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ABSTRACT.

ELECTROMAGNETIC CONTROL OF CYLINDER WAKE

by
Zhihua Chen

The objective of this dissertation is to develop open and closed-loop control

algorithms for manipulating wake flows past a solid cylinder in an electrically

low-conducting fluid (e.g. seawater). The intent is to avoid both vortex shedding

and flow separation from the body. It is desired to reduce the mean drag signifi-

cantly and prevent the lift from becoming non-zero at all times. This is achieved

through the introduction of a Lorentz force in the azimuthal direction generated by

an array of permanent magnets and electrodes located on the solid structure. The

array of actuators offers the advantage of making the Lorentz force time and space

dependent. More specifically, a closed-loop control algorithm has been derived from

the equations of motion capable of determining at all times the intensity of the

Lorentz force in order to control the flow. This is achieved first, independently of

the flow (open loop algorithm) and second, based on some partial flow information

measured on the surface of the solid body (closed-loop algorithm). The latter offers

the advantage of requiring a significantly reduced amount of control power. After

considering the flow past a fixed solid structure, there is control of the more complex

flow-structure interaction that occurs when the body is free to move. Thus it is

possible to prevent any flow induced vibration from occurring.
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CHAPTER 1

INTRODUCTION

1.1 Background

The flow past a circular cylinder is an important and fundamental topic in fluid

mechanics. It also remains one of the most investigated and best understood bluff

body wake problems. It is well known that at very low Reynolds numbers (Re << 1),

the flow is steady and symmetric with respect to both the vertical axis and the

horizontal centerline. Here, the Reynolds number Re is defined by Re = 2u∞a/v,

where u,, is the free-stream velocity far from the cylinder, a is the cylinder radius and

v is the kinematic viscosity. As the Reynolds number increases, a change occurs in

the flow patterns, resulting in the break-up of the upstream-downstream symmetry

with respect to the vertical axis; indeed, the flow separates on the downstream

side, forming two counter-rotating eddies which become more and more elongated as

time increases until they reach a maximal size. The latter increases with Reynolds

number. The eddies of maximal size remain stable and attached to the body for

Reynolds numbers below the critical value (Rec >= 47). Above Rec , unsteadiness

arises spontaneously even though all the imposed conditions are being held steady

and vortex shedding appears behind the circular cylinder, resulting in the well-known

Karman vortex street. At a higher Reynolds number (Re >= 200), the flow becomes

three-dimensional and turbulent, and vortex shedding consists of more complicated

patterns. Only recently, much progress has been made in the understanding of the

secondary instability towards a spanwise-periodic three-dimensional flow (Williamson

1996, Henderson 1996 et al) .

The appearance of vortex shedding is accompanied by a large fluctuation of

drag and lift forces, which may cause structural vibrations and acoustic noise, and

1
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shorten the life of the solid structure. Therefore, the ability to control the wake of a

bluff body is of great importance from a practical engineering viewpoint. The goal

here is to reduce drag, increase mixing or heat transfer, or enhance combustion (Park

et al 1994). In many cases, this is achieved by either enhancing or suppressing vortex

shedding.

Over the years, many control methods have been developed. These include

passive open loop control techniques, such as the use of a splitter plate ( Roshko

1955; Gerrard 1966; Apelt, West & Szewczyk 1973; Apelt & West 1975; Unal &

Rockwell 1988; Cimbala & Garg 1991; Kwon & Choi 1996 et al; ), base bleed (

Wood 1964; Bearman 1967; Schumm, Berger & Monkewitz 1994 et al ), and a small

secondary cylinder ( Strykowski & Sreenivasan 1990 ). These techniques do not

require any energy input to the flow. In contrast, active open loop control methods

have also been investigated widely. These include the rotary oscillation of the cylinder

Tokumaru & Dimotakis 1991, Kang and Choi 1999 ), the insertion of additional

vortices in the flow ( Tang & Aubry 1997 et al), wake heating (Noto 1985; et al ),

forced cylinder vibrations ( Wehrmann 1965, et al ), acoustic forcing ( Blevins 1985;

You and Choi et al 1998) and time-harmonic forcing ( Karniadakis & Triantafyllou

1989).

The feedback control of vortex shedding has been investigated theoretically

in the last few years. An approach for controlling fluid flow has been examined

by Abergel & Temam (1990) and Sritharan (1991). Monkewitz (1989) and Park

et al (1993) studied the possibility of feedback control via global oscillations.

Roussopoulos (1993) performed experiments both in wind and in an open water

channel; his results have shown that up to 10 units of Reynolds numbers above the

onset of vortex shedding, it was possible to suppress the wake. Park et al (1994)

showed numerically that complete suppression of vortex shedding can be achieved at
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Re = 60, using a single sensor and a pair of blowing/suction actuators. Gunzburger

et al (1996) implemented the latter feedback control scheme in a physical experiment

by sensing the pressure distribution on the cylinder surface, and using actuators

consisting of injection and suction of fluid through orifices on the surface. They

reported a remarkable lift reduction without, however, being able to suppress vortex

shedding completely.

Min and Choi (1999) developed a systematic method of controlling vortex

shedding behind a bluff body using a suboptimal feedback control procedure

developed by Abergel et al (1990) (choi et al (1993)). In order to investigate

the performance of their control algorithm, they chose three cost functions which are

all related to the pressure distribution on the cylinder surface. Their results showed

that the technique can reduce the drag and lift significantly and weaken, or even

suppress, vortex shedding at the Reynolds number values Re = 100 and Re = 160.

Some control methods are successful at controlling or suppressing vortex

shedding through a large modification (e.g. a splitter plate of length 10a or

a flapping foil of chord 4a, where a is the radius of the cylinder. Some other

approaches, such as the insertion of a small cylinder in the wake, are small local

modifications, but are usually restricted to a small range of Reynolds numbers; in

many cases, control methods are based on physical intuition and the qualitative

observation of flow phenomena. Even in the cases where vortex shedding can be

controlled or suppressed successfully, it is often not practical for applications in real

engineering situations.
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1.2 Electro-Magnetic Control of Vortex Shedding

In an electrically conducting fluid (such as sea water), it is possible, through the

motion of a conducting material in a magnetic field, to generate an electromotive

force and cause an electric current of density j to flow. The current induces its

own magnetic field and organizes a volume force distribution inside the fluid. The

induced currents, together with the external magnetic field, generate a Lorentz force

Pi which, in turn, influences the fluid flow. It is worthwhile noticing that the Lorentz

force can be produced by the application of either a magnetic field or a combination

of magnetic and electric fields. In such MHD (Magneto-Hydro-Dynamic) flows, the

Lorentz force distribution can be adapted to a prescribed, desired action through

the application of suitably chosen magnetic and electric fields. However, in MHD

flows with a weakly conducting fluid (such as sea water), the induced magnetic and

electric fields are negligible. Therefore, the possibility of affecting the flow effectively

requires that an external electric field be imposed. In such EMHD (electro-magneto-

hydro-dynamic) flows, electrical currents, fed via electrodes to a low conducting fluid,

will only slightly penetrate into the fluid, so the Lorentz force will be non-negligible

only in some vicinity of the electrodes. Such electro-magnetic forces in electrically

conducting fluid provide an alternative flow control method. In order to achieve

a specific goal, one needs to determine the appropriate configuration of external

magnetic and electric fields yielding some optimal Lorentz force distribution.

The main advantage of the latter control strategy for electrically conducting

fluids is that the Lorentz force acts on a volume of the flow, and it may be possible

to tune the force to act only in specific regions of the flow. Many techniques using

electric and magnetic fields have been proposed in weakly conducting fluids, in order

to achieve turbulent boundary layer control, transition delay and drag reduction.
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For instance, Nosenchuck and Brown (1995) performed experiments by

injecting an electrolyte into a non-conducting pure water turbulent boundary layer.

They employed special arrangements of single actuators "tiles" ; these tiles were

designed in order to obtain a global modification of the near wall flow. The authors

reported a a dramatic reduction in turbulence intensity and in skin friction. Gailitis

and Lielansis (1961) developed a specific arrangement which consisted of alternating

electrodes and magnets along the streamwise direction in order to achieve drag

reduction; the technique was tested recently by Henoch and Stace (1995) to control

a turbulent boundary layer. In their experiment, the Lorentz force is generated by

the simple strip-like geometry shown in Figure 2.1. Their results showed an increase

in drag at low Reynolds numbers, and a small drag decrease at high Reynolds

numbers. Using the same geometry, Crawford and Karniadakis (1997) performed

numerical simulations based on a spectral element method and corroborated the

slight net increase in drag at low Reynolds numbers. More precisely, they simulated

a channel flow subjected to a streamwise Lorentz force applied on one wall. The

simulations were performed at the Reynolds number Re = 200 and the interaction

parameter values N = 0.1 and N = 0.4. Here, the interaction parameter is defined

as the ratio between the Lorentz force intensity to the inertia forces. The authors

find a shear stress increase on the controlled wall in both cases. Such an increase is

due to the fact that the Lorentz force distribution acts as a source of spanwise and

normal vorticity and, therefore, influences the turbulent flow.

