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ABSTRACT

WAQS: A Web-based Approximate Query System

by
George Jyh-Shian Chang

The Web is often viewed as a gigantic database holding vast stores of information

and provides ubiquitous accessibility to end-users. Since its inception, the Internet

has experienced explosive growth both in the number of users and the amount

of content available on it. However, searching for information on the Web has

become increasingly difficult. Although query languages have long been part of

database management systems, the standard query language being the Structural

Query Language is not suitable for the Web content retrieval.

In this dissertation, a new technique for document retrieval on the Web is

presented. This technique is designed to allow a detailed retrieval and hence reduce

the amount of matches returned by typical search engines. The main objective of this

technique is to allow the query to be based on not just keywords but also the location

of the keywords within the logical structure of a document. In addition, the technique

also provides approximate search capabilities based on the notion of Distance and

Variable Length Don't Cares. The proposed techniques have been implemented in a

system, called Web-Based Approximate Query System which contains an SQL-like

query language called Web-Based Approximate Query Language.

Web-Based Approximate Query Language has also been integrated with

EnviroDaemon, an environmental domain specific search engine. It provides Enviro-

Daemon with more detailed searching capabilities than just keyword-based search.

Implementation details, technical results and future work are presented in this

dissertation.
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CHAPTER 1

INTRODUCTION

The World Wide Web (Web), which emerged in the early 1990s, has made great

strides in the late 1990s. Its explosive growth is expected to continue into the next

millennium. The contributing factors to this explosive growth include the widespread

use of microcomputers, advances in hardware (microprocessors, memory and storage)

technologies, increased ease of use in computer software packages, and most impor-

tantly — tremendous opportunities the Web offers for all businesses.

The consequence of the popularity of the Web as a global information system

is that it has flooded us with a large amount of data and information. The Web has

achieved an extraordinary amount of information content and provided ubiquitous

accessibility to end-users, yet it has at the same time become very difficult to locate

specific information. In this sea of data and information, searching for a piece of

information is like finding a needle in a haystack.

For example, the most common way to search for a document of interest in this

repository is to use navigation-oriented browsers. While browsing is a convenient

way of viewing documents, it is not a good search technique because of the following

limitations. First, unless the user knows exactly where the document of interest

is located, it is very time consuming and difficult to find the target document by

browsing. Second, it does not provide a global view as to where the target document

might be. Looking for useful information on the Web is often a tedious and frustrating

experience. Therefore, new tools and techniques are needed to assist us in intelli-

gently searching for and discovering useful information on the Web.

Due to the limitations of browsing as a search technique, various tools have

been developed using information retrieval techniques to speed—up and facilitate

1
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information search on the Web. Important Web search tools are categorized as

following:

• Keyword-Based Search Engines

• Query-Based Search Systems

• Mediators and Wrappers

• Multimedia Search Engines

• Web Crawling Agents

Keyword-based search engines provide a fast way of searching for information

on the Web. While many different types of search engines exist on the Web, they

usually offer only keyword-based searches and indices. Most search engines index

site documents via one of the following methods: by title, by document content,

by Uniform Resource Locators (URLs), or a combination of the above methods.

Many directories on the Web have also been created and categorize sites by topics

of interest. Yahoo is perhaps the best known among the directories.

Though search engines provide a quick and easy way of finding information

on the Web, the process of using them is still often tedious and frustrating. Since

search engines are typically designed to maximize recall, there is little or no attempt

to filter the information intelligently, so manual browsing of the original documents

is required to find relevant information. Another shortcoming of the current Web

search engines is the lack of a high-level querying facility to automate the information

retrieval process. The compelling need for a high-level query language has led to the

developments of query-based search systems. such as WebSQL [104], WebLog [82],

W3QS [78], which allow the user to do queries on Web information using an SQL-like

query language.
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Unlike query-based search systems that use search engines as backends,

mediators and wrappers have been developed which are based on a Database

Management Systems (DBMS). Mediators and wrappers can take advantage of the

underlying DBMS querying and data storing facilities. Hence, they can provide

extensive backend analytical processing.

Web content has transformed the Web from a textual to a multimedia-based

repository. As sounds and images proliferate on the Web, multimedia search engines

have become increasingly important. Multimedia search engines are designed to

handle non-textual based content. Hence, having scalable and responsive system is

critical in its design.

Web crawling agents is another essential category of Web search tools. These

agents are responsible for discovering new content that can be indexed by the search

systems. Hence, its performance is critical to the overall accuracy of a search tool.

In this dissertation, a new query-based system called Web-Wide Approximate

Query System (WAQS), for the Web, is presented. WAQS examines the explicit

embedded semantic structure associated with each hypertext document using the

Document Type Definition Model (DTDM). In addition, inspired by the various

query languages designed for the Web, an SQL-like query language, Web-Based

Approximate Query Language (WAQL), has been designed and implemented to

provide querying capability for WAQS. WAQL extends the power of the existing

search engines by exploiting the hierarchy of the underlying HTML tags.

The rest of the dissertation is organized as following: Chapter 2 discusses

keyword-based search engines; Chapter 3 discusses query-based search systems along

with the syntax and semantics of WAQL that were developed; Chapter 4 discusses

mediators and wrappers; Chapter 5 discusses multimedia search engines; Chapter 6

discusses Web crawling agents related work that were used in building the system;

Chapter 7 discusses the integration of WAQL with a domain specific search engine
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prototype called EnviroDaemon. This search engine uses tools freely available on

the Web to gather environmental science related information on the Web. Chapter 8

discusses future research that can be extended from this dissertation.



CHAPTER 2

KEYWORD-BASED SEARCH ENGINES

The World Wide Web (WWW), also known as the Web, was introduced in 1992 at the

Center for European Nuclear Research (CERN) in Switzerland [17]. What began as

a means of facilitating data sharing in different formats among physicists at CERN is

today a mammoth, heterogeneous, non-administered, distributed, global information

system that is revolutionizing the information age. The Web is organized as a set

of hypertext documents interconnected by hyperlinks, used in the Hypertext Markup

Language (HTML) to construct links between documents. The many potential

benefits the Web augurs have spurred research in information search/filtering [30, 81],

Web/database integration [23, 90], Web querying systems [1, 78, 82, 104], and data

mining [37, 138]. The Web has also brought together researchers from areas as diverse

as communications, electronic publishing, language processing, and databases, as well

as from multiple scientific and business domains.

Prior to the Web, the Internet was only a massive interconnected network

of computers, which was text oriented and used primarily by large corporations

and research institutes for sharing information. Since the inception of the Web,

the Internet has experienced explosive growth both in the number of users and the

amount of content available on it. The Web has added the interconnection between

documents with different contents. The contents include images, graphics, sound and

video, in addition to text. Millions of knowledgeable Internet users have turned the

Web into a remarkable repository of information. Indeed, the ability of the Web to

collect and to disseminate information has in a few short years arguably transcended

what television broadcasting took 50 years to accomplish.

The availability of user-friendly, graphics-oriented interfaces has contributed

substantially to the growth and usefulness of the Web . Browsers, such as Netscape

Navigator and Internet Explorer, and multimedia players such as RealPlayer, have
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greatly simplified the use of the Internet and expanded its appeal. However, the

Web's rapid growth has exacerbated the burden of sifting and winnowing the infor-

mation that can be accessed on the Web. In many respects, the Web is similar to

a library with a limited catalog system: full of valuable information, but confusing

and time-consuming to search.

As the number of computers connected to the Internet grows, so does the

volume of content on the Web. Ironically, the same hyperlink organization that

gives the Web its power, also makes its organization remarkably chaotic. Searching

for specific information has become increasingly difficult in this dynamic, distributed,

heterogeneous, and unstructured repository. Using browsing as a search method is

often a problematic option for finding wanted information, frequently like looking for

a needle in a haystack.

In this chapter, the focus is on keyword-based search engines and related

techniques. Chapter 3 addresses issues in query based search. Chapter 4 discusses

mediators and wrappers. Chapter 4 describes multimedia search engines. The

techniques presented are not all new to the information retrieval and database

community. Rather, the emergence of the Web has promoted the refinement and

perfection of existing techniques in hardware and software to meet the demands of

the Internet.

2.1 Search Engines

Web search engines, also called Web indexes, index servers, or simply search engines,

have become the most visited Web sites on the Internet. Indeed, the most common

method used today to search the Web consists of sending information requests to

these servers, which index as many documents as they can find by navigating the

Web. A salient problem is that an informed user must be aware of the various index

servers, their strengths, weaknesses, and the peculiarities of their query interfaces.
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The need for querying information on the Web has led to the development of a

number of tools that search these indexes based on keywords specified by users.

Several such tools, e.g., AltaVista [5] and WebCrawler [145], have become the

gateway to the Web for the neophyte and information oracles for the experienced.

These tools serve the information needs of users by finding useful information in the

sea of Internet data. While early search engines were research prototypes, today,s

search engines represent billions of dollars of invested capital. They are maintained

by commercial firms to promote services primarily related to e-commerce.

Search engines are similar to ordinary library search systems in that they allow

users to type in subjects of interest as keywords, and return a set of results satisfying

given conditions. However, search engines seek, update, and index documents on a far

more massive scale than library systems. In addition, the Web is a far more dynamic

domain than a library, making it harder to maintain the currency of indexes.

According to a recent survey [70], the most popular search engines include

AltaVista [5], Excite [52] (Magellan and WebCrawler have been acquired by Excite),

HotBot [73], Infoseek [63], Lycos [92], Yahoo! [151]. These search engines are

multi-domain oriented and span the entire Web. AltaVista acts like the Yellow

Pages for the Web. It indexes the full-text of documents. Excite uses artificial

intelligence, employing concept-driven or "fuzzy" search. HotBot,s Slurp spider is

the most powerful of all the Web "crawlers" , capable of indexing the entire Web in

about a week, an ability which translates into fewer out-of-date links. Infoseek is

the most user-friendly search engine, with a clean, intuitive interface. Lycos is like

a bibliographic database service except that its abstracts are generated by programs

called Web crawlers, rather than human indexers. Yahoo! is actually not a search

engine, but rather a directory of the Web compiled manually by human indexers.

Some search engines focus on single domains [61]. Others are meta-search ones that

harness the power of multiple existing search engines. Still others employ user profiles
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Figure 2.1 The architecture of a search engine.

known, in Web parlance, as "cookies", and server logs to determine the most popular

sites.

Another very popular search engine, Google [67], has recently announced that

its searches encompass an average of more than one billion (10 9 ) pages. Its index

consists of 560 million full-text and 500 million partially indexed pages. This news

has placed Google as the largest index on the Internet.

Search Engine Watch [128], a portal on search engine news and resources,

categorizes search engines as: Major, Kids, Meta, Multimedia, News, Regional,

and Specialized. Typically, a search engine has four major components: Querying

Interface, Search Index, Web Crawler, and Hosting Hardware, as illustrated in

Figure 2.1. The solid lines in this figure represent direct interactions; dotted lines

are indirect interactions between components. The first three components are

described in detail below. Hardware issues are beyond the scope of this dissertation.

Detailed discussion on the hardware environments that powers the AltaVista search

engine can be found in [119].
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2.1.1 Querying Interface

The querying interface is the software component that searches through indexes to

find matches based on search criteria provided in a query. Retrieved documents

are ranked according to a predefined relevance matrix. In a keyword-based query,

combinations of keywords can be formulated to search for documents containing such

keywords.

Such an interface is simple, intuitive, and easy to use, even for naive users. Its

more effective use requires experience and more complex combinations of keywords

and operators. In this subsection, some of the most popular ways of formulating

keyword-based queries for search engines are discussed.

2.1.1.1 Single-Word Query This is the most elementary querying interface for

a search engine. In this model, a keyword is used as an input to the search engine.

The result of the search is the set of documents containing at least one occurrence

of the input keyword. Depending on the model used by the search engine index, the

keyword could occur as a word or as part of a word in the document. A semantically

enhanced version of keyword search, called field search, is provided by some systems

to focus the search on specific structural aspects of a Web page. For example, a

query with the term, title "information", would return only documents with

information in the title, using the HTML tags of a document to identify document

components such as titles. Table 2.1 summarizes a list of commonly used search

fields.

2.1.1.2 Multiple-Term Query In this model, the querying keyword is not

restricted to a single word or phrase. Multiple terms can be used in formulating

query criteria. The terms can be basic terms (words) or Boolean expressions built on



Field Field Location Example
text: Body text:information
title: Title title:database
link: Hyperlink link:kluwer.nl
anchor: Visual Part of a Hyperlink anchor:mining
url: URL url:www.xyz.com
host: Computer Name host:xyz.com
domain: Specific Domain domain:edu
image: Image Name image:map.gif
applet: Applet Name applet:tetris
object: Object Name object:game

Table 2.1 Searchable Web page fields.

the basic terms. Most search engines minimally provide the following user-selected

methods of expressing multiple-term queries:

• Resulting documents must contain all the keywords.

• Resulting documents must contain any of the keywords.

For example, a multiple-term query such as "information and database" is used

to find all documents containing both of the words "information" and "database" . A

query with expressions such as "((data or Web) and mining)" identifies all documents

containing either "data and mining" or "Web and mining" . In general, one can use

Boolean operators as connectives to connect two terms. Let e i and e2 be two terms.

The most commonly used Boolean operators are:

• and — for combining query terms. For example, the query

(e i and e2 ) selects all documents that contain both e i and e2.

• or — for including either the first or the second term. For example,

the query (e i or e2 ) selects all documents that contain el or e2.

10
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• not — for excluding documents with a query term. For example,

the query (not e l ) excludes documents with e l from the result.

Clearly, these three operators can only be performed on documents indexed by

a search engine. Duplicates are removed from the result.

2.1.1.3 Context Based Query When the context of the querying keyword is

known, a query can be formulated using phrase and proximity querying. These two

methods can improve the search efforts by eliminating documents that do not satisfy

this stricter form of multiple-term query.

A phrase is defined as any set of words that appear in a specific order. In a

multiple-term query, the order of the querying keywords is not important because

search engines evaluate each keyword individually. In contrast, in a phrase search,

the order of the querying keywords is important. Typically, querying phrases are

enclosed inside quotation marks (" "). They can be used to search for particular

sentences, for example, "I have a dream."

In proximity querying, the user can specify a sequence of terms (words or

phrases) and a maximum allowed distance between any two terms. This distance

can be measured in characters or words, depending on the index. For example,

the AltaVista search engine uses an adjacency operator near to denote the textual

closeness of two terms. The retrieved documents must contain the two terms, which

must be within ten words of each other. Proximity querying is helpful in, for example,

searching for names because first and last names may be separated by middle names

and initials. In general, near is useful when the proximity between two words reflects

or captures some semantic connection.

2.1.1.4 Natural Language Query A major problem search services face is the

complexity of the querying interface, which is often too complicated for naive users.
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Formulating a Boolean query is difficult and frustrating for many people. As a result,

systems such as AskJeeves [9] and ElectricMonk [49] have developed natural language

interfaces. These services do an impressive job of getting people to find what they

want by prompting users to form their own questions. Questions like: "Where can I

find a digital camera?" and "Which models of cars are most popular?" can be posed

and very accurate responses provided.

The secret to the accuracy of AskJeeves is human intervention. A team of

developers creates the knowledge base of questions that powers the search engine.

Currently, there are more than seven million questions in the AskJeeves knowledge

base. Popular questions that are very frequently asked have prebuilt answers targeted

for those questions including lists of subsequent questions useful to narrow the search.

If AskJeeves cannot find a match of the asked question in its knowledge base of

questions, it falls back on its meta-search engine component to retrieve various search

engine results as a backup.

Natural language query is the trend of future information retrieval systems since

it is more intuitive for casual users to formulate search criteria in natural language.

Strictly speaking, search engines with such a capability should not be categorized as

keyword-based ones; instead they should be considered as natural language search

engines.

2.1.1.5 Pattern Matching Query In a pattern matching query, the objective is

to retrieve all documents that match a given pattern. In this case, it is often difficult

to rank results because the given pattern might not contain exact words.

Search engines like AltaVista provide a way to broaden a search by using

wildcards. Wildcards are simply placeholders for missing characters. The main idea is

to allow the missing characters, represented by an asterisk (*), to match an arbitrary
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character(s), in order to increase the number of related hits. For example, colo*r

will match both color, the American spelling, and colour, the British spelling.

Restrictions are placed on wildcards because they can broaden a search exces-

sively. AltaVista implements the following two guidelines on wildcards usage:

• Use wildcards only after three or more characters.

• Use wildcards as placeholders for up to 5 unknown characters.

Some systems allow searching using regular expressions [72]. Enhanced regular

expressions [150] extend the expressive power of regular expressions. They incor-

porate constructs like character class, conditional expression, wildcards, and exact

and approximate matching operations to make patterns more powerful.

