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ABSTRACT

INTERFERENCE SUPPRESSION AND DIVERSITY
FOR CDMA SYSTEMS

by
Xiaodong Cai

In code-division multiple-access (CDMA) systems, due to non-orthogonality of the

spreading codes and multipath channels, the desired signal suffers interference

from other users. Signal fading due to multipath propagation is another source

of impairment in wireless CDMA systems, often severely impacting performance.

In this dissertation, reduced-rank minimum mean square error (MMSE) receiver

and reduced-rank minimum variance receiver are investigated to suppress inter-

ference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems

to combat fading; packet combing is studied to provide both interference suppression

and diversity for CDMA random access systems.

The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance

matrix is studied to improve the performance of MMSE receiver in CDMA systems.

It is shown that the reduced-rank MMSE receiver has much better performance than

the full-rank MMSE receiver when the covariance matrix is estimated by using a finite

number of data samples and the desired signal is in a low dimensional subspace. It

is also demonstrated that the reduced-rank minimum variance receiver outperforms

the full-rank minimum variance receiver. The probability density function of the

output SNR of the full-rank and reduced-rank linear MMSE estimators is derived

for a general linear signal model under the assumption that the signals and noise

are Gaussian distributed.

Space-time coding that is originally proposed for narrow band systems is

applied to an MC-CDMA system in order to get transmit diversity for such a

wideband system. Some techniques to jointly decode the space-time code and



suppress interference are developed. The channel estimation using either pilot

channels or pilot symbols is studied for MC-CDMA systems with space-time coding.

Performance of CDMA random access systems with packet combining in fading

channels is analyzed. By combining the current retransmitted packet with all its

previous transmitted copies, the receiver obtains a diversity gain plus an increased

interference and noise suppression gain. Therefore, the bit error rate dramatically

decreases with the number of transmissions increasing, which in turn improves the

system throughput and reduces the average delay.
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CHAPTER 1

INTRODUCTION

1.1 CDMA Systems

In wireless communications, multiple access schemes are used to allow many users to

share simultaneously a finite amount of radio spectrum. Frequency division multiple

access (FDMA), time division multiple access (TDMA), and code division multiple

access (CDMA) are the three major access techniques used to share the available

bandwidth in a wireless communication systems. FDMA assigns a unique frequency

band or channel to each user. Once the channel is assigned, no other user can share

the same channel. TDMA systems divide the radio spectrum into time slots, and in

each slot only one user is allowed to either transmit or receive. In CDMA systems, all

the users share the same spectrum bandwidth and time slots. Each user is assigned

a specific code that can be used to separate it from other users. In our work, we are

particularly interested in some techniques to improve the performance and capacity

of CDMA systems.

1.1.1 DS-CDMA

In direct sequence CDMA (DS-CDMA) systems, a narrowband signal that contains

a message is multiplied by a signal with a very large bandwidth signal called the

spreading signal. The spreading signal is compromised of chips that are defined by

a pseudo random sequence which is known to both the transmitter and receiver.

The chip rate is much greater than the data rate of the message. All users use the

same carrier frequency and may transmit simultaneously. The receiver performs a

correlation operation to detect the signal of the desired user. All other user's signal

appear as noise at the output of the correlator. The noise coming from other users

are called multiple access interference (MAI).

1



2

CDMA systems can tolerate some MAI. Introduction of each additional active

user increase the overall level of interference to the other users. Each user introduces

a unique level of interference that depends on power level, its timing synchronization

relative to other signals in the system, and its specific cross-correlation with other

CDMA signals. The tolerance to MAI is not unlimited and as the number of inter-

fering users increases, the equivalent noise results in degradation of performance.

Even if the number of users is not too large, some users may be received at such

high signal levels that a lower power user may be swamped out. This is the near-far

effect: users near the receiver are received at higher powers than those far away, and

those further away suffer a degradation in performance.

To combat the near-far problem, power control is used in most CDMA systems.

Power control is provided by each base station and assures that each mobile user

with the base station coverage area provides the same signal level to the base station

receiver. This solves the problem of a nearby user overpowering the base station

receiver and drowning out the signals of far away users. Despite the use of power

control, the performance and channel capacity DS-CDMA systems are limited by the

MAI.

1.1.2 Multicarrier CDMA

The multicarrier CDMA transmitter spreads the original data stream over different

subcarriers using a spreading code in the frequency domain. A fraction of the symbol

corresponding to a chip of the spreading code is transmitted through a different

carrier. In order to ensure that each carrier undergoes flat fading, the number of

carrier may be greater than the processing gain. In this case, the original data steam

is first converted into several parallel steams. Each parallel data steam is modulated

over N (processing gain) carriers. Multicarrier modulation can be performed using

inverse discrete Fourier transform (IDFT) which can be implemented very efficiently
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with fast algorithms. A proper guard interval is inserted in between different data

blocks to eliminate inter block interference. It has been shown [29] that the MC-

CDMA has better performance than the DS-CDMA in fading channels.

1.2 Multiuser Detection

Multiuser detection techniques can substantially increase capacity relative to the

matched filter receiver. The matched filter treats MAI the same as background

Gaussian noise, whereas a multiuser detector exploits the specific structure of MAI.

The optimal multiuser receiver proposed by Verdu [97] demonstrates that DS-CDMA

is not fundamentally MAI limited and can be near-far resistant. The optimal detector

comprises a bank of matched filters followed by a maximum-likelihood (ML) sequence

detector whose decision algorithm is the Viterbi algorithm [70]. The computational

complexity of the optimal detector grows exponentially with the number of users.

To reduce the complexity, many suboptimal detectors have been proposed.

These suboptimal detectors can be put in three categories: nonlinear detector, linear

detector and a hybrid of the nonlinear and linear detectors. The nonlinear multiuser

detectors include successive interference cancellation (SIC) [40, 43, 67, 100], parallel

inference cancellation (PIC) [17, 50, 51, 95, 111], decision-feedback detector [20] and

iterative detector [2, 64, 102]. In successive interference cancellation, the users are

ordered from strongest to weakest, and are successively demodulated. The inter-

ference are removed from users in that order. In parallel interference cancellation,

estimated symbols from all users simultaneously regenerate and remove interference

for each user. Whereas successive interference cancellation requires a nonuniform

distribution of transmitted powers across users to achieve uniform performance across

users, parallel interference cancellation is less sensitive to this power distribution. A

decision-feedback multiuser detector is analogous to th decision-feedback equalizer for

single-user channels. It consists of a linear feedforward filter followed by a feedback
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loop which implements successive interference cancellation. That is, the feedback

matrix is constrained to be lower-diagonal, so that users are demodulated succes-

sively. The iterative multiuser detector is inspired by iterative Turbo decoders [7].

Estimated symbols at the output of the decoder along with reliability information is

used to cancel, or partially cancel, interference to other users. The performance of

the iterative multiuser detector can reach the single-user bound.

The linear multiuser detector is an important class of suboptimal detector

because it is near-far resistant and is easily implemented. The linear multiuser

detector includes decorrelator [58, 59, 89] and linear MMSE detector [61, 110].

A decorrelator removes all cross correlations between users, therefore, eliminating

multiple access interference. Decorrelators are also shown to be optimally near-

far resistant [58]. However, in a manner analogous to zero-forcing equalization,

noise enhancement may be a problem. The MMSE detector [61, 110] minimizes the

mean squared-error between the transmitted symbol and the output of the detector.

MMSE detector has also been shown to be near-far resistant [61]. As the level of

background noise tends to be zero, or as energies of interferences increase to infinity,

the MMSE linear detector converges to the decorrelating detector.

A combination of the decorrelating detector and PIC was consider in [96],

combination of MMSE detector and PIC in [14, 39], and combination of the decor-

relating detector and SIC in [19]. In these detectors, a linear multiuser detector

is usually first used to generate initial symbol estimates. These estimates are then

used in a parallel or successive interference canceler to remove residual interference

from the received signal, giving a"cleaned-up" signal. This signal is again input to

a linear multiuser detector, giving a refined set of estimates. This procedure can be

iterated to improve the estimates further.
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1.3 Diversity Techniques

In wireless environment, signal fading arises primarily from multipath propagation

of a transmitted signal due to reflections off physical objects. The strength of the

fading signal may be very weak due to destructive addition of multipaths in the

propagation media. Severe attenuation in signal strength makes it impossible for the

receiver to determine the transmitted signal. However, the effects of fading can be

substantially mitigated through the use of diversity techniques. Three main forms

of diversity are traditionally exploited to varying degrees in wireless communications

systems: temporal diversity, spectral diversity, and spatial diversity.

Temporal diversity is effective when the fading is time-selective. Channel coding

in conjunction with time interleaving effects temporal spreading of symbols, thereby

providing for diversity. Spectral diversity is effective when the fading is frequency-

selective. This form of diversity can be practically exploited when the available

bandwidth for transmission is large enough that individual multipath components

can begin to be resolved, or equivalently when it is large enough that different

subbands of the transmission bandwidth experience effectively independent fading.

In CDMA systems, the signal bandwidth is much larger than the coherent bandwidth

of the channel. Thus, CDMA system can take advantage of frequency diversity.

Spatial diversity involves the use of multiple antennas at either the receiver, the

transmitter, or both. The signals received from sufficiently spaced antennas would

have essentially uncorrelated envelopes. The receiver perform combining or selection

and switching to improve the quality of the received signal.

The use of multiple antennas at the mobile makes the remote units larger and

more expensive. It is more economical and feasible to add more antennas to the base

stations rather than the remote units. For this reason, transmit diversity schemes are

very attractive in a practical system. The early approaches on transmit diversity use

signal processing at the transmitter to spread the information across the antennas.
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In [108, 109, 104, 77, 107], orthogonal signaling is used at the transmitter. Phase

sweeping is employed in [35, 53] so that the received signal is a fast fading signal

even the channel is slow fading. The significant gain of the transmit diversity can

be realized by view this problem from a coding perspective rather than purely from

the signal processing point of view. Recently, Space-time trellis coding [87, 86] and

space-time block coding [1, 85] are proposed for transmit diversity. General theory

to construct effective space-time codes are given in [32, 36]

1.4 Thesis Overview

In this introductory chapter, we have attempted to review the CDMA systems,

multiuser detection and diversity techniques, and thus lay the background for the

subject material of this proposal.

Chapter 2 is about the reduced-rank MMSE receiver, the reduced-rank

minimum variance receiver and the probability density of conditioned SNR of

linear MMSE estimators. In Section 2.1, the reduced-rank MMSE receiver is first

developed. Then, performance of the reduced-rank MMSE receiver in terms of the

MSE at the output of the receiver is analyzed. Finally, an adaptive reduced-rank

MMSE receiver is developed based on a subspace tracking algorithm. In Section 2.2,

we start by developing a low-complexity minimum variance (MV) CDMA receiver,

and then develop a reduced-rank MV receiver. In section 2.3, the probability density

function of conditioned SNR of linear MMSE estimators is studied. These estimators

are the full-rank estimator obtained by sample matrix inverse (SMI) method and the

reduced-rank estimator obtained by the principal component inverse matrix (PCI)

method.

In chapter 3, MC-CDMA systems with transmit diversity is studied. The

space-time block code is used to introduce transmit diversity. Our emphasis is put

on the design of linear receiver that decodes the space-time code and suppresses
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interference. Channel estimation using pilot channels or pilot symbols is studied for

the multicarrier CDMA system with space-time coding.

In chapter 4, the system performance of CDMA random access systems with

linear receivers and packet combing in multipath fading channels is analyzed. By

using packet combing, the receiver obtains a diversity gain and a interference

suppression gain. Both the slotted CDMA system and unslotted CDMA system

with random spreading signature are considered. The bit error rate of the MMSE

receiver, decorrelator and matched filter receiver in fading channels is first calculated,

and the system throughput and average delay is then analyzed. Chapter 5 contains

concluding remarks and a summary of the thesis.



CHAPTER 2

REDUCED-RANK MINIMUM MEAN SQUARED ERROR
RECEIVER AND REDUCED-RANK MINIMUM VARIANCE

RECEIVER FOR DS-CDMA SYSTEMS

Minimum mean square error (MMSE) interference suppression methods have been

proposed for DS-CDMA systems [61]. It has been shown that such schemes provide

potentially large performance gains relative to the conventional matched filter

receiver. The blind MMSE receiver in [37] minimizes the receiver's mean output

energy (MOE) while constraining the response of the user of interest to a constant. It

is shown that MOE and MMSE are directly related and minimizing one is equivalent

to minimizing the other.

In [76], linear multiuser detectors for synchronous CDMA are derived within

the framework of constrained optimization [44]. In the case of a single constraint

that corresponds to knowledge of the desired user's code, the general constrained

optimization detector reduces to the MOE detector in [37]. These linear detectors

are similar in spirit to the minimum variance beamforming and generalized sidelobe

canceler (GSC) in the context of array signal processing [44]. The spreading code

of the desired user plays the same role as the steering vector. An extension of

the constrained optimization approach to multipath CDMA channels was provided

in [88, 90]. It is shown that the performance of the minimum variance receiver with

optimal constraints approaches the performance of MMSE receiver at high SNR. The

optimal constraint vector can be found by maximizing the output signal power after

the interference is suppressed using a min/max approach.