Regarding the flow past a cylinder, it was experimentally demonstrated by

Lahjomri et al (1993) that a streamwise magnetic field leads to a delayed onset

of vortex shedding. On the numerical side, Mutschke et al (1997, 1998) carried out

two-dimensional (2-D) and three-dimensional (3-D) stability analyses for a wake flow

subjected to a streamwise magnetic field and demonstrated the suppression of the

instability for the 2-D problem.
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Weier and co-workers (1998) presented results from flow visualizations and

numerical calculations on the active open loop control of the flow around a cylinder

by means of electromagnetic forces. The main focus of their research consisted of

separation control, drag reduction, and modification of the cylinder wake structure.

A cylindrical test body was covered with electrodes and magnets whose role was

to create a Lorentz force parallel to the body surface. Their results showed that

Lorentz forces directed with the mean flow are able to prevent the boundary layer

from separating away from the solid body.

Although many experiments and numerical analyses have been carried out for

such MHD flows, little is known about the instability and transition scenarios except

for the general belief that magnetic fields have a damping influence. Due to the

difficulty of flow measurements in liquid metal flows at small Reynolds numbers, all

known experimental results are at relatively high Reynolds numbers. Furthermore,

there has not been any investigation on the design of reactive flow control based on

some instantaneous flow information for these flows.

1.3 Control of Vortex-Induced Vibration

The appearance of vortex shedding, accompanied by the fluctuation of drag and

lift, may cause structural vibrations of the solid body. Due to the destructive effect

of such vortex-induced vibrations on offshore structures, bridges, towers and heat

exchangers, vortex shedding and its control have attracted the interest of many

researchers over the years.

Much experimental work has been performed on flows over elastic structures.

Vandiver (1991) has performed field experiments to examine the factors that are

important in predicting flow induced vibrations of long flexible cables. Griffin (1992)
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has compiled many experimental results to demonstrate the relationship between the

cross-flow vibration amplitude and the mass-damping product. Brika & Laneville

(1993) performed an experimental study of the vortex-induced oscillations of a long

flexible circular cylinder. The stationary amplitudes they obtained exhibited a

hysteresis loop somewhat different from observations resulting from earlier studies.

The concept of lock-in vortex shedding has been revised by many researchers.

Atsara-pranee & Benaroyaet alcarried out experiments to characterize the flow in the near

wake of a stationary and freely-oscillating cylinder in and near the lock-in range.

Techet and Triantafyllou (1998) measured the forces at both ends of the

forced harmonic motion and free vibrations of uniform and tapered cylinders at the

Reynolds number value, Re = 3800. Their results showed that free-vibration tests

of a uniform cylinder with low equivalent structural damping yield the amplitude

response curve as a function of the nominal reduced velocity in agreement with

previous results (Khalak & Williamson 1996). In addition, the Digital Particle

Image Velocimetry (DPIV) technique is used widely to unveil the shedding patterns

of the flow (Williamson and Roshko 1988, Techet & Triantatyllou 1998).

Experimental studies of vortex-induced vibrations of a cylinder have estab-

lished some important conclusions. For instance, it is well-known that the vortex

induced vibration phenomenon is a self-limiting process, with an upper bound for

the amplitude of the vibrations. The magnitude of the lift force depends on the

vibration amplitude, which itself has some relation with the reduced damping and

the phase difference between the lift force and the motion of the cylinder.

Numerical work has not been as extensive as experimental studies. Recently,

progress has been made in understanding and modeling the near-wake dynamics of

bluff bodies. Such progress has led to new predictive models that give an accurate
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description of the flow field as well as offer an opportunity to revisit the vortex-

induced vibration problem.

Dutsch et al (1998) investigated numerically the laminar flow induced by

the harmonic in-line oscillation of a circular cylinder. The drag and the added-

mass coefficients were calculated and compared for different grid levels and time

steps. With the use of a spectral element spatial discretization, Blackburn and

Henderson (1996) investigated the vortex-induced vibration problem by solving

the two-dimensional Navier-Stokes equations in an accelerating frame of reference

attached to the cylinder at the Reynolds number value Re = 250. Newman and

Karniadakis (1995, 1997) performed a direct numerical simulation study of the flow

past a freely vibrating cable using body-fitted coordinates at the Reynolds numbers

Re = 100 and Re = 200. Three cases of cable motion were considered: (i) the cable

was stationary and straight, (ii) the cable motion was specified (standing wave) and

(iii) the cable was free to interact with the flow. The results obtained were consistent

with experimental data. Zhou, So and Lam (1998) studied a two-dimensional flow

past an elastic circular cylinder using the VIC (vortex-in-cell) discrete vortex method

to investigate the responses of the cylinder, the induced forces on the cylinder, and

the effects of cylinder motion on the vortex structure in the wake.

So far, studies regarding vortex-induced vibrations do not provide a clear

understanding of the character and mechanism of this phenomenon. In addition,

little work has been done for the control of vortex-induced vibrations. In this thesis,

we will develop a novel feedback control algorithm and test it numerically. Our goal

is to control both vortex shedding and vortex-induced vibrations.
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1.4 Research Objectives

The purpose of our work is to develop both open loop and closed-loop control

algorithms for manipulating wake flows past a fixed cylinder in an electrically low-

conducting fluid (e.g. seawater). Our goal is to avoid flow separation from the surface

of the body and fully suppress vortex shedding.

Emerging closed-loop control techniques invite a fundamental question: Based

on some partial information on the flow dynamics, can one design an efficient control

algorithm to reach a desirable effect? Since we are interested in low-conducting fluids,

we concentrate here on the possibility of manipulating a fluid flow by means of arrays

of electrodes and permanent magnets generating electro-magnetic body forces, i.e.

Lorentz forces, in the fluid. The advantage of this non-invasive technique is that it

acts on an extended part of the fluid volume rather than being limited to the solid

surface. In addition, it can be miniaturized and permit flow manipulation in the

sub-micrometer world.

Since the phenomenon of flow separation is due to the loss of momentum close to

the separation point, a promising technique seems to be the generation of a tangential

Lorentz force at the appropriate azimuthal location on the cylinder surface. Such

a force originates, for instance, from alternating electrodes and magnets N, +, S, - ,

etc. along the span of the cylinder. The electrodes and magnets are arranged so that

the resulting Lorentz force is symmetric with respect to the flow centerline. It was

recently demonstrated experimentally and numerically that an array of electrodes

and magnets distributed all around the body and energized at all times can suppress

vortex shedding and delay flow separation. Here that more localized electrode and

magnet arrays have been shown, activated only at times when they are needed, can

achieve similar results and even suppress separation completely.
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Our numerical simulation is based on the two-dimensional formulation of the

Navier-Stokes equations in an exponential-polar coordinate system. The exponential

mapping allows us to deal with a very large physical domain while the computa-

tional box remains relatively small. This allows us to avoid the well-known blockage

effect. The vorticity/streamfunction formulation of the Navier-Stokes equations

expressed with respect to dimensionless variables has been chosen. These equations

are subject to the no-slip boundary conditions on the surface of the body and the

two-dimensional potential flow at infinity. The impulsive start is simulated by using

potential flow as the initial condition, except on the surface of the cylinder where

the absence of slip is imposed. Everywhere, except on the surface of the cylinder,

the flow is initially potential. An adaptive scheme is developed in order to increase

the efficiency of our numerical code. This scheme consists of moving the boundary

used for the vorticity transport equation further and further away from the body as

the vorticity is transported outward. Thus our full physical domain has been divided

into two subdomains, Region I and Region II, the vorticity being fully contained

in Region I. The numerical method consists of an alternating-direction-implicit

(ADI) algorithm for the vorticity transport equation and fast Fourier transforms

(FFT) for the Poisson equation with second-order accuracy. More details on the

numerical simulation can be found in Aubry and Tang (1998). In the present

work, we add the electro-magnetic force as a body force in the right-hand side of

the Navier-Stokes equations. After reproducing the results reported in Weier et al

