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ABSTRACT

NUMERICAL STUDIES OF NEWTONIAN AND VISCOELASTIC FLUIDS

by
Felix J. Alcocer

The direct numerical simulation (DNS) approach is used to understand the flow

behavior of Newtonian and viscoelastic fluids in porous materials, four-to-one

contraction and the flow of a Newtonian fluid past an airfoil.

In simulations the viscoelastic fluid is modeled by the finitely extensible

nonlinear elastic (FENE) dumbbell and Oldroyd-B models. The finite element method

(FEM) is used to discretize the flow domain. The DNS results show that the permeability

of a periodic porous medium depends on the wavelength used for arranging particles in

the direction of flow. Specifically, it is shown that for a given particle size and porosity

the permeability varies when the distance between particles in the flow direction is

changed. The permeability is locally minimum for kD 7.7 and locally maximum for kD

5.0; where k is the wave number and D the diameter. A similar behavior holds for a

viscoelastic fluid, except that the variation of permeability with kD is larger than for the

Newtonian case.

For flow in the four-to-one contraction, it is found that the stress near the 3π/2

corner is singular and that the singularity is stronger than for a Newtonian liquid. In the

region away from the walls, the stress varies as r -0.47 and near the walls it varies as r^-0.61

Since the singularity is integrable, the flow away from the corner is not effected when the

flow around the corner is resolved by using a radial mesh with sufficient resolution in the

tangential direction at the corner.



The DNS approach is also used to demonstrate that the boundary layer separation

on the upper surface of the airfoil can be suppressed by placing injection and suction

regions on the upper surface. The simulations are performed for Re <= 500 and angle of

attack up to 40° . Analysis of numerical results shows that the pressure contribution to

drag decreases when the boundary layer separation is avoided. The viscous contribution

to drag, however, increases and thus there is only a negligible decrease in the total drag

for Re 500. Another beneficial effect of suction and injection is that the pressure

contribution to the lift increases and the stall is avoided.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The objective of this dissertation is to numerically study the fluid dynamics of Newtonian

and viscoelastic fluids, though emphasis is primarily on the viscoelastic fluids.

Specifically, the direct numerical simulation (DNS) approach is used to study Newtonian

and viscoelastic flows in the following problems: Newtonian flow past an airfoil with

suction and injection; flow of viscoelastic fluids in the four-to-one contraction and the

nature of singularity near the 3n/2 corner; and flow of Newtonian and viscoelastic liquids

through periodic porous medium and the dependence of permeability on the wave length

of periodic porous medium.

1.2 Newtonian Fluids

It is well known that for a Newtonian fluid, such as water, the shear stress is proportional

to the shear rate. The coefficient of proportionality is called the viscosity. In other words,

the viscosity of a Newtonian liquid is independent of the magnitude of the shear rate.

Many common fluids, e.g. oils, air, etc, are Newtonian.

The dynamics behavior of Newtonian fluids is described by the following

equations: the continuity or mass conservation (assuming incompressibility), the

momentum equation, and the energy equation in the event the temperature one of the

unknown variables.

For non-Newtonian liquids the stresses is nonlinearly related to the shear rate, and

therefore the shear viscosity is not constant. A particular case of non-Newtonian fluids is

1
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the viscoelastic fluid for which the stress not only depends on the current shear rate but

also on the past strain history. Thus, the numerical solution of non-Newtonian fluids is

much more difficult to obtain compared to that for the non-Newtonian liquids.

1.3 Viscoelastic Fluids

As noted above, the term `viscoelastic fluids' is used to describe a class of non-

Newtonian fluids for which the response is a combination of the viscous and elastic

behavior. Some examples of these fluids are: polymers, paints, rubbers, lubricants,

suspensions, etc. A study of viscoelastic fluids is important because of their wide spread

use in a range of industrial applications.

Newtonian fluids, as previously discussed, are governed by the Navier-Stokes

equations, as their response is purely viscous. An elastic body, on the other hand, is

governed by the equations of elasticity. The response of a viscoelastic fluid is a

combination of the viscous and the elastic body responses.

The simplest model used for describing these fluids is the Maxwell model, which

represents a combination of a spring and a dashpot in series, see Figure 1.1. The spring

accounts for the fluid elasticity and the dashpot accounts for its viscous nature. Clearly,

when the applied force is zero the stress in the system goes to zero as the spring relaxes

as a function of time, see Figure 1.1. The relaxation time for this system is equal to

where G is the spring constant and 11 is the dashpot friction coefficient. Similarly,

when the system is subjected to a sudden force the stress in the system grows with time

and reaches 90% of the steady state value when t is equal the relaxation time, see Figure

1.1.



Figure 1.1 The stress growth and relaxation tor the Maxwell model. Notice that it
takes time of order i for the stress to buildup and relax.
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The viscoelastic nature of polymeric fluids can be seen in the rod climbing

experiment, see Figure 1.3. In this experiment, a rod is rotated in the bucket filled with

the viscoelastic fluid. It is well known that when the rod is rotated in the Newtonian fluid,

(see Figure 1.2) the fluid near the rod surface is thrown away by the centrifugal force and

thus the fluid surface near the rod goes down. For the viscoelastic fluid, on the other

hand, the fluid near the rotating rod climbs.

The viscoelastic fluid near the rod climbs because the material fluid elements

along the streamline are in a stretched state similar to that of a stretched rubber band.

More specifically, for the viscoelastic liquids the primary normal stress difference is non-

zero second, and thus the magnitude of normal stress in the radial direction is smaller

than in circumferential direction.

As noted above, the elastic nature of viscoelastic fluids is characterized by a

relaxation time. The relaxation time is a measure of the time the fluid takes to reach a

state of equilibrium after the external stress applied on the fluid is removed. For real

polymeric liquids the relaxation time depends on many factors including the molecular

weight and its polymeric nature. In a flow problem, the elastic nature of a viscoelastic

fluid can be quantified using a dimensionless relaxation time called Deborah number

(De) which is defined to be the ratio of the relaxation time and the flow time scale.



Figure 1.2 The fluid level near the rotating rod in a Newtonian fluid is lowered as
the centrifugal force near the rod is larger than away from the rod.

Figure 1.3 The fluid rises next to the rotating rod in a viscoelastic fluid as the
fluid near the rod behaves like a stretched rubber band.
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Next, the constitutive relation between the stress and the strain that is needed to

close the momentum equation is discussed. The idea is to find a relation between the

stress and the past strain rate history for the fluid under consideration. In the Navier-

Stokes equations the stress is assumed to depend linearly on the current strain rate. But,

since for viscoelastic liquids, the stress depends on the entire past strain history of the

fluid, the constitutive equation takes a far more complex form. The popular constitutive

models are: Maxwell, Oldroyd-B, White-Metzner, Integral, Giesekus, FENE, etc. For

example, the integral form of the Maxwell model is:

where t is a past time and t is the present time.

Clearly, as the system of equations for a viscoelastic liquid is highly nonlinear, it

is difficult to obtain an analytical solution for most problems. Nowadays, with the aid of

computers and faster numerical methods, it is possible to numerically solve these

nonlinear governing equations. In Chapter 2, the numerical method used in this work for

solving the constitutive equation for the stress along with the mass and momentum

conservation equations for a given flow field is described.

The results of direct numerical simulation help us in understanding the behavior

of viscoelastic fluids. This approach is valuable in many practical flow problems. Also

note that recent research activities have improved the numerical methods for solving the

viscoelastic flow problems.

The two main problems in the numerical solution of viscoelastic flows are that the

method may not converge at high Deborah numbers and that the number of unknowns is
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more than twice of that for the Newtonian flow problems. Since the number of unknowns

are more than twice of that for Newtonian flows, the dimension of matrices obtained

during the solution procedure is more than twice as large as for Newtonian liquids, and

the storage needed is more than four times of that for the Newtonian liquids. Therefore,

the memory requirement limits the problems that can be studied numerically. The matrix

free approaches for solving viscoelastic flow problem are thus essential, especially for

solving industrial scale problems. In a matrix free approach the global matrices for the

linear systems are not assembled. In our finite element code a conjugate gradient

algorithm is used for solving the linear system matrix in which the product of a vector

with the linear system matrix is computed directly without assembling the matrix.

In Chapter 3, a brief description of the numerical algorithm used for the solution

of viscoelastic fluid flow problems is given. A detailed information can be found in Singh

and Leal 1993. The method was developed for the constitutive models derived from

nonlinear dumbbell theory and in particular applied for the specific case of the finitely

extendable nonlinear elastic (FENE) dumbbell model proposed by Chilcott and Rallison

(1988). The numerical algorithm is built around two unique features, the first is that it

was implemented using a third-order accurate finite-element upwind scheme to discretize

the convection term in the equation that describes the evolution of stress (or the second

moment of the conformation distribution) in the FENE dumbbell model. This scheme

was introduced by Tabata and Fujima (1991) for discretizing the convection term in the

Navier-Stokes equation. The second unique feature of the numerical algorithm is that

initial value problems are solved to obtain both the velocity and the configuration tensor

(the configuration tensor is proportional to the second moment of the distribution
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function for the end-end vector of a dumbbell). This allows to implement an algorithm

which explicitly forces the configuration tensor to stay positive definite at all times, and,

therefore, avoids forbidden negative values (see Joseph, 1990). These forbidden values

cannot be easily avoided when an iterative method is used to seek a steady solution by

dropping the time-derivative terms. Moreover, it is quite obvious that by solving the

time-dependent equations even solutions for problems that may not have a steady

solution can be obtained.

The method also shows that the accuracy of the third-order upwind scheme and

the time-dependent algorithm that keeps the configuration tensor positive definite

provides a straightforward numerical method that is stable at relatively large Deborah

numbers. The FENE dumbbell constitutive equations are solved along with the

momentum and continuity equations at small Reynolds numbers using an operator-

splitting technique in which the time-discretization is second-order accurate.

In the FENE dumbbell model the stress tensor contains two distinct contributions,

one coming from the conformation of the polymer and the other coming form the solvent.

The solvent contribution is viscous in nature and appears as the highest-order term in the

momentum equation, which makes it elliptic. Therefore, when this solvent contribution is

present, the momentum equation cannot change type, i.e., it does not become hyperbolic

for certain flows or for certain portions of the flow domain as the case with the Maxwell

model (see Joseph and Saut, 1986, Zanden and Hulsen, 1998, Guillope and Saut, 1990,

Rajagopalan et al. 1990). Thus, certain complications associated with the numerical

solution of flow problems using the Maxwell model are avoided.
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Nevertheless, in spite of the fact that the problems associated with a change of

type of steady flow do not arise for the FENE dumbbell or Oldroyd-B type models, it is

still difficult to simulate flows at large Deborah numbers. The common observation for

both the Maxwell and Oldroyd-B type models is that a Deborah number exists at which

the determinant of the configuration tensor becomes negative, i.e., one of the principle

values of the configuration tensor becomes negative (see King et al., 1988; Marchal and

Crochet, 1986,1987). This Deborah number delineates the upper limit for which a

reasonably smooth numerical solution can be obtained. It can be shown that in an

analytical solution the configuration tensor cannot become negative. The fact that it does

become negative in a numerical scheme is therefore a consequence of numerical errors.

