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ABSTRACT

TURBO SPACE-TIME CODED MODULATION:
PRINCIPLES AND PERFORMANCE ANALYSIS

by
Dongzhe Cui

A breakthrough in coding was achieved with the invention of turbo codes. Turbo

codes approach Shannon capacity by displaying the properties of long random codes,

yet allowing efficient decoding. Coding alone, however, cannot fully address the

problem of multipath fading channel. Recent advances in information theory have

revolutionized the traditional view of multipath channel as an impairment. New

results show that high gains in capacity can be achieved through the use of multiple

antennas at the transmitter and the receiver. To take advantage of these new

results in information theory, it is necessary to devise methods that allow commu-

nication systems to operate close to the predicted capacity. One such method

recently invented is space-time coding, which provides both coding gain and diversity

advantage.

In this dissertation, a new class of codes is proposed that extends the concept

of turbo coding to include space-time encoders as constituent building blocks of

turbo codes. The codes are referred to as turbo space-time coded modulation (turbo-

STCM). The motivation behind the turbo-STCM concept is to fuse the important

properties of turbo and space-time codes into a unified design framework. A turbo-

STCM encoder is proposed, which consists of two space-time codes in recursive

systematic form concatenated in parallel. An iterative symbol-by-symbol maximum

a posteriori algorithm operating in the log domain is developed for decoding turbo-

STCM. The decoder employs two a posteriori probability (APP) computing modules



concatenated in parallel; one module for each constituent code. The analysis of

turbo-STCM is demonstrated through simulations and theoretical closed-form expressions.

Simulation results are provided for 4-PSK and 8-PSK schemes over the Rayleigh

block-fading channel. It is shown that the turbo-STCM scheme features full diversity

and full coding rate. The significant gain can be obtained in performance over conven-

tional space-time codes of similar complexity. The analytical union bound to the bit

error probability is derived for turbo-STCM over the additive white Gaussian noise

(AWGN) and the Rayleigh block-fading channels. The bound makes it possible to

express the performance analysis of turbo-STCM in terms of the properties of the

constituent space-time codes. The union bound is demonstrated for 4-PSK and 8-

PSK turbo-STCM with two transmit antennas and one/two receive antennas. Infor-

mation theoretic bounds such as Shannon capacity, cutoff rate, outage capacity and

the Fano bound, are computed for multiantenna systems over the AWGN and fading

channels. These bounds are subsequently used as benchmarks for demonstrating the

performance of turbo-STCM.
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CHAPTER 1

INTRODUCTION

The rapid growth of wireless voice subscribers, the internet and the quickly increasing

use of portable devices suggest that wireless internet multimedia access will rise

rapidly over the next few years. The world expects an explosion in wireless infor-

mation services. Current second generation (2G) digital cellular systems GSM, IS-95

and IS-136 provide good quality voice anytime, anywhere. However, 2G systems

provide low speed, and hence low quality, data transmission services. The desire

to support higher-rate data services, in addition to wireless voice telephony, is the

primary factor in the development of third or future generation systems. The 3G

standards are converging on wideband code division multiple access (WCDMA)

technology that will provide universal coverage for 144 kbits/s and 384 kbits/s data

services as well as limited coverage for 2 Mbits/s data.

Barriers to the development of wireless communication services include low bit

rates, high power consumption, and high cost per bit. The 3G wireless communication

does begin to address the issues of bit rate and reduce the cost per transmitted bit.

Signal processing methods can be applied to further lower error rate, lower power

requirement and lower cost per bit. Signal processing also holds the key to meeting

the future wireless data rate requirements without expanding current bandwidth

efficiency. The following categories of signal processing are distinguished:

• Temporal processing: includes coded modulation, which merges channel coding

and modulation together.

• Space-time array processing: employs multiple antennas at both transmitter

and receiver.

This introduction begins with an overview of temporal processing, introduces turbo

codes and turbo coded modulation. Then several space-time processing techniques

1
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are briefly reviewed for leading to turbo space-time coding. We also defined the

spatial and temporal diversity, present a short literature of the current state of the

art of turbo space-time codes. Finally, there is the introduction of our turbo space-

time coding scheme.

1.1 Temporal Processing: Improving Data Transmission Reliability

In 1948 C.E. Shannon [1] developed fundamental limits on the efficiency of telecom-

munication over noisy channels. The coding theorem asserts that there are special

codes with code rates close to channel capacity and probability of error arbitrarily

close to zero. Almost fifty years later, new channel coding schemes [2] for the additive

white Gaussian noise (AWGN) channel have been discovered that come close to the

fundamental limits predicted by Shannon.

Ever since Shannon's original paper [1], coding theorists have attempted to

construct structured codes that achieve capacity with limited delay and low decoding

complexity. Forney's [3, pp. 578] concatenated codes were the first step in finding

a class of codes whose error probability decreases exponentially at a rate less than

capacity, while decoding complexity increase only algebraically. He also showed that

the soft-output operation is the optimum decoding method for cascaded codes and

that inner decoder is required to estimate the a posteriori probabilities of the outer

code symbols given the received channel sequence. Turbo codes [2] are the latest

culmination of this effort of constructing powerful codes from simple codes.

1.1.1 Turbo Codes

Turbo codes were first presented in [2] and were formalized in [4]. The original

turbo code is a parallel concatenation of two component codes. In Fig. 1.1, the

constituent codes are from a subclass of convolutional codes known as recursive

systematic convolutional (RSC) codes [5, pp. 33]. Two identical rate 1/2 RSC codes
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Figure 1.1 Turbo encoder.

work on the input data in parallel. The input data is permuted by an interleaver

before being fed into the lower encoder. Because the encoders are systematic (one of

the outputs is the input itself) and receive the same input (although in a different

order), the systematic output of the lower encoder is completely redundant and does

not need to be transmitted. Because of interleaver, the two RSC encoders do not

receive their inputs in the same order. Thus if one encoder receives an input that

causes a low weight output, then it is improbable for the other encoder to produce a

low weight output. Thus, the effort of the interleaver is to decrease the probability of

occurrence of multiple low weight codewords. Interleaver causes turbo codes random-

like properties which facilitate significant good performance to approach Shannon

capacity. The overall code rate of the parallel concatenated code is 1/3, although

higher code rates can be obtained by puncturing (selectively removing outputs from

the transmission stream) the parity output.

Due to the interleaver, turbo decoding involves the joint estimation of two

Markov processes, one for each constituent code. While in theory it is possible to

model a turbo code as a single Markov process, such a representation is extremely

complex and does not lend itself to a practical Viterbi decoding algorithm [6].

Although the Viterbi algorithm accepts soft-inputs of prior information, it does



4

not produce soft-outputs of a posteriori probabilities and is therefore unsuitable for

turbo decoding 1 .

There are alternative trellis-based solutions for estimating the state sequence

of a Markov process. Bahl, Cocke, Jelinek and Raviv [8] provided a solution for

estimating the a posteriori probabilities (APP) of the states and trellis transitions

for a Markov source. This algorithm came to be known as the BCJR algorithm. A

practical iterative decoding algorithm was presented in [2] and its suboptimal BCJR

algorithm in log-domain approaches good performance at low complexity. The idea

behind the BCJR decoding strategy is to break the overall decoding problem into

decoding each of the constituent codes with locally optimal solutions and share the

information in an iterative way. Each decoder associated with each of the constituent

codes is modified such that it produces a soft-output in the form of a posteriori

probabilities of the data bits. The two decoders are cascaded as shown in Fig. 1.2.

The lower decoder receives the soft-output of the upper decoder. At the end of the

first iteration, the soft-output of the lower decoder is fed back to the upper decoder

and used as a priori information during the next iteration. Decoding continues

in an recycling iterative way until the desired performance is attained. Iterative

decoding obeys a rule of diminishing returns which means the incremental gain of

each additional iteration is less than that of the previous iteration. It is the decoding

method that gives turbo codes their name because the feedback action of the decoder

resembles a turbo-charged engine.

The original turbo code [2] used BPSK modulation, (5, 7) constraint K = 5

RSC Ungerboeck encoders [9] and a 65536 long bits interleaver. The parity bits

were punctured such that the overall code was a (n = 131072, k = 65532) linear

code. Simulation results showed that at bit error rate of 10 -5 , the corresponding

1In [7], Hagenauer et al. proposed a modification to the Viterbi algorithm which
produces the a posteriori probabilities of the trellis state transitions. This algorithm is
known as the soft-output Viterbi algorithm (SOYA).
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Figure 1.2 Turbo decoder

Eb /No = 0.7 decibels (dB) after 18 iterations of decoding. Thus, the authors [4]

claimed that turbo codes could come in with 0.7 dB of the Shannon limit [1].

Other researchers soon began to study other concatenation configurations, such

as increasing the number of encoders and varying the types of component codes. For

example, instead of two RSC codes in parallel, it is possible to concatenate three or

more block or convolutional codes in serial [10], or parallel to obtain multiple turbo

codes [11]. Overall it was found that the performance of turbo codes is much better

than that of block codes.

1.1.2 Turbo Coded Modulation

The original components of turbo codes were binary error-correcting codes. In

general, they are the low rate codes which require a considerable bandwidth

expansion for high rate data transmission. In order to improve the transmission

spectral efficiency, it is necessary to combine turbo codes with a bandwidth-efficient

modulation. For instance, trellis coded modulation (TCM) [12, 13] would be a good

candidate for such a scheme. Since turbo codes achieve good bit-error rate (BER)

(10 -5 ) at very low SNR, it is natural to see if there are ways of applying the turbo

coding principle to coded modulation systems to make use of their power without
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sacrificing bandwidth. Different approaches to turbo coded modulation have been

investigated in [14, 15, 16].

In [14], the encoded bits of the original turbo code as in Fig. 1.1 are mapped

to a certain constellation such as 4-PSK, 8-PSK or 16-QAM. After puncturing some

of the parity bits, a desired spectral efficiency can be obtained. In [16], there are

two component convolutional codes whose inputs are the entire information source

and the interleaved version of inputs. Therefore, both of the parity sequences are

produced by the entire information block. Half of the information bits are punctured

at the output of upper code, and another half are punctured at the output of lower

code. Sub-interleavers have to be applied in order to prevent the puncturing of an

information bit at both encoder outputs. Finally the systematic and parity bits are

mapped to an appropriate constellation.

Figure 1.3 An example of turbo-TCM encoder.

Perhaps the most natural extension of binary turbo codes is presented in [15]

as shown in Fig. 1.3. It employs two Ungerboeck-type codes [12, 13] in combination

with TCM in recursive systematic form as component codes. The scheme is referred

to as turbo trellis coded modulation (turbo-TCM). A simple example of turbo-TCM

is shown in Fig. 1.3 for 8-PSK modulation, 2 bits/s/Hz and code rate 2/3. The basic

principle of turbo coding is applied to TCM by retaining the important properties

and advantages of both of their structures. TCM codes can be seen as recursive

systematic convolutional codes followed by one signal mapper. Turbo-TCM employ
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Ungerboeck codes as building blocks in a turbo coding scheme in a similar way as

binary codes were used in the original turbo codes [4]. The interleaver (labeled as

"IL") between two constituent encoders operates on symbol (groups of bits). The

decoding algorithm is a generalized version of MAP decoding algorithm of the original

binary turbo codes [4].

1.2 Space-Time Array Processing

Space-time array processing is the minimization of fading and multiple access

interference through multiple antennas, advanced signal processing techniques,

transceiver structures and error control coding. The increasing demand for wireless

applications focuses interest on wireless system performance over the fading channel.

Coding, essentially temporal processing, alone does not fully address the impairment

of multipath fading. That means the capacity is limited in a small range for

the given single-input single-output (SISO) channel. The use of multiple-element

antenna arrays at the transmit and receive sides of a wireless links in combination

with signal processing and coding is a promising means to improve the performance

of a wireless communication system in a fading environment [17, 18]. The reason

behind space-time processing (which include space-time coding as a special case) is

the optimization of the spectral efficiency. In order to analyze space-time processing

systems, a basic model of the communication system is required to identify inputs,

outputs and the channel. For a general space-time processing system where multiple

antennas are employed at transmitter and receiver [18], such a signal model is

known as a multiple-input multiple-output (MIMO) model due to the fact that the

desired signal has multiple inputs into the channel (the transmit antennas) as well

as multiple outputs (the receiver antennas).

Clearly a MIMO system can be viewed as multiple SISO sub-channels The

MIMO system's channel capacity is then the sum of the individual capacities of these
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SISO sub-channels. In theory [19], the capacity over the MIMO fading channel can

grow linearly with the number of transmit or receive antennas. Better performance

can be achieved by exploiting the inherent spatial and temporal diversity associated

with respective multipath wireless mobile channel. Space-time processing offers the

potential for significant improvements in overall system capacity of wireless commu-

nication systems [20]. Although a single user is considered in this dissertation, a

number of alternative channel configurations for single user scenarios are used in

practice. For example, SIMO channel of downlink is the single user with single

antenna input at mobile and multiple antenna outputs at the base station. MISO

channel of uplink is the single user with multiple antenna inputs at the mobile unit

and single antenna output at base station.

In a non-fading environment, multiple antennas can be used to increase

transmit and receive effective antenna gain [17]. With higher sophistication, antenna

patterns can be controlled to focus the energy in specified directions (beamforming)

to minimize the interference to and from other antennas. In a fading environment,

antenna arrays may be employed either at the transmitter or at the receiver.

Diversity at the receiver (SIMO channel) is a well-studied subject backed up by

a large body of literatures [21, 22, 23, 24, 25, 26]. If the transmitter also has an

antenna array with sufficiently separated elements, this "nice" transmit and receive

diversity mechanism effectively produces a rich plurality of sub-channels sharing the

same RF bandwidth. Such a channel poses more degrees of freedom [27] than an

unscattered SIMO channel.

Recently two major strategies have been proposed to deal with the unavoidable

mutual interference among the multiple SISO sub-channels of one MIMO channel:

Bell Laboratories Layered Space Time Wireless Architecture (BLAST) and space-

time codes (STC). The central idea behind BLAST and STC is the exploitation,
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rather than the mitigation, of the multipath channels in order to achieve high spectral

efficiencies (bits/s/Hz).

Figure 1.4 The block diagram of a BLAST system.

