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ABSTRACT

COMPARISON OF OPTICAL DENSITY, TOTAL CELL PROTEIN, AND
NUMBER OF VIABLE CELLS (VIA FLUORESCENT STAINING) AS

MEASURES OF MICROBIAL GROWTH KINETICS IN SUSPENDED AND
BIOFILM CULTURES DURING BIODEGRADATION OF NAPHTHALENE

by
Jeong Seop Shim

Most studies on bacterial growth kinetics have been dependent on theoretical modeling

with general biomass measurements using either dry weight or optical density (OD),

without distinguishing live from dead bacteria or debris. As a result, there remains

considerable uncertainty in reliably predicting rates of biodegradation for design of

treatment processes for environmental pollutants.

This research focused on measurement of bacterial growth rates and activities in

suspended cultures and biofilms using Pseudomonas putida (ATCC 17484) for

biodegradation of naphthalene. As expected, the rates of biodegradation differed between

suspended and immobilized cultures. A comparison was made of the impact of three

biomass measures: optical density, total cell protein, and living cell number on the

calculated rate of naphthalene disappearance. Living cell number was determined by a

fluorescent staining technique and use of epifluorescence microscopy. More than 90% of

total cells remained viable over the course of each experiment (35 to 54 hours).

All three techniques experienced difficulties reconciling calculated values of

biomass growth and naphthalene disappearance. This was considered to be a consequence

of the production of intermediate products detected in the chromatograms, and possibly

adsorption and subsequent release of naphthalene, which resulted in a lag time between

the disappearance of naphthalene and the appearance of biomass. Inclusion of a lag time in



the integrated Monod expression improved the agreement between experimental and

calculated values of biomass and naphthalene concentrations. However, further

improvements will require more detailed kinetics of the actual biochemical pathway.
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CHAPTER 1

INTRODUCTION

1.1 Viable Bacteria in Suspended and Biofilm Cultures

Most researchers have focused on estimating cell concentration in suspended culture

using general parameters such as OD, dry weight of biomass, and cell protein

concentration [Best (1997), Karel and Robertson (1989), Gőtz and Reuss (1997),

Kennedy et al. (1992)]. However, cell quantitation by these methods measures not only

viable cells, but also dead cells and debris. Pour plate techniques with nutrient agar have

also been used to count the number of viable cells. However, researches have shown that

the plate count (PC) method only reveals those bacteria that are capable of forming

colonies on agar plates [Roszak and Colwell (1987), Stewart et al. (1994), Yu and

McFeters (1994), Jacques and Morris (1995)], and this is often only a small fraction of

the total bacteria present in the system.

Microbial cells attached to a surface produce extracellular polymers (called

slime), which provide a supporting structure for the biofilm [Sandford et al. (1995)].

Biofilms are composed of living cells, dead cells, and cell debris in a polysaccharide

matrix. Also, a thick biofilm may contain both aerobic and anaerobic environments due

to oxygen diffusion limitations within the biofilm. [Characklis and Marshall (1990),

Bishop (1996)]. Bio-oxidation in a biofilm is directly related to an active thickness

corresponding to the depth of substrate penetration into the biofilm [Trulear and

Characklis (1982), Liu and Capdeville (1996), Swope and Flickinger (1996)]. Active

cells in aerobic systems usually grow in a thin film near the source of substrate and

oxygen.
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1.2 Use of Fluorescent Staining Techniques

Fluorescent probes have been used to assess bacterial viability and function as well as

antibiotic susceptibility [Comas and Vives-Rego (1998), Jacobsen et al. (1997),

Liobet-Brosa et al. (1998), Lebaron et al, (1998)]. Molecular Probes Inc. has developed

LIVE/DEAD® BacLight™  Bacterial Viability Kit (LDBBVK) to distinguish live bacteria

(with intact plasma membranes) from dead bacteria with compromised membranes

[Haugland (1996)]. The LDBBVK provides a novel two-color fluorescence assay of

bacterial viability by staining with bacterial nucleic acid, using a mixture of SYTO 9 for

green fluorescence and propidium iodide (PI) for red fluorescence. LDBBVK has also

been used to observe viable and non-viable cells using epifluorescence microscopy

[Terzieva et al. (1996), Taghi-Kilani et al. (1996), Braux et al. (1997), Duffy and

Sheridan (1998), Strathmann and Flemming (2000)), confocal laser scanning microscopy

[Neu and Lawrence (1997)], or flow cytometry [Virta et al. (1998)].

The SYTO 9, when used alone, labels all bacteria in a population which have

either intact membranes or damaged membranes. In the presence of both dyes, PI (which

is a membrane-impermeable DNA stain) penetrates only those cells with damaged

membranes, competing with the SYTO 9 for nucleic acid binding sites. The

excitation/emission maxima of these dyes are about 480 nm to 500 nm for the SYTO 9

and 490 nm to 635 nm for the PI. Therefore, in the presence of both dyes, bright green

fluorescence indicates live bacteria with intact membranes, while bright red fluorescence

indicates dead bacteria with damaged membranes.
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1.3 Determination of Viability in Surface Biofilms

By far, most information about biofilms has been extrapolated from those studies with

bacterial suspensions. Several researchers [Massol-deyά et al. (1995), Sanford et al.,

(1996), Bauer-Kreisel et al. (1996)] typically extracted cells from attached biofilms into

suspension (using phosphate-buffered saline and ultrasonication) and subsequently

stained and counted them. As a result, there is a need for in-situ measurement of biofilm

characteristics, and the properties of the surface microenvironments by direct

microscopic observation.

To directly assess viability of bacteria in biofilms without disturbing the integrity

of the interfacial community, a non-destructive in-situ direct viable count (DVC) method

was developed by Yu et al. (1993). Klebsiella pneumoniae Kp 1 was applied for the

biofilm cultures on stainless steel coupons in a stirred batch reactor under aerobic

conditions. The biofilm cultures were limited to monolayers in order to be countable by

epifluorescence microscopy. They fixed immobilized cells with formaldehyde followed

by immersion in 0.02% acridine orange solution for 2 minutes. Although the in-situ DVC

method has some constraints imposed by optical microscopy, it can still provide rapid

and accurate determination of viable cells. They reported that the in situ DVC method

showed higher viable cell counts than plate counts and conventional-DVC methods

without the bias caused by aggregated bacteria.

A great deal of research on the structure of biofilms has been conducted at the

Center for Biofilm Engineering at Montana State University (Characklis, de Beer,

Stoodley, Lewandowski, etc.). Their research has generally involved the use of
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microprobes to determine e.g. oxygen and pH profiles in biofilms. However, individual

cell viability has not been addressed.



CHAPTER 2

LITERATURE REVIEW

2.1 Enumeration of Viable Cells by Fluorescence Microscopy

5-cyano-2,3-ditolyl tetrazolium chloride (CTC) has been used as an indicator of electron

transport activity for direct microscopic visualization of actively respiring cells in

drinking water or other aquatic environmental samples under aerobic conditions

[Rodriguez et al. (1992), Schaule et al. (1993), Winding et al. (1994), Yu et al. (1995),

An and Friedman (1997)]. As a redox fluorescent probe, it is readily reduced via the

electron transport chain of an active bacterial population from a colorless, nonfluorescent,

and oxidized form to fluorescent and insoluble CTC-formazan (CTF) crystals

accumulating intracelluarly. To allow concurrent determination of total cells (i.e. viable

and nonviable) and respiring cells (i.e. cells forming CTF) by an epifluorescence

microscope, the CTC-treated samples (Pseudomonas putida 54g) were counterstained

with the DNA-binding fluorochrome 4',6-diamidino-2-phenylindole (DAPI). Using the

ratio of CTC and DAPI counts in conjunction with biofilm cryogenic sectioning

techniques, Villaverade et al. (1997) and Villaverade and Fernández-Polanco (1999) were

able to evaluate fractions of total respiring cells in a biofilm, which they compared to

respiration rates at various distances from the surface using oxygen microsensors. The

biofilm was cultured in an aerobic system with a flat-plate vapor phase biological reactor.

Another indicator of bacterial respiration, a redox dye 2-(p-iodophenyl)-3-(p-

nitrophenyl)-5-phenyltetrazolium chloride (INT), has been applied for direct observation

of active cells by the reduction of NT to dark-red intracellular INT-formazan (INF)

crystals. Zimmermann et al. (1978) and Tarbor and Neihof (1982) tested bacterial

5
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samples taken from natural aquatic environments. Okabe et al. (1996) investigated spatial

distributions of nitrifiers and heterotrophs in mixed-population biofilms under aerobic

conditions using a partially submerged rotating biological contactor (RBC). Smith and

McFeters (1997) tested both tetrazolium salts of INT and CTC under aerobic and

anaerobic conditions with Escherichia coli K-12. They reported that both INT and CTC

were significantly reduced under most anaerobic conditions, particularly glucose

fermentation. However, CTF makes it relatively easier (compared to INT) to directly

visualize respiring cells in biofilms on an opaque background (e.g. wood, metal, and

plastic, etc.) by epifluorescence microscopy [Rodriguez et al. (1992), Smith, and

McFeters (1997)].

For counting viable cells in thin biofilms (monolayers) on stainless steel coupons

with Klebsiella pneumoniae, Yu and McFeters (1994) compared four different

enumerating methods. These methods were: (1) CTC reduction technique, (2) use of

rhodamine 123 (Rh-123), (3) in-situ direct viable count (DVC), and (4) a modified drop

plate count. Rh-123 is a proton motive force-driven dye, which is only taken up by viable

cells. The DVC method is related to the counting of elongated cells stained with acridine

orange (AO) as viable cells, using nalidixic acid and nutrients to halt cell division

[Kogure et al. (1979), Peele and Colwell (1981), Liebert and Barkay (1988), Singh et al.

(1990)]. Yu and McFeters (1994) reported that the percent cell viability varied from 95%

obtained by the CTC reduction method, to 43% obtained by the PC method.

For the direct enumeration of injured Escherichia coli cells, Braux et al. (1997)

also tested four different methods such as the DVC for testing biosynthesis capacity, the

reduction assay of the CTC or sodium 3'-[1-[(phenylamino)-carbonyl]-3,4-tetrazolium]-
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bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) for respiratory activity, and

the LDBBVK assay with SYTO 9 and PI for membrane integrity. They concluded that

the use of dual staining with LDBBVK appears to be the most sensitive test among those

assays to assess E. coli viability.

Using two strains of Escherichia coli, Boulos et al. (1999) reported that the

LDBBVK assay resulted in the highest viable (green) and total (green and red) counts

among several staining techniques (CTC, CTC with DAPI counterstaining, and a

modified CTC method with SYTO 9 counterstaining). They found that storage after

treatment with glutaraldehyde decreased total and viable counts of some coliform strains

when using LDBBVK assay. Therefore, they suggested that immediate processing of

samples is preferable. In this research with LDBBVK assay, formalin was not used to

preserve bacterial samples because all live cells treated with formaldehyde (2% in the

final concentration) showed red fluorescence, indicating that the use of preservative

chemicals damaged the integrity of bacterial membranes.

2.2 Biofilm Research

As general parameters for biofilm characterization, many researchers [Stewart et al.

(1993), Lauvvik and Bakke (1994), Tanyolaç and Beyenal(1996, 1997), Pavasant et al.

(1996), Peyton (1996), Freitas dos Santos and. Livingston (1995a, 1995b)] have used

biofilm thickness and total dry weight. However, these parameters are not sufficient to

describe biofilm characterization and biomass activity. Lazarova et al. (1994) proposed

an integrated approach for biofilm analysis: 1) direct binocular microscopic observation

and scanning electron microscopy for external biofilm structure and thickness; 2)
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chemical oxygen demand, total organic carbon, and dry weight for total biofilm amount;

3) exopolysaccharides, total protein, total cell count, and viable heterotrophic count for

specific biofilm components; 4) electron transport system activity, active cell count, and

specific activity for estimating fixed biomass activity; and 5) nucleic acid probes for

study of population dynamics (in particular of the autotroph/heterotroph competition in

biofilms).

For the surface biofilm studies, a few researchers have performed experiments

using direct microscopic observations of microorganisms under in-situ aerobic conditions

using small continuous-flow slide culture chambers [Caldwell and Lawrence (1988),

Lawrence et al. (1989), Korber et al. (1990), Lawrence et al. (1991), Caldwell et al.

(1992), Lawrence et al. (1994)]. They have developed in-situ techniques for observing

cells attached on glass surfaces, and have performed computer image analyses of the

microscopic views. They studied bacterial growth kinetics by looking at the cell doubling

time, and by counting cells on the upper and lower surfaces. However, they did not

distinguish between live and dead cells.

Microelectrodes for oxygen (02), ammonium (NH4 +), nitrite (NO2 -), nitrate

(NO3), or pH have been used to study distribution of bacterial activity in biofilms by

measuring the microprofiles of the constituents with biofilm depth. Thus, active or

inactive zones, in terms of bacterial activity, can be distinguished with biofilm depth. De

Beer et al. (1993) used the microelectrodes to study nitrifying bacterial aggregates grown

in an aerobic fluidized-bed reactor. Lewandowski et al. (1993) measured oxygen

concentration profiles across a biofilm grown in an aerobic continuous flow reactor.
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Schramm et al. (1997) measured microprofiles of 02 consumption and NO3-/NO2 -

production in a trickling filter biofilm with nitrifying bacteria.

Neu and Lawrence (1997) have studied the development of biofilm structures in

raw river water, using removable polycarbonate slides for biofilm sampling on a rotating

annular bioreactor, and confocal laser scanning microscopy (CLSM) with the

LIVE/DEAD fluorescent probe (Molecular Probes, Inc.). The dual channel images

obtained by the CLSM were able to show the distribution of live (green) and dead (red)

cells in sagittal sections (or xz axis) of biofilms. The vertical distribution of cells (live

and dead) showed the same general trend of increasing with distance away from the

attachment surface toward the nutrient source. They reported that in mature biofilms, red

fluorescence was obscured by the autofluorescence of organic matter incorporated into

the biofilm, but both living and dead cells could be resolved within individual

microcolonies at high magnification. They indicated that a high proportion of the biofilm

showed relatively non-viable state (red fluorescence). This was consistent with the

findings of this dissertation which observed a problem with direct staining of biofilms, as

mentioned in Section 4.5.2.