For the Maxwell model, an initial-value problem with a negative configuration tensor is

ill posed (unstable to short waves). Therefore, if the configuration tensor becomes

negative in a numerical simulation for the Maxwell model, then its further evolution in

time is unstable to short waves (see Joseph, 1990). On the other hand, the FENE

dumbbell model is not ill posed because of the smoothing action of the solvent viscosity.

However, it is still unstable in the sense that for a given fixed strong flow field and

negative initial value of the configuration tensor, the configuration tensor takes ever

increasing negative values with time. Therefore, for both types of models, it is very

important that the configuration tensor stays positive in a numerical solution.

There have, in fact, been some recent efforts to improve upon the range of

Deborah numbers that can be achieved numerically, in which the configuration tensor

remains positive. For example, Marchal and Crochet (1986, 1987) improved this range by

constructing special elements in which they assign more degrees of freedom per element
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to the stress. For these special elements they have implemented the streamline upwind

and Petrov-Galerkin schemes. On the other hand, Amstrong, Brown, and coworkers (see

King et al., 1988; Burdette et al., 1989; Northey et al., 1990; Rajagopalan et al., 1990;

and others) have developed the so-called EEME and EVSS methods which utilize

elements that have the same level of resolution for the stress and velocity components. It

is difficult to make a fair comparison between these approaches because the special

elements of Marchal and Crochet have a different level of resolution of the velocity and

stress components. On the other hand, it is important to note that both approaches give

better results as the mesh is refined, i.e., flows at larger Deborah number can be

computed by using a finer mesh. The fact that Crochet's special elements have more

degrees of freedom for the stress, and that the accuracy of the elements improves with the

mesh refinement, both suggest that the dominant factor in achieving a better performance

is, an increased accuracy for the stress field. In particular, if the velocity field is known

(say given) and is independent of the stress field, then the Deborah number range can be

improved just by refining the mesh or otherwise improving accuracy for the stress

components. This simpler problem is important to study because there is no coupling

between the velocity and stress fields, and so the numerical complications of the full

problem can be isolated. In particular, if for the simpler problem the positive definiteness

criteria cannot be satisfied, and if there is not a significant improvement in the upper limit

of the Deborah number that can be numerically simulated using the same mesh as for the

full problem, then it may be concluded that the numerical integration scheme for the

stress equation is definitely unsatisfactory, and that it is responsible for the numerical

failure in the full problem (see King et al., 1988).
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In Chapter 4, the permeability of a periodic porous media has been investigated in

2-D. The definition of Darcy's law is used to calculate the value of the permeability as a

function of the dimensionless wave number kD, where k is the wave number based on the

distance between particles in the stream-wise direction and D is the diameter. To isolate

the kD dependence, the diameter D and the porosity are held fixed. The latter is achieved

by making the product of distance between particles in the cross-stream and stream-wise

directions constant. The numerical results show that the permeability increases with kD,

but the increase is not monotonic. In particular, the permeability decreases for

~5<kD<~7.7, and becomes locally minimum at kD≈7.7. This value of kD is significant

because it is the smallest wave number for which the stream-wise area-fraction spectrum

is zero. For kD<5 and 7.74(D<11, the permeability increases with kD. Numerical

simulations also show that for the pressure distribution in the cross-stream

direction is relatively flat which again is a consequence of the fact that the area-fraction

distribution in the flow direction is approximately constant.

In Chapter 5, the 2-D permeability of a periodic porous media has been extended

to viscoelastic fluids. The permeability has been calculated as a function of the Deborah

number (De), a dimensional measure of the relaxation time and the dimensionless wave

number kD. Again, the definition of Darcy's law is used to calculate the value of the

permeability for viscoelastic fluids, though such a law is not valid due to the nonlinear

behavior of this kind of fluids. The variations found in the permeability imply that the

permeability of a periodic array can be modified significantly by changing the kD in the

flow direction.
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In Chapter 6, the 2-D numerical solution of a viscoelastic fluid passing a four-to-

one contraction has been studied. A radial mesh is used near the corner of the contraction,

which allows for independent mesh refinements in the radial and tangential directions. At

the corner, there exists a singularity that makes the stress singular. It was possible to

approximate the behavior of both the velocity and configuration fields in the vicinity of

the corner by generalized power laws with exponents depending on the angular position.

The numerical solution is used to find the exponent that satisfies this power law for the

viscoelastic flow near the singular point (the corner). The radial mesh at the corner also

allows us to obtain mesh convergent solutions away from the mesh.

To prevent the unwanted separation of the boundary layer for a flow past an

airfoil is the main objective of Chapter 7. The NACA (National Advisory Committee for

Aeronautics) airfoil 0012-64 has been used for this numerical study. The two dimensional

simulations were carried out for different angles of attack. For high the angle of attacks,

i.e., the angles greater than 15 °, and for high values of Re's the boundary layer on the

upper surface separates. The Reynolds number in this study is between 100 and 1000. By

preventing the separation of the boundary layer on an airfoil one avoids stalling and also

an undesirable increase in the drag force, which increases when the boundary layer

separate. The lift force decreases suddenly when the airfoil stalls. Also when the

boundary layer separates, it creates vortex shedding which produce fluctuations over the

airfoil thus the airfoil vibrates. For some applications it may be important to reduce or

suppress these vibrations by preventing the separation of the boundary layer. The focus of

this numerical work is to prevent the separation of the boundary layer by injecting fluid

near the leading edge and sucking it close to the trailing edge. The suction and injection
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velocities are varied in a range that is necessary for reattaching the boundary layer. The

fluid injected mixes with the main stream flow and gives an additional momentum to the

fluid in the boundary layer, which prevents the boundary layer separation. It may also

help in reattaching the boundary layer when the separation has already occurred. The

effect of using different injection velocities is also discussed.

To summarize, the motivation for the present study is to use the DNS approach to

understand the behavior of Newtonian and viscoelastic fluids in these applications. By

getting a better understanding of the properties of Newtonian and viscoelastic fluids we

will be able to help industries directly concerned, in understanding the problems and for

the designs for future applications. Also the numerical solutions found throughout this

dissertation can be comparable and corroborated by the ones obtained by other

researchers not only analytically but also numerically. Therefore, the gap between

analytical and numerical solution could be bridged.



CHAPTER 2

GOVERNING EQUATIONS

It is assumed that the fluids considered in this study are incompressible (constant density)

and that they satisfy the continuity (or mass conservation) and momentum equations.

For viscoelastic fluids, as previously stated, the constitutive equation which is the

relation between the stress and the strain rate is also needed for closing the system of

equations. Since the stress for viscoelastic liquids depends on the entire past strain

history, the constitutive equation takes a relatively more complex form. In these

simulations, the FENE dumbbell and Oldroyd-B models are used for modeling the

viscoelastic fluids.

The governing equations are made dimensionless by using the following

characteristic velocity, length, and time scales: the characteristic velocity U, the particle

diameter D, and time tc = D/U respectively.
U

The following are the nondimensionalized continuity and momentum equations:

with the polymer contribution to the stress for the viscoelastic effects calculated from

with

14
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Here I is the identity tensor, A is the ensemble average of the second moment of the end-

to-end vector R and trA is the magnitude of the end-to-end vector R for the dumbbell

scaled with the square of the equilibrium radius of gyration of a Gaussian chain. The

parameters that appear explicitly in equation (2.1) and (2.2) are: the Reynolds number, Re

defined in terms of the zero-shear-rate limit of the kinematic viscosity of the

polymer solution v , and the Deborah number which is defined as:

the ratio of the characteristic relaxation time of the polymer and the time scale t o .The

parameter

which is a measure of the polymer concentration expressed in terms of the fractional

contribution of the polymer to the zero-shear-rate limit of the kinematic viscosity of the

solution v , relative to the kinematic viscosity of the solvent v s .

Finally f (trA) is the nonlinear spring law which could take a variety of forms, but

is assumed in the Chilcott-Rallison model to have the so-called Warner form

Here trA represents the ensemble average of the linear dimension of the polymer chain

scaled with the equilibrium radius of gyration, while L is the dimensionless contour

length again scaled with the equilibrium radius of gyration.
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Thus, for a given geometric configuration the problem is completely characterized

by the following four dimensionless parameters: Re, De, c and L, which appear in

equations (2.1)-(2.4).

At this point it is convenient to point out the permissible range of values of the

configuration tensor A. Using the fact that A is the ensemble average of RR, it is obvious

that the diagonal components must be positive in every coordinate system. This requires

where det[A] is the determinant of A.



CHAPTER 3

NUMERICAL METHOD

In this section the numerical method used for solving the governing equations for

Newtonian and viscoelastic liquids is described. It is important to note that since the

governing partial differential equations are nonlinear, an analytical solution it is not

always possible to obtain, especially for complex flow geometries that are of interest in

the industrial applications of viscoelastic fluids. In fact, an analytical solution to these

equations can be obtained only for a homogeneous flow, i.e. where the velocity filed is

constant and thus the constitutive equation de-couples from the momentum equation.

Therefore, for solving problems of practical interest we must solve these three governing

equations numerically.

A detailed description of the algorithm used in this work can be found in Singh

and Leal [59]. The two main ideas of the algorithm are; the first is a third order upwind

scheme (see Tabata and Fujima [63]) to discretize the convection term in the FENE

dumbbell model. The second idea is a time dependent solution algorithm that explicitly

forces the principal values of the configuration tensor to be positive definite. The

resulting numerical method is stable and allows us to solve viscoelastic flow problems at

relatively large Deborah numbers.

A steady state solution, when such a solution exists, is obtained by solving the

time dependent algorithm to steady state. When a steady solution to the problem does not

exists the numerical solutions evolves with time for all times.

It is desired to solve time-dependent flow problems with given initial and

boundary conditions. In general, the boundary, F , can be divided in two parts:

17
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 is the part of the boundary on which a traction condition is to be applied, and

Fo is the part of the boundary on which the velocity is prescribed.

Equation (2.1) and (2.2) must be solved subject to initial conditions

and the boundary conditions

where g N is the traction vector on FN , plus appropriate boundary condition for A.

The function spaces for the finite-element method are defined to be:

After multiplying (2.1) by the weighting funtions

integrating by parts the following variational formulation for the steady-state case is

obtained:
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The numerical solution of the above equations is difficult because of the nonlinear

term (u • V)u in the momentum equation, the incompressibility condition associated with

the momentum equation, and the convection term u • VA in the constitutive equations.