Sr AVTOMMOBIE
a 	 a
a 	 a

.
.

S2 	 AUTOMOBILE

Figure 2.2 String edit operations.

One definition of approximate matching is based on the concept of edit distance.

Given two strings S1 and S2 the edit distance between S1 and S2 is defined as the

minimum number of edit operations (delete, insert and relabel) needed to transform

one to the other as illustrated in Figure 2.2. In this figure, three edit operations are

required to transform S1 to S2 (via relabeling V to U, deleting M, and inserting L).

Algorithms for finding the edit distance between two strings can be found in [131].

Approximate text matching over hypertext, on the Web, can be found in [6, 110, 150].

Since matching regular and extended regular expressions is computationally

expensive, it is not implemented on a large scale for the Web and is not widely
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Figure 2.3 An inverted file built based on a B-tree.

adopted by major search engines. However, approximate matching is implemented

in WebGlimpse [96], which is based on Glimpse [97].

2.1.2 Search Index

The search index, or simply index, is the heart of a search engine. The index is

typically a list of keywords; each keyword is associated with a list of corresponding

documents that contain the keyword. In order to provide fast response time for

thousands of concurrent users and be able to store large volumes of data, most

search engines use inverted file indexing.

The search index is used because sequential string search algorithms [4, 20,

76, 77] are impractical when the text collection is large, especially if searching is a

very frequently performed operation, as it is in systems such as database servers and

library information systems. The most widely used method to speed up text search

is to prebuild an index. Building and maintaining an index when the amount of text

is large and dynamic is not an easy task. Therefore, various indexing techniques,

including inverted files [8], suffix arrays [66, 95], suffix trees [4, 101, 144] and

signature files [53, 54], have been developed and studied. Most search engines use

inverted files because they are easier to maintain and to implement.
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An inverted file is an enormous, word-oriented, look-up table. It contains two

major parts: a sorted index (list) of keywords (vocabulary) and an inverted list that

stores a list of pointers to all occurrences of a keyword as illustrated in Figure 2.3.

In this figure, the internal nodes represent the index structure, while the leaf nodes

contain the indexed words with their occurrence position within the file and pointers

to different file locations. In the case in which the inverted index is used for the

Web, the locations referred to are URLs. Inverted files can be implemented using a

variety of data structures. The sorted index (list) can be built using sorted arrays,

hash tables, B-trees [14, 15], tries [21], or a combination of these.

Different search engines use different inverted file indexing schemes. The granu-

larity of an index is defined as the accuracy to which the index identifies the location

of a search keyword. In general, indexes can be classified into the following three

categories:

• Coarse -grained — able to identify a set of documents based on a

search keyword.

• Medium -grained — able to identify a specific document based on

a search keyword.

• Fine -grained — able to identify a sentence or word location in a

specific document based on a search keyword.

Each granularity classification has different storage requirements and precision, as

summarized in Table 2.2.

Type Space Requirement Access Speed Accuracy
coarse-grained

medium-grained
fine-grained

low
medium

very high

low
medium
very fast

low
high
exact

Table 2.2 Granularity of inverted file indexes.
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Figure 2.4 Index structure of a Web search engine.

In the case of Web search engines, instead of storing the locations of keyword

occurrences, the search index stores the URLs of the occurrences, as illustrated in

Figure 2.4. The triangular shape in Figure 2.4 represents a B-tree index. The listing

of URLs indexed by the B-tree is shown in a table on the right of the figure. Each

posting list refers to a list of pointers to those URLs where a particular keyword

occurs, with one posting list per keyword. The order of the URLs in a posting list

for a keyword depends on an internal ranking mechanism based on criteria such as

word frequency count and word weight, which are used to measure the importance

of a word within a document.

The Web has become a global information resource, with obvious consequences

for the size of the index. In order to reduce the size of the index, the following

kinds of transformation techniques are used in the index building process. Index

compression techniques are also applied to represent indexes more compactly.

• Case folding — converts everything to lower case. For example,

Data Mining becomes data mining.
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• Stemming — reduces words to their morphological root. For

example, compression and compressed become compress.

• Stop word removal — removes common or semantically

insignificant words. For example, the definite article, the, and

indefinite articles, a and an in English, are removed.

• Text compression — reduces the inverted file size.

Different search engines apply the transformation methods differently. The

methods are domain and language specific. For example, "SAT" and "Sat" , and

"US" and "us" have different meanings in English. Therefore, modifications to these

methods are made to reflect different domains and languages. More detailed infor-

mation on document compressing and indexing is discussed in [148].

2.1.3 Web Crawlers

Web crawlers, also known as agents, robots or spiders, are programs that work contin-

uously behind the scene, having the essential role of locating information on the Web

and retrieving it for indexing.

Crawlers run continuously to ensure an index is kept as up to date as possible

and to achieve the broadest possible coverage of the Web. However, since the Web

is constantly changing and expanding, no search engine can feasibly cover the whole

Web. Indeed, many studies that have been conducted to estimate the coverage of

search engines employing crawlers, show that coverage ranges between only 5% to

30% [86] and the union of 11 major search engines covers less than 50% of the

Web [87].

Claiming broader coverage of the Web is one way of demonstrating the

superiority of an index. Search engine firms tend to use the extent of their coverage
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to boast about their indexing technology. However, broader coverage does not by

itself guarantee higher accuracy. Most search engines attempt to maximize recall, a

figure of merit used in information retrieval, defined as:

recall =
T

where N denotes the number of retrieved documents that are relevant to a search

query and T denotes the number of potentially retrievable Web documents that are

relevant to the search query. Observe that this is not the ratio of retrieved to relevant

documents, which could be considerably greater than 100% since a large number of

irrelevant documents could be included in what are retrieved.

Another measure of the effectiveness of search engines is precision, defined as:

N
precision = —

R,

where R denotes the number of documents retrieved in response to the search query.

Low precision would indicate that many irrelevant or superfluous documents are

retrieved, while low recall would indicate that the fraction of potentially relevant

documents retrieved is low. Thus, recall and precision tend to be inversely related:

when recall is high, precision tends to be low, as illustrated in Figure 2.5.

Although there are many publicly available search engines, the details of how

specific indexes are organized remain a strategic business secret. The in-depth

coverage on crawlers will be discussed in Chapter 6.

2.2 Web Directories

Search engines such as Northern Light [113], Direct Hit [44], Inktomi [74],

FAST Search [56], create their index automatically using crawlers. On the other

hand, Yahoo! [151] depends on humans to create its listing, called a directory.

Directories are created by using Website descriptions submitted by various sites

or generated by human editors. Table 2.3 illustrates directory categories listed on



• Arts & Humanities
• Business & Economy
• Computer & Internet
• Education
• Entertainment
• Government
• Health

Table 2.3 Yahoo!

• News & Media
• Recreation & Sports
• Reference
• Regional
• Science
• Social Science
• Society & Culture

directory categories.
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Yahoo! directory main page. Similar category structures can be found at other

search engines, like Excite [52], Netscape [111], and Go [63]. Although directories

and indexes work differently on the backend, the querying interface frontends work

similarly.

2.3 Meta-Search Engines

Search engines provide fast retrieval of information of interest from the Web.

However, the problem of knowing where search engines are and how to use them

poses some difficulties.  Furthermore, empirical results indicate that only 45% of

relevant results will likely be returned by a single search engine [129], that is, each

precision

0

x ideal

0 	 I
recall

Figure 2.5 Recall-precision curve.
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has a recall rate of 45%. This limitation is compounded by the fact that the coverage

of a typical search engine is between only 5% — 30% of the Web [86].

Meta-search engines are designed to mitigate such problems by accessing

multiple individual search engines. The principle behind meta-search engines like

MetaCrawler [105], SherlockHound [132], SavvySearch [125], and Inquirus [85], is

simple: "A dozen search engines is better than one" . The system architecture of

MetaCrawler is discussed in [46, 130] and an improved meta-search architecture has

been presented and studied in [62]. Figure 2.6 illustrates the system architecture of

a meta-search engine that contains the following components:

• Query Interface Module — responsible for getting user,s query input.

• Dispatch Module — responsible for determining to which search

engines a specific query is sent.

• Knowledge- base Module — used by the Dispatch Module to perform

decision-making (optional).

• Interface Agents Module — responsible for interacting with different

search engines using different query formats.

• Evaluation Module — responsible for ranking results according to some

predefined evaluation methods (optional).

• Display Module — responsible for displaying results.

2.4 Information Filtering

An important tool which is complementary to the search engine approach is infor-

mation filtering [13]. Filtering refers to the process of determining whether a

document is relevant to search criteria or not, and eliminating irrelevant documents.
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Figure 2.6 The architecture of a meta-search engine.

Filtering applications usually involve a stream of incoming data such as newswire

and email. Filtering is also used to describe the process of accessing and searching

for information on remote servers using intelligent agents [16].

Information filtering, which is based on a combination of machine learning

and information retrieval techniques [30, 39, 40, 59, 83, 100, 112, 126], has been

employed in many specialized search engines. Information filters can be viewed

as mediators between information sources and target systems. They help systems

eliminate irrelevant information using intelligent decision-making techniques like

Bayesian classifiers, term-frequency analysis, k-neighbors, neural networks, rule-

learning, etc.

Information filtering tools can be used to build topic-specific search engines.

General-purpose search engines, such as HotBot [73], offer high levels of Web coverage

for general information search on the Web. However, topic-specific search engines are

growing in popularity because they offer an increased precision/recall rate. Examples

of topic-specific search engines are: DejaNews [41], which specializes in Usenet news
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Figure 2.7 The building process of a topic-specific search engine.

articles; BioCrawler [18], which is a directory and search engine for biological infor-

mation search; and Cora [38], which allows one to search for computer science

research papers in PostScript format from universities and labs all over the world.

A general process for building a topic-specific search engine is illustrated in

Figure 2.7. In this figure, the agents which are responsible for retrieving documents

from the Web are crawlers. Documents returned by crawlers are streamed to

information filtering tools, which decide the relevance of the documents to the

topic domain. Accepted documents are added to the search index, while rejected

documents are discarded.



CHAPTER 3

QUERY-BASED SEARCH SYSTEMS

A shortcoming of the keyword-based search tools discussed in Chapter 2 is the lack of

high-level querying facilities available to facilitate information retrieval on the Web.

Query languages have long been part of database management systems (DBMSs),

the standard DBMS query language being the Structural Query Language (SQL) [60,

79, 118]. Such query languages not only provide a structural way of accessing

the data stored in a database, but also hide details of the database structure from

the user. Since the Web is often viewed as a gigantic database holding vast stores

of information, some Web-oriented query systems have been developed. However,

unlike the highly structured data found in a DBMS, information on the Web is

stored mainly as files. The files can be generally categorized as:

• Structured, such as flat databases and BibTeX files.

• Semistructured, such as HTML, XML, and TATO( files.

• Unstructured, such as sound, image, pure text and executable

files.

Structured files have a strict inner structure. For example, files like BibTeX

are highly structured. The grammar of BibTeX precisely defines the syntax and

semantics of the data. In this case, the grammar is like the schema of a database.

Semistructured files are text files that contain formatting codes, often called

tags. Such files include 'HEX, HTML, and XML files. Although tags can be used

to specify the semantic information within documents, most of the semantic infor-

mation is not coded in a formal way. Furthermore, even if the semantics were formally

coded, they would not be at a fine-grained level of specification like in a database

schema. For example, the \paragraph tag in aTEX and the <P> tag in HTML

23
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Figure 3.1 Web querying system architecture.

documents are general tags but say nothing about the content of a paragraph. XML

provides a finer grained specification than HTML by allowing user-defined tags, but

the lack of data type support and querying facilities has led to the further devel-

opment of XML-data [88], XML-QL [42, 57], and the Niagara Internet Query System

(NiagaraCQ) [33].

Unstructured files include sound, image and executable files that are not text

based. This makes it difficult to apply database techniques such as querying and

indexing to them.

Web query languages that have been developed and that allow high-level

querying facility on the Web include W3QS/W3QL [78], WebSQL [104], WAQL [70],

and WebLog [82]. These systems allow the user to pose SQL-like queries on the

Web, with the exception of WebLog which uses a logic-like query format. Unlike

the query facilities provided in mediators to be described in Chapter 4, these query

systems interact directly with the Web with minimal interaction with a local DBMS

or a file system. The general architecture of these query systems is illustrated

in Figure 3.1. It consists of a Query Parser module, a Query Engine module, and

system utilities. Query Parser takes a query and sends it to Query Engine. Query

Engine interacts with search engines, Web servers, system utilities and file systems.
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W3QS/W3QL, WebSQL and WAQL are discussed in this chapter, and detailed

discussion on WebLog can be found in [82].

3.1 W3QS/W3QL

W3QS [78] was one of the first Web querying systems. The system was designed to

provide:

• a high-level SQL-like query language,

• a simple interface to external programs and Unix tools,

• a graphical user interface for the information gathered by

queries, and

• a higher view maintenance facility than robot-maintained

indexes.

A query language called W3QL was subsequently designed as part of the W3QS

system. W3QL is an SQL-like language that allows querying based on the organi-

zation and HTML content of the hypertext. It emphasizes extensibility and the

ability to interact with user-written programs, Unix utilities, and tools for managing

Web forms. Its ability to interact with external programs makes W3QL like a

command-driven query language.

W3QL views the Web as a directed graph. Each URL or document corre-

sponds to a node of the graph. Each node has associated properties according to its

document type and content. For example, a node corresponding to an HTML file

has an HTML format, a URL, a Title, etc. On the other hand, a node corresponding

to a LATEX file is of UTEX format and might have Author and Title associated with

it. A directed edge is drawn from node a to node b if node a is a node with HTML or

XML format and the document contains at least one anchor (hyperlink) to node b.



26

docurnentl 	 document2
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title = "airplane" 	 41.- img_name = "747"
	 }

href = "*.boeing.com"

Figure 3.2 Structure-based query.

Like nodes, edges also have associated properties. For example, consider Figure 3.2

which illustrates a structure-based path pattern query. This query is to find

documents with "airplane" in their title and with a hyperlink to Boeing,s Website

with an image on 747. The <A> tag which specifies the hyperlink corresponds to a

directed edge with attributes such as HREF and REV. Since there may be more than

one hyperlink between a pair of nodes, the Web actually corresponds to a labelled

directed multigraph.

W3QL provides two types of hypertext query: content-based and structure-

based. In content-based queries, W3QL uses a program called SQLCOND to evaluate

Boolean expressions in the query. This is similar to the WHERE clause of an SQL

query. Using SQLCOND, a user can select nodes from the Web that satisfy certain

conditions. For example, the conditions might be:

(node .format = HTML) and (node .title = "database").

In a structure-based query, the query can be specified using a path pattern

(path expression). A path is a set of nodes {n i ,... ,nk 1, and node pairs (ni, ni+1),

1 < i < k — 1, where (n i , ni+1 ) are edges of the graph.

The query patterns are a set of subgraphs of the Web in graph representation.

Each subgraph must satisfy conditions in the query pattern including node and edge

conditions specified by the query pattern.

W3QS/W3QL has three main modules - a Query Processor, a Remote Search

Program (RSP), and a Format Library. The Query Processor takes a query and invokes
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programs in the RSP library to interact with search engines. At the end of the search,

the Format Library is used to display the result.

The semantics of a W3QL query is defined as follows:

SELECT	 α
FROM	 /9
WHERE	 w
USING	 0
EVALUATED EVERY y

where α specifies how results should be processed; [3 specifies the pattern graph of

the search domain; w specifies a set of conditions on the nodes and edges specified in

0, V) and y optionally specify the search methods and search interval, respectively.

3.1.1 Select Clause

The SELECT clause is an optional part of the query and defines the form in which the

query results should be processed. It has the following form:

SELECT [CONTINUOUSLY] statements. 	 (3.1)

The statements are UNIX programs and arguments that are invoked after the

results are returned from the RSP. This clause may also involve running a UNIX

program to process the result. It can also act as a filter to reformat the result.

3.1.2 From Clause

The FROM clause describes the virtual pattern graph the RSP uses to search for results.

Patterns are described using a set of paths according to the following format:

FROM path_expressions. 	 (3.2)

The path_expressions specify the search pattern to be used by the RSP. A

pattern graph is a directed graph G(V, E) where there is at most one edge between

any two nodes and at most one self-loop. Figure 3.3 illustrates a pattern graph with

its corresponding text description.
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n1 12 (n3 13) or
(n3 13) 14 n2

n1 11 n2
n1 12 (n3 13) 14 n2

Figure 3.3 Example of a pattern graph.