In DS-CDMA systems, the number of active users, K, is usually less than the

processing gain, N. Hence, the effective rank r of the noise-free signal covariance

matrix is usually less or much less than the signal dimension, N. In this chapter,

we explore the low rank nature of the CDMA signal to develop the reduced-rank

8
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MMSE receiver and the reduced-rank minimum variance receiver. The objectives of

reduced-rank MMSE receiver include reducing both the computational complexity

and the amount of training data that is required for covariance estimation. Reduced-

rank processing methods include the multistage Wiener filter (MWF) [27], the cross-

spectral metric (CSM) [25, 24], principal components inverse (PCI) [93, 92, 49],

eigencanceler [31, 30] and fixed transforms [68]. The effect of the number of data

samples in covarinace matrix estimation on the reduced-rank MMSE filter is studied

in [49, 68, 10]. Reduced rank multistage Wiener filter and PCI reduced rank MMSE

filter have been applied to CDMA system [38, 101]. In this chapter, we will use CSM

method to reduce the rank of MMSE receiver and minimum variance receiver. It will

be shown that the reduced-rank receiver can outperform full-rank receiver when the

covariance matrix is estimated from an finite number of data samples. To further

understand the performance of the full-rank and reduced-rank receiver, we study

the density function of the conditioned output SNR of the linear MMSE estimators

based on a general signal model.

2.1 Reduced-Rank MMSE Receiver

We consider a DS-CDMA system with K users simultaneously transmitting over an

additive white Gaussian noise (AWGN) channel. The received baseband signal can

be modeled  as

where n(t) is AWGN with power spectral density a 2 , Ak is the received signal

amplitude from user k, T is the symbol duration, τk is relative delay with respect

to the receiver, and sk (t) is the normalized spreading waveform. It is assumed that

{bk (i)} is a set of independent equiprobable +1 random variables, and that sk (t) is
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supported only on the interval [0, 7] . Spreading waveform, sk (t), is expressed as

user, 71) (t) is a normalized chip waveform of duration Tc , and N = TIT, is the

processing gain.

In this section, we restrict our attention to the synchronous case of model (2.1),

in which 7-1 = 7-2 = = τK = 0. It is then sufficient to consider the received signal

during one symbol duration, and the received signal model becomes

An asynchronous system of K users can be viewed as equivalent to a synchronous

system with 2K — 1 users [64 Thus the results of this section apply in this context

as well.

Consider the synchronous model (2.3). Sampling the chip-matched filter output

at chip rate, we get an N x 1 vector within a symbol interval T

is the normalized signature waveform

vector of the lath user, and n is a white Gaussian noise vector with mean 0 and

covariance matrix σ^2IN (IN denotes the N x N identity matrix). We can also express

(2.4) as
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2.1.1 Reduced-Rank MMSE Receiver

Suppose the desired user is user 1, a linear multiuser detector for demodulating this

user's data bit in (2.5) is in the form of a linear filter followed by a hard limiter

The linear MMSE detector minimizes the mean-squared error that

is given by

It is easily shown that the MMSE solution for c is

is the cross-correlation between b 1 and r, and matrix C

is the covariance matrix of r. We call this detector full-rank MMSE detector. The

covariance matrix is given by

It can also be expressed in terms of its singular value decomposition

eigenvalues of C in descending order and U, = [u1... UK] contains the corresponding

orthonormal eigenvectors; An = σ^2IN-K and Un contains the N — K orthonormal

eigenvectors with the eigenvalue 0-2 . The range space of U, is called the signal space

since it has the same range as S. The range of Un  is called the noise space.

Since s 1 is orthogonal to the noise space, it is easily shown that the full-rank

MMSE detector in (2.8) can also be expressed in terms of the signal space parameters
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and mean-squared error is written as

It can be seen from (2.11) that the MMSE detector c is a vector lying in the signal

space. The dimension of the signal space is K, hence, we call this detector rank-K

detector. It has the same performance as the full-rank detector because the desired

user's signature is orthogonal to the noise space. We will see later that the rank-K

detector performs better than the full-rank detector when the covariance matrix is

estimated. In the following theorem, we derive the proposed reduced-rank MMSE

detector that lies in a subspace of the signal space.

Theorem 1 Suppose that matrix U,. contains r(r < K) columns of U3 and A,.

consists of corresponding eigenvalues, and the reduced-rank MMSE detector lies in

the range space of U r , then the rank-r MMSE detector C r is given by

and the mean-squared error is found as

Proof: Let w = [w 1 , w2 , , wr ] T and c,. = 1.4w, then the mean-squared error is

calculated by

Derivative of M S Er with respect to w is obtained as
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Letting it be equal to the 0 vector, we get

Here we use the fact that the eigenvectors are orthonormal. Then the rank-r MMSE

detector in (2.13) follows. By substituting w in (2.17) into (2.15), we get the mean-

squared error in (2.14). 111

Rank r MMSE detector can also be obtained as follows. The projection matrix

for the range space of U r is Pr = UrUTr . The projection of the received signal to the

range of U r is r 1 = Prr. Then linear MMSE detector based on r 1 is cr1 = C1-1P1,

where C 1 is the covariance matrix of r 1 and Pi is the cross-correlation between r 1

and b 1 . It is easily shown that c r1 is the same as cr in (2.13).

Comparing (2.14) and (2.12), we can see that the mean-squared error of the

reduced-rank detector is not less than that of the rank-K detector. Since the signal

to interference ratio for the MMSE detector is given by SIR =1/MMSE — 1 [61],

the reduced-rank detector cannot perform better than the full-rank detector. But

typically the K user powers are different. Then the desired user may lie in a lower

dimensional subspace of the signal space. In this case, if we choose U r such that

the desired user is in the range of U,., then the reduced-rank detector has the same

performance as the rank-K detector. If the desired user lies in the whole signal space,

the reduced-rank detector will perform worse than the rank-K detector. For a given

rank, we can choose the subspace in which the reduced-rank MMSE detector lies

such that the loss of the performance is minimized. Let us define a quantity Q i as

Q i can be viewed as the normalized energy of user 1 projected onto the ith base.

Then MMSE in (12) can also be expressed as
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Therefore, given the rank of the detector, r, the optimal rank-r MMSE detector

is obtained by forcing the detector to lie in the subspace spanned by the r basis

corresponding to r largest Q i . Note that the proposed subspace selection makes use

of the signature of the desired user. This method of choosing subspace is similar to

the cross spectral metric (CSM) approach [26] for subspace selection in the context

of a generalized sidelobe canceler.

In practice, the covariance matrix C is unknown. It is estimated from the

received signal. A commonly used estimation is the sample covariance matrix that

is the maximum likelihood estimate of the covariance matrix under the Gaussian

assumption. The eigenvectors and eigenvalues of the estimated covariance matrix are

different from those of the true covariance matrix. The MMSE detector is obtained

from the estimated eigenvectors and eigenvalues. We will see later that the reduced-

rank MMSE detector lying in proper subspace performs better than both the rank-K

detector and the full-rank detector. This is the major advantage of the reduced-rank

MMSE detector.

2.1.2 Performance Analysis

In this section, we analyze the performance of the reduced-rank MMSE detectors in

terms of the mean-squared error at the output of the detectors. The reduced-rank

MMSE detectors are obtained from the estimated covariance matrix. We first briefly

review the asymptotic statistics of the eigenvalues and eigenvectors computed from

the sample covariance matrix. When M samples of data vector {rm , m = 1, , M}

are available, the covariance matrix can be estimated by

Let Ai and u i denote the ith eigenvalue and corresponding eigenvector computed

from the sample covariance matrix C. We defined Δλi = A i — Xi and Dui = ui — ui .

Assuming that all elements of PA, i 1, , K} are distinct. We know from
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is asymptotically normal with zero mean, and

is asymptotically independent of {Δui, i = 1, . , K} . Elements

are mutually independent. The variance of Δλi is o =

2A2 /M. The covariances of {Du i , i = 1, , K} in the limiting distribution are given

by [3]

Let us denote the rank-r MMSE detector obtained from the estimated covariance

matrix as é,. It is a random vector depending on the estimated eigenvalues and

eigenvectors. And the mean-squared error conditioned on c r is also a random

variable. Our objective is to get the mean of the conditioned mean-squared error.

The approach is based on a second-order Taylor series expansion of the conditional

mean-squared error.

The mean-squared error conditioned on ê, is given by

The second-order Taylor series expansion of MSEr around the point P={ui, λi , i =

1, 	 , r} is given by

where vector gi is the gradient of MSEr along u2 at point P; fi is the first partial

derivative of MSEr with respect to λi at point P; 	 is the second partial derivative

of MSEr with respect to λi and 	 at point P; and the elements of the vector h o

and matrix Hip are given by



Take expectation of MSEr with respect to {Δλi Dui , i = 1, , r}, we have

where tr(•) denotes the trace of the matrix in the parenthesis. Here we use the fact

that the means of Δλi and Du i are zero and the elements of {Δλi, i = 1, , r} are

mutually independent and {Δλi, i = 1, , r} is independent of {Du i , i = 1, ... , r}.

Fii and 114 can be found as

16

p(i)p. Derivation of Fii and Hij is given in Appendix A.

2.1.3 Adaptive Reduced-Rank MMSE Receiver Based on a Subspace-
Tracking Algorithm

To implement the low-rank MMSE detector, we need to estimate the eigenvectors

of the covariance matrix corresponding to the signal space and the corresponding

eigenvalues. This can be achieved by using singular value decomposition (SVD) or

eigenvalue decomposition (EVD) of the data sample covariance matrix. Classical

batch EVD and batch SVD algorithms [28] are computationally demanding. In

order to overcome this difficulty, a number of adaptive algorithms for subspace

tracking has been developed [18, 80, 113]. In [101], the projection approximation

subspace tracking (PASTd) algorithm in [113] is used for blind adaptive multiuser

detection. The PASTd algorithm has low computational complexity (O(NK)).
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However, its convergence speed is very slow. To choose the optimal rank for the

proposed low-rank MMSE detector, we need the orthogonal eigenvectors. However,

the basis for the signal subspace tracked by PASTd are not orthogonal. In this

work, we use the subspace tracking algorithm in the low-rank adaptive filter named

LORAF 1 in [80]. The subspace tracking algorithm in LORAF 1 has computa-

tional complexity of O(NK2). There is another lower complexity (O(NK)) subspace

tracking algorithm in LORAF 3 in [80]. However, we observed in simulations that

it has very low convergence speed. In contrast, the subspace tracking algorithm in

LORAF 1 converges fast in simulations. In a CDMA system, users enter or leave the

system randomly. Therefore, the signal space changes. We need a fast convergence

algorithm to track variations of the signal space. The subspace tracking algorithm

in LORAF 1 assumes a known signal space dimension. It cannot track the rank of

the signal covariance matrix. In this work, we combine the rank tracking method in

[112] into the subspace tracking algorithm in LORAF 1. We next briefly review the

adaptive algorithm for both rank and subspace tracking.

Denote covariance matrix at time t as C t . Define an N x K matrix U0 with

orthonormal columns. The following orthogonal iteration [28] generates a sequence

of matrix {Lid:

where U t and Rt are the factors of a skinny QR decomposition of matrix A t .

Assuming that C t does not change in time, one can show [28] that the sequence

of recursion matrix { U t } will converge towards the matrix of dominant eigenvectors.

Likewise, the sequence of the triangular matrix {R t } will converge towards the

diagonal matrix of dominant eigenvalues. In our case, C t is defined by C t =

E it=i fi - irirr where 0 < < 1. C t is updated recursively according to Ct =
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rtrtT. A key step [80] towards the fast subspace tracking algorithm is the

orthogonal projection of the actual recursion matrix U t onto the previous subspace

spanned by the columns of Ut_1. Thus, we have

where e t = Ut iUt and A t is orthogonal to the column space of Ut-1. The update

equation (40) become

Only the last term requires O(N2K) operations but it can be

neglected without any performance penalty [80]. This results in the O(Nr2 ) recursion

for a direct updating of matrix A t :

The fast subspace tracking algorithm consists of equations (2.31) and (2.34). We can

modify this algorithm to track both the rank and the signal space as follows. Suppose

that the rank is K, and we track K+1 dominant eigenvectors and eigenvalues. Based

on the estimated eigenvalues, one can estimate the rank of the signal space using

information-theoretic criteria such as the Akaike information criterion (AIC)[103].

Suppose the estimated rank is r. If r < K, remove the last K — r columns from

matrix U t . If r > K, add a vector x to matrix U t as its last column. Vector x can be

obtained by projecting the data vector r t onto orthogonal subspace of column span

of U t . The quantity AIC is defined as follows:

is defined as
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The estimate of rank is given by the value of k that minimizes the quantity (2.35).

After the eigenvectors and corresponding eigenvalues are estimated, we can

construct the optimal low-rank MMSE detector. Assume that the receiver knows the
msT io ,2

lat
signature of the desired user, S i , the estimate of quantity Qi in (2.18) is Q =

The optimal rank-r MMSE detector, cr, is obtained using the r eigenvectors and

eigenvalues corresponding to r largest (2 i . Applying the previous data to each of K

low-rank detectors, { ci, i = 1, , K}, we can estimate the mean-squared error at

the output of each low-rank detector. The optimal low-rank MMSE detector is the

one having the smallest mean-squared error. When we estimate the mean-squared

error, the detector can operate either in the training mode or the decision-directed

mode. Finally, the proposed adaptive algorithm for the low-rank MMSE detector is

summarized in Table I.

2.1.4 Numerical and Simulation Results

In this section, we provide some simulation examples to demonstrate the performance

of the reduced-rank MMSE detector developed in section 2.1.1. Rank-r MMSE

detector lies in the subspace spanned by r eigenvectors corresponding to r largest

Qi (Qi is defined in (2.18)). We also give the analytical results using the technique

developed in section 2.1.2. We use Gold sequence as the spreading sequence. The

desired user is user 1. The performance measure for simulation is the signal to inter-

ference ratio (SIR) versus the rank of the MMSE detectors. Since the distribution of

the output of the linear MMSE detector is approximately Gaussian [69], the output

SIR translates easily into an equivalent error probability. For the fixed data bits of

the desired user, SIR is defined as SIR = E2 {cT,. 1.}/Var.{ r}, where the expectation

is with respect to the data bits of MAI's and the noise. When the covariance matrix

is known, i.e. the signatures and the amplitudes of all the users are known, SIR is
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given by

In simulations, the expectation operation is replaced by the time averaging operation.