The first two of these complications are coupled (i.e., appear simultaneously) in

the momentum equation, but can be de-coupled by using an operator-splitting technique

(see Bristeau et al. [8]), which requires the solution of three fractional time-step problems

for each complete time step. The same fractional time steps are used for the FENE

dumbbell equation which gives a second-order accurate scheme in time for both the

velocity and the configuration fields. The method is described for the finite-difference

semidiscretization (i.e., only the time derivatives are discretized) of the problem in time

(step At). First, the velocity and stress fields are initialized by describing

For a start-up problem, u o = 0 and A o = I, where I is the identity tensor. For

n=1, 2, ...., it is obtained (un,pn,An) from (u n-1, n-1
, An-1 ) in the fractional time steps

θΔt, (1-2θ)Δt, and θΔt, where 0 < θ < 0.5 is picked to obtain a second-order accurate

scheme. The intermediate time variables (U 
n+6 , A n+0 ) and (u n+" , 

A n+1-0 
) are defined via

the following discretized equations. The operator vV u is split into two parts by

multiplying by	 where C+4=1. If it is assumed that =(1-20)/(1-0) and 4=0/(1-0),

then the matrices of the time derivative and diffusion terms are the same at each time

step.



Step 1.
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where un+θ satisfies boundary conditions (3.2) on F.

Step 2.

Step 3.
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where u" 1 satisfies boundary conditions (3.2) on F.

The above scheme has the following properties:

1. By using the operator-splitting method the non-linearity and incompressibility in the

momentum equation are decoupled.

2. Steps 1 and 3 for the momentum equation are reduced to Stokes-like problems (see

Bristeau et al. [8] for the details).

3. Step 2 for the momentum equation is a nonlinear problem, but with no

incompressibility condition attached.

4. For a linear model problem, it can be shown that if 0 =1-1/J =0.29289, then the

scheme is second-order accurate and unconditionally stable.

5. It may be noted that in the present implementation of this scheme the coupled

nonlinear equations (3.4a-c) are solved using the Newton's method.

6. The convection term, [uni • VA " ` 1 3 , in (3.4a-c) represents the third-order upwind

approximation of u • VA proposed by Tabata and Fujima [63] (also Glowinski and

Pironeau [19]). In this approximation u • VA (x°) is approximated using the known

values A at the following five points: 12, x 1, X0, x1, x2, see Figure 3.1. These five

points lie on the line that is parallel to u and passes through x°, 11, 12 are on the

upstream side of x 0 , and x1 , x2 are on the downstream side of x° . Let 4' = 1x 1 - x0|/h,

where h=|x- 1 - x0|, then



where

It is easy to show that

For a =0, the above approximation is centered and fourth-order accurate. On the

other hand, if a >0, then it is third-order accurate and upwinded. The degree of

upwinding in this scheme is controlled by a.

In the above formulation the convection term is treated explicitly (i.e., as an

inhomogeneous forcing term) irrespective of its sign and thus would allow the

configuration tensor to become negative, therefore there would a new algorithm that

treats the convection term explicitly or implicitly depending on its sign. This new

algorithm is guaranteed to preserve the nonnegative definiteness of the configuration

tensor.

The solution domain is discretized using the pseudo P2 - Pi - P2 elements. By

using the pseudo P2 elements it is obtained matrices that have a bandwidth of about one-

half of the regular P2 elements. This leads to a considerable savings in inverting matrices.

Of course, there is some loss in spatial resolution which could be compensated for by

increasing the number of nodes. Let τh denote the triangulation of C2 . Each triangle is
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further subdivided into four triangles by joining the midpoints of each side, see Figure

3.1. Let τk be the set of four subtriangles of K e th . Then the pressure, p, is in the space

the discrete velocity space, Uh is defined as

The weighting-functions are in the space



Figure 3.1 A schematic of the points used for approximating the convection term
in the FENE model.



CHAPTER 4

PERMEABILITY OF PERIODIC POROUS MEDIA

4.1 Abstract

The permeability of the two-dimensional periodic arrays of cylinders is obtained

numerically as a function of the dimensionless wave number kD, where k is the wave

number based on the distance between particles in the stream-wise direction and D is the

diameter. To isolate the kD dependence, the diameter D and the porosity are held fixed.

The latter is achieved by making the product of distance between particles in the cross-

stream and stream-wise directions constant. The numerical results show that the

permeability increases with kD, but the increase is not monotonic. In particular, the

permeability decreases for —5<k13<-7.7, and becomes locally minimum at kD≈7.7. This

value of kD is significant because it is the smallest wave number for which the stream-

wise area-fraction spectrum is zero. For 1(1)<5 and 7.74(D<11, the permeability increases

with kD. Numerical simulations also show that for 1(17.7 the pressure distribution in the

cross-stream direction is relatively flat which again is a consequence of the fact that the

area-fraction distribution in the flow direction is approximately constant.
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Figure. 4.1a A schematic of a periodic array of cylinder is shown. The interparticle

distance in the z direction is X and in the cross-stream direction is w. The shaded area
is a typical computational domain for our simulations



Figure 4.1b The porous medium for λ = 1.64.



Figure 4.1c The porous medium for Ä, = 2.
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4.2 Introduction

The direct numerical simulation capability for investigating the porous media flows is

important in a number of applications. The objectives in these applications may range

from determining the flow field for the given velocity and pressure boundary conditions

to designing a porous medium with the desired flow properties.

An example of the former is the direct numerical simulation of underground flows

in the oil recovery applications. Examples of the latter include many applications where

the objective is to design the optimal porous medium geometry for trapping or absorbing

fluids.

It is noteworthy that even though the flow field in a porous medium varies at the

length scales comparable to the size of particles, in many applications a detailed

knowledge of these particle scale variations is not required. Instead, an averaged

macroscopic response is sufficient. A detailed knowledge of the particle scale variations,

however, can be helpful in designing the optimal porous medium for specialized

applications.

A macro scale model such as Darcy's law is extremely useful because it allows us

to predict the macroscopic flow field without solving the detailed fluid flow problem,

Darcy's law states that the volume averaged superficial fluid velocity U is proportional to

the pressure gradient:

where p, is the viscosity, p is the pressure and lc is the effective permeability tensor for the

medium. The permeability tensor lc for a medium depends on several factors, including

the porosity and the particle size distribution. Several correlation have been developed to
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relate the permeability of a porous medium to these distributions, (see (7), (16), (23) and

(25)).

The permeability of a porous medium also depends on the microstructure or the

relative arrangement of particles. In fact, analysis based on Darcy's law works well only

when the assumptions used for driving it are valid; i.e., the medium is random,

completely wet (the surface tension effects are not present), and the fluid is Newtonian

(7), (26), (40) and (53). A porous medium, in general, may not be random, but can have a

distinct microstructure, i.e., the particle arrangement contains a preferred direction for the

flowing fluid. This may be the case when the particles are arranged in a systematic

pattern, as is the case for many man-made porous materials. To apply Darcy's law in

such cases, the macroscopic permeability should be determined by accounting for the

microstructure, (32) and (45).

It is possible to numerically estimate the macroscopic permeability of a micro

structured porous medium by including its key micro structural features into the

computational domain. There are several direct numerical studies where the permeability

of a collection of periodically arranged particles is determined numerically (see (25) and

(69)). For example, it was shown in (69) that the permeability of the face centered cubic

(FCC), body centered cubic (BCC) and simple cubic (SC) lattices of spheres—with the

same porosity and Dare different. In other words, the arrangement of particles relative

to the flow direction is important in determining the permeability.

In this research, the dependence of permeability on the microstructure is studied

by continuously varying kD (or the area-fraction distribution) along the flow direction for

a two-dimensional porous medium. Our simulations show that for a given porosity and
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particle size, the permeability depends on the wavelength k or the distance between the

particles in the flow direction (see Figure 4.1a). The diameter D and k can be used to

define a dimensionless wave number kD for the porous medium, where k=2π/λ. For

small kD, the permeability increases with increasing kD, but this increase is not

monotonic. The permeability starts to decrease at kD≈5 and reaches a local minimum at

As it will be discussed in the next section, the kD value at this local minimum of

permeability is significant because it is the smallest dimensionless wave number for

which the area fraction spectrum is zero. Thus, the changes in permeability and area-

fraction distribution with kD are related.

4.3 Permeability and Area Fraction Distribution of Periodic Porous Medium

In this study, it will be assumed that the particles (or cylinders) are arranged periodically

in the space as shown in Figure 4.1a. Therefore, away from the entrance and the exit the

velocity field is periodic, and the pressure drop for each period cell is constant. This

constant pressure drop for a period cell determines the permeability of the porous

medium.

A typical computational domain used in our simulations is shown in Figure 4.1b.

The domain is specified in terms of two parameters: the distance k used for arranging

particles in the flow direction and the width w. To ensure that the solids fraction

is constant, the product kw was held fixed at 4 and the particles radius R=1. Thus, the

solids fraction for our simulations is 0.393.
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To define the area-fraction on the planes perpendicular to the flow direction—

assumed here to be the z-axis of the coordinate system—we will assume that the particles

are cylinders of radius R. The number density distribution is denoted by N(z). Let the

area-fraction Øa(z) be the fraction of the plane z covered by the particles. The following

expression for Øa can be obtained by adding the areas of intersections of N(z+x) particles

that have centers at a distance x from the plane z

Note that the integration limits are from -D/2 to D/2, as only the particles that are at a

distance less than R from the plane z have a non-zero area of intersection (see (56) where

the area-fraction was obtained for the spherical particles).

Assuming that N(z) is in the Fourier transform class, the Fourier transform of the

above expression can be obtained using the convolution-multiplication theorem

is the blockage function,

Øa(k ) is the Fourier transform of Øa(z) and N(k) is the Fourier transform of N(z). The

graph of Θ(kD) is shown in Figure 4.2. From this figure we note that the set of zeros of

Expression (4.2), therefore, implies that the

dimensionless wave numbers, kD, for which Θ(kD) is zero, are blocked, i.e., are missing

in the spectrum of the area-fraction.



Figure 4.2 0((D) is plotted as a function of kD
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To understand the physical significance of Θ(kD) we note that if N(k) is non-zero

only for the wave numbers for which 0(1(D) is zero, the area available to the flowing

fluid in the z-direction will be constant, as in this case Øa( k)=0 for all k>0. On the other

hand, if 0(1(D) is nonzero for N(k)≠0, the area-fraction will vary with z. For example, for

the periodic porous medium shown in Figure 4.1b,

integer and λ/R=2π/kR=1.64 is the distance between particles in the flow direction. In

this case, for the first non-zero mode of N(k), i.e. kD=7.66, Θ(kD) is zero, and thus this

mode does not cause any variation in the area available to the fluid. The area fraction-

i.e., the convolution of (4.1)—is, however, not exactly constant because only the first

zero of Θ(kD) coincides with the first non-zero term of N(k). For the higher order modes

of N(k), Θ(kD) is non-zero. But, since Θ(kD) is small for the higher order modes of N(k),

the area-fraction varies—but only slightly—with z. For λ=2 (kD=6.28), on the other

hand, since 0(6.28)#0, the area-fraction varies substantially with z (see Figure 4.1c).