(1998) for the case of a time independent, uniformly distributed force around the

surface of the body, we introduce novel open loop and closed-loop control algorithms.
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1.5 Summary of this Study

This dissertation is organized as follows: In Chapter 2, we introduce the governing

equations and the numerical methods to integrate the latter. Chapter 3 reports our

results concerning the open loop control algorithm using the Lorentz force either

applied all around the cylinder surface or acting on a portion of the cylinder surface

only. Applying the Lorentz force has been found on only a portion of the cylinder

area can have an effect on the flow dynamics very similar to that obtained with the

Lorentz force distributed along the entire surface. However, the former technique

saves energy. The results have been described obtained in the case where the Lorentz

force is no longer constant but sinusoidal with various forcing frequencies. For forcing

frequencies close to the Strouhal frequency, lock-in occurs even at low values of the

Lorentz force amplitude. In chapter 4, we describe our feedback control procedures

at both zero total drag coefficient and zero pressure drag coefficient. In both cases,

vortex shedding have been suppressed behind the cylinder completely. In chapter 5,

we numerically simulate vortex-induced vibrations of the cylinder at the Reynolds

number values Re = 100 and Re = 200. The feedback control method developed

in Section 4 has been applied to the flow past the vibrating cylinder and show that

vortex shedding can be suppressed in this case as well. Finally, we summarize our

findings in Chapter 6.



CHAPTER 2

COMPUTATIONAL METHODS

2.1 Governing Equations

The case for which the electrically conducting fluid has been considered being the

incompressible viscous liquid around an insulating circular cylinder in an external

uniform magnetic field, and the only body force is the Lorentz force. The two-

dimensional incompressible Navier-Stokes equations then become as follows:

where Pi is the Lorentz force that results from the vector product of the current

Defining the vorticity and the streamfunction ill as follows:

The equations of motion expressed in terms of the vorticity and streamfunction

can be derived from the above equations (2.1)—(2.3):

12



Introducing the cylindrical coordinates system

13

Equation (2.5)then becomes:

Considering the following dimensionless variables

where a is cylinder radius, u,„ denotes the free-stream velocity. B0 and a refer to

the magnetic field and the electrical conductivity, respectively.

For the sake of simplicity of the presentation, hereafter we drop the star

superscript for the dimensionless variables, and introduce the exponential-polar

coordinates system 77) defined as:

Now a similar analysis has been performed to derive the streamfunction

equation (2.6), so that the vorticity/streamfunction formulation of the Navier-Stokes
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equations in the transformed coordinates becomes:

where Ur , V9 and E are new dependent variables defined as

In Equation (2.8) the dimensionless parameter, referred to as "interaction

parameter"

appears in the non-dimensionalization process. In addition, the usual Reynolds

number is also seen.

It is clear that the interaction parameter N is the ratio of the electromagnetic

force to the inertia forces. In the present work, all fluid properties such as density

(p), kinematic viscosity (v), and electric conductivity (a) are assumed to be constant,

and the cylinder is considered to be electrically insulated.

2.1.1 Initial and Boundary Conditions

Except on the surface of the cylinder where the absence of slip is imposed, the flow

can be considered initially potential. Since at the surface of the cylinder, the the
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is equal to zero, the expression of the vorticity can be obtained

from Equation (2.9). At t = 0, the following equations thus hold:

Away from the cylinder surface, e > 0

On the cylinder surface, e = 0

The boundary conditions for Equations (2.8) and (2.9) consist of (i) the no-slip

boundary condition on the surface, and (ii) the potential flow at the outer boundary

of the domain (referred to as infinity):

Away from the cylinder surface, ε = ε∞

On the cylinder surface,

2.1.2 Numerical Methods

The vorticity transport equation (2.8) is solved with the use of Alternative-Direction

Implicit (ADI) algorithm and the streamfunction equation (2.9) is integrated by

means of a Fast Fourier Transform (FFT) algorithm. The accuracy of the numerical

scheme is second order in space and first order in time. These techniques are standard

and more details can be found in the literature.

An ADI algorithm is implemented to solve the vorticity transport equation

(2.8), leading to the discretized formulae:
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where Uε , Uη  are , 77 velocity components which are calculated at the n th time step.

The streamfunciton was solved by adopting an efficient algorithm using fast

Fourier transforms (FFT) with second-order accuracy as in Hockney (1970):

In our numerical scheme, we use

which gives us second-order accuracy to calculate the vorticity flux in equation (2.18).

2.1.3 Static Symmetric Lorentz Force

From Equation (2.4), the Lorentz force results from the vector product of the current

density	 j
-. i

ty j and the magnetic induction B. The current density , in turn, is given by
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Ohm's law as the sum of the current due to the presence of the electric field E and

the current induced by the motion of the electro-conducting medium at speed U in

the presence of a magnetic field. That is:

where σ(S/m) denotes the electrical conductivity.

In low conducting fluids like seawater, the induced electrical current (j = σU  x

B ) are generally too small to produce any noticeable effect compared to the current

associated with the electric field, and is thus neglected. The Lorentz force then

reduces to

Experiments show that the external applied current will only penetrate into the

liquid within a short distance of the electrodes and will decay rapidly. One can thus

assume that the Lorentz force will be effective only in some vicinity of the electrodes,

within the boundary layer. Grienberg (1961) used a series expansion to determine

the electromagnetic field distributions and found that, within a good approximation,

the Lorentz force decays exponentially.

As an example, we show the configuration which was proposed by Gailitis and

Lielausis (1961), which consists of alternating streamwise electrodes and magnets

over a flat plate and, therefore, produces a Lorentz force in the streamwise direction

(Figure 2.1). Here "N" and "S" indicate north and south magnet poles and "+" and

"2 indicate positive and grounded electrodes, respectively.

In order to control the cylinder wake, the cylinder is mounted with a special

array of electrodes and permanent magnets on the surface as shown in Figure 2.2.
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Figure 2.1 Sketch of the streamwise electrodes and magnets over a flat plate (from
Crawford and Karniadakis 1997).

This consists of two half cylinders, each obtained from the bend of plate as shown

in Figure 2.1. In this way, the Lorentz force on the surface of cylinder is directed

parallel to the cylinder surface and keeps the same direction on both half sides (see

Figure 2.2c). The force P in equation (2.8) is modeled by the simple relation which

was given by Weier et al. (1998). It is defined as follows:

The above equation is a simplification of the real experimental situation. The

slots are located at front and rear stagnation points where no electrodes are present,

so the limits of the 9 are 5° ~ 175° and 185° ~ 355°. Any radial force component

has been neglected. The value a describes the electromagnetic penetration into

the liquid which is mainly defined by the electrode spacing and modeled in corre-

spondence to the experimental situation by a = 57r/4. From the above equation we

see that the Lorentz force is symmetric on both sides of the cylinder, and the forces
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Figure 2.2 Sketch of the cylinder equipped with electrodes and magnets.

on both sides keep the same direction at all the time.

2.1.4 Periodic Symmetric Lorentz Force

Since the Lorentz force is a function of the applied current density, it is easy to

implement the sinusoidal force in time by feeding the electrodes in an appropriate

manner. In this way, the production of electrolytic bubbles using the time dependent

currents can be avoided, and the electrode reactions can be reduced at the same

time. Therefore, the corrosion at the anodes should be decreased dramatically. This

approach may be more effective from the economical point of view than previous DC

model, If the Lorentz force has an excitation frequency f, the dimensionless term
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then force P in equation (2.8) is given by:

Where ω = 2πƒe, t denotes dimensionless time and g(9) is given from equation

(2.8). Thus, the Lorentz force is symmetrical on both sides of the cylinder and

changes direction at a certain frequency ƒ e .

2.1.5 Periodic Antisymmetric Lorentz Force

If the whole cylinder consisted of the bend of one fiat plate, the Lorentz force on both

sides of the cylinder would have the same angular direction at every instant. For

sinusoidal forcing with an excitation frequency e , the Lorentz force can be written

in the following form:

where ω = 2πƒe , and t denotes dimensionless time. Thus, the Lorentz force is

periodic and antisymmetric.

2.2 Pressure Coefficient

The pressure coefficient at one point 9 on the surface of the cylinder can be calculated

from the definition
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The above equation can also be written as

where P0 is the pressure at the front stagnation point. From the Navier-Stokes

equation in a MHD flow, we can write

On the surface of the cylinder u = 0, the above equation becomes:

In two-dimensional cylindrical coordinates, we have:

Letting C2, = Q, and considering that the surface of cylinder is defined by r = 1,

we can write

Integrating Equation (2.15) in the 0 direction from the limit 0 = 0 0, and

writing the equation in the exponential-polar coordinate system (ε, η ) gives:
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The above equation can then be written as

The Navier-Stokes equation in the r direction for a flow subjected to an MHD

field can then be obtained from Equation (2.13) as follows.