In analysis, the performance measure is mean-squared error (MSE) versus the rank

of the detectors. The input SNR (SNR is defined as A1^2/σ2) of the desired user is

20dB.

Example 1: Simulation of a single user system

We first consider the single user case. The processing gain is N = 31. The

simulated performance is plotted in Fig. 2.1. The data plotted are averaged over

400 independent simulations. Since the noise-free signal has rank 1, performances

of all the detectors with different ranks are the same when the covariance matrix is

known. When the covariance matrix is estimated, we see that the rank-1 detector

has the best performance. If we use more basis other than the one corresponding to

the largest Q i , i = 1, . . . , N to construct the detector, we get more noise than the

desired signal at the output of the detector. Therefore, the performance degrades.

We can also see that the number of samples, M, used to estimate the covariance

matrix affects the performance of the rank-r (r > 1) detector. For example, when

M = 400, SIR at the full-rank detector output is 11.1dB. When M = 1000, it is

about 14dB.

Example 2: Simulation of 10 user systems

We next consider 10 user cases. The processing gain is N = 31. The data

plotted are the average over 400 independent simulations. In Fig. 2.2, nine inter-

ference users' SNRs are 10dB. This may be the case in which there is only one user

in the cell but there exist inter-cell interferences. The signature of the desired user

lies in a subspace whose dimension is 2 and most of its energy is in a one-dimensional

subspace. Therefore, when the covariance matrix is estimated, the rank-1 detector
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has the best performance. In Fig. 2.3, there are five weak interferences and four

strong interferences. The rank-2 detector has the best performance. Fig. 2.4 is for

the perfect power control case where nine interference users have the same power as

the desired user. In this case, rank-K detector has the best performance since the

signature of the desired user is in the whole signal space. All of the simulations show

that the detectors whose rank is greater than K perform worse than the optimal

reduced-rank detector.

Example 3: Comparison of simulation and analytical results

In this example, we compare the simulation results with the analytical results.

The processing gain is N = 31. There are 10 users in the system. The number of

samples used to estimate the covariance matrix is 1000. SNRs of different users are

chosen to be different in order to make the ten largest eigenvalues of the covariance

matrix be different which is necessary in analysis. The simulation results are the

average over 2000 independent runs. In Fig. 2.5 and Fig. 2.6, most of the energy

of the desired user is in a low dimensional subspace. Hence, when the detector

is obtained from the estimated covariance matrix, both the simulation results and

the analytical results show a reduced-rank detector has better performance than

the rank-K detector. But when covariance matrix is known, rank-K has the best

performance as expected. This shows the advantage of the reduced-rank MMSE

detector when the covariance matrix is unknown. In Fig. 2.7, interferences' powers

are close to that of the desired user. The signature of the desired user is in the whole

signal space. Therefore, the rank-K detector has the best performance.

Example 4: Performance simulation of the adaptive reduced-rank MMSE detector

Finally, we use the adaptive algorithm developed in Section 4 to simulate the

performance of the adaptive reduced-rank detector in a dynamic multiple-access

channel. The simulation results are displayed in Fig. 2.8. At t = 0, there are 10
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users in the channel. The desired user's SNR is 20 dB. There are six 10-dB users,

one 20-dB user, one 30-dB user, one 40-dB .user. At t = 2000, a 40-dB user enters

the channel; at t = 4000, the two 40-dB users exit the channel. The processing gain

is N = 31. The forgetting factor is = 0.995. The data plotted are the average

over 400 independent simulations. The first 100 iterations are in the training mode

and the rest are in the decision directed mode. The ten previous bits are used to

estimate the mean-squared error. We see that the optimal reduced-rank detector has

approximate 2dB advantage over the rank-K detector. The adaptive algorithm has

a fast convergence speed.

2.2 Reduced-Rank Minimum Variance Receiver

In this section, we consider the reduced-rank minimum variance (MV) receiver. The

advantage of minimum variance receiver relative to the MMSE receiver is that the

MV receiver can be implemented blindly. The MV receiver only needs know the

signature and the timing of the desired user. Its performance is close to the MMSE

receiver. In adaptive implementation of the optimal minimum variance receiver [90],

the optimal constraint vector is difficult to track. Furthermore, in complex multipath

channels, there is a phase ambiguity in the optimal constraint vector. Therefore,

the transmitted data should be differentially encoded. The phase ambiguity can

be resolved by differential decoding. In this section, we propose a RAKE receiver

followed by an equal gain combiner. The impulse response of the filter in each finger is

obtained by the minimum variance criterion. The noise at the output of the RAKE

receiver is approximately white. The transmitted data are differentially encoded.

Thus, we can use a simple equal gain combiner to collect all the energy of the desired

user. Every finger of the RAKE receiver is implemented adaptively with the same

structure as a GSC. A subspace tracker tracks the signal space of the data in the

low-branch of the GSC. Based on the tracked signal space, every finger of the RAKE



Figure 2.1 SIR of the MMSE detectors. N=31, K=1, SNR=20dB.
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Figure 2.2 SIR of the MMSE detectors. N=31, K=10, SNR=20dB, (K-1) inter-
ferences' SNRs 10dB .



Figure 2.3 SIR of the MMSE detectors. N=31, K=10, SNR=20dB, (K-1) inter-
ferences' SNRs are 10dB, 10dB, 10dB, 10dB, 10dB, 20dB, 30dB, 30dB, 40dB.

Figure 2.4 SIR of the MMSE detectors. N=15, K=10, SNR=20dB, (K-1) inter-
ferences' SNRs are 20dBs.
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Figure 2.5 MSE of the MMSE detectors. N=31, K=10, SNR=20dB. K-1 inter-
ference users' SNRs are 8.4dB, 8.8dB, 9.2dB, 9.6dB, 10dB, 10.4dB, 10.8dB, 11.2dB,
11.6dB.

Figure 2.6 MSE of the MMSE detectors. N=31, K=10, SNR=20dB. K-1 inter-
ference users' SNRs are 8dB, 9dB, 10dB, 11dB, 12dB, 20dB, 30dB, 31dB, 40dB.



Figure 2.7 MSE of the MMSE detectors. N=31, K=10, SNR=20dB, K-1 inter-
ference users' SNRs are 16dB, 17dB, 18dB, 19dB, 20dB, 21dB, 22dB, 23dB, 24dB.

Figure 2.8 Performance of the adaptive reduced-rank MMSE detector in a dynamic
multiple-access channel The processing gain is N=15. The forgetting factor is 0 =
0.995.

T
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receiver chooses a subspace of the signal space to form the reduced-rank receiver.

Since we need only one subspace tracker for all the fingers and constraint vectors

are fixed, the computation complexity of the proposed receiver is much lower than

that of the minimum variance receiver with the optimal constraints. Simulations

demonstrate that the performance of the proposed receiver is almost the same as

that of the minimum variance receiver with the optimal constraints. When the

covariance matrix is estimated, the optimal reduced-rank receiver outperforms the

full-rank receiver.

2.2.1 A Low-Complexity Minimum Variance Receiver

We consider a DS-CDMA system with K users simultaneously transmitting through

their respective multipath channels with additive white Gaussian noise (AWGN).

The transmitted signal due to the kth user is given by

where Ak is the signal amplitude, T is the symbol duration, τk is relative delay with

respect to the receiver, and sk (t) is the normalized spreading waveform given in (2.2).

The kth user's signal propagates through a multipath channel with the complex

impulse response gk (t). At the receiver, the received signal is first filtered by a chip

matched filter and then sampled at the chip rate. Thus impulse response of the

and the discrete-time channel

where q is the length of the channel impulse

The lth sample of the signal component

chip to the kth user is

For making a decision on the nth symbol of the desired user, we consider a

vector y[n] E CN+q corresponding to the nth observation interval. Let
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where [x] denotes the largest integer that is smaller than x. As in [60], let T L

denote the acyclic left shift operator, and TR denote the acyclic right shift operator,

both on vectors of length N + q. Thus, for a vector x

denote n

applications of these operators, resulting in left and right shifts by n, respectively.

vector due to the lath user is

The total signal vector is given by

where u is a complex AWGN vector with covariance a -2 1.

A linear receiver is a correlator w that produces the following statistic for the

nth symbol: z[n] = wTy[n]. The minimum variance approach selects the correlator

w by minimizing the output power E{z2 [n]} subject to a set of constraints [44] :

is the data covariance matrix. C is a matrix whose rows

specify the constraints, f is the constraint vector. As shown in [44], the optimal

solution to this problem is wo = Rveu(cR -y-icH)-if .

Suppose that the desired user is user 1, the q x (N + q) constraint matrix C is

The optimal vector f is found as the eigenvector of CR; 1 CH corresponding to

the minimum eigenvalue [90]. In adaptive implementation, the optimal vector f

is difficult to track. In [88], vector f is chosen as f = [1,0, , 0]T . By doing so, the
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receiver collects the signal energy in the first path but discards the energy in other

paths. To exploit all the energy, Liu et al. [57] proposed a decorrelating RAKE

receiver. The impulse response of the filter in the ith finger of the RAKE receiver

is obtained by above constrained optimization with the vector f i = ei , where e i

is the unit vector with all elements 0's except 1 at the ith position. The outputs

from the fingers of the RAKE receiver are coherently combined. The combining

vector is found as the principal eigenvector of the covariance matrix of the output

of the RAKE receiver. It is noticed that there are phase ambiguities in the optimal

vector f in Tsatsanis' receiver [90] and in the combing vector in Liu's decorrelating

RAKE receiver [57]. Therefore, transmitted data should be differentially encoded.

To reduce the complexity of the receiver further, we propose a simple equal gain

combiner after Liu's decorrelating RAKE receiver in combination with differential

encoding/decoding. First, we discuss the following fact.

Fact: The noise at the output of the RAKE receiver is approximately white.

Let vector v[n] E Cq denote the noise at the output of the RAKE receiver. The

covariance matrix of v is Rv = a2(CR-lriHr --ihricR-1R-1 (CRV CH ) -1 Suppose-̀J Y

that there is a matrix A such that CHAC = I, then Rv  = σ 2 A. From the relations

that CCHACCH = CCH and CCH ti I, we have A I. Thus v is approximately

white.

Denotes vector z[n] E Cq as the output of the RAKE receiver. Suppose that

there is no residual interference in z[n], the optimum decision variable [94] for the

differentially encoded data is U[n] = z[n — 1] 11R,7 1 z[n]. Since noise is approximately

white, the decision variable can be obtained from an equal gain combiner. It is given

by U[n] = z[n — 1]Hz[n]. In practice, the residual interference may not be negligible.

Nevertheless, we still use this simple combiner. We will see later in simulations that

this low-complexity receiver has almost the same performance as Tsatsanis' minimum

variance receiver with optimal cons traits.



Figure 2.9 Minimum variance receiver

2.2.2 Reduced-Rank Minimum Variance Receiver

The minimum variance receiver can be implemented in a partitioned form termed a

generalized sidelobe canceler (GSC) [44], as shown in Fig.2.9. The vector wee in the

ith finger in the upper branch can be expressed as w ci = CH (CCH ) - lei . Blocking

matrix B in the lower branch is chosen to satisfy BC H = 0 and often has dimensions

of N x (N + q) . The optimal adaptive weights wai can be found as [44]:

is the covariance matrix of the lower branch data, and

is the cross-correlation between the lower branch data and
L J 	 -L

output of the ith finger in the upper branch.

The covariance matrix Ryb can also be expressed in terms of its singular value

decomposition

(D depends on users' delays, min(2K, N) < D < min(3K + 1, N)) largest eigen-

values of Ryb in descending order and U3 = [u 1 ... up] contains the corresponding

orthonormal eigenvectors; 11 n = σ2IN-D and Ur, contains the N — D orthonormal

31
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eigenvectors with the eigenvalue a 2 . The range space of U s is called the signal space.

The range of Uri is called the noise space.

The full-rank solution in (2.44) is a vector in the signal space. The reduced-

rank solution to wag is a vector in a subspace of the signal space. Suppose wai^r is

in the range of matrix Ur where U,. contains r columns of the matrix Us and the

diagonal matrix A,. contains corresponding eigenvalues. Then w ai^r is given by

where um is the mth column of the matrix

Us. For a given rank r, to minimize the output power, the optimal war, chooses

r eigenvectors corresponding to r largest values of Q im ,. When Ryb and rybdi are

known, the output power of the reduced-rank receiver cannot be less than that of

the full-rank receiver. Therefore, any reduced-rank receiver performs worse than the

full-rank receiver. In a practical system, the covariance matrix, R yb , and the cross-

correlation, rybdi, are estimated. The estimates are

When the receiver is obtained from the estimated

covariance matrix and cross-correlation, simulations demonstrate that the rank-D

receiver always outperforms the full-rank receiver. Since the estimated signal space

and noise space are different with the true ones, the reduced-rank receiver with the

rank less than D may have better performance than the rank-D receiver. This is also

verified in simulations. Therefore, we can choose a proper subspace for every finger

such that the reduced-rank receiver achieves the best performance. An intuitive way

of choosing the subspace is to select the one such that the square of the output is

minimized. However, the reduced-rank receiver obtained using this method has lower

signal to interference ratio (SIR) than the full-rank receiver in simulations. We thus

propose another method for choosing reduced-rank receiver as follows. For every

rank, r (1 < r < D) , we can get an optimal war, . Suppose {u m , m E I} is the

set of the eigenvectors that war, chooses. Calculate the quantities
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Then the reduced-rank w ai^r is the one that has the smallest

rank such that Qi^r/Qi > ts , where t, is a threshold that is close to 1. This method

avoids using the eigenvectors that are close to the noise space. In simulations, the

reduced-rank receiver that is chosen using this method performs at least as well as

the rank-D receiver.