BLAST [28, 29, 30] is a bandwidth efficient approach to wireless communi-

cation which takes advantage of the spatial dimension by transmitting and detecting

several independent co-channel data streams using multiple antennas. An example

of BLAST is shown in Fig. 1.4. BLAST splits a single user's data stream into

multiple substreams and applies multiple transmit antennas to simultaneously launch

the parallel substream. All the substreams are transmitted in the same frequency

band, so the spectrum is used very efficiently. The desired user data has multiple

data copies into the channel (the transmit antennas) as well as multiple outputs

(the receive antennas). At the receiver, multiple antennas pick up the multiple

transmitted substreams and their scattered copies. Each receive antenna "sees" all

of the transmitted substreams superimposed together. Using sophisticated signal

processing, these sub-channel differences allow the data substreams to be separated

and detected. BLAST system is much like a multi-user spread spectrum system

where multiple transmit antennas play the role of the number of users, and the

number of receiving antennas play the role of spread coding gain. Using nonlinear

multi-user detection to separate the incoming signals at the receiver. In that way,
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the wireless unavoidable multipath provide us a very useful spatial parallelism that

greatly improve data transmission rates. Thus, the more multipath channel, the

better data transmission, just the opposite of conventional systems.

1.2.2 Space-Time Codes

Space-time code (STC) is obtained when coding redundancy over time is introduced

across transmit antennas. STC adds the spatial dimension to the time dimension and

assumes unknown channel knowledge at the transmitter. Practical low-complexity

STC geared to a few transmit and receive antennas were developed at AT&T

Research Labs by V. Tarokh et al. [31, 32, 33, 34, 35]. With two antennas at both

transmitter and receiver, the spectral efficiency of narrowband TDMA 2G channels

can be increased by a factor of six [36, Fig.12, pp. 2589].

Figure 1.5 An example of space-time coding system. (a) the block diagram, (b)
code trellis.

A simple example of a space-time coding system is shown in Fig. 1.5 for 4-PSK 2

bits/s/Hz space-time code. It illustrates a block diagram of space-time code with two

antennas at both transmitter and receiver and an 8 state trellis diagram. Information

source bits from a discrete alphabet U are encoded to signals [s1, s2]. After a serial

to parallel converter, the encoded data is divided into N = 2 substreams. Each
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substream is modulated and transmitted through different antennas. The decoder

consists of a conventional Viterbi algorithm [6], which compute the trellis transition

path metrics and then makes a decision based on the minimum accumulated metric.

Why we choose STC rather than BLAST? 

Correlation of signals across the transmit antennas is the fundamental difference

between STC and BLAST. Decoding complexity of space-time coding is similar to

trellis codes for AWGN channel if the fading paths from the transmitter to the

receiver are known to the receiver. In [37], Bevan et al. setup a simulation experiment

to compare the performance of BLAST and space-time codes. Each data frame

carried 400 information bits. The performance was quantified in terms of signal-to-

noise ratio per bit Eb /No at each receive antenna versus the frame error rate of FER

= 10 -2 . The space-time code was 32 state 4-PSK as in [31, Fig. 6]. It was shown

that the space-time code has an advantage of 2-3 dB over the BLAST system. Thus,

space-time codes offer the best tradeoff of performance against complexity.

Full spatial diversity

Full spatial diversity for a given number of transmit and receive antennas is

the maximum achievable diversity advantage. N antennas at the transmitter provide

N independent paths from transmitter to receiver. By spreading information data

across the N paths, and by appropriate signal processing at the receiver, this MISO

channel is much better than the SISO channel case.

According to the space-time code design of [31], each possible transmitted

signal difference in a linear coded modulation generates a "signal" matrix. The

rank of this complex-value "transmit signal" matrix determines the spatial diversity.

Increasing this rank, that is, increasing the amount of diversity will also reduce the

error probability which is represented by the asymptotic slope of the performance

curve on a log-log scale. For example, a two transmit antenna -two receive antenna

configuration has 4 dB/dB slope. If the codeword length in time is larger than the
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number of transmit antennas N, the minimum possible rank of that "signal" matrix

is N. It is shown [31, 38] that full spatial diversity can be obtained if and only if the

rank of every "signal" matrix corresponding to the possible codeword pair is equal

to N.

Work by Tarokh et al. [31], and almost at the same time independently by

Guey et al. [38] on the problem of signal design for transmit diversity systems,

derived the fundamental performance parameters for space-time codes over the block-

fading channel [39]. According to the design criterion of space-time codes [31], two

concepts are presented: (1) diversity advantage is denoted to describe the exponential

decrease of decoding error rate versus signal-to-noise ratio (asymptotic slope of the

performance curve on a log-log scale), (2) coding gain does not affect the asymptotic

slope but results in a shift of the performance curve. In [31], Tarokh et al. present

a number of interesting space-time trellis codes for two transmit antenna systems

that provide full spatial diversity and good coding advantage. Subsequent work by

Baro [40] has yielded new space-time trellis codes with somewhat improved coding

advantage.

1.3 Related Work on Turbo Space-Time Codes

Turbo coding/decoding is a way to approach the Shannon limit of channel capacity,

while space-time coding is a way to increase the bandwidth efficiency (capacity)

by exploiting the multipath MIMO fading channels. Therefore, a specific combi-

nation of turbo space-time codes that incorporates the two concepts may provide

even a practical way to both increase and approach the possible MIMO channel

capacity [20].
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Full coding rate 

Full coding rate is achieved for turbo space-time codes when the number of

overall output bits (all antennas) equals the output bits per constituent space-time

code at one time slot. Codes that achieve full coding rate have a limit on transmission

rate for each type of constellation [31, 41]. For example, a two transmit antenna

configuration is considered with 2 bits/s/Hz 4-PSK transmitted signal per antenna.

The input data bits at one time is 2 bits and the output coded bits of a constituent

STC are 4 bits, which are partitioned and mapped to two 4-PSK symbols for two

transmit antennas respectively. If two constituent STC encoders are considered, the

overall output bits of turbo space-time code are 8 bits. In order to achieve full coding

rate, the puncturing structure is necessary to be used for decreasing overall coded

bits to 4 bits for all two transmit antennas.

Recently, several research groups have proposed different versions of turbo

coding structures for multiantenna systems [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52].

In [42], as shown in Fig. 1.6, the outer encoder consists of a standard binary

turbo code or turbo-TCM. The inner encoder is a space-time block code [33, 34].

Figure 1.6 A serially concatenated turbo code with a space-time block code [42]

In [43], serial and parallel concatenated structures are suggested. Component

encoders are recursive. The serial concatenated architecture uses a convolutional

code as an outer encoder and a recursive space-time trellis code as inner encoder as

shown in Fig. 1.7 (a). The parallel concatenated architecture is shown in Fig. 1.7

(b). It utilizes a self-concatenated recursive space-time code [10]. The turbo codes

in [42, 43] guarantee full spatial diversity but the code rate can not achieve the full

rate due to the lack of puncturing.
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Figure 1.7 (a) Serial concatenated space-time code, (b) Self-concatenated space-
time code [43].

In [44], a turbo coding scheme with two parallel concatenated recursive convo-

lutional codes is used in conjunction with multiple transmit antenna system with

BPSK modulation. The encoder structure is shown in Fig. 1.8. The code achieves

3 coded bits (one per antenna) for each input bit. The overall coding rate is 1/3.

This rate can be improved to 1/2 by adding puncturing and reducing the number of

transmit antennas to two.

Figure 1.8 BPSK full spatial diversity turbo space-time code [44].

In [48, 53], the outputs of the turbo codes are serial-to-parallel bit-interleaved,

mapped to 4-PSK symbols and transmitted using multiple antennas as shown in

Fig. 1.9. Full coding rate is achieved but the code is not guaranteed to achieve full

spatial diversity.

Figure 1.9 Turbo code with bit interleaving [48, 53].
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In [45], serial concatenated turbo space-time code is presented for 4-PSK

modulation as shown in Fig. 1.10. The outer encoder is a standard space-time code

and a rate 1 recursive inner code is the inner code. This structure can achieve

maximum possible rate, but it may result in codes without full spatial diversity since

the interleavers are parallelly different for different transmit antennas.

Figure 1.10 A space-time code is concatenated by rate 1 recursive code [45].

A 4-PSK full rate and full spatial diversity turbo space-time code has been

introduced in [47] as shown in Fig. 1.11. This turbo code scrambles the multiple

information bits input for different RSC encoders and can achieve full rate and full

spatial diversity in a parallel concatenated structure. Although the authors claim

"robust performance" over the fading channel, they recognize that the scheme may

have convergence problems when both component STC outputs experience a deep

fading at the same time.

Figure 1.11 Space-time turbo code for two transmit antennas [47].

In this dissertation, a new turbo space-time code is suggested, referred to as

"turbo-STCM". The work presented in this dissertation has been partially dissem-

inated in our publications [49, 50, 51, 54, 52]. Our turbo-STCM scheme expands the

turbo-TCM idea as shown in Fig. 1.3 [55] to multiantenna systems. The architecture
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of the turbo-STCM is shown in Fig. 1.12. Recursive systematic space-time codes

serve as component codes in the turbo-STCM. With this architecture, turbo codes

and space-time codes are not concatenated but are rather fused.

Figure 1.12 Turbo-STCM with component space-time codes [49, 50, 51, 52].

Turbo-STCM features full diversity and full coding rate. It combines the time

domain turbo coding architecture in the temporal domain with spatial processing.

Space-time constituent codes are connected parallelly rather than a concatenation of

binary turbo codes and antenna diversity. An iterative symbol-by-symbol maximum

a posteriori algorithm is developed for decoding turbo-STCM, which is different than

other parallel schemes. In Chapter 3, the simulation results show its performance

improvement than conventional STC or turbo-TCM [55] although keeping the similar

decoding complexity of turbo-TCM. In terms of tradeoff between diversity advantage,

transmit coding rate and decoding complexity, turbo-STCM has similar performance

result with other modified turbo coding methods for multiple antenna systems [42,

43, 44, 45, 46, 47, 48]. Turbo-STCM can be viewed as an extension of the original

turbo code in Fig. 1.1 [2] from the bit to the symbol level. In our view, turbo-STCM

is a true generalization of the turbo coding scheme to include STC as component

codes, rather than an ad-hoc concatenation of turbo and space-time codes.
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1.4 Overview of Thesis

The first goal of this study is to propose a new coded modulation scheme that utilizes

concatenated space-time codes with multilevel modulation and multiple transmit and

receive antennas. Turbo-STCM is a bandwidth efficient coded modulation designed

to operate over the fading channels. Our scheme is similar in complexity to other

turbo space-time schemes proposed recently (for example, Narayanan [43], Fitz [47]),

but it can be viewed as a more natural extension of classical turbo codes to multilevel

signals and space-time processing. Unlike [42, 43, 44, 45, 48], our scheme ensures full

spatial diversity and full coding rate. It is distinguished from other methods ([42, 43,

44, 45, 48]) by its parallel architecture and it features a different configuration and

decoding algorithm from [47]. Turbo-STCM is presented as an improvement over

conventional space-time codes.

A second goal of this thesis is to develop a theoretical performance analysis

for turbo-STCM. In [56, 57], the union bound technique is developed for the error

probability of turbo codes for multiantenna systems. The "uniform random inter-

leaver" proposed in [56] overcomes analytical difficulties posed by the fixed interleaver

structure. First, a union bound is found for the performance of turbo-STCM with

suboptimal decoding over the AWGN channel with multiple transmit antennas [50].

This can be seen as an interim step that the bound is found first conditioned on the

channel. Subsequently, the union bound analysis is extended over the block-fading

channel [51, 52]. The bound makes it possible to express the performance analysis

of turbo-STCM in terms of the constituent space-time code modules.

Outline

This Ph.D. dissertation is organized as follows. In Chapter 2, the space-time

coding performance is studied from an information theoretic point of view, derive the

frame error limit of multiantenna systems and develop the Fano lower bound of bit

error probability with given transmission rate. In Chapter 3, we introduce the main
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concept and schematic diagram of the proposed turbo-STCM system. An iterative

symbol-by-symbol maximum a posteriori algorithm operating in the log domain is

developed for decoding turbo-STCM. Some examples are given of 2 bits/s/Hz 4-PSK

and 3 bits/s/Hz 8-PSK turbo-STCM. Numerical results illustrate that turbo-STCM

schemes provide full spatial diversity and full rate. Two other aspects of turbo-

STCM are also investigated: (1) recursive and non-recursive space-time constituent

codes, (2) interleaver design. It is shown that this scheme provides performance

improvement over conventional space-time codes of similar complexity. In Chapter

4, the union bound is derived for the performance of turbo-STCM schemes over

the AWGN channel as a interim step. Using simple recursive systematic space-

time component encoders, performance is studied by analysis for a 4-PSK and 8-

PSK turbo-STCM with two transmit and one receive antenna over AWGN channel.

After that, performance bounds are developed over the block-fading channels with

two transmit and one/two receive antennas. Finally, in Chapter 5, we present the

conclusions and suggest future research for turbo space-time coding.



CHAPTER 2

INFORMATION THEORY CONSIDERATION OF SPACE-TIME
CODING

The next frontier in the development of wireless communications is the conversion

from the current voice-based services to future high data rate applications such as

the wireless internet. For example, sending video rather than speech requires the

data rate to increase by two or three orders. Increasing link or channel bandwidth is

a simple but costly and almost impossible approach. New powerful digital processing

techniques will be the key to the success of this conversion. A more economical

solution is to exploit spatial diversity and channel coding through multiple antennas

at the transmitter and receiver. Traditionally, spatial processing has been designed

separately from channel coding, e.g., equalizer and combining at receiver. An

integrated design might have advantages over the conventional piecemeal approach.

A step in this direction is the integration of spatial and temporal processing into

what is now commonly referred to as space-time processing [23, 24, 26]. With

space-time processing, it was recognized that a joint approach offers more benefits

than temporal and spatial processing applied separately [18].

In this chapter, several theoretic concepts are computed to bound the

performance of space-time systems. We begin with capacity and cut-off rate of

multiple antenna systems over the AWGN channel. Then the outage capacity is

considered for the fading channel [20]. Finally the Fano lower bound is derived

over the Rayleigh fading channel for the relation between bit error probability and

signal-to-noise ratio per information bits.

2.1 Coded Modulation System over the AWGN Channel

In an AWGN channel, antennas can be combined to increase effective transmit

and receive antenna gain. Let us examine the channel capacity for a two transmit

19
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Figure 2.1 Block diagram of a multiantenna system over AWGN channel

antenna-single receive antenna (MISO) system as shown in Fig. 2.1. Assume that

the source inputs ,u bits are encoded by the error control code to generate codewords

of nN bits, where N is the number of transmit antennas. We partition the nN bits

output into N groups, which are mapped to the transmit signals s. The received

signal y is the sum of the multiple inputs and noise,

where sj is the complex signal transmitted from antenna j. The total transmitted

regardless of the number of transmit

antennas N. The AWGN z is complex-valued with zero mean and variance N 0 /2 per

dimension.