Using the fact that the Lorentz force in the r direction is zero, i.e. Fir = 0, we

now integrate the previous equation in the r direction from r = 1 co.

This equation can be written in terms of 	 77) as follows.

so we have



Substituting Equations (2.16) and (2.17) into Equation (2.13) gives

23

2.3 Force Coefficient

The solid cylinder experiences a net force due to the action of the fluid. The total

force Pt acting on the body is opposite to the force on the fluid and is obtained by

integrating the shear stress and pressure along the body surface.

Figure 2.3 shows the force acting on an element of surface of the circular

cylinder. The x— component of the total force, Pt , or drag Ftx , consists of skin

friction drag and the pressure drag,(Fτx , Fpx). The friction drag, Fτx , corresponds to

the wall shear stress along the cylinder surface, while the pressure drag Fpx can be

obtained from the pressure along the cylinder surface.

The total drag can be expressed as

Similarly, the total lift's expression is



Figure 2.3 Force acting on an element of surface of the cylinder

Using Equation (2.14), the right hand-side of Equation (2.19) can be written as

24

while the shear stress on the surface of the cylinder is expressed as follows.

Substitution of Equations (2.21) and (2.22) into Equation (2.19) gives
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The dimensionless total drag and lift - or drag and lift coefficients - are defined

where a is the radius of the cylinder.

where Cpd , Cfd are the pressure drag and friction drag coefficients.

Using a similar procedure, the total lift coefficient can be written as



CHAPTER 3

NUMERICAL RESULTS FOR OPEN LOOP CONTROL

In this chapter, numerical results for open loop control at the Reynolds number

value Re = 200 are presented and discussed. The actuators (exerting Lorentz forces)

are distributed either on the entire surface of the cylinder or on smaller portions of

the surface during the entire computational time. When the Lorentz force acts on

the entire cylinder surface, we consider the case where the force is symmetric, as well

as the case where the force is antisymmetric. For all computer runs reported in this

thesis, the computational time step is At = 0.005. The interaction parameter values

in Section 3.1 are chosen in order to allow comparison with the results of Weier et

al. (1998).

3.1 Lorentz Force on all Cylinder Surface

Our computations performed for different values of the interaction parameter N show

that the results are in excellent agreement with those of Weier at al. (1998). Figure

3.1 shows a sequence of instantaneous computed streamlines for N = 0, 2, 5, 50. The

isolines of the streamfunction (i.e. streamlines) have equal values for all presented

figures. At zero interaction parameter, N = 0, corresponding to the case where

the Lorentz force is turned off, the flow is unsteady and shows the characteristic

features of the Karman vortex street. For a small Lorentz force, corresponding to

an interaction parameter value of N = 2, one observes an interesting modification

of the flow. Although the flow is still unsteady, the flow separation region is greatly

diminished. Behind the cylinder, a region with two relatively small recirculation

bubbles forms. Figures 3.1.c and 3.1.d show that a further increase of the interaction

26
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Figure 3.1 Streamlines of the flow at Reynolds number Re = 200 with various
interaction parameters
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parameter N fully suppresses separation and stabilizes the flow. As the interaction

parameter, N, increases, streamlines get closer to each other and the fluid gets more

and more accelerated by the Lorentz force. The higher the magnitude of force, the

stronger the accelerating effect. Figures 3.1.c,d show the accelerating effect on the

fluid not only behind the cylinder, but also in front of the cylinder. On the rear

face of the cylinder, the accelerated fluid separates from the surface of the cylinder

forming two jets (symmetric with respect of the center line) which meet downstream,

e.g. N = 50, the two jets meet close to the cylinder, at about 0.5 diameter behind the

rear stagnation point. In between the two jets, one can observe a recirculation zone

consisting of several small vortices. Our numerical results, in excellent agreement

with those of Weier et al (1998), show that a Lorentz force tangential to the surface of

the circular cylinder is capable of altering the cylinder boundary layer and preventing

boundary layer separation.

The vorticity and pressure distributions on the cylinder surface at different

interaction parameter values are shown in Figures 3.2 and 3.3. The angle 0 is defined

from the front to the rear stagnation point. From the vorticity distribution in Figure

3.2, one can see that an increase in the interaction parameter (and therefore in the

Lorentz force) leads to an increase in vorticity. Higher values of the Lorentz force

result in a steeper gradient of the velocity profile at the wall, thus causing higher

vorticity values. The zero vorticity point corresponding to the separation point on

the cylinder is lifted away from the horizontal axis, thus making separation disappear

all together.

As the Lorentz force increases, the pressure distribution reaches lower values

due to the accelerated fluid, although close to the rear stagnation point the pressure

increases due to the reduction of the recirculation region. Figure 3.3 shows that at

N = 5, the pressure value at the rear stagnation point is even larger than the value
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Figure 3.2 Vorticity distribution along the surface of the cylinder at various inter-
action parameter values
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Figure 3.3 Pressure distribution along the surface of the cylinder at various inter-
action parameter values
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of the front stagnation point. This implies a net force opposed to the mean flow

direction due to the pressure difference between front and rear stagnation points.

Figure 3.4 shows the time history of the pressure, friction, and total drag

coefficients at different values of the interaction parameter at Reynolds number

Re = 200. These results, in agreement with those reported by Weier et al (1998),

summarize some of the flow features we found in previous diagrams. More specif-

ically, pressure drag Cpd decreases with increasing interaction parameter because of

separation suppression. At sufficiently large values of the Lorentz force, a jet in the

vicinity of the rear stagnation point increases pressure there. When the force is suffi-

ciently large to create pressure values which are larger in the rear than in the front of

the cylinder, the pressure drag becomes negative, leading to thrust on the cylinder.

In contrast, friction drag C fd increases with increasing interaction parameter. This is

due to the increased wall friction resulting from the steeper velocity gradient caused

by the accelerated fluid at the wall. The total drag coefficient Cd, equal to the sum

of the pressure Cpd and friction drag coefficient Cfd , is always smaller than the value

it had when the Lorentz force was turned off.
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Figure 3.4 Time history of the pressure, friction and total drag coefficient at various
interaction parameters
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3.2 Localized Lorentz Force

Results shown in the above section are obtained from the actuation over the entire

cylinder surface. In terms of practical implementation, local actuations may save

energy while being as efficient. When localized forces are used, their precise location

is a critical factor in the effectiveness of suppressing vortex shedding. Park et al

(1994) found that if the actuator was located too far from the separation point on

the surface of the cylinder, suppression of vortex shedding could not be obtained. In

the uncontrolled flow at Re = 200, separation takes place on the cylinder surface at

about ±110° from the front stagnation point. Therefore, the location of our actuators

has been selected at beginning slightly upstream of the separation point, that is at

±95° from the stagnation point. The Lorenz force in Equation (2.8) can then be

written as

Using the same numerical method as described in Chapter 2, we obtain the

following results. Figures 3.5 and 3.6 show the instantaneous streamlines for the

interaction parameter values N = 0, 1, 2, 3, 5, 7, 10, 15 and the corresponding vorticity

contours, respectively. Here as before, the streamlines have equal values for all

presented figures. As we compare the results with those of Figure 3.1 (see Section

3.1), we see that the Lorentz force applied to a portion of the cylinder surface only

is as efficient as the Lorentz force applied on the whole surface. Separation is fully

suppressed at the interaction parameter value N = 3. Once again, the acceleration

of the fluid on the rear half of cylinder surface takes place, which can be observed

from the narrowing of the streamlines behind the cylinder. Further increase of the



Figure 3.5 Instantaneous streamlines for the interaction parameter values N =
0, 2, 3, 4, 5, 7, 10, 15.
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Figure 3.6 Instantaneous vorticity contours at the interaction parameter values
N = 0, 2, 3, 4, 5, 7, 10, 15.
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interaction parameter N leads to streamlines closer to each other. On the rear face of

the cylinder, the accelerated fluid separates from the cylinder at about 100°, forming

two jets (see Figures 3.5 and 3.6). At high interaction parameter values, the Lorentz

force acts mainly as a thrust generator.

Figures 3.7 and 3.8 show the vorticity and pressure coefficient distributions on

the cylinder surface where 0 is defined from the front to the rear stagnation point.