The recursive least-squares (RLS) algorithm can be used for the weight

adaptation for the full-rank receiver. To implement the reduced-rank receiver, we

need to estimate the eigenvectors of the covariance matrix corresponding to the

signal space and the corresponding eigenvalues. Here, we use the subspace tracking

algorithm in [80] to track the eigenvectors and eigenvalues of the covariance matrix

where /3 is the forgetting factor.

The algorithm in [80] cannot track the rank of the signal covariance matrix. In a

CDMA system, users leave or enter the system randomly. Therefore, the signal space

changes. We need to track the variations of the signal space. The rank tracking

method in [112] is combined into the subspace tracking algorithm. The cross-

correlation can be updated recursively according tc

2.2.3 Simulation Results

In this section, simulation results are presented to demonstrate the performance of

the proposed algorithm. The performance measure for simulations is the averaged

SIR obtained by 400 independent runs. The input SNR of the desired user is 20dB.

The processing gain is N = 31. The spreading sequences are the Gold sequences.

Multipath channels have three taps. Every tap is randomly generated from a complex

Gaussian distribution. Delays are also randomly generated. Channels and delays are

fixed in every run. The output SIR versus the rank of the receiver for the equal power

case and the near-far case are displayed in Fig. 2.10, Fig. 2.11 respectively. We

observe that the proposed low-complexity receiver has almost the same performance
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as Tsatsanis's minimum variance receiver with the optimal constraints. When the

covariance matrix is known, reduced-rank receivers cannot outperform the full-rank

receiver. However, when the covariance matrix is estimated, the optimal reduced-

rank receiver has larger SIR than the full-rank receiver. For example, in equal power

case displayed in Fig. 2.10, the output SIR of the rank-15 receiver is 2dB larger than

that of the full-rank receiver when M = 400. The reason is explained as follows.

When the covariance matrix is known, the noise space is also known. The noise

space is orthogonal to the cross-correlation vector. Thus, the full-rank receiver is in

the signal space. Therefore, the full-rank receiver has the same performance as the

rank-D receiver. However, when the covariance matrix is estimated, the estimated

noise space is not orthogonal to the cross-correlation vector anymore. As a result,

the full-rank receiver has a component in the noise space. There is more noise at

the output of the full-rank receiver than a proper reduced-rank receiver. Therefore,

its output SIR degrades. The simulation results for the adaptive version of the

proposed reduced-rank and full-rank minimum variance receivers are demonstrated

in Fig. 2.12. The RLS algorithm is used for the full-rank receiver. In reduced-rank

receiver, the threshold for subspace selection is is = 0.99. At t = 0, there are eight

users in the channel. SNRs of all the users are 20dB. At t = 2000, two 30-dB users

and one 40-dB user enter the channel; at t = 4000, the 40-dB user, two 30-dB users

and two 20-dB users exit the channel. We see the advantage of the reduced-rank

receiver over the full-rank receiver.



Figure 2.10 Output SIR comparison for different ranks. N=31, K=8, SNR=20dB,
(K-1) interferences' SNRs are 20dBs.

Figure 2.11 Output SIR comparison for different ranks. N=31, K=8, SNR=20dB,
(K-1) interferences' SNRs are 30dBs.



Figure 2.12 Performance of the adaptive reduced-rank MMSE detector in a dynamic
multiple-access channel.

2.3 Probability Density Function of Conditioned SNRs of Linear
MMSE Estimators

To further understand the performance of the reduced-rank receivers developed in

last two sections, we study the probability density function of the output SNR of

linear MMSE estimators when the covariance matrix is estimated. A related problem

is to detect a known signal with random phase in the presence of complex Gaussian

noise using an adaptive array. The optimum detector was given in [21]. The proba-

bility density function of SNR at the output of the detector that is obtained using

the sample covariance matrix was derived by Reed, et al [73] and Hanumara [33].

When the underlying noise covariance matrix is not full-rank, reduced-rank detectors

[68, 48] provide performance advantage over the full-rank approach.

36
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2.3.1 Probability Density Function of Conditioned SNRs of Full-Rank
and Reduced-Rank MMSE Estimators

Consider a general linear data model [47] given by

random parameters, and n is an N x 1 Gaussian noise vector with zero mean and

covariance matrix o -21. Suppose that a realization of 0 1 is to be estimated. h 1 and

variance of 0 1 (say a?) are assumed to be known. Other parameters are assumed

to be nuisance parameters or interferences to 0 1 . The matrix H and the variance of

nuisance parameters and noise are assumed to be unknown to the estimator. This

data model is often used in digital communications. For example, in a multiuser

communication system with linear modulation, let 0 be the information-bearing data

of p users and H be the modulated waveform. The signal of user 1 is of interest and

others are interferences. Then the received signal can be modeled with above data

model.

For convenience of analysis, we further assume that the elements of 0 are

independent Gaussian random variables with zero mean and that the variance of

each element is not necessary the same. Under the Gaussian assumptions, the linear

MMSE estimator is actually a true MMSE estimator. The filter weights, w, that

yield the linear MMSE estimator for 0 1 , are given by

where R is the covariance matrix of x. The estimate of

SNR is given by

[le output
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The optimal detector that detects signal h1 is wd = 'h i [73], where R is the

covariance matrix of interferences plus noise. It can be shown that the weight vector

of the optimal detector is proportional to that of the MMSE estimator. Therefore,

the output SNR of the optimal detector is the same as that of the MMSE estimator.

However, when the weight vectors are obtained from the estimated covariance matrix,

we will see that the density functions of the output SNRs are different.

For many applications, the covariance matrix is unknown. Therefore, estimated

covariance matrix is used in calculating the weight vector w. Let us assume that M

independent data snapshots {x,2 1 are observed. Under the Gaussian assumption,

the maximum-likelihood estimate of the covariance is the sample covariance matrix

that is given by

'thus, the weight vector is found as

This method of calculating the weight vector is called the sample matrix inverse

(SMI) method. Note that the weight vector w is a random vector. The output SNR

conditioned on W is

The conditioned SNR is upper bounded by the maximum achievable SNR expressed

in (2.49). We normalize the conditioned SNR with respect to its upper bound.

Denote this normalized SNR by ρs . Denote

We notice that p has the same formula as the normalized

output SNR of the detector based on the SMI method in [73]. Because the data have
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a Gaussian distribution, the density of p is given by [73]

Thus, the density of ρs is found as

Substitute (2.53) into (2.56), we have

Unlike the normalized SNR of the optimal detector in [73], the normalized SNR of

the MMSE estimator depends on the maximum achievable SNR. In [73], it is found

that at least M = 2N — 3 samples of data are needed for the detector to maintain

an average output SNR loss of better than 3 dB. Since the expectation of ρs is a

hypergeometric function, there is no closed-form for the number of samples required

for the MMSE estimator to achieve an average performance level. However, given

the maximum achievable SNR, length of the data vector N and the performance

loss relative to the maximum achievable SNR, one can compute the number of the

samples by using numerical integration. We can also approximately calculate the

number of samples as follows. When N > 2, the function p(ρs) has one and only

one maximum point on the interval (0, 1). It can be found as

When N = 2, the function p(ρs) has an
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maximum point at  = (M — 1)/(2S). If the maximum point is at  = 0.5, the

probability that ρs is greater than 0.5 is approximately equal to 0.5. We can find

that M = 2N — 3 + (N — 1)8 so that p(ρs) achieves maximum value at  =ρs 0.5.

This is a useful "rule-of-thumb" requirement on the number of data samples for the

estimator's performance loss to be less than 3dB. Note that the number of data

samples is proportional to the maximum output SNR and the length of the data

vector.

When R is estimated using sample covariance matrix in (2.50), we perform the

SVD on the estimated covariance matrix R. The reduced-rank MMSE estimators

are constructed from the estimated eigenvectors and eigenvalues. When p principal

eigenvalues are different, these eigenvalues and their corresponding eigenvectors have

asymptotic Gaussian distributions [46]. Their mean and covariance can be found

in [46]. However, it is difficult to derive the density of the output SNR of the

reduced-rank estimators from the distributions of the eigenvalues and eigenvectors.

We consider the reduced-rank estimator using p estimated eigenvectors corresponding

to the p largest eigenvalues, which is given by

This method of calculating the weight vector is called the principal component inverse

(PCI) method. We will give an asymptotic formula for the PCI estimator. Based on

the formula, we get the asymptotic density of the output SNR.

Suppose that we have a vector

It is known that R 	 R as M ∞ , where --1--> denotes convergence in probability.

Hence, we have * 	 w and * 	 w. Therefore, * — * converges to the zero

vector in probability. Since the output SNR is a continuous function of the weight

vector, we have S — S 	 0. In general, the convergence of the difference of two
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random sequences to zero in probability doesn't necessarily imply that their densities

converge. However, in simulation, we observe that the density functions of the output

SNR of the estimators using above two formula are almost same. It is easy to get

the theoretic density of the output SNR of the estimator W. .

The estimator * in (2.59) can be obtained as follows. Apply the linear

transform T = Us to the N x 1 data vector x, we get a p x 1 vector t = THx.

Based on the transformed data t, we can use the SMI method to get the estimator.

The linear transform preserves the Gaussian distribution of the data. Thus, the

probability density function of the normalized output SNR of estimator w is the

same function as in (11) with the parameter N replaced by p. Since the density of

output SNR of estimator w is approximately the same as that of estimator * as

M 4 ∞ , we get an asymptotic density of the normalized output SNR for the PCI

estimator 0.

2.3.2 Numerical Results

Consider a case in which the columns of matrix H are Gold sequences (spreading

sequences used in direct sequence spread-spectrum code-division multiple-access).

Theoretic curves and simulation curves for the pdf of the output SNR are shown in

Fig. 2.13, Fig. 2.14, Fig. 2.15 and Fig. 2.16. In these figures, solid line is theoretic

curve, dash line is simulation curve and dot line is simulation for PCI estimator

using asymptotic formula. When N = 31, p = 4, M = 400, the probability density

functions are displayed in Fig. 2.13 and Fig. 2.14 for SNR=15dB and SNR=20dB

respectively. SNR is defined as σ1^2/σ^2 . The interferences have the same power as

the desired signal. Simulated density functions are obtained from the histogram of

10000 independent runs. We observe that the PCI estimators using the exact formula

and using the asymptotic formula have almost the same density curve. Comparing

Fig. 2.13 with Fig. 2.14, we see that the estimator needs more data samples to
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have the same normalized output SNR when the input SNR is higher. From Fig.

2.13 and Fig. 2.14, we also see that with much higher probability, the PCI method

yields higher output SNR than SMI method. Equivalently, to achieve the same level

of performance, the PCI method needs less number of data samples than the SMI

method. For example, in the case in Fig. 2.13, we can use the "rule of thumb" in

section 2 to get M 1000 for the SMI estimator and M ti 100 for the PCI estimator

to achieve a performance within 3dB of the maximum output SNR. When M is large

and p is close to N, the performance gap between the SMI estimator and the PCI

estimator becomes smaller. This is demonstrated in Fig. 2.15 and Fig. 2.16.

2.4 Summary

In this chapter, we study the reduced-rank MMSE and minimum variance CDMA

receivers. It is demonstrated that the reduced-rank MMSE receiver outperforms the

conventional full-rank MMSE receiver when the desired signal is in a low-dimensional

subspace and the covariance matrix is estimated. The minimum variance receiver

can be blindly implemented using the structure of generalized sidelobe canceler.

The proposed low-complexity minimum variance receiver has almost the same

performance as the high-complexity optimal minimum variance receiver. The

reduced-rank minimum variance receiver again get the better performance compared

with the full-rank minimum variance receiver. To further verify that the reduced-rank

receiver does have advantage over the full-rank receiver, we study the probability

density function of the conditioned SNR of liner MMSE estimators. Under the

Gaussian assumption, we derive the pdf of the full-rank MMSE estimator based on

the sample matrix inverse method. The pdf of the asymptotic reduced-rank MMSE

estimator based on the principal component inverse method is also obtain. From

those pdfs we conclude that the reduced-rank estimators do outperform the full-rank

estimator.
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Figure 2.13 Density function of normalized output SNR, input SNR=15dB, M=400,
N=31, p=4.

Figure 2.14 Density function of normalized output SNR, input SNR=20dB, M=400,
N=31, p=4.



Figure 2.15 Density function of normalized output SNR, input SNR=15dB,
M=1000, N=15, p=10.

Figure 2.16 Density function of normalized output SNR, input SNR=20dB,
M=1000, N=15, p=10.



CHAPTER 3
MULTICARRIER CDMA SYSTEMS WITH TRANSMIT DIVERSITY

Antenna diversity is a practical, effective technique for reducing the detrimental

effects in wireless fading channels. The classical antenna diversity that uses multiple

antennas at the receiver increases the cost, size, and power of the remote units. It

is more feasible and economical to have multiple antennas at the base station rather

than the remote units. Recently, transmit diversity has been studied to combat the

fading channels.

In [108, 109], linear filtering is introduced at the transmitter so that the

waveform at every transmit antenna is orthogonal to each other. At the receiver,

due to the orthogonality among signals from different antennas, an optimal combiner

can be used to collect all the energy form different antennas. An orthogonal signaling

for transmit diversity in CDMA system is studied in [104]. Delay transmit diversity

that is a special case of orthogonal filtering is studied in [77, 107]. A linear or

nonlinear equalizer should be used at the receiver in the delay diversity scheme.