Using CLSM, de Beer et al. (1994) and Stoodely et al. (1994) developed a

noninvasive technique for microscale measurement of flow velocity profiles near and

within biofilms cultured in an aerobic reactor. They used fluorescein microinjection

technique to determine the presence of flow in cell clusters and voids. They found that

liquid can flow through the voids and is stagnant in the cell clusters. De Beer et al.

concluded that in the voids mass transport might take place by both convection and

diffusion, whereas in the cell clusters only diffusion can occur.
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Characklis and Marshall (1990) described several ways in which bacteria attach to

a range of surfaces. Some bacteria respond gradually to the presence of a surface,

attaching more firmly with time. Differences in attachment depend on the type of

bacteria, type of surface (and its conditioning), and nutrient conditions.

By using rectangular glass tubing to simulate flow in industrial pipes, Stoodley et

al. (1999) studied biofilm structures under laminar and turbulent flows. Biofilms grown

under laminar flow were patchy and consisted of cell clusters separated by interstitial

voids. Biofilms grown under turbulent flow formed filaments, which had a more complex

structure and were formed by the colonization of filamentous sheathed bacteria with

microcolonies of non-filamentous bacteria.

By cryosectioning biofilms covered with hydrophilic polymers as an embedding

agent that maintains a degree of plasticity when frozen, Murga et al. (1995) reported that

biofilms with two species of bacteria (Pseudomonas aeruginosa and Klebsiella

pneumoniane) grown in an aerobic system were structurally distinct from

monopopulations, due to differences in such characteristics as capsule structure and

motility.

2.3 Biodegradation of Polycylic Aromatic Hydrocarbons

Guerin and Boyd (1992, 1997) reported that Pseudomonas putida (ATCC 17484) had

superior characteristics in both the rate and extent of naphthalene mineralization.

Many researchers [Stucki and Alexander (1987), Rockne and Strand (1998),

Erickson et al. (1993)] have focused on biodegradation of polycyclic aromatic

hydrocarbons (PAHs), which are principal components of coal tar. Naphthalene is the
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most abundant and simplest PAH compound in coal tar. Rockne and Strand reported that

bicylics and PAHs could be degraded in anaerobic enrichments such as nitrate- and

sulfate-reducing conditions. Erickson et al. investigated loss of PAHs at a manufactured

gas plant (MGP) site. Ghoshal and Luthy (1996, 1998) and Ghoshal et al. (1996)

presented kinetic data for naphthalene degradation, including the following Monod

parameters for using a mixed culture isolated from PAH contaminated soil and grown on

naphthalene over a long period of time in aerobic slurry systems: Y (yield coefficient) =

0.25±0.08 (mg dry biomass per mg naphthalene degraded); 1.6 (maximum specific

growth rate) = 0.067 II I and Ks (half saturation constant) = 3.4 mg/L.

Wilson and Madsen (1996) detected a characteristic metabolite (1,2-dihydorxy-

1,2-dihydronaphthalene) during aerobic degradation of naphthalene at a coal tar-

contaminated field site.

Biodegradation of PAHs may be limited by their low solubility, coupled with

strong binding and sorption onto soils. Liu et al. (1995) evaluated the effects of two

nonionic surfactants on bacterial mineralization of naphthalene: an alkylethoxylate (Brij

30) and an alkylphenolethoxylate (Triton X-100). Both enhanced bioavailability without

inhibiting the rate of biodegradation by a mixed aerobic culture isolated from PAH-

contaminated soils.

Marx and Aitken (2000) suggested that bacterial chemotaxis to a pollutant can

overcome the mass transfer limitations that may govern biodegradation rates in

contaminated environments. They showed that a motile wild strain of Pseudomonas

putida exhibited superior naphthalene degradation when compared to a nonmotile mutant

or a mutant deficient in naphthalene chemotaxis.



CHAPTER 3

OBJECTIVES

The objectives of this research were to study the activities and microbial growth rates of

viable bacteria in suspended culture and immobilized biofilm by comparing optical

density (OD), cell number, and total cell protein (TCP) as measurement tools. In order to

distinguish living cells from dead cells, a fluorescent staining technique was developed,

with Pseudomonas putida (ATCC 17484) and naphthalene as model system.

The specific objectives were to:

• develop a fluorescent staining technique to distinguish live from dead cells

• compare biomass measures - dry biomass weight, OD, total cell number (TCN),

living cell number (LCN), and total cell protein — for the model system

• examine both suspended culture and fixed biofilm

• relate measures of biomass to naphthalene degradation rate

12



CHAPTER 4

MATERIALS AND EXPERIMENTAL METHODS

4.1 Materials

4.1.1 Preparation of Growth Medium

Naphthalene was used as sole carbon source. About 2 to 3 g of naphthalene crystals were

added to autoclaved deionized (DI) water in 4-L glass containers. The solution with

crystal naphthalene was dissolved by a magnetic stirrer for about one week to make it

saturated. The saturated solution (approximately 30 ppm) was finally sterilized by

passing through an autoclaved membrane filter with 0.22 pm pore size. The filter-

sterilized naphthalene solution was stored in 2-L glass containers at room temperature

and sealed completely. For experiments with suspended cultures, this stock solution was

diluted with autoclaved DI water and inorganic medium to reach the desired

concentration.

The inorganic growth medium is shown in Table 4.1. Medium A and B were

prepared separately to avoid formation of white precipitates during autoclaving.

Potassium phosphate (K2HPO4) was used to maintain culture solution at pH 7. Each

medium was autoclaved at 121 °C and 16 psi for 20 minutes and stored in a refrigerator.

Nutrient broth was prepared by dissolving 4 g of "BBL Nutrient Broth" with 1-L

of DI water, which was then autoclaved. This solution was used for reviving frozen

cultures initially.

13
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Table 4.1 Composition of inorganic medium for culture of Pseudomonas putida.

Chemicals Final concentration
(g/L) (mmol/L)

Medium
A Potassium Phosphate, Monobasic (KH2PO4) 0.2 1.5

Potassium Phosphate, Dibasic (K2HPO4) 0.26 1.5
Medium

B Ammonium Chloride (NH4Cl) 0.3 4.6

Sodium Chloride (NaCl) 1.0 17.1
Magnesium Chloride, Heptahydrate (MgCl 2

6H20) 0.4 2.0

Calcium Chloride, Dihydrate (CaCl2 2H20) 0.2 1.0
Potassium Chloride (KCl) 0.5 6.7
Sodium Sulfate (Na2SO4) 0.2 1.4

Trace (mg/L) (mmol/L)
elements Ferrous Chloride, Tetrahydrate (FeCl2 4H20) 1,500 7.5

Zinc Chloride (ZnCl2) 70 0.5
Manganous Chloride, Tetrahydrate (MnCl2
4H20) 100 0.5

Boric Acid (H3B03) 6 0.1
Cobalt Chloride, Heptahydrate (CoCl2 6H20) 190 0.8
Cuprous Chloride, Dihydrate (CuCl2 2H20) 2 0.02
Nickel Chloride, Heptahydrate (NiCl 2 6H20) 24 0.1
Sodium Molybdate, Dihydrate (Na2MoO4

2H20) 36 0.15

Hydrochloric Acid (HCI, 37%) 5.795 mL 70

4.1.2 Fluorescent Probes for Staining Bacteria

LIVE/DEAD® BacLight™ Bacterial Viability Kit (LDBBVK, L-7012) was used to

provide the fluorescent probes for fluorescence microscopy (Molecular Probes, Inc.,

Eugene, OR). This kit contains 3.34 mM SYTO 9 solution and 20 mM propidium iodide

(PI) solution (each dissolved in anhydrous dimethyl sulfoxide: DMSO), and 10 mL of

BacLight mounting oil. The mounting oil provides a high viscosity environment, which

minimizes Brownian motion of stained cells, and serves as an anti-fading agent to reduce

the bleaching of the dyes. The excitation/emission maxima of these dyes are about 480

nm/500 nm for the SYTO 9 and 490 nm /635 nm for the PI.
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Based on results of pre-screening tests, the mixture of SYTO 9 and PI with a 1:1

ratio by volume was used as mentioned in the manufacturer's instructions. Although the

manufacturer suggests the use of 0.3% DMSO in the final suspension (i.e. 3 pt of dye

mixture per 1 mL of suspension), pre-screening tests indicated that 0.2% DMSO gave

equivalent results with a saving of the expensive dye.

4.1.3 BCA Protein Assay Kit

The BCA protein assay, purchased from Pierce (Rockford, IL), is a detergent-compatible

formulation based on bicinchoninic acid (BCA), for the colorimetric detection and

quantitation of total protein. The BCA protein assay is performed under the following

reaction schemes:

OH-
1) Protein (peptide bonds) + Cu+2 	Tetradentate-Cu+1 complex

2)Cu+1  + 2 Bicinchoninic acid 	 BCA-Cu+1 complex (purple color).

The purple-colored reaction product exhibits a strong absorbance at 562 nm. The BCA

protein assay kit includes Reagent A (containing sodium carbonate, sodium bicarbonate,

bicinchoninic acid and sodium tartrate in 0.2N sodium hydroxide), Reagent B (4% cupric

acid solution), and Albumin standard ampules (containing bovine serum albumin at a

concentration of 2.0 mg/mL). The BCA working reagent was prepared by mixing 50

parts of Reagent A with 1 part of Reagent B.

4.1.4 Biofilm Glass Supports

Rectangular glass pieces were used as biofilm supports in column reactors with

continuous medium flow. The biofilm supports (BF-supports) were designed to be 25.5
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cm in length, 3.4 cm in width and 0.22 cm in thickness, providing about 186 cm 2 in the

total surface area and about 19 cm 3 in volume (Shin Glass Inc., Palisades Park, NJ).

Before starting experiments, each glass piece was scratched using a glass cutter, thereby

dividing it into three regions. After staining the biofilm, the scratched glass pieces were

snapped off just before microscopic observation in order to obtain replicate counts and

average values for each original piece. The glass pieces were cleaned by sonication, then

rinsed with detergent, hot water and distilled water, before autoclaving.

4.2 Pure Culture of Pseudomonas putida (ATCC 17484)

Pseudomonas putida biotype A, which was obtained from American Type Culture

Collection (ATCC 17484) by Jay Best (previous student at NJIT), was used to degrade

naphthalene as sole carbon source. The strain of Pseudomonas putida grows under

aerobic conditions at 20 to 30 °C (Best, 1997). The original culture used for this research

had been stored at -20 °C for about one year. The frozen culture was melted at room

temperature for reviving cells.

When the fluorescent staining dye was tested with Pseudomonas putida at the

beginning of this research, only the nutrient broth culture was used for rapid and

convenient bacterial growth instead of naphthalene and inorganic medium. However, it

was found that the strain of Pseudomonas putida lost the ability to degrade naphthalene

after being cultured with nutrient broth for a prolonged period. As a result, the following

method was adopted.

About 1 mL of the melted seed culture was transferred to a 250 mL flask

containing about 30 mL of nutrient broth. It was then cultured in an incubator shaker
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(Series 25, New Brunswick Scientific Co.), which was set at 25 °C and 200 rpm, for

about 2 days. The culture indicated signs of growth by becoming cloudy. After that, the

culture was transferred to a 1-L baffled flask for acclimation with naphthalene (about 5

mg/L in concentration) and inorganic medium. Flasks containing inoculated suspension

were also placed in the incubator shaker to maintain the appropriate temperature and air-

supply. After about 24 hours, the culture also showed signs of growth. When the carbon

source was depleted, a small amount of crystal naphthalene was added periodically to the

suspension, sometimes also adding inorganic medium. Seed cultures were prepared by

this method about 2 to 3 days prior to each experiment.

4.3 Experimental Set Up

4.3.1 Preparation of Suspended Cultures

Experiments for suspended cultures with Pseudomonas putida were simultaneously

performed with 13 shake flasks (1-L glass Erlenmeyer flasks), which had 4 different sets

(indicated as a, b, c and d) of naphthalene concentration as shown in Table 4.2. Each

concentration set consisted of 3 flasks, with flasks A and B as duplicates and flask C for

sterile control (no bacteria). One additional flask (D) contained bacteria but no

naphthalene. Each flask contained 300 mL of suspension: 20 mL of seed culture, 13.3 mL

of inorganic media (3 mL of medium A, 7 mL of medium B and 0.3 mL of trace

elements), and 269.7 mL of naphthalene solution. The naphthalene concentrations were

measured by HPLC, as described in subsequent sections. The suspended cultures were

put in an incubator shaker at 25 °C and 200 rpm. Each flask was plugged with a cap.
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There was sufficient air in the headspace of a shake flask because fresh air was

introduced into the flask by opening the cap at every sampling time.

Table 4.2 Arrangement of shake flasks for suspended cultures.

4.3.2 Preparation of Fixed Biofilms

At least 13 BF-supports were used to perform one set of biofilm experiment. 10 supports

were installed on two column reactors, and 3 supports as initial samples were prepared to

obtain more reliable data for bacterial enumeration. An autoclavable glass container (8.5

inches in diameter, 17.5 inches in height, and 15-L in volume) was prepared to culture

seed biofilms on glass supports.