3.1.3 Where Clause

The WHERE clause is used to specify search predicates that nodes and edges in the

FROM clause must satisfy. Only nodes satisfying the WHERE conditions will be returned

as part of the query results. The WHERE clause has the following form:

WHERE condition_clauses. 	 (3.3)

The condition_clauses impose search restrictions on the nodes and edges

specified in the FROM clause. It can also provide RSP navigation directives. The

following are conditions that can be specified:

• unix_program args = reg_expression. 	 This will invoke

external UNIX programs.

• node_name IN file_name. This will check whether the node

name node_name is in the file file_name.

• FILL node_name AS IN file_name WITH assignments. 	 This

will automatically fill in the form in node_name with data found

in file_name and assignments.

• RUN unix_program IF node_name UNKNOWN IN

file_name. This will automatically invoke an external program

if an unknown form is encountered during the search process.
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3.1.4 Using clause

The USING clause is optionally used to specify the search algorithm to be performed

by the RSP. Search methods like depth first search and breadth first search can be

specified. If the algorithm is not specified in a query, a default search algorithm is

used.

3.1.5 Evaluated every clause

The EVALUATED EVERY clause is optionally used to specify the updating interval for

the query. Intervals such as daily and weekly can be specified for automatic updates.

This clause is mainly used for dynamically maintained views.

3.1.6 Examples

Example 1. This query searches for HTML documents that contain hyperlinks to

images in GIF format located in www . xyz . com. Here n1 and n2 are nodes and 11

is the link used to connect n1 with n2. The select statement is a command that

copies the content of n1 to a file called result.

select cp n1/* result;

	

from 	 n1, 11, n2;
where SQLCOND (nl.format = HTML) AND

(11.href = "www.xyz.com ") AND
(n2.name = "*.gif");

	Example 2.	 This query defines a view which maintains a list of pointers

to UTEX articles with "Data Mining" in the title. URLlist.url specifies a built-in

list of important search indexes. URLlist .fit specifies how to fill in the keyword

"Data Mining" in HTML forms required by search indexes in URLlist url. The

select statement specifies that the URL of n2 should be printed continuously.
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select CONTINUOUSLY SQLPRINT n2.URL;
from 	 nl, 11, n2;
where 	 n1 IN URLlist.url;

FILL n1.form AS IN URLlist.fil WITH keyword="Data Mining";
SQLCOND (n2.format = "LaTeX") AND
(n2.title = "Data Mining");

3.2 WebSQL

WebSQL [104] is another SQL-like query language in the spirit of W3QL which

represents an effort towards greater formalization. It introduces some interesting

ideas including:

• a high-level SQL-like query language,

• a querying interface implemented in Java,

• a new theory of query cost based on "query locality,"

• the ability to use multiple index servers without explicit user

knowledge, and

• the ability for Web maintenance.

WebSQL is also based on a graph model of a document network. It views the

Web as a "virtual graph" whose nodes are documents and whose directed edges are

hyperlinks. To find a document in this graph, one navigates starting from known

nodes or with the assistance of index servers. Given a URL u, an agent can be used

to fetch all nodes reachable from u by examining anchors in the document contents.

Conversely, nodes that have links to u can be found by querying index servers for

nodes that contain links to node u, using link:url search format in the AltaVista [5]

search engine
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The semantics of a WebSQL query is defined using, for example, selections

and projections. A query has the form:

SELECT α
FROM /3
WHERE

where a specifies attributes of documents that satisfy a given predicate; specifies

the domain conditions of the attributes; and w specifies a set of Boolean expressions

that a query must satisfy.

3.2.1 Select Clause

The SELECT clause is used to list the attributes desired for the result of a query. It

has the form:

SELECT Ident . attrib i , . . . , Ident. attribn,	 (3. 4)

where Ident attribi are identifer and attribute pairs. The attributes can be any

combination of the following:

• url — for retrieving the Uniform Resource Locator.

• title — for retrieving the title of the document.

• text — for retrieving the actual hypertext.

• type — for retrieving specific document format.

• length — for retrieving the length of a document.

• modif — for retrieving the last modification date.
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3.2.2 From Clause

The FROM clause is used to list the domain conditions for the attributes desired for

the result of a query. It has the following form:

FROM DocType Ident SUCH THAT DomainCondition, 	 (3.5)

where DocType specifies the document or structure type such as document, anchor,

sound, image; Ident is a tuple variable; and DomainCondition specifies the condition

of the domain based on the following forms:

• Node PathRegExp TableVariable

• TableVariable MENTIONS StringConstant

• Attribute = Node

PathRegExp is used to specify a path regular expression based on hyperlink

structures, where a hyperlink can be one of the following types:

• Interior — if its target is within the source document;

• Local — if its target is a different document on the same server;

• Global — if its target is located on a different server.

Arrow-like symbols are used to denote the three link types; thus, 	 denotes

an interior link, -+ denotes a local link, and	 denotes a global link. In addition,

= denotes the empty path. Using these three link types, one can build path regular

expressions using concatenation, alternation (|) and repetition (*).

3.2.3 Where Clause

The WHERE clause is used to specify search predicates that documents returned from

the FROM clause must satisfy. Only documents satisfying the WHERE conditions will
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be returned as part of the query results. It has the following form:

WHERE Term 1 LC . . . LC Termn.
	 (3.6)

The search predicates are Boolean expressions consisting of terms connected

by logical connectives (,CC), with and denoting intersection and or denoting union.

3.2.4 Examples

Example 1. This query is used to search for HTML documents about "mining". It

returns the URL of the documents in the tuple d.

select d.url
from 	 Document d

SUCH THAT d MENTIONS "mining"
where 	 d.type = "text/html";

Example 2. This query is used to search for documents about "mining" that contain

a hyperlink to www.kdd.org . It returns the URL and title of the documents in the

tuple d.

select d.url, d.title
from 	 Document d

SUCH THAT d MENTIONS "mining",
Anchor y SUCH THAT base = d

where 	 y.href = "www.kdd.org ";

Example 3. This query is used to search for documents with "Web mining" in the

title, which are linked from a hyperlink path originating at www.kdd.org , of length

two or less, and located on the local server. It returns the URL and title of the

documents in the tuple d.

select d.url, d.title
from 	 Document d

SUCH THAT "http://www.kdd.org" = -+ 	 d
where 	 d.title = "Web mining";
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3.3 WAQL

WAQL [70] (Web-based Approximate Query Language) is an SQL-like language

similar to W3QL and WebSQL. It can interact with both search engines and Websites

and automate the search/gathering process. It acts like an agent that controls the

information searching process according to the user,s specification. It was designed

to provide:

• a high-level SQL-like query language,

• a structural search mechanism based on document structure,

• approximate search based on edit distance, and

• approximate search based on variable length don,t cares.

The semantics of a WAQL query has the form:

SELECT α
FROM ,i(3
USING 7
WHERE w

where a specifies attributes of documents that satisfy a given predicate; )3 specifies

which Website to search; y specifies which index servers should be used; and w

specifies a set of Boolean expressions that a query result must satisfy.

The BNF specification of the language syntax is given in Figure 3.4. Expressions

inclosed between ,{, and ,}, means zero or more repetitions of a construct.

Expressions inclosed between T and T are optional. All bold and lower case

words are reserved words. Words with first character capitalized are terminals:
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select <attribs>
[from <website_list>]
[using <index_list>]
where <boolean_exp>;
<attrib> <attrib>}
<doc_ptr>. <field> {.<field>}
url title size I text modif dist €
<urls> <doc_ptr> <traversal_method>
<url> <url>}
<search_engine_list> <doc_ptr> [<target_range>]
<engine_name> {, <engine_name>}
Alta Vista Excite I Infoseek Hotbot
<link_type> <depth_level>
<link_type> <target_range>
<link_type> <depth_level> <target_range> 	 E

<boolean_exp> { and <boolean_exp> }
<boolean_exp> { or <boolean_exp> }
( <boolean_exp> )
<containment_exp>
<link_constraint>
<doc_ptr> mentions "<string>" [ <dist_exp>

"<string>" [<dist_exp>] }
<doc_ptr> contains "<reg_exp>" 	 "<reg_exp>" }
<doc_ptr> has <tree> [ <dist_exp>
<doc_ptr> —> <doc_ptr> { —> <doc_ptr> 	 E

with dist <op> Integer	 c

<query> ::=

<attribs> ::=
<attrib> ::=
<field>
<website_list>
<urls> ::=
<index_list>
<search_engine_list> ::=
<engine_name> ::=
<traversal_method> ::=

<boolean_exp> ::=

<containment_exp> ::=

<link_constraint> ::=
<dist_exp> ::=
<link_type> ::=
<op> ::=
<target_range> ::=
<reg_exp> ::=
<string> :=
<tree> ::=
<url> :=
<depth_level> :=
<doc_ptr> ::=

-> I => 	 + >
>	 <	 >=

Integer Integer .. Integer
Reg_Exp
String
Tree
URL
Integer
Ident

I >	 | 	 >	 | 	 III >
<=

Figure 3.4 Grammar for WAQL.
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Ident - Identifier (ex: a, b, docl,... ).

Integer - Integer (ex: 0, 1, 2,... ).

Url - Uniform Resource Locator (ex: 	 http://www.ibm.com ,

http://www.linux.org,... ).

String - String (ex: "d-database", "-object" ,... ).

Reg_Exp - Extended Regular Expression (ex: "relational.*object").

Tree - Hierarchical query tree structure.

3.3.1 Select Clause

The SELECT clause is used to list the attributes desired as the result of a query. It

has the following form:

SELECT Ident. attrib i , . . . , Ident . attribi, , 	 (3.7)

where Ident.attribi are identifer and attribute pairs. The attributes can be any

combination of the following:

• url — for retrieving the Uniform Resource Locator.

• title — for retrieving the title of the document.

• size — for retrieving the size of the document.

• text — for retrieving the actual hypertext.

• modif — for retrieving the last modification date.

• dist — for specifying the distance between query and actual

document.
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3.3.2 From Clause

The FROM clause is used to specify which Website to contact and retrieve documents

from. It has the following form:

FROM URL {,URL} Ident traversal_method [target_range] . 	 (3.8)

The FROM clause is used to perform a site-oriented search that traverses the

entire Website. The URL field specifies the address of a target site. The Ident field is

a pointer to each document returned by the traversal. Let I l and In denote integer

type. When the target_range field has the form In , it informs the query processor

to process the 1st to the Inth URL; when it has the form I1 ../n , it informs the query

processor to process the 11 th to the In th URL.

When performing a Website oriented search, hyperlinks (URLs) encountered

within hypertext documents during the navigation are of the following types:

• Local-links, which are hyperlinks that link to the same domain.

• External-links, which are hyperlinks that link to different

domains.

• All-links, which include both local and external links.

The traversal methods, which can be performed using any specified combinations of

these different hyperlink types, are:

• Depth first — Documents are retrieved in the depth first search

order with respect to the hyperlinks.

• Breadth first — Documents are retrieved in the breadth first search

order with respect to the hyperlinks.

Table 3.1 shows a list of operators that specify hyperlink types and their respective

traversal methods.
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Operator Definition of Operator
— > Breadth first traversal only on local-link.
=> Breadth first traversal only on external-link.
+ > Breadth first traversal on all-links.

| > Depth first traversal only on local-link.

|1 > Depth first traversal only on external-link.

| II	 > Depth first traversal on all-links.

Table 3.1 Operators specifying the traversal method on a specific link type.

3.3.3 Using Clause

The USING clause is used to specify which index server to contact for an initial search.

It has the following form:

USING search_engine Ident [target_range] (3.9)

The search_engine field specifies which index server to request for the target

documents. WAQL provides interfaces to five publicly available search engines:

AltaVista, Excite, Hotbot, Infoseek, and Lycos.

Ident is a tuple variable that acts like a pointer to each document returned by

the search engines. The target_range field has the same interpretation as for the

FROM clause.

3.3.4 Where Clause

The WHERE clause is used to specify search predicates that documents returned from

the FROM clause must satisfy. Only documents satisfying the WHERE conditions will

be returned as part of the query results. It has the following form:

WHERE Term 1 LC . . . LC Termn. ( 3 . 1 0 )

The predicates have the same overall syntax as in WebSQL. Let String denote

string, Reg_Exp denote a regular expression, and Tree denote the query tree structure

in preorder string format (WAQL represents each document by a tree structure).
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A term has one of the following four forms:

D mentions String [ with dist OP k ],	 (3.11)

D contains Reg_Exp, 	 (3.12)

D has Tree [ with dist OP k ],	 (3.13)

and

D1 -> D2 -> . . . -> D.	 (3.14)

Terms of the form (3.11) are used to specify the exact and approximate string

matching requirements that resulting documents must satisfy. D is a document

pointer that will contain the location of the actual document where string matching

will be applied. OP is a comparison operator (>, <, =), and k is an integer that

specifies the distance allowed for approximate string matching. If k is not specified,

a default value of 0 is assumed, which means exact string matching is performed.

Terms of the form (3.12) are used to specify the regular expression matching

requirements that resulting documents must satisfy. D is a document pointer

containing the location of the actual document where regular expression matching

will be applied.

Terms of the form (3.13) are used to specify a hierarchical search query. Once

again, D is a document pointer to the location of the actual document where regular

expression matching will be applied. OP is a comparison operator, and k is an

integer value that specifies the distance allowed for the approximate tree matching

with variable length don,t cares (VLDCs). That k equals 0 corresponds to exact-

match retrieval, which means the query tree structure must be totally embedded in

the document tree structure. That is, a Tree T of distance k away from document

D is embedded in D if and only if k equals 0. When k is positive, the retrieval is

considered to be approximate.
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Terms of the form (3.14) are used to specify link constraints. For example, if a

term A—>B—>C is specified then the query requires that document A has a hyperlink

to document B and document B has a hyperlink to document C.

In general, terms are not limited to just these four types, but can be any

function that resulting documents must satisfy, such as the result of the application

of an image or voice recognition algorithm. Thus the query language is flexible and

can be extended to incorporate new functions.

3.3.5 Examples

Example 1. This query is to find documents containing "database" , "oracle" , and

"relational" using Altavista as the index server. The resulting documents, URLs are

returned.

select d.url
using Altavista d
where 	 d mentions "database", "oracle", "relational";

Example 2. This query is to find documents containing "database" in an H1 tag

and a regular expression "object.*relational" in a paragraph using Excite as the

index server. This regular expression means the word "object" followed by the word

"relational" with a VLDC between these two specified words. Thus, the * matches a

string of characters of arbitrary length. The resulting documents, URLs are returned.

select d.url
using Excite d
where 	 d has (*(H1("database")(P(*("object.*relational")))));

Example 3. This query is to find documents that have the word "database" in an H1

tag, followed by a paragraph containing "oracle" , using Infoseek as the index server,

and examines only the 23rd to 69th URLs from the list of returned URLs. Most

importantly, each matched document must be at most zero or unit distance away
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from this hierarchical query pattern in the edit distance sense defined in [153]. The

resulting documents, URLs are returned.

select d.url
using 	 Infoseek d [23..69]
where 	 d has (*(H1("database"))(P(*("oracle")))) with dist <= 1;

Example 4. This query is to find documents that have the word "RS6000", and have

"deep blue" in the title followed by "kasparov" in a paragraph, where the search

domain is www.ibm.com. The method of search will be depth first search down to

the third level in the Web tree structure.

select d.url
from 	 http://www.ibm.com d I I> 3
where d mentions "RS6000" and

d has (*(title("deep blue")) (P("kasparov"))) ;

Example 5. This query is to find books that mention "Ontos", have "database" in

the book title, and put an emphasis on "object database". The author field in the

resulting documents is returned. This query is actually targeting XML documents

because user-defined tags are used.

select d.author
using index_server d
where d mentions "Ontos" and

d has (Book(title("database"))emph("object database"));

3.3.6 Performance Evaluation

In order to test the effectiveness of WAQL some experiments are performed on

approximate query. All queries have been tested with four major index servers

(AltaVista, Excite, Hotbot, and Infoseek.) There were several thousand URLs

returned by each search engine. To restrict the test set to a manageable number,

only the first one hundred URLs returned by each search engine are proceeded by

WAQS. Distance between query pattern and HTML documents ranging from 0 to 4

is recorded for each query, where distance 0 indicates an exact match. Column u of
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table 3.2 indicates the number of URLs that was unable to retrieve, parsing error,

and other network problems not uncommon on the Web.

Test 1. Search for documents containing "database" in H1 tag as illustrated in

Figure 3.5. The result of this query is summarized in Table 3.2.

H1

database

Figure 3.5 H1 contains word "database".

