of embedded circuit

The electromagnetic behavior of the embedded circuit is described by its port behavior.

S-parameter is used in this section. S-parameter is one of the most commonly used

descriptive methods in frequency domain for high-frequency electric system and

component. S, Y and Z parameters and other equivalent representations for linear system

can be inter-transformed to each other. It is desirable to model the circuitry on chip as

lumped sub-circuit with its S-parameter. S-parameter was transferred into Y-parameter

and incorporated into FDTD simulation in [58] and [44]. The S-parameter modeling

approach can be obtained with the relation between port voltage/current and incident and

reflected ones at each port of an n-port system. The conversion of the frequency domain

S- parameter to time domain is necessary for whole package simulation, so the embedded

circuit can be processed as a lumped element by lumped algorithm. Figure 4.1 is the

illustration of voltage and current at each port of an n-port system, where subscript + and

— represent incident and reflected signal, respectively.
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Figure 4.1. Illustration of voltage and current at each port of an n-port system, where
subscript + and — represent incident and reflected signal, respectively.
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4.3.2 Absorbing cube

The concept of absorbing cube is implemented in whole package simulation [45]. The

absorbing cub is connected to the distributed circuit through a section of matching

transmission line. It can trap any incident EM wave so the embedded circuit can be

expressed by its mathematical representation at the interfaces with the distributed system.

Each port of an n-port embedded circuit system is terminated with an absorbing cube

through a section of lossless transmission line. The absorbing box can be approximated

with many existing absorbing boundary conditions. Mur's 1 st ABC is used by this

section. Artificially high impedance is realized by assigning low permittivity and high

permeability to the media that fill the space between the conductors, waveguide or

substrate so that an open circuit effect at each port can be obtained. Since absorbing cube

has high impedance property, its position and size will affect simulation result very

much. The ideal position and size of this absorbing cube should be the same as the

physical embedded circuit. The other determining factor would be the interactions

between different portions of the distributed system. The absorbing cube can be shown in

Figure 4.2.

4.3.3 Equation derivation of whole package simulation

When an n-port system is emerged in a distributed system, each port of the system is

connected at its closest grid point inside the FDTD grid. An interface between distributed

and the n-port system is then defined at these port points. At the interface, voltage and

current are the connecting variables between the two electronic realms. So voltage and



Figure 4.2. An n-port system is connected within a FDTD grid through sections of
transmission line. Nodes a and b are the connecting points for port i. Electric field
components along path ab are updated using Equation (4.9). The inlet shows the sum of
current at this port where i t, is current contribution from port j.
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current are, in general, related to the electric and magnetic field, port voltage can be

calculated by the following static equation

or in FDTD approximation

where integral path is assumed along z direction for electric field Ezijk across point a and

point b. Current can also be related to magnetic field, but it is usually calculated by the

current/voltage relation of the modeling system.

By definition, frequency-domain scattering parameters of an n-port are defined as

where superscript i is the index for each port, and subscripts - and + refer to reflected and

incident signals, respectively.
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Assuming a system represented by matrix S in Equation (4.11) is connected

through a lossless transmission line to the distributed system, it can be shown that the

incident and reflected voltage and current at each port are related to port voltage and

current by the following equations

where Z0 1 is the characteristic impedance of the connecting lossless transmission, voltage

and current without subscript stand for their corresponding variables at each port [11].

Equations (4.13, 4.14) are illustrated in Figure 4.1 where relationship between port

voltage and incident and reflected ones is shown.

Eliminating variables v+' and v_ i by combining Equations (4.11, 4.12) and (4.13,

4.14), voltage at each port is therefore the sum of the contributing factors from all the

ports.

These equations can be easily converted to time-domain as convolution equations

or
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where yo` is the characteristic admittance of port i, and the time-domain impulse response

hij(t) is the inverse Fourier transform of its frequency-domain counterpart sij(f).

and

The total current 40 in Equation (4.20) is the algebraic sum of contributions from

each of all the ports (j=1, ...,n) to port i and they can be modeled as n number of current

sources in parallel, as shown in the inlet in Figure 4.2. The induced current Ii(t) is the

additional current /a that should be included in the extended Maxwell's Equation (4.2).

Interactions between the distributed system and the s-parameter system are reflected by

the discontinuity caused by the additional current located at the port, as illustrated in

Figure 4.2.

Direct convolution method requires the complete history of voltage or current at

each port, therefore it requires significant amount of computer resources. For most of the

physical systems, the impulse responses have finite duration T, implying hij(t)~0 for t>T.
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Also different kind of extrapolation schemes must be used to expand frequency range and

data point for Fourier transformation since most of the measured s-parameter data has

limited points at a certain frequency range. These limitations and their effects on

simulation result will be discussed in more details in the latter session.