In [35, 53], phase sweeping is used at the transmitter so that the received signal

is a fast fading signal even the channel is slow fading. Combined with coding,

this technique transfers the space diversity to time diversity. All these techniques

approached transmit diversity from a signal processing point of view. Space-time

codes [87, 85] combine signal processing at the receiver with coding techniques

provides significant gain over the diversity gain introduced by signal processing at

the transmitter.

Multicarrier CDMA [34] has been proposed for the wideband multiuser systems.

It is shown [34] that MC-CDMA can effectively combine all the received signal energy

scattered in the frequency domain whereas DS-CDMA cannot always employ the

energy scattered in the time domain. Therefore, MC-CDMA has better performance

in frequency-selective fading channel than the DS-CDMA. Since each subcarrier in

45
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MC-CDMA undergoes flat fading, we can naturally combine the space-time coding

with MC-CDMA to get transmit diversity for a wideband system.

3.1 Space-Time Coding

Space-time trellis coding is proposed in [87, 86]. It is demonstrated that specific

space-time trellis codes designed for 2-4 transmit antennas perform extremely well in

slow-fading channel environment. However, when the number of transmit antennas is

fixed, the decoding complexity of space-time trellis codes increases exponentially with

transmission rate. In [1, 85], orthogonal block codes are proposed for narrowband

fading channels. It was shown that the space-time block codes can achieve the

maximum diversity order for a given number of transmit and receive antennas, and

its encoding and decoding scheme has very little complexity. The general theory

of constructing space-time codes for PSK modulation is given in [32]. To decode

the space-time codes, the receiver needs the channel state information. However,

another family of the space-time codes named unitary space-time modulation [36]

performs very well even though the receiver has no knowledge of the channel state

information. A space-time code is defined as [32]:

Definition 3.1 An L x n space-time code C of size M consists of an (Ln, M)

error control code C and a spatial parser a that maps each codeword vector C E C to

an L x 71 matrices c whose entries are a rearrangement of those of C. The space-time

code C is said to be linear if both C and a are linear.

Suppose that there are Lt transmit antennas. the standard parser maps

to the matrix
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where cit is the code symbol assigned to transmit i at time t.

Suppose that the symbol alphabet of the codewords is Y. The encoded symbols

are mapped by the modulator into constellation points from the discrete complex-

valued signaling constellation a Let f : y→Ω be the modulator mapping function.

Then s = f (c) is the baseband version of the codewords as transmitted through the

channel. Suppose that the rank of the matrix B f (c)— f (e) is r and the eigenvalues

of the matrix A = BBH are Pt i lri , where c and e are any pair of distinct codewords.

Then we have the design criteria for space-time codes [87]:

1. Rank Criterion: Maximize the rank r over all pairs of distinct codewords to

achieve the maximum diversity

2. Product Distance Criterion: Maximize the coding advantage

over all pairs of distinct codewords.

Since the decoding method for the block space-time codes is very simple, we

will use them for the MC-CDMA system. We are particularly interested in the block

space-time codes for transmission using two and four transmit antennas, which are

3.2 MC-CDMA with Transmit Diversity

A MC-CDMA transmitter with space-time coding is shown in Fig.3.1. We assume

that there are two transmit antennas and the processing gain N is equal to the

number of carriers. The simplest space-time block code in [1, 85] is used for the

two transmit antenna case. The outputs of the space-time encoder are copied to
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Figure 3.1 A MC-CDMA transmitter with transmit diversity

different carriers. The bit over different carrier is multiplied by a chip of the spreading

code. Inverse discrete Fourier transform (IDFT) is used to implement multicarrier

modulation. After the cyclic prefix is added, the signal is transmitted from one of the

antennas. At the receiver, the RF signal is first converted to baseband signal. After

the portion of the signal corresponding to the prefix is removed, discrete Fourier

transform (DFT) is performed on the signal samples.

3.2.1 Signal Model

Assume that the length of the cyclic prefix is longer than the length of the channel

impulse response, then there is no interblock interference (IBI). It is sufficient to

consider the received signal in two consecutive blocks, say block 0 and block 1. After

DFT is performed, the data at nth carrier in block 0 and block 1 can be written as
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where K is the number of active users, sk [n] is the nth chip of the kth user's spreading

code, Ak is the amplitude of the kth user's signal, No [n] and Ni [n] are additive white

Gaussian noise with variance a2 , and Ho [n] and Hi [n] are channel response from two

transmit antennas to the receiver at the nth carrier. We assume that the channel is

the slow fading channel, that is, the channel responses are the same in block 0 and

3.2.2 Interference Suppression and Decoding

If there is only one user in the system, the maximum likelihood decoder is simply a

maximum ratio combiner [85]. However, when there are more than one users in the

system, it is difficult to employ a maximum likelihood decoder because the receiver

has no knowledge of the spreading codes of all the active users. We shall consider four

schemes that detect the information bearing bits of the desired user while suppressing

other user's interference. These four schemes are maximum ratio combiner (MRC),
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orthogonality restoring combiner (ORC), minimum mean square error combiner

(MMSEC) and minimum mean square error multiuser detector(MMSEMUD).

1) Maximum ratio combiner:

The outputs of the MRC are given by

It can be shown that

where 10 and /1 are interference from the other users, and N0 and N1 are Gaussian

noise. It is seen from (3.13) and (3.14) that MRC coherently combine the signals

from two transmit antennas. The decisions for two bits are

2) Orthogonality restoring combiner:

The orthogonality among the signals of different users is lost after the trans-

mitted signal passes through the channel. If the orthogonality can be restored, the

interference can be completely eliminated. The inverse of matrix 9-1 can be found as

If the matrix 	 is singular, a psuedoinverse of 1-1 can be found. Suppose that the

matrix 1t is not singular, the outputs of the ORC are given by



ORC cancels all the interference, it enhances the noise. When the channel responses

at a carrier are small, the SNR at the output of ORC will be very low.

3) Minimum mean square error combiner:

In MMSEC, an MMSE estimate of the signal of the desired user at each carrier

is first obtained. The estimates of the signal is then correlated with the spreading

code of the desired user to obtain the decision statistic. The weights w oo [n] and w01 [n]

that minimize the mean square error

be found as

Similarly, the weights w 10 [n] and w 11 [n] that minimize the mean square error
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MMSEC tries to restore the orthogonality as much as possible but not to enhance

the noise as in ORC. It needs the knowledge of the noise variance.

4) Minimum mean square error multiuser detector:

In above three schemes, the structure of the other users' spreading codes is not

explored by the receiver to suppress the interference. MMSEMUD uses this structure

to achieve better performance. MMSEMUD finds the 2N x 2 weight matrix W to

minimize the mean square error

matrix R can be estimated using available data. We can see that the complexity of

the MMSEMUD is much higher than the other three schemes because it needs to

invert a 2N x 2N matrix.

In all these schemes, the receiver needs to know the channel state information.

In practice, each antenna can employ a pilot channel. The receiver uses the pilot

channel to estimate the channel state. Alternatively, some pilot symbols can be

inserted in the users' transmitted signals. The pilot symbols enable the receiver to

estimate the channel.

3.2.3 Simulation Results

Simulations demonstrate the performance of the MC-CDMA with transmit diversity

in a downlink multipath fading channel. Walsh-Hadamard codes are chosen as the

spreading codes. Processing gain is N = 32. The fading channel has 3 independent

taps and its multipath intensity profile is exponential. The delay spread is Tm =

where 7', is the chip duration of the DS-CDMA that has the same bandwidth as
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the MC-CDMA. We assume that the receiver know the channel perfectly. Fig. 3.2

shows the bit error rate of the DS-CDMA, MC-CDMA with single transmit antenna

and with two transmit antennas. The DS-CDMA system uses a three finger RAKE

receiver with maximum ratio combiner. The MC-CDMA systems use maximum ratio

combiners. The number of users is 10. It is seen that the MC-CDMA with transmit

diversity has the best performance. Fig. 3.3 and Fig. 3.4 compare the bit error rate of

MC-CDMA systems with different combing schemes. MMSE combiner has the same

BER as MMSE multiuser detector when K=32 and has slightly higher BER than

MMSEMUD when K=10. Because MMSEMUD has much higher complexity than

MMSEC, MMSEC is preferred in a practical system. In Fig. 3.5, The performance

of the MC-CDMA systems with and without transmit diversity is compared. The

MMSE combiner is used. It is seen again that the transmit diversity improve the

system performance no matter how many users are in the system.



Figure 3.2 BER versus SNR for DS-CDMA, MC-CDMA with one antenna and with
two antennas, K=10

Figure 3.3 BER versus SNR for MC-CDMA with transmit diversity, K=10



Figure 3.4 BER versus SNR for MC-CDMA with transmit diversity, K=32
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Figure 3.5 BER versus SNR for MC-CDMA with transmit diversity, MMSE per
carrier combiner
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3.3 Channel Estimation

In the receiver design in section 3.2, the channel state information is assumed to

be known. In practice, the receiver has to estimate the channel response. The

reference signal is needed for the receiver to estimate the channel. To provide with

the reference signal for the receiver, the transmitter can transmit pilot signals. In a

CDMA system, the pilot signal can be transmitted using a particular spreading code,

that is the pilot signal is transmitted by pilot channel. In downlink, the common

pilot channel can be used by all the mobile users. The pilot signal can also be

time-multiplexed [11, 12, 56] with a user's data and spread by the user's spreading

code [23, 55]. In this case, each user uses its particular pilot symbols to estimate the

channel. Since the pilot symbols are not transmitted continuously, the receiver has to

interpolate the estimated channel to do demodulation. In next sections, after briefly

introduce the wide-sense-stationary and uncorrelated scattering (WSSUS) channel

model for the wireless communication channel, we shall study the performance of

the MC-CDMA system with space-time coding when the channel is estimated using

either pilot channels or pilot symbols.

3.3.1 Wide-Sense-Stationary and Uncorrelated Scattering Channel
Model

In wireless communication systems, the received signal experiences significant power

fluctuation due to fading. Signal fading is caused by multipath propagation in the

form of scattering, reflection, and refraction. The propagation path or paths change

with the movement of the mobile unit and/or the movement of its surroundings in

the propagation environment.

A fading multipath channel is generally characterized as a linear, time-varying

system having an impulse response c(τ; t) which is a wide-sense stationary random

in the t-variable. By assuming that the multipath signals propagating through the

channel at different delays are uncorrelated, the channel is modeled as a wide-sense
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stationary uncorrelated scattering, or WSSUS, channel [6, 70]. When there are a

large number of scatters in the channel that contribute to the signal at the receiver,

as is the case in ionospheric or tropospheric signal propagation, the central limit

theorem can be applied. In this case, the time-variant impulse response c(τ; t) is a

complex-valued Gaussian random process in the t variable. If the process is zero-

mean, then the envelope of the channel impulse response at any time instant has

a Rayleigh probability distribution and the phase is uniformly distributed in the

interval (0, 27)). Time variations in the channel impulse can be characterized by the

autocorrelation function of c(τ; t) as

Since the scattering at two different delays is uncorrelated, we have

The typical autocorrelation function for mobile communication channel is given

by 1421

where Jo (x) is the zeroth-order Bessel function of the first kind, fd is Doppler

frequency. If we let At = 0, the resulting autocorrelation function

is simply the average power output of the channel as a function of the time delay r.

is called the delay power spectrum or the multipath intensity profile.

Time variations in the channel impulse response or frequency response result

in frequency spreading, generally called Doppler spreading, of the signal transmitted

through the channel. Multipath propagation results in spreading the transmitted

signal in time. Consequently, a fading multipath channel may be generally charac-

terized as a doubly spread channel in time and frequency. A doubly spread channel

may be characterized by the scattering function S(τ;λ), which is given by the Fourier
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transform of MT; At) in the At variable. That is,

Scattering function is a measure of the power spectrum of the channel at delay 'T

and frequency offset A. From the scattering function, we obtain the delay power

spectrum of the channel by simply averaging S(τ;λ) over A, i.e.,

Similarly, the Doppler power spectrum is

The range of values over which the delay power spectrum 0,(7) is nonzero is defined

as the multipath spread Tm of the channel. The channel coherence bandwidth Bath

is defined as the reciprocal of the multipath spread, i.e. Bcoh = 1/Tm . Bcoh provides

us with a measure of the width of the frequency band over which the fading is highly

correlated. Similarly, the range of values over which the Doppler power spectrum

Sc(λ) is nonzero is defined as the Doppler spread Bd of the channel. The value of

the Doppler spread Bd provides a measure of how rapidly the channel impulse varies

in time. The channel coherence time Tcoh is defined as the reciprocal of the Doppler

When the bandwidth W of the transmitted signal is much smaller than the

coherence bandwidth of the channel, i.e., W << B coh , all the frequency components in

the transmitted signal undergo the same attenuation and phase shift in transmission

through the channel. Such a channel is called frequency-nonselective or flat fading.

A frequency-nonselective fading channel has a time-varying multiplicative effect on

the transmitted signal. When the transmitted signal has a bandwidth W greater

than the coherence bandwidth Bcoh of the channel, the frequency components of

the transmitted signal with frequency separation exceeding Bcoh are subjected to
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different gains and phase shift. In such a case, the channel is said to be frequency-

selective. When W Bcoh, the multipath components in the channel response

that are separated in delay by at least 1/W are resolvable. In this case, if we use

the sampling theorem to represent the resolvable received signal components, the

time-varying channel response can be represented as[70]

where h l (t) is the complex-valued channel gain of the lth multipath component and

L is the number of resolvable multipath components. L is given by

The tap gains {Mt)} are modeled as wide-sense stationary mutually uncorrelated

random processes.