It is clear from Figure 3.7 that the increase of surface force leads to an increase in

vorticity. The same tendency can be observed in Figure 3.2 although differences

occur between these two figures. First, in Figure 3.7, the increase in the amplitude

of vorticity with the interation parameter is smaller than the increase of vorticity in

Figure 3.2. Second, the highest vorticity point in Figure 3.2 is almost fixed at the

cylinder surface, while it moves back toward the rear stagnation point in Figure 3.7.

This can be explained as follows. With the increase of the intensity of the Lorentz

force applied to a portion of the cylinder surface, the actuation area experiences a

higher shear that results in higher vorticity compared to the rest of the cylinder

surface.

The pressure over the actuation area decreases with the increase of surface

force, while the pressure at the rear stagnation point increases due to the reduction

of recirculation region, to the point that when N = 5, it actually becomes larger

than that of the front stagnation point.

Figure 3.9 displays the time history of the force coefficient with different inter-

action parameter values. It is clear that as the interaction parameter N increases,

the pressure, lift and total drag coefficient decrease, which is consistent with some

of the flow features previously found. Pressure drag decreases with the increase of

the interaction parameter due to the suppression of flow separation. When the inter-

action parameter becomes sufficiently high, the pressure at the rear stagnation point
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Figure 3.7 Vorticity distribution on the cylinder surface for various interaction
parameter values.



Figure 3.8 Pressure distribution on the cylinder surface for various interaction
parameter values.
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becomes even higher than at the front stagnation point. Therefore, the pressure drag

coefficient becomes negative. On the other hand, the friction drag increases as the

interaction parameter increases. The total drag also experiences some discrepancies

between Figures 3.9 and 3.4. In the localized Lorentz force, the friction drag increase

slower than the pressure drag decreases. This implies that the total drag is always

dominated by the effect of the pressure drag and that it indeed decreases. Conse-

quently, the localized force is at least as efficient as the distributed force in reducing

the total drag coefficient.
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Figure 3.9 Time history of the force coefficient with various interaction parameter
values.
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3.3 Time Periodic Lorentz Force

In this section, we explore the influence of the time periodic of the Lorentz force onto

the efficiency of the flow control technique. The case is first considered where the

Lorentz force is symmetric with respect to the centerline (Section 2.1.4), and second

the case where the Lorentz force is antisymmetric (Section 2.1.5).

Figures 3.10. 3.11 and 3.12 present the flow characteristics for various values of

the interaction parameter (N = 5, 10, 20). Figure 3.10 shows the flow streamlines for

various interaction parameter and Lorentz force frequency values. It is clear that the

flow structure depends on both the magnitude of the Lorentz force and the excitation

frequency.

In the symmetric case, the flow consists of a symmetric vortex street when

the values of the interaction parameter and force frequency are appropriately chosen

(N = 5, e = 0.2). When the excitation frequency increases, the flow becomes

somewhat comparable to the flow past a vibrating cylinder, which vibrates in line

with the oncoming flow (Ongoren and Rockwell (1988)).

Figures 3.11 and 3.12 show that when the Lorentz force excitation frequency

is close to the Strouhal number frequency (St = 2af/Uinfty, where f denotes the

frequency of natural vortex shedding), that is e = 0.2, the lock-in phenomenon

occurs. Figure 3.11 shows the time history of the drag coefficient at various values of

the Lorentz force frequency and interaction parameter. The oscillation frequency of

the drag coefficient is dominated by the Lorentz force frequency, and the amplitude

of the drag increases as the force frequency and interaction parameter increase. At

sufficiently large values of the Lorentz force frequency, the drag exhibits two different

frequencies, one corresponding to the Lorentz force frequency, and the other one being

the natural vortex shedding frequency.
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Figure 3.10 Flow streamlines in the case of a symmetric Lorentz force for various
values of the interaction parameter and Lorentz force frequency.
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Figure 3.11 Time history of the drag coefficient for various values of the interaction
parameter and force frequency in the case of a symmetric Lorentz force.
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Figure 3.12 Time history of the lift coefficient for various values of the interaction
parameter and Lorentz force frequency in the case of a symmetric Lorentz force.
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Figure 3.12 displays the time history of the lift coefficient for various values of

the Lorentz force frequency and interaction parameter. Like the drag, the amplitude

of the lift coefficient increases with the Lorentz force frequency and its frequency

corresponds to that of the drag.

When the Lorentz force is antisymmetric with respect to the centerline, the

effect is somewhat different. Figure 3.13 shows the streamlines for various values of

the interaction parameter and Lorentz force frequency. One can observe that when

the Lorentz force frequency becomes sufficiently large, the flow structure does not

change much with the interaction parameter.

Figure 3.14 displays the time history of the drag force for various values of the

Lorentz force frequency at certain interaction parameter values. When the Lorentz

force frequency is sufficiently large, the drag exhibits two different frequencies, one

corresponding to the natural vortex shedding frequency, the other one coinciding

with the Lorentz force frequency. In contrast with what happens in the symmetric

case, the amplitude of the drag force decreases as the Lorentz force frequency

increases. Likewise, Figure 3.15 shows that the amplitude of the lift decreases as

the frequency of the Lorentz force increases. Here, again, the oscillation frequency

is controlled by the Lorentz force frequency. In particular, the occurrence of the

two different frequencies in the lift coefficient is visible even at small interaction

parameter values.
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Figure 3.13 Flow streamlines for various values of the interaction parameter and
Lorentz force frequency in the case of an antisymmetric Lorentz force.
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Figure 3.14 Time history of the drag coefficient for various values of the interaction
parameter and force frequency in the case of an antisymmetric Lorentz force.



58



59



60

Figure 3.15 Time history of the lift coefficient for various values of the interaction
parameter and Lorentz force frequency in the case of an antisymmetric Lorentz force.
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3.4 Summary

In this chapter, the two dimensional Navier-Stokes equations with open loop control

are solved numerically. The control actuators exert Lorentz forces which are

distributed on both halves of the cylinder surface. With the use of a symmetric

and static Lorentz force over the entire surface of the cylinder, the vortex shedding

behind the cylinder weakens and eventually completely disappears when the Lorentz

force (or interaction parameter) is sufficiently large.

The localized Lorentz force along the rear surface of the cylinder was also used

to control the vortex shedding behind the cylinder. In this case, our numerical results

show that the efficiency of the localized Lorentz force in controlling the flow is to

that of the Lorentz force distributed over the whole surface. When the interaction

parameter is about N >= 3, vortex shedding completely disappears, and the total

drag coefficient decreases as the Lorentz force increases due to the predominant role

played by the pressure on the total drag coefficient.

When a sinusoidal Lorentz force is applied, with the force frequency higher

than the Strouhal frequency and an appropriately chosen interaction parameter,

the cylinder flow consists of a vortex street which is more narrow than it is in the

unforced case. For force frequencies near the Strouhal frequency, a lock-in of the

flow occurs even for small values of the interaction parameter and the frequency of

the flow is determined by the frequency of the Lorentz force. As the Lorentz force

frequency increases, the flow exhibits two different frequencies, one corresponding

to the vortex shedding frequency and another one coinciding with the Lorentz force

frequency.



CHAPTER 4

CLOSED-LOOP CONTROL OF THE CYLINDER WAKE

From previous studies, we know the flow past a cylinder can be controlled by applying

electromagnetic forces on the surface of the cylinder in an electrically conducting

fluid. However, it is not economical to apply the Lorentz forces over the entire

cylinder surface and/or at all times. The extent of the area of actuation, together

with the time period during which it is applied, need to be considered. In this

chapter, we consider closed-loop control for this purpose. When vortex shedding

appears, it is accompanied by flow separation, asymmetry in the pressure on the

surface of the cylinder occurs, and fluctuations in the drag and lift coefficients. Two

effective closed-loop control algorithms for manipulating wake flows are developed

here, based on the detection (sensing) of the flow separation point on the surface

of the solid body. The actuators are the same as those described in Chapter 2 and

consist of an array of electrodes and magnets suitably mounted on the localized

surface of the cylinder. In our numerical code, our control technique is applied at

every computational time step (At = 0.005) That is, sensing and actuation are

updated at every computational time step.

4.1 Closed-Loop Control with Cd = 0

There is obviously a close relation between vortex shedding and flow separation on

the surface of the cylinder. When vortex shedding takes place, the separation point

moves along the surface of the cylinder. From Sections 3.1 and 3.2, we know that

the suppression of flow separation can suppress vortex shedding and lead to a steady

flow solution. It seems, therefore, appropriate to base our sensor on detecting flow

separation. The flow separation point is identified as the location where the shear
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stress is zero, that is where 77.0 = 0. From Equation (2.22), we see that

From the above equation, the shear stress is proportional to the vorticity (Q). Thus,

the separation point can be also identified as a zero-vorticity point.