Search Engine Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 u
AltaVista 21 64 1 0 0 14
Excite 9 82 1 0 0 8
Hotbot 6 82 1 0 0 11
Infoseek 10 70 3 0 0 17

Table 3.2 Results from Test Query Pattern 1.
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Test 2. Search for documents containing "database" in P (paragraph) tag as illus-

trated in Figure 3.6. The result of this query is summarized in Table 3.3.

P

database

Figure 3.6 P contains word "database".

Search Engine Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 u
AltaVista 58 26 1 0 0 15
Excite 80 11 1 0 0 8
Hotbot 56 33 1 0 0 10
Infoseek 55 26 3 0 0 16

Table 3.3 Results from Test Query Pattern 2.



44

Test 3. Search for documents containing "database" in TITLE tag as illustrated in

Figure 3.7. The result of this query is summarized in Table 3.4.

TITLE

database

Figure 3.7 TITLE contains word "database" .

Search Engine Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 u
AltaVista 81 4 1 0 0 14
Excite 42 50 1 0 0 7
Hotbot 54 34 1 0 0 11
Infoseek 40 38 5 0 0 17

Table 3.4 Results from Test Query Pattern 3.
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Test 4. Search for documents containing "object" followed by "relational" in P tag

as illustrated in Figure 3.8. The result of this query is summarized in Table 3.5.

P

*

object .* relational

Figure 3.8 P contains word "object" followed by "relational".

Search Engine Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 u
AltaVista 42 35 0 0 0 23
Excite 71 14 0 0 0 15
Hotbot 41 42 1 0 0 16
Infoseek 55 9 0 0 0 36

Table 3.5 Results from Test Query Pattern 4.
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Test 5. Search for documents containing "database" in Ill than "object" followed

by "relational" in P tag as illustrated in Figure 3.9. The result of this query is

summarized in Table 3.6.

H1

database *

object .* relational

Figure 3.9 H1 contains word "database" and than P contains "object" followed by
"relational".

Search Engine Dist 0 Dist 1 Dist 2 Dist 3 Dist 4 u
AltaVista 3 24 33 20 1 19
Excite 6 43 38 7 0 6
Hotbot 4 18 42 23 3 10
Infoseek 8 32 23 3 1 33

Table 3.6 Results from Test Query Pattern 5.
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Figure 3.10 Number of Concurrent Requests vs. Request Time.

An experiment on the effectiveness of having concurrent HTTP requests versus

a single HTTP request was conducted. The query pattern was the one in Test 5. The

tests were conducted during normal hours (between 10AM-5PM EST) on four indices.

In this experiment, only the first hundred URLs returned by each index server are

processed. The experiment was performed using a Intel Pentium II-300MHz with

128MB RAM, running Linux, and connected to a local area network (100Mbp) that

has a T1 connection to the Internet. The results are summarized in Figure 3.10.

From Figure 3.10, one can see a sharp drop in total request time from having

just a single request to two concurrent requests. The performance gains were flat

while system resources were wasted after having more than eight concurrent requests.



CHAPTER 4

MEDIATORS AND WRAPPERS

Search engines and directories, as described in Chapter 2, provide Internet users

with rapid retrieval of information, but do not provide a database-like query

language to retrieve information based, for example, on the underlying structure

of the HTML documents. The lack of such query languages is due largely to the

semistructured nature of Web data [2], which is unsuitable for retrieval and storage

in a relational database form. Systems based on mediators and data warehouses have

been introduced to overcome the inability to query Web data using a full-fledged

database query language. In contrast to the approaches described in Chapter 3,

which employ search engines as backends, mediators and data warehouses are based

on a database management system (DBMS). Thus, the query languages in Chapter 3

would be implemented using search engines and directories as backends. Such a

query system would generate, from the user,s query, a query or a set of queries that

can be executed on the search engines. The responses returned from the search

engines would then be compiled and supplied to the user. In the mediator or data

warehouse approach, on the other hand, the user interacts with the DBMS, which

in turn interacts with the Web.

In the client/server DBMS model, a data server maintains the database. A

client sends requests to the server and the server responds by returning a result.

Figure 4.1 illustrates a client/server DBMS architecture. Architectures such as

mediators and data warehouses have been introduced for a distributed environment

where many servers are available. In the data warehouse architecture illustrated in

Figure 4.2, data are collected from different servers, which may be scattered over a

heterogenous wide area network, and integrated into a large data warehouse. The

role of the data warehouse is to provide a centralized location to store data and

process queries.

48



49

server

Figure 4.1 A client/server architecture.

Unlike data warehouses, mediators store only a minimal amount of data from

various data sources. The goal of a mediator is to provide a centralized location for

querying, as opposed to both centralized storage and querying as is done in the case

of a data warehouse system.

Both data warehouse and mediator systems use software components, called

wrappers, to extract data from the Web. The purpose of a wrapper is to filter

and transform the Web data into suitable formats. A mediator architecture with

wrappers is illustrated in Figure 4.3.

In addition, data warehouse and mediator systems use schemas to model

structured data or object models to represent unstructured or semistructured data.

The backend of each system is a DBMS which users can query instead of going

directly to the Web. The advantage of using a DBMS instead of a Web search

Figure 4.2 A data warehouse architecture.
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Figure 4.3 A mediator architecture.

engine is that the DBMS has benefits like security and querying facilities. The

disadvantage of using a DBMS to store data from the Web is that the domain is

limited, because specific programs (wrappers) must be implemented to extract data

from different sources. Consequently, users see only that narrow view of the Web

which the DBMS is intended to facilitate access to.

In this chapter, systems that use mediators and/or wrappers to integrate

databases with the Web are discussed. Readers interested in XML should refer

to [2, 64]. XML is a new language standard adopted by the World Wide Web

Consortium (W3C) [149] that also can handle semistructured data, but unlike

mediators and data warehouses, XML does not constitute a system. WSQ/DSQ [65]

describe another approach that combines the query facilities of a traditional database

system with existing search engines on the Web. WSQ, stands for Web-Supported

(Database) Queries, uses search engine results to enhance SQL queries. DSQ, stands

for Database-Supported (Web) Queries, uses a database to enhance Web queries.

[65] focuses on WSQ.
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4.1 LORE

Lore (Lightweight Object REpository) [102] is a DBMS designed specifically for

managing semistructured information. Unlike traditional database systems that

adhere to an explicitly specified schema, Lore can adapt to irregular data with a

dynamic schema. Lore includes features such as dynamic structural summaries and

seamless access to data from external sources. It uses a query language called Lorel

derived by adapting the Object Query Language (OQL) [28] to permit querying

semistructured data. Lore uses extensive type coercion and path expressions to

query semistructured data effectively.

4.1.1 Object Exchange Model

The data model used by Lore is a self-describing, nested object model called Object

Exchange Model (OEM) [3], introduced originally in the TSIMMIS [32] project, a

system for integrating heterogeneous data sources. The notion of a fixed schema

does not exist in OEM, designed for semistructured data. Data in this model is self-

describing in nature and represented by a labeled directed data graph. Schematic

information is dynamically embedded on labels assigned to the edges of the data

graph.

Figure 4.4 illustrates a simple semistructured database based on the OEM

model. The vertices in the graph are objects described by quadruples (label, obj_id,

type, value) where label is a character string; obj_id is a unique object identifier;

type is simple or complex. Simple objects, i.e., atomic objects that have no outgoing

edges, contain a value from one of the basic atomic types such as integer, float,

string, jpg, audio, etc. Complex objects have outgoing edges with values which

are either a set or list of obj _ids. Special labels, called names, serve as aliases and

entry points to the database. Objects not accessible by a path from some name are

deleted.
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Figure 4.4 An OEM database.

4.1.2 Lorel

The Lorel query language is the core language of Lore. Lorel is similar to

UnQL [24, 25] and uses pattern matching based on the syntax of the semistructured

data format. The distinguishing feature of Lorel and UnQL is their ability to search

using the data graph. Path expressions are used to specify the search criteria to an

arbitrary depth in the data graph. Lorel uses path expressions to return a subset of

nodes in the database. Lorel does not construct new nodes, which are the equivalent

of a join operation in a relational database, nor test values in the database. The

path expression is the basic building block used in finding specific patterns by Lorel.
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A path expression is defined as a sequence of edge labels / 1 . /2 ..... /7„. Its

result, as a simple query on a given data graph, is a set of nodes. For example,

the result of the path expression "movie.film" in Figure 4.4 is the set of nodes

{ni ,nj l, where ni is the movie node and nj is the film node. The result of the path

expression "movie . film.title" is the set of nodes with the associated set of strings

like " { . . , "Star Wars: Episode VI","Star Wars: Episode V",...}".

Rather than specify a path explicitly, we can specify it implicitly by imposing

desired properties using regular expressions. A property is defined to be either

a path property or an edge label. An example of a path/regular expression is

"movie . (film I short_film) . title", which can match either a film edge or a

short_film edge. Let e be a regular expression. An example of a wild card for a

regular expression on paths is as follows. Let _ (underscore) denote any edge label,

let e* denote a Kleene closure representing an arbitrary number of repetitions of e.

Then, _* denotes an arbitrary sequence of edges. The expression movie._*.director

finds a path that starts with a movie label, ends with a director label, and has any

sequence of edges in between. Two more Lorel examples follow:

Example 1. This query searches for film titles with length greater than 2 hours.

select title: T
from 	 movie.film F, F.title T, F.runtime N
where 	 N > 2:00:00;

Example 2. This query searches for all information about films or short films directed

by "Steven" after the year 1990.

select row: X
from 	 movie.(filmIshort_film) F
where 	 F.director = "Steven" and F.year > 1990;
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4.1.3 Architecture

The basic architecture of the Lore system consists of three layers:

an Application Program Interface (API) Layer, a Query Compilation Layer, and a

Data Engine Layer as shown in Figure 4.5.

Figure 4.5 Lore architecture.

The API Layer provides access methods to the Lore system. There is a simple

textual interface used primarily by system developers. A graphical interface for end

users provides tools for browsing through query results, viewing the structure of data

and formulating queries.

The Query Compilation Layer of Lore consists of a Parser, a Preprocessor, a Query

Plan Generator, and a Query Optimizer. The Parser takes a query and checks whether

it conforms with Lorel,s grammar. The Preprocessor is responsible for transforming

Lorel queries into OQL-like queries that are easier to process. A query plan is then

generated from the transformed query by the Query Plan Generator. The query plan

is optimized by the Query Optimizer that decides how to use indexes. The optimized
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query plan is finally sent to the Data Engine Layer that performs the actual execution

of the query.

The Data Engine Layer consists of an Object Manager, Query Operators, various

utilities and an External Data Manager. The Object Manager is responsible for trans-

lation between the OEM data model and the low-level physical storage model. The

Query Operators are in charge of executing the generated query plans. Utilities include

a Data Guide Manager, a Loader and an Index Manager. The External Data Manager

is responsible for interacting with external read-only data sources.

4.2 ARANEUS

The ARANEUS [11] project presents a set of languages for managing and restruc-

turing data coming from the WWW. The main objective of ARANEUS is to provide

a view to the Web framework. This framework has the following three view levels:

• Structured view — Data of interest are extracted from sites and

given a database structure.

• Database view — Further database views can be generated based

on traditional database techniques.

• Derived hypertext view — An alternative to the original site can

be generated.

In this transformation process, Web data goes from a semistructured organi-

zation (Web pages) to a very structured organization (database), then back to a

Web format (structured Web pages). Figure 4.6 illustrates the data flow of the

transformation process.

In order to achieve this transformation, an interesting data model, called

the ARANEUS Data Model (ADM), along with two languages ULIXES and

PENELOPE are introduced. ADM is used to describe the scheme for a Web
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Figure 4.6 ARANEUS data transformation process.

hypertext, in the spirit of a database. The ULIXES language is used to define the

database view over a site. The PENELOPE language is used to generate a hypertext

derived from the database.

4.2.1 ARANEUS Data Model

ADM is a subset of ODMG [28] based on a page-oriented model which uses a page

scheme to extract data from a Website. The notion of a page scheme can be assim-

ilated to the notion of class in ODMG, though list is the only collection type in

ADM. ADM also provides a form construct for the Web framework, and supports

heterogenous union but not inheritance.

The page scheme is used to describe the underlying structure of a set of

homogeneous pages in a site. It contains simple and complex attributes. Simple

attributes include hyperlinks, images, text and binary data. Complex attributes

include lists. The scheme of a Website can be viewed as a collection of connected

page schemes. ADM extracts some properties of the pages using this structured

Website scheme which provides a high-level description of a Website. The properties

are then used as the basis for manipulation.
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Text extraction procedures used to extract HTML page information as part

of a page scheme, based on the EDITOR language [10], are employed. EDITOR, a

language for searching and restructuring text, consists of a set of programs which

act as wrappers for extracting and transforming HTML pages from a Website based

on page schemes.

An ADM page scheme has the form P(A 1 : T1 , A2 T2 1 , An : Tri ), where

P is a page name, each A i : Ti is an attribute and ADM type pair. An attribute

may be labeled optional and the page scheme may be labeled as unique. Figure 4.7

illustrates a page scheme example [11, 91], declared in the ARANEUS Data Definition

Language.

PAGE SCHEME AuthorPage
Name: 	 TEXT;
WorkList: LIST OF

(Authors: 	 TEXT;
Title: 	 TEXT;
Reference: TEXT;
Year: TEXT;
ToRefPage: LINK TO ConferencePage

UNION JournalPage;
AuthorList: LIST OF

(Name: 	 TEXT;
ToAuthorPage: LINK TO

AuthorPage OPTIONAL;););
END PAGE SCHEME

Figure 4.7 AuthorPage scheme for ARANEUS.

In this figure, Name is a uni-valued attribute, and WordList is a multi-valued

attribute containing a set of nested tuples that describe the list of publications. For

each publication, authors, title, reference, year, link to reference page (conference or

journal), and an optional link to each corresponding author page are specified in the

scheme. A UNIQUE keyword is assigned to page-schemes that have a single instance

in the site as illustrated in Figure 4.8.
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PAGE SCHEME PageName UNIQUE
• • •

END PAGE SCHEME

Figure 4.8 A unique page-scheme.

4.2.2 ULIXES

ULIXES is a language for defining a relational view over the Web. It is designed

for extracting data from the Web based on an ADM scheme. The data extraction is

based on navigational expressions, also known as path expressions. A DEFINE TABLE

statement is used to define a relational view. It has the following form:

DEFINE TABLE 7
AS
IN
USING
WHERE

where 7 specifies a relation R(a i , a2 ,	 , an ), r, specifies navigation expressions over

e; e specifies an ADM scheme; α specifies a set of attributes (A 1 , A2 ,	 , An ) used

in e that correspond to relation R(ai, a2, . . . , an).

As an example, Figure 4.9 illustrates a relational view for VLDB papers used

in [11] on the DBLP Bibliography server. In this example, the navigational expression

requires that the Submit link returns pages according to scheme AuthorPage. The

resulting table contains authors, titles, and references for all papers by Leonardo da

Vinci in VLDB conferences.

4.2.3 PENELOPE

PENELOPE is a language for defining new page-schemes according to which data

will be organized. It is used to transform relational views back to hypertexts that do

not exist in the current site. The derived site can be specified using a DEFINE PAGE

statement, which has the following form:
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DEFINE PAGE p
AS

	

FROM 	 7

where p specifies a new page-scheme name and an optional UNIQUE keyword is used

to indicate the page-scheme to be unique; e specifies the page structure; ty specifies

a view that returns a relation R(a i , a2 , , an ).

Taking the example from [11] again, suppose one wants to define HTML

pages that structure Leonardo da Vinci,s papers organized by year as illustrated

in Figure 4.10. The structure of the pages can be defined using statements in

Figure 4.11. These statements are then used to generate corresponding HTMLs for

the new pages. Note that attributes from the source table DaVinciPapers are in

<...>.

DEFINE TABLE VLDBPapers (Authors, Title, Reference)
AS 	 AuthorSearchPage.NameForm.Submit -+

AuthorPage .WorkList
IN 	 DBLPScheme
USING 	 AuthorPage .WorkList . Authors ,

AuthorPage .WorkList .Title
AuthorPage .WorkList .Reference

WHERE 	 AuthorSearchPage .NameForm.Name =
'Leonardo da Vinci'

AuthorPage .WorkList .Reference
LIKE 'ULDB%' ;

Figure 4.9 Relational view on VLDB papers.
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Journal Page

year

result.html

Figure 4.10 Page-schemes to organize papers by year.