It is noteworthy that for the SC, FCC and BCC lattices with the same porosity, the

kD value along the flow direction is different. For example, when the solids fraction is

0.45 the kD values for the SC, FCC and BCC lattices are 5.97, 6.98 and 9.48,

respectively. As noted before, the past numerical studies show that the permeability of

the SC lattice is smaller than that of the FCC lattice, but the permeability of the FCC

lattice is larger than that of the BCC lattice (32) and (44). Thus, the permeability changes

non-monotonically with kD. The permeability for other values of kD is not known, as in

these studies only the above three cubic lattices were studied. This non-monotonic
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variation of permeability for spherical particles is interesting, and needs further

investigation.

4.4 Problem Statement and Boundary Conditions

The objective of this research is to numerically simulate the periodic porous media flows,

and use the simulation results both for estimating the effective permeability and for

understanding the micro-scale flow features. The Navier-Stokes and continuity equations

are solved using the finite-element method in the periodic computational domains using

the boundary conditions described below. The Reynolds number is assumed to be zero.

The details of the numerical method are given in (55).

The following boundary conditions are applied at the boundaries of computational

domain: At the inlet of the computational domain the incoming superficial velocity U is

specified. Along the sides of the computational domain periodic boundary conditions,

i.e., u=0, ∂v/∂x =0, are applied, where u is the x-component of velocity and v is the y-

component of velocity. At the exit of the computational domain the no-traction boundary

condition is applied, and the no-slip boundary condition is imposed at the surface of

particles.

4.5 Results and Conclusions

Figure 4.3 shows that the relationship between the incoming velocity U and the pressure

drop Ap over a fixed distance is linear. In this figure the velocity U is assumed to be 1, 2,

or 3. The linear relationship between U and the pressure gradient for Newtonian liquid

shows that the Darcy's law is applicable for our periodic porous medium.
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Figure 4.4 shows the value of pressure drop for three different mesh resolutions.

The three meshes respectively contains 1143, 1669 and 3014 triangular elements and

2556, 3666 and 6479 nodes. From this figure it is clear that the pressure drop over a fixed

distance is independent of the mesh resolution used. Therefore, for all calculations

reported later in this dissertation the mesh with 1669 elements was used.

For the simulation the permeability K along the z-direction is calculated by using

the definition of Darcy's Law:

where Ap is the pressure drop over the distance λ, 1.t is the viscosity and U is the

superficial velocity. As noted before, for the simulations the porosity is 0.607, and the

viscosity and the superficial velocity are held fixed.
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Figure 4.3 The pressure drop Ap over a distance of 29.92 is plotted as a function
of the superficial velocity U for w= 2.25. The linear relationship shows that
the Darcy's law is valid and the permeability is 2.88E-3.
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Figure 4.4 The pressure drop over a fixed distance of 29.92 is plotted for three
different mesh resolution containing 1143, 1669, and 3014 triangles. U=2,
w=2.25. These results show that the pressure drop is independent of mesh
resolution.



Figure 4.5 Numerically computed permeability K/2/R2 is shown as a function of kJ)
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It is noticed that the permeability of a channel of width w varies as w 2 . Since for

the simulations λw=4 and the wave number k is inversely related to λ, the width of an

equivalent flat channel increases with kD. The computed values of the permeability are

shown in Figure 4.5 as a function of the dimensionless wave number kD. From this

figure, it can be stated that for kD<5, as expected, the permeability increases with

increasing kD. But, for 5<kD<7.7 the permeability decreases with kD. The permeability

reaches a local minimum at kD≈7.7. After reaching this local minimum, the permeability

increases with increasing kD. The calculations were carried out for kD up to 11. Note that

for kD≈7.7, 0(7.7),A, i.e., this value of kD is missing in the area-fraction spectrum (see

section 4.3). This shows that the area-fraction distribution along the flow direction plays

a role in determining the permeability.

Another interesting feature for kD=7.7 is that the pressure distribution in the

cross-stream direction is relatively flat (see Figure 4.6a). For kD=6.28, on the other hand,

the pressure varies substantially in the cross-stream direction (see Figure 4.6b). This

again is related to the area-fraction variation in the flow direction. In particular, when the

area-available to the flow is constant or varies relatively slowly in the stream-wise the

pressure distribution in the cross-stream direction is relatively flat.
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Figure 4.6a The dimensionless pressure distribution in the cross-section direction are
shown at five different z locations, k=2.0.
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Figure 4.6b The dimensionless pressure distribution in the cross-section direction are
shown at five different z locations, k=1.64.
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Finally, it may be concluded that the periodic porous medium N(k) contains

higher order modes—i.e., in addition to the primary mode at k=2π/λ—for which Θ(kD)

may not be zero. For example, even for λ/R=1.64 the area-fraction is not exactly constant

in space. But, since Θ(kD) is small for the higher order modes, they lead to only small

variations in the area-fraction along the stream-wise direction. Furthermore, as 0(1(D)

decreases with increasing kD, the dependence of permeability on the area-fraction

decreases with kD, and the permeability approaches the value for an equivalent flat

channel.



CHAPTER 5

VISCOELASTIC POROUS MEDIA FLOWS

5.1 Overview

In this chapter, the motion of a viscoelastic fluid flow passing through a two-dimensional

periodic porous medium is studied numerically. For this study, the porosity is held fixed

at 60% and the variations of permeability, pressure-drop, and trA (measurement of the

elongation of the polymer molecules) distributions are investigated as a function of the

wave number kD and dimensionless relaxation time De along the flow direction.

Numerical results show that the permeability for viscoelastic fluid does not

change monotonically with kD, where k is the wave number, k=2π/λ, and λ is the distance

between the particles in the flow direction and D is the diameter of particles. The local

minimum of the permeability is at kD =7.7 and the local maximum is at kD=5.0. These

results are similar to the results obtained earlier shown in chapter 4 for Newtonian fluids,

see Alcocer, Kumar and Singh (2). It is found that the pressure drop for Newtonian flows

is smaller than for viscoelastic flows, this is because for viscoelastic flows, the molecules

(i.e., polymer molecules) are being stretched and consequently the resistance to the fluid

flow is increased and so is the pressure-drop. It is also found that the pressure drop

decreases when the De increases, for all of the cases.

44



45

Figure 5.1 Typical mesh used in the simulation and its magnified view
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5.2 Introduction

Numerical capability for simulating viscoelastic porous media flows is important because

of their use in many technological applications, as well as for understanding many flows

in nature.

There are many examples of porous materials encountered in everyday life and

the environment. For instance, with the exception of metals, some dense rocks, and some

plastics, virtually all solids and semi-solid materials are porous to varying degrees. The

fluid flow through these materials has applications in many branches of engineering and

science, e.g., ground water hydrology, oil recovery, reservoir engineering and soil

mechanics. Textiles and leathers are highly porous; they owe their thermal insulating

properties, as well as the property that they 'breathe', to their porous structure. Paper

towels and tissue papers are also highly porous and their absorbency is partly due to their

porous structure and partly due to the property that they are strongly wetted by water.

Building materials such as bricks, concrete, limestone, sandstone and lumber are all

porous. Wood can be impregnated because of its porosity. Soil is capable of performing

its function of sustaining plant life only because it can hold water in its pore spaces, and

plants absorb this water by the action of their capillaries.

The objective of numerical simulation of porous media may range from

determining the flow field for given velocity and pressure boundary conditions to

designing a porous medium with the desired flow properties. It is noteworthy that even

though the flow field in a porous medium varies at length scales comparable to the size of

particles, in many applications a detailed knowledge of these particle scale variations is

not required. Instead, an averaged macroscopic response is sufficient. A detailed
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knowledge of the particle scale variations, however, can be helpful in designing the

optimal porous medium for specialized applications.

A macro scale model such as Darcy's law is extremely useful because it allows us

to predict the macroscopic flow field without solving the detailed fluid flow problem.

Darcy's law states that the volume averaged superficial fluid velocity U is proportional to

the pressure gradient:

where Ix is the viscosity, p is the pressure and lc is the effective permeability tensor for the

medium. The permeability tensor lc for a medium depends on several factors, including

the porosity and the particle size distribution. Several correlations have been developed to

relate the porous medium permeability to these distributions, see (6), (16), (23), and (25).

The permeability of a porous medium also depends on the microstructure or the

relative arrangement of particles. This dependence, however, is not completely

understood because it is difficult to quantify the relationship between the microstructure

and permeability—for both experiments and simulations. In fact, analysis based on

Darcy's law works well only when the assumptions used for driving it are valid; i.e., the

medium is random, completely wet (the surface tension effects are not present), and the

fluid is Newtonian (6), (26), (53). A porous medium may not be random, but have a

distinct microstructure i.e., the particle arrangement contains a preferred direction for the

flowing fluid. This may be the case when the particles are arranged in a systematic

pattern, as is the case for many man-made porous materials. To apply Darcy's law in

such cases, macroscopic permeability should be determined by accounting for the

microstructure.
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It is possible to numerically estimate the macroscopic permeability of these

microstructure porous media by including their key microstructural features into a

computational domain that is smaller than the actual medium. There are several direct

numerical studies where the permeability of a collection of periodically arranged particles

is determined numerically, but it has been difficult to establish a relationship between the

microstructure and the permeability, see (16), (23).

From Darcy's law we note that permeability is a measure of the ease with which a

fluid passes through a porous material. For Newtonian porous media flows the

permeability depends only on the pore geometry and can be shown to be independent of

the properties of penetrating fluid. Several models have been developed for the

permeability K, some of them are purely empirical and some have a theoretical basis. An

example of a purely empirical model is Krumbein & Monk (1943)

where lc (permeability in cm 2 ) is related to a mean grain diameter d (in microns), see (5).

There are several theoretical models that are obtained from Darcy's law. One of the most

widely accepted derivations of permeability and its relationship to porous medium

properties is the one proposed by Kozeny (1927) and later modified by Carman (5). The

latter equation has an empirical coefficient, this is typical of a third class of formulas of

permeability that are semi-empirical i.e., where the theoretical analysis using conceptual

models gives a relationship between lc and various matrix parameters. The numerical

coefficients, however, must be determined experimentally for each particular porous

matrix or to a group of similar porous matrices.
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Darcy's law, in general, is not valid for viscoelastic flows where the evolution of

stress is given by the partial differential equations. But it is possible to obtain generalized

models for non-Newtonian flows. For example, for the Ostwald-de Waele model,

The effective permeability	 is given by

Here m and n are the rheological parameters, Dp is the particle diameter, and e is the

porosity of the porous medium as determined for a Newtonian flow through the medium,

r is the stress tensor and D is the symmetric part of the velocity gradient tensor.

Furthermore, lc is the permeability of the medium for the Newtonian flows. Note that p,

does not have the units of viscosity, for n=1, it reduces to Newton's law of viscosity with

m= p ; thus the deviation of n from unity indicates the degree of deviation from

Newtonian behavior. For values of n less than unity the behavior is pseudoplastic,

whereas for n greater than unity the behavior is dilatant.