3.3.2 Channel Estimation Using Pilot Channels

In IS-95 and CDMA2000, there is pilot channel in the downlink. The receiver at

mobile can use the pilot channel to estimate the channel state and do coherent demod-

ulation. In the MC-CDMA system with transmit diversity, each transmit antenna

can also uses a pilot channel as in IS-95 and CDMA2000 to enable the receiver to

estimate the channel. Denote the channelization codes for transmit antenna 0 and

transmit antenna 1 as 5p0 and spa . Let sik and sp' i be the inverse Fourier transform of

the spreading code of user k and the code of the pilot channel of antenna i respec-

tively. Let §k and bebe the code vectors that add a cyclic prefix of length P to the

spreading codes sik and sp' i . The transmitted signal is the superposition of the pilot

signal and K users' signal. The transmitted signals in block 2n and block 2n + 1 at

transmit antenna 0 are given by
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The transmitted signals in block 2n and block 2n +1 at transmit antenna 1 are given

by

Assume that the channel is slow fading so that the channel impulse response in

two consecutive data block is essentially the same. Denote the impulse response

of the channel from transmit antenna i, i = 0, 1 in block 2n and block 2n + 1 as

received signal vectors in

block 2n and block 2n+ 1 after removing the signal corresponding to the cyclic prefix

is given by

are white Gaussian noise and matrix Hon, is given by

and matrix H1n  is defined in a similar manner. Define matrix Cpo as

and define matrix Cpl in a similar way as Cpo . The received signal vector in (3.33)

can also be expressed as
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are signals of K users which are considered as the interference

to the pilot signal when the receiver estimates the channel.

Then, we have

The receiver uses these 4Q + 2 blocks of data to estimated the channel.

A. MMSE channel estimator

The MMSE channel estimator for channel coefficients h[n] is given by

where R = E(rrH ) is the covariance matrix of r and p = E(rhH(n)) is the crosscor-

relation between the data vector and the channel coefficients. To calculate R and p,

the receiver needs the knowledge of the all the spreading codes of the active users,

the amplitudes of the users' signal, the autocorrelation function and the multipath

intensity profile. While the MMSE channel estimator is optimal linear estimator that

minimizes the mean squared error between the channel coefficients and the estimate

of the channel, it needs to invert the covariance matrix of size

which requires much computation.

B. LSE channel channel estimator

LSE channel estimator first obtains instantaneous estimates of the channel coeffi-

cients using least square error criterion, then use a linear filter to smooth the instan-

taneous estimates of the channel coefficients. The instantaneous estimate of the
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channel is given by

Since the receiver knows the spreading codes of the pilot channels, the matrix

can be calculated off-line. Therefore, to obtain an instantaneous

estimate of the channel, the receiver only need to multiply the received data vector

by a 2L x 2N matrix. If the channel autocorrelation function, or equivalently, the

Doppler spectrum is known, the optimal MMSE linear filter to smooth the instan-

taneous estimates is the Wiener filter that has a frequency response equal to the

square root of the Doppler spectrum. To reduce the delay of the channel estimation,

a FIR MMSE filter can be used instead of the optimal Wiener filter, which can be

obtained as follows. Denote the ith element

estimates are available, we define a vector

We can use the channel autocorrelation function to calculate the covariance matrix

of vector hi, Rh, and the crosscorrelation between hi[n and hi , ph . Then the FIR

In general, the Doppler spectrum is not known, or it may even change with

time. The best knowledge of the Doppler spectrum is that is a lowpass spectrum

with a maximum Doppler frequency fd. Therefore, we can use an ideal low pass

filter with a cut-off frequency equal to or greater than fd as the filter to smooth the

instantaneous estimate of the channel. The nth tap of impulse response of the ideal

lowpass filter is given by

the delay and memory, the lowpass filter can be truncated to a FIR filter.
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3.3.3 Channel Estimation Using Pilot Symbols

If we use the pilot channel to estimate the channel state, each antenna needs one

spreading code. When the number of transmit antennas increases, the receiver needs

more spreading codes which reduces the number of codes available to the users.

Furthermore, when the base station uses transmit beamformer to reduce the inter-

ference between the users at different locations, the users at different locations should

be assigned different spreading codes for the pilot channels, which further reduce the

number of spreading codes available and limit the number of users in a cell. This

problem can be avoided if each mobile uses time multiplexed pilot symbols to estimate

the channel.

Suppose that in every 2M data blocks, two blocks of the pilot symbols are

inserted. The pilot signal is unmodulated spreading code. Assume that the desired

user is user 1. The transmitted signals at antenna 0 in nth the pilot data blocks of

user 1 are given by

The transmitted signals at antenna 1 in the nth pilot data blocks are given by

Define a matrix d 1 in the same manner as d Cp0 in (3.35), the received signal is given

by
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where I(2nM) and I(2nM+1) are interference users' signals, v(2nM) and v(2nM+1)

are white Gaussian noise.

Suppose that 4Q data blocks corresponding to the pilot signals, r[2(n + m)M]

1 block. The MMSE channel estimator can be found if the channel autocorrelation

function, multipath intensity profile, all the users' codes and transmitted power and

the noise variance are known. The MMSE channel estimator should invert a 4NQ x

4NQ matrix, which needs too much computation for a practical system. Thus,

as in the previous section, we can first use least squared error criterion to obtain

the instantaneous channel estimates, then smooth the instantaneous estimates to

reduce the variance of the estimate errors.

As in (3.40), the LSE estimate of the channel is given by

Since the Doppler spectrum is usually not known, the optimal smoothing filter is

difficult to find. We then can use a ideal lowpass linear filter to interpolate the

instantaneous channel estimates to obtain final channel estimates. The nth tap of

impulse response of the ideal interpolating filter for h[nM + i], i = 2, ... , M — 1

blocks given by

where T is the duration of a data block.



65

3.3.4 Simulation Results

In this section, we use simulation results to compare the system performance under

different channel conditions when either pilot channels or pilot symbols is used to

estimate the channel. In simulation, a two path WSSUS channel is generated by

using the Monte Carlo method [114]. The delay spread is uniformly distributed in

the guard interval whose length is assmued to be 1/4 of the data block. Two paths

have the same variance the average squared error of the channel estimates when

pilot channels are used. All the users have the same power. Define the ratio of the

power of pilot channel and the power of the data as P = Ap^2/A1^2 In Fig. 3.6 P

is P = 0dB for fdTb = 0.001 and P = 6dB for fdTb = 0.005. We see that high

power of the pilot channel is needed for the channel estimator to maintain good

performance when the Doppler frequency is large. In Fig. 3.7, Fig. 3.8, Fig. 3.9

and Fig. 3.10, the bit error rate under different channel conditions are shown. It is

observed that performance degrades slightly when the channel is estimated. Fig. 3.11

demonstrates average squared error of the channel estimate when pilot symbols are

used. Compared with the estimator using pilot channels, the channel estimator using

pilot symbols needs higher power to compensate the less number of the instantaneous

channel estimates available to smooth the channel estimates. When powers of all the

users' pilot symbols are raised, interference level is also raised. Therefore, channel

estimate error is large when the Doppler frequency is high. Bit error rates of the

system for different number of users when fdTb = 0.01 are demonstrated in Fig. 3.12

and Fig. 3.13. Since the channel estimate error is small, the BER is slightly larger

when the estimated channels are used. In Fig. 3.14 and Fig. 3.15, BER is shown

for fdTb = 0.005. In this case, interference degrades the performance of the channel

estimator, especially when the number of the active users is large. Therefore, bit

error rate using the estimated channel is much larger than the ideal case.



Figure 3.6 Mean squared-error of the channel estimator using pilot channels.

Figure 3.7 Bit error rate of MC-CDMA with pilot channels. fdTb = 0.001, K=10,
P=0dB.
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Figure 3.8 Bit error rate of MC-CDMA with pilot channels. fdTb = 0.001, K=20,
P=0dB.

Figure 3.9 Bit error rate of MC-CDMA with pilot channels. fdTb = 0.005, K=10,
P=6dB.



Figure 3.10 Bit error rate of MC-CDMA with pilot channels.
P=6dB.
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Figure 3.11 Mean squared-error of the channel estimator using pilot symbols.
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Figure 3.12 Bit error rate of MC-CDMA with pilot symbols. fdTb = 0.001, K=10,
P=6dB, M=4

Figure 3.13 Bit error rate of MC-CDMA with pilot symbols
P=6dB, M=4
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Figure 3.14 Bit error rate of MC-CDMA with pilot symbols. fdTb = 0.005, K=10,
P=9dB, M=2

Figure 3.15 Bit error rate of MC-CDMA with pilot symbols. fdTb = 0.005, K=20,
P=9dB, M=2
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3.4 Summary

In this chapter, we apply the block space-time codes that is originally proposed for a

narrow-band system to wideband multicarrier CDMA systems. Our emphasis is on

designing receiver that can jointly decode the space-time codes and suppress multiple

access interference. Among the proposed four receivers, MMSE combiner is the

best trade-off between the performance and the complexity. The channel estimation

using pilot channels and pilot symbols is studied for the MC-CDMA with space-time

coding. While the channel estimator using pilot channels has better performance,

it is not suitable for a system with many transmitted antennas or with transmit

beamformer. On the other hand, since the channel estimator using pilot symbols

does not using extra channels, more spreading codes are available for mobile users,

thereby more users can be accommodated in a cell. However, in a fading channel

with relative large Doppler frequency, a sufficient number of pilot symbols is required

for estimating the channel, which reduces the frequency efficiency.



CHAPTER 4

PACKET-SWITCHED CDMA RANDOM ACCESS SYSTEMS WITH
PACKET COMBINING

Direct sequence code division multiple access (DS-CDMA) has been investigated to

provide packet multiple access and high data rates in wireless communications [52].

In a random access packet switched CDMA system, two or more users can simulta-

neously transmit data packets (with some error rate); while in other ALOHA random

access systems, if two or more transmissions occur, all the packets are destroyed.

Therefore, CDMA random access systems have the potential for improving on the

capacity of ALOHA. The performance of the CDMA random access systems was

analyzed in [72] with the assumption that the multiple-access interference (MAI)

is the dominant cause of errors. The throughput analyses of the CDMA random

access systems in additive white Gaussian noise (AWGN) channels were presented

in [16, 66, 75, 79]. It was shown that the CDMA system with error correction coding

has the same or lightly better throughput performance compared to a multichannel

narrow-band ALOHA system with the same total bandwidth [16]. The CDMA

random access systems studied in [16, 66, 75, 79] employ matched filter receivers that

limit their interference suppression capability, therefore, their throughput is limited.

Recently, increased attention has been paid to CDMA random access systems with

multiuser detection [63, 71, 74]. It is shown that multiuser detection significantly

improve the system throughput.

Automatic repeat request (ARQ) schemes are commonly used in a communi-

cation system with feedback channels [106]. In the pure and type-I hybrid ARQ

schemes, packets in error that must be retransmitted are discarded and replaced by

their copies. In the type-II hybrid ARQ scheme, packets that must be retransmitted

are not discarded, but are combined with their repeated copies. Code combing [13,

45] and diversity combing [106] are two commonly used packet combing schemes. In

72
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code combing, the packets are concatenated to form code words from increasingly

longer and low-rate codes. In diversity combing, packets are combined at the bit

level, i.e., the individual bits from multiple, identical copies of a packet are combined

to create a single packet [105]. Packet combing has been applied to CDMA random

access systems to improve the system performance [4, 5, 9, 78, 99]. Average diversity

combiner was analyzed for a CDMA system with convolutional coding [78]. In [9],

both diversity combining and code combining are analyzed for CDMA random access

systems without and with forward error correction (FEC) in AWGN channel. In [4,

5], a lower bound and an upper bound of the throughput of the CDMA random

access system with diversity combing in fading channel are presented. The stability

of the CDMA random access system with diversity combing was investigated in [99].

These packet combing schemes improve the performance, but they cannot effectively

suppress the interference since the matched filter outputs are used as the input to

the combiner. In [81, 82, 83, 84], optimum multiuser detector and linear multiuser

detectors that use all the copies of the transmitted packets are proposed. The bit

error rate (BER) and the network performance are analyzed for AWGN channel.

In this work, we study the performance of the DS-CDMA random access

system with linear multiuser receivers and diversity combing in fading channels. Our

performance analysis is performed for large systems with each user using random

spreading sequences. We assume that the average arrival rate of the traffic and the

processing gain tend to infinity but their ratio is fixed. Large system approach was

used for analyzing the Erlang capacity of different teletraffic systems [41, 62]. In a

large CDMA system in which the number of the active user K and the processing

gain N tends to infinity and their ratio is fixed, it was shown [15, 98] that the output

signal to noise ratio (SNR) converges to a deterministic limit in probability. While

performance analysis for a CDMA random access system of finite size with diversity

combing is very difficult (if possible), the asymptotic analysis for a large system is
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tractable. Furthermore, the asymptotic results can predict the behavior of a system

with moderate size and we can gain some insights into the system performance from

the asymptotic results. The large systems we are interested in here are perhaps more

relevant to future wireless systems. We shall analyze both slotted and unslotted

CDMA random access systems. In general, analysis of unslotted CDMA systems

is complicated because the multiuser interference experience by a packet varies

continuously due to asynchronous packet arrivals and departures. However, in a

large system no matter it is slotted or unslotted, the output SNR of linear receiver

converges to a deterministic limit. Therefore, we can put the analysis of slotted and

unslotted systems in one frame work. If the receiver combines the current retrans-

mitted packet with all its previous transmitted copies, the bit error rate (BER)

dramatically decreases with the number of transmissions increasing. Suppose that

the receiver combines J identical copies of the desired user's packet. Compared to the

receiver that discards all the packets fail in transmissions, we get a diversity gain plus

an increased interference and noise suppression gain of J. Each retransmission has

a random delay. If the delay is longer than the coherent time of the fading channel,

each retransmitted packet undergoes independent fading, which provides diversity

gain. In general, the interference users' information bits at each retransmission of the

desired user's packet are uncorrelated and the noise are also uncorrelated. Therefore,

we can coherently combine the desired user's signal but average out the interference

and noise, which provides the interference and noise suppression gain. The packet

success probability increases with the number of transmissions increasing, which in

turn improves the system throughput.