We consider several channel capacity cases depending on the characteristic of

the signal

Shannon capacity 

In the most general case, the transmitted signals meet the requirement of the channel

coding theorem [1]. Since the 2 transmit-1 receive antenna system is used in the band-

limited channel with the new equivalent channel signal set and N = 2 sub-channels,

the Shannon capacity limit [58, pp. 384] for 2-dimensional modulation should still

be applied regardless of the antenna number and coding,
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where μ  is the information bits per symbol, Es = μEb and P, W, N0 are the received

signal power, channel bandwidth and noise power spectrum respectively.

Channel capacity of coded multiantenna system

Fig. 2.2 illustrates that the transmit diversity can be expressed by an equivalent

channel signal set for the received signal y. s3 is the 4-PSK signals across N =

2 transmit antennas. Although the total transmit power P that is radiated is

unchanged as N increases, it appears that one ultimately achieves the equivalent

of N = 2 sub-channels. The received signal y can be viewed in the new channel

signal set with 16 points in the constellation. Total signal power of transmit signal is

assumed to be normalized and the signal-to-noise ratio at the receiver SNR= 1/N0.

Figure 2.2 Channel signal set over the AWGN channel.

The capacity formula (Ungerboeck [9, (5)]) is applied from one transmit-one

receive antenna (1T1R) to two transmit-one receive antenna (2T1R). As shown in

Fig. 2.2, the received signal set has Q = 16 elements. The channel output signals

(y1 , • • • , yΩ ) are sums of pairs of transmitted 4-PSK signals. Note that they are

ambiguous in the output signal constellation in the sense that multiple pairs of 4-

PSK signals yield the same output. Let us further assume that the input signals are

equiprobable, P(sj ) = 1/4, j = 1, , 4. Then it is shown that the channel capacity

is given by,
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where E z is the expectation over the normally distributed noise variable z. The

channel capacity C is evaluated by Monte Carlo simulation of (2.3). Later there are

the plot of the capacities Cshannon and C as a function of signal-to-noise ratio per

information bit for the signal sets depicted in Fig. 2.2.

Cut-off rate of coded modulation system

The reliable transmission close to Shannon capacity is possible only for very

large temporal redundancy and very large encoding/decoding complexities. Often,

the cut-off rate R 0 [3, pp. 522] is a function of transmission rate R and error proba-

where n is the data block length. Cut-off rate is

used as a measure for a practical bound to the transmission rate. It is widely assumed

that capacity becomes very expensive beyond the cut-off rate. However, the recent

discovery of turbo codes [2] that admit a practical decoding algorithm and hence

have performance close to capacity has somewhat diminished the importance of R0

as a performance parameter.

Let us follow the above example of coded modulation system with 2 transmit

antennas, when the signals sj , j = 1, 2 are transmitted from the j transmit antenna

over the AWGN channel with the equal probabilities q, the received signal y is located

in the constellation of Fig. 2.2. From [59, pp. 29], the cut-off rate for a multiantenna

system over the AWGN channel can be expressed,

Fig. 2.3 shows the Shannon capacity (2.2), channel capacity (2.3) and the

cutoff rate (2.4) versus signal-to-noise ratio per information bit Eb /N0 (dB) for 4-

PSK, the two transmit-one receive antenna configuration (labeled as 2T1R). When

the capacity C and cutoff rate R 0 equal to 2 bits/s/Hz, the corresponding signal-

to-noise ratio per information bit Eb /N0 are 2.1 dB and 4.4 dB, respectively. Those

results will be used for comparison to turbo-STCM over the AWGN channel in a later
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Figure 2.3 Capacity and cut-off rate of multiantenna system.

chapter. The capacity of 4-PSK, the two transmit-one receive antenna configuration

(1T1R) (Ungerboeck [9, (5)]) is also shown for comparison. At bandwidth efficiency

2 bits/s/Hz over the AWGN channel, the two transmit antenna-one receive antenna

(2T1R) configuration has an almost 5 dB advantage than 1T1R case. That shows

us that expanding signal in spatial domain instead of temporal domain is also an

effective way to increase channel capacity. The curves show the transmission rate

bound before considering different coded modulation designs with finite complexity.

2.2 Outage Capacity of Multiantenna Systems over the Fading Channel

In [17, 18], multiple antenna arrays are shown to improve the performance of a

wireless communication system in a fading environment. Antenna arrays may be

employed either at the transmitter or the receiver. Traditionally, transmit diversity

was viewed as more difficult to exploit than receiver diversity because the transmitter

is assumed to know less about the channel than the receiver.

Multiple transmit and receive antennas allow a signal space having higher

dimensionality without a commensurate increase in bandwidth [20, 19, 27, 60]. In

a Rayleigh block-fading channel [39], a memoryless wireless link employing multi-
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antenna has a theoretical capacity that increases linearly with the number of transmit

and receive antennas, providing that the complex-valued channel coefficients between

all pairs of transmit and receive antennas are statistically independent and known

to the receiver (not the transmitter). This independence of the coefficients provides

spatial diversity, and can be achieved by physically separating antennas at the trans-

mitter and receiver by a few wavelengths.

Main results of limits of bandwidth efficient delivery of information are obtained

in [20]. For a multiple-input multiple-output (MIMO) channel represented by the

M x N matrix H where N and M are the number of transmit and receive antennas,

the capacity of a multiantenna wireless system over fading channel is given by

Where I is the identity matrix with dimension M, W is the channel bandwidth.

Overall transmitted power is fixed and independent of transmit antenna number N,

so that as N increases, the constant total power P will be distributed more thinly

among the antenna elements. This allows us to distinguish the impact of varying

transmit antenna number N from the total transmitted power P. In [19], computing

the outage capacity of MIMO fading channel involves finding the joint SISO sub-

channels limits that maximizes the mutual information between the N transmit

and 21/1- receive antennas. Es /N0 is the average signal-to-noise ratio measured at

each receiver branch, and the superscript t denotes matrix transpose and conjugate.

Since the channel coefficients of H are random variables, the capacity C is modeled

likewise. The outage capacity is defined as the capacity value Cout such that C >= Coo

with a specified probability threshold.

Shannon's capacity over the AWGN channel indicates that in the high

sign-to-noise ratio (SNR), a 3 dB increase in SNR is worth about one more bit/s/Hz

of capacity. In the block-fading channel with two transmit and multiple receive

antennas, Fig. 2.4 illustrates 99% outage capacity C of (2.5) versus SNR= Es/N0.
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For large Al receive antennas, for example X/ = 10, every 6 dB increase in SNR

achieves min(N, Al) = 2 more bits/s/Hz [61]. The outage capacity demonstrates

significantly higher spectral efficiencies (bits/s/Hz) than are possible when multipath

channel is traditionally viewed as an impairment for data transmission [20].

Figure 2.4 Capacity of two transmit and multiple receive antenna system.

2.3 Frame Error Limit of Multiantenna System

A block-fading channel [39] is assumed to be random from frame to frame but

constant during the transmission of each frame. The channel is further assumed

to be known at the receiver and unknown at the transmitter. The transmitter can

send training signals that allow the receiver to estimate the channel propagation

coefficients accurately, and the result of (2.5) is applicable.

The outage capacity of (2.5) can be viewed as the probability that the spectral

efficiency (bits/s/Hz) is not supported by the block-fading channels H. Outage

capacity is treated as a random variable. For example, the outage probability
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Poutage 	 1% corresponds to frame error rate (FER) is 10 -2 . The outage capacity

for this case is the point of the 99 percentage on the complementary cumulative

distribution function of outage capacity.

Fig. 2.5 shows us the relation of frame error rate and minimum required signal-

to-noise ratio per information bit Eb /N0 for a 2 bits/s/Hz multiantenna system over

the fading channel. It also illustrates that space-time coding provides full spatial

diversity. For example, the asymptotic slope (at high SNR per symbol) of the FER

curve is 4 dB/dB for two antennas at each end (2T2R) [31, 41]. The asymptotic

diversity of the other curves is also as expected: 1 dB/dB for the single antenna

configuration (1T1R), 2 dB/dB for the two transmit-one receive antenna configu-

ration (2T1R) and one transmit-two receive antennas configuration (1T2R) whose

advantage over 2T1R is exactly 3 dB due to the normalized transmitted power, and 4

dB/dB for four transmit-one receive antenna configuration (4T1R) and one transmit-

four receive antennas configuration (1T4R). Those results will be applied in the next
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chapter to demonstrate that the spatial diversity of turbo-STCM is the same as the

spatial diversity of conventional space-time codes.

From the recent results of information theory [62, 63], the space-time block

codes are one kind of STC with extremely low encoder/decoder complexity and

provision of full diversity [33, 34]. However, their simple implementation comes at

a cost in capacity loss. The loss is significant at SNR's of interest for very small

numbers of receive antennas. In this thesis, the recursive systematic space-time

codes are considered for turbo component encoders.

Figure 2.6 Comparison of outage and Shannon capacity.

Fig. 2.6 shows us the comparison of outage and Shannon capacity for a 2

bits/s/Hz multiantenna system over the fading channel. As we know, the multipath

fading capacity is treated here as a random variable. Shannon capacity is the mean

value of those multipath fading capacity set for each Eb /N0 . From the figure, Shannon

capacity shows much lower minimum required E b/N0 than outage capacity. It is

because its mean value can be viewed roughly as outage probability P

P

 outage = 50%,
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which means half of the channel realizations can not promise spectral efficiency of 2

bits/s/Hz. Shannon lower bound is a kind of real lower limit while outage capacity

shows us a more practical way to analyze the multipath fading channel.

2.4 Fano Lower Bound of Multiantenna System

Applying Fano's Inequality for a digital communication, a lower bound of bit error

probability can be expressed as in [3, pp. 139],

where Hb (e) is the entropy of a binary alphabet with bit error probabilities Pb (e) and

C is system capacity

defined as the maximum mutual information. The encoding rate r, is defined as the

ratio of input bits II and output bits n.

This lower bound shows that there exists a lower bound to the bit error proba-

bility, different to zero, when the encoding rate r, is greater than the channel capacity

C. This is the "negative" result known as the converse to the channel coding theorem,

which dictates the system behavior when the coding rate r, is smaller than capacity

C [1]. The inequality directs us to improve the performance of a digital commu-

nication system by increasing n but keep the coding rate r e fixed. This approach

does not require additional SNR and bandwidth. It simply increases the length of

the codewords, at the expense of greater complexity of the encoder-decoder and of a

longer signal processing delay. Turbo codes act in this way to improve performance.

In this section, the Fano inequality is further applied for the multiple input

multiple output (MIMO) system over the block-fading channel. Suppose that the

channel has bandwidth W. The noise is white Gaussian random variables, with two-

sided power spectral density N0 /2. Thus the noise z has power



29

Since there are 2W samples each second, the outage capacity (2.5) of the MIMO

channel is given by,

where N is the transmit antenna number.

Define the information source rate r3 in bit/second and energy per information

of a transmitter with total power P.

Substituting Eb into (2.7),

Putting channel bandwidth

where Eb /N0 (dB) is signal to noise ratio per information bit for a given coding

rate r c . With equality substituted for the inequality, (2.10) yields the relationship

between the bit error probability and the signal-to-noise ratio per information bit.

(2.10) is a non-linear function of bit error probability Pb (e) versus Eb /N0 without

close-form mathematic solution. However, we can run the Monte Carlo analysis to

find the (Pb (e), Eb /N0 ) for different conditions, such as multiple transmit and receive

antennas (N,11).

In Fig. 2.7, there are the curves of (Pb (e), Eb /N0 ) for a 2 bits/s/Hz multiantenna

system of different antenna configurations N = 1, 2, 3, 4, M = 1,2. It points the

Fano lower bound for space-time codes over the block-fading channel. For a given

coding rate, the region above the respective curves is possible, that is, any space-

time coding system can approach this lower bound with large complexity. It can



Figure 2.7 Fano lower bound of block-fading channel with multiple transmit and
receive antennas.

be observed that multiple antennas at transmitter can improve system performance

in spite of transmit power penalty per antenna. Fig. 2.7 also proves the spatial

diversity advantage of space-time coding, in the exponential decrease of decoding

bit error rate versus signal-to-noise ratio. For example, four transmit-one receive

antenna configuration (4T1R) has the same spatial diversity as two transmit-two

receive antenna configuration (2T2R), while their difference of Eb /N0 is equal to 3

dB because of fixed transmit power. The Fano bound actually directs us to the

reasonable region in which we can design the space-time processing technique.

2.5 Chapter Summary

In this chapter, the information theoretic limits of MIMO systems are considered over

the AWGN and block-fading channel and also derive the Fano lower bound over the

MIMO channel with multiantenna system. To achieve the projected capacity of the

MIMO multipath channel, it is necessary to combine coding and spatial processing.
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In the next Chapter, we will propose turbo-STCM merging turbo coding and space-

time code, and also compare the simulation results of our proposed turbo-STCM

schemes with the frame error rate limits as in Fig. 2.5 and bit error rate of Fano

lower bound Fig. 2.7.



CHAPTER 3

TURBO SPACE-TIME CODED MODULATION

In this chapter, our turbo-STCM system is introduced, which combines the coding

gain of turbo codes and spatial diversity advantage of space-time codes together. It

is a promising way to obtain high bandwidth efficiency in wireless communications.

We first present in detail of turbo-STCM encoder and decoder as well as the block

diagram of the system transmission. A suboptimal iterative decoding algorithm

is developed for turbo-STCM decoder. Several other important aspects of

turbo-STCM are also discussed such as recursive systematic component encoders, inter-

leaver design. Then the Monte Carlo simulations are illustrated for the performance

of 4-PSK and 8-PSK turbo-STCM.

3.1 Turbo-STCM System Description

Turbo-STCM is presented as an improvement of conventional STC. In this subsection,

we will explain why the constituent codes of turbo-STCM are the recursive systematic

space-time codes. Then the turbo-STCM encoder and decoder are presented as well

as the signal model of turbo-STCM transmission system. Also one important aspect

of turbo code: interleaver design is discussed.