One of the goals of this study is to understand the role of viscoelasticity in

determining the pressure drop, and thus also the permeability of the medium. The role of

relaxation time is quantified in terms of the dimensionless relaxation time called the

where A is the relaxation time, U is the characteristic

velocity and D is the particle diameter. When the Deborah number is 0(1) the elastic

effects may be as important as the viscous effects, and hence may lead to significant

modification of the flow field.
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The simulations show that for high Deborah number flows there is a strong

coupling between the fluid relaxation time and the length scale associated with the porous

media periodicity. To understand the coupling mechanism, viscoelastic flows will be

studied in the periodic porous media (see Figure 4.1a). It will be assumed that the fluid

flow in the cross-stream direction is periodic which simplifies the problem as the periodic

boundary conditions can be imposed on the sides of the computational domain.

In the investigation, the finite element method is used to discretize the

computational domain, and the FENE dumbbell and Oldroyd-B models to model the

viscoelastic flow. In these models the stress contains two distinct contributions: one

coming from the conformation of the polymer and the other coming from the viscous

nature of the solvent. The solvent contribution is viscous in nature and appears as the

highest-order term in the momentum equation, which makes it elliptic.

The simulations were started by first obtaining the solution of the Newtonian flow

which developed instantaneously when the simulation was started. Once the Newtonian

solution was obtained, then this solution was used as the starting point for the viscoelastic

case. The steady state (no variations with time) viscoelastic solutions were obtained by

running a time dependent code. The calculations were stopped when the pressure and

velocity fields reached their respective steady state values.

5.3 Computational Domain and Boundary Conditions

A typical computational domain is shown as the shaded period cell in Figure 4.1a. The

Reynolds number in the present study is assumed to be Re =3.3x10 -4 for both Newtonian

and non-Newtonian flows, therefore is considered to be negligible. Thus, for a given
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geometric configuration of the periodic domain, the problem is completely characterized

by the three parameters:

In the present work, consider the behavior predicted for a range of values for De,

L=64 and c=1.0. It is obvious that c=1 represents a more concentrated solution where the

presence of the polymer produces an incremental increase in the zero-shear-rate limit of

the kinematics viscosity of the solution that is exactly equal to the kinematics viscosity of

the solvent. It may be noted that the concentration of a specific polymer that would

produce such an increment in v (kinematics viscosity) would depend upon the molecular

weight, the molecular weight distribution and the solvent, among other factors. The

Deborah number can be varied over a wide range by changing the value of relaxation

time, in our simulations we are using 0.02, 0.1, 0.5 and 1.0. The magnitude of the

dimensionless contour length L is known to be proportional to the square root of the

number of statistical sub-units in the polymer values up to 0(40-50) in order to

encompass polymers with molecular weights of order several million.

In the simulations there is a restriction to the case of two-dimensional periodic

porous media. The domain is defined in terms of two parameters: w and λ, w is the

distance between the center of the circles in a plane perpendicular to the fluid flow, and A,

is the distance between the center of circles along the fluid flow direction (see Figure

and for the simulations it is held fixed at

0.6. This value of porosity is achieved by keeping the product wλ=4.0.

The role of viscoelasticity in determining the pressure drop is investigated for

these different domains that have the same porosity of 60%, but have different values of
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w and A. The computational domain is discretized using the finite element method. A

typical mesh with 4019 nodes is shown in Figure 5.1. In the simulations, the fluid is

passing through a periodic porous medium in which the solid particles are represented by

the circles. The porous medium is periodic, and the walls and surfaces have zero velocity

and no-slip boundary conditions apply also, a typical computational domain can be seen

in the Figure 4.1. The velocity U is known at the inlet, and for the simulations it is

assumed a value of U=1.0, and traction boundary conditions are specified at the exit.

The two parameters, De and A., determine the pressure and the trA distribution in

the medium. The pressure drop (see Figure 5.2) is a measure of the resistance offered by

the medium to the flowing fluid. The trA distribution (see Figure 5.3 and 5.4) indicates

the extent to which the polymer molecules are stretched as the fluid passes through the

medium. The effective permeability of the medium is also investigated as a function of

the dimensionless wave number kD and De.



Figure 5.2 Values of pressure drop along the fluid flow
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Figure 5.3 Values of trA along the fluid flow



Figure 5.4 Magnified views of the trA profile
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5.4 Results

In Figure 5.5, the permeability is shown as a function of the dimensionless wave number

kD. From this figure it may be noticed that the permeability increases with kD for kD<5,

but this increase is not monotonic. The permeability starts to decrease at kD =5 and

reaches a local minimum at kD =7.7. After reaching this minimum the permeability

increases with kD. The qualitative dependence of permeability on kD for viscoelastic

fluids is similar to that for the Newtonian fluids reported in (2). From this figure we also

note that the permeability increases as the dimensionless relaxation time is increased.

The pressure drop and the maximum value of trA are plotted as a function of the

Deborah number for different values of A, are shown in Figures 5.8 and 5.9.

5.4.1 Variation with kD

From Figure 5.8 it may be noticed that the pressure drop decreases with increasing kD

i.e., the smallest pressure drop is for the biggest value of kD=8.37. For kD =3.59 the area

available to the flow is smaller therefore pressure drop is large. On the other hand, if kD

is increased, i.e., to kD = 4.18 the pressure drop decreases substantially, furthermore, it

can be seen in the Figure 5.8 that for kD = 8.37 the smallest pressure drop is obtained.

The results of these numerical simulations for the permeability of periodic array

of cylinders for Newtonian flows are in good agreement with the results published in

(16), (54). In these papers the results are obtained for the triangular (T) and square (S)

arrays of cylinders. It is easy to show that for the square array kD = 2π and for the

triangular array kD = 8.269. The results for the other kD values, which correspond to the

other periodic arrangements of Figures 4.1b and 4.1c, are not available.



Figure 5.5 Viscoelastic permeability as a function of kD
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The trace of configuration tensor A (trA), which is a measurement of extensional

effects, can be measured experimentally using the birefringence technique. According to

the results shown in Figure 5.7, the trA decreases when increasing kD The largest value

of trA is for kD = 3.6 and the smallest value is for kD = 8.37. This is due to the fact that

for the bigger values of kD the shear rate in the medium is smaller as the area available

becomes larger. The pressure drop and trA follow the same pattern with the variation of

kD, and also seem to converge to the specific values with the variation of kD. This means

that for a given De the pressure-drop will converge to a unique value when kD is

increased. There will be a point beyond which the pressure drop remains unchanged for

any value of kD as long as it is less than 7.66. Also note that the product is equal to

4.0 at all the times. It can be observed that a similar behavior applies for the trA.

5.4.2 Variation with De

The pressure drop decreases with increasing De while the trA increases with increasing

De though in both cases the pressure drop and trA follow the same pattern, in other words

every curve seems to converge to certain value as De is increased.

In real applications,. the De is known (given or assumed), and it can also be

estimated when mixing different fluids by averaging them. The value of De can be used

in the design of any needed equipment. For instance, the value for the pressure drop can

be calculated and this value can be used so that the appropriate size of the equipment can

be designed in a proper manner and not oversize or over-dimensionalized, also the costs

of running operations can be minimized efficiently.
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The pressure-drop for viscoelastic flows is higher than for Newtonian flows, the

latter can be seen in Figure 5.8. This fact has been demonstrated in this study and can be

corroborated by many other research papers, and the reasoning behind it, is that the

polymer molecules are being stretched in the viscoelastic flows and consequently a

higher value of pressure is needed to overcome the flow. For Newtonian flows this

behavior is not seen since they are pure viscous and the value of the Re is relatively

small, and only very close to the walls the viscosity value will have remarkable effects

due to the boundary layer. It can also be noticed that the value of the pressure drop for

Newtonian flows is independent of the value of kD, the latter can be seen in Figure 5.8 as

well.
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Figure 5.6 Viscoelastic permeability as a function of the De



Figure 5.7 Maximum values of trA as a function of De
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Figure 5.8 Pressure drop per unit length in the fluid flow direction



CHAPTER 6

VISCOELASTIC FLOW IN A FOUR-TO-ONE CONTRACTION

6.1 Introduction

This Chapter describes the numerical solution of a viscoelastic fluid, modeled by

the Chilcott-Rallison version of the FENE dumbbell model, passing through a four-to-one

contraction. Figure 6.1 shows a typical two-dimensional four-to-one contraction.

The four-to-one and other contractions are found in the extrusion devices used for

processing polymeric materials. When the fluid crosses an abrupt contraction the flow

area changes suddenly and the material fluid elements are subjected to relatively large

extensional strain rates. A polymeric material element because of its very complex

molecular structure exhibits a complex flow behavior when it is subjected to large

extension rates. Also, its behavior is not only highly nonlinear but also viscoelastic. The

viscoelastic flow is especially difficult to compute near the corner where the velocity

gradient is singular, i.e., the stress approaches infinity at the corner. In this Chapter the

velocity and stresses distributions are numerically studied both near and away from the

corner.

Many researchers have numerically and analytically studied the problem of

four-to-one contraction, among those are Davies and Devlin (14), Hinch (24), Renardy (52)

and Singh and Leal 0. All of these researches have studied the flow in the vicinity of the

singular point (corner).

Renardy numerically obtained a solution for the Maxwell fluid assuming that the

velocity field is the same as for a Newtonian fluid. This simplification allowed him to

transform the constitutive equation for the stress into an ordinary differential equation

63
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(ODE) by integrating along streamlines of the undisturbed flow. He assumed that there is

a core region away from the walls in which the solution can be approximated by the

following form r-0.74f(θ). He also showed that there is a boundary layer region near the

walls in which there is a stronger but integrable stress singularity, 0(r -a91).

Davies and Devlin (14) and Hinch (24) also searched for an analytical solution of

the corner flow problem of an Oldroyd-B fluid. Both analyses assumed that a solution of

separable form exists (just like Renardy), but only Hinch considered this form in the limit

when r—>0, see Figure 6.3. Hinch was able to obtain predictions taking into account the

non-Newtonian form for the velocity field. He showed that the stress singularity in the

core region is of the form r -2/3 and of form r -419 for the velocity gradient.

In most previous numerical studies, except in Singh and Leal (58), the solutions

were obtained by using the regular finite element method without any special attention to

resolve the viscoelastic stresses near the corner. More specifically the resolution was

increased at the corners by making the elements in the mesh smaller but without any

changes in the element configuration (e.g., the number of elements around the corner).

Using the latter discretization, it is difficult to obtain a solution to either the Upper

Convected Maxwell model (UCM) or the Oldroyd-B model when the value of Deborah

number is too large or when the element size is too small, as the numerical methods fail

or the solutions loses its spatial smoothness.

Keunings (29) proved that the maximum value of the Deborah number for which

a converged solution can be obtained actually decreases when the mesh resolution is

incremented. Therefore, when a relatively coarse mesh is used, the maximum value of the

Deborah number at which convergence failure occurs is relatively higher (see Dupont and
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Crochet (18) and Luo and Mitsoulis (36)). Moreover, Apelian (3) and Coates (8) have

also shown for both the UCM and Oldroyd-B model, that the maximum Deborah number

for which a converged solution can be obtained decreases with increasing resolution.