There is always a deficit in momentum in the (uncontrolled) flow past a

cylinder. Since the momentum deficit is measured by the momentum thickness

which is directly proportional to the drag force on the cylinder (Ronald L. Panton,

1996), the momentum added to the fluid by applying the Lorentz force can balance

the momentum deficit caused by the cylinder, the thus leading to zero momentum

thickness. In this case, the drag force will also be equal to zero. The corresponding

interaction parameter, that is the interaction parameter needed to suppress any

non-zero drag, can be derived from Equation (2.21) as follows.

Inspired by the investigation of Park et al (1994), the start-up point of the

location of our actuators has been chosen at 10° degrees upstream of the separation

point. The expression of P in Equation (2.8) can be written as follows.
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Here, the angle e' denotes the location of the separation point at any time on the

upper surface of the cylinder. Obviously, 0' is a function of time.

The control switch has been turned on in the following manner. Control is

turned on only when the separation point leaves a small neighborhood of the rear

stagnation point (within 5° degrees). Otherwise, it is turned off. Our numerical

simulation results show that the separation point moves along the cylinder surface

even after control is turned on, due to the unsteadiness of the flow.

When control is applied at, or downstream of, the separation point, the

efficiency of the control technique is compromised. There is thus a need to activate

actuators slightly upstream of the separation point.

Thus a detection system has been built to adapt to this need. When the

absolute value of the vorticity at a point on the rear surface of the cylinder decreases

below a certain threshold 6 (6 > 0), expressed as C2 <= 6, we turn on the actuator.

In our numerical simulation, we have chosen 6 = 3.0. Now the numerical results has

been described by using this technique.

The closed-loop control is applied to the flow at Reynolds number Re = 200,

starting at time t = 440, when the flow is in its well-developed vortex shedding

regime (Figure 4.2b). Figure 4.1 shows the instantaneous vorticity contours and the

corresponding streamlines at Re = 200 when the closed-loop control technique is in

effect. One observes that the separation point disappears and that vortex shedding is

fully suppressed. This can be compared to the instantaneous vorticity contours and

flow streamlines obtained without control at time t = 200 and t = 400 (Figure 4.2).

Figures 4.3 and 4.4 highlight the process through which vortex shedding is suppressed

over a short time period. It is clear that our closed-loop control strategy has a

significant effect on the flow and that it successfully suppresses any time dependency

of the flow.
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Figure 4.1 Instantaneous vorticity contours and corresponding flow streamlines at
t = 600 after the closed-loop control algorithm is applied.
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-
the uncontrolled flow.
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Figure 4.3 Streamlines showing the suppression of vortex shedding by closed-loop
control. The closed-loop control algorithm is applied at time t = 440 and successive
times.



Figure 4.4 Vorticity contours showing the suppression of the vortex shedding by
feedback control. The closed-loop control algorithm is applied at time t = 440 and
successive times.
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The vorticity and pressure distributions on the solid body can be compared

to the uncontrolled flow results in Figures 4.5 and 4.6. As before, the angle 0 is

defined from the front to the rear stagnation point. In particular, the vorticity

distribution in Figure 4.5 shows that the separation is suppressed with the application

of the Lorentz force and that the vorticity on the surface of the cylinder is increased

compared with that of the uncontrolled flow. Again, this is due to the fact that

the fluid is accelerated by the Lorentz force and that the shear stress on the surface

of the cylinder is increased. Likewise, the pressure distribution decreases under the

influence of the Lorentz force along the actuation area, while it increases at the rear

stagnation point due to the reduction of the recirculation region.

Figure 4.7 shows the time history of the lift and drag force coefficients. It is

clear that both coefficients are successfully reduced to almost zero. Under the action

of the control, the pressure drag decreases to a negative value while the friction drag

increases, so that they eventually balance each other, resulting in zero total drag.

Figure 4.8a shows the time history of the interaction parameter and the location

of the separation point. After the time when the control algorithm is switched on,

the interaction parameter first fluctuates and then becomes stable. From Figure

4.8b, one can see that the separation point vibrates along the rear surface of the

cylinder in the uncontrolled flow and that it mighrates to the rear stagnation point

over a very short amount of time. In this region, such vibrations are fully suppressed.
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Figure 4.5 Vorticity distribution on the cylinder surface from the front stagnation
point to rear stagnation point in the uncontrolled flow, as well as in the flow with
closed-loop control.
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Figure 4.6 Pressure distribution on the cylinder surface from the front stagnation
point to the rear stagnation point, in the uncontrolled flow, as well as in the flow
with closed-loop control.
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Figure 4.7 Time history of the drag and lift force coefficients. The closed-loop
control is applied at time t = 440 and at successive times.
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Figure 4.8 Time history of (a) the interaction parameter and (b) the location of the
separation point. The closed-loop control is applied at time t = 440 and at successive
times.
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4.2 Closed-Loop Control with Cpd = 0

In the previous section, we developed a closed-loop control technique for the control

of the vortex shedding behind a circular cylinder with the use of actuators (exerting

the Lorentz force) in order to make the total drag coefficient equal to zero. In the

present section, a similar closed-loop control algorithm is used to make the pressure

drag coefficient equal to zero (Cpd = 0). From Equation (2.21), we can derive the

expression for the interaction parameter as follows.

In this case, the fact that the pressure drag coefficient is equal to zero implies

that the total drag coefficient is equal to the friction drag coefficient only, which is

larger than zero. This is caused by the applied Lorentz force that increases the wall

friction and, therefore, makes the friction drag coefficient larger than before.

Figure 4.9 shows the instantaneous vorticity contours and streamlines at two

times, t = 600 and t = 700 for the flow at Reynolds number Re = 200, after the

closed-loop control algorithm is applied, based on Cpd = 0. A comparison with Figure

4.1 shows that it takes a longer time to stabilize the flow to a steady solution using this

technique rather than the previous one. Figures 4.10 and 4.11 display the vorticity

contours and flow streamlines, showing the destabilization process of vortex shedding

by closed-loop control based on Cpd = 0. The time it takes to control the flow is larger

than the time it takes to control the flow based on Cd = 0. During the initial period,

vortex shedding persists but weakens, corresponding to lift fluctuations (Figure 4.15)

which, however, are much smaller than those corresponding to the uncontrolled flow.
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Figure 4.10 Flow streamlines showing the destabilization of vortex shedding by the
closed-loop control technique based on Cpd = 0. Control starts at time t = 440.
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Figure 4.11 Vorticity contours showing the destabilization of vortex shedding by
the closed-loop control technique based on Cpd = 0. Control starts at time t = 440.
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After this initial period, vortex shedding disappears completely leading to a steady

reattached flow, whose lift is constant and equal to zero (Figure 4.16).

Figures 4.12 and 4.13 show the vorticity and pressure distributions on the

cylinder surface from the front stagnation point to the rear stagnation point, without

control and with the two closed-loop control algorithms. Using both control methods

(Cd = 0andCpd  = 0), the separation point has been suppressed (or, equivalently,

moved to the rear stagnation point). The vorticity obtained with the closed-loop

control technique based on Cd = 0 is larger than that obtained with control whose

target is Cpd = 0. This is due to the larger value of the interaction parameter in

the first case, resulting in a larger wall shear stress, and therefore larger vorticity.

Similarly, Figure 4.13 shows that the pressure obtained with the first technique is

lower than that corresponding to the second technique.

Figure 4.14 allows a comparison between the time history of the interaction

parameter using both techniques (Cd = 0 and Cpd = 0). The interaction parameter

corresponding to Cpd = 0 is smaller than that obtained with Cd = 0. This is due

to the fact that Cpd = 0 requires less energy since, in this case, the flow needs to

counteract the friction effect only.

The time history of the force coefficient for the closed-loop control technique

whose target is Cpd = 0 is shown in Figure 4.15. Figures 4.16 and 4.17 show the time

history of the force coefficient for both Cpd = 0 and Cd = 0. The value of the lift

coefficient in both cases is very close to zero, but the lift fluctuation time in the case

where Cpd = 0 is the goal is longer than it is for Cd = 0. For Cpd = 0, the total drag

reduces to the friction drag Cfd . In this case, the latter is smaller than it is when

Cd = 0 is imposed, corresponding to a smaller interaction parameter.
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Figure 4.12 Vorticity distributions on the cylinder surface from the front stagnation
point to rear stagnation point for the uncontrolled flow and the flow controlled with
the two closed-loop control techniques (Cpd = 0 and Cd = 0). Control starts at time
t = 440.