At the beginning of the biofilm tests, all glass supports were irregularly placed in

the container as shown in Figure 1A. However, there were difficulties obtaining a

uniform biofilm distribution on all glass supports. To overcome this problem, a round

holder made with Teflon material (Figure 1B) was designed to make all BF-supports

stand vertically and evenly spaced in the container. Aeration (about 40 mL/minute) was

provided by a laboratory-based air line through 4 in-line air filters (Bacterial Air Vent,

Gelman Sciences) and a glass tube with a fritted end. The top of the container was

covered with aluminum foil while culturing the biofilms. Bacterial suspension in the

container was continuously mixed using a magnetic stirrer (Cimarec 3, Thermolyne).



Figure 4.1 Seed biofilm containers: (A) Non-uniform biofilms and (B) Uniform biofilms.

4.3.3 Column Reactors for Biofilm Cultures in Continuous Flow System

A schematic diagram of the experimental set-up for biofilm cultures on glass supports is

presented in Figure 4.2 and C (A) in Appendix C. The two columns in the diagram were

custom-made (Ace Glass, Vineland, NJ). Each column was a heavy-walled glass process

pipe with 5 cm inside diameter and 12 inches (30.5 cm) in length. There were 5 sampling

ports along the height of each column. Figure 4.3 and C (B) in Appendix C show the

details of the column reactor. There were 5 glass supports for biofilm culture in each

column. Two thick polymeric end plates were tightly connected to each end of the

column using a rubber o-ring. The bottom end plate (inlet) was specially re-designed by a

machine shop (N. & J. Machine Prod. Inc., Newark, NJ) with slots for installing 5 glass

BF-supports vertically onto the inlet plate, maintaining almost the same interval (4-5



[Dot lines: Recirculating lines to make system equilibrium
condition with naphthalene before installing biofilm glass
supporters.] In-line air filters

Figure 4.2 Experimental set-up of a continuous flow system with two column reactors and glass supports for biofilm cultures.
(R-A and R-B contained excess of crystal naphthalene and inorganic media. R-B was used to damp sudden change of
naphthalene concentration in R-A when fresh inorganic medium without naphthalene was continuously supplied from R-C.)
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Figure 4.3 Design of a column reactor with 5 glass supports for biofilm cultures in
continuous flow system during biodegradation of naphthalene by Pseudomonas putida.
(Glass support: 25.5 cm in length, 3.4 cm in width, and 2.2 mm in thickness; surface area
of each glass support = 186 cm 2 ; interval between each glass = 4-5 mm)
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mm) between each BF-support. Also included was a stainless steel bracket on the top of

the glass supports. BF-supports on each column were numbered for sampling order.

The two columns (X and Y) in the continuous flow system were set up in a

parallel position as shown in Figure 4.2. Three pumps (Pump-1, 2, 3), three reservoirs (R-

A, B, C), and three magnetic stirrers (M-1, 2, 3) were installed in this system, connected

with polypropylene tubing (ID: 3/32", OD: 1/8", Cole-Parmer Instrument Co.), Tygon®

tubing (ID: 1/16", OD: 3/16", Cole-Parmer Instrument Co.) or PharMed® tubing (L/S™

14, Cole-Parmer Instrument Co.). Pump-1 was operated with two cartridges on a multi-

channel pump head to maintain the same flow rate for both column reactors.

Because of adsorption of naphthalene on Tygon® and PharMed® tubing,

polypropylene tubing was used whenever possible. However, polypropylene is a rigid

material that cannot be used in the pump heads. Tygon® and PharMed® are superior in

those applications. Tygon® tubing was used only on the pump heads for pumps-1 and -2.

The PharMed® tubing was used on the line from R-C to R-B because R-C contained only

inorganic media and trace elements. Some straight fittings for 1/16" tubing ID

(polypropylene, Cole-Parmer Instrument Co.) and small pieces of PharMed® tubing were

used to connect the system lines. Four three-way stopcocks with luer lock

(polypropylene, Cole-Parmer Instrument Co.) were installed before and after both column

reactors for taking naphthalene samples.

It was observed that there was difficulty in maintaining a constant concentration

of naphthalene in R-A with aeration. It was decided to maintain R-A at a saturated

condition using an excess of crystal naphthalene. R-A and R-B (2-L PYREX® bottles)

contained an excess of crystal naphthalene and were supplied continuously with
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inorganic media solution from R-C (5-gallon PYREX® bottle). R-B was used to damp

sudden change of naphthalene concentration in R-A when fresh inorganic media without

naphthalene was continuously supplied from R-C. The media solution in R-C was

continuously aerated at about 125 mL/minute by a laboratory-based air line through 3 in-

line air filters (Bacterial Air Vent, Gelman Sciences). A stainless steel filter was installed

at the inlet of each pumping line in R-A and R-B, as well as at the sampling port for R-A,

in order to prevent crystalline naphthalene from affecting the HPLC system.

Experimental results using suspended cultures with shake flasks indicated that the

exponential phase of bacterial growth usually lasted for approximately 10 hours.

Considering that the water capacity of the column reactor with 5 BF-supports was 441

mL, a flow rate at 1 mL/minute was desirable to maintain a proper residence time (7.3

hours) for the culture medium. Water capacity without BF-supports was 536 mL (8.9

hours residence time).

The flow rate of pump-1 was fixed at 1 mL/minute, while flow rates of the other

pumps were periodically adjusted to maintain a constant liquid volume (about 2-L) in R-

A and R-B. It was necessary to maintain the same flow rate (1 mL/minute) at the inlets of

both columns. The inlet concentration of naphthalene was increased when the flow rate of

pump-1 was increased. As the flow rate increased, less adsorption of naphthalene was

observed in the system. Above a certain flow rate, the inlet concentration of naphthalene

became steady. When this system was recirculated for equilibrium condition with

naphthalene, it was necessary to keep the same flow rate of the medium having a constant

concentration on the inlets of the column reactors during one run of biofilm culture.
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With the fixed flow rate (1 mL/minute) in both column reactors, whenever a BF-

support in column-Y was taken out as a sample for microscopic enumeration, the

residence time of the liquid medium gradually increased (from 7.3 to 8.9 hours) due to

the replacement of the glass supports with liquid volume.

Autoclavable 3-way stopcocks with luer locks (polypropylene, Cole-Parmer

Instrument Co.) were used for HPLC and microscopic samples of suspended cells at the

inlet and outlet of each column. 3-way plastic stopcocks with luer locks (Cole-Parmer

Instrument Co.) were also used to take samples of suspension in column-X. The plastic

stopcocks were sterilized by 3% hydrogen peroxide and washed with autoclaved water.

4.4 Analytical Procedures

4.4.1 Optical Density of Bacterial Suspension

The biomass concentration in shake flask tests for suspended cultures was determined by

measuring optical density (OD) of the sample suspension. About 5 mL of bacterial

suspension from a shake flask was taken into a test tube. OD of each sample was

measured at wavelength of 540 nm using a spectrophotometer (Spectronic 20D, Milton

Roy Company), and related to biomass using a calibration curve (Figure A-1, Appendix

A).

4.4.2 Dry Biomass of Bacterial Suspension

A gravimetric method by centrifugation was applied to separate the biomass from

suspended culture (Best, 1997), using a General Purpose Centrifuge (Clay Adams™

DYNAC™ II, BD Sciences).
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Four 1-L shake flasks with 300 mL of bacterial suspension were cultured with

different concentrations of biomass, using different concentrations of naphthalene. When

the bacterial culture reached a proper range of OD, 150 mL of suspension was taken from

each flask at four different sampling times. The OD of each sample was measured at 540

nm and then transferred to three 50-mL centrifuge tubes for triplicate tests. They were

centrifuged at about 2,400 rpm for 45 minutes and supernatant was decanted. The

bacterial pellet on the bottom of each tube was rinsed with 50 mL of DI water and then

centrifuged again. After that, the supernatant was decanted a second time. Each biomass

pellet was diluted with 25 mL of DI water and then mixed by vortex. The diluted

suspensions were transferred into pre-tared aluminum weighing dishes. They were placed

in a drying oven at about 110 °C overnight. After drying, the weight of biomass was

measured, and the dry biomass concentration was determined by averaging data from

three replicates.

Once a calibration curve was developed (Figure A-1), experiments relied on OD

to determine biomass concentration, since this was easier to obtain.

4.4.3 Measurement of Total Cell Protein

To measure total cell protein (TCP) of suspended cultures, about 1.5 mL of each sample

used for OD measurement were placed in a microcentrifuge tube, centrifuged at 17,000

xg for 3 minutes (Centra-M centrifuge, International Equipment Company). The

supernatant was then discarded, and 0.3 mL of 0.1 N-NaOH were added to the pellet on

the bottom of the centrifuge tube and thoroughly mixed by vortex. Also, 0.1 N-NaOH

without biomass was prepared for the blank control. This was subtracted from
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concentrations of actual bacterial samples. All bacterial samples in NaOH solution were

stored in the freezer for the future analysis.

The frozen samples in microcentrifuge tubes were boiled for 30 minutes by using

floating bubble racks to hold the tubes. Final volume of the boiled samples was adjusted

to 0.5 mL by adding about 0.2 mL of DI water. They were mixed by vigorous vortexing

and then centrifuged at 17,000 x g for 3 minutes.

As a sample for the BCA protein assay, 0.15 mL of each supernatant was placed

in a test tube. Also, 0.15 mL of each standard with known concentrations of bovine serum

albumin (BSA), which was previously diluted with DI water, was pipetted into

appropriately labeled test tubes. 3 mL of the BCA working reagent (WR) was added to

each test tube and then mixed well (sample to WR ratio = 1:21).

All samples including standard solutions were incubated at 75 °C for 30 minutes

in a drying oven. The incubating temperature was increased from 60 °C to 75 °C to detect

lower concentrations of samples. On the enhanced protocol of the BCA protein assay, the

working range at 60 °C for 30 minutes was 5 to 250 µg/mL in total protein.

After incubation, all sample tubes were kept on ice to prevent further color

development. The absorbance of each sample was measured at 562 nm by a

spectrophotometer (Varian, DMS 300). A typical calibration curve for all standard

solutions is shown in Figure A-2 in Appendix A. Using the standard curve, the TCP

concentration for each sample was determined.



27

4.4.4 Analysis of Naphthalene

Concentrations of naphthalene were analyzed using a Waters HPLC with: (1) Tunable

Absorbance Detector (Model 484); (2) System Controller (Model 600E); (3) Multisolvent

Delivery System (Model# 600); and (4) Autosampler (Ultra WISP Sample Processor,

Model# 715); (5) a chromatographic column (MercK 50822; Lichrospher ® 100 RP-8, 5

Pm).

Isocratic elution of naphthalene was obtained by a mobile phase consisting of

70% methanol and 30% water with 1% acetic acid. The flow rate of the mobile phase was

maintained at 1.2 mL/minute. By adjusting the ratio and flow rate of the mobile phase,

the production of three intermediates due to biodegradation of naphthalene could be

detected. The mobile phase with 80% methanol and 20% water could also separate the

naphthalene peak at 1 mL/minute, but it was not useful for separating the intermediates.

The retention time of naphthalene was approximately 2.7 minutes in an older HPLC

column (3.5 minutes with a new column), but it was observed to fluctuate with varying

room temperature or column condition.

Both methanol and water were vacuum filtered through a 0.45 pm-membrane

filter and preserved by adding 1% acetic acid. The solutions were then degassed by a

continuous helium purge (Ultra High Purity, Matheson gas Products). The UV-detector

was set at a wavelength of 254 nm. The data were processed and integrated by Nelson

Chromatography Software (PE Nelson Model 2600, rev. 5.10) using a Nelson 900 Series

interface.

About 1 mL sample for biofilm experiments was transferred to a 1.2 mL-vial for

HPLC autosampler. In case of suspended cultures with shake flasks, about 1.2 mL of a
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sample was filled up to the top of each vial. Two different calibration curves were applied

for both cases, plotting 5 known standard naphthalene solutions for each curve, and

checked periodically. As an example, a plot is shown in Figure A-3 in Appendix A. The

standard solutions were prepared with pure methanol. Each sample was preserved with

approximately 20 !IL of 1:1 hydrochloric acid (HCl) to stop any further biological

activity. The volume injected by the autosampler was set at 8 1.1L, which was reduced

from 20 !IL to avoid pressure built up due to use of an on-line pre-filter kit on the HPLC

column (instead of using a separate filtering step to remove bacteria from the sample

suspension).

Initially, for pre-treatment of HPLC samples, about 1.2 mL of bacterial sample

was filtered through a 0.2 μm-membrane using a Swinney filter holder, which was

attached to a syringe. However, loss of naphthalene due to adsorption on the membrane

filter averaged about 36.5 % as shown in Table B-1 and Figure B-1 in Appendix B.

Therefore, an on-line prefilter kit with 0.5 p.m pore size (Alltech Associates, Inc.) was

used instead to protect the HPLC column and avoid a separate filtration step. The on-line

filter was continuously exposed to the mobile phase (70% methanol and 30% water with

1% acetic acid), which resulted in a much lower loss of naphthalene.

4.4.5 Observation of Live and Dead Cells by Fluorescence Microscopy

A Nikon epifluorescence microscope (Eclipse TE200) equipped with a 100W-mercury

lamp (Chiu Technical Corporation) was used with a Nikon B-2A filter set for fluorescein

isothiocyanate (FITC); 470±20 nm for exciter filter, 505 nm for dichroic mirror and 520

nm for barrier filter. The excitation/emission maxima of the dyes are about 480 nm/500
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nm for the SYTO 9, and 490 nm/635 nm for the PI. Therefore, the fluorescence from

both live and dead bacteria can be viewed simultaneously with the FITC filter set. Two

objective lenses were used: 60x for suspended cultures and 100x for biofilm cultures.

Photomicrographs of bacterial images were collected with an image controller

(Optronics, DEI-750D CE Digital Output, Model S60675) and Image Pro 4.0 (software).