4.1 System Description

We consider a DS-CDMA random access system consisting of a single base station

and a total of M mobile wireless users. The users generate data packets and transmit
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over a common wideband wireless channel to the base station. Each user uses a

random signature sequence with processing gain of N chips per bit. Essentially,

the channel access protocol is ALOHA. Each user can be in either one of the two

operation modes: origination mode or backlog mode. In the origination mode, the

user transmits a newly arriving packet. A user is considered to be in backlog mode

when its previously transmitted packet was not successfully received by the base

station and a retransmission is requested. We shall consider both the slotted system

and the unslotted system with fixed packet length . In a slotted system, each user

in the origination mode transmits a newly arriving packet in the first slot after the

packet arrival. When the user enters the backlog mode, it retransmits the packet in

the next slot with probability pr . In an unslotted system, the user in the origination

mode, upon receiving a new packet, transmits it immediately. If a user is backlogged,

it retransmits the packet after a random delay. We assume that packets contain

sufficient error detection capability so that the base station can detect all the error

packets. The feedback channel is assumed to be error-free. For simplicity of analysis,

we assume that the data are not encoded using any forward error correction (FEC)

code though the error detection code should be used. This is somewhat unrealistic,

but it is easy to extend the analysis in this work to the system with FEC. For the

system with FEC, it is possible to retransmit a packet with a different code word.

The receiver combines the packets at the code level as in type-II hybrid ARQ [45].

In this work, we assume that the backlogged user transmits a packet identical to

the previous transmitted packet. The receiver processes the received data in each

transmission at the bit level. The receiver has two ways to process the received

packets. One is that it keeps the outputs of the detector and combines them in some

ways (optimal or sub-optimal) to get decision statistic. The other way is to keep all

the original received data in each transmission and do jointly detection based on these
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data. The later method needs more memory and higher computation complexity, but

may be able to get lower bit error probability.

In general, the composite arrivals have a steady-state probability distri-

bution [72]. In this work, we assume that the composite arrival distribution is

Poisson with arrival rate A. We define the offered traffic load G as the average

number of arriving packets in a packet duration Tp , i.e. G = λTp. Therefore, the

probability that exactly k users transmit in a packet duration is

We are here interested in a large system in which we have G —+ oo, N oo and

G IN = a. The large system essentially has infinite offered traffic load and bandwidth

but the offered traffic load normalized by the processing gain is fixed. In a slotted

system, it was shown [83] that the number of users K transmitting in a packet

duration (also in a bit duration) is infinity and K/N converges to a in probability

as N oo. A heuristic proof is as follows. Since the number of users K in the

system is a random Poisson variable with mean G, we can think K as the sum of N

independent Poisson random variables with mean G = a. By the Weak Law of

Large Numbers, K/N converges to a in probability as N →∞ . Unlike in a finite

system in which the interference is variant in different transmissions, the effect of

the interference to linear receivers in a large system is essentially the same in all the

transmissions, which facilitates the performance analysis. One difficulty to analyze

the performance of the unslotted CDMA packet network is that the interference in

one packet duration is changing due to randomly arrivals and departures. In an

unslotted system, We can also show that the number of the active user K in a bit

duration normalized by the processing gain N also converges to a in probability as

N oo. We consider a bit duration from t to t + Tb of the desire user. K 1 users

arrived in the duration (t — Tp , t — Tp + Tb] leave the system, K2 users arrived in

the duration (t — Tp + Tb, t] stay in the system and K3 users arrive in the system
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in this bit duration. The number of active users in this particular bit duration is

K = K2 + K3 - Kl. It is straightforward to show that KIN converges to a in

probability as N→∞  Therefore, it is relative easy to characterize the effect of the

interference for such a large unslotted system.

4.2 Bit Error Probability

We shall study the performance of MMSE receiver, decorrelator and matched filter

receiver for both slotted and unslotted CDMA random access systems in multipath

fading channels. The receivers utilize the statistics of all the received packets in

different transmissions.

4.2.1 Slotted CDMA System

Suppose that the desired user failed to transmit a packet in J — 1 transmissions and

is transmitting a packet of its Jth time at the current slot. We consider one bit

duration of the packet. Sampling the output of the chip-matched filter at the chip

rate, we obtain a N x 1 data vector for the j th (0 < j < J 1) transmission of the

packet

BPSK modulation is used; thus, bk (j) is an equal-

probable +1 random variable. We assume that user 1 is the desired user whose infor-

mation bits are the same in each transmission. The bits

1, 	 , J are assumed to be uncorrelated. This is a reasonable assumption when
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the retransmission probability in the next packet duration is very small. In this

case, when two users both fail in a transmission, the probability that these two

users retransmit the same bits in the same packet duration is negligible. ski

is the spreading signature of user k. Its elements are randomly generated from

the set {-1A/IV, IAN} with equal probability. skl,l = 2, ... , L are the shifted

replicas of ski . To simplify the analysis, we make the assumption as in [22] that

ski , 1 = 0, L — 1 are independent with each other. All though this assumption is

unrealistic, the analysis results under this assumption fit the simulation results in the

shifted case. Basically, in a large system, the shifting provides enough randomness

even though there is code replication. akl(j) is the channel gain for path 1 of user

k in the j th transmission, which is assumed to be uncorrelated. If the random

delay of a retransmission is larger than the coherent time of the fading channel, this

assumption is reasonable. However, in a practical system, the retransmission delay

may not be large enough so that the channel coefficients in different transmissions

are uncorrelated. Nevertheless, to simplify the analysis, we still assume that they

are uncorrelated. Analysis based on the correlated channel coefficients is possible,

but it will not be pursued in this work. In a wireless environment without

line-of-sight between base station and mobile,akl(j)is a zero-mean complex Gaussian

random variable whose amplitude has Rayleigh distribution. We also assume that

the delay-spread of the channel is small compared to the symbol time so that inter-

symbol-interference (ISI) can be neglected. n(j) is complex white Gaussian noise

with variance σ2.

For the joint detection purpose, we stack J data vectors in (4.2) to obtain a
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We first consider the minimum mean squared error (MMSE) receiver. It is well

known [61] that the MMSE receiver for the j th transmission is

cross correlation between b 1 and y(j). The output of the MMSE receiver for the j th

transmission is

where I (j) is the interference plus the noise. It was shown [69, 115] that I (j) is

Gaussian. The mean of I (j) is zero and the variance is

The receiver combines outputs of the MMSE receiver for J transmissions to form

the decision variable z for b 1 . It can be shown that the the optimal weight of the

combiner for z(j) is 1/d(j). Therefore, the decision variable is

OIL in probability as N —+ oo, where is the unique solution to the equation

Therefore, the decision variable in (4.6) converges to a limit z* in probability
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, BER converges to a limit

Pun., in probability [70]

where

When the variances of akl (j) are different, we can evaluate BER using the formula

in [65]. In this work, we assume that each channel gain has the same variance, and

we shall use (4.9) to calculate packet success probability.

We can also do joint MMSE detection based on all the data received in J

transmissions. Using the signal model in (4.3), we obtain the MMSE receiver

block diagonal matrices, it can be shown that

It is observed that the joint detector is actually equivalent to the separate detectors

with the optimal combiner. Since we only have to keep the output of individual

detector in separate detection, we need less memory for separate detection. Thus,

the separate detection with the optimal combiner is preferred in a practical system.

The multipath decorrelating detector is proposed in [116]. Define the signature

matrix in the j th transmission

the pseudo-inverse of the signature matrix SW. When S(j) has full column rank,

Because we are here interested in user 1, we take the

first L outputs of the decorrelator,
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where n 1 (j) is Gaussian and its covariance matrix Rya (j) is the first L x L sub-

Using an MMSE combiner to combine the outputs of J

and I is Gaussian with zero mean and variance

We can use (4.9) to evaluate bit error rate for the decorrelator.

When the receiver is the matched filter with an maximum ratio combiner, it

is straightforward to get the following result for large systems [22]. The decision

variable z converges to z* in probability

central limit theorem, I is Gaussian distributed. Therefore, BER can be calculated

by using (4.9).

4.2.2 Unslotted CDMA System

In unslotted CDMA random access systems, users can transmit at any time. Suppose

that the receiver knows the timing of the desired user and there are K(j) users

transmit in one bit duration with random delays. As in[91], we assume the system

to be chip synchronous to make the analysis tractable. The samples of chip matched
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filter output form a N x 1 data vector 	 -

where bk-1 (j), b2 (j) are the two consecutive symbols of the kth user which overlap

with user 1 in one bit duration. akl (j) is the channel gain as defined before in slotted

systems. ukl (j) and v ia (j) are determined by the spreading signature skl (j) and

the delays relative to user 1. If dk E [0, N) denotes the relative delay in terms of

number of chips of the eh user with respect to user 1, then u kl (j) has its first dk

elements to be the last dk elements of skl (j) and the rest zeros. Similarly, v kl (j) has

the first dk elements zero and the last N — dk elements to be the first N — dk elements

S1a1(j) The SIR achieved by user 1 using the data from the j th transmission is given

Assume that the delay spread of the multipath channel is very small compared to

the processing gain. Then in a large system where KIN = a, N, Kσ , Theorem

3.2 in [91] about the limiting SIR of user 1 for asynchronous Gaussian channel can

be extended to the asynchronous multipath channel case. As in [91], the empirical
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distribution of the delays of the different users, relative to the desired user is assumed

to converge to a fixed distribution, G(r),where the delay d relative to user 1 is given

by d = [τN]. The empirical distribution of the powers of the users is assumed to

converge to a fixed distribution, F(p).

N oo, where

and

where Ep and ET denote the expectation with respect to the power distribution F(P)

and the delay distribution G(τ) respectively, I(P, ,8) =1+Pβ and 1 7- >x is an indicator

function that is 1 if r > x and 0 otherwise. The solution to w(x) exits and is unique

in a class of function w(x) > 0.

Proof First, under the assumption that s 11 , l = 1, . . . , L are independent random

sequences, from Theorem A.4 in [22], we have

effect of the delay spread. Then the variance of an element of matrix S 2 (j) is the

same as that of the same element of matrix S1D1 in [91] when the powers of the

interference users here are the same as the powers of the users in the signal model

in [91]. Following exactly the same steps to prove Theorem 3.2 in [91], we can show

After the receiver combines the outputs of MMSE detector for J transmissions

of the same packet using the optimal combiner, the SIR1 converges to
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in probability. Since the interference and noise at the output of MMSE receiver is

Gaussian, we can use (4.9) to calculate bit error rate.

The effective signature matrix of size N x (2K(j) — 1)L for the j th transmission

. As in the synchronous case, the decorrelator is

if the inverse exists. The interferences are completely

eliminated, the covariance matrix of the Gaussian noise is

1, the noise covariance R,„, 1 is the first L x L sub-block

the assumption that the signature sequences of the different multipath components

are independent, it is straightforward to extend Theorem 3.3 in [91] about the SIR

of decorrelator in asynchronous AWGN channel to asynchronous multipath channel

case. In multipath channels, we

Therefore, SIR 1 (j) converges to

After combing outputs of the decorrelator for J transmission, we have SIR1

It is straightforward to show that the matched filer receiver in the asynchronous

multipath channel has the same asymptotic performance as in the synchronous

multipath situation [22]. Basically, because the random signatures are used, the

effective interference of a particular user at the output of the matched filter is only

related to its power and has nothing to do with its relative delay. However, in a

finite system that uses the spreading signatures such as Gold sequences which have

special crosscorrelation properties, the crosscorrelation in the synchronous cases are

typically less than in the asynchronous case. Therefore, the asymptotic result for the

matched filter here is not applicable to such a system.
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4.3 System Throughput and Delay

In this section, we study the throughput and delay of the slotted and unslotted

CDMA random access systems. Since both the offered load and bandwidth is infinite,

we normalized the offered load by the processing gain N. The throughput which is

defined as the the average number of packets successfully transmitted in a packet

duration is also normalized by the processing gain.

In the CDMA random access system with packet combining, the bit error

rate is decreasing with the number of transmission increasing. The packet success

probability is different for the packet with different number of transmissions. We

assume that the length of the packet is Lp . Suppose that the packet fails in J — 1

transmissions, then the packet success probability in the Jth transmission is given by

The packet failure probability in the Jth transmission the is Ppf(J) = 1 — Pps (J).

The unconditional packet success probability after J transmissions can be found as

Denote NN (t) as the number of packets that are transmitted the Jth time in

the current packet duration. As we see in Section III, the bit error rate converges

to a deterministic limit in large systems. Under this condition, it is shown [83] that

NJ (t) in a slotted system is a Poisson random variable with the rate

where G(1) is the new arrival rate, and Nj (t), J = 1, 2, ... are mutually independent.