Their numerical simulations show that the viscoelastic stresses at the corner grow as r "1 ,

see Figures 6.3, 6.4 and 6.5. Since for their numerical solution the stress field varies like

1- • ir , it is not square integrable, and thus they concluded that for high Deborah numbers a

numerical solution for these models cannot be obtained using the finite element method.

To avoid the high Deborah number problem, Apelian created a new model called

the Modified Upper Convected Maxwell model (MUCM), in which the maximum value

of stress is limited, and controlled by two independent parameters a and F, see (3).

The behavior of the FENE dumbbell and the MUCM models are similar in the

sense that both have a limitation on the maximum value of the stress. In the case of the

FENE dumbbell model, L (finite extensibility parameter) limits the trace of the

configuration. Assuming small values for L, and a and F respectively, the models seem

to converge for a bounded solution for the corner problem. Moreover the stress field at

the corner for both the MUCM and the FENE models varies like a Newtonian flow, i. e.,

r -0.5



Figure 6.1 A schematic of the four-to-one contraction device.
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Figure 6.2 Typical finite element mesh used in our calculations.
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Figure 6 3 The r -0 coordinate system used at the corner.
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Figure 6.4 Radial mesh at the corner
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The aim of this Chapter is to show that converged solutions for the Chilcott-

Rallison FENE dumbbell model, both near and away from the corner, can be obtained by

using a special discretization around the corner, and to describe the behavior of material

polymeric elements in a four-to-one contraction device.

As noted before, the main reason for the numerical problems faced by other

researchers are due to the discretization used around the corner. In order to explain this

we note that the stream function around the corner has the following separable form for

the Newtonian flows: Ψ≈r^λf(θ). This implies that the velocity gradient field retains 0-

dependence even in the limit r—>0. In fact, the magnitude of velocity gradient variation

with 0 increases as the corner is approached. But, when a typical mesh with three to six

elements near the corner is used the main difficulty is that there is inadequate 0-

resolution for resolving this complex 0-dependent variation near the corner.

In this study, as in Singh and Leal (), a radial mesh has been created which allows

us to increase 0-resolution near the corner, see Figures 6.4 and 6.5. It is also shown that

for the FENE dumbbell model, solutions for relatively high Deborah numbers 0(1) can

be obtained using a fine radial resolution at the corners and a relatively high value of L,

the dumbbell extensibility parameter 0(L2 = 600).

There is a region near the corner (r<< 1), where the viscoelastic stress increases as

r -14, in agreement with Hinch and Renardy for the Oldroyd-B model. In this work, for

some cases L is taking to be sufficiently large so that the solution is independent of L.

Also, note that in the limit when f(trA) is approximately equal to one the FENE dumbbell

model and the Oldroyd-B models are identical which is the case when L is sufficiently
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large. Consequently, the solutions described in this chapter for these cases with L large

for the FENE model are comparable to that obtained by Hinch.

Also note that the solutions obtained for the FENE dumbbell model will depend

on the polymer concentration c. For c=0, the contribution of the polymer to the stress

field is zero and thus the velocity field is the same as for the Newtonian fluid. These

results can be compared with those of Renardy where the velocity field is assumed to be

the same as for the Newtonian fluid.

In order to compare the numerical results presented here for the FENE dumbbell

with the analytical results it is assumed that the configuration tensor is of the separable

For simulations µ=µ(θ), but, there is a region where p is almost

constant. Close to the walls the magnitude of A depends on the value of 0, for c=0, the

value of A on the walls should be identical, since it is a pure shear flow. On the walls, the

governing equation for A turns out to be algebraic, since the velocity on the walls is zero.

For c#0 the solutions using the finite element method are obtained. There is a region

where p is almost constant, but close to the walls the polymer contribution to the stress

varies with 0, therefore, the velocity gradient and the configuration tensor will also

depend on 0, see Figure 6.5.

The velocity and configuration fields have different behavior near the corner. The

spatial distribution of the velocity field will be described in terms of the magnitude of the

, which is a measure of the rate of strain tensor.

The spatial distribution of the configuration tensor is described in terms of its trace, i.e.

trA=A11+A22, which is a dimensionless measure of the length of the dumbbell.



Figure 6.5 The corner mesh and the viscoelastic stresses near the corner
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6.2 Definition of the Domain

A typical four-to-one contraction geometry is shown in Figure 6.1. The symmetry

allows us to use one half of the actual domain as the computational domain, see Figure

6.2. This reduces the size of the computational problem by one half and thus also the

computational time needed for solving the governing equations.

6.3 Boundary Conditions

The incoming velocity U along the y-direction is assumed to be parabolic at y = -8, with a

value of U=0 for x = -4, and U=1 for x = 0. Along the y-axis (x = 0) the following

boundary conditions are imposed: u=0, —
av

, where u and v are the x and y components of
ax

the velocity. The velocities u and v on the walls are assumed to be zero.

The Reynolds number in the present study is assumed to be Re = 3.3x10 -3 , for

both Newtonian and viscoelastic fluids. The inertial effects are therefore negligible. Thus,

for a given geometric configuration of the domain, the problem is completely

characterized by the three parameters, De, c and L. In the present work, the behavior is

investigated for a range of values for De E [0.02, 0.2, 0.5, 1.0], L2 =600 and c=0 and1.0.

6.4 Stokes Flow Around a Corner

A solution for the Stokes flow around a corner of arbitrary angle was found by

Dean and Montagnon (15) and Moffatt (41) to be of the following form tit = (8),

where yr is the stream function, and r and 0 are as shown in Figure 6.3. They also

showed that by using the stream function formulation the strain rate magnitude is of the

following form: IDS =r 2fi (9). For the Newtonian case for a 3π/2 corner, the strain rate
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becomes singular when r—>0. It is clear that the tangential gradients of |D| become larger

when r—>0. In order to compare the analytic solutions with the numerical solutions shown

later, the log-log plots are used. Also note that since log |D| = (A-2)log r + log f1(θ), log

IDI varies linearly with log(r). For Stokes flows the slope A-2 ;---,' -0.445 (see Dean and

Montagnon (15) for details). For different values of 0, a family of straight lines will be

displayed. This family of straight lines will be compared with the results obtained using

the finite element numerical scheme for Newtonian flow.

Before comparing the analytical solutions with the numerical solutions, it is

important to note that the analytical solution for |D| is singular at r = 0 because the

exponent is negative. The numerical solution on the other hand converges to a steady

value when r-->0. For r-values smaller than the size of the radial element the numerical

and analytical solutions therefore, cannot be compared. The numerical and analytical

solutions however can be compared for r larger than the size of an element, which for the

present simulation is for r E [1.6E-02, 0.21]. The latter will be observed in the following

sections.

The numerical solutions for both Newtonian and viscoelastic liquids are obtained

using the same radial finite element mesh. Figures 6.6 and 6.7 show the numerical results

for the Newtonian flow using a mesh with 6273 nodes and 3000 unstructured triangular

elements. Figures 6.8 and 6.9 show the numerical results for the Newtonian flow using

6923 and 5993 nodes respectively. The radial element size for the three cases considered

is 0.02, 0.02 and 0.005. Also, note that only the region near the corner is refined. From

these figures, it is clear that the distribution of |D| near the corner is relatively insensitive

to the radial element size. Also note that for r>0.21 the numerically obtained |D| is quite
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different from the analytical results discussed above, as for this region the global solution

dominates over the corner singularity. Therefore, for r 0.21 the numerical solution

starts to transition from the local behavior expected at the corner to the solution for the

global flow field.

The values of |D| in the numerical results for smaller values of r < 0.001 start to

converge to a fixed value when r-->0. This departure between the analytical and

numerical solutions for small r's as noted above, and also explained in (58) occurs at

smaller values of r with increasing corner resolution. The numerical solutions for this

Newtonian fluid case converged for the radial finite element mesh described above.



Figure 6.6 For Newtonian fluid log IDS is plotted as a function of log(r) for different
values of O. Number of nodes is 6273.
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Figure 6.7 For Newtonian fluid log 'DI is plotted as a function of log(r) for different
values of 0, for r between 1 0-2 and 2.1x10 -1 . Number of nodes is 6273.
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Figure 6.8 For Newtonian fluid log IDI is plotted as a function of log(r) for different
values of 0, for r between 10 -2 and 2.1x10 -1 . Number of nodes is 6923.
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Figure 6.9 For Newtonian fluid log IDS is plotted as a function of log(r) for different
values of 0, for r between 10-2 and 2.1x10-1 . Number of nodes is 5993.
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6.5 Viscoelastic Flow Near the Corner

The numerical solutions for the Newtonian flow in a four-to-one contraction was used as

the starting point for the calculations of viscoelastic fluid. The solution of a viscoelastic

fluid will depend on the value of the dimensionless relaxation time (Deborah number,

De). Four different values of Deborah number were used for these numerical calculations,

i.e., De = 0.02, 0.2, 0.5 or 1.0. The effect of using different values for De will be shown

in Figures 6.11, 6.12, 6.13 and 6.14.

Analysis of these figures, shows that the slope of the velocity gradient field IDS

versus r on a log—log scale close to the corner (r-->0), for all 0 values shown is

approximately zero and the value at the corner is —3.65. On the other hand, farther away

from the corner IDS decreases with r.

The numerical results show that both the polymeric stresses (configuration tensor)

and the velocity gradient in the vicinity of the corner can be described by generalized

power laws as discussed above. Specifically, the stress and strain rates can be assumed to

be of the form:

where both exponents IA and λ are functions of 0.In order to calculate the exponents for

these power laws trA and IDS are plotted as functions of r for several values of 0 on a log-

log plot. The slopes 1.1, and λ of the linear regions on these plots will be calculated for

these viscoelastic fluids. The values of μ and λ varies with 0. For r e [1.6E-02, 0.21], the

slopes are almost constant, and thus the numerical solution of the above power laws.



Figure 6.10 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0.
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Figure 6.11 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0.
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Figure 6.12 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0.
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Figure 6.13 For viscoelastic fluid log (DI is plotted as a function of log(r) for
different values of 0.
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In order to calculate the exponents for the power laws, the slope is calculated in

the region where variation with log (r) is linear. In Figures 6.15, 6.16, 6.17 and 6.18,

values of log IDI are shown as a function of log (r) . The linear region is for r between

1.64x10 -2 and 0.213. It can also be stated that for the viscoelastic case the results depend

on the value of the De. Also by comparing the viscoelastic solutions with the Newtonian

solutions shown in Figures 6.6 and 6.7, it can be observed that the slopes in the linear

region are different but the pattern of the solutions is quite similar.

Figures 6.6 and 6.7 shows the case of pure Newtonian solution, i.e., when the

polymer concentration is zero (c = 0), the solution corresponds to an infinitely dilute

solution where the velocity field is held fixed, but the polymer configuration is allowed to

evolve. The configuration obtained in this case is identical to the configuration obtained

for the Maxwell model when the velocity field is assumed to be the same as for the

Stokes flow.