However, actual enumeration of bacterial samples was performed by visual counting with

10x eyepiece lens, using 3 cell counters (Hand Tally Counter, Fisher Scientific) for live

cells, dead cells, and number of focusing fields. Because the size of photographic image

is only about 20% of countable area (a square) in a focusing field, visual counting with

the eyepiece lens was a better choice, in which a square with known area (0.1 x 0.1 mm 2

on 100x objective, and 0.162 x 0.162 mm 2 on 60x objective) is marked with 100 small

grids.

4.5 Fluorescent Staining Techniques for Microscopic Counting of Cells

4.5.1 Screening Tests of LIVE/DEAD ® BacLight™  Bacterial Viability Kit

To examine the capability of LIVE/DEAD ® BacLight™ Bacterial Viability Kit

(LDBBVK) for distinguishing live and dead cells on a fluorescence microscope, the dual-

staining mixture of SYTO 9 and propidium iodide (PI) was pre-screened by adjusting the

ratio of both components volumes and concentration of dimethylsulfoxide (DMSO) in a

bacterial sample. Also, the incubation time in staining Pseudomonas putida was

observed.

When bacterial suspensions were tested with LDBBVK, three different methods

as shown in Table 4.3 were evaluated for enumerating cell density as well as
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distinguishing both live and dead cells. The general method with a regular slide glass and

a coverslip showed the best result, making the staining technique more rapid, simpler and

more reliable than the others.

Table 4.3 Evaluation of staining methods for enumerating live and dead cells in bacterial
suspension. (Dual staining of SYTO 9 and propidium iodide)

Filtration with
black membrane

(13 mm
in diameter)

Multi-well
slide glass
(8 mm in
diameter)

Regular slide glass
+ cover slip

(22 x 22 mm2)
Sample condition

after staining Dry or wet Dry Wet

Available sample
volume

Large
(depending on
cell density)

Small (2 — 6 µL) Small (4 !IL)

Reliability in
distinguishing

live and dead cells
Uncertain Uncertain Very good

Precision in
measuring surface

area
of stained sample

Good Good Sufficient

Bacterial motion
for visualization Little No

Brownian motion
(No problem on
visual counting)

Accumulation of
red probe

on living cell wall
Possible Possible

No
(within about

5 hours)
Uniform distribution

of cells
Good Bad Sufficient

As an example of the staining method with a regular slide glass and a coverslip,

Figure 4.4 shows fluorescence photomirographs observed under the wet condition of

bacterial samples stained with the mixture of SYTO 9 and PI (0.2% DMSO); a) 100%

live cells, b) 50/50 of live and dead cells, c) 100% dead cells. This staining method was

highly reliable in distinguishing live and dead cells. On the other hand, the two methods



Figure 4.4 Epifluorescence photomicrographs of Pseudomonas putida stained (in wet condition) with the mixture of SYTO 9 and
propidium iodide under FITC optic filter. Wet condition of stained bacterial samples under microscopic observation resulted in more

reliable images for enumerating live and dead cells (60x objective lens, 2.8x relay lens).



Figure 4.5 Epifluorescence photomicrographs of Pseudomonas putida stained (in dry condition) with the mixture of SYTO 9 and
propidium iodide under FITC optic filter. Mounting oil was placed right after drying out stained samples on a multi-well slide glass at
room temperature. When stained samples were dried out, microscopic images were not reliable for distinguishing live and dead cells

(60x objective lens, 2.8x relay lens).
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using dry stained samples were unreliable because of the accumulation of PI on live cell

wall showing partially green or orange (or red) fluorescence as illustrated in Figure 4.5.

The most important clue for optimizing the staining technique with LDBBVK

was to maintain wet (non-dried) condition - in a stained sample. It was necessary to avoid

keeping a stained sample sealed with a slide glass and a coverslip for more than about 1

hour. Also, it was preferable to keep the stained sample in a microcentrifuge tube. Right

before microscopic observation, the stained sample in the tube needs to be mixed by

vortex to make uniform cell distribution, and subsequently placed on a slide glass and

covered with a coverslip sealed with nail polish. The vortexing step may have an effect

on the removal of the PI accumulated on the surface of viable cells.

As mentioned by Lawerence et al. (1997), it was found that the red probe (PI) was

partially coated on a sample specimen with live cells showing orange or red fluorescence

on the FITC filter set. Based on experimental results and the reference, the reason was

inferred as follows: When the stained sample was kept for a long time (more than about

one hour) under a coverslip sealed with nail polish, the aqueous portion of the red probe,

which is presumably hydrophilic, was partially dried out. Consequently, it could be easily

coated on the surface of living cells due to the characteristic of the PI.

4.5.1.1 Staining Method by Vacuum Filtration with PCTE Black Membrane

A polycarbonate track-etched (PCTE) black membrane (13 mm in diameter and 0.22 urn

in pore size, Osmonics Inc.) for epifluorescence microscopy was used in conjunction with

a drain disk supporter (PreSep Mesh Spacer, 13 mm, Osmonics Inc.) for promoting

uniform distribution of bacteria on the filter surface. A Swinney filter holder (Millipore),
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with the black membrane and the drain disk-supporter, was assembled with a disposable

3 mL syringe, which had no plunger.

After 1 mL of bacterial suspension was stained with 3 μL of the dye mixture

(0.3% DMSO) and then incubated at room temperature in the dark for about 15 minutes,

1 mL of phosphate buffered saline (PBS) was added into a syringe assembled with the

filter set. A proper volume (about 2 to 50 μL) of stained bacterial suspension was then

added to the PBS in the syringe, accompanied with vortexing for enhanced uniform

distribution of the stained bacteria on the black membrane. The reason that a small

amount of stained sample was diluted with the PBS solution was to wash out the coated

red probe (PI). The stained cells were filtered through the black membrane under low

vacuum. 2 μL of filter-sterilized water was placed on a slide glass, and then, only the

membrane without the drain disk-supporter was removed from the filter set and placed on

top of the water droplet. About 3 to 4 μL of BacLight mounting oil (provided with

LDBBVK) was added to the top of the filter. An oversized 22-mm square coverslip

(No.1, Fisher Scientific) was placed on the top of the mounting oil, and gentle pressure

was applied to spread the fluid over the filter. The coverslip was sealed with nail polish.

Finally, the sample was observed under a fluorescence microscope equipped with proper

filter sets.

Bacterial staining using vacuum filtration caused irregular results under a

fluorescence microscope: sometimes showing clear bacterial images with wet condition

of stained samples, and sometimes showing false images from dried specimen due to

excess vacuum suction of stained liquid.
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4.5.1.2 Staining Method Using Multi-Well Slide Glass

Instead of using membrane filters, multi-well slide glasses (25 x 75 mm), with known

surface area of stained liquid sample, were applied as an alternative method. Multi-well

slide glasses with 8 mm diameter and 8 wells (HTC®, Black; Cel-Line/Erie-Scientific

Co.) were coated with a solution of 0.1% gelatin and 0.01% KCr(SO4)2, dipping each

glass into the solution for a second and drying out at room temperature. The coated

glasses were stored in the refrigerator.

100 pit of original suspended culture was stained with 0.2 μL of the 1:1 dye

mixture (0.2% DMSO). 2 to 6 μL of the stained sample were placed on a well of a multi-

well slide glass and then spread uniformly on the well using a Pipetman tip. The stained

sample was incubated and dried out simultaneously at room temperature for about 5 to 10

minutes. After the drying step, BacLight mounting oil was placed on the dried sample

and then covered with a coverslip (25 x 50 mm, No.1). This sample was observed under a

fluorescence microscope.

4.5.1.3 Staining Method Using Regular Slide Glass

100 μL of original suspended culture were mixed with 0.2 μL of the 1:l dye mixture

(0.2% DMSO) without rinsing steps, and incubated at room temperature in the dark for

about 15 minutes. Right before microscopic observation, the stained sample in a

microcentrifuge tube was mixed again by vortex. Exactly 4 pit of the sample was

subsequently put on a regular slide glass (3 x 1 inches, 1 mm in thickness, Fisher

Scientific) and covered with a 22 x 22 mm-coverslip (Fisher Scientific, No.1) sealed with

nail polish. The 4 pt-sample was uniformly spread out in the size of the coverslip.



36

If the stained sample is not immediately used for microscopic observation, it is

necessary to avoid keeping the stained sample in a slide glass sealed with a coverslip for

more than about one hour. This causes drying out of the sample and accumulation of the

red probe (PI) on live cell wall. Regardless of the incubation time instructed by the

manufacturer, the stained bacterial suspension kept in a microcentrifuge tube was still

useful within about 4-5 hours, showing intensive green or red fluorescence on either live

or dead cells under the microscope equipped with FITC filter set.

4.5.1.4 Optimization of Staining Method with Live and Dead Cells

The dual-staining mixture was tested with two types of samples: (1) bacterial suspension

with live cells only (cultured in nutrient broth); and (2) dead bacterial suspension (killed

by 70% isopropyl alcohol, according to the instructions with the LDBBVK). These two

samples were prepared from the same original suspension (Pseudomonas putida) grown

in a shake flask at room temperature for one or two days.

The two components of the dye mixture were tested with different volumetric

ratios of SYTO 9 and PI (4:1, 3:1, 2:1, 3:2, 1:1, 2:3, 1:2, 1:3, 1:4 and l:10). The optimal

result was obtained with a 1:1 mixture of SYTO 9 and PI, as instructed in LDBBVK.

Also, the concentration of DMSO was tested by staining living cells with different

amount of the 1:1 dye mixture (1%, 0.1%, 0.2 % and 0.3%). The result with 1% DMSO

showed red fluorescence which gave a false indication of dead cells. The results with

0.1%, 0.2% and 0.3% showed clear green fluorescence images in staining live bacteria.

As a result, the 0.2% DMSO was applied for all subsequent testing of bacterial

suspensions.
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4.5.2 Staining Methods for Biofilms on Glass Supports

Both direct and indirect staining methods were pre-tested for enumeration of biofilms on

glass supports, distinguishing live and dead bacteria. Based on the results of the test, it

was recognized that each case had its drawbacks in performing bacterial enumeration

with the fluorescent staining technique.

The direct staining method (see below) was not effective in distinguishing live

from dead cells, since red fluorescence was observed irregularly on active (live) biofilm

due to accumulation of the red probe on live cell membrane. In order to overcome this

problem, a longer incubation time (1 to 3 hours) was used with 0.3% DMSO. However,

the longer incubation time under a coverslip caused the stained active biofilms to dry out

and show the red fluorescence irregularly. Hence, the direct staining method usually

underestimated the number of viable cells. However, this method was useful to

enumerate total (live and dead) cells on biofilm monolayers (Microscopic observation

indicated that the biofilm were generally laid down as a monolayer for growth periods of

2 to 3 days).

For the indirect staining method (see below), it was expected that there would be

loss or damage of cells when they were detached from a BF-support by a scraper. The

indirect staining method was not useful for biofilm monolayers because of the technical

problem in detaching cells from a glass support into water. There was difficulty

establishing a consistent technique for lifting immobilized cells.

Due to the difficulties of both staining methods, a combined method was used

with direct staining for total cell count on the BF-supports, and general staining of

proximate suspended cells for the ratio of live to dead cells.
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4.5.2.1 Direct Staining

For direct staining of biofilms, 3 μL of the stock dual-staining dye mixture was diluted to

1 mL of autoclaved-DI water (0.3% DMSO) using a 1.5 mL-microcentrifuge tube. Before

starting biofilm cultures, about 10 tubes were prepared and stored in the freezer. It was

mixed by vortex prior to use.

After taking a glass support with tripartite biofilms (as mentioned in Section

4.1.4), it was first rinsed by immersing it into autoclaved DI water for about 15 seconds.

Then, about 50 IAL of the staining solution (0.3% DMSO with autoclaved DI water) was

gently added to the center of each part of the BF-support, repeated 3 to 4 times, and

incubated at room temperature in the dark for about 15 to 30 minutes. A cover glass (22 x

22 or 25 x 25 mm) was placed on the stained biofilm. To reduce Brownian motion of

stained cells under the fluorescence microscope, the excess staining solution under the

coverslip was removed by touching (or gently pressing) cotton swabs around (or over)

the edge of the coverslip. The coverslip was sealed with nail polish. Finally, non-stained

areas of the BF-support were cleaned with 70% isopropyl alcohol using a small piece of

paper towel and a tong.

4.5.2.2 Indirect Staining

A BF-support taken from a column reactor was gently rinsed with DI water to remove

any unattached cells. Biofilm attached to the surface was then harvested using a cell

scraper (Fisher Scientific), and mixed with about 100 mL of autoclaved DI water in a 250

mL beaker. Once samples were prepared, the procedure followed that for cell

enumeration with bacterial suspension as described in Section 4.5.1.3.
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4.6 Enumeration of Bacterial Samples by Microscopic Observation

4.6.1 Suspended Cultures in Shake Flasks

Using 4 of stained sample prepared as instructed in Section 4.5.1.3, the number of

bacteria under a 22 x 22 mm-coverslip (484 mm 2) was estimated by counting cell number

visually from 30 to 60 objective fields (counting about 100 to 700 cells) under the

microscope. The enumeration step was performed by counting live and dead cells only in

a square outlined on the objective field. The area of the square was equal to 0.162 x 0.162

mm2 (0.026244 mm 2) on 60x objective. The objective field was moved in a zigzag

pattern, beginning in the upper left hand corner of the cover slip and proceeding across

back and down. 30 to 60 objective fields covered about 0.16% to 0.32% of the cover slip

area.

The average cell number of live or dead cells on the square of the objective field

was then converted to cell density (cells/mL) in bacterial suspension using the following

equation.