DEFINE PAGE DaVinciYearPage UNIQUE
AS URL 	 'result.html':

YearList: LIST OF
(Year: 	 TEXT <Year>;
ToYearPage: LINK TO

YearPage (URL(<Year>)));
FROM DaVinciPapers;

DEFINE PAGE YearPage
AS URL 	 URL(<Year>);

Year: 	 TEXT <Year>;
WorkList: LIST OF

(Authors: 	 TEXT <Authors>;
Title: 	 TEXT <Title>;
Reference: TEXT <Reference>;
ToRefPage: LINK TO ConferencePage

UNION JournalPage;
<ToRefPage>);

FROM DaVinciPapers

Figure 4.11 HTML page generating schemes.
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4.3 AKIRA

The Web is not a database, though retrieved Web pages are cached for faster retrieval.

Such Web caching can be viewed as providing a primitive database that captures

a view of the Web. A real DBMS can be used to provide database-supported Web

caching. Database-supported caching requires Web pages to be stored as a database-

supportable unit. Hence, a transformation process on Web pages is required to break

Web pages into small pieces. An attempt using object-oriented databases to model

HTML pages has been taken by AKIRA [80]. AKIRA introduces the notion of a

fragment. HTML pages are stored and retrieved as fragments in a database. This

database-supported caching can be viewed as a "smart cache" that populates the

retrieved content with enriched information. Users can define their own content

structure for delivery.

AKIRA integrates information retrieval, browsing, and database techniques

into a flexible system for the user. It assumes zero-knowledge on the content source

and a predefined schema is not required. The system also defines a query language,

PIQL, which is a simple algebra extended with restructuring primitives in a unified

framework.

4.3.1 Fragment Data Model

A fragment is also based on an object model. A fragment corresponds not to a source

HTML page, but to a fragment of a page. Thus, an HTML page can be represented

by one or more fragments. The structure of the fragment class can be represented

as shown in Figure 4.12.

class Fragment {
id 	 Id_type;
url, content 	 String;
pred, next, href 	 Fragment;
href_content, ref_name 	 String;

Figure 4.12 A Fragment class.
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Using this definition of a fragment, an HTML page can be analyzed with finer

granularity. In addition, by being able to analyze its contents and implicit structure,

the semantics of the original page is preserved. Consider the HTML segment shown

in Figure 4.13. It can be partitioned into fragments as listed in Table 4.1.

<TITLE>Data Mining</TITLE>

<A href="#Web mining">Related Sites</A>
Data Mining Related...
<A name="Web mining">Web Mining</A>

Figure 4.13 A segment of HTML.

ID URL CONTENT PRED NEXT HREF HREF_CONTENT REF NAME

1 . 	 . 	 . "<TITLE>Data..." null 2 null 3, , , 7, ,,

• . 	 . • . 	 . . 	 . 	 . • . 	 . . 	 . 	 . • . 	 . . 	 . 	 . . 	 . 	 .

5 . 	 . 	 . "Related Sites" 4 6 7 "#Web mining" , , fl

6 . 	 . 	 . "Data Mining.,." 5 7 null 7,11 ,7 1,

7 . 	 . 	 . "Related Sites" 6 8 null 1, 7,
" Web mining"

. 	 . 	 . . 	 . 	 . - 	 . 	 . . 	 . 	 . . 	 . 	 . • . 	 . . 	 . 	 . • . 	 .

Table 4.1 A list of HTML fragments generated from the HTML segment in
Figure 4.13.

The notion of concept classes can be superimposed on that of a Fragment

class as a component of the database. Concept classes can be used to store domain

specific knowledge. A concept class is defined as an abstract class with an attribute

REFERS_TO of type Fragment that refers to objects of class Fragment. Relational

concepts can also be defined to express relationships between concepts. Two concept

classes, Person and MP3 based on the Fragment class, are illustrated in Figure 4.14.

Concept classes are organized into a hierarchy. New data may be inserted into a

new fragment, which is either based on preexisting fragments, or a new instance of
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concept classes. Using a database to store concept classes provides a database query

language with a rich environment for querying a view of the Web. AKIRA also can

specify meta-concepts to express relationships between concepts. In Figure 4.14,

concept class MP3 is associated with an instance of class Person.

class Person { 	 class MP3 {
name 	 String; 	 title 	 .. String;
refers_to 	 : Fragment; 	 artist 	 .. Person;

refers_to .. Fragment;

}

Figure 4.14 Concept classes for Person and MP3.

4.3.2 PIQL

PIQL (Path Identity Query Language) is a high-level, OQL-like query language for

querying concept classes in AKIRA. It is reminiscent of OQL due to the adoption of

an underlying object-oriented database approach. Similarly to Lorel [102], UnQL [24,

25] and POQL [35], it uses path expressions and supports fuzzy search constructs

by allowing wild cards and a fuzzy function. The following are PIQL examples.

Example 1. This query is to find Web pages from World Wide Web Consortium that

mention XML and return their URLs. The clause y . context = fuzzy ("XML") can

be used to search for Web pages similar to XML.

select y.url
from 	 x in Fragment, y in Fragment
where 	 x.url = "http://www.w3.org/* "

x.href = y
y.content = fuzzy("XML");
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Example 2. This query is to find the artist,s name and the title of an MP3 song.

select s.artist.name, s.title
from 	 s in MP3

p in Person
where 	 s.url = p.url

p in s.artist.refers_to;

4.3.3 Architecture

The AKIRA system consists of five components: Dispatcher, Database System, View

Factory, Agent Pool, and Output Formatter. Figure 4.15 illustrates the architecture

of AKIRA.

Figure 4.15 AKIRA system architecture.

The Dispatcher has a role similar to the query processor for a DBMS. It is the

central component in charge of monitoring processes, taking a query and dispatching

it to other components. It also performs query optimizations based on equivalence

of algebraic expressions. Its key function in dispatching a query is to match a corre-

sponding schema with elements of the system schema library. The schema is sent to
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the Database System and computable queries to the View Factory, which maintains a

list of views.

The Database System is used to allow efficient retrieval of objects. AKIRA uses

an object-oriented database system that utilizes the PIQL language described in this

chapter. Its main goal is to store a Web view using concept classes with a class

Fragment as the base class.

The Agent Pool is a repository of services available to other components.

AKIRA has an extensible agent architecture where new agents can be dynamically

plugged into the system. Agents act as intelligent filters that parse the page content

and identify fragments relevant to a query. Agents have the knowledge to identify

specific types of information in order to apply the fragmentation process. The Output

Formatter is the component that is responsible for displaying the result of the query

in a user-friendly layout.



CHAPTER 5

MULTIMEDIA SEARCH ENGINES

Multimedia is integral to both human and modern computer communications. As

digital sound and imagery proliferate, the need to search for audio and visual infor-

mation has increased. However, most popular search engines are still textual as

described in Chapter 2, even though the diversity of Web content has transformed

the Web from a merely textual to a multimedia-based repository. Web information

content comes in a variety of audio, video, image, and text formats, a list of the most

commonly found media formats and types being given in Table 5.1. The multimedia

information is highly distributed, minimally indexed, and lacks appropriate schemas.

The critical question in multimedia search is how to design a scalable, visual infor-

mation retrieval system? Such audio and visual information systems require large

resources for transmission, storage and processing, factors which make indexing,

retrieving, and managing visual information an immense challenge.

Progress has recently been made in developing and deploying efficient, effective,

easy to use, mass-scale multimedia content search engines. Commercial search

systems include AltaVista Photo Finder [5], Lycos Pictures and Sounds [94],

scour.net [127], Yahoo! Image Surfer [152], Ditto [45], Stream Search [139], Midi

Explorer [106], Lycos Fast MP3 Search [93], MP3 [107], and Sound Crawler [136].

Research prototypes for multimedia search engines include AMORE [7, 108, 109],

WebSeek [31, 133, 146] and WebSeer [141, 147].

There are three categories of techniques for multimedia searching on the

Web: text or keyword-based techniques, semantics or content-based techniques, or

techniques based on a combination of both.
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Media Format File Extension Media Type
Midi midi Audio
MP3 mp3 Audio
RealAudio ra, ram Audio
WAV Audio way Audio
AVI avi Video
MPEG Video mpeg,mpg,mpe,mpv,mpegy Video
QuickTime qt ,mov,mooy Video
RealMedia ra, ram Video
MPEG Audio mp2,mpa,abs,mpega Video
PNG Image png Image
Windows Bitmap bmp Image
X Bitmap xbm Image
TIFF Image tiff ,tif Image
JPEG Image jpeg,jpg,jpe Image
GIF Image gif Image
PDF pdf Document
TeX DVI Data dvi Document
Postscript ai , eps ,ps Document

Table 5.1 Media types and file extensions.

• Text or Keyword - based — User can specify keywords, and

multimedia relevant to the specified keywords can be retrieved.

For example, find all images on cars.

• Semantics or Content- based — User can specify search criteria

based on the semantic content of the multimedia object (image,

audio, or video). For example, retrieve images visually similar

to a given image. This is done using various image processing

techniques.

• Keyword and Content - based — User can specify both keywords and

content-based search criteria, combining the first two techniques.

67



68

This chapter surveys some of the most widely used techniques in multimedia

searching on the Web. Though text is an inseparable part of a multimedia system,

its retrieval and index methods were discussed in Chapter 2.

5.1 Text or Keyword-Based Search

Text or keyword-based multimedia search systems require an inverted file index to

describe the multimedia content. The index is needed for fast query response, just

as for keyword-based information search discussed in Chapter 2. Thus, building an

index is at the heart of keyword-based multimedia searching.

Another important indexing technique used in multimedia search engines is

partitioning multimedia content into categories, which the user can browse through

for images of interest that match category keywords. Keywords can also be specified

for finding similar images.

Identifying the text that describes content is essential to the cataloging and

indexing process. The relationship between images and their textual captions in

large photographic libraries like newspaper archives has been examined in [122, 137].

The lack of captions for multimedia content on the Web has led to efforts to develop

indexes and searchable catalogs based on associated textual content such as the Web

address and hyperlink reference text.

The use of the text embedded around multimedia content as a way of identifying

its content is an approach born of necessity because automatically categorizing a

media item based on its content is not an easy process. For example, in the case of

an image, it requires image analysis using pattern recognition, feature extraction,

and shape analysis algorithms, which are still wide open areas of research. Therefore,

rather than applying complex visual analysis algorithms, models based on the text

content and hyperlink structure surrounding the multimedia content have been

proposed.
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A variety of techniques have been developed for assigning keywords to

multimedia content on the Web. For example, the URL and HTML tags associated

with the images are considered in [31, 133]; text in the center tag within the same

table cell is used in [141]; text after an image URL is used in [68]; and text "near"

an image is used in [109, 121]. This section discusses all these techniques.

5.1.1 Keywords Assignment

Multimedia content, especially images, can be incorporated into HTML documents.

The ability to link either text or images to another document or section of a document

makes HTML very powerful. Very importantly, every image on the Web has a unique

Web address (URL) and possibly some associated text that describes the image. The

text close to an image therefore may be useful for characterizing and describing the

content of the image. Images can thus be indexed or cataloged by using the following

kinds of methods based on the surrounding text and hyperlink structure:

• Key Term Extraction.

• Directory Name Extraction.

There is a variety of information available on an HTML page to be used as

a basis for assigning keywords to images. Key term extraction and directory name

extraction can then be applied to categorize the image using text information in the

tags and hypertext. The same techniques can be applied to audio and video files.

In key term extraction, terms are extracted from the hyperlink_text and the

ALT tag field by chopping the text at non-alphabet characters. For example, consider

the expression:

"vehicle/cars/nice_car.html" = "vehicle", "cars", and "nice car".

A search engine can index the terms extracted for the images using an inverted file

as shown in Figure 5.1.
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Text 	 I	 H Image 
-Index	 URLs

posting
lists .../tiger.jpg

B-tree .../pooh.gif
• • •

•
•

.../cars.png

•

Figure 5.1 Keyword-image inversion index.

In directory name extraction, the name of a directory is extracted from the URL

in tag fields such as HREF and SRC. The directory names are used to map images to

subject classes based on a key-term dictionary.

A key- term dictionary is a set of key-terms and their corresponding mapping

to subject classes. The key-terms are identified either manually or semi-manually by

criteria such as frequency count. The mapping from key-terms to subjects also can

be automatically or semi-automatically established.

Some common sources for key term and directory name extractions are as

follows:

• Anchor tag — used to create links to other documents or images.

• Image tag — used to create inline images in a document.

• Heading tag — used to specify six levels of headers for a document.

• Title tag — used to specify a document title.

• Table tag — used to format a table.

• Document text — used to describe the content of images.



Anchor Tag

Images on the Web are published in two forms: referenced and inlined.

A referenced image from a parent document uses the <A> tag, which

stands for anchor. An anchor is an area in a document where a mouse

click will link to the specified URL. The <A> tag has the following

general format:

<A HREF = "URL"
NAME 	 = "text"
REL 	 = ["next" I "previous" ... ]
REV 	 = [ "next" I "previous" ... ]
TITLE = "text" >	 hyperlink_text </A>

The HREF is used to specify the URL to be linked to when this hyperlink

is clicked. This URL can be any legal URL, including images, sounds,

etc. By specifying a NAME field, a specific location in the document

will be accessible via another URL. The relationship between the URL

specified in HREF and this document can be specified in the REL and REV

attributes. REL defines the forward relationship between this document

and the HREF URL; and REV defines the reverse relationship between

the HREF URL and this document. The TITLE of the anchor can also

be specified. The clickable area would be the hyperlink_text which

describes the object pointed to by the hyperlink.

Image Tag

The ability to display inlined images is one of the most powerful features

of HTML. Image types supported by Web browsers include BMP, GIF,

JPEG and PNG. The HTML for including an image has the following

general form:
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<IMG SRC 	 = "URL"
ALT 	 = "text"
WIDTH 	 = "pixels"
HEIGHT = "pixels"
ALIGN 	 = ["top" I "middle" ..
ISMAP 	 = "pixels"

The SRC specifies the URL, which is the location of the image. For text-

only browsers such as Lynx, which cannot display graphic images, or

for users who might have turned off image loading due to slow Internet

connections, HTML provides a mechanism for displaying text in place

of the missing images by using the ALT tag. Image size is specified in

pixels using WIDTH and HEIGHT tags. Alignment can be specified in

an ALIGN tag to align subsequent text. If ISMAP is specified, and an

anchor surrounds the image, then the image is treated as a clickable

map. That is, the coordinates of the mouse click will be processed by

browser script or returned to the parsing script specified by the anchor,s

URL.

Inlined images can also be used as hyperlinks just like plain text.

After an image becomes inlined it is clickable just like regular hypertext.

The following HTML code illustrates how to make an image called

bird . gif inlined:

<A HREF="URL"><IMG SRC="bird.gif" ALT="Bird Image"></A>

The URL field in both <A> and <IMG> tags has the following form,

where C. . .] denotes an optional argument:

http://host.site.domain [:port]/[dirsn [file[.extension]]



Heading Tag

HTML headings in H{1-6} tags may also contain useful text infor-

mation about images. Depending on the location of the images, some

headings will tend to be less relevant to the image content. If an image

is in heading Hi, the text for a previous heading Hj, where j ≤  i, can

be ignored [108]. For example, image "image .gif" in the <IMG> tag in

the following HTML source is more relevant to heading <H3>Section

1.1.1</H3> than to the other headings.

<HTML>

<H1>Chapter 1</H1>
<H2>Section 1.1</H2>

<H3>Section 1.1.1</H3>

•. .
<IMG SRC="image.gif">

•. .
<H2>Section 1.2</H2>

</HTML>

Title Tag

HTML <TITLE> tags can also be used to help identify the semantics of

images on a page [141], since the title tag is used to display a page title

in the browser title bar. But, <TITLE> tags may not be useful when

the images on a page have diverse content because they might not be

directly related to the title.
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Table Tag

Images can be formatted using the HTML <TABLE> tag. If the caption

of an image is in the same cell as the image, then the caption can be

used as an accurate description of the image [141]. But this method is

likely to fail when the relevant text for the image is found in another

cell. A more sophisticated approach can be applied to determine the

corresponding image caption within the table cells. Captions within

a table usually follow the same scheme. Caption alignment schemes

within a table can then be determined by parsing the entire table and

finding a regular pattern within it [108].

Document Text

Document text surrounding an image in a Web page may also be

relevant to identifying image content. Determining which part of the

text surrounding an image is relevant is a challenging problem because

associated text can be aligned in many different ways. Image captions

can occur before, after, or both before and after an image. A variety of

approaches have been proposed for solving this image caption alignment

problem.