3.1.1 Recursive Systematic Space-Time Constituent Codes

Recursive systematic component codes are often encountered in turbo code appli-

cations. The component space-time codes are defined by the diagrams and trellis

codes shown in the following figures. Turbo-STCM uses recursive systematic space-

time codes as constituent codes. The recursive systematic 4 state 4-PSK STC in

Fig. 3.1 and 8 state 4-PSK STC in Fig. 3.2 are provided for two transmit antennas

with code implementation and trellis transitions. In this chapter, a recursive

systematic 16 state 8-PSK STC is also considered as shown in Fig. 3.3.
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Figure 3.1 Recursive systematic space-time encoder for 4 state 4-PSK, two transmit
antennas, 2 bits/s/Hz: (a) code implementation, (b) code trellis.

Figure 3.2 Recursive systematic space-time encoder for 8 state 4-PSK, two transmit
antennas, 2 bits/s/Hz: (a) code implementation, (b) code trellis.



Figure 3.3 Recursive systematic space-time encoder for 16 state 8-PSK, two
transmit antennas, 3 bits/s/Hz: (a) code implementation, (b) code trellis.

Why we use recursive systematic constituent code 

Just as convolutional code can be made systematic without reducing the

minimum free distance [59] and systematic codes are always non-catastrophic, so

can STC also be made systematic. The systematic form for the component codes

is dictated by the required separation and transmission through different antennas

of the systematic and parity data. The systematic structure is further motivated by

the need to puncture the parity data of the turbo code such that the data rate of the

overall code is the same as that of the constituent codes. Note that STC encoders

are considered to have full coding rate if the number of overall output bits Nμ equals

N times the number of input bits at time slot, where N is the number of transmit

antennas. The requirements of recursive and systematic constituent codes cannot

be satisfied by the feed-forward space-time codes, i.e., non-recursive systematic 4

state 4-PSK space-time code (Fig. 3.4), non-recursive non-systematic 8 state 4-PSK
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space-time code (Fig. 1.5) that appear in literature [31, pp. 752] and [40], hence we

had to design our own codes. A recursive systematic space-time codes is shown in

Fig. 3.1. Since recursive component encoders should be considered for turbo codes,

some numerical examples of turbo-STCM also prove this issue later as published in

[64, 52].

Figure 3.4 Non-recursive systematic space-time encoder for 4 state 4-PSK, two
transmit antennas, 2 bits/s/Hz: (a) code implementation, (b) code trellis.

3.1.2 Turbo-STCM Encoder

Turbo-STCM consists of two (or more) space-time codes in recursive systematic form

concatenated in parallel. An 8 state 4-PSK recursive systematic space-time encoder

is shown in Fig. 3.2. The systematic and recursive nature of the constituent code

is clearly seen in part (a) of Fig. 3.2. The input/output state transition labels and

the symbol mapping used in the diagram are shown in part (b) of the figure. For

example, the label '3/30' appears twice. It is to be interpreted as follows: case #1,

state 1 transitions to state 4 when the input is '3' (i.e., '11' - see mapping in the

figure), with the output consisting of symbols '3' to antenna 1 (systematic part) and

symbol '0' to antenna 2 (parity part); case #2, same as #1, but the transition is

from state 5 to state 2. The constituent code is recursive following Benedetto and
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Montorosi [56], who have shown that turbo codes require recursive constituent codes

to work properly. The systematic form of the constituent codes is motivated by

the architecture of our turbo-STCM, where one antenna transmits symbols mapped

by the systematic bits, and the other antenna transmits symbols mapped by the

parity bits. This architecture provides a simple mechanism for puncturing of the

parity data in order to maintain full rate. As shown in the simulations later in

this chapter, our designed constituent codes feature full diversity, but lower gain

than the non-systematic STC in the references [31, 40]. However, it will be shown

that after several turbo iterations, the performance exceeds that of other space-time

codes. The turbo-STCM architecture is shown in Fig. 3.5. A pseudorandom symbol-

wise bit interleaver between the space-time encoding modules operates on groups of

bits associated with symbols to ensure that the transmitted data stream possesses

random-like properties. The interleaver size is K symbols. For 4-PSK modulation

this corresponds to 2K bits and 3K bits for 8-PSK.

Figure 3.5 Turbo-STCM encoder for two transmit antennas, 2 bits/s/Hz.

The integration of space-time encoders into turbo-STCM is similar to the

integration of coded modulation into the turbo-TCM structure of [15]. There are

some important differences between the binary turbo codes in [2] and turbo-STCM:
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(1) the constituent space-time codes need to be systematic at the symbol level rather

than the bit level, (2) the interleaver operates symbol-wise (for example, with 4-PSK

modulation the interleaver operates on pairs of bits). In addition, turbo-STCM is

different from turbo-TCM in [15] in that the output consists of multiple streams of

symbols that are being transmitted through multiple antennas. Multiple antennas

may also be employed at the receiver.

Consider a wireless data system that employs turbo-STCM to transmit data

through N transmit antennas. For clarity, it is based on a specific example of the

8 state 4-PSK space-time code shown in Fig. 3.2. The input to each constituent

code consists of pairs of bits and the output is formed by N = 2 streams of 4-PSK

symbols. For a specific example, assume a short sequence of six pairs of bits. In

practice, sequences will be much longer such that the output of the interleaver is

pseudo-random with respect to its input symbol sequence. Assume that the data

block to be transmitted consists of the following pairs of bits: (00, 01, 11, 10, 00, 11).

For brevity of notation, the signal mapping is used in Fig. 3.2(b) to list the input

sequence in terms of four level symbols (0, 1, 3, 2, 0, 3). Let STC1 and STC2 denote

the constituent codes. Then the output of STC1 consists of the sequence of pairs of 4-

PSK symbols (00, 10, 31, 23, 01, 32). Prior to being fed to STC2, the input sequence is

interleaved by a pairwise bit interleaver. Let the interleaver output be (3, 3, 0, 1, 0, 2).

When this sequence is fed to STC2, the output is given by (30, 33, 02, 13, 00, 22).

The output of STC2 is then de-interleaved to ensure matching of the systematic

parts at the output of each STC (i.e., the first of each pair of symbols). With that

in mind, transmission of the systematic part can be accomplished by STC1 only.

Both STC1 and STC2 transmit parity symbols. The deinterleaver can be applied

only to the parity symbol at STC2's output. Following the deinterleaver, the parity

symbol sequence becomes: (0, 3, 0, 2, 2, 3). Antenna 1, which transmits the systematic

part of the codeword, is connected only to STC1. A selector alternately selects the
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output of STC1 or the deinterleaved output of STC2. Thus, the symbol sequences

transmitted by the two antennas are (0, 1, 3, 2, 0, 3) and (0, 3, 1, 2, 1, 3), respectively.

This arrangement ensures that the 4-PSK symbols are transmitted systematically

and that the parity symbols are alternately chosen from STC1 and STC2.

3.1.3 System Model

In this subsection, the schematic diagram of the turbo-STCM transmission system

is presented as shown in Fig. 3.6.

Figure 3.6 Schematic diagram of turbo-STCM transmission system.

Let a source generate an information sequence composed of symbols u drawn

from an alphabet {u (1) ,	 , u (m ) } . Using k to denote the time index, each symbol uk

. With Ungerboeck codes [12, 13], the

input bits generate u + 1 coded bits that are then mapped to a symbol. With STC

codes, the 1u input bits are encoded into N groups of ,u bits, where N is the number

of transmit antennas. Similarly, turbo-STCM encodes the information symbols uk

to N symbols represented by the binary column vectors

Those are fed into a memoryless mapper p (.) that emits the symbols

In this Ph.D. thesis, s (kn) are m-PSK symbols. Define the symbol vector s k E CN ,

where C is a complex set of signal constellation points and the
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superscript denotes transposition. Define the column vector with binary elements

The vector c k is the binary

label of s k . For an interleaver of size K (applied to input symbols), turbo-STCM

transmits codewords of NK symbols (K symbols per antenna). The vector of binary

labels c k represents N output symbols and consists of μN bits. Hence, K input

symbols correspond to NK output symbols and to [INK binary labels. The number

of possible transmitted sequences is 2μN K.

For a turbo-STCM receiver utilizing an array of M antennas, the MIMO

channel output symbols are represented by M x 1 vectors yk E CM that can be

expressed

where E, is the energy per symbol, related to the energy per bit by E, = μEb. The

M x N matrix H consists of the channel coefficients. The m , n element of H, hmn,

represents the path gain from transmit antenna n to receive antenna m . The channel

is assumed flat, Rayleigh and block-fading. This means that the matrix H consists of

complex-valued scalars hmn modeled as zero-mean, mutually independent, identically

distributed Gaussian random variables with unity variance such that

where 6 is the Kronecker symbol. Additive white Gaussian noise is modeled

by the vector z k . The noise is assumed complex-valued, Gaussian distributed with

zero-mean and variance N0 /2 for each dimension. The components of the noise vector

are assumed independent and identically distributed.

Two different frame lengths play roles in our analysis. A frame length of

F symbols is defined consistent with practical wireless systems. Later computer

simulations for frame error rate (FER) analysis were run with a frame length of

F = 130 symbols. The frame length F is also used in defining the block-fading

channel: the channel is assumed fixed during a frame and independent frame to

frame. The other frame length used in the thesis is related to the interleaver size.
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Interleavers used in this thesis are of size K = 130, 1300 and 5200 symbols, respec-

tively. The turbo decoder operates on sequences of received data of the same size as

the interleaver. Since a turbo-code can be viewed as a block code with block length

equal to the interleaver size, blocks of K symbols are used in the bit error analysis

of next Chapter.

3.1.4 Full Diversity of Turbo-STCM Component Codes

In this subsection, there are the proof of the diversity order of the 4-PSK recursive

systematic space-time codes. One is 4 state in Fig. 3.1 and another is 8 state in

Fig. 3.2. Those codes are used as components of turbo-STCM with two transmit-

one receive antenna. Define the code matrix C (sF ) corresponding to a sequence of

where The symbol sk (1) emitted by antenna 1 at time k, represents systematic infor-

mation, while symbol s k(2) transmitted by antenna 2 is the parity data. Consider the

difference matrix B (s F , t F ) = C (s F ) — C (t F ) corresponding to a pair of distinct

sequences sF and tF . For full diversity, it is required that for any pair of distinct

sequences the matrix B (s F , t F ) must have rank 2 [31]. Equivalently, it is necessary

to prove that the rows of B (sF , tF ) are linearly independent for any distinct pair

of sequences. The rows of B (sF ,tF ) are linearly independent if and only if the

determinant of the Gram matrix B (sF , tF ) BH (sF ,tF ) ,

4 state 4-PSK space-time code 

As shown in Fig. 3.1, if the paths corresponding to sequences s, and t, diverge
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contradicts the assumption of divergence at time k 1 .

s two and hence

that the recursive systematic 4 state 4-PSK space-time codes used as components in

turbo-STCM feature full diversity.

8 state 4-PSK space-time code 

As shown in Fig. 3.2, if the paths corresponding to sequences s F and tF diverge

Now consider the

differences at time k 1 + 1. From Figure 1, note that if the divergence occurred at

any of the states 1, 3, 5, or 7, then at time k 1 + 1 each diverging sequence will

reach one of the states 1-4 (not the same state for both sequences). Similarly, if

the divergence occurred at one of the states 2, 4, 6, or 8, then at time k 1 + 1 the

diverging sequences will reach one of the states 5-8. We observe that for paths leaving

With respect to sVi )+1 — 41+1 , there are two distinguished cases:

0, which contradicts the assumption of divergence at time k 1 .

This completes the proof that the rank of the Gram matrix

is two and hence that the recursive systematic 8 state 4-PSK space-time codes used

as components in turbo-STCM feature full diversity.

Following the similar steps, 16 state 8-PSK recursive systematic STC in Fig. 3.3

can also be proved to feature full diversity.
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In the turbo-STCM scheme, when the component space-time encoders has full

spatial diversity, the randomness of the interleaver between two component codes

results in a full spatial diversity turbo code with relatively high probability.

3.1.5 Interleaver Design

Since interleavers operate symbol-wise, interleaver sizes are specified in terms of the

number of symbols. Various interleaver sizes K were used later as noted in the

Figures' captions. Two types of interleavers were used in the simulations. With

the first type, each sequence of size K symbols was run with a different random

interleaver chosen from a uniform distribution. Performance shown for random

interleavers is the average over all interleavers. In the figures of simulation results

shown later, curves representing performance averaged over uniform random inter-

leavers are labeled 'UIL'. These simulations are based on Monte Carlo runs with

interleaver realizations for each Eb /N0 . The second type of interleaver used in the

simulations was an 'S-random' interleaver, as suggested in [11]. Following guidelines

in the reference and choosing S 25, an interleaver was obtained by generating

random permutations (interleaves) without replacement, subject to the restriction

that adjacent symbols are not interleaved within a distance of S symbols of each

other. This interleaver was used in all simulations with fixed interleaver and the

curves were labeled 'FIL'. For brevity of notation and for easier correlation with the

figures, we use the JAL' and `FIL' designations in the description. Performance of

turbo-STCM is presented based on both random and fixed interleavers.

3.2 Iterative Maximum A Posteriori Decoder

The turbo-STCM decoder is an iterative receiver structure as shown in Fig. 3.7. The

decoder employs two a posteriori probability (APP) computing modules concatenated

in parallel: one module for each constituent code. The turbo-STCM decoding
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algorithm is derived in two steps: (1) derivation of the generic APP algorithm for a

multilevel trellis code given the observed data over the MIMO channel, (2) derivation

of the iterative algorithm utilizing the soft outputs (the APP'S) of the decoders

associated with each constituent code. These decoders are denoted in Fig. 3.7, APP1

and APP2, respectively. Data is shared between the two decoders, and an iterative

process is applied to refine the soft decisions.

The generic APP algorithm for nonbinary trellis and MIMO channel is based

on the BCJR algorithm [8] and on [15]. Various forms of APP algorithms can be

found in these and other references. Due to some differences with other algorithms

(multiple transmit/receive antennas, for example), turbo-STCM decoding is based on

the maximum a posteriori (MAP) criterion. The symbol-by-symbol MAP algorithm

was formally introduced in [8] as an alternative to the Viterbi algorithm for decoding

convolutional codes.

The MAP algorithm computes the APP of each trellis state transition, message

bit, and/or code symbol produced by Markov process, given the noisy and fading

observation y. Once the APPs are calculated for all possible values of the desired

quantity, a hard decision is made by selecting the quantity with highest occurrence

probability. When used for turbo decoding, the MAP algorithm calculates the

APPs of all possible message bits or symbols. The MAP algorithm used for turbo

decoding does not make hard-decisions on the message bits until after the last decoder

iteration.