4.6.2 Biofilm Cultures in a Continuous Flow System with Column Reactors

In culturing biofilms by the continuous flow reactor, an alternative method was applied

for enumerating cells immobilized on glass support, as well as distinguishing live and

dead cells. The direct staining method with diluted mixture of SYTO 9 and PI was not

effective in distinguishing live from dead cells (although it could be used to count total

cell number).
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To count total cells on BF-supports, direct staining was applied as described in

Section 4.5.3.1 using an objective lens with 100x magnification. It was desirable to use a

high magnification lens because sometimes it was difficult to distinguish cells from

debris or salts on stained samples. The number of total cells was counted from at least 30

randomly chosen objective fields. However, the ratio of live to dead cells was presumed

to be the same as that of the suspended cells that were in proximity to the glass supports

in the continuous flow system.

When cell density in the square with 100 small grids on an objective field was

increased, the number of small grids used for counting cells was gradually reduced from

100 to 20, counting about 250 to 1800 in total cell number. For cell density of biofilms,

the number of total cells per unit surface area of BF-support was calculated using

following equation. The area of the square was equal to 0.1 x 0.1 mm2 (0.0001 cm2) on

100x objective.

4.7 Experimental Procedure

4.7.1 Suspended Cultures in Shake Flasks

Suspended cultures with 4 different sets of naphthalene concentration were initially

prepared as described in Section 4.3.1. At every sampling time, 5 mL of suspension from

each flask were transferred to a test tube for measuring OD. 100 lit of the OD sample

were immediately stained with 0.2 pt of the dye mixture, followed by the enumerating

procedure of suspended cells as described in Section 4.5.1.3. At the same time, about 1.2

mL of the OD sample were transferred to a vial and analyzed quantitatively by HPLC as
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mentioned in Section 4.4.4. Measurement of total cell proteins was conducted by the

BCA protein assay using about 1.5 mL of the OD sample, as described in Section 4.4.3.

All materials and apparatus were already sterilized by autoclaving or filtering with 0.22

pore size prior to use.

4.7.2 Biofilm Cultures on Glass Supports in Continuous Flow System

4.7.2.1 Culture of Seed Biofilms

13 glass supports for biofilm, prepared as described in Section 4.l.4, were uniformly

placed into the seed biofilm container with the round glass-holder as shown in Figure 1B.

The glass holder was useful to have uniform distribution of biofilms on all seed BF-

supports. Also, a magnetic bar and a glass tube with a fritted end for aeration were placed

into the container. This container was covered with aluminum foil and then sterilized by

autoclaving.

About 6.4-L of autoclaved DI water was poured into the autoclaved container,

followed by adding 90 mL of medium A, 210 mL of the medium B, and 9 mL of the trace

element solution. Finally, about 300 mL of bacterial suspension, pre-acclimated with

naphthalene, were added to the container, mixed by the magnetic stirrer, and aerated at

about 40 mL/minute. This bacterial suspension was cultured for about 3-4 days to

develop initial seed biofilms for the column reactors. To increase the reliability for

enumeration of the initial biofilms, 3 of the seed BF-supports were stained with the

diluted dye mixture (0.3% DMSO). Before staining with the dye, they were carefully

immersed into autoclaved DI water for about 15 seconds to remove any unattached cells.
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Using a tong and a pair of forceps sterilized by a flame burner, all glass supports with

seed biofilms were transferred to 2 column reactors in the continuous flow system.

4.7.2.2 Culture of Biofilms in Continuous Flow System

Before transferring the seed biofilms from the original container, the medium in the

reactor system was recirculated at 1 mL/minute for 2-3 days in order to reach

equilibrium in naphthalene concentration, as shown in Figure 4.2. After confirming

equilibrium in the system by measuring naphthalene concentration periodically, the

recirculating lines were disconnected and connected to a drain bottle for continuous flow

of the medium.

Because of refraction of the liquid medium, and close spacing of the BF-supports,

it was difficult to install them properly into slots on the inlet end plate of each column.

Thus, it was necessary to take out all medium in each column right before transferring the

BF-supports into the column. The medium in each column reactor was separately

transferred into 2 autoclaved 500 mL beakers. After that, each seed BF-support was

rinsed by immersing it carefully into autoclaved DI water for about 15 seconds and then

immediately transferred into both column reactors. After installing 5 BF-supports, the

medium kept in the 500 mL beaker was immediately re-filled into each column using a

glass funnel with long neck. A stainless steel bracket was fitted onto the top of the 5 glass

supports, and then each outlet end plate was tightly re-connected to the top of each

column.
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To observe the adsorption of naphthalene on the BF-supports at the beginning of a

run, it was necessary to measure naphthalene concentration as soon as possible at the

inlet and outlet of both column reactors.

During this experiment, column-Y was specially used to take a BF-support at

every sampling time, measuring concentration of naphthalene at both inlet and outlet,

while column-X was used to observe viability of suspended cells in the column as well as

naphthalene concentration of suspension. After taking out all biofilm supports from

column-Y, all 5 biofilm supports in column-X were taken out at the same time as the last

samples for biofilm cultures in the continuous flow system.

Due to the adsorption of naphthalene on a 3 mL-syringe, HPLC sample was taken

by dropping liquid medium into a vial through a 3-way stopcock on both inlet and outlet

of each column. Secondly, bacterial suspension (100 1.1L) from the sampling ports-A, C, E

on column-X, and the outlet of column-Y, were immediately stained with 0.2 μL of the

1:1 dye mixture. As the third step, after the BF-support taken from column-Y was rinsed

with water as mentioned above, it was immediately stained with diluted dye mixture

(0.3% DMSO). After finishing sampling, the stainless bracket was carefully re-placed on

the top of the remaining BF-supports using a tong and a pair of forceps, and then the top

end plate was re-connected to the column. BF-supports pre-numbered on column-Y were

taken out for analysis after a prescribed time.

All apparatus and materials used in this experiment were sterilized prior to use by

autoclaving, or using 70% isopropyl alcohol or 3% hydrogen peroxide for plastic or

rubber materials such as sampling ports and o-rings on the column end plates.



CHAPTER 5

RESULTS AND DISCUSSION

5.1 Suspended Cultures of Pseudomonas putida in Shake Flasks

Two sets of shake flask experiments were conducted at a constant temperature of 25 °C

(±1 °C) and 200rpm, each using Pseudomonas putida (ATCC 17484). In each set, there

were four different values of the initial naphthalene concentration, ranging from about 3

to 16 mg/L (the solubility of naphthalene in water at room temperature is about 30 mg/L).

For each initial naphthalene concentration, four parameters were measured over time

(experimental set #1 lasted 54 hours, and set #2 lasted a total of 35 hours): naphthalene

concentration, optical density (OD), total cell protein (TCP), total cell number (TCN),

and living cell number (LCN). The last four of these measurements are all related to

biomass. All data (Tables and Figures) are presented in Appendix D, and will be

discussed below in detail. TCP data for set#2 were discarded because for unknown

reasons measured values of most samples were below those of the distilled water blank.

Decreases in naphthalene concentration for the sterile controls are primarily due to

volatilization.

5.1.1 Kinetic Rate Constants for Biodegradation of Naphthalene

The rate of biomass growth is given by the following equation [Sundstrom and Klei,

(1979)]:

where, B = concentration of biomass at time t
t = time

44
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dB/dt = biomass growth rate [concentration/time]
= specific growth rate [time-1 ]

Since there was no evidence of naphthalene toxicity up to a concentration of 16 mg/L, the

Monod equation was used to describe the specific growth rate in this range:

where,	 = maximum specific growth rate [time -1 ]
S = concentration of limiting substrate [mg/L]

Ks = half-velocity constant [mg/L]

Substituting equation 5-2 into equation 5-1, bacterial growth rate is:

However, only a fraction of the substrate is converted to cell mass. Defining the yield

coefficient (Y) as mg/L of biomass produced per mg/L of substrate degraded:

And the decrease in naphthalene concentration is given as:

Substituting equation 5-2 for the specific growth rate (p):

where, r, = rate of naphthalene degradation
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The key issue that this dissertation focused on is the determination of biomass

concentration (B).

During the exponential growth phase of Pseudomonas putida in shake flasks, the

specific growth rate was determined by preparing plots of Ln(biomass) versus time and

taking the initial slope. Original data are given in Appendix E, and the results are

summarized in Table 5.1, and Figures 5.1 to 5.4.

Kinetic rate constants (μm and Ks) for the Monod equation were obtained using

SigmaPlot® 2.0 (Jandal Scientific Software), which employs a Marquardt-Levenberg

algorithm to perform a non-linear regression of the specific growth rate vs. initial

naphthalene concentration data. The curves shown in Figures 5.1 to 5.4 are the regressed

curves.

Table 5.1 Regression of specific growth rates to obtain kinetic rate constants for Monod equation.
(experimental data sets 1 and 2 combined)

Initial
concentration

(mg/L)

OD LCN TCP
Experiments

(If')
Regression

(h -1 )
Experiments Regression

(h -1 ) 	 (WI)
Experiments

(11 1 )
Regression

(h -1 )

3.07 0.034 0.046 0.071 0.045 0.093 0.090
6.23 0.097 0.084 0.043 0.078
7.21 0.068 0.094 0.111 0.087 0.150 0.145
9.54 0.130 0.116 0.089 0.104
11.49 0.115 0.132 0.140 0.115 0.155 0.173
12.60 0.179 0.141 0.095 0.121
15.16 0.169 0.158 0.120 0.134
16.19 0.137 0.165 0.162 0.138 0.203 0.192



Initial concentration of naphthalene (mg/L)

Figure 5.1 The best fit of specific growth rates in the original
measurements of OD for determination of μm and K s (Experiments-
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Figure 5.2 The best fit of specific growth rates in the original
measurements of LCN for determination of p in and K$ (Experiments-



Figure 5.3 The best fit of specific growth rates in the original
measurements of TCP for determination of p m and Ks (Experiment-1
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Figure 5.4 The best fit of specific growth rates in all original
biomass measurements for determination of 1m and Ks (Experiments
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5.2 Yield Coefficient (Y)

Pseudomonas putida (ATCC 17484) is a very effective naphthalene degrader. As a result,

there were at most two measurements of naphthalene concentration in each run prior to

its complete disappearance after 4 to 8 hours. Consequently, the following procedure was

adopted.

First, all biomass data were converted to mg/L dry biomass using appropriate

conversion factors. A conversion factor (Fop = 373 mg/L of dry biomass per unit OD)

was obtained by preparing a plot of dry biomass versus OD as shown in Figure A-1 in

Appendix A. Conversion factors (f) for total cell number (TCN), living cell number

(LCN) and total cell protein (TCP) to optical density were determined by plotting OD

versus TCN, LCN and TCP as shown in Figures F-l through F-7 in Appendix F. All

measurements were converted to dry biomass using the factors in Table 5.2.

Table 5.2 Conversion of OD, TCN, LCN and TCP to dry biomass (mg/L) for
Pseudomonas militia with naphthalene in shake flacks
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Then, the yield coefficient for each experiment was determined by approximating

equation 5-4 as — ΔB/ΔS , as shown in Table 5.3. This resulted in an average Y of 0.20

mg/L dry biomass produced per mg/L naphthalene degraded.

Table 5.3 Determination of yield coefficient using initial slopes

Another method for determining Y was used which involved averaging the four to

five biomass measurements at or after 13 hours of run time. This was assumed to be the

final biomass concentration. Since the final naphthalene concentration was zero in all

cases: Y = (final biomass - initial biomass)/(initial naphthalene), as shown in Table 5.4.

This resulted in an average yield coefficient of 0.96.



Table 5.4. Yield coefficient determined by averaging the final biomass concentration.
(mg/L biomass produced per mg/L naphthalene degraded)
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5.3 Prediction of Naphthalene Loss and Biomass Growth in Suspended Cultures

Once the Monod kinetic parameters (p.m and Ks) have been obtained, a comparison can be

made between experimental data and mathematical predictions of the naphthalene and

biomass profiles. The decrease in naphthalene concentration (S) and the growth of

biomass (B) are predicted by the following algorithm:

For constant substrate, equation 5-3 can be integrated, resulting in:

Equation 5-4 can be approximated as:
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Equations 5-7 and 5-9 were then used in a stepwise algorithm as presented in Table 5.5.

Table 5.5 Prediction method for naphthalene and biomass concentration in suspended
cultures.

Two different yield coefficients were applied (Y=0.20 and Y=0.96), as discussed in

Section 5.2. Typical results are shown in Figures 5.5 to 5.9. These results were checked

using a fourth order Runge-Kutta method, which solved the simultaneous differential

equations 5-3 and 5-6 (MATLAB ® Version 5.3.1). Predicted values of naphthalene and

biomass concentrations were indistinguishable within the experimental error using either

method.



Figure 5.5 Model predicted profiles for naphthalene and OD (Exp-1-c).
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Figure 5.6 Model predicted profiles for naphthalene and LCN (Exp-1-c).
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Figure 5.7 Model predicted profiles for naphthalene and TCP (Exp-l-c).

Figure 5.8 Model predicted profiles for naphthalene and OD (Exp-2-c).
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Figure 5.9 Model predicted profiles for naphthalene and LCN (Exp-2-c).

Results were also predicted using the specific values of 1.1„„ K s, and Y for each type of

biomass measurement (OD, LCN, TCP) rather than average values. Again, they were

indistinguishable from those given above.

The problem which these figures illustrate is a disjuncture between the

disappearance of naphthalene and biomass growth. After naphthalene disappears,

biomass continues to grow, most likely as a result of the formation and disappearance of

intermediate products (see Section 5.5 below). Adsorption and subsequent release of

naphthalene from surfaces in the flasks may also play an important role. Such a lag

cannot be handled by the conventional Monod model. One possible remedy is to add a

lag time (T) to the biomass equation (5-7):

If a lag time of about 1 hour is assumed, the corresponding predictions are shown in
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Figures 5.10 to 5.14. Agreement is much improved when Y reflects the total change in

biomass divided by the total change in naphthalene concentration (i.e. Y=0.96).

Note that the specific methodology used to characterize biomass (OD, LCN, or

TCP) is less important than the need to define a lag time, which in turn depends on the

specific biochemical pathways and their detailed kinetics.