81

Figure 4.13 Pressure distribution on the cylinder surface from the front stagnation
point to the rear stagnation point for the uncontrolled flow and the flow controlled
with the two closed-loop control techniques (Cpd = 0 and Cd = 0). Control starts at
time t = 440.
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Figure 4.14 Time history of the interaction parameter for the flow controlled with
the two closed-loop control techniques (Cpd = 0 and Cd = 0). Control starts at time
t = 440.
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Figure 4.15 Time history of the force coefficient for feedback control with Cpd = 0.
Control starts at time t = 440.
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Figure 4.16 Time history of the drag and lift force coefficients for the flow controlled
with the closed-loop control technique based on (a) Cpd = 0 and (b) Cd = 0. Control
starts at time t = 440.
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Figure 4.17 Time history of the drag and lift force coefficients for the flow controlled
with the closed-loop control technique based on (a) Cpd = 0 and (b) Cd = 0. Control
starts at time t = 440.
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4.3 Summary

Closed-loop control procedures targetting either zero total 'drag, Cd = 0, or zero

pressure drag, Cpd = 0, were developed and applied to the flow behind a circular

cylinder at Re = 200. In both cases, the location of sensors was limited to the surface

of the cylinder and to the measurement of the wall shear stress. The actuators

consisted of arrays of electrodes and magnets located on the cylinder surface and

exerting a Lorentz force on the fluid. The location of the actuators was determined

by the information fed by the sensors (more precisely, the location of the separation

of the separation point), and the intensity of the Lorentz force was calculated from

the requirement that Cd = 0 or Cpd = 0.

For the closed-loop control technique whose target is zero drag, i.e. Cd = 0,

vortex shedding is fully suppressed, and the flow becomes stable after a relatively

short time. The (total) drag and lift coefficients have been reduced to almost zero

successfully. The pressure drag reaches a negative value in order to balance the

(positive) friction drag. For the closed-loop control technique whose target is Cpd =  0,

the time needed to control the flow is longer than for the first technique (Cd = 0).

The lift coefficient of the stabilized controlled flow is close to zero, and the friction

drag and interaction parameter values are smaller than they were when the first

technique (Cd = 0) was employed.



CHAPTER 5

CLOSED-LOOP CONTROL OF VORTEX-INDUCED VIBRATIONS

The appearance of vortex shedding is accompanied by a fluctuation of the lift force.

If the cylinder is free to move in the cross-flow direction, it will vibrate in that

direction due to the fluctuating lift. A general method to solve this fluid/structure

interaction problem is by using the Arbitrary Lagrangian Eulerian (ALE) formu-

lation, in conjunction with the new spectral discretization on unstructured grids,

in order to deal with the moving computational domain and dynamic re-meshing

(Warburton & Karniadakis, 1996). However, if we consider the motion of the cylinder

in the fluid at rest by attaching one system of coordinates to it, the difficulty of

a moving mesh can be eliminated (Dimas & Triantafyllou, 1994 and Newman &

Karniadakis, 1997).

5.1 Governing Equations

Two frames of reference can be naturally introduced for the description of the

problem. One is the inertial system connected to the stationary fluid. The other

one moves with the cylinder and is therefore an accelerated system of reference .

Their two — dimensional Cartesian coordinates can be denoted by x', y' and x, y

respectively, and the relationship between the two systems of coordinates is given as

follows.

87



88

Here (t) and y(t) denote the position of the accelerated system of reference,

so the velocity components can be expressed as

The two-dimensional incompressible Navier-Stokes equations in the fixed

inertial system can be written as

Substituting Equations (5.1) and (5.2) into the above equations, we obtain the

two-dimensional incompressible Navier-Stokes equations in the transformed system

of coordinates.

and the streamfunction W in the trans-

formed system of coordinates (x, y) as

The equation of motion for the vorticity can be obtained from Equations 5.5 —

5.7. It can be written as
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or, in cylindrical coordinates,

where the dimensionless variables and the exponential-polar system of coordinates

(6, 77) introduced in Chapter 2 have been used. After performing a similar analysis to

derive the equation for the streamfunction, we obtain the vorticity/streamfunction

formulation of the Navier-Stokes equations in the transformed system of coordinates.

where

From the above derivation, we see that the equations of motion for the flow-

induced vibrations in the transformed moving system of coordinates are identical to

the equations of motion in the fixed system of coordinates for the fixed cylinder given

in chapter 2. These simple relations facilitate our computational scheme.

When the cylinder is free to move in the cross-flow (y) direction, the equation

of motion for the cylinder needs to be modeled. This is achieved through the forced

vibration string equation with damping, where the spring is assumed to be mounted
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by a linear spring damper mass system. The forced vibrating string equation with

damping is given by Griffin (1992) and Blackburn (1996) as

where y(t) denotes the cylinder displacement in the cross-flow direction, a

refers to the structural damping factor, m is the mass per unit length of the cylinder,

s the angular natural frequency of the cylinder, k is the spring

stiffness and Fty is the total force exerted by the fluid onto the cylinder in the cross-

flow direction.

The force y— component of the force Fty (t) exerted by the fluid on the cylinder

can be computed from the control volume formulation of the momentum equation in

the fashion presented in Chapter 2. Starting with the definition of the lift coefficient

where we have assumed that the mass ratio

denotes the diameter of cylinder. Considering the following dimensionless variables

the dimensionless displacement of the cylinder (5.16) is given by

The coupled fluid/cylinder problem is solved in three steps, using the same

method as that used by Newman and Karniadakis (1997). First, given the cylinder
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motion y(t), the fluid equations (5.10), (5.11) are solved. Then, the lift force on the

cylinder is computed. Finally, the cylinder motion is updated using Equation (5.13).

The same numerical methods as those described in Chapter 2 has been used,

that is the alternating-direction-implicit (ADI) algorithm to solve the vorticity

transport equation (5.10), and the efficient algorithm using fast Fourier transforms

(FFT) to solve the Poisson equation (5.11) with second-order accuracy. The

displacement equations (5.13) are solved using the Runge-Kutta method. Everywhere

except on the surface of the cylinder, the flow is potential initially, i.e. at t = 0.

5.2 Numerical Results

Numerical calculations are carried out for a number of cases for the two Reynolds

number values Re = 100 and Re = 200. In all cases, we assume that the cylinder is

free to vibrate in the cross-flow direction (only) and that the mass ratio is chosen to

be equal to 1.

5.2.1 Vibrations Without Control

In a forced linear mass damper system, when the forcing frequency is close to the

damped natural frequency, the mass oscillates at the forcing frequency and the

maximal response amplitude occurs. In order to obtain a significant flow-induced

vibration response, we adjust the natural frequency of the cylinder vibration to the

frequency of vortex shedding. The fixed-cylinder vortex shedding frequency can be

used in this estimation (Newman and Karniadakis 1997). At Reynolds numbers

Re = 100 and Re = 200, the Strouhal number of the fixed cylinder is St = 0.167 and

St = 0.207, respectively. Griffin (1992) has compiled many experimental data from

several investigations and shown that the amplitude of cylinder vibrations seems to
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follow a universal curve when plotted against the mass-damping or reduced damping

parameter Sg , defined as

as before, St denotes the Strouhal number, St = 2af/u∞ , and f refers to the

vortex shedding frequency. Newman & Karniadakis (1997) have compared their

numerical results with the experimental data compiled by Griffin (1992). Both

results show an amplitude limiting response as the mass-damping parameter (Sg )

tends to zero and a decrease of the vibration amplitude as Sg increases. However,

the numerical simulations underpredict the cylinder vibration amplitude for low

values of Sg and overpredict the cylinder vibration amplitude for high values of

S. Newman & Karniadakis (1997) explain this discrepancy by the fact that three-

dimensionality must play a dominant role in cylinder response which their two-

dimensional simulation does not capture, while the Reynolds number for the experi-

mental investigations well cover the three-dimensional regime, varying from Re = 300

to Re = 106 .

Figure 5.1 allows to compare our numerical results with those of Newman

Karniadakis at Re = 100. Our results are in good agreement with theirs, in

particular showing the same trend with respect to the mass-damping parameter.