3.2.1 APP Algorithm

This subsection consists of the development of the generic APP algorithm for space-

time code and its iterative receiver structure as shown in Fig. 3.7. The algorithm is

evolved from the BCJR algorithm [8] and from [15].
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Figure 3.7 Turbo-STCM decoder, the interleavers/deinterleavers are not shown.

The APP's at time k can be expressed

is the joint probability that, given the data Y, the

transition from state 0-k to state σk+1  is with information symbol uk = u(i). The

notations are illustrated in Fig. 3.8. In this section, probability density functions are

denoted by p, and probability mass distributions as well as mixed expressions are

denoted by P. Assuming no parallel transitions between states, any two elements of

the trio (σk, σk+1, uk) uniquely define a transition. Define Y k- as the sequence received

before time k, and Y the sequence received after time k. From this definition, we

Utilizing a procedure similar to BCJR [8] and [15], it is

possible to express the joint probability

Bayes rule can be applied to (3.4) to obtain:



where h is chosen such that

Next, compute the joint probability P(uk = u('), k, k+1, Y). First, rewrite

Then, apply the chain rule for conditional probabilities to obtain:

From the properties of Markov chains if the state σ k+1  is known, Y- /-1,- does not depend

on any of the other parameters,

Similarly, if σk is known, quantities at times k and on do not depend on Y :

45

Define the following quantities:
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Then, the APP in (3.5) can be expressed

Next we show how to calculate 7/`: ) (or , k+17 Yk) from the observations Y and howk 

to calculate ak(σk ) and βk+1(σk+1) recursively.

is the joint probability of the transition from state σk  to state

σk+1 with input u(i), and of the observation yk. It can be expressed

computed from

s k is the vector of symbols associated with the pair

that any transition is uniquely defined by the initial state and the input.

Hence, each codeword vector sk is uniquely determined by

if there exists a transition σk -->σk+1 due to

the input u ( ' ) , and it is zero otherwise. When k 	 k+1 is due to u (i) , it

where the last term is the a

priori probability of the information symbol u(i). Subsequently, (3.13) can be

rewritten

for existing transitions o-k 	k+i due to input u( 2) .

are the joint probabilities of the states of the trellis at

time k and the data observed until time k — 1, Y k- . These probabilities are
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(events after k — 1 are not

influenced by Yk- if σk is known), and the definition .

Comparing (3.11) with (3.17), we see that

are the densities of the future observations (after

time k) conditioned on the states at time k. A recursive expression for

can be developed as follows:
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By combining (3.16), (3.19) and (3.15), and substituting in (3.12) and then

back in (3.4), the APP can be expressed

expression can be simplified if we note that a given state σk and input

determine the state σk+1 Denote &k+1 the specific state reached by applying

to state σk Thus rather than sum over σk+1, it is sufficient to set σk+1  =

can rewrite (3.20),

3.2.2 Log-APP Algorithm

For computational convenience and numerical precision it is desired to convert the

multiplicative form of (3.21) into an additive form. This is done by passing to the

log domain.

To handle additions in the log domain, we make use of the following expression

for a sum of exponentials in the log domain [66, 67]:

This expression suggests that addition in the log domain becomes a sum of a

maximization with a correction function. When x and y are dissimilar, the correction

This property is applied

to develop the log-APP algorithm.

Quantities in the log domain are denoted with an overbar. For computation of

the log-APP there has (refer to (3.21)):
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where we assume the trellis transmits from zero state, so the initial condition

where we can not assume the trellis is terminated at state UK = 0 due to

the recursive and systematic component encoders even though adding the zero

tail bits to data. Hence the initial condition of backward recursion

where h = log h, can be determined from the relation
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It is completed by defining the a priori information

and the systematic and extrinsic information

The following expression is the log domain version of (3.21)

The final result of log-APP is expression (3.30) at time k. of an input information

symbol uk = u ( i ) and given the sequence of observations Y:

a priori information.

The operation of the turbo-STCM decoder is explained assuming that the first

iteration of APP1 is already available. We then describe how the turbo-STCM

handles the punctured data. Finally, the first iteration of APP1 is addressed. The

turbo-STCM decoder is based on [15], with the necessary modifications to account

for the multiple transmit/receive antennas and other differences between TCM and

STC codes.

Turbo Decoder Iterations 

From (3.31), it follows that the APP decoder output is in logarithmic form

and can be split into two additive parts: L(uk = u(0 ) - the a priori data input

to the decoder, and xlf(y k lu( i)), which depends on the systematic part (information

symbols) and extrinsic part (other data supplied to the decoder). The key to the
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iterative process of the turbo-STCM decoder is that the a priori input to each APP

decoder can be derived from the output of the other decoder. We will use subscripts

1,2 to denote quantities associated with the respective APP decoder. To explain

the iterative process, assume that the output of APP1 for uk = u (i) at time k

This quantity is to be used to derive the a priori input into

However, we want to feed to APP2 only new information

generated by APP1. This is achieved by removing the a priori information that went

into generating the output of APP1. Thus the a priori information into APP2 for

u k = u () at time k is given by

is computed from (3.31). The iterations

input back into APP1. Note that these iterations take place for each input symbol

and for all times 1 < k < K.

Use of Punctured Observations 

Each APP module has two inputs: the a priori information L(uk = u ( ' ) ) and

the observation sequence Y. Each APP module at the decoder is matched to a

constituent space-time code at the turbo-STCIVI encoder. Consider the observations

at the input of APP1. Ideally, this input would consists of the noisy and faded signal

transmitted by STC1 (see Fig. 3.5). However, due to the encoder architecture,

the input to APP1 consists of: (1) correct systematic data, (2) parity data that is

alternately provided by STC1 or STC2, (3) noise. Thus, the input to APP1 consists

of a sequence that contains correct STC1 symbols punctured by STC2 symbols. To

overcome this difficulty, at times corresponding to punctured symbols STC1, the data
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input to APP1 is set to zero, and the only input to APP1 is the a priori information.

Observations at the input of APP1 are then handled as follows:

• For all non-punctured symbols (k = 1, 3, 5 ...), compute log p(yk laic, 0) ) =

priate for the computation of

APP1 algorithm.

• For all punctured symbols (k = 2, 4, 6 ...), let 0 	 log p(y k , u (i) ) , and use

that in the APP1 algorithm.

From (3.23), for punctured symbols,

A similar procedure is used for APP2, where the non-punctured symbols are (k =

2, 4, 6 . . .).

First Iteration 

At each iteration, the set of log APP's 11%1 1 , 2 (uk 	u(i)|Y), k = 1, . ,K is

generated for all information symbols u(i) E {u( 1 ), 	 , u(m)} . In particular, the first

turbo iteration also needs to generate !1I1 , 2 (uk = u( 2 )1 Y), k = 1,	 , K for u (i) E

{u (1) ,	 , u (m) }. According to (3.31), computation of the APP requires a priori

information. At each iteration, the a priori information log P	 = u ( i ) ) is provided

by the other APP decoder. However, such input is not available for APP1 at the

time of the first iteration. The a priori information for APP1 at the first iteration is

generated as follows:

• For all symbols in the sequence (k = 1, 2, 3 ...), as P (uk = u( i)) is unknown,

assume that the input information symbol u k could be with equal probability

any of the m symbols 0 ) , i = 1, 	 , m, i.e., P (uk = u (i) ) =11m.

• The procedure delineated above, does not address another problem that

arises at the first iteration of APPl. If we follow the procedure presented
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in the subsection Use of Punctured Observations', for punctured symbols

(k = 2, 4, 6 ...), we would apply 0 —> log p(yklσk , u (i) ). However, this means

that the systematic part of yk is also lost. Since the APP algorithm needs

to get the systematic information from somewhere, we find a way to utilize

the punctured data y k . To that end, note that a transmitted symbol vector

sk consists of a systematic symbol sk(1), which has the same binary label

as the information symbol u k and is transmitted through antenna 1, and

(a parity symbol sk(2) transmitted through antenna 2. Punctured symbols

with respect to APP have the parity data generated by space-time code

2, which is unknown to decoder APP1. However, the systematic data is

embedded in the observation y k . The best that decoder APP1 can do is

to average over the unknown parity symbols. Let b(j ) denote the m-PSK

parity symbol. Note that b0) e {b(1), . , b(m)} . Then, at the first iteration

of APP1, rather than applying 0 log p(yk|σk, u(i ) ) for punctured data, we

as extrinsic information. The

constant c can be found from the condition ∑i=1m P (uk = u ( i ) yk) = 1, which

leads to the relation

3.3 Numerical Results

In this section, simulation results are presented on the performance of our turbo-

STCM scheme for 2 and 3 bits/s/Hz (4-PSK and 8-PSK respectively). The channel

model was Rayleigh block-fading, meaning that the channel was assumed constant

during a frame of F = 130 symbols, but independent frame-to-frame. The block-

fading channels are considered with known channel state information (CSI) at

receiver. Interleaver sizes K are specified in terms of the number of symbols. In

the simulations, performances are based on both random and fixed interleavers.

Performance of non-turbo space-time codes is provided for comparison. Figure
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captions specify the number of transmit-receive antenna, e.g., 2T1R = two transmit-

one receive antenna. Individual codes are labeled according to the modulation and

number of states ("4p4s" refers to 4-PSK modulation, 4 state code).

Recursive or non-recursive space-time constituent code? 

As we have seen before, recursive component space-time codes are according

to Fig. 3.1, while the non-recursive form is shown in Fig. 3.4. Fig. 3.9 and 3.10 show

performance for 4 state 4-PSK turbo-STCM after eight iterations of the decoder.

The figures display the frame error rate (FER) curves versus the bit signal-to-noise

ratio Eb /No in dB per receive antenna.

Figure 3.9 FER of 4 state 4-PSK turbo-STCM (2T1R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL).

Fig. 3.9 shows the FER for two transmit-one receive antenna turbo-STCM

utilizing the recursive and non-recursive four state 4-PSK component space-time

codes shown in Fig. 3.1 and 3.4, respectively. Curves are also provided for two

transmit-one receive antenna, 4 and 32 state 4-PSK Tarokh et. al. codes [31]. The

32 state Tarokh code (labeled in the figure `4p32s') is shown since it has roughly

the same decoding complexity as turbo-STCM with 4 state constituent codes, two

APP decoders, and 8 iterations per APP decoder. Complexity of the decoder is
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evaluated as proportional to v • 2 1) per decoder and per iteration, where v is the code

memory [4]. It is well known that Tarokh's codes feature full diversity. Due to the

puncturing operation, the turbo-STCM architecture of Fig. 3.5 cannot guarantee full

diversity, yet as observed from the figure, both recursive and non-recursive forms of

turbo-STCM have full diversity, a fact borne out by the asymptotic slopes (at high

Eb /No ) of the FER curves being parallel with the slopes of Tarokh's codes. Codes

are differentiated only by their coding gain. Turbo-STCM with recursive component

codes has an advantage of 2.7 dB over Tarokh's 4 state code (labeled `4p4s') at FER

= 10 -2 , while turbo-STCM with non-recursive component codes has a performance

1.3 dB below that of the recursive form. At FER 10 -2 , turbo-STCM with recursive

codes has a 0.6 dB advantage over the 32 state conventional space-time code. Based

on the v • 2" formula for complexity, turbo-STCM has a relative complexity of 128

(for eight iterations), while the 32 state space-time code has a relative complexity of

160. Comparison with a 16 state code from [31] (complexity 64) shows an advantage

for the turbo code of about 1 dB. The curve labeled "outage cap" is the outage

channel capacity defined as the probability that the spectral efficiency (in this case

2 bits/s/Hz) is not supported with a probability given by the ordinate [20]. It is

observed that turbo-STCM with recursive codes performs within 2.3 dB of the outage

capacity at FER = 10 -2 . Also note that the fixed interleaver has an advantage of

approximately 1 dB over the uniform interleaver and that performance with recursive

constituent codes is better by about 0.4 dB than performance of the fixed interleaver

with non-recursive constituent codes .

Fig. 3.10 is similar to Fig. 3.9, except that two antennas are used at the receiver.

In this case, the advantage of turbo-STCM with fixed interleaver (at FER = 10 -2 )

is 3.8 dB and 0.7 dB over the conventional Tarokh code with respectively, 4 and 32

states.
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Figure 3.10 FER of 4 state 4-PSK turbo-STCM (2T2R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL).

Fig. 3.11 (a), (b), and (c) show the bit error rate (BER) versus the ratio

Eb /No dB per receive antenna for various interleaver sizes. Performance shown is

averaged over random interleavers. For comparison, performance is also provided

for two transmit-two receive antenna 16 state 4-PSK Tarokh et. al. code. The

interleaver sizes used for turbo-STCM were respectively, 130, 1300, and 5200 symbols.

Constituent space-time codes were recursive and systematic 8 state 4-PSK with two

transmit-two receive antennas as per Fig. 3.2. The figure demonstrates the effect of

turbo iterations and the interleaver size. For example, it can be observed in part

(b) that at BER = 10', the incremental gain achieved by 2, 4 and 8 iterations is

respectively, 2 dB, 1.2 dB, and 0.3 dB. At BER = 10', and for 8 iterations, the

difference between the shortest and the longest interleaver is approximately 2.8 dB.

For an interleaver longer than the data frame, there is additional temporal diversity

due to independent realization of the channel. As we observed in Fig. 3.11 (c), the

slope of BER curve after 8 iteration is steeper than that of Tarokh "STC" and "Fano

LB" curves, whose slopes show the expected spatial diversity order 4. At BER =

10 and after 8 iterations, the advantage over the 16 state Tarokh code is between
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1 dB (130 symbols interleaver) and 2.8 dB (5200 symbols interleaver). Figure 3.12

shows the BER plotted versus the number of iterations for various Eb /No values.

Also shown in the figure is the curve of Fano lower bound (Fano LB) as defined in

(2.10) and shown in Fig. 2.7 of Chapter 2. At BER = 10 -4 , turbo-STCM approach

the Fano lower bound within approximately 4 dB, 3 dB and 2.2 dB from the shortest

to the longest interleaver after 8 iterations. From Figure 3.12 it can be seen that

about five iterations are sufficient for convergence.