Figure 5.10 Model predicted profiles for naphthalene and OD,
with 1 hour lag time (Exp-1-c).

Figure 5.11 Model predicted profiles for naphthalene and LCN,
with 1 hour lag time (Exp-1-c).
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Figure 5.12 Model predicted profiles for naphthalene and TCP,
with 1 hour lag time (Exp-1 -c).

Figure 5.13 Model predicted profiles for naphthalene and OD,
with 1 hour lag time (Exp-2-c).
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Figure 5.14 Model predicted profiles for naphthalene and LCN,
with 1 hour lag time (Exp-2-c).

5.4 Determination of Doubling Time during Exponential Growth Phase

To determine the time for biomass concentration to double, equation 5-1 was used as an

approximation at the initial substrate concentration:

Using equation 5-11 and the specific growth rates in Table 5.1, the doubling times were

calculated as shown in Table 5.6. Figure 5.15 indicates that (as expected) the doubling

times decrease with increasing initial concentration of naphthalene. The trends are similar

for all three biomass measures (OD, LCN, TCP).



Table 5.6 Doubling times.
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Figure 5.15 Doubling time of suspended cultures of
Pseudomonas putida in shake flasks with naphthalene.
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5.5 Intermediate Products

As shown in Figures G-1 through G-8 in Appendix G, three intermediate peaks were

observed during HPLC analysis. In general, the peak corresponding to the shortest

retention time remained in the samples even after 50 hours, while the other two peaks

disappeared presumably due to further biodegradation.

5.6 Viability of Pseudomonas putida Suspension in Shake Flask Test

Numbers of living and dead cells determined by fluorescence microscopy are given in

Appendix D. The percentage of live cells ranged from about 93% to 99% as shown in

Figures 5.16 and 5.17. Viability in culture controls without naphthalene decreased after

one day to about 90 %.

Figure 5.16 Viability of Pseudomonas putida (Experiment-1).



61

Figure 5.17 Viability of Pseudomonas putida (Experiment-2).

5.7 Biofilm Cultures in Continuous Flow Reactors

5.7.1 Cell Distribution in Seed Biofilm Container

A study was made of the cell distribution on the glass biofilm support in the seed

container prior to running continuous flow experiments. 12 supports were exposed to a

naphthalene concentration of 5.1 mg/L, and total cell numbers were determined for the

bottom third, middle third, and upper third of 3 supports removed from the holder at

periodic time intervals. Results are shown in Table 5.7 and Figure 5.18.



Figure 5.18 Cell distribution of initial seed biofilm on glass
supports with 5.1 mg/L of naphthalene (each value is an average of
3 glass supports)

Table 5.7 Cell distribution (total cells/cm2) on glass supports (x104).
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5.7.2 Suspended Cells in Seed Biofilm Container

Suspended cells were evident by visual observation in the seed biofilm container. For the

cell distribution experiments described above in Section 5.7.1, the suspended cell

concentrations are shown in Table 5.8 and Figure 5.19.

Table 5.8 Suspended cells in seed biofilm container.

Time (hours) Suspended cells/mL (x10 7)

17.3 1.17

42.7 1.13

88.7 1.90

134 2.45

Figure 5.19 Growth comparison of immobilized cells/cm 2 and
suspended cells/mL in a seed biofilm container with 5.1 mg/L
of naphthalene initially.
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From microscopic observation, it was found that the cell size became gradually

smaller in both suspended and biofilm cultures due to the lack of carbon source after

about 24 hours. Bacterial images during cell division were rarely viewed under the

microscope. As shown in Table 5.9, the viability of suspended cells persisted even after

more than 4 days in the absence of a carbon source (naphthalene).

Table 5.9 Viability of suspended cells of Pseudomonas putida in the seed biofilm
container.

Time

(hours)

cells/mL Viability

(%)Live cells Dead cells Total cells

17.3 1.13E+07 4.03E+05 1.17E+07 97

42.7 1.13E+07 0.00E+00 1.13E+07 100

88.7 1.90E+07 0.00E+00 1.90E+07 100

134 2.45E+07 0.00E+00 2.45E+07 100

(5.1 mg/L of naphthalene initially in 9 L media; aerated at about 40 mL/min)

5.7.3 Biofilm Cultures on Glass Supports in Continuous Flow System

After initial seed biofilms were transferred into two column reactors in the continuous

flow system as mentioned in Section 4.7.2, they were cultured on glass supports for 51.3

hours. Figure 5.20, Tables H-1 and H-2 in Appendix H show experimental data for

growth of biofilms on glass supports, and difference of naphthalene concentration

between the inlet and outlet for each column reactor (X and Y).

Initial biomass data were obtained from the seed biofilm container by averaging 3

supports as described in Section 5.7.1. Intermediate biomass measurements were
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obtained by removing glass supports sequentially from column Y. Final biomass data

were confirmed by averaging all supports (5) remaining in column-X.

After a glass support was taken out of column Y for a biofilm sample, about 19

mL of media took its place, which increased the residence time from 7.4 hours at the

beginning of the run to 8.9 hours at the end. As shown in Figure 5.20, the growth pattern

of total live cells in column-Y was similar to that in column-X. However, the naphthalene

concentration difference between inlet and outlet in column-Y was greater by about 1 to 2

mg/L than in column-X, probably a result of the increased retention time in column-Y.

To distinguish live and dead cells, both direct and indirect staining methods were

applied, as described in Section 4.5.2. Results for suspended and fixed cells are shown in

Figure 5.21 and Appendix H. Approximately 90 to 100% of suspended cells were viable,

and these data were applied to predict % live cells on the biofilm.

Both fixed and suspended cells are present in the continuous biofilm reactor. As a

result, the observed decrease in naphthalene concentration is a consequence of the

presence of both types of cells.



Figure 5.20 Biodegradation of naphthalene and growth of biofilm
attached on glass supports in a continuous flow system.
(media flow rate = 1 mL/min., residence time with 5 glass supports =
7.3 hours)
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Figure 5.21 Viability of cells in column-X.

5.7.4 Determination of Specific Growth Rates in Continuous Flow System

In the continuous flow biofilm reactors, the steady-state material balance equation is as

follows:

assuming a well-mixed reactor:
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Substituting for – dS/dt and rearranging equation 5-12;

where, 6 = feed residence time (—Q = 7.35 hours)
V

= specific growth rate in the continuous flow reactor (11 1 )
B = total dry biomass (live cells in both biofilm and suspended growth on

column-X; mg/L)

Total live cells (LCNT, live cells/mL) in column-X are obtained by:

live cells in biofilm (cells/cm2)
total surface area of 5 glass supports in column-X (930.5 cm 2)
live cells in suspension of column-X (cells/mL)

The total live cells are then converted to dry biomass as presented in Table 5.2, using the

overall factor (FLCN) for experiments 1 and 2 combined. The average yield coefficient (Y

= 0.96) obtained from Table 5.4 was used in equation 5-14, and the specific growth rates

for the continuous flow reactor were determined as shown in Table 5.10.

An approximate calculation can be made of the biofilm specific growth rate as

follows:

specific growth rate for the suspended cells only
biomass for suspended cells only
what the outlet concentration of naphthalene would have been
without the biofilm
0.29111 1

13.55 mg/L



Table 5.10 Biomass growth and naphthalene degradation in column-X of the continuous flow system.

Concentration of naphthalene	 Total

	

Time	 (mg/L) 	 Live cells/cm2 	Live cells/mL in	 dry

	

(hours)	 Inlet	 Outlet	 Difference	 in biofilm	 suspended growth	 biomass (B)

(So)	 (S)	 (So-S)	 (BO	 (Bs)	 (mg/L)

0.3 19.63 15.45 4.17 2.16E+05 1.34E+05 2.01

11.3 19.23 16.90 2.34 4.39E+05 9.41E+05 2.41

18.0 19.22 13.87 5.36 3.42E+05 4.84E+06 3.55

26.7 20.04 15.02 5.02 5.43E+05 6.05E+06 4.06

33.0 19.45 13.96 5.50 5.13E+05 5.92E+06 4.00

39.5 20.77 13.39 7.38 8.70E+05 3.76E+06 3.56

51.3 20.52 15.37 5.15 1.32E+06 3.50E+06 3.77
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where, μf= specific growth rate for the biofilm only
Bf = biomass in the biofilm only

For Y=0.96, and using average steady-state values for S o and S (after 18 hours), μf=0.25 11 1

The overall specific growth rate is:

Thus, for Y = 0.96, the biofilm specific growth rate appears to be somewhat greater than

that of the suspended culture (for the same organism).

negative. Therefore, as with prediction of the naphthalene and biomass profiles

(incorporating a lag time), the overall yield coefficient (Y = 0.96) produces more

consistent results.

5.7.5 Formation of Biofilms on Glass Supports in Continuous Flow System

Over a two-day period, biofilms developed from separate cells attached to the glass

support, to large groups of cells approximating a continuous biofilm of monolayer

thickness. Fluorescence photomicrographs in Figures 5.22 and 5.23 show general patterns

of biofilm development according to elapsed time.
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After 51 hours, it became difficult to count cells because of their high density.

Thus, the last samples were usually roughly counted by observing 30 fields using only

20% (0.002 mm2) of the square on the objective field (100x).

Figure 5.24 shows various patterns of cell growth on the glass supports. In

photomicrographs (A) and (B), cells were dividing in curved and ring patterns at the

beginning of biofilm growth. In (C) and (D), cells began growing like chains, while (E)

and (F) show more common modes of cell accumulation on the glass supports.
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Figure 5.22 General patterns of biofilm development by culturing Pseudomonas putida
on glass supports in a continuous flow reactor (low cell density). (All photomicrographs
were obtained from different samples; observed by 100x objective.)
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Figure 5.23 General patterns of biofilm development by culturing Pseudomonas putida
on glass supports in a continuous flow reactor (higher cell density). (All
photomicrographs were obtained from different samples; observed by 100x objective;
Many live cells show orange fluorescence due to the difficulty of direct staining method.)
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Figure .L ,=1 v anous patterns in Not= growth on grass supports in a continuous now
system. (observed by 100x objective; Some live cells show orange fluorescence due to
the difficulty of direct staining method.)



CHAPTER 6

CONCLUSIONS

6.1 Fluorescent Staining Technique

A satisfactory methodology was developed to distinguish live cells (with intact

membranes) from dead cells using Pseudomonas putida (ATCC 17484). The

methodology was a modification of the techniques originally developed by Molecular

Probes, Inc. Use of a slide glass and cover slip under wet conditions using 4 Ill of sample

volume considerably improved the ability of the method to enumerate cells and

distinguish between green fluorescence (living cells) and red fluorescence (dead or

damaged cells). By avoiding dry conditions, precipitated salts from the nutrient medium

could be avoided, as well as pre-washing steps. Thus, it was possible to protect fresh

bacterial samples from damage by the pre-treatment steps, and the staining method was

simpler and more rapid

6.2 Comparison of Biomass Measures

Results for biomass measures (OD, LCN, and TCP), and their impact on calculated

values of the Monod expression, were similar. Biomass, by whatever the measure,

continued to increase significantly after the complete disappearance of naphthalene. This

resulted in uncertainty regarding determination of the yield coefficient, and its subsequent

impact on calculated values of substrate and biomass concentrations. This problem was

reconciled by inclusion of a lag time into the Monod expression. The lag time between

biomass growth and naphthalene disappearance could be a result of two factors: (1)

adsorption and subsequent release of naphthalene from reactor surfaces, and (2)
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formation of detected (but as yet unidentified) intermediate products during

biodegradation. Consequently, future work should focus on the exposition of a more

detailed biochemical pathway and its attendant kinetics.

6.3 Suspended vs. Immobilized Cells

Not surprisingly, suspended cells were easier to study than immobilized cells. With

biofilms, a problem remains of cell layering, with the resulting inability to count or

otherwise determine the number of cells below the upper surface in a non-destructive

manner. In this study, total cells could be counted in a surface monolayer using

fluorescence staining, but it was difficult to distinguish live from dead cells in the

biofilms because it was not possible to mix the fluorescent dye with the cells, and this

resulted in an inconsistent response.

The apparent specific growth rate for the biofilm appears to be greater than for the

suspended cells in the continuous flow reactor.

6.4 Monod Parameters for Biodegradation of Naphthalene Using Pseudomonas
putida (ATCC 17484) in Suspended Culture

Table 6.1 Summary of Monod parameters.

OD LCN TCP Overall
Previous

literature ( 1)

II. (11 1 ) 0.412 0.264 0.261 0.291 0.067

Ks (mg/L) 24.33	 14.83 5.83	 13.55 3.4

Y

(mg/L per mg/L)

0.24a

1.05b

0.10a

0.93 b

0.30a

0.95 b

0.20a

0.96b
0.25 

a: (ΔB/ΔS)using initial slope, 	 b: average of ΔBfinal/S0

(1) Ghoshal and Luthy(1998), using a mixed culture from a contaminated site



APPENDIX A

CALIBRATION CURVES
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Figure A-1 Calibration curve for determining biomass concentration from
optical density by culturing Pseudomonas putida with naphthalene.
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Figure A-2 Standard calibration curve of total protein with bovine
serum albumin. (Enhanced protocol of BCA protein assay;
incubation at about 75 ° C for 30 min)



Figure A-3 Calibration curve for naphthalene concentration
measurements.
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APPENDIX B

ADSORPTION OF NAPHTHALENE ON FILTRATION FOR PRE-
TREATMENT OF HPLC SAMPLES

80



81

Table B-1 Adsorption of naphthalene on a membrane with a Swinney filter holder for
pre-treatment of HPLC samples. (13 mm in diameter and 0.22 μm in pore size; sample
volume: about 1.2 mL)

Concentration of naphthalene (mg/L) Loss of naphthalene
(%)Original solution Filtered solution

2.6 1.6 37.14

8.2 4.7 43.20

10.0 6.1 39.11

11.7 7.7 34.16

14.0 9.4 32.80

13.7 9.8 28.78

16.8 10.2 39.32

18.7 14.7 21.62

21.7 10.9 49.79

Figure B-1 Adsorption of naphthalene on a membrane with a Swinney filter holder for
pre-treatment of HPLC samples.