Implementing finite-difference technique to calculate current at each port from

Equation (4.19), port current flow at current time step k+1 can be determined by the

history of voltage and current.

where again the induced current Ii(tk) in Equation (4.21) accounts for contributions from

all the contributing ports.

As shown in Figure 4.2, each port of the n-port system is connected to FDTD cells,

where an integral path between the two connecting points defines a voltage, as shown in

Equations (4.9, 4.10). Current flow is defined inside the loop for electric field integration.

At each port interface, input and output variables for a behavioral model are represented

by Equation (4.9). Giving the derivation for s-parameter modeling in FDTD described

earlier in this section, any n-port behavioral model can be handled in the same manner.

more detailed discussion can be found in [43].
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FDTD solution for the electromagnetic field inside the distributed system is stepped

through all the time steps for complete time simulation. Voltage and current are therefore

updated in every time step along with field variables. These additional calculations can be

executed at the end of standard FDTD iteration for electric-magnetic field. To avoid

unphysical effects of numerically adding an abstract object inside the discrete grid, or

equivalently to make sure the inserted alias object is only described by its mathematical

representation, concept of an absorbing cube (square in 2D) is described at the beginning

of this section.

4.4 3-D Multi-Port Circuit Modeling in FDTD Field Simulation

To verify the simulation results from the newly developed algorithm, the availability of

the other numerical simulation is vital. However, there is no commercial 3-D simulation

for whole package to be compared with. A few examples of hybrid circuits, such as 2-

port ideal transmission line and amplifier, are simulated to verify the accuracy and

stability of the algorithm described earlier in this thesis. All example circuits are modeled

in three-dimensional uniform grid, with a cell size of 1 mm and time step of 1.667ps for

mircrostrip line structure, and with a cell size of 50um for flipchip. The absorbing square

is made of four surfaces with Mur's 1 st order absorbing boundary condition with the

dimensions matching those of the waveguide. S-parameter descriptions used in

simulations are obtained either from scanning the modeled device in ADS or from the

manufacturer of the device.
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4.4.1 Microstrip line 3D simulation

Microstrip is an important planar microwave component. There is an extensive literature

about microstrip. Zhang [59] has studied the dispersive characteristics of microstrip by

FDTD method. Sheen also used FDTD to analyze microstrip rectangle antenna [39].

Shorthouse and Railton [41] incorporated static field solutions into the FDTD method for

microstrip discontinuities. None of them, however, can give a general method for whole

package simulation with microstrip.

This section will use the method described at the beginning of this chapter to study

3-D whole package simulation. 2-port ideal transmission line is used for embedded

circuit. Microstrip line is used as host package. The cross section of this package is

shown in Figure 4.3. The side view of this package is shown as Figure 4.4, the shadowed

square standing for absorbing cube and embedded circuit block. The simulation signal is

a gauss pulse, with half width 2 X 10 4° sec. The simulation result is shown in Figure 4.5,

V1 and V2 are the voltage behavior at port one and port two. There is no commercial 3-

D simulation result for this 2-port ideal transmission line.

The other embedded circuit used for whole package simulation is an HP amplifier.

2-D simulation is obtained, as shown in Figure 4.6. The exciting source is lumped sine

wave source, with period 0.4 X 10 -9sec. The 3-D microstrip line simulation is shown in

Figure 4.7, hard source is used in this simulation with period 0.4 X 10 -9sec. The relative

volume and phase difference for Figure 4.6 and 4.7 are almost the same.



Figure 4.3 the cross section of microstrip structure, top metal layer is feeding line,
bottom metal is ground layer, unit is cell size, one cell = 0.001m, dielectric constant
=14.3
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Figure 4.4 Side view of microstrip line whole circuit simulation structure
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Figure 4.5 Voltage at two circuit ports of the microstrip line with ideal transmission line



Figure 4.6 Two dimension simulation for two ports with Amplifier Circuit
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Figure 4.7 Microstrip line with sine wave hard source, 0.4X10-9, S circuit is a HP

amplifier
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4.4.2 Flip Chip 3D simulation

Flip chip package structure is discussed in Chapter 3. The big size flip chip interconnect

is used in this chapter. The ball cross section is 16 X 16 cell. The via size is 4 X 4 cell.

Figure 3.14 has the reflection information for this empty package. An absorbing cube is

added for whole package simulation, as shown in Figure 4.8 and 4.9. The size of this

absorbing cube is about 29 X 54 X 7 cell, which should be the same as the actual circuit.