For example, the text after an image URL until the end of a

paragraph (<P> tag) or the text up to where there is a link to another

image (<IMG> tag) can be taken as the caption of the image [68]. Line

breaks (<BR> tag) have also been used [108] to define the visual closeness

of a text to an image. Another approach is to use the text near an

image, where nearness is defined as text lying within a fixed number

of lines or words in an HTML document source file [121].
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In situations where a text is simultaneously near two images, syntactical

comparison can be applied [108]. The syntactical comparison can, for

example, find the closeness between an image file name in the URL

and the surrounding text. Closeness, defined as the syntactic distance

d between the image file name f and the text t, is given by:

where |f| is the number of characters in the string f , and c(f,t) is the

number of characters in f that also occur as a string in t in the same

order.

5.1.2 Subject Taxonomy

The information extracted using the methods described in Section 5.1.1 in this

chapter can be used to classify images into different subject classes. A subject class

is an ontological concept that describes the semantic content of an image or video.

Using an is-a hierarchy, the subject class can be arranged into a subject taxonomy.

When a new and descriptive term is detected, it will be added to the taxonomy if it

does not already exist. Table 5.2 shows top level subject classes (categories) available

at Yahoo! Image Surfer [152], which is powered by Excalibur,s Image Surfer [51]. For

example, the Art category contains subcategories like architecture, ceramics, dance,

painting, while the Science category contains subcategories like animals, space and

astronomy.

• Arts 	 • Recreation
• Entertainment 	 • Science
• People 	 • Vehicles

Table 5.2 Categories of Yahoo! Image Surfer.
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A catalog database can be built using subject classes and keywords with the

following tables:
TYPE (ID, TYPE)
IMAGES (ID, URL, FORMAT, WIDTH, HEIGHT)
SUBJECT (ID, SUBJECT)
CONTENT (ID, TERM)

The following SQL query can be used to retrieve images of painting by Van

Gogh.
select ID
from 	 TYPE, SUBJECT, CONTENT
where TYPE = "image" AND

SUBJECT = "painting" AND
TERM = "Van Gogh";

5.2 Content-Based Search

The text provided in the directory name and the hyperlink text described in the

preceding section can produce an effective image search engine. However, by

examining the image content, one can substantially refine the search results as well

as provide more search features. Many systems use such techniques to overcome the

shortcomings of keyword-based image search tools.

One of the first systems that allowed users to find images similar to a given

image was the Query By Image Content (QBIC) [58]. It has attracted considerable

attention because it allows finding images based on a given image,s color and texture.

The notion of image similarity was extended by Markus Stricker at ETH to include

fuzzy color matching and fuzzy regions in an image. Image databases discussed

in [116, 123] introduced image indexing techniques to find similar images. The

Virage [12] system for image retrieval is based on visual features consisting of low

level primitives, such as color, shape, texture and possibly domain specific features.

WebSeek [133] performs content-based search for images using color histograms

generated from visual scenes. The color histograms describe the distribution of colors
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in an image. Image similarity is determined based on the color histogram of each

image. The weighted dissimilarity between histograms is calculated using dissim-

ilarity functions. An image type assessment is automatically done using Fisher

discriminant analysis to construct a series of uncorrelated linear weightings of the

color histograms. This analysis provides maximum separation between training

classes. Feedback from the user can also be used to reformulate a query to obtain

better results, based on the principle that users are after all the best judges for

determining the relevance of retrieved images.

A system called AMORE [7] uses a Content-Oriented Image Retrieval (COIR)

library and allows a content-based query to specify images containing certain object

shapes. AMORE has two subsystems: an indexing engine and a matching engine.

The indexing engine is used to index identified shapes in images and the matching

engine is used to search for images that match the shapes given in a query, as

discussed in Section 5.2.1 in this chapter.

The indexing and retrieval complexity associated with audio and video content

search has thus far impeded the large scale use of multimedia search engines on

the Web. Therefore, most audio and video search engines are still text-based. In

this section, three popular techniques, shape analysis, color analysis, and texture

analysis, used in image similarity based search are discussed.

5.2.1 Shape Analysis

Shape analysis is the process of extracting objects from images. The process

subdivides the original image into regions based on color, edge, position, and texture

using image processing techniques like edge detection, color analysis and region

division. Each region has a set of attributes such as color, shape, texture, size,

object location and object composition. The extracted attribute values are stored
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Figure 5.2 Object extraction from an image.

as metadata to be used during the matching process. Figure 5.2 shows the objects

extracted from an image.

Objects extracted from images come in a wide variety of shapes and sizes, so it

is a nontrivial issue as to how to cluster extracted objects. Predefined shapes such as

circles, ellipses, triangles, rectangles, and squares of different sizes and aspect ratios

may be used as templates for clustering seeds, as illustrated in Figure 5.3. An object

only needs to be similar to a seed shape in order to be added to the corresponding

cluster.

When a query image is specified for which one seeks to find similar images,

the attribute values associated with the query image are extracted and stored as

metadata. This metadata is then compared with image metadata in the database

of indexed images and results are returned based on the matching scores of the

comparison. Queries can also be formulated to find images containing certain shapes.

Figure 5.3 Shape templates for clustering seeds.
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Figure 5.4 Color histogram.

5.2.2 Color Analysis

Another technique for representing the image content or characterizing an image is

the color histogram [140]. A color histogram describes the color distribution in an

image or video scene. A quantized HSV color space is typically used to represent

the color. A color histogram H(M) is denoted as a vector (h 1 , h2 , ... , hn ) in an n-

dimensional vector space, where each h, represents the number of pixels of color c in

the image M. Figure 5.4 illustrates a color histogram. Given two color histograms,

α and 0, a function that measures the weighted dissimilarity between them can be

defined as:

where n is the number of bins used in the histogram, and α[i] and ON are hi in α

and 0 vectors respectively. This method can be used to accurately and efficiently

measure the (dis)similarity between two images based on color [134]. However, this

method is not able to capture semantic information because two images can have

similar color histograms but with different contents.
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5.2.3 Texture Analysis

Texture analysis is another method of determining the similarity between images.

The most commonly used features to represent texture are coarseness, contrast, and

directionality (CCD) as developed in [55, 142].

• Coarseness — a measure of granularity of the texture.

• Contrast — a measure of the distribution of luminance.

• Directionality — a measure of the direction of an image.

An enhanced version of CCD using histogram-based features to reduce noise

is described in [103]; and various content-based query models over image databases

are discussed in [114].



CHAPTER 6

WEB CRAWLING AGENTS

An essential component of information mining and pattern discovery on the Web

is the Web Crawling Agent (WCA). General-purpose Web Crawling Agents, which

were briefly described in Chapter 2, are intended to be used for building generic

portals. The diverse and voluminous nature of Web documents presents formidable

challenges to the design of high performance WCAs. They require both powerful

processors and a tremendous amount of storage, and yet even then can only cover

restricted portions of the Web. Nonetheless, despite their fundamental importance in

providing Web services, the design of WCAs is not well-documented in the literature.

This chapter describes the conceptual design and implementation of Web crawling

agents.

6.1 What is a Web Crawling Agent?

The term "Web crawling agent" combines the concepts of agent and Web crawler.

Web crawling agents are responsible for intelligently gathering important data from

the Web, data which can then be used in a pattern discovery process.

6.1.1 What is an agent?

The term "agent" is used in different ways in contemporary computing, the following

three being the most common:

• Autonomous agents — refer to self-maintained programs that can

move between hosts according to conditions in the environment.
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• Intelligent agents — refer to programs that assist users in finding

requested data items, filling forms, and using software.

• User-agents — refer to programs that execute requests for services

through a network on behalf of a user. For example, Netscape

Navigator is a Web user-agent and Eudora is an email user-agent.

Autonomous agents can travel only between special hosts for security reasons

and are not widely used on the Internet. Intelligent agents are host-based software

that have little to do with networking. User-agents need constant interaction and

have limited intelligence. Web crawling agents exhibit the characteristics of both

intelligent agents and user-agents, since they act intelligently and sometimes require

user interaction. However, they are not autonomous agents since they do not travel

between hosts.

6.1.2 What is a Web Crawler?

Web crawlers, which were briefly discussed in Chapter 2, are also known as crawlers,

robots, spiders, walkers, wanderers, and worms. The Web crawlers are responsible

for gathering resources from the Web, such as HTML documents, images, postscript

files, text files and news postings. Due to the large volume of data on the Web, there

is a need to automate the resource gathering process, which motivates the use of

Web crawlers.

In general, crawlers are programs that automatically traverse the Web via

hyperlinks embedded in hypertext, news group listings, directory structures or

database schemas. In contrast, browsers are utilized by a user to interactively

traverse portions of the Web by following hyperlinks explicitly selected by the user

or by interfacing with search engines sites. Crawlers are commonly used by search

engines to generate their indexes [117]. The traversal methods used by crawlers
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include depth-first and breadth-first search combined with heuristics that determine

the order in which to visit documents. An empirical study conducted in [86] has

shown that roughly 190 million Web pages have been indexed by six major search

engines. More recently, Google announced that its index encompasses over one

billion (109 ) pages. All of these indexed pages were visited by crawlers deployed by

the search engines.

Early papers on Web crawling include [48, 98, 117]; more recent studies are [29,

34, 71, 143]. According to the literature, crawlers are used to perform the following

tasks:

• Indexing — build and maintain indexes for search engines.

• HTML validation — check whether a page conforms to HTML

DTD.

• Link validation — check whether a link is still valid.

• Information monitoring — monitor changes to HTML pages.

• Information search — search for wanted documents.

• Mirroring — build mirror (duplicate) sites.

6.2 Web Crawling Architecture

Designing a scalable and extensible Web crawling agent presents formidable

challenges due to the large volume of data on the Web. scalable means the crawling

agent must be able to scale up to the entire Web. The design of scalable crawling

agents presents both software and hardware challenges, because system hardware

must be able to sustain constant heavy loads from the streams of data retrieved

by the crawling agents. On the extensible side, the system must be designed in a
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modular way. The support for extensibility and customizability must be easily

achieved by plugging in third party software or hardware modules.

The architecture of a Web crawling agent consists of the following subsystems:

Retrieving Module Processing Module Formatting Module URL Listing Module.

Web crawling systems use multiple processors to share the load of information

gathering and processing. A scalable distributed Web crawling system can effec-

tively utilize these computing resources by using collaborative Web crawling [143].

Figure 6.1 illustrates the architecture of a distributed Web crawling system. The

components used in this system are described below.

6.2.1 Retrieving Module

The Retrieving Module is responsible for retrieving all types of information in any

format (text, image, graphics, audio, video) from the Web. The Retrieving Module

fetches URLs from a pool of candidate URLs stored in the URL Listing Module.

The Retrieving Module can be implemented using prebuilt components in various

languages. Figure 6.2 illustrates a simple Retrieving Module written in Perl which
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#!/usr/bin/perl

use URI::URL;
use HTTP::Request;
use HTTP::Response;
use LWP::UserAgent;

my $request_url = "http://www.kluwer.n1";
my $html_page = new URI::URL($request_url);
my $agent = new LWP::UserAgent;
my $request = new HTTP::Request('GET', $html_page);
my $response = $agent->request($request);

if ($response->is_success &&
$response->header('Content-type') eq 'text/html') {

print $response->content;
} else {

print "ERROR: $request_url failed!\n";
}

Figure 6.2 A simple Retrieving Module.

retrieves an HTML page. It uses the Libwww-Perl library, a collection of Perl

modules that provides a simple, consistent programming interface to the World

Wide Web. For additional information on Perl, refer to Comprehensive Perl Archive

Network (CPAN) at http://www.perl.com/CPAN/.

The program in Figure 6.2 uses three Perl modules: URI, HTTP, and LWP. First,

a URL in the URI module is initialized with http : //www.kluwer.nl, followed by

instantiation of a UserAgent in the LWP module. The request is then prepared using

the HTTP GET method and requested using the UserAgent,s request method. If

the response is successful and the returned content type is HTML, then the page

content is displayed; otherwise, an error message is displayed.

Due to the latency effects caused by network traffic and server load, the

Retrieving Module should be designed to allow simultaneous requests to multiple
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Web servers. Sites like Google and Internet Archive use multiple machines for

crawling [22, 26]. Retrieved resources are then passed to the Processing Module.

6.2.2 Processing Module

The Processing Module is responsible for processing retrieved resources. Its functions

include (i) determining the retrieved data type, (ii) summary extraction, (iii)

hyperlink extraction, and (iv) interaction with knowledge bases or databases. The

result is then passed to the Formatting Module. The Processing Module must also

be capable of making decisions as to which URLs should be added to the pool of

candidate URLs stored in the URL Listing Module.

6.2.3 Formatting Module

The Formatting Module is responsible for converting the diverse types of data sources

retrieved and for transforming or summarizing them into a uniform metadata format.

The metadata format generally reflects the format that will be used in the pattern

discovery phase, and includes tuples that can be inserted into database tables and

XML documents.

6.2.4 URL Listing Module

The URL Listing Module is responsible for feeding the Retrieving Module with

candidate URLs to be retrieved. Usually a pool of candidates is stored in a

queue with first-come-first-serve priority scheduling, unless specified otherwise. This

module can also insert new candidate URLs into its list from the Processing Module.

6.3 Crawling Algorithms

A crawling agent uses an algorithm, often called a crawling algorithm, to retrieve

Web pages and files. For example, in Harvest [19], the crawling algorithm starts
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by retrieving an initial page, P0 , or a set of initial pages, {P0 ... Pn }. The initial

pages(s) are pre—selected by the user. URLs are extracted from the retrieved pages

and added to a queue of URLs to be processed. The crawler then gets URLs from

the queue and repeats the process.

One of the main objectives of a search engine is to capture the most recent

view of the Web that can be achieved. However, most crawlers will not be able to

visit every possible page for the following reasons:

• In addition to scanning the Web for new pages, a crawler must

also periodically revisit pages already seen to update changes

made since the last visit. These changes affect the index and

crawling paths.

• Server resources are limited by their storage capacity. The Web

has been estimated to contain 320 million indexable pages [86] and

has already grown provably beyond one billion (10 9 ) pages [75].

• Network bandwidth is limited to the type and number of

connections to the Internet. Only a limited number of simul-

taneous crawlers can be launched by a given Web crawling system.

Due to these limitations, smart crawling techniques are needed to capture the

most current view of the Web in the most efficient manner. Two recent studies on

smart crawling techniques propose crawling using techniques called URL ordering [34]

and collaborative Web crawling [143]. These techniques significantly improve the

efficiency and accuracy of crawlers.

6.3.1 URL ordering

Let V = {px, , py } be a set of visited pages and U = {pm, ... , NJ be a set of

pages, called front pages, defined as follows:
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Figure 6.3 Illustration of front pages.

1. U consists of unvisited pages only, so U and V are disjoint.

2. For all pi E U, there exists a pj E V, such that pi is 1-distance

away from pj (i.e., every page in U is at most one link away from

a page in V). Since hyperlinks are directed paths, the converse

may not hold.

Figure 6.3 illustrates the concept of front pages. The visited pages are the white

nodes and front pages are the black nodes.

Front pages are stored in a queue in order of visitation, and await processing by

the crawler. At any given instant in the crawling process, the decision according to

which a crawler selects a page pi from this pool of front pages is important. Selecting

the most important pages to visit is significant because the crawler,s ability to find

the most important pages on the Web must be maximized. Several useful definitions

of this importance measure can be used to prioritize the crawling order of front pages.

Given a Web page p i , an importance measure of this page can be defined using

one or a combination of the following methods:

• Document similarity measure

• hyperlink measure

• URL measure
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Different implementation measures yield different URL orderings for crawling.

The more important a page is, the earlier it is visited by the crawler. Each importance

measure is described in turn below.

6.3.1.1 Document Similarity Measure The similarity between a pair of pages

is one indication of their mutual relevance. For example, pages containing many of

the same keywords would presumably be relevant to each other. Relevance is in turn

an indicator of importance.

In a document similarity measure method, sim(P,Q) is defined as the textual

similarity between P and Q, where P is a Web page and Q is the query used as the

search criterion that drives the crawler. For example, the criterion can be "Find all

documents related to data mining" . To compute similarities, a vector model [124]

developed for information retrieval can be used. Basically, P and Q are represented

as t-dimensional vectors, where t is the total number of index terms in the system.

The degree of similarity of P and Q is the correlation between the vectors P and Q.

This correlation can be quantified by using the cosine of the angle between these two

vectors as follows:

Thus, if the vectors are identical, the similarity is one. On the other hand, if the

vectors have no terms in common (i.e. they are orthogonal), the similarity is zero.

Dissimilarity can be measured by the inverse document frequency (IDF) of a

term w i in the page collection. IDF is used to distinguish a relevant document from

a non—relevant one by the number of times the term w i occurs in a page. Observe

that frequently occurring terms are not helpful in this decision process. Furthermore,

because the crawler has not visited all pages, the IDF can only be calculated from the

visited pages. Other document similarity models such as the Boolean, probabilistic,

and fuzzy set models can also be used.
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6.3.1.2 Hyperlink Measure Given a Web page, P, there are two types of links

with respect to P:

• Back-links or inlinks — which are hyperlinks that are linked to P.