APPENDIX C

EXPERIMENTAL SET-UP OF CONTINUOUS FLOW REACTORS
FOR BIOFILM CULTURES
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Figure C Experimental set-up of continuous flow reactors for biofilm cultures: (A)
experimental set-up and (B) column details.



APPENDIX D

TABLES AND FIGURES OF EXPERIMENTAL RESULTS OBTAINED
FROM SUSPENDED CULTURES OF Pseudomonas putida
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Table D-1 Experimental data obtained from shake flask experiment (1-a).

Time
(hours)

Naphthalene
concentration

(mom-)

Total
cell protein

(mg/L)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)

Live	 Dead	 Total

0 3.07 0.48 1.06E+07	 1.59E+05	 1.08E+07 0.013 4.66
4 0 0.69 1.10E+07 6.75E+05 	 1.16E+07 0.016 5.78

8.5 0 1.16 2.23E+07 4.21E+05 2.27E+07 0.017 6.34
13 0 1.55 2.32E+07 5.56E+05 2.37E+07 0.020 7.46
19 0 2.15 1.63E+07 3.97E+05	 1.67E+07 0.020 7.46
27 0 2.02 2.10E+07 5.21E+05 2.16E+07 0.021 7.65
35 0 1.80 2.17E+07 9.99E+05 2.27E+07 0.023 8.39
54 0 1.63 1.77E+07 8.09E+05	 1.85E+07 0.022 8.21

Table D-2 Experimental data obtained from shake flask experiment (1-b).

Time
(hours)

Naphthalene
concentration

(mg/L)

Total
cell protein

(mom-)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)

Live	 Dead	 Total

0 7.21 1.03 9.33E+06 2.38E+05 9.57E+06 0.014 5.04
4 0 3.26 1.39E+07 7.94E+04 1.39E+07 0.021 7.65

8.5 0 3.77 3.54E+07 5.56E+05 3.59E+07 0.028 10.26
13 0 3.68 3.41E+07 8.60E+05 3.50E+07 0.033 12.31
19 0 4.71 2.73E+07 2.03E+06 2.93E+07 0.032 11.94
27 0 4.41 2.71E+07 7.25E+05 2.78E+07 0.034 12.68
35 0 4.37 4.61E+07 2.12E+06 4.82E+07 0.035 13.06
54 0 5.39 3.61E+07	 1.46E+06 3.75E+07 0.036 13.24



Table D-3 Experimental data obtained from shake flask experiment (1-c).

Time
(hours)

Naphthalene
concentration

{mg/L)

Total
cell protein

(mg/L)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)

Live Dead Total

0 11.49 1.889 8.83E+06 2.24E+05 9.05E+06 0.011 4.10
4 1.05 3.940 1.03E+07 3.57E+05 1.06E+07 0.019 7.09

8.5 0 7.103 3.47E+07 6.75E+05 3.53E+07 0.040 14.92
13 0 6.248 4.45E+07 3.08E+06 4.76E+07 0.046 17.16
19 0 6.590 4.37E+07 2.80E+06 4.65E+07 0.043 16.04
27 0 6.932 5.21E+07 1.11E+06 5.32E+07 0.044 16.41
35 0 4.27E+07 1.15E+06 4.39E+07 0.048 17.90
54 0 3.93E+07 8.23E+05 4.01E+07 0.050 18.65

Table D-4 Experimental data obtained from shake flask experiment (1-d).

Time
(hours)

Naphthalene
concentration

(mgfL)

Total
cell protein

(mg/L)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)

Live Dead Total

0 16.19 5.82 7.98E+06 7.94E+04 8.06E+06 0.011 4.10
4 7.53 6.25 6.03E+06 3.97E+05 6.43E+06 0.015 5.41

8.5 0 15.61 2.67E+07 1.35E+06 2.81E+07 0.048 17.72
13 0 12.96 4.94E+07 3.77E+06 5.32E+07 0.054 20.14
19 0 12.57 3.28E+07 5.97E+05 3.34E+07 0.052 19.21
27 0 11.85 3.61E+07 1.15E+06 3.73E+07 0.053 19.77
35 0 12.10 4.77E+07 1.92E+06 4.96E+07 0.056 20.70
54 0 13.21 5.22E+07 1.20E+06 5.34E+07 0.055 20.33



Figure D-1 Biodegradation of naphthalene by Pseudomonas putida in
shake flasks (Experiment-1).
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Figure D-2 Optical density during naphthalene degradation in shake
flasks using Pseudomonas putida (Experiment-1).



Figure D-3 Total cell protein during naphthalene degradation in
shake flasks using Pseudomonas putida (Experiment-1).
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Figure D -4 Enumeration of total and live cells during naphthalene
degradation in shake flasks using Pseudomonas putida (Experiment-1).



Figure D-5 Growth patterns of Pseudomonas putida in OD, TCP and LCN due to
biodegradation of naphthalene (initial=3.07 mg/L); Experiment 1-a.
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Figure D-6 Growth patterns of Pseudomonas putida in OD, TCP and LCN due to
biodegradation of naphthalene (initial=7.21 mg/L); Experiment 1-b.



Figure D-7 Growth patterns of Pseudomonas putida in OD, TCP and LCN due to
biodegradation of naphthalene (initial=11.49 mg/L); Experiment 1-c.
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Figure D-8 Growth patterns of Pseudomonas putida in OD, TCP and LCN due to
biodegradation of naphthalene (initial=16.19 mg/L); Experiment 1-d.



Naphthalene
concentration

(mg/L) 

Total
cell protein

(mg/L)

Dry biomass
(= OD x 373.01)

(mgfL)

Time
(hours)

Number of cells/mL
Live	 Dead	 Total

Optical
density

Table D-3 Experimental data obtained from shake flask experiment (1-c).

0 11.49 1.889 8.83E+06 2.24E+05 9.05E+06 0.011 4.10
4 1.05 3.940 1.03E+07 3.57E+05 1.06E+07 0.019 7.09

8.5 0 7.103 3.47E+07 6.75E+05 3.53E+07 0.040 14.92
13 0 6.248 4.45E+07 3.08E+06 4.76E+07 0.046 17.16
19 0 6.590 4.37E+07 2.80E+06 4.65E+07 0.043 16.04
27 0 6.932 5.21E+07 1.11E+06 5.32E+07 0.044 16.41
35 0 4.27E+07 1.15E+06 4.39E+07 0.048 17.90
54 0 3.93E+07 8.23E+05 4.01E+07 0.050 18.65

Table D-4 Experimental data obtained from shake flask experiment (1-d).

Time
(hours)

Naphthalene
concentration

(mg/L)

Total
cell protein

(me)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)
Live Dead Total

0 16.19 5.82 7.98E+06 7.94E+04 8.06E+06 0.011 4.10
4 7.53 6.25 6.03E+06 3.97E+05 6.43E+06 0.015 5.41

8.5 0 15.61 2.67E+07 1.35E+06 2.81E+07 0.048 17.72
13 0 12.96 4.94E+07 3.77E+06 5.32E+07 0.054 20.14
19 0 12.57 3.28E+07 5.97E+05 3.34E+07 0.052 19.21
27 0 11.85 3.61E+07 1.15E+06 3.73E+07 0.053 19.77
35 0 12.10 4.77E+07 1.92E+06 4.96E+07 0.056 20.70
54 0 13.21 5.22E+07 1.20E+06 5.34E+07 0.055 20.33



Table D-5 Experimental data obtained from shake flask experiment (2-a).

Time
(hours)

Naphthalene
concentration

(mg/L)

Number of cells/mL Optical
density

Dry biomass
(= OD x 373.01)

(mg/L)

Live	 Dead	 Total

0 6.23 1.36E+07 7.68E+04 1.36E+07 0.007 2.42
4 0 1.82E+07 3.84E+05 1.86E+07 0.016 5.97

8.5 0 2.13E+07 3.94E+05 2.17E+07 0.021 7.65
13 0 2.40E+07 1.08E+05 2.41E+07 0.025 9.33
19 0 1.96E+07 1.03E+06 2.06E+07 0.023 8.58
27 0 2.38E+07 1.27E+06 2.51E+07 0.023 8.58
35 0 3.32E+07 1.15E+06 3.43E+07 0.024 8.77

Table D-6 Experimental data obtained from shake flask experiment (2-b).

Time
(hours)

Naphthalene
concentration

(mg/L)

Number of cells/mL Optical
densityLive	 Dead	 Total

0 9.54 1.37E+07 1.92E+05 1.39E+07 0.007
4 2.43 1.58E+07 7.68E+04 1.59E+07 0.012

8.5 0 3.04E+07 4.50E+05 3.08E+07 0.030
13 0 3.97E+07 2.96E+05 4.00E+07 0.035
19 0 3.62E+07 6.62E+05 3.69E+07 0.032
27 0 4.01E+07 1.38E+06 4.15E+07 0.033
35 0 5.09E+07 1.16E+06 5.21E+07 0.033

Dry biomass
(= OD x 373.01)

(mg/L)
2.61
4.48
11.00
12.87
11.94
12.12
12.12



• 2 -a (6.23 mg/L initial naphthalene) —9-2-a (sterile control)

■ 2-b (9.54 mg/L initial naphthalene) —-2-b (sterile control)

• 2-c (12.60 mg/L initial naphthalene) —a-- 2-c (sterile control)

• 2-d (15.16 mg/L initial naphthalene) —0-- 2-d (sterile control)
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Figure D-9 Biodegradation of naphthalene by Pseudomonas putida in
shake flasks (Experiment-2).



-4-2-a (6.23 mg/L initial naphthalene)  2-b (9.54 mg/L initial naphthalene)

—A— 2-c (12.60 mg/L initial naphthalene) --*-- 2-d (15.16 mg/L initial naphthalene)

—e-- Culture control (no naphthalene)
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Figure D-10 Optical density during naphthalene in shake flasks using
Pseudomonas putida (Experiment-2).
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Figure D-11 Enumeration of total and live cells during naphthalene
degradation in shake flasks using Pseudomonas puitda (Experiment-2).



Figure D-12 Growth patterns of Pseudomonas putida in OD and LCN due to
biodegradation of naphthalene (initial=6.23 mg/L); Experiment 2-a
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Figure D-13 Growth patterns of Pseudomonas putida in OD and LCN due to
biodegradation of naphthalene (initial=9.54 mg/L); Experiment 2-b.



Figure D-14 Growth patterns of P seudomonas putida in OD and LCN due to
biodegradation of naphthalene (initial=12.60 mg/L); Experiment 2-c.
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Figure D-15 Growth patterns of Pseudomonas putida in OD and LCN due to
biodegradation of naphthalene (initial=15.16 mg/L); Experiment 2-d.



APPENDIX E

DETERMINATION OF SPECIFIC GROWTH RATES
USING ORIGINAL BIOMASS MEASUREMENTS
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Figure E-1 Determination of specific growth rates of
Pseudomonas putida suspension using optical density (without
conversion factor): Experiment-1.

Figure E-2 Determination of specific growth rates of Pseudomonas
putida suspension using living cell number (without conversion factor):
Experiment- 1 .
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Figure E-3 Determination of specific growth rates of
Pseudomonas putida suspension using total cell protein (without
conversion factor): Experiment-1.
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Figure E -4 Determination of specific growth rates of
Pseudomonas putida suspension using optical density (without
conversion factor): Experiment-2.



Figure E-5 Determination of specific growth rates of
Pseudomonas putida suspension using living cell number (without
conversion factor): Experiment-2.
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APPENDIX F

CONVERSION FACTORS FOR TOTAL CELL NUMBER, LIVING CELL
NUMBER, AND TOTAL CELL PROTEIN TO OPTICAL DENSITY
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Figure F-1 Conversion factor (fTCN) for total cell number to

optical density for suspended cultures of Pseudomonas putida
with naphthalene in shake flasks (Experiment-1).
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Figure F-2 Conversion factor (fLCN) for living cell number to

optical density for suspended cultures of Pseudomonas putida
with naphthalene in shake flasks (Experiment-1).
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Figure F-3 Conversion factor (fTcp) for total cell protein
to optical density for suspended cultures of Pseudomonas
putida with naphthalene in shake flasks (Experiment-1).



Figure F-4 Conversion factor (fTcN) for total cell number to
optical density for suspended cultures of Pseudomonas
putida with naphthalene in shake flasks (Experiment-2).
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Figure r -5 conversion tactor (tLcN) tor living cell number
to optical density for suspended cultures of Pseudomonas
putida with naphthalene in shake flasks (Experiment-2).
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Figure F-6 Combined conversion factor (fTCN) of experiment-1&2 for
total cell number to optical density for suspended cultures of
Pseudomonas putida with naphthalene in shake flasks.
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Figure F-7 Combined conversion factor (fLcN) of experiment-

1&2 for living cell number to optical density for suspended
cultures of P seudomonas putida with naphthalene in shake flasks.
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Table F-1 Dry biomass by using conversion factors from OD, TCN, LCN and TCP
obtained by suspended culture with Pseudomonas putida (Experiment-1).