Our maximal amplitude of the cylinder vibration at Re = 200 is approximately

one cylinder diameter, which also agrees well with Newman & Karniadakis (1997)'s

findings. Figures 5.2 and 5.3 display the time varying displacement of the cylinder

in the cross-flow direction for the two sets of parameter values Re = 100, Sg = 0.3,

and Re = 200, Sg = 0.1. Examples of streamlines and relative vorticity contours

for the first set of parameter values (Re = 100 and Sg = 0.3) are shown in Figure

5.4 over one half-cycle of the cylinder motion, starting with the cylinder in its upper
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Figure 5.1 Vortex-induced vibration amplitude versus the mass -damping parameter
at Re = 100, M* = 1.
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Figure 5.2 Trajectory of the moving cylinder subjected to flow-induced vibrations
without control at the parameter values Re = 100, Sg = 0.3.
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Figure 5.3 Trajectory of the moving cylinder subjected to flow-induced vibrations
without control at the parameter values Re = 200, S9 = 0.1.



Figure 5.4 Instantaneous streamlines and vorticity contours over half a cycle for the
vortex induced vibration problem with amplitude A = 0.56 at the parameter values
Re = 100, S9 = 0.3.
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position. The frequency of the cylinder vibration is identical to the frequency of

vortex shedding.

5.2.2 Suppression of Vibrations By Closed -Loop Control

In this section, we apply the closed-loop control technique (Cd = 0) developed in

Section 4.1, in order to control the vibrations of the cylinder at the two Reynolds

number values Re = 100 and Re = 200. The closed-loop control algorithm is applied

starting at time t = 600 for Re = 100 and at t = 500 for Re = 200.

Figures 5.5 and 5.6 display the time history of the cylinder displacement before

and after control for both sets of parameters Re = 100, Sy = 0.3, and Re = 200,

Sg = 0.1. Before control, the cylinder vibrates with the same frequency of vortex

shedding, and the amplitude of the vibration is about 0.56 for Re = 100 and 1.20

for Re = 200. After our closed-loop control algorithm is turned on, the amplitude of

the cylinder decreases with time until it reaches the zero value.

Figure 5.7 shows the time history of the interaction parameter at Re = 100 and

Re = 200. It is clear that the control of the cylinder vibration at Re = 200 requires

a larger interaction parameter than at Re = 100. When this result is compared to

the fixed cylinder case reported in Figure 4.8a, one observes that the control of the

flow at Reynolds number Re = 200 requires a longer time and a larger Lorentz force

when the cylinder is free to vibrate.

Figure 5.8 shows the streamline and vorticity contours of the steady solution

obtained after the control algorithm is applied and when the cylinder is free to vibrate

(here, Re = 100). Streamlines and vorticity contours recorded at various times that

illustrate the destabilization of vortex shedding can be observed in Figures 5.9 and

5.10.
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Figure 5.5 Displacement of the free cylinder before and after control is applied for
the parameter values at Re = 100, S9 = 0.3.
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Figure 5.6 Displacement of the free cylinder before and after control is applied for
the parameter values Re = 200, Sg = 0.1.
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Figure 5.7 Time history of the interaction parameter for the controlled flow corre-
sponding to the free cylinder at the two sets of parameter values Re = 100, S9 = 0.3,
and Re = 200, S9 = 0.1.
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Figure 5.8 Streamlines and vorticity contours of the steady flow solution obtained
after controlling the vortex-induced vibration problem (at time t = 700) at the
parameter values Re = 100 and S9 = 0.3.



Figure 5.9 Instantaneous streamlines at various times showing the suppression of
flow induced vibrations under the action of our control algorithm for the parameter
values Re = 100, S9 = 0.3. The cross corresponds to the initial location of the center
of the cylinder.
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Figure 5.10 Instantaneous vorticity contours at various times showing the
suppression of flow induced vibrations under the action of our control algorithm
for the parameter values Re = 100, Sg = 0.3.
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Figure 5.11 Streamlines and vorticity contours of the flow steady solution obtained
after controlling the vortex-induced vibration problem (here, time is t = 550) at the
parameter values Re = 200, S9 = 0.1.

Figures 5.11, 5.12 and 5.13 are similar to Figures 5.8, 5.9 and 5.10 but were

obtained at Reynolds number Re = 200, instead of Re = 100.

5.3 Summary

In this chapter, vortex-induced vibrations of a cylinder has been simulated numer-

ically in the cross-flow direction at the Reynolds number values Re = 100 and

Re = 200. The results presented correspond to the well-documented lock-in response



Figure 5.12 Instantaneous streamlines at various times showing the suppression of
flow induced vibrations under the action of our control algorithm for the parameter
values Re = 200, 89 = 0.1.
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Figure 5.13 Instantaneous vorticity contours at various times showing the
suppression of flow induced vibrations under the action of our control algorithm
for the parameter values Re = 200, S9 = 0.1.
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and are in good agreement with previous experimental and numerical results. The

closed-loop control algorithm targetting zero drag coefficient, i.e. Cd = 0, which

was developed in Section 4.1, was applied successfully to suppress the cylinder

flow-induced vibration at the Reynolds number values Re = 200 and Re = 100.

Our numerical results show that the suppression of flow-induced vibrations requires

a longer time and a larger interaction parameter (larger Lorentz force) than the

suppression of vortex shedding in the fixed cylinder case.



CHAPTER 6

CONCLUSIONS

In this dissertation, we have developed both open and closed-loop electromagnetic

control procedures for manipulating wake flows past a circular cylinder in an

electrically low-conducting fluid (e.g. seawater). The intent was to avoid both

vortex shedding and flow separation from the body, as well as reduce the mean

drag significantly and prevent the lift from becoming non-zero at all times. This

was achieved through the introduction of a Lorentz force in the azimuthal direction

generated by an array of permanent magnets and electrodes located on the solid

structure.

Regarding the open loop control methods, static Lorentz forces were applied

on either the whole cylinder surface or a portion of it. When the Lorentz force is

distributed on the whole surface, vortex shedding behind the cylinder weakens as

the Lorentz force increases, and eventually disappears. The total drag coefficient is

always smaller than the value it had when the Lorentz force was turned off. which

is in good agreement with the results of Weier et a/(1998). Localized Lorentz forces

along the rear surface of the cylinder were also used to control vortex shedding.

Our numerical results show that the efficiency of localized Lorentz forces is almost

identical to that of the Lorentz forces applied to the entire surface. The total drag

coefficient decreases as the Lorentz force intensity increases. Time periodic Lorentz

forces were also explored, with the Lorentz force frequency higher than the Strouhal

frequency. In this case, when the interaction parameter was properly chosen, the

cylinder flow coincided with a vortex street with a smaller width than in the unforced

case. For force frequencies near the Strouhal frequency, the lock-in phenomenon

occurs even for small interaction parameter values. In this case, the frequency of the

flow is determined by the Lorentz force frequency. As the Lorentz force frequency
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increases, the flow exhibits two different frequencies, one coinciding with the Lorentz

force frequency, and the other one corresponding to the natural shedding frequency.

Closed-loop control procedures were developed targetting either zero total drag

coefficient, Cd = 0, or zero pressure drag coefficient, Cp = 0. The location of sensors

for both types of feedback was limited to the surface of the cylinder and consisted in

recording the wall shear stress. Actuators was simulated by the action of the Lorentz

force on the cylinder surface. The value of the interaction parameter (or intensity

of the Lorentz force) was calculated from the requirement that Cd = 0 or Cp = 0,

depending on the case considered. When the control algorithm based on Cd = 0 was

applied, vortex shedding completely disappeared, and the flow stabilized to a steady

solution in a short amount of time. The total drag and lift coefficient were reduced

to zero successfully, while the pressure drag reached a negative value in order to

balance the friction drag. When the closed-loop control based on zero pressure drag

coefficient, Cpd = 0, was applied, vortex shedding also disappeared but the process

took longer than in the previous case (Cd = 0). The steady solution the flow reaches

under control has a nearly zero lift, and a friction drag and interaction parameter

smaller than in the previous case (Cd = 0).

Finally, the vortex-induced vibration of the cylinder has been simulated numer-

ically in the cross-flow direction at Reynolds number values Re = 100 and Re = 200.

The results presented correspond to the lock-in response, as previous experimental

and numerical results were available in this regime. The previous closed-loop control

(Cd = 0) algorithm previously developed was applied successfully to the control of

cylinder vibrations at both Reynolds numbers (Re = 200 and Re = 100). Our

numerical results have shown that the control of cylinder vibrations requires a longer

time and more energy (that is, a larger interaction parameter, and therefore a more

intense Lorentz force) than the flow corresponding to a fixed cylinder.
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