The flip chip package modeling is much more difficult than microstrip line because one

flip chip port has two path to ground. The port current consists of two parts that share

different directions. It makes field simulation complicated, as shown in Figure 4.10.

Figure 4.11, which is one curve in Figure 3.14, is the reflection against frequency

for the flip chip used for this section without embedded circuit. The package has good

transition performance from DC to 30GHz. The average reflection loss is below 20dB.

The flip chip interconnects and embedded circuit should be processed at the same time

when whole package simulation is started. In another word, the whole package simulation

result should have both flip chip interconnect information and embedded circuit

information. The voltage distributions for embedded circuit ports and input and output of

whole package have all the necessary information according to whole package simulation

principle.

The first frequency of input signal source is 2.5 GHz. The embedded circuit is a HP

amplifier. The flip chip interconnect has a very good transition at 2.5GHz, which is 30dB

according to Figure 4.11. The voltages at circuit ports are shown in Figure 4.12.



Figure 4.8 Side view of the three-layer structure. H1, H2, and H3 are 15 mils. The single
arrow stands for the signal feeding direction, while the upper cube is the absorbing cube and
S circuit for whole package simulation
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Figure 4.9 Top view of three CPW layers. W1, W2, W3 and W4 are 30, 10, 6, and 16 mils,
respectively. The upper cube is the absorbing cube.



Figure 4.10 The circuit port on flip chip interconnect. I 	 isis the port current.
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Figure 4.11 FDTD simulation of flip chip package without embedded circuit.
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Figure 4.12 Voltage distribution on the two ports of embedded amplifier circuit
mounted on flip chip package.
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The voltages at whole package input and out put ports are shown in Figure 4.13. These

two figures are almost the same except a small phase difference at the beginning, which

cause by transmission line. The loss for this package is very small at 2.5 GHz working

frequency.

The second frequency of input signal source is 36GHz. The embedded circuit is

ideal transmission line with 2X10 11 sec delay. The flip chip interconnect has 15dB

transition at 36GHz according to Figure 4.11. The voltages at circuit ports, package input

and output ports, are shown in Figure 4.14 and 4.15. The outstanding phase difference

can be found as the signal frequency become higher. The package input voltage are

stronger than output. It means this package can cause the big loss for the 36 Ghz signal,

which can be also proved by Figure 4.11.

The third simulation uses 28 GHz sine wave source, and a shifted HP amplifier.

The flip chip interconnect has 33 dB transition at 28 GHz. Figure 4.16 and 4.17 are the

voltage distribution of embedded amplifier ports and whole package input and output

ports. There is also outstanding phase difference as the case with ideal transmission line

at 36 GHz, but its transient time is much longer that the other case, about 5X10 -1° sec,

which is still a small time value for amplifier.

4.5 Conclusions

3-D whole package FDTD simulation is first implemented in this chapter. 2-D simulation

is used as the reference standard because there is no 3-D whole package simulation to



Figure 4.13 Input and output simulation of whole flip chip package with mounted
amplifier
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Figure 4.14 Voltage distribution at port one and two of ideal transmission line embedded
in flip chip package with sine wave source, frequency=36GHz
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Figure 4.15 Voltage distribution at package input and output ports of flip chip package
with embedded ideal transmission line, the frequency of sine wave form =36GHz



Figure 4.16 Port voltage of HP amplifier embedded in flip chip package with 28GHz
sine wave source
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Figure 4.17 Input and output voltage of whole flip chip package with embedded HP
amplifier, sine wave source frequency is 28GHz
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compare with at present time. The excellent results indicate the concept of the absorbing

cube is suitable and effective. It solved the previous uncertainty about the size of the

added lumped system and it actually agrees with the definition of a lumped element. The

absorbing cube can be applied to general modeling of any system that possesses

"lumped" feature.

Microstrip and flip chip planar packages with on-chip circuit are first studied by

FDTD whole package simulation. The embedded circuit port has two grounds for flip

chip, so special processing is need during FDTD simulation. Chapter 3 is also part of 3-D

whole package FDTD simulation. Package interconnect is very import to whole package

simulation. Interconnect simulation can be used to find what the working frequency range

is available so appropriate circuit will be chosen. Whole package with on-chip circuit

FDTD simulation is used to simulate in a wideband, which is from DC to 40 GHz. All

these show that whole package with on-chip circuit FDTD simulation is an emerging

technique. Single on-chip circuit is used in this thesis, but there could be as many as the

real design need according to the basic theory introduced at the beginning of this chapter.
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