• Forward-links or outlinks — which are hyperlinks that are linked

from P.

The back- link count is defined as the number of back-links to P; the forward- link

count is defined as the number of forward-links from P.

The assumption underlying the use of this measure is that a page is important

if there are many back-links to it. The corresponding importance measure ((P) is

defined as the number of links to P over the entire Web. A crawler may estimate

((P) based on the number of back-links to P from pages it has visited or using search

engines to get pre-calculated back-link counts.

The forward-link count for a page P is not an indicator of whether P is an

important page. Furthermore, links to a page should be weighted differently if they

are from an important site such as the homepage of a major search engine. This idea

leads to the development of a page rank metric [115] which calculates ((P) using the

weighted value for each page: a page with many back-links from important pages

should be considered important.

6.3.1.3 URL Measure In this method, ((P) is a function of its hyperlink location

(URL), rather than its text contents. For example, URLs ending with ".com"

would have different weights than those with other endings. A URL starting with

"www" and "home" may be more interesting because it represents the homepage of

a Website.
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6.3.2 Web—Graph Partitioning

The Web is often viewed as a directed graph G = (V, E), where each v E V corre-

sponds to a Web page or URL and the hyperlinks between pages define the set E of

directed edges. From a graph point of view, building a scalable, distributed collab-

orative Web crawling system (CWCS) [143] corresponds to developing a Web-graph

partitioning algorithm for automatic load balancing among crawling processors.

How are the processors affected by graph partitioning? Ideally one wants each

processor to process a disjoint set of URLs from the other processors. However, since

pages are interlinked in an unpredictable way, it is not obvious how this can be done.

Additionally, the processors must communicate with one another to ensure they are

not redundantly processing URLs. An effective Web graph partitioning algorithm

will attempt to partition the Web-graph to minimize redundancy.

One of the main difficulties in the crawling process derives from the fact that

G is unknown prior to the crawling process occurring. Furthermore, even after the

crawling process is performed, only the subsets of G are known. This is because

the Web is undergoing dynamic changes—information is being added and deleted,

even as crawling is taking place. Moreover, not all reachable sites are visited. This

complicates the application of graph partitioning methods such as those designed for

static graphs in VLSI circuit design. Dynamic re-partitioning and load re-balancing

are required for the Web-graph.

A k-way partition of the Web-graph G = (V, E) is a division of G into k sub-

graphs U = , Uk ), where k is the number of processors in the system.

Each Ui is mapped to processor i and L i ,j denotes the set of cross partition links

from Ui to Uj . The communication between processors i and j, reflected in the links

in Li ,j , represents overhead in a collaborative Web crawling system.

The partitioning scheme has three basic steps:
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1. Coarsening. Apply node and edge contraction to the Web-graph

in order to obtain a manageable structure to which to apply the

partitioning algorithm.

2. Partitioning. Apply a static graph partitioning algorithm to

divide the coarsened Web-graph, and then project this partition

back to the original Web-graph.

3. Dynamic re-coarsening and repartitioning. When the load

becomes unbalanced, re-coarsen the Web-graph and repartition

the coarsened Web-graph based on the current Web-graph infor-

mation generated by the crawler after the last partitioning.

6.4 Topic-Oriented Web Crawling

The first generation of Web search engines assumed queries could be posed about

any topic. This single database model of information retrieval was successful because

the Web was limited in size and in the complexity of its contents [27]. Indeed, while

it is true that when a query is made to a search engine, the query is most likely

related to a limited set of topics [36]; nonetheless, such a "one size fits all" model

of search tends to limit diversity, competition, and functionality [84]. Consequently,

Web search has evolved beyond the single database model to the multi-database,

topic-oriented model, in an effort to reflect the diversity of topics on the Web, as

well as to achieve higher precision search results.

Topic-oriented Web crawling (TOWC) [29, 43] was designed to facilitate

building topic-oriented search engines. TOWC is intended to search the portion of

the Web most closely related to a specific topic. In the TOWC approach, the links

in the crawling queue are reordered, as described in Section 3.1 of this chapter, to

increase the likelihood that relevant pages are discovered quickly.
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To achieve this, TOWC algorithms start with a seed-set (or root-set) of relevant

pages, and then attempt to efficiently seek out relevant documents based on a combi-

nation of link structure and page content analysis, using criteria such as: in-degree

link count, out-degree link count, authority score, hub score, and topic-relevant score.

Topic-relevant scoring functions use techniques such as: text classification

to classify and rank the relevance of a Web page to a given topic and build a

topic hierarchy [47, 99]; machine learning to classify vectors in multi-dimensional

space [120]; and PageRank measures to compute a weighted hyperlink measure,

which is intended to be proportional to the quality of the page containing the

hyperlink [22]. TOWC has been successfully used to efficiently generate indexes for

search portals and user groups [100].



CHAPTER 7

ENVIRODAEMON

7.1 Background

Engineers and scientists have longed for instantaneous, distributed network access to

the entire science and technology literature. These longings are well on their way to

being realized as a result of the improvement and convergence of the computing and

communications infrastructure and the indispensability of the Internet for scientific

research. The size of the organization able to perform a search has decreased as

groups of lay people and scientists can now search "digital libraries" without the aid

of trained reference librarians.

Similarly, as discussed in the previous chapters, the document being sought

has changed: from a citation with descriptive headers, to an abstract, to complete

multimedia contents including text, audio, video, and animation. There are many

reasons for the rise in digital information. The preservation of the contents of

physical, paper-based texts, the convenience associated with maintaining, searching

and retrieving electronic text, and the lowered cost of acquiring and maintaining

electronic information as opposed to books and journals are often cited reasons [89].

This chapter reports a system for Internet search in a category-specific area: the

environment. In the environmental domain, sustainable development is influenced by

environmental decisions throughout the entire life-cycle of products (in a wide sense,

including non-tangible products and services). In the early stages of the life-cycle,

for example, in requirements gathering and design, decisions may be made with far-

reaching consequences for the rest of the products, life-cycle. At this point in time,

it is clearly impractical to teach all the people involved in such decisions all relevant

environmental considerations. A more practical approach is to make tools available

that permit those people most directly involved in the decision making to evaluate

94
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various alternatives of the products, and to assess the environmental impact of their

decisions.

Such tools will rely heavily on locating relevant information, and making it

available in a suitable form when it is needed. Current tools for locating information,

such as the Web search engines discussed in Chapter 2, are mostly keyword based,

and are not adequate for identifying relevant items and filtering out irrelevant ones.

As a consequence, needed information is not easily available, and the quality of the

work performed may suffer.

Searching involves queries that can involve structure (i.e., words or concepts).

There are two basic types of hypertext queries: content queries, which are based on

the content of a single node of the hypertext; and structure-specifying queries, which

take advantage of the information, conveyed in the hypertext organization itself.

Retrieval involves end user displays such as graphical user interfaces commonly, and

can involve categorization, filtering and routing.

At present, access to the Web is based on navigationally oriented browsers. The

end result is often a "lost-in-cyberspace" phenomenon because a) there is no reliable

road map for the Web; b) obtained information is heterogeneous and difficult to

analyze; and c) organization of documents conveys information which is often not

exploited.

Most of the currently available Web search tools as described in previous

chapters suffer from some of the following drawbacks:

• User partial knowledge is not fully exploited. For example, the

user may know that a particular keyword is in the header or in the

body of a document which would aid in its location and retrieval.



96

• The restructuring ability of current tools is limited or nonexistent.

The querying tool should permit ad hoc specification of the format

in which the answer should be presented. One should be able to

search for two chapters that have references to the same article

or to view two references side by side when output is given.

• The dynamic nature of Web documents are unaccounted for,

which results in poor query result quality.

The primary need of end users is to quickly and easily help them find the

exact piece of information they need (even though they might not be able to exactly

describe their needs) without letting them drown in an information sea. When

faced with the task of searching for something, one can ask for recommendations

for Websites from others or use Web indexes which are manually constructed and

organized by category (e.g., the search engine Yahoo! is a good example). Using

this latter scheme, sites appear more quickly than can be indexed by hand and a

search engine can rapidly scan an index of Web pages for certain key words. A better

solution involves the use of visualization methods.

7.2 EnviroDaemon (ED)

As mentioned before, information retrieval has evolved from searches of references, to

abstracts, to documents. Search on the Web involves search engines that promise to

parse full-text and other files: audio, video, and multimedia. With the indexable Web

approaching one billion pages and growing, difficulties with locating relevant infor-

mation have become apparent. The most prevalent means for information retrieval

relies on syntax-based methods: keywords or strings of characters are presented to

a search engine, and it returns all the matches in the available documents. This

method is satisfactory and easy to implement, but it has some inherent limitations
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that make it unsuitable for many tasks. Instead of looking for syntactical patterns,

the user is often interested in keyword meaning or the location of a particular word

in a title or header.

In this section, a search engine developed in NJIT DB Lab, called Enviro-

Daemon, is discussed. This system was built to ease the task of finding infor-

mation about pollution prevention (P2), an emerging environmental field in which

a premium is placed on preventing pollution in the first place instead of accepting

waste as a given and treatment and disposal as necessary evils.

EnviroDaemon [69] automatically builds and updates a catalog of objects at

pre-selected Internet sites that are related to P2. Users search for information by

submitting keywords. Searches can be restricted to small subsets of the indexed sites

by choosing one of five search criteria (Pollution Prevention and Pollution Control,

Regulatory, International, ISO 14000, and Recycling and Materials Exchange), or the

entire catalog can be searched. The results are returned rapidly and are embedded

in several lines of text to provide context. If the text looks promising, the user can

click on a hyperlink to access the full article. Figure 7.1 shows the front-end interface

for EnviroDaemon. In contrast to generic search engines such as Yahoo! and Lycos,

EnviroDaemon is highly specific, focusing solely on P2 information.

EnviroDaemon employs software constructs termed Gatherer and Broker of the

Harvest application system to gather, extract, organize, retrieve and filter infor-

mation. Atop Harvest is the Glimpse tool, which functions as an indexer of the

information and provides a query system for searching through all of the files. Enviro-

Daemon updates its catalog of more than 35,000 pollution prevention-related objects

from about 160 Internet servers regularly.

The Internet holds vast stores of information pertaining to pollution prevention

and environmental issues, and with each day more is added. Yet, as this storehouse

grows, the difficulty of finding specific information increases. This section details how
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Figure 7.1 Front-end interface for EnviroDaemon.
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EnviroDaemon was built to ease the task of finding this information and building a

knowledge base.

More and more of the information that environmental managers need is

becoming available on the Internet. Each day, an increasing amount of valuable,

substantive information is made available via sources like Websites, email list servers,

and bulletin board systems. While many of these computerized information sources

are potentially helpful, no organized structure exists to catalog all the data to enable

someone to find specific information quickly. This is true of pollution prevention

(P2), a rapidly developing field of environmental science and engineering that

focuses on elimination of sources of hazardous substances, rather than on treatment

or disposal.

To make computerized pollution prevention information more easily accessible,

we developed EnviroDaemon, a P2-specific search engine. EnviroDaemon is designed

to be useful for anyone who is searching the Internet for environmental information,

whether that person is a government policymaker, consultant, researcher, student,

or environmental advocate.

One can query certain specialized environmental databases (for instance, the

Solvent Alternatives Guide-SAGE [135]), but no individual Website is so compre-

hensive that the P2 information-seeker only needs to look there. To do a thorough

job, the P2 information-seeker needs to search many P2 sites, or risks missing

valuable information. Although some of these sites are linked together, most are

not. They need to be searched individually. Thoroughly searching ten sites is

at least an afternoon,s work. Hence, searching the "information superhighways"

for particular information can be quite time-consuming. Even expert users who

are familiar with environmental sites need to spend considerable time in searching,

because new sources of data are appearing continually.
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Generic search engines were designed to mine the Web. Given a search term,

these engines return lists of Websites and specific references, often copiously. One

could use one of the generic search engines to look up terms such as "pollution

prevention" or a specific solvent and then wade through the resulting Websites,

hoping to chance upon helpful references. However, these search engines return so

many "hits," most of which are unrelated to P2, that going through them all becomes

burdensome.

7.2.1 An Intelligent Librarian

EnviroDaemon operates like the generic search engines, but its scope is focused on

pollution prevention information. EnviroDaemon has expedited the gathering of P2

information by performing highly efficient, specific searches.

EnviroDaemon acts like an intelligent librarian, who in the vast library of the

Internet, searches only specific collections devoted to pollution prevention. It keeps

a catalog of items on more than 160 preselected P2 sites on the Internet. In response

to a query, EnviroDaemon matches the search terms against its catalog. The user

may further narrow the search by choosing one of six specialized search criteria:

• Pollution prevention and pollution control

• Regulatory

• International

• ISO 14000

• Recycling and materials exchange

• The entire P2 database

This service saves the information-seeker the time and trouble of searching

dozens of Websites and, because the "hits" come only from P2 sites, it returns only
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the information that is most likely to be germane. To allow the user to select the

most pertinent citations, EnviroDaemon returns the search item within the context

of its surrounding text. Up to ten lines, as determined by the user, may be displayed.

The EnviroDaemon project followed the following steps, the first of which was

to identify extant search engines, and to decide whether to tailor one or to construct

EnviroDaemon de novo. The decision was made to build a search engine de novo.

The third step was to determine the appropriate Websites to mine for P2-related

information. Next, EnviroDaemon was constructed and tested on the Web.

A look at the process by which EnviroDaemon finds, catalogs, and reports P2

information will give the reader an idea of its power and utility. It may also show

the way to others who might wish to create similar custom search engines.

7.2.2 Selecting Tools

Once the decision was made to build a search engine, a careful, detailed analysis

was made to select the appropriate tools. Harvest software tools [19], the Glimpse

index/search mechanism [97] and the associated software that is required by Harvest

and Glimpse (Glimpse stands for Global IMPlicit Search) was chosen. Harvest

employs a system of Gatherers and Brokers to retrieve and filter information. Glimpse

indexes the information and provides a query system for rapidly searching through

all of the gathered files.

Harvest software provides an integrated set of tools to gather, extract, organize,

search, and replicate relevant information across the Internet. It possesses a flexible

data-gathering architecture, which can be configured in various ways to create many

types of indexes, making efficient use of Internet servers, network links, and index

space on disk. Harvest permits users to build indexes using manually constructed

templates (for maximum control over index content), automatically constructed

templates (for easy coverage of large collections), or a combination of the two
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methods. Users also may extract structured (attribute-value pair) information from

many different information formats and build indexes that permit these attributes to

be referenced during queries (e.g., searching for all documents with a certain regular

expression in the title field).

Measurements indicate that Harvest can reduce server load by a factor of over

6,000, network traffic by a factor of 60, and index space requirements by a factor of

over 40 when building indexes compared with other Internet search engines, such as

Archie, Wide Area Information Services (WAIS), and the World Wide Web Worm.

7.2.3 Building EnviroDaemon

EnviroDaemon was originally designed and run on a Sun Sparc 5 computer with

Solaris 2.3, with a 4GB SCSI drive. EnviroDaemon does not require a fast processor,

but does require more memory. The critical factor affecting RAM usage is how much

data EnviroDaemon tries to index. The more data, the more disk input-output is

performed at query time, and the more RAM it takes to provide a reasonable disk

buffer pool.

The amount of disk space required was decided after evaluating the size of the

data to be indexed. Approximately 10 percents as much disk space as the total size

of the data to be indexed is needed to hold the databases of Gatherers and Brokers.

The actual space needs depend on the type of data indexed.

For example, PostScript achieves a much higher indexing space reduction than

HTML because so much of the PostScript data (such as page positioning information)

is discarded when building the index. An additional 50 MB of free disk space is

required to run the Harvest Object Cache.

7.2.4 Harvest Subsystem Overview

Harvest consists of a number of different subsystems. The Gatherer subsystem collects

indexing information (such as keywords, author names, and titles) from the resources
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available at provider sites (such as FTP and Web servers). The Broker subsystem

retrieves indexing information from one or more Gatherers, suppresses duplicate infor-

mation, incrementally indexes the collected information, and provides a Web query

interface to it. The Replicator subsystem efficiently replicates Brokers around the

Internet. Information can be retrieved through the Cache subsystem. The Harvest

Server Registry (HSR) is a distinguished Broker that holds information about each

Harvest Gatherer, Broker, Cache, and Replicator in the Internet.

7.2.5 Installing the Harvest Software

Harvest Gatherers and Brokers can be configured in various ways. Six different Brokers

and Gatherers were running on the server. Each of the six search criteria has one

dedicated Broker and Gatherer running. Since the Gatherers and Brokers are running

locally, the search process is very efficient and quite fast.