Fig. 3.13 shows FER for two transmit-one receive antenna turbo-STCM, K =

1300 symbols interleaver and with recursive systematic 8 state 4-PSK constituent

codes as shown in Figure 3.2. Performance is shown for random interleavers (UIL)

after 8 iterations and for the fixed interleaver (FIL) after 1, 4, and 8 iterations.

Curves are also provided for two transmit-one receive antenna 4-PSK 8 state and

64 state Tarokh et al. codes. Finally, the performance of our designed recursive

and systematic space-time constituent code is also shown. Decoding of Tarokh's

codes and of the recursive systematic code is done using the Viterbi algorithm. It

is observed that at high Eb /No , all codes provide full diversity as demonstrated by

the parallel asymptotic slopes. In particular, our systematic recursive code has the

same diversity as Tarokh's code (same slope) but lower coding gain (approximately

3 dB at FER = 10 -2 compared to Tarokh's 8 state code). The simulations for

our recursive systematic codes demonstrate the full diversity proved in the previous

section. After 4 iterations, turbo-STCM with fixed interleaver has an advantage of

3.5 dB over Tarokh's 8 state code. This advantage becomes 4 dB after 8 iterations.

The turbo-STCM after one iteration is inferior to the performance of one of its

constituent codes, since it uses a sub-optimal log MAP decoding algorithm rather

than the optimal maximum likelihood Viterbi algorithm. The 64 state Tarokh code

is shown since it has roughly the same decoding complexity as turbo-STCM with 8

state constituent codes, 8 iterations and two APP decoders per iteration. Complexity
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of the decoder is evaluated: for the 64 state space-time code, the code memory is

v = 6, and the complexity is proportional to v 2" = 6 x 2 6 = 384. Similarly, for

the turbo code, we have 8 states or v = 3. Then the complexity is proportional to

3 x 2 3 x (2 APP decoders) x (8 iterations) = 384. At FER = 10 -2 and after 8

iterations, turbo-STCM with fixed interleaver (FIL) has a 3 dB advantage over a

stand-alone space-time code of comparable complexity. Also note the approximately

1.5 dB advantage of the fixed interleaver (FIL) over the uniform random interleaver

(UIL).

Fig. 3.14 shows the FER performance comparison of turbo-STCM with the

other following methods: 1T1R (one transmit-one receive antenna) uncoded 4-

PSK (4p), 1T1R 8 state 8-PSK TCM (TCM 8p8s) [59], 2T1R 8 state 4-PSK

conventional space-time code (STC 4p8s) [31], 1T1R 8 state 8-PSK turbo-TCM (

T-TCM 8p8s) [15], 2T1R 8 state 4-PSK turbo-STCM (T-STCM 4p8s). All methods

compared have the spectral efficiency of 2 bits/s/Hz. Performance is shown for

turbo-TCM and turbo-STCM after 8 iterations. Also shown in the figure is the

curve of outage channel capacity (outage cap). Methods using a single antenna at

the transmitter, have a lower diversity, a fact indicated by the smaller slopes of

the top three curves. At FER 10 -2 , turbo-STCM provides a gain of 10 dB over

turbo-TCM without transmit diversity and a gain of approximately 4 dB over the

conventional space-time code. The performance of turbo-STCM is within 0.7 dB of

the outage capacity as well as STC within 5 dB of capacity.

Fig. 3.15 is similar to Fig. 3.13, except that two antennas are used at the

receiver. The approximately parallel slopes of all curves indicate that all methods

shown provide full diversity. In this case, the advantage of turbo-STCM with fixed

interleaver over Tarokh code with 64 states is only about 1 dB (at FER = 10 -2 ).

The performance of turbo-STCM is within 2.7 dB of the outage capacity.
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Fig. 3.16 and 3.17 demonstrate the performance of 16 state 8-PSK turbo-STCM

codes utilizing the space-time constituent code as shown in Fig. 3.3. The fixed

symbol interleaver K = 1300 was the same as the one used in Figures 3.13,3.15.

In both Figures 3.16 and 3.17, full diversity is displayed by all codes. In Fig. 3.16,

performance of our designed recursive systematic code is about 1.5 dB inferior to 16

state 8-PSK Tarokh code (at FER = 10 -1 ), but has the same slope. After 8 turbo

iterations, turbo-STCM with fixed interleaver has a 2 dB advantage over Tarokh

64 state 8-PSK code. The advantage over Tarokh 16 state 8-PSK is about 3 dB.

Fig. 3.17 displays similar trends for the two transmit-two receive antenna case. In

this case, after 8 iterations, the advantage of turbo-STCM with fixed interleaver over

conventional 64 state 8-PSK space-time code is about 0.8 dB (at FER = 10 -2 ). The

performance of turbo-STCM is within 3 dB of the outage capacity.

3.4 Chapter Summary

While information theory suggests that multiple antennas are an effective and

practical way to increase capacity in a wireless system, it is still necessary to devise

new techniques such as turbo-STCM that operate close to the capacity limits.

In this Chapter, the new turbo codes are introduced as turbo-STCM, featuring

space-time constituent codes. The constituent codes are recursive and systematic.

Turbo-STCM scheme utilizes two transmit antennas: one for systematic data and

the other for parity data. The random-like property of the turbo code is provided

by a symbol-wise interleaver used between the inputs to the two constituent space-

time codes. A suboptimal MAP iterative decoder utilizing log APP modules is

presented. The codes feature full diversity and full rate. Performance over a flat

block-fading Rayleigh channel is demonstrated by simulations for 2 bits/s/Hz 4-

PSK and 3 bits/s/Hz 8-PSK turbo-STCM codes. It is shown that 4-8 iterations

are sufficient for convergence of the decoded sequence. As with other turbo codes,
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performance is affected by the interleaver design and size. Comparison at FER

= 10 -2 of the 8 state 4-PSK two transmit-one receive antenna scheme with a fixed

interleaver of size 1300 symbols, to Tarokh's 8 state code shows an advantage of 3.5

dB after 4 decoding iterations and 4 dB after 8 iterations. Complexity is comparable

with Tarokh's 64 state code, but turbo-STCM has an advantage over that code of 3

dB after 8 iterations.

Such turbo-STCM codes can be extended to higher efficiency modulation and

more complex STC for additional coding and diversity gain. Our future work include

the generalization of turbo-STCM for higher multilevel modulation. These codes

have the potential to facilitate high-rate data transmission over fading channels in

future wireless networks.
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Figure 3.11 BER of 8 state 4-PSK turbo-STCM (2T2R) over the fading channel,
averaged over interleavers (UIL) of size (symbols): (a) K = 130, (b) K = 1300, (c)
K = 5200.



Figure 3.12 Iterations of 8 state 4-PSK turbo-STCM (2T2R) decoder, average over
interleavers (UIL) of size K = 1300 symbols.

Figure 3.13 FER of 8 state 4-PSK turbo-STCM (2T1R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL) of size K = 1300
symbols.



Figure 3.14 FER comparison of turbo-STCM with other methods.

Figure 3.15 FER of 8 state 4-PSK turbo-STCM (2T2R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL) of size K = 1300
symbols.



Figure 3.16 FER of 16 state 8-PSK turbo-STCM (2T1R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL) of size K = 1300
symbols.

Figure 3.17 FER of 16 state 8-PSK turbo-STCM (2T2R) over the fading channel,
with fixed interleaver (FIL) and averaged over interleavers (UIL) of size K = 1300
symbols.



CHAPTER 4

ERROR PERFORMANCE ANALYSIS OF TURBO-STCM

The analytical union bound on the bit error rate (BER) is developed for turbo-STCM

with multiple transmit/receive antennas. This analytical approach is complementary

to simulations. Performance analysis of the turbo code for a specific interleaver is

not mathematically tractable. The approach suggested to overcome this problem is

to make the bound independent of the particular interleaver used by introducing a

uniformly average interleaver, which maps an input word into all its permutations

[56]. The analysis technique resembles that of random coding, with the distinction

that the constituent codes are fixed and the interleaver is random. The ensemble of

codes is generated by varying interleaving permutations for a given size interleaver.

This approach enables to express the union bound of the turbo code in terms of the

input-output weight enumerators of the constituent codes and the interleaver size.

As an interim step, the bound is found first conditioned on the channel. This is

essentially the additive white Gaussian noise case [50]. Subsequently, the bounds are

averaged over the Rayleigh fading channel [51, 54, 52]. These bounds are demon-

strated by comparison to computer simulations utilizing iterative log-APP decoding.

The chapter is organized as follows. In the first section, we present a brief

introduction of turbo-STCM system assumption. After that, the union bounds are

derived for turbo-STCM over the AWGN channels with the uniform random inter-

leaver. Then we extend the bounds, that applied for turbo-STCM over the AWGN

channels, for the block-fading channels. Finally, the use of the new bounds are illus-

trated for turbo-STCM scheme with multiple antennas via some numerical examples.

65
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4.1 Definitions and Notations

Turbo codes are essentially very long block codes. This makes their analysis

a challenging problem. The analysis of turbo codes for a specific interleaver is

intractable. A framework for the theoretical analysis of binary turbo codes for the

additive white Gaussian noise (AWGN) channel is suggested in [56, 57]. In these

publications, the upper bound of the maximum likelihood (ML) soft decoder is

evaluated as an ensemble average over all possible interleaver permutations. This

enables to express the upper bound independent of the interleaver and in terms of the

individual constituent codes. In [68], analytical bounding of parallel concatenated

turbo codes over the AWGN channel was extended from binary codes to multi-level

turbo coded modulation systems with single transmit/receive antenna. In [69], this

analysis was carried out for the fading channel. In this thesis, we further extend

those results to the multiple transmit/receive antennas turbo-STCM.

Consider an example of turbo-STCM with two transmit antennas as shown in

Fig. 4.1. The signal and channel models are defined in (3.1). The specific constituent

space-time codes used to demonstrate the analysis are 8 state 4-PSK as per Fig. 3.2.

The turbo-STCM scheme employs symbol uniformly random interleaver of specified

size K. For 4-PSK modulation, the interleaver size in bits is 2K, while for 8-PSK

modulation, the interleaver size in bits is given by 3K.

The turbo-STCM scheme accepts p, = 2 binary symbols at a time and

transforms them into N = 2 (number of transmit antenna) blocks of 2 binary

symbols that are fed to a memoryless mapper p (.). In the notation defined in

is obtained from the

mapping p (ck ) = sk , where p : {0, 1} 4 --> C 2 and ck E {0, 1} 4 is the binary label

"4" associated with the symbol vector s k . The symbol sk(1) emitted by antenna 1 at

time k, represents systematic information, while symbol s (k2) transmitted by antenna

2 is the parity data. In the analysis of turbo-STCM, the receiver employs a single
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Figure 4.1 Turbo-STCM encoder for two transmit antennas.

antenna Al = 1. The received signal is constituted by the sum of systematic and

parity symbols. The noiseless received signal conditioned on the channel can then

be expressed,

where the channel vector is defined h = [h 1 h2 ] T , and h 1 , h2 are respectively, the

channel gains between antenna 1,2 at the transmitter and the receiver. In the

notation of (3.1), h = H. In this interim step over AWGN channel, h 1 = h2 = 1.

The symbol squared Euclidean distance (SED) for two transmitted symbols is

where ck ek is a binary label associated with a symbol, and a e b = (a + b) mod2.

To separate constellation and channel effects

Turbo-codes can be viewed as block codes with block length equal to the inter-

leaver size. The analysis of turbo-STCM is based on the enumeration of error

sequences according to the pattern of the underlying binary labels. For an input
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block of length K symbols (corresponding to an interleaver of size K symbols), the

output consists of K symbols for each of the two transmit antennas. Equivalently,

the output consists of a sequence of K vectors sk , sK = (S1, . SK). Each output

vector s k has a binary label c k as defined in (4.1). Denote the sequence of binary

labels associated with the transmitted block c K = (c 1 , , cK ). An error event

occurs when the demodulation chooses the transmitted sequence of symbols corre-

sponding to binary labels cK e eK , where eK = (e1, , eK ) and e K is not an all

zero sequence. Note that for 4-PSK modulation and two transmit antennas, K ,

eK are binary sequences with 4K elements. Error events are characterized by their

cumulative SED defined as the sum of symbol SED's:

4.2 Input-Output Weight Enumerator

The main tool for analysis of the bit error probability of turbo-STCM is the

enumeration of error sequences. This enumeration is carried out according to the

binary labels of the underlying binary code. We proceed to define parameters of

error sequences necessary for our analysis and to determine ways for the evaluation

of these parameters. An error sequence is a start-to-end path through a trellis error-

state diagram. The error-state diagram is a copy of the state diagram describing the

code, but with the distinction that the binary labels of the trellis branches represent

error patterns rather than encoder outputs. As explained in the previous section, for

4-PSK turbo-STCM with K symbol interleaver, we need to consider error sequences

of length 4K bits. Given a systematic block code of length 4K bits, the set of

transmitted codewords, and the set of received codewords, the input-output weight

enumerator (IOWE) a (4K, w, z) denotes the number of error sequences of length
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4K bits that have Hamming weight w for the information bits and z for the parity

bits. Such error sequences are referred as (w, z) sequences. The overall Hamming

weight of these sequences is w z. The enumeration of error sequences with specified

number of information and parity bits will play an important role in our analysis.

We describe below how to evaluate the IOWE's for both stand-alone space-time

codes and for turbo-STCM.

Computation of the IOWE a (4K, w, z) of a space-time code is possible from

the error-state diagram of the code. We follow the approach in [57] to find the

enumerators for the 8 state 4-PSK space-time code in Fig. 3.2 and 16 state 8-PSK

space-time code in Fig. 3.3. Labeling state transitions with monomials JWwZz,

where w is the number of systematic bit errors and z is the number of parity bit

errors, the following one-step transition matrix are obtained.

2 bits/s/Hz spectral efficiency

From Fig. 3.2, the transition from state 1 to state 4 occurs with an input symbol

'3' (binary '11'). The output is labeled '30', meaning binary '11' for antenna 1

(systematic part) and binary '00' for antenna 2 (parity part). Consequently the

weight of systematic bits in the error sequence is 2 and the weight of parity bits is

0. This matches the powers 2 and 0 of IV and of Z, respectively, of the (1,4) term

(JW2) in the matrix T 1 . The variable J indicates that there exists a transition

between states 1 and 4.