The case of c = 1.0 corresponds to a dilute polymer solution, where the polymer

(dumbbell) conformation can be strongly influenced by the flow, but the flow itself

remains very close to that for a Newtonian fluid except possibly in the regions where the

dumbbells are highly stretched. Figures 6.14, 6.15, 6.16 and 6.17, show solutions for the

viscoelastic cases. From these plots it can be inferred that the pattern is similar to the

Newtonian solution. The velocity gradient values are slightly different but they converge

towards a value close to 3.65 when r-+0.

Figures 6.18 and 6.19 also show velocity gradient values in the log scale but this

time the number of nodes were 5993 and 6923 respectively. The slopes of these plots are

very similar to the one shown in Figure 6.17.



Figure 6.14 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10 -1
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Figure 6.15 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10 -1
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Figure 6.16 For viscoelastic fluid log (DI is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10 -1
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Figure 6.17 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10 -1 . Number of nodes 6273.



90

Figure 6.18 For viscoelastic fluid log IDI is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10-1 . Number of nodes 5993.
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Figure 6.19 For viscoelastic fluid log IDS is plotted as a function of log(r) for
different values of 0, for r between 10 -2 and 2.1x10 -1 . Number of nodes 6923.
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Figure 6.20 The exponent 2-2 obtained from numerical simulations if plotted as
a function of 0, De = 1.0. Number of nodes 6273.
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In Figure 6.20, the exponent X is plotted as a function of 0 for IDS in the power

law region for c=1, De=1, L2=600. From this figure we note that X, is not a constant. This

variation with 0 is due to the asymmetric distribution of the polymeric stresses near the

corner.

6.5.1 Polymer Configuration

This section describes the results for the configuration tensor in the vicinity of the

corner for different values of De. The slope pt in (1) is obtained by plotting log trA as a

function of log (r).

By analyzing Figures 6.21, 6.22, 6.23 and 6.24, the role of De in determining the

slope is investigated. For De = 0.02, the values of the log trA is very small, therefore the

slopes of the curves with log r is very small (almost zero). In this case the flow is

essentially Newtonian. These slopes start to increase for the higher values of De as the

viscoelastic stresses increase with De.

In Figure 6.21, the value of log trA is plotted in the vicinity of the corner

(obtained for L2 = 600) as a function of the log r for seven different values of 0 and De

=1.0. It can be seen that for small values of r, very close to the walls (r 1.0E-3) the

value of log trA increases with log r, until it reaches a maximum value for r N 1.0E-2

approximately. For larger values of log r, log trA decreases linearly with log r. But for r>

1.0E-2, the log trA value keeps decreasing and reaches a relatively constant value that

depends on the value of the angle 0.



Figure 6.21 Log trA is plotted as a function of log r, for different values of 0. L 2 =
600, and c = 1.0.
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Figure 6.22 Log trA is plotted as a function of log r for different values of 0. L 2 =
600, and c = 1.0.
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Figure 6.23 Log trA is plotted as a function of log r for different values of 0. L 2 =
600, and c = 1.0.
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Figure 6.24 Log trA is plotted as a function of log r for different values of 0. L 2 =
600, and c = 1.0.
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Figure 6.25 The exponent p obtained from the FEM. De = 1.0.
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In Figure 6.25, the exponent p, i.e. the slope of the log(trA) vs log(r) plot, of the

power laws is plotted as a function of 0, for De =1.0. It can be seen that away from the

walls is approximately constant, but near the walls (0 = 0 and 4.71) the value depends

on 0. This, as noted before, is due to the stress boundary layers near the walls. The results

shown in Figure 6.25 are relatively close to the one obtained by Hinch, i.e. 11 --z1-2/3. The

reason for a small difference is the numerical discretization error. The value of the trA

away from the walls is approximately constant.

6.6 Flow in a Four-to-one Contraction

In this subsection, the numerical results obtained away from the corner of the

four-to-one contraction are described. As noted before, the numerically obtained

solutions for the radial mesh converge both near and away from the corner for all values

of De investigated. Figures 6.26, 6.27, 6.28, 6.29, 6.30 and 6.31 show numerical results

for the overall fluid flow in the four-to-one contraction. In Figure 6.26, the streamlines

are plotted. Notice that the streamlines converge as the area is reduced by a factor of four.

Figure 6.27 shows the pressure distribution for the entire domain. As expected, the

pressure decreases evenly along the fluid flow direction and the rate of pressure drop in

the narrow channel is larger. Isobars away from the corner are perpendicular to the

channel walls. Also note that there is a large pressure drop in the area near the corner just

before the contraction.

Figures 6.28, 6.29, 6.30 and 6.31 show isovalues of log(trA) for different values

of De. Since the values of trA are larger near the corner region and much smaller away

from the corner, the log scale allows us to visualize trA distribution in the entire domain.
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From these figures, it can be noticed that trA distribution depends with De. For small

De's, trA away from the corner is approximately two which means that the fluid is in a

relaxed state. For higher values of De, on the other hand, trA near and also away from the

corner are larger than two. But, as expected, trA near to the corner is larger than away

from the corner. These figures also show that trA downstream of the corner is larger than

on the upstream side of the corner. This is due to the hyperbolic nature of the constitutive

equations. The highly stretched polymeric material elements near the corner are swept

downstream of the corner and take some time to relax back. As the material elements

moving away from the corner are subjected to smaller but finite strain rates they take

longer than the fluid relaxation time to relax. This leads to the formation of a region

downstream of the corner where trA is relatively large.



Figure 6.26 Streamlines in a four-to-one contraction device.



Figure 6.27 Isobars in a four-to-one contraction device.
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Figure 6.28 Isovalues of log(trA) in the four-to-one contraction device are shown
for De = 0.02.



Figure 6.29 Isovalues of log(trA) in the four-to-one contraction device are shown
for De = 0.2.



Figure 6.30 Isovalues of log(trA) in the four-to-one contraction device are shown
for De = 0.5.



Figure 6.31 Isovalues of log(trA) in the four-to-one contraction device are shown
for De = 0.02.
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6.7 Conclusions

The problem of a viscoelastic flow in a four-to-one contraction was studied

numerically using a radial discretization near the corner. The numerical results show that

by using a radial mesh, converged solutions both near and away from the corner can be

obtained and that there is a region near the corner in which the configuration tensor and

velocity gradient field for the viscoelastic fluid are of generalized power law form. The

exponents of the power laws are computed by plotting log(trA) and log|D| I as a function

of log(r) and computing the slope in the linear region of the plot. The computed exponent

values agree with the known analytical results. These exponents have been obtained for

different values of De between zero and one. The exponent of the power law depends on

the angle 0. For our simulations, the power law behavior exists only for r between 1 x10 -2

and 0.2. For r < 1.0E-3, the solution reaches a constant value and for r > 0.2 the solution

reaches value appropriate for the global flow.

The numerical results for the entire flow were also calculated along with the

corner region. The pressure drop decreases evenly as the fluid passes through the domain.

The pressure drop per unit length in the downstream narrower channel is smaller than in

the upstream channel. The pressure drop is also large in the transition region where the

flow area is suddenly decreased. Isovalues of trA show that the polymeric material

elements downstream of the corner are relatively more stretched which is a consequence

of the hyperbolic nature of the constitutive equation.



CHAPTER 7

NUMERICAL STUDIES OF BOUNDARY LAYER CONTROL

7.1 Introduction

The most common use of the airfoils is in airplanes for generating the lift force, which

allows them to remain suspended in the air. The other applications include propellers for

airplanes and ships.

The performance of an airfoil depends on its shape, the angle of attack, and air

speed. The airfoil stalls when the angle of attack is too large as the boundary layer on the

upper surface separates. The focus of this work is to numerically study the separation

process and to control the separation by injecting and sucking fluid on the upper surface.

In recent years, numerical methods have matured to an extent that it is possible to

numerically study flow around the airfoils and wings. Advances in computer technology

allow us to these numerical solutions in complicated domains in less computational time

than before. These numerical studies can complement a large number of experimental

studies that have been done to understand the boundary layer separation process and to

use this understanding to prevent the separation of the boundary layer at large Reynolds

numbers and at large angles of attacks.

The force acting on an airfoil can be decomposed into a lift force, which acts

normal to the fluid velocity, and a drag force, which acts in the same direction as the fluid

velocity. In most applications the drag is undesirable and the lift force should be as large

as possible. The lift and drag forces are used to quantify the performance of an airfoil

under given flow conditions.
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In the past, both analytical and numerical methods have been used to study the

airfoil problem. Analytically, due to the high Reynolds number involved and the

complexity of flow domain, most studies assume that the fluid is inviscid. These inviscid

solutions provide useful information about the lift. But the inviscid flows cannot be used

to obtain the drag acting on the airfoil or the angle of attack at which the flow separates.

As noted before, when the boundary layer separates over the top surface of the

airfoil there is a large increase in drag and the lift essentially reduces to zero. The

boundary layer separates because the fluid momentum inside the boundary layer goes to

zero. In simulations, the separation of the boundary layer can be noticed for an angle of

attack of 15 ° . The separation of the boundary layer becomes more noticeable when for a

fixed value of angle of attack the Reynolds number (Re) is increased.

Also when the boundary layer separates, the fluid flow creates vortex shedding

which consequently makes the airfoil vibrate. These vibrations can be avoided or reduced

by preventing the separation of the boundary layer. The efforts of controlling the

boundary layer have started many years ago. It is presumed that these efforts were

triggered by the tests made by Prandtl, in the early 1900s. The first report published in the

U.S. is by E. G. Reid and M. J. Bamber on the National Advisory Committee for

Aeronautics (N.A.C.A.) was in 1928. They reported the results of experiments using both

suction and blowing type boundary layer control on the U.S.A.-27 airfoil. These tests

showed clearly the effectiveness of boundary layer control for improving maximum lift.

There are many airfoils designed to meet requirements for different applications.

NACA developed a nomenclature for classifying these airfoils and tested their
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performance by doing extensive wind tunnel testing. In this study, the NACA 0012-64

airfoil--which is a high performance airfoil--is used, see Figure 7.1.

Figure 7.2 shows the development of boundary layer on a surface. The fluid is

flowing tangentially to the surface from left to right. The fluid velocity on the flat surface

is zero and reaches the free stream value at a small distance 8 away from the surface,

where 8 is called the boundary layer thickness. The fluid particles near the surface are

retarded by friction. If the pressure gradient increases downstream, there is an additional

retarding effect due to this cause. The fluid near to the surface may have insufficient

momentum (which is an extension of Newton's law of motion), for it to continue its

motion and so the fluid will be brought to rest at point P, see Figure 7.2.

Further downstream from this point, the adverse gradient will push the fluid near

to the surface upstream and there will be a reverse flow. Therefore, the point P at

separation divides the region near to the surface into two regions: the first where the fluid

is moving upstream and the second where the velocity is downstream.