(1-a)
Time

(hours)
Naphthalene Dry biomass (mg/L)
concentration

(mg/L) TCP LCN TCN OD

0 3.07 5.18 5.84 5.81 4.66
4 0 5.58 5.96 6.10 5.78

8.5 0 6.46 9.84 9.73 6.34
13 0 7.17 10.16 10.08 7.46
19 0 8.30 7.79 7.75 7.46
27 0 8.06 9.42 9.36 7.65
35 0 7.65 9.64 9.72 8.39
54 0 7.33 8.29 8.37 8.21

(1-b)
Time

(hours)
Naphthalene
concentration

Dry biomass (mg/L)

(mg/L) TCP LCN TCN OD

0 7.21 4.96 5.40 5.42 5.04
4 0 9.52 6.95 6.85 7.65

8.5 0 10.57 14.34 14.08 10.26
13 0 10.39 13.91 13.78 12.31
19 0 12.50 11.57 11.91 11.94
27 0 11.88 11.50 11.42 12.68
35 0 11.79 18.02 18.12 13.06
54 0 13.90 14.58 14.60 13.24
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(Continued from Table F-1)

(1-c)
Time

(hours)
Naphthalene
concentration

Dry biomass (mg/L)

(mg/L) TCP LCN TCN OD

0 11.49 3.52 5.23 5.25 4.10
4 1.05 8.73 5.73 5.77 7.09

8.5 0 16.75 14.09 13.88 14.92
13 0 14.58 17.47 17.91 17.16
19 0 15.45 17.18 17.55 16.04
27 0 16.31 20.07 19.75 16.41
35 0 16.86 16.69 17.90
54 0 15.68 15.45 18.65

(1-d)
Time

(hours)
Naphthalene Dry biomass (mg/L)
concentration

(mg/L) TCP LCN TCN OD

0 16.19 4.55 4.94 4.92 4.10
4 7.53 5.53 4.27 4.39 5.41

8.5 0 27.18 11.37 11.50 17.72
13 0 21.05 19.16 19.75 20.14
19 0 20.16 13.46 13.26 19.21
27 0 ' 18.48 14.59 14.52 19.77
35 0 19.07 18.58 18.59 20.70
54 0 21.64 20.11 19.82 20.33
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Table F-2 Dry biomass by using conversion factors from OD, TCN and LCN
obtained by suspended culture with Pseudomonas putida (Experiment-2).

(2-a)
Time

(hours)
Naphthalene Dry biomass (mg/L)
concentration

(mg/L) LCN TCN OD

0 6.23 6.82 4.48 2.42
4 0 8.25 5.95 5.97

8.5 0 9.23 6.90 7.65
13 0 10.07 7.63 9.33
19 0 8.68 6.56 8.58
27 0 10.01 7.92 8.58
35 0 12.90 10.69 8.77

(2-b)
Time

(hours)
Naphthalene
concentration

Dry biomass (mg/L)

(mg/L) LCN TCN OD

0 9.54 6.86 4.54 2.61
4 2.43 7.51 5.14 4.48

8.5 0 12.04 9.64 11.00
13 0 14.94 12.41 12.87
19 0 13.85 11.46 11.94
27 0 15.07 12.86 12.12
35 0 18.41 16.02 12.12
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(Continued from Table F-2)

(2-c)
Time

(hours)
Naphthalene Dry biomass (mg/L)
concentration

(mg/L) LCN TCN OD

0 12.60 6.74 4.46 1.87
4 5.25 7.58 5.20 4.10

8.5 0 13.75 11.25 14.92
13 0 15.12 12.64 16.41
19 0 18.97 16.30 15.67
27 0 18.46 16.01 15.29
35 0 20.53 18.15 16.23

(2-d)
Time

(hours)
Naphthalene
concentration

Dry biomass (mg/L)

(mg/L) LCN TCN OD

0 15.16 6.39 4.08 2.61
4 8.25 7.27 4.89 4.10

8.5 0 13.20 10.75 17.16
13 0 18.79 16.25 18.65
19 0 20.73 18.50 17.34
27 0 20.91 18.77 18.46
35 0 22.75 20.63 19.21
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APPENDIX G

PRODUCTION OF INTERMEDIATES DURING BIODEGRADATION OF
NAPHTHALENE BY Pseduomonas putida

116



117

Figure G-1 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment- 1 -a.



Figure G-2 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-1-b.
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Figure G-3 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-1-c.



Figure G-4 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:

Experiment-1-d.
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Figure G-5 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-2-a.

121



Figure G-6 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-2-b.
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Figure G-7 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-2-c.

123



Figure G-8 Concentration profiles during biodegradation of naphthalene (A);
sample HPLC chromatogram (B) and sterile control (C) at time 4 hours:
Experiment-2-d.
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APPENDIX H

EXPERIMENTAL DATA FOR BIOFILIM CULTURES ON GLASS SUPPORTS
IN CONTINUOUS FLOW SYSTEM
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Table H-1 Naphthalene concentration.

Elapsed
time

(hour)

Room
temperature

(°C)
Reservoir-A

Column-X (mg/L) Column-Y (mg/L)

(mg/L) Inlet outlet difference Inlet outlet difference

0.0 22.0 24.2 20.2 19.3 0.9 20.2 18.6 1.6
0.3 22.0 26.3 19.6 15.5 4.2 16.8 13.7 3.2
2.0 21.7 26.0 20.2 17.7 2.4 20.7 18.6 2.1
7.5 20.7 27.3 19.7 17.7 2.0 20.1 17.6 2.5
11.3 20.7 25.4 19.2 16.9 2.3 18.9 16.9 2.0
18.0 23.8 27.0 19.2 13.9 5.4 20.0 12.7 7.3
26.7 21.7 26.6 20.0 15.0  5.0 19.7 13.8 5.9
33.0 21.0 25.8 19.5 14.0 5.5 19.4 12.7 6.7
39.5 23.0 29.1 20.8 13.4 7.4 21.2 13.1 8.1
51.3 21.8 27.2 20.5 15.4 5.1 20.6 14.8 5.8
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Figure H -1 Comparison of naphthalene concentration in column-X
and Y, difference between inlet and outlet for biofilm cultures in a
continuous flow system.



Table H-2 Cells immobilized on glass supports in column reactors of continuous flow system.

Column	 Time
for sample (hours)

Cell density of biofilm
(cells per cm2)

Standard deviation of biofilm 	 Total
(cells per cm2

)

immobilized cells Total immobilized cells
on a glass support	 on 5 glass supports

(cells on 186.1 cm2)	 (cells on 930.5 cm2)

Normalization of

total cellsLive cells Dead cells Total cells Live cells Dead cells Total cells

Seed-BF 0 1.57E+05 5.87E+04 2.16E+05 4.34E+04 7.49E+03 3.60E+04 4.02E+07 2.01E+08 1.00
column-Y 11.25 3.30E+05 1.09E+05 4.39E+05 7.54E+04 9.23E+04 3.98E+04 8.17E+07 4.09E+08 2.03
column-Y 18 3.43E+05 3.67E+04 3.80E+05 1.15E+05 1.24E+04 1.10E+05 7.07E+07 3.53E+08 1.76
column-Y 26.7 2.78E+05 2.88E+05 5.67E+05 1.19E+05 2.69E+05 3.73E+05 1.05E+08 5.27E+08 2.62
column-Y 33 4.32E+05 8.07E+04 5.13E+05 1.67E+05 1.98E+04 1.71E+05  9.54E+07 4.77E+08 2.37
column-Y 39.5 5.59E+05 3.73E+05 9.32E+05 2.10E+05 2.09E+05 4.17E+05 1.74E+08 8.68E+08 4.32
column-X 51.3 6.78E+05 6.91E+05 1.37E+06 1.27E+05 2.61E+05 3.42E+05 6.37E+07 1.27E+09 6.34

Live cell % is assumed to be the same as for suspended cells in the same column.

Table H-3 Growth and viability of suspended cells in column-X of continuous flow system for biofilm culture.

Elapsed
time

(hours)

Cell density
(cells/mL)

Standard deviation of cell density
(cells/mL)

% of live cells
in column-X

Total live cells
in suspension of column-X

(cells/441 mL)Live Dead Total Live Dead Total

0.25 1.34E+05 0.00E+00 1.34E+05 2.33E+05 0.00E+00 2.33E+05 100% 5.93E+07
11.25 9.41E+05 0.00E+00 9.41E+05 9.31E+05 0.00E+00 9.31E+05 100% 4.15E+08
18.00 4.84E+06 5.38E+05 5.38E+06 4.03E+05 4.66E+05 2.33E+05 90% 2.13E+09
26.70 6.05E+06 2.69E+05 6.32E+06 8.07E+05 2.33E+05 6.16E+05 96% 2.67E+09
33.00 5.92E+06 0.00E+00 5.92E+06 1.63E+06 0.00E+00 1.63E+06 100% 2.61E+09
39.50 3.76E+06 2.69E+05 4.03E+06 4.66E+05 4.66E+05 8.07E+05 93% 1.66E+09
51.3 3.50E+06 1.34E+05 3.63E+06 1.53E+06 2.33E+05 1.76E+06 96% 1.54E+09



Table H-4 Viable cells in column-X of continuous flow system.

Total live cells on biofilm
Live cells in Live cells on biofilm applied on 5 glass supports applied Total live cells Total live cells of

Elapsed suspension of from % of live cells from % of live cells in suspension of biofilm and suspended Live-immobilized cells
time column-X in suspension of column-X in suspension of column-X column-X cells in column-X in column-X

(hours) (%) (cells per cm2) (live cells on 930.5 cm2) (cells/441 mL) (live cells in column-X) (%)

0.25 100% 2.16E+05 2.01E+08 5.93E+07 2.60E+08 77%
11.25 100% 4.39E+05 4.09E+08 4.15E+08 8.24E+08 50%

18 90% 3.42E+05 3.18E+08 2.13E+09 2.45E+09 13%
26.7 96% 5.43E+05 5.05E+08 2.67E+09 3.17E+09 16%
33 100% 5.13E+05 4.77E+08 2.61E+09 3.09E+09 15%

39.5 93% 8.70E+05 8.10E+08 1.66E+09 2.47E+09 33%
51.3 96% 1.32E+06 1.23E+09 1.54E+09 2.77E+09 44%



Table 14-5 Viability of suspended bacteria in column-Y of continuous flow system for biofilm culture.

Elapsed
time

(hours)

Cell density (cells/mL) # of glass
supports

in column-Y

Media volume
in column-Y

Retention time
at 1 mL/min.

(hour)

% of live cells
in column-Y

Total live cells
in column-YLive	 Dead	 subtotal

0 0.00E+00 0.00E+00 0.00E+00 5 441 7.4 #DIV/0! 0.00E+00
11.25 4.03E+05 0.00E+00 4.03E+05 5 441 7.4 100% 1.78E+08

18 6.05E+06 4.03E+05 6.45E+06 4 460 7.7 94% 2.78E+09
26.7 4.44E+06 4.03E+05 4.84E+06 3 479 8.0 92% 2.13E+09
33 5.45E+06 2.02E+05 5.65E+06 2 498 8.3 96% 2.71E+09

39.5 6.25E+06 2.02E+05 6.45E+06 1 517 8.6 97% 3.23E+09
51.3 3.43E+06 2.02E+05 3.63E+06 0 536 8.9 94% 1.84E+09

(Sampled from only outlet)

Table H-6 Viable cells in column-Y of continuous flow system.

Live cells in Live cells on biofilm applied Total live cells on biofilm
Elapsed suspension of from % of live cells on glass supports applied

time column-Y in suspension of column-X by % of live cells in suspension

(hours) (%) (cells per cm2) (cells / all glasses remained)

Total live cells	 Total live cells of
in suspension of biofilm and suspension Live-immobilized cells

column-Y	 in column-Y	 in column-Y

(%) 

0.0 98% 2.12E+05 1.93E+08 0.00E+00 1.93E+08 100%
11.3 100% 4.39E+05 4.09E+08 1.78E+08 5.86E+08 70%
18.0 94% 3.56E+05 2.48E+08 2.78E+09 3.03E+09 8%
26.7 92% 5.19E+05 2.66E+08 2.13E+09 2.39E+09 11%
33.0 96% 4.94E+05 1.77E+08 2.71E+09 2.89E+09 6%
39.5 98% 9.14E+05 1.67E+08 3.23E+09 3.40E+09 5%
51.3 95% 1.31E+06 0.00E+00 1.84E+09 1.84E+09 0%

(time "0" = % of seed BF container)	 (Sampled from only outlet of column-Y)



Figure H-2 Amount of live cells on biofilm and suspension in column-Y according to elapsed time in
continuous flow system for biodegradation of naphthalene. (Media flow rate=1 mL/min.)



Figure H-3 Comparison of total live cells in column-X and -Y of continuous flow system for
biodegradation of naphthalene by Pseudomonas putida



Figure H-4 Concentration profiles for control run on column-X.
(at 2, 7, 12, 17, 22 cm, inlet and outlet from the base of column)
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Figure H-5 Countrol runs with (column-X) and without (column-Y)
glass supports without biofilm in a continuous flow system.
(Time "0" : starting time after installing glass supports on column-X;
control run for about 27 hours)



Table H-7 Concentration profiles of naphthalene at different
sampling ports of column-X in continuous flow system for
biofilm cultures with Pseudomonas putida

Time 	 Concentration of naphthalene on column-X (mg/L)
(hours) 	 Inlet 	 X-A 	 X-B 	 X-C 	 Outlet

-11.2 19.10 18.82 19.02 18.39 18.73
-7.4 19.64 19.18 16.83 17.97 19.20

0 20.18 19.02 18.89 18.59 19.33
0.25 19.63 17.30 16.73 15.49 15.45
7.5 19.71 18.03 18.22 18.00 17.68

11.25 19.23 15.79 15.47 15.30 16.90
18 19.22 14.83 13.16 12.93 13.87

26.7 20.04 14.34 14.25 14.03 15.02
33 19.45 14.72 14.62 13.21 13.96

39.5 20.77 13.79 13.94 13.06 13.39
51.3 20.52 17.50 14.95 14.95 15.37
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Figure H-6 Profiles of naphthalene consumption along with sampling ports in
column-X of continuous flow system for biofilm cultures with Pseudomonas
putida. (based on inlet concentration at each sampling time)
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