3 bits/s/Hz spectral efficiency

From Fig. 3.3,
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In the following, the computation of turbo-STCM is concentrated in 4-PSK

case (4.5) while 8-PSK (4.6) follows the same steps. The output of turbo-STCM code

(see scheme in Fig. 4.1) consists of the sum of the systematic part of a constituent

space-time code and the punctured parity part. The systematic part is common to

both constituent codes. The parity part is chosen alternately from the two space-

time codes, hence it is 1/2 punctured with respect to both codes. To represent

the constituent space-time codes, we need the transfer matrix of the codes with

1/2 puncturing of the parity part. An approach for incorporating puncturing in a

transfer matrix is suggested in [68, 70]. Following the procedure in the reference,

it can be shown that the transfer matrix of the punctured space-time code consists

^c4-1-^ matrix in (4.5) with all Zb , b E {0,1,2} terms replaced by the 2 x 2 matrix

resulting in a 16 x 16 one-step transition matrix denoted

punctured 8-state 4-PSK space-time constituent code.
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The one-step transition matrix represents the number of systematic/parity bit

errors for transitions between two states specified by the matrix. The number of

states for the punctured code is 16. A complete characterization of the error-state

diagram is required to express the input-output relation for any number k of steps

through the trellis, 0 < k < K (each trellis transition yields an output represented

by a four bit binary label). Let the initial input state vector be the 16 x 1 vector

indicating that the code starts operating from state 1. Then the

input-output transmittance is determined by accounting for all possible number of

steps (from 0 to K) that it takes to produce the system output from the input. The

output state can then be expressed

By definition, the transfer function T(J, W, Z) of the space-time code is the trans-

mittance from the output state to the input state. If no assumption is made on

the termination of the space-time code trellis, the transfer function from either of

the output states to the input zero state is given by the sum of the first row of

where [A] 1,i are the first row elements of the matrix A.

In [57, 71], it is shown that the code transfer function can also be expanded in

the power series

We are interested in error sequences of length 4K bits, and the summation is

restricted to sequences such that w < 2K and z < 2K. The previous expression

provides the relation between the code transfer function T(J, W, Z) and the IOWE's

is found using the techniques presented in this section,
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a (j, w, z) are just the coefficients of the power series expansion. This completes the

procedure for the computation of the IOWE of the stand-alone space-time code.

Next, we enumerate the error sequences of the turbo-STCM code. Interleaving

does not change the input Hamming weight, hence both components of the parallel

concatenated structure of turbo-STCM share the same input Hamming weight w.

Let the IOWE's for error sequences of the constituent codes with information weight

w, parity weight z, and length 4K bits, be denoted a l (4K, w, z) and a 2 (4K, w, z) ,

respectively. A uniformly random interleaver is introduced, which maps a given input

word of weight w into all its 2Kw distinct permutations with equal probability

Using this approach, it is shown in [56] that for a parallel concatenated

turbo code utilizing a random uniform interleaver, the average number of (w, z) error

sequences of length 4K bits is given by the enumerator

This expression is used to evaluate the IOWE's

of turbo-STCM given the IOWE's of the constituent codes.

The denominator in the expression (4.10) is suitable for a bit interleaver and is

not easily extended to the symbol interleaver employed by turbo-STCM. However,

the application of (4.10) to turbo-STCM is justified based on the following argument.

A symbol interleaver is just a restricted form of bit interleaver, where bits are inter-

leaved in groups. In particular, the symbol interleaver ensures that the pairs of

binary labels '01', '10', and '11' are interleaved as pairs. This will result in fewer

permutations than for a bit interleaver. Since the number of permutations appears

in the denominator of (4.10), a symbol interleaver will tend to increase the values of

the IOWE. This effect is however minimal, since the IOWE will be used later in this

Chapter to express the union bound to the bit error probability, and the bound is
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dominated by terms with small weight w. For hundreds/thousands bit long sequences

(values of 2K) with low weight (single digit values of w), the number of pairs '01',

'10', and '11' is negligible compared to the number of '00' pairs. We conclude that

use of the bit interleaver in the denominator of (4.10) introduces only a negligible

error in the computation of the IOWE.

4.3 Derivation of the Union Bound

In this section, the union bound is developed for turbo-STCM system described in

the previous Chapter.

In [56], the union bound idea was initially introduced for finding average

performance bound of binary turbo codes (averaged over all possible interleavers).

After that, this method was applied to turbo-coded modulation systems [68, 70].

The average bounds was provided for maximum-likelihood decoding of turbo scheme

with one transmit-one receive antenna configuration. In this chapter, the average

bound idea is further extended to turbo-STCM with multiple antennas configuration.

The basic difference is that we need to find the IOWE of the punctured space-time

component encoders, rather than the underlying binary encoders [56, 68].

In order to derive the bound, we analyze the error event probability at first, and

identify different types of error sequences. Then, the ensemble distance spectrum of

all possible error sequences are found to average over all uniform random interleaver.

Instead of all-zero codeword, each of the possible codewords is considered as the

transmitted one with equal probability. This is also why we make the sum of the

error probabilities over all possible transmitted and received codewords rather than

over all the possible codewords for a given transmitted codeword. Finally, according

to average SED of all error type sequences, the union bound is computed by summing

the contributions of all error sequences.
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The analytical union bound is derived by conditioning on the channel. This is

essentially the non-fading AWGN case.

1. Error event probability 

The pairwise error probability P (K	 cK e e K) of transmitting a sequence

sK of K vector symbols corresponding to a sequence of binary labels K and choosing

a sequence corresponding to binary labels cKeK, is given by the well known relation

is the turbo-STCM code rate and d2 (cKK,eK)is the cumulative SED

of the two sequences as defined in (4.4). The pairwise error probability is upper

bound by the Bhattacharyya bound

e- ' E5 4"where Z Let PK (01) denote the average probability of error of a

sequence of length K symbols, conditioned on the channel vector h. The union

bound to PK (e|h) is obtained by summing over all possible error sequences eK

and averaging with respect to all possible transmitted sequences c K . Assuming

transmitted codewords with equal probability,

where for 4-PSK turbo-STCM with two transmit antenna, P (cK) = 2 -4K is

the probability of a single sequence of 4K bits. In the previous expression, the

Bhattacharyya bound was applied to the union bound. We use the notation B K (eh)

to denote the Bhattacharyya union bound to the sequence error probability condi-

tioned on the channel. It is not difficult to check that the symbol mapping for
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space-time coding, as shown in Fig. 2.2 and defined in (4.13), is not an isometry,

hence SED's associated with different transmitted sequences are not preserved. It

follows that all possible transmitted and received codewords need to be taken into

account in computing the union bound.

2. Ensemble distance spectrum 

The computation of the union bound are concerned for 4-PSK turbo-STCM

with N 2 transmit antennas and an interleaver size of K symbols. Computation

of the union bound proceeds by enumerating all SED's. The union bound for

turbo-TCM with single antenna was developed in [68, 69]. We follow the methodology used

in the reference with suitable modifications to account for the differences between

STC and TCM. We start by noting that expression (4.13) is of a union bound that

incorporates all error sequences and it is averaged over all transmitted sequences.

The goal is to list all possible SED's and their multiplicity, i.e., to determine the

ensemble SED spectrum for the code.

Consider the binary labels c k , k = 1, . . . , K. Each consists of a systematic

part and a parity part. In particular, for the 4-PSK two transmit antenna code,

the systematic and parity parts consist of two bits each. At the binary label level,

errors will be manifested as bit errors in the systematic and/or parity parts of c k .

The information are collected as to how many symbols have errors in some specified

values of i systematic bits and j parity bits.

For 2 bits/s/Hz, 4-PSK two transmit antenna

For 3 bits/s/Hz, 8-PSK two transmit antenna
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we define nip to be the number of symbols that have i systematic bit
L J

errors and j parity bit errors. The type of an error sequence is the vector n = (ni,j ) ,

whose elements are the number of symbols associated with each error (i, j). The

cumulative SED of sequences of type n depends on the transmitted sequence c K

as well as on the actual disposition of the systematic and parity bit errors in the

sequence. Indeed, an element of the vector n, say n 1 , 0 , corresponds to different

SED's depending on whether the systematic bit error is in the first or second of the

two systematic bits. For a given type n, cumulative SED's can be modeled as a

where Qn is the number

of possible distances associated with the type n. Statistical characterization of Dn2 is

provided by its probability mass distribution (p 1 , . ,pQn) .

We proceed to assemble the bit error union bound by enumerating the

cumulative SED's and their multiplicity for each type n. The Bhattacharyya

bound for an error sequence with SED d 2n,α is given by —21/2Zdn,α^2
 The contribution

to the union bound of a type n sequence is found by averaging over all possible

cumulative SED's associated with n:

3. Union bound of the bit error probability 

Previously, we have established the contribution to the union bound of a single

sequence of specified type n. Consider now the multiplicity of error sequences of type

n. Given an error sequence of type n, it is possible to determine the total number of

systematic bit errors w and parity bit errors z.

Indeed, for 2 bits/s/Hz, 4-PSK two transmit antenna



77

For 3 bits/s/Hz, 8-PSK two transmit antenna

All type n error sequences are also (w, z) sequences (i.e., with weight w

systematic bits and z parity bits). We refer to these as (w, z, n) sequences. However,

the set of (w, z) error sequences contains also sequences other than n, as the system

(4.17) and (4.18) has more than a single solution. The fraction of type n sequences

among all (w, z) sequences represents the probability of such sequence and it is given

by the ratio of the number of possible (w, z, n) sequences, Tw , z , n , to the total number

of possible (w, z) sequences, Tw , z . The total number of possible sequences with n 1,0 ,

77,2 ,0, etc., symbols in error out of K symbols is given by:

where (i, j) pairs are given by (4.14). Consider n 1 , 0 , the number of symbol errors

caused by a single systematic bit error. Since there are two systematic bits and any

could be in error, there are two symbol errors associated with each of the n1,0 symbols.

This multiplies the number of arrangements by 2 for each of the n 1,0 symbols. For

n1,1 symbols, the number of possible arrangements increases by 4 for each of the n 1 , 1

symbols, since both the systematic bit and the parity bit error can each be in two

different positions. Conversely, only a single arrangement is associated with n 2 , 2 . It

can be concluded that the multiplicity of (w, z, n) error sequences is:

The number of possible (w, z) sequences is the product of the number of arrangements

of w out 2K bits by the number of arrangements of z out of 2K bits:
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where 2K is the number of bits corresponding to the sequence of K symbols trans-

mitted by each antenna. It follows that the probability of a (w, z, n) sequence is

given by

The transmitted sequence of K symbols through each antenna corresponds to a

received sequence of 2K symbols. In terms of binary labels the received sequence has

a length of 4K bits. The multiplicity of (w, z) error sequences of length 4K bits is

precisely the quantity -6(4K , w, z), which was evaluated in (4.10). Subsequently, the

multiplicity of (w, z, n) sequences is given by 6,(4K, w, z)(1) (w, z, n) . A reminder that

since a(4K, w, z) is averaged over interleavers, the contribution of (w, z, n) sequences

to the union bound is likewise averaged over interleavers,

Next we proceed to account for all types n and all weights w and z. This completes

the evaluation of the bound over all error seauences. With reference to (4.13),

where /3 indexes all possible types 11,3 (w, z) for sequences with specified w and z,

i.e., all solutions to the system of equations (4.17). Note that averaging over the

interleavers has the effect of making the bound, independent of the transmitted

codeword cK . Substituting (4.23) and (4.24) in (4.13), we obtain the bound on the

probability of error of a sequence of length K symbols, conditioned on the channel

vector h

The result in (4.25) is to find the union bound for the bit error proba-

bility. First, determine the union bound of the probability of error sequences with
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systematic bits weight w:

Utilizing the approach in [6], averaging over all weights w, we compute the

expected number of errors. When divided by 2K, the number of information bits

in the transmitted sequence, we obtain the bit error probability conditioned on the

channel h, P

where the notation B (eh) is used for the union bound on the bit error probability

conditioned on the channel.

4. Average SED spectrum

The expression (4.27) shows that for given w, z and n, the bit error is a function

of the average E [ZDn^2] over the cumulative SED spectrum. Note that the random

variable representing the cumulative SED for a sequence of type n, Dn^2 , and hence,

are conditioned on the channel h. The cumulative SED is constituted by

the sum of SED's associated with single symbol errors,

where n i ,jD2 (i, j) is the contribution to the cumulative SED of the n i ,j symbols with

i information bit errors and j parity bit errors and D 2 (i, j) is a random variable

modeling the SED for a single received symbol with (i, j) errors. Assuming that the

SED's D 2 (i, j) in an error sequence are uncorrelated,



80

Recalling the notation c k for binary labels of transmitted symbols, and e k for binary

labels of errors, the average contribution to the bound by a symbol error with i

information bits and j parity bits in error is given by

where P (ck ) is the probability of a symbol with binary label ck , P (c k 	ck e ek ) is

the pairwise error probability, and the sum is taken over all errors with i systematic

and j parity bits.

An example is provided below to help clarify the preceding argument.

Example

The equivalent symbol mapping in the AWGN channel is shown in Fig. 2.2.

The STC encoder is clearly not optimized for operation over the AWGN channel.

No attempt is made to optimize the codes, as we focus on the analysis rather than

on the performance.

For simplicity, it is assumed in this example that hT = [1, 1] . For the case

of 4-PSK two transmit antenna, and assuming equally likely transmitted symbols,

Consider errors with one systematic bit i 1 and one parity bit

j = 1. Since either of the two errors can occur in either one of two bits, there are

four possible e k 's. Assuming those errors to be equally likely,

Thus

The computation proceeds by considering each of the individual errors for each of

the transmitted symbols. For example, the contribution of error label ek = (1010) is

determined from the following table
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It follows that ek = (1010) contributes SED's with the following multiplicity:

The computation of E [Z D2 (1 '1 is completed by listing the contributions of

the other i = j = 1 errors, namely (1001) , (0110) , and (0101) . When all results are

aggregated, the following spectrum of SED's is obtained for such errors:

It follows that

are evaluated in a similar manner.

4.4 Examples of Performance Analysis over the AWGN Channel

This part contains numerical examples of the computation of the union bound of

turbo-STCM over the AWGN channel. The turbo-STCM system consists of two

parallel concatenated 8 state 4-PSK space-time codes as shown in Fig. 3.2 with

throughput 2 bits/s/Hz and two transmit-one receive antenna configuration.