An example in which the separation of the boundary layer needs to be prevented

is in the case of a quick maneuver required from a fighter aircraft, where the angle of

attack is suddenly increased in order to change its velocity or direction. This rapid change

in the angle of attack will lead towards the separation of the boundary layer and stall may

occur. When the flow separates, the drag force increases and the lift force decreases. The

airfoil eventually stalls when either the angle of attack or Re is increased.

The boundary layer may be laminar and turbulent. Turbulent boundary layer there

is enhanced mixing which results in momentum continually brought to the surface. It also

causes the retarded fluid near the surface to be carried to the fluid outside of the boundary
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layer, thereby gaining momentum. As a result the fluid in a turbulent boundary layer is

not slowed down so much as in a laminar layer, and can travel further against an adverse

pressure gradient before being brought to rest. Therefore the separation point of a

turbulent boundary layer is further downstream than that of a laminar layer.

The method used for preventing the separation of the boundary layer in this study

is by injecting and sucking fluid on the top surface of the airfoil. This injection and

suction of fluid affects the fluid flow close to the top surface of the airfoil. Injection of

fluid at a large velocity provides additional momentum to the boundary layer which can

delay the separation of the boundary layer. Suction of the slowly moving fluid, on the

other hand, allows the fluid outside the boundary layer to enter inside the boundary layer

and thus there is a net increase in the boundary layer momentum.



Figure 7.1. Finite element mesh on the airfoil, angle of attack 18°.



Figure 7.2 Two-dimensional separation of the boundary layer.
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Figure 7.3 Injection and suction velocities in the airfoil, angle of attack 18°.
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7.2 Two Dimensional Flow with Injection and Suction Over the Airfoil

In order to prevent the separation of the boundary layer in this two-dimensional

study, the fluid was tangentially injected with velocity v1 into the main fluid flow near

the leading edge of the airfoil. The injection point is selected close to the point where the

separation is likely to occur. The optimal position of course depends on Re and the angle

of attack.

In order to satisfy the mass conservation in the flow domain, the fluid is sucked

with velocity v2, close to the trailing edge as shown in Figure 7.3. By assuming that the

mass flow rates of injection and suction are the same, it is ensured that there is no

source/sink of fluid inside of the airfoil. The orifices from where the fluid is sucked or

injected are approximately twenty times smaller than the chord.

Different angles of attack were used in the range from 0 ° to 40° . The separation

point depends on the angle of attack used, and also on the Reynolds number Re. In this

investigation the angle of attack was fixed to be 18 ° and only the Reynolds number was

varied.

The injection velocity v1, which is the velocity near the leading edge, makes an

angle of 4° to the upper surface, and thus it is approximately tangential to the top surface

of the airfoil. The magnitude of v1 is 2.9 or 5.8.

The FEM (finite element method) is used to mesh the rectangular shaped domain

around the airfoil (see Figure 7.1). The height of domain used in simulations is 1.6 and

the length is 3.2. The incoming velocity as well the velocity on the upper and lower

domain surfaces is assumed to be one. The traction free boundary condition is applied at

the domain exit.
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7.3 Results

As already mentioned, the goal of this study is to delay the point of separation on the

boundary layer or to avoid separation altogether. The Reynolds number is assumed to be

100, 200, 500 or 1000. The velocity v1 used for fluid injection and suction over the

airfoil is varied between 2.9 and 8.7.

Simulations show that when there is no suction or injection, for the angle of attack

of 10° the vortex shedding starts for Re = 500. The size of the vortex bubble in this case

is relatively small and it is located close to the trailing edge. For higher values of the

angle of attack, the size of vortex bubble grows and the separation point moves towards

the leading edge. When the separation occurs at a point close to the leading edge the

airfoil stalls in the sense that the lift force acting on the airfoil falls dramatically. This can

be seen clearly for an angle of attack of 18°, see Figure 7.4. Numerically simulations also

show that for a fixed angle of attack, the vortex bubble size increases with increasing Re

which can be seen in Figures 7.4 and 7.5

Figures 7.6, 7.7 and 7.8 show the effect of varying the injection velocity and

suction velocity on the size of the wake bubble. For the three cases shown in these

figures, Re is fixed at 100, but the suction velocity is varied. The suction velocity is 2.9,

5.8 or 8.7. From these figures, it can be inferred that when v1 is increased the position of

the separation point moves downstream. This is an important result because it implies

that for a given Re and angle of attack, it may be possible to avoid separation by

increasing injection or suction velocities. Also, from these figures, it can be seen that the

position of the orifice where the suction takes place is also important. The separation is

also delayed by moving the suction point closer to the airfoil trailing edge.
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Figure 7.4 Streamlines for flow past an airfoil. The angle of attack is 18 ° and
Re=100. The boundary layer separation point is near the leading edge. Also notice
its relatively large sized wake bubble on the airfoil upper surface.



Figure 7.5 Streamlines for flow past an airfoil. The angle of attack is 18 ° and
Re=500. The boundary layer separation point is near the leading edge. Also notice
its relatively large sized wake bubble on the airfoil upper surface.
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Figure 7.6 Streamlines for fluid flow past an airfoil with injection and suction. The
angle of attack 18°, Re=100, v1=2.9. Notice that the wake bubble size is much
smaller than for the case without suction and injection shown in Figure 7.4.
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Figure 7.7 Streamlines for fluid flow past an airfoil with injection and suction. The
angle of attack 18°, Re=100, v1=5.8. Notice that the wake bubble size is much
smaller than for the case without suction and injection shown in Figure 7.4.
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Figure/.5 Streamlinestor num now past an airfoil with injection and suction. The
angle of attack 18°, Re=100, v1=8.7. Notice that the wake bubble size is much
smaller than for the case without suction and injection shown in Figure 7.4.
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Figure 7.9 Streamlines for fluid flow past an airfoil with injection and suction. The
angle of attack 18°, Re=500, v1=2.9. Notice that the wake bubble size is much
smaller than for the case without suction and injection shown in Figure 7.5.
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Figure 7.10 Streamlines for fluid flow past an airfoil with injection and suction. The
angle of attack 18 °, Re=500, v1=5.8. Notice that the wake bubble size is much
smaller than for the case without suction and injection shown in Figure 7.5.
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Next, the variation of the lift and drag coefficients with the angle of attack is

described. First, the drag and lift acting on airfoil are defined as:

where a is the stress tensor, n is the outer normal to the surface, ds is an infinitesimal

surface element, the unit vector i points in the flow direction and j is perpendicular to the

flow direction. The drag and lift coefficients are defined as

In this study for Re = 100, 200, or 500 the variation of the lift and drag

coefficients with the injection/suction speed is also studied. In Figures 7.11, 7.12 and

7.13, the lift and drag coefficients for the case without suction/injection are shown. In

Figures 7.14, 7.15, 7.16, 7.17, 7.18 and 7.19, the injection speeds are 2.9 and 5.8. The

injection is at the leading edge and the suction at the trailing edge as shown in Figure 7.3.

Figures 7.11 to 7.19 show the effect of varying the angle of attack on the lift and

drag coefficients. As expected, the lift increases with the angle of attack. The lift

coefficient reaches its maximum value at approximately 40° at which the airfoil stalls.

The drag coefficient also increases with the angle of attack, and the rate of increase is

especially large near the stall angle. The drag coefficient also decreases when the Re is

increased, which indicates that the viscous contribution to the drag is not negligible.



125

Figure 7.11 The Drag and lift coefficients for Re = 100, are shown as a function
of angle of attack. There is no injection/suction in this case.
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Figure 7.12 The Drag and lift coefficients for Re = 200, are shown as a function
of angle of attack. There is no injection/suction in this case.



Figure 7.13 The Drag and lift coefficients for Re = 500, are shown as a function
of angle of attack. There is no injection/suction in this case.
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Figure 7.14 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 100 and the injection velocity v1 = 2.9.
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Figure 7.15 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 100 and the injection velocity v1 = 5.8.
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Figure 7.16 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 200 and the injection velocity v1 = 2.9.
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Figure 7.17 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 200 and the injection velocity v1 = 5.8.
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Figure 7.18 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 500 and the injection velocity v1 = 2.9.
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Figure 7.19 The Drag and lift coefficients are shown as a function of angle of
attack. Re = 500 and the injection velocity v1 = 5.8.
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Figures 7.20, 7.21 and 7.22 show that the viscous contribution to the drag

decreases with increasing angle of attack and the viscous contribution to lift increases

with increasing angle of attack. In order to understand role of the rate of suction and

injection, the changes in the pressure and viscous contribution to the lift and drag were

studied when the suction velocity is changed. Changes in both the lift and drag are small

but significant. The pressure contribution to drag on the other hand increases slowly with

the angle of attack until certain value of angle of attack for which the pressure drag starts

increasing rapidly. The pressure contribution to lift increases almost linearly with the

angle of attack.

Figures 7.23, 7.25 and 7.27 show the drag coefficients for different values of Re,

and the Figures 7.24, 7.26 and 7.28 show the lift coefficients. The drag coefficient

increases significantly when the angle of attack is relatively large. For smaller angle of

attack the drag coefficient increases slowly until the angle of attack reaches a value for

which the drag coefficient starts increasing rapidly. The drag coefficient also slightly

decreases when the Re increases. The lift coefficient on the other hand varies almost

linearly with increasing angle of attack for all the cases. According to the figures, there is

a small increase in the lift coefficient value when injection and suction occurs on the

airfoil.



Figure 7.20 Pressure and viscous forces vs. the angle of attack for an airfoil with
suction and injection over the surface v1=2.9, and Re = 100.
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Figure 7.21 Pressure and viscous forces vs. the angle of attack for an airfoil with
suction and injection over the surface v1=2.9, and Re = 200.
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Figure 7.22 Pressure and viscous forces vs. the angle of attack for an airfoil with
suction and injection over the surface v1=2.9, and Re = 500.
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Figure 7.23 The drag coefficient on the airfoil for both cases with and without
injection/suction, Re =100.
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Figure 7.24 The lift coefficient on the airfoil for both cases with and without
injection/suction, Re =100.
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Figure 7.25 The drag coefficient on the airfoil for both cases with and without
injection/suction, Re =200.
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Figure 7.26 The lift coefficient on the airfoil for both cases with and without
injection/suction, Re =200.
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Figure 7.27 The drag coefficient on the airfoil for both cases with and without
injection/suction, Re =500.
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Figure 7.28 The lift coefficient on the airfoil for both cases with and without
injection/suction, Re =500.
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7.4 Summary

The numerical results show that the boundary layer separation on the upper surface of the

airfoil which happens at large values of angle of attack and Re can be delayed by

injection and sucking fluid on the upper surface. The injection point is close to the

leading edge and the suction point is close to the trailing edge.

The suction/injection velocity required for avoiding boundary layer separation

increases with increasing angle of attack and also with an increase in Re. The pressure

drag decreases when the boundary layer separation is avoided but the viscous drag

increases. The pressure contribution to lift also increases when the boundary layer

separation is avoided.
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