In an unslotted system, denote Nit as the number of packets that fail in the Jth

transmission. Since the new arriving packets are Poisson, N f1 is a Poisson random

variable with rate G(1)Ppf (1). We assume that the delays between two consecutive
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transmissions are mutually independent random variables with an exponential distri-

bution. By Burke's Theorem [8], a Poisson process after a random delay with

exponential distribution is still a Poisson process. Therefore, in an unslotted system,

the number of packets that are transmitted the second time in a packet duration is

a Poisson random variable with rate G(2). By inducing, we know that NJ(t), J =

1, 2, ... , oo are independent Poisson random variables with the mean given in (4.24).

The offered load can be expressed as

The normalized throughput is given by

The normalized throughput

becomes

The delay is defined as the average number of transmissions of a packet. It is given

4.4 Numerical Results and Discussions

In this section, we present simulation and analysis results to show the performance

of both slotted and unslotted CDMA random access systems. We assume that the

receiver has the knowledge of the channel state information and delays of all the

users. In a practical system, channel state and the delays can be estimated either

blindly or by using training sequences. However, channel estimation is out of the
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scope of this work. In simulations, the number of paths of the channel L is 2. All the

paths of different users are independent complex Gaussian random variables with the

same variance. The channel in each transmission is independent. The packet length

is Lp = 128.

Fig. 4.1 and Fig. 4.2 show the bit error rate of slotted and unslotted CDMA

systems for different SNRs. We plot the BER of 100 independent runs in which

spreading signatures are independently generated. In simulation, the spreading

signature at the second path is the shifted replica of the original spreading signature;

whereas in analysis, we assume that the spreading signatures at different paths are

independent. From Fig. 4.1 and Fig. 4.2, one sees that BER in simulations spread

around the asymptotic limit. When the processing gain increases, it is expected

that the spread around the asymptotic limit becomes more narrow. In AWGN

channel, it is shown [61] that MMSE receiver converges to the decorrelator when

SNR tends to infinity. However, it is observed in Fig. 4.1 and Fig. 4.2 that MMSE

receiver has better performance even when SNR is very high. This can be explained

as follows. Consider the signal model for the synchronous CDMA in ( 4.2). The

effective signature of user k in j th transmission is sk(j)ak(j). As SNR tends to

infinity, the MMSE receiver converges to a vector that is orthogonal to the range

space of the effective signatures of the interference users. The dimension of this

space is K — 1. If akl,l = 1, . . . , L are all equal, the asymptotic SIR of the MMSE

receiver is (1 — a)SNR when a < 1. On the other hand, the asymptotic SIR of the

multipath decorrelator is (1 —αL)SNR when αL < 1. Therefore, the MMSE receiver

has approximate 10log(1-α/1-αL) dB advantage over the decorrelator receiver when SNR

is high. The similar conclusion can be drawn for the unslotted CDMA systems. We

also see from Fig. 4.1 and Fig. 4.2 that the bit error rate after three transmissions is

much less than that after one transmission for all the linear receivers. Fig. 4.3 plots

bit error rate attained for different normalized offered load. When a > f in the
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slotted CDMA system and a > A  in the unslotted CDMA system, the decorrelator

does not exist. Thus, decorrelator is not suitable for the system with moderate

offered load in multipath channels. When offered load is very high, MMSE receiver

has almost the same bit error rate as the matched filter receiver. In high offered load

regime, there is no sufficient degree of freedom for the MMSE receiver to suppress

the interference. Therefore, MMSE receiver tends to have the same performance as

the matched filter receiver. Fig. 4.4 shows the bit error rate versus the number of

transmissions. It is seen that the bit error rate decreases linearly with the number

of transmissions increasing.

The normalized throughput and average delay for a slotted CDMA system is

shown in Fig. 4.5 and Fig. 4.6. The throughput and average delay of narrow band

ALOHA are also plotted in the figures. In the ALOHA system, we assume that

there is no noise. Therefore, the packet can be successfully transmitted if there is no

collision. The CDMA system with MMSE receiver and packet combining has the best

performance. Its throughput is much higher than ALOHA systems for all the offered

traffic load. When the normalized offered load is lower (i0.8), the CDMA system

using MMSE receiver but without packet combining has almost the same throughput

as the system with packet combing. However, when the normalized offered load

increases, its throughput decreases dramatically. When the normalized offered load

is high, the MMSE receiver without packet combining does not have sufficient degree

of freedom to effectively suppress the interference. The packet success probability

decreases very fast with respect to the increase of the normalized offered load when

the normalized offered load is great than one. However, if the receiver combines J

packets, it gets J fold interference and noise suppression. Therefore, even when the

normalized offered load is very high (> 1), the receiver with the packet combining

still can suppress the interference with the number of packet transmissions increasing.

This is the reason why the system with packet combining has high throughput when
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normalized offered load is high. If the system uses packet combing, the throughput of

the systems employing MMSE receiver and matched filter tend to be the same when

normalized offered load tends to infinity. This is because, as we observed in Fig. 4.3,

the bit error rates of the MMSE receivers and matched filters tends to be the same

when the normalized offered load is very large. The throughput of the system with

matched filter and without packet combing is much lower than the ALOHA system.

This seems to contradict the observation [16] that the CDMA random access system

with the matched filter receiver has almost the same throughput as the ALOHA

system. This is due to the following reasons. First, effect of additive noise is not

considered in [16]. The unsuccessful transmissions are assumed to be caused only

by the multiple-access interference. Second, forward error correction code is used

in [16]. It is observed [16] that as the block error correction capability increases, the

effective throughput increases until it reaches a maximum, after which further coding

reduces the effective throughput. In the systems considered here, if we uses the error

correction code, the effective throughput can be improved. Finally, we consider

the fading channel in which the packet success probability is much lower than in the

AWGN channel when SNR is the same. In Fig.4.6 we see that the average delay of the

system with packet combing is much smaller than that of the system without packet

combing. This is because, with the packet combing, the packet success probability

increases with the number of transmissions. If no packet combing, the packet success

probability is the same no matter how many times the packet is transmitted. The

normalized throughput and average delay for an unslotted CDMA system is shown

in Fig. 4.7 and Fig. 4.8. Similarly as in the slotted CDMA system, packet combining

improves the performance of an unslotted CDMA system.
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4.5 Summary

The system performance of the CDMA random access systems in multipath fading

channels are analyzed for large systems in which the offered load and the processing

gain tend to infinity but their ratio is fixed. The linear MMSE multiuser receiver

has much better performance than the matched filter single user receiver. However,

without packet combining, when the normalized offered load is greater than one in

slotted systems and is greater than half in unslotted systems, linear MMSE receiver

cannot effectively suppress the multiple-access interference; thus the throughput

decreases to zero in high offered load region. With packet combining, the receiver

not only gets a diversity gain in fading channels but also obtain an interference

and noise suppression gain. With the number of transmissions increases, the packet

success probability increases even when the offered load is very large. Therefore,

packet combing improves the system performance for all the offered load. Unlike

in the CDMA system without packet combining, the throughput of CDMA system

with packet combing tends to a finite value when the normalized offered load is very

large. The CDMA system with MMSE receiver and packet combing has much higher

throughput than the ALOHA system for all the offered load.
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Figure 4.1 BER versus SNR for the slotted CDMA system. a = 3/8, L = 2,
Processing gain N = 64 in simulation.

Figure 4.2 BER versus SNR for the unslotted CDMA system. a = 3/16,L = 2,
Processing gain N = 64 in simulation.
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Figure 4.3 BER versus normalized offered load. SNR = 20dB, L = 2. The number
of transmissions Nrt = 3.

Figure 4.4 BER versus the number of transmissions. SNR = 10dB, a = 3/8,
L = 2.



Figure 4.5 Normalized throughput of the slotted CDMA system. SNR = 20dB,
L = 2.
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Figure 4.6 Average delay of the slotted CDMA system. SNR = 20dB, L = 2.
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Figure 4.7 Normalized throughput of the unslotted CDMA system. SNR = 20dB,
L = 2.

Figure 4.8 Average delay of the unslotted CDMA system. SNR = 20dB, L = 2.



CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

This dissertation investigates two techniques, namely interference suppression

technique and diversity technique, to improve the system performance of CDMA

systems. Specifically, in interference suppression technique, we study the reduced-

rank MMSE receiver and reduced-rank minimum variance receiver for DS-CDMA

system. In diversity technique, we study the MC-CDMA systems with transmit

diversity and packet CDMA random access systems with packet combining.

In Chapter 2, we first develop reduced-rank MMSE receiver for DS-CDMA

system. When the covariance matrix of the received signal is known, it was shown

that reduced-rank MMSE receiver has worse performance compared with the full-

rank MMSE receiver. However, when the covariance matrix is estimated from an

finite number of data samples, our analysis and simulations show that the reduced-

rank MMSE receiver that choose proper eigenvalues and eigenvectors outperforms

the full-rank receiver, especially when the desired signal is in a low dimensional

subspace and the power of different users are different. An adaptive reduced-rank

MMSE receiver is then developed based on a subspace tracking algorithm. Compared

with the RLS full-rank adaptive receiver, the adaptive reduced-rank MMSE receiver

has larger output SIR, but higher complexity. We then investigate the reduced-

rank minimum variance receiver that can be blindly implemented. The minimum

variance receiver can be implemented in the same structure as a generalized sidelobe

canceler. The simulations demonstrate that the reduced-rank minimum variance

receiver outperforms the full-rank minimum variance receiver. To further understand

the reason why the reduced-rank MMSE receiver has better performance, we study

the probability density function of the output SNR of linear MMSE estimators based

on a general linear signal model. The pdf of output SNR of full-rank MMSE estimator
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that uses direct inverse of the covariance matrix is derived. An asymptotic pdf of the

reduced-rank MMSE estimator using principle component inverse of the covariance

matrix is also derived. From these pdfs, we see the advantage of the reduced-rank

MMSE estimator.

In chapter 3, the multicarrier CDMA system with transmit diversity is studied.

The linear block space-time code which is originally proposed for a narrow band

system is applied to a wideband MC-CDMA system. We then proposed four schemes

to jointly decode the space-time codes and suppress multiple access interference.

These four schemes are maximum ratio combiner, orthogonal resorting combiner,

MMSE combiner and MMSE multiuser detector. It is shown that the MMSE

combiner is the best tradeoff between the performance and the complexity. Channel

estimation using pilot channels pilot symbols are then studied for the multicarrier

CDMA systems. While the channel estimator using pilot channels has better

performance, it reduces the number of spreading codes available for mobile users,

thereby reduces the number of users in a cell.

In chapter 3, we investigate the CDMA random access systems with packet

combining in fading channels. The performance of both the slotted CDMA system

and unslotted CDMA system with random spreading signature is analyzed. The

analysis is based on large systems in which the offered load and the processing gain

tend to infinity but their ratio is fixed. In such large systems, it is relatively easy to

character the effect of multiple-access interference. We first analyze the bit error rate

of the MMSE receiver, decorrelator and matched filter receiver in fading channels.

The packet that fails in a transmission is not discarded; the receiver combines

all the data of the same packet from different transmissions. By doing so, the

receiver obtains a interference suppression gain and a diversity gain. The interference

suppression gain is due to the fact that in each retransmission of the same packet,

the interference is generally uncorrelated. Since the fading is independent in each
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retransmission, a diversity gain is obtained by packet combining. It is shown that

the bit error rate decreases with the number of transmissions increasing. We then

analyze the system throughput and average delay. From the analysis for both the

slotted CDMA and unslotted CDMA systems, it is seen that multiuser detection and

packet combining substantially improve the performance of CDMA random access

systems.

5.2 Future Directions

To implement reduced-rank MMSE receiver or reduced-rank minimum variance

receiver, a subspace tracker that can track both the signal space and eigenvalues

associated with the basis of the signal space is required. The subspace algorithm

should have reasonable complexity and convergence speed. In the simulations, we

observed that the PAST algorithm [113] and LORAF3 algorithm [80] has the same

order of complexity as RLS adaptive filter but their convergence is very slow. On

the other hand, other subspace tracking algorithms [18, 80] have much larger compu-

tation complexity. Developing efficient subspace tracking algorithms with practical

complexity will be a very interesting and challenging research direction.

In chapter 3, we apply the space-time coding to a wideband system multicarrier

CDMA system. Most of the space-time coding schemes assume that the fading

channel is not frequency selective. Although such space-time coding also work well

in frequency selective fading channel, they are not optimal for such channels. A

simple space-time coding [54] has been proposed for multipath channels. Space-time

coding that can fully exploit the diversity provided by frequency-selective fading

channel will be a fruitful research area.

In the CDMA random access system with packet combining studied in chapter

4, we did not use any coding. We combine the packets at the bit level. When coding

is applied to the transmitted data, combing the packets at code level will have better
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performance than combing the packets at the bit level. Therefore, the research on

packet combing, decoding and multiuser detection for CDMA random access system

is worthy to be pursued.



APPENDIX A

DERIVATION OF THE SECOND PARTIAL DERIVATIVE OF MSER
IN EQ. 2.26

In this appendix, we derive Hij and Fii in Eq. 2.26. Let's denote the last two terms

We first derive the first and second

partial derivatives of M1. The gradient of M1 along u i is given by

Then the Hessian matrix of Ml, Hl ii , is given by
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are columns of matrix X i and matrices

are defined as

Here Pi is a matrix whose jth column is vector p and other columns are zero vectors.

M1 can also be expressed as

The first partial derivative of M1 with respect to λi is given by

Then the second partial derivative of M1 with respect to is found as

It is easily shown that the second term in the above equation is equal to zero and

Thus, we have

We next determine the derivatives of M2. M2 can also be expressed as

The gradient of M2 along Il i is given by



It is seen from (37) that we have
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And H2 22 is obtained as

where the ith column of matrix W is p(i)p. The second derivative of M2 with

respect to λi at point P is given by
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