Fig. 4.2 (a), (b) and (c), illustrate the performance analysis of interleaver sizes

of 130, 1300, and 5200 symbols, respectively. An approximation (since not all terms

are computed) to the union bound is found for 8 state 4-PSK turbo-STCM. Each

figure has a vertical line passing through the capacity E b /N0 = 2.1 dB, which is

referred to the expression (2.3) and come from Fig. 2.3 in Chapter 2. Fig. 4.2

also presents the simulation results after eight iterations. As we see, simulations

results are consistent with the expectation of performance improving with the size of
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interleaver. The bounds are computed from expression (4.27). Note that the union

bound is obtained by summing over all error sequences with systematic and parity

weights, w and z, respectively, from 1 to 2K bits. Computation of the full bound is

prohibitive in its complexity; fortunately it is also unnecessary. One of the goals here

is to investigate how many terms are required to obtain good approximations of the

union bound. Main contributions to the bound are provided by error sequences with

low weights w and z. Low weights will results in small SED's, which in turn will be

the dominant terms in the union bound. To generate the union bound curves in the

figures, we summed over error sequences with systematic part weight w as indicated

and with parity weight 0 < z < 32. Comparison of the simulation results with the

curves of w = 1 show that when only error sequences with a single systematic bit are

incorporated, the bound serves as a lower bound. For K = 130 in Fig. 4.2 (a), about

w = 5 terms need to be summed to get the upper bound. For larger interleavers,

Fig. 4.2 (b) and (c), w = 2 terms suffice. Note that as the signal-to-noise ratio

increases, the curves for the different systematic weights coalesce, which indicates

that the lower weights are indeed dominant.

4.5 Union Bound for the Fading Channel

To evaluate the average union bound on the bit error probability over the Rayleigh

fading channel, it is necessary to average the right hand side of (4.27) over the channel

h. The average union bound is given by

where the order of the expectation operations is switched with respect to squared

Euclidean distance (SED) D and h. We now focus on evaluating the term
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(4.4) is used to express the cumulative SED associated with an error sequence:

where the definition of the K x 1 vector x is obvious from the context, and the

superscript denotes complex and transposed. Since h is a complex-valued Gaussian

vector, the vector x is a complex-valued Gaussian multivariate with zero mean and

covariance matrix R,„ = E [xxH] with elements mkl , 1 < k,1 < K. Recalling the

assumption of independent SED's in an error sequence, it is easy to show that

was defined in (4.3), and the norm is Euclidean,

It follows from the definition of Z (right after (4.12)) and from

that

where 'y = rcEb/4N0 . Evaluation of the right hand side amounts to the computation

of a Laplace transform with respect to the quadratic form of a complex Gaussian

random variable. Using [72],

where IK is the K x K identity matrix.

To continue with the evaluation of (4.32), it is necessary to compute

whose domain are random variables with realizations in the set of SED's possible
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for an error sequence of type 11,3 . The quantity Dn2 
3
 is interpreted as an equivalent

cumulative SED averaged over fading. Using (4.36) and grouping symbol SED's

according to the number of systematic bit errors i and parity bit errors j, (similar

to the steps leading to (4.29)), we can write

The last expression is analogous with (4.29) for the non-fading case. Retracing the

steps after (4.29), we identify

where D 2 (i, j) are the equivalent symbol SED's in the relation

To evaluate (4.38) in analogy to (4.30)

In this expression, d2 (ck , ek ) is the equivalent symbol SED averaged over fading.

From (4.36), it can be expressed in terms of the symbol SED for the non-fading case,

where 62 was defined earlier in the expression (4.34). Computation of

continued with steps similar to those in the example following (4.30). The difference

between the fading and non-fading case is that in (4.30), Z is substituted with e and

d2 (ck e ek ) is substituted with

When the computation of
2

completed, the result can be used in (4.38) to obtain ED le n' 1 for an error sequence
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union bound of bit error for turbo-STCM over the Rayleigh fading channel can be

written

Extension to Multiple Receive Antennas

In this subsection, we outline the extension of the union bound from a single

receive antenna to M receive antennas. The channel matrix H of (3.1) can be

cients between the transmit antennas and antenna index m at the receiver. The

symbol SED in (4.2) can be rewritten for the case of M antennas at the receiver

It follows that the cumulative SED can be expressed

where the MK x 1 vector x is a complex Gaussian multivariate with zero mean and

covariance matrix related to that of M = 1 case (see (4.34)) as follows:

The symbol 0 is the Kronecker product and IM is the M x M identity matrix.

Similar to (4.36), it follows that



86

Retracing the steps after (4.36), it is easy to show that the equivalent symbol SED

averaged over fading is related to the non-fading symbol SED through the relation

The last expression is a generalization of (4.40) to the Al receive antenna case. The

symbol SED's in this expression are then used to determine the distribution of the

equivalent cumulative SED 15n2 . The expression for the union bound of the bit error

probability is given by (4.41), where the random variable Dn^2β now incorporates the

effect of /II receive antennas.

4.6 Numerical Results for the Fading Channel

This section contains numerical examples that demonstrate the union bound of

turbo-STCM over the block-fading channel. For comparison, simulation results are

also provided. The simulation is based on Monte Carlo runs with 10,000 channel

realizations for each Eb /N0 . As in the numerical examples of Chapter 3, the channel

model was Rayleigh block-fading, meaning that the channel was assumed constant

during a frame of F = 130 symbols, but independent frame-to-frame. Simulation

results shown are averaged over random interleavers of size as specified in the figures.

The turbo-STCM example considered here consists of two parallel concatenated

space-time codes throughput 2 bits/s/Hz 4-PSK and 3 bits/s/Hz 8-PSK for two

transmit and one/two receive antennas.

Fig. 4.3 and 4.4 provides the performance analysis of 8 state 4-PSK turbo-

STCM, corresponding to the one and two receive antennas, respectively. Each figure

is divided in three parts corresponding to interleaver sizes K = 130, 1300 and 5200

symbols. Computation of the union bound is based on (4.41). The expression

specifies a bound obtained by summing over all error sequences with systematic

weights 1 < w < 2K, and parity weights 0 < z < 2K. Computation of the full
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bound is prohibitive in its complexity and it is also unnecessary. One of the analysis

goals is to investigate how many terms are required to obtain a good approximation

of the union bound. Each curve in each figure is labeled with the weights w of

the error sequences. In all cases, the parity terms were 0 < z < 15. For example,

the union bound curve labeled w = 2, was generated using all error sequences with

systematic weight 1 < w < 2 and parity weight 0 < z < 15. Note that for computing

the double sum in (4.41), this is just a small subset of 32 different types of sequences

(corresponding to different w and z) out of some 108 possible for K = 5200. The

justification of using only a small subset of error sequences is that the small weights

result in sequences with small SED's, which in turn, contribute the dominant terms

to the union bound. From the figures it can be observed that error sequences corre-

sponding to w = 2 are sufficient to provide a good approximation to the error bound.

For example, it can be observed from Fig. 4.3 (b) that the curves for w >= 2 coalesce

for Eb /N0 > 20 dB. Similarly, for the two receive antenna case, in Fig. 4.4 (b)

the curves coalesce for Eb /N0 >= 12 dB. These results justify simplifying the bound

evaluation by neglecting terms with large weights.

Fig. 4.5 and 4.6 show performance analysis for 16 state 8-PSK turbo-STCM

with one and two receive antennas, respectively. In this case, the performance

analysis follows the same steps of 4-PSK turbo-STCM except employing the IOWE

of the individual 16 state 8-PSK constitute space-time codes, as shown in (4.6 and

the average SED spectra. The expression (4.41) will specify a bound obtained by

summing overall error sequences with systematic weights 1 < w < 3K, and parity

weights 0 < z < 3K. In all cases, the parity terms included in the bound were

0 < z < 20. From the figures it can be observed that error sequences corresponding

to w = 2 are sufficient to provide a good approximation to the error bound. For

example, it can be observed from Fig. 4.5 (b) of interleave size K = 1300 that the
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curves for w >= 2 coalesce for Eb /N0 > 20 dB. Similarly, for the two receive antenna

case, in Fig. 4.6 (b) the curves coalesce for Eb /N0 >= 14 dB.

4.7 Chapter Summary

In this chapter, the performance bounds are developed for turbo-STCM over AWGN

and Rayleigh block-fading channels with multiple transmit and multiple receive

antennas. The performance bounds are based on the union bound. The union

bound is expressed in terms of IOWE of the individual constitute space-time codes

and the average SED spectra. It is shown that a subset of dominant error paths

provide a good approximation of the bound thereby alleviating the computational

effort involved in computing the full union bound. The bound is expressed in terms

of parameters of the individual space-time codes that make up the turbo-STCM

code, interleaver length, number of transmit/receive antennas, the squared Euclidean

distance spectra, and the statistical properties of the channel. It is shown that a small

number of terms with low systematic bit weights is sufficient to yield an accurate

upper bound on the bit error. The theoretical expressions are demonstrated by a

close match with simulation results. This bound provides researchers with a useful

analytical tool for the design and analysis of turbo space-time codes.



Figure 4.2 Union bound for 8 state 4-PSK turbo-STCM (2T1R) over the AWGN
channel with interleavers of size (symbols): (a) K = 130, (b) K = 1300, (c) K =
5200.



Figure 4.3 Union bound for 8 state 4-PSK turbo-STCM (2T1R) over the block-
fading channel with interleaver of size (symbols): (a) K = 130, (b) K = 1300 and
(c) K = 5200.
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Figure 4.4 Union bound for 8 state 4-PSK turbo-STCM (2T2R) over the block-
fading channel with interleaver of size (symbols): (a) K = 130, (b) K = 1300 and
(c) K = 5200.
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Figure 4.5 Union bound for 16 state 8-PSK turbo-STCM (2T1R) over the block-
fading channel with interleaver of size (symbols): (a) K = 130, (b) K = 1300 and
(c) K = 5200.
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Figure 4.6 Union bound for 16 state 8-PSK turbo-STCM (2T2R) over the block-
fading channel with interleaver of size (symbols): (a) K = 130, (b) K = 1300 and
(c) K = 5200.



CHAPTER 5

CONCLUSIONS AND FURTHER WORK

Various channel coding, diversity combining and other techniques have been

proposed, studied and applied to improve performance of wireless communications

operating in severe signal environments. The turbo coding technique, which was

introduced in 1993 [2], is a way of concatenating two simple convolutional codes in

parallel to obtain an overall powerful code. However, Coding alone cannot exploit

the richness of the multipath channel. Recent new results in capacity show that

multiple antennas at both the transmitter and receiver sides can improve performance

without expanding bandwidth. To approach the projected outage capacity of the

multiple-input multiple-output (MIMO) multipath channel [20, 73, 19, 60], new

techniques are required that combine turbo coding and both transmit and receive

spatial diversity.

The first phase of this research investigated the interpretation of space-time

processing from the point of view of information theory. We computed the capacity

and cut-off rate of multiantenna system over the AWGN channel. Then the outage

capacity is extended for frame error rate and signal-to-noise ratio, the ultimate limits

of bandwidth efficiency [20] in the fading channel. We also derived the Fano lower

bound for the MIMO channel to obtain a relation between bit error probability and

signal-to-noise ratio for a fixed data transmission rate.

The second phase of this research proposed a new channel coding scheme of

turbo space-time coded modulation with multiple transmit and receive antennas.

Turbo-STCM combines the advantages of powerful turbo codes with the transmit/receive

diversity of space-time codes.	 The scheme utilizes recursive and systematic

constituent space-time codes and features full diversity and full rate. An iterative

symbol-by-symbol maximum a posteriori algorithm operating in the log domain is

developed for decoding turbo-STCM. Using simple space-time component encoders,

94
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system performance is studied for 4-PSK and 8-PSK turbo-STCM codes with

multiple transmit and receive antennas. It is shown that significant gain can be

obtained in performance over the Rayleigh fading channel. The new scheme provides

an advantage of 1-3 dB over conventional space-time codes of similar complexity.

In the third phase of this research, as a initial step, we derived the union

bound of turbo-STCM system with multiple transmit antennas and one receiver

antenna over the AWGN channel. This bound is independent of the particular inter-

leaver used by introducing a uniform interleaver, which maps an input word into all

its permutations [56]. The ensemble of codes is generated by varying interleaving

permutations for a given size interleaver. This approach enables us to express the

union bound of the turbo code in terms of the IOWE of the constituent codes and

the interleaver size. It is shown that a small number of terms with low systematic bit

weight is sufficient to yield an accurate upper bound on the bit error. After that, this

idea was extended to other high level modulations and block fading channel. These

bounds are demonstrated by comparison to computer simulations utilizing iterative

log-MAP decoding. Turbo-STCM schemes have the potential to facilitate high-rate

data transmission over fading channels in future wireless networks.

The original contributions of this research are:

• Fano lower bound concept of space-time processing in block fading channel.

It shows us the direction of spatial diversity with multiantenna system [64] as

shown in [31].

• Turbo-STCM: a new scheme of combining turbo coding with the spatial

diversity advantage of space-time processing and the bandwidth efficiency of

coded modulation under a single framework [49].

• Performance analysis of turbo-STCM scheme over AWGN channel [50].

• Error Performance analysis of turbo-STCM over the Fading channel [51, 52].



96

There are some possible future work that involves:

1. A more detailed study of space-time coding limits from point of view of

information theory. As we know, Fano's inequality is a quite weak converse

condition [74]. Fano lower bound of space-time coding on bit error probability

is rather optimistic for practical code. Thus, to be able to answer questions

such as "How close is the particular turbo decoding algorithm to maximum a

posteriori solution?" , "how does conventional Viterbi decoding of space-time

codes approach to theoretical methods?", from a theoretical perspective, we

need much more accurate analysis of space-time codes.

2. As conventional space-time codes [31], turbo-STCM in this Ph.D. thesis is

only for a small number of transmit antennas (for example N = 2). But

recently there are several papers that investigate the design of space-time code

[33, 41, 47] for large number of transmit antennas. Serial concatenation of

space-time block codes with simple recursive inner encoder is probably one

solution for the extension of turbo-STCM to more general cases.

3. A method for computing the union bound of turbo-STCM is developed on the

bit error probabilities over fading channel. This method is currently the only

approach available for evaluating the performance of turbo space-time systems

analytically. Although there is now an abundance of literature on turbo codes

and some on turbo space-time system, there are numerous other wide open

and very important problems. For example, different channel models, different

concatenation methods (e.g. parallel versus serial concatenation), space-time

constituent code design, interleaver optimal design, etc. All of those should

be done by both Monte Carlo numerical simulations and the union bounding

techniques developed in this dissertation. Such a study would serve as a very

useful reference for further development on the subject.
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