In addition to the above platform requirements, the following software packages

were installed:

• All Harvest servers require Perl v4.0 or higher (v5.0 is preferred).

• The Harvest Broker and Gatherer require GNU gzip v1.2.4 or

higher.

• The Harvest Broker requires a Web server.

• Compiling Harvest requires GNU gcc v2.5.8 or higher.

• Compiling the Harvest Broker requires Flex v2.4.7 and Bison

v1.22.

7.2.6 The Gatherer

The Gatherer retrieves information resources using a variety of standard access

methods (e.g., FTP, Gopher, HTTP, NNTP, and local files) and then summarizes
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those resources in various type-specific ways to generate structured indexing infor-

mation. For example, a Gatherer can retrieve a technical report from an FTP archive,

and then extract the author, title, and abstract from the paper to summarize the

report. Brokers can then retrieve the indexing information from the Gatherer.

The Gatherer consists of a number of separate components. The Gatherer

program reads a Gatherer configuration file and controls the overall process of

enumerating and summarizing data objects. The structured indexing information

that the Gatherer collects is represented as a list of attribute-value pairs using the

Summary Object Interchange Format (SOIF). The gathered daemon serves the

Gatherer database to Brokers. It remains in the background after a gathering session

is complete. A stand-alone gathering program is a client for the gathered server. It

can be used from the command line for testing and is used by a Broker. The Gatherer

uses a local disk cache to store objects that it has retrieved.

Even though the gathered daemon remains in the background, the Gatherer

does not automatically update or refresh its summary objects. Each object in the

Gatherer has a time-to-live value: Objects remain in the database until they expire.

The Gatherer needs a list of the Uniform Resource Locators (URLs) from which it

will gather indexing information from the list of 160 pollution prevention servers.

This list is specified in the Gatherer configuration file.

To prevent unwanted objects from being retrieved across the network, the

Gatherer employs a series of filters. This dramatically reduces gathering time and

network traffic. Since these filters are invoked at different times, they have different

effects. The URL-filter, for example, allows only those Internet sites that have been

pre-selected. After the Gatherer retrieves a document, it passes the document through

a subsystem called Essence, which screens out certain documents from being indexed.

Essence provides a powerful means of rejecting indexing that is based not only on

file-naming conventions, but also on file contents (e.g., looking at strings at the
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beginning of a file or at UNIX "magic" numbers) and also on more sophisticated

file-grouping schemes. Independent of these customizations, the Gatherer attempts

to avoid retrieving objects when possible, by using a local disk cache of objects, and

by using the HTTP "If-Modified-Since" request header.

Essence extracts indexing information from those documents that are not

filtered out. Essence allows the Gatherer to collect indexing information from a wide

variety of sources, using different techniques depending on the type of data. The

Essence subsystem can determine the type of data (e.g., PostScript vs. HTML),

"unravel" presentation nesting formats (such as compressed "tar" files), select

which types of data to index (e.g., don,t index Audio files), and then apply a

type-specific extraction algorithm (called a summarizer) to the data to generate

a content summary. Harvest is distributed with a stock set of type recognizers,

presentation unnesters, candidate selectors, and summarizers that work well for

many applications. Summarizers were customized to change how they operate, and

added summarizers for new types of data.

To reduce network traffic when restarting aborted gathering attempts, the

Gatherer maintains a local disk cache of files that were retrieved successfully. By

default, the Gatherer,s local disk cache is deleted after each successful completion.

Since the remote server must be contacted whenever the Gatherer runs, we did not

set up the Gatherer to run frequently. A typical value might be weekly or monthly,

depending on how congested the network is and how important it is to have the most

current data. By default, objects in the local disk cache expire after seven days.

7.2.7 The Broker

The Broker supports many different index/search engines. Harvest Broker and

Glimpse were chosen because they have been used in many different search engines.

Particularly for large Brokers, it is often helpful to use more powerful queries because
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a simple search of a common term may take a long time. EnviroDaemon,s query

page contains several checkboxes that allow some control over query specification.

Glimpse supports:

• Case-insensitive (lower and upper case letters are treated the

same) and case sensitive queries;

• Matching parts of words, whole words, or phrases (like "resource

recovery");

• Boolean (and/or) combinations of keywords;

• Approximate matches (e.g., allowing spelling errors); structured

queries (allowing you to constrain matches to certain attributes);

• Displaying matched lines or entire matching records (e.g., for

citations); specifying limits on the number of matches returned;

and

• A limited form of regular expressions (e.g., allowing "wild card"

expressions that match all words ending in a particular suffix).

EnviroDaemon allows the search to contain a number of errors. An error is

either a deletion, insertion, or substitution of a single character. The Best Match

option will find the match(es) with the least number of errors.

To allow popular Web browsers to mesh easily with EnviroDaemon, A Web

interface to the Broker,s query manager and administrative interfaces were imple-

mented. This interface consists of the following: HTML files that use Forms support

to present a graphical user interface (GUI), Common Gateway Interface (CGI)

programs that act as a gateway between the user and the Broker, and "help" files for

the user. The Broker also needs to run in conjunction with a Web server.
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Users go through the following steps when using the Broker to locate infor-

mation:

1. The user issues a query to the Broker.

2. The Broker processes the query, and returns the query results to

the user.

3. The user can then view content summaries from the result set, or

access the URLs from the result set directly.

The Broker retrieves indexing information from Gatherers or other Brokers

through its Collector interface. A list of collection points is specified along with

the host of the remote Gatherer or Broker, and the query filter if there is one. The

Broker supports various types of collections. EnviroDaemon Brokers use indexing

information retrieved from Gatherers through incremental collections.

7.2.8 Glimpse

Glimpse is an indexing and query system that searches through files very quickly.

Glimpse supports most of agrep,s options which is a more powerful version of grep

and includes approximate matching (e.g., finding misspelled words), Boolean queries,

and even some limited forms of regular expressions. For example, if one is looking for

a word such as "needle" anywhere in the file system, all that one needs to specify is,

"glimpse needle," and all the lines containing the word "needle" will appear preceded

by the file name. To use Glimpse, the files are first indexed with Glimpseindex, which

is typically run every night.

The speed of Glimpse depends mainly on the number and sizes of the files that

contain a match, and only secondarily on the total size of all indexed files. If the

pattern is reasonably uncommon, then all matches will be reported in a few seconds,

even if the indexed files total 500 MB or more.
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Glimpse includes an optional new compression program, called Case, which

permits Glimpse (and agrep) to search compressed files without having to decompress

them. The search is significantly faster when the files are compressed.

Glimpse can search for Boolean combinations of "attribute-value" terms by

using the EnviroDaemon,s SOIF parser library. To search this way, the index is

made by using the -s option of Glimpseindex (this is used in conjunction with other

Glimpseindex options). For Glimpse and Glimpseindex to recognize "structured"

files, they must be in SOIF format. Any string can serve as an attribute name.

The scope of Boolean operations changes from records (lines) to whole files when

structured queries are used in Glimpse.

Glimpse,s index is word based. A pattern that contains more than one word

cannot be found in the index. The way Glimpse overcomes this weakness is by

splitting any multi-word pattern into its set of words, and looking for files in the

index that contain the whole set.

7.3 ED with Hierarchical Search

This section describes some precise search approaches in the environmental domain

that locate information according to syntactic criteria, augmented by the utilization

of information in a certain context. The main emphasis lies in the treatment

of structured knowledge, where essential aspects about the topic of interest are

encoded not only by the individual items, but also by their relationships among each

other. Examples for such structured knowledge are hypertext documents, diagrams,

logical and chemical formulae. Benefits of this approach are enhanced precision and

approximate search in EnviroDaemon.

EnviroDaemon has also been integrated with a Hierarchical Information Search

Tool (HIST), which permits queries based on hierarchical structure. The rationale

for this extension is that search conditions incorporating both keyword and structure-
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based queries will help the user more precisely locate information. Figure 7.2 shows

the front-end interface for EnviroDaemon with HIST. The query in the figure is to

search for documents with the word "energy" in an hl tag.

Many search engines have their distinctive features: single domain, multi-

domain, meta-search engines which are front-ends of other search engines. However,

few of them make attempts to exploit the explicit underlying hypertext tags in a

single domain. HIST, a search filtering tool, however, is able to exploit the full

syntactic detail of any hypertext markup language and provide hierarchical query

capability.

The essence of HIST is to permit end users to specify in which parts of a

document a keyword should appear: in a document title, in a section header,

somewhere in a paragraph, or in a table. This allows more precise control over

the search process, and hence, results in much better selection of relevant material.

Another salient feature of HIST is the idea of "fuzzy search." The documents

returned by HIST do not have to be exact matches. Users have control over how

similar the target document should be in the hierarchical query. Furthermore, at

the speed that the Web technology standard is proceeding, an information retrieval

tool must be able to meet the challenges of the next generation of the document

standard on the Web. Since HIST is based on the Document Type Definition (DTD)

Model, it is suitable for the new emerging document exchange standard for the

Web, namely Extensible Markup Language (XML).

HIST does not replace the existing EnviroDaemon search engine. It enhances

the EnviroDaemon for information searching on associated environment-related

topics. For a general search on the Web, where the user has little knowledge about

the nature of the document (in terms of document structure), we still encourage the

use of EnviroDaemon. On the other hand, when the situation permits, the HIST
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Figure 7.2 Front-end interface for EnviroDaemon with HIST.
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Figure 7.3 HIST system architecture.

tool will be extremely useful when the target document structure is partially or

completely known.

HIST is composed of the following modules: Query Processor, SGML/XML

Parser, HTML Parser, Tree Comparator, Retrieval Agents, and Front-end Interface.

Figure 7.3 illustrates the HIST architecture.

The Query Processor handles queries from the Front-end Interface and invokes

the Tree Comparator when necessary. The Retrieval Agents retrieve the actual HTML

pages that satisfy keywords specified in the Front-end Interface from EnviroDaemon.
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Figure 7.4 Converting a hypertext document to a labeled tree using DTD.

The HTML Parser translates the HTML pages into hierarchical tree structures based

on the HTML DTD. The SGML/XML Parser translates the HTML pages into hierar-

chical tree structures based on a document,s DTD. The Tree Comparator contains

various approximate tree and string matching programs.

As many previous approaches have suggested, to analyze documents from

the Web, the first step is to derive a scheme that describes the HTML page.

While a specially designed schema provides a structural way of analyzing a hypertext

document, much of the semantics associated with the document is lost after the

transformation process. The approach differs from others in that it does not design

a special schema, but, instead work with the DTD associated with hypertext

documents.

With DTD in hand, each hypertext document can be parsed using its own

DTD, capitalizing on the fact that the DTD provides not only the grammatical

information, but also semantic information. For HTML documents, it can be parsed

using HTML DTD 4.0. For the article type of SGML/XML documents, we can parse

it with article DTD. The parsed tree structure of a typical document is illustrated in

Figure 7.4. In this figure, the logical structure of the document is identified by the

parser, which is denoted by dashed rectangles.
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7.4 A Hierarchical Query Language

EnviroDaemon with HIST uses a query language called WAQL which is described

in Chapter 3. Consider the hierarchical query in Figure 7.5(a). This query is to

find the HTML pages containing the word "database" in an H1 header followed by

a paragraph consisting of "object" followed by "relational." The * notation in the

internal node of the query is a "variable length don,t care" (VLDC) symbol, which

represents an unspecified portion of a document as described below. The query

may be issued when an individual intends to locate some HTML pages available

on the Internet while conducting database-related research. Here the user places an

emphasis on "database" and is interested in only those HTML pages having the word

in an H1 header, rather than in any other place of a document.

To process such a hierarchical query using EnviroDaemon with HIST, it takes

the conjunction of the keywords appearing in the query and invoke EnviroDaemon

search engine to find the HTML pages containing these keywords. The Enviro-

Daemon search engine returns a collection of candidate uniform resource locators

(URLs), ranked based on their relevance to the keywords. Duplicate URLs are

deleted and a document corresponding to each matching URL is then retrieved

using a libwww-Perl4 module, with time-outs set to 20 seconds to account for a

busy network or failed connections. Each retrieved HTML document is then trans-

formed into a hierarchical tree structure based on the DTD described earlier. The

transformed tree structures then become candidate HTML trees to be compared with

hierarchical query trees. Figure 7.5(b) shows an example tree for an HTML page.

The tree is rooted, labeled and ordered (i.e., each node has a label and the order of

siblings is important). An internal node represents an HTML tag and a leaf contains

the associated text.

The system compares the query tree with each candidate HTML tree using a

previously developed approximate tree matching algorithm [153] in conjunction with
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Figure 7.5 (a) An hierarchical search pattern; (b) an HTML tree.

regular expression matching on leaves when required. The URLs of qualified pages

are then returned. In comparing the query tree with an HTML tree, a VLDC can

be matched, at no cost, with a path or portion of a path in the HTML tree. The

tree matching algorithm calculates the minimum edit distance between the query

tree and the HTML tree after implicitly computing an optimal substitution for the

VLDCs in the query tree, allowing zero or more cuttings at nodes from the HTML

tree [153]. Cutting at a node n means removing the subtree rooted at n.

Given two trees Ti and T2, the algorithm runs in time O(|T i  | x |T2 | x

min{depth(Ti ), leaves(Ti )} x min{depth(T2 ), leaves(T2)}. Thus, for example, in

matching the query tree in Figure 7.5(a) and the HTML tree in Figure 7.5(b), the *

at the root in Figure 7.5(a) would be matched with (or instantiated into) the nodes

HTML and BODY in Figure 7.5(b), and the * underneath P in Figure 7.5(a) would

be matched with the node A (i.e., the Anchor tag) in Figure 7.5(b). The nodes H1,

"database" and "object.*relational" in Figure 7.5(a) would be matched with their

corresponding nodes in Figure 7.5(b). All the other nodes in Figure 7.5(b) are cut.
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7.5 Summary

EnviroDaemon has proven to be useful by rapidly returning results that are focused

on pollution prevention (P2) and other environmental topics such as ISO 14000.

By limiting its scope to P2-related Websites, EnviroDaemon can afford to be more

thorough, searching whole documents rather than just titles and keywords. The

resulting "hits" are embedded in up to ten lines of surrounding text; knowing the

context of how the term was employed allows the user to thin out inappropriate sites

without taking the time to actually visit them. EnviroDaemon obviates the need to

look through one Website after another, or to know beforehand which sites are most

promising.

In this chapter, EnviroDaemon with a Hierarchical Information Search Tool

(HIST) on the Web is described. The system makes several contributions. It is

context-specific and one of two environmentally directed search engines on the Web

(the other being the proprietary EnviroSources [50]). It permits more detailed search

than existing search engines. Additionally, it allows several kinds of approximate

search at different levels:

• approximate search on the structural level, based on edit distance

between structures;

• approximate search on the string level;

• variable length don,t cares on the structural level; and

• any combination of the above.

It provides a query language that allows users to flexibly combine a variety of

constructs and has proven to be useful for the Web environment where the languages

employed are HTML. However, the flexibility of its design makes its integration with

SGML and XML effortless. EnviroDaemon with HIST promises to save users from
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drowning in an information sea and is generic enough to be useful for the Web and

intranets. Future research that can be extended from this prototype is discussed in

the next Chapter.



CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary of the Dissertation

In this dissertation proposal, a Web-Based Approximate Query System has been

presented. The system makes several contributions.

1. It allows a more detailed search than with existing search engines.

2. It allows several kinds of approximate search at different levels:

(a) approximate search on the structural level, based on "distance" between

structures;

(b) approximate search on the string level;

(c) variable length don,t care on the structural level; and

(d) any combination of the above.

3. It provides an SQL-like query language that allows users to flexibly combine a

variety of constructs in a Web query.

4. It is an useful tool for HTML, SGML, and XML documents.

5. It has been integrated with a domain specific search engine — EnviroDaemon.

In order to provide users with better text and data searching capabilities under

XML, software developer must provide new tools that can handle XML-tagged text

and data. In this sense, a whole new generation of applications will emerge. Tools

from intelligent Web-agents to database creations without writing a database-specific

code will soon be possible. New method and tool introduced here provide the first

step towards analyzing this data-centric document standard.

117
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8.2 Future Work

The future research will mainly focus on the further improvement of WAQS in the

following directions:

• Weighted Querying Processing.

This will allows user to add a weight to each node in the search pattern. The

weight indicates the importance of the node in respect to other nodes in the

query. Hence, this gives the user more control over the searching process.

• Improve the Visual Querying Environment.

A new Java-based visual querying environment is currently being developed.

This new interface will give the user a more intuit way of interacting with

WAQS.
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