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ABSTRACT

ENCODING AND STORAGE COMPONENTS OF
VERBAL WORKING MEMORY AS REVEALED BY A FACTORIAL DESIGN,

AN FMRI STUDY

by
Jason Steffen er

In this fMRI study, the contributions of frontal and posterior brain regions to verbal

working memory were investigated. A two-factor design with low and high memory load

(2 and 5 letters) and short and long delay (4 and I2 secs.) as factors were used. Based on

reports in the literature, we expect activity in the following frontal and parietal brain

regions of interest (ROIs): Brodmann areas (BA) 6, 9, 46, 44, 45, 7 and 40. The analysis

of collected fMRI data involved image processing and statistical analysis methods

including realignment, spatial normalization, spatial smoothing, temporal filtering,

intensity normalization, statistical tests, and thresholding of results. The design allowed

for testing the interaction and main effects of the two factors. The interaction terms

revealed involvement in the caudate and BA 6, 9, and 7. The main effects revealed

activity in BA 6, 9, 32, 40, 44, cerebellum, thalamus, and caudate. The results of this

study support the literature and offer more insight into previous findings.
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CHAPTER 1

INTRODUCTION

Working memory (WM) is the cognitive process underlying the temporary storage and

manipulation of information [I]. Baddeley proposed a working memory model

consisting of three components, the central executive, the visuospatial sketchpad, and the

phonological loop. The phonological loop is thought to be responsible for storing and

retaining verbal information in a temporary storage buffer via subvocal rehearsal. The

central executive component is thought to manipulate this information for further

information processing (i.e., decision to respond to a cue using verbal information stored

in WM), The information in phonological storage decays within one to two seconds,

therefore there is the need for constant rehearsal via articulatory speech processes[2].

In a recent review of neuroimaging studies, Smith et al. [3] summarize research

findings describing a neural architecture that may underlie Baddeley's [I] model of

verbal working memory. They conclude that previous research suggest the subvocal

rehearsal component of verbal WM appears to be sub served by left-hemisphere frontal

speech regions, including Broca's area in the inferior frontal gyrus (Brodmann Area 44),

the inferior aspect of the precentral gyrus in Brodmann Area 6, and the supplementary

motor cortex within the superior portion of Brodmann Area 6. The left posterior parietal

cortex (Brodmann Area 40) mediates a storage buffer, while the dorsolateral prefrontal

cortex (Brodmann Area 9/46) is thought to mediate the executive component of the

verbal working memory system. The primary goal of this fMRI study was to reveal

significant signal change in the neural correlates of encoding and storage of verbal

working memory using a factor analytic approach.
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CHAPTER 2

BACKGROUND

2.1 Task Background

Recently, two types of tasks were used to place demands on the working memory system

to dissociate the rehearsal component of verbal WM from the storage component. These

two tasks are the n-back task and the item recognition task. The n-back task involves

sequential presentation of items to be held in the temporary storage buffer and is designed

to increase demands on the maintenance of the memory trace by increasing the load, the

number of items to retain. With an increase in the memory load comes an increase in the

time it takes to subvocally rehearse this information so it can be retained in the storage

buffer [4, 5]. Thus, increases in brain regions associated with this task can be attributed

to either the effect of load or length of rehearsal period since these components are

confounded. Regional significant signal change in response to this task may be due

either to the increase in load or the increase in rehearsal period.

The item recognition task is a task where items are presented to the subject in a

block, following a delay period the subject determines whether a single probe item was in

the initial block of items. This task allows for a possible dissociation of the two factors

hypothesized to constitute the phonological loop -- the number of items in the initial

presentation and the length of delay. Varying the number of items presented in the initial

block is a variation of the memory load [6]. The length of the rehearsal period for items

held in memory is changed with variation in the delay period between item presentation

and probe presentation. [7].

2
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Multiple variations of these two methods have been used to tease apart the neural

components of verbal working memory each with their own strengths and weaknesses.

Cohen et al. I997 [8] used a parametric variation of the n-back task to look for a

dissociation of storage and rehearsal components. The main effect of load (i.e. an

increasing number of sequentially presented items to remember) revealed increased

activation in Broca's Area (BA44), posterior parietal cortex and the dorsolateral

prefrontal cortex (DLPFC). The interaction between the rehearsal period and load was

revealed in increases in signal change in Broca' s Area and the posterior parietal regions.

They propose that this interaction may be associated with updating the contents of the

storage buffer during rehearsal. Braver et al. [4] corroborated Cohen et al.'s finding of the

effect of load using a similar parametric paradigm design.

Rypma et al. 1999 [6] used an item recognition task to avoid the confound of

delay and load by varying the task load and keeping the delay constant. The authors used

this design to determine if the executive component of working memory would be

activated with an increase in memory load. Their findings included activations in

bilateral inferior frontal gyri, including Broca' s Area, bilateral posterior parietal regions

and caudate nucleus.

Barch et al. I997 [7] also used the item recognition task; however, they varied the

task along the rehearsal period. The question of their study was whether an increase in

working memory demand, in the form of a longer rehearsal time, causes an increase in

DLPFC activation, This experiment revealed activation in the DLPFC, Broca's Area and

the left posterior parietal region.
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Using these different tasks the studies presented show a large amount of overlap

in their findings. The four studies all showed activation in the left inferior frontal gyms,

Broca' s Area, thought to be involved in sub-vocal rehearsal [3]; with three of these

showing activation in the right hemisphere as well, Three of the studies showed

activation in the precentral gyms, also thought to be involved in sub-vocal rehearsal, the

study by Barch et al. did not show this result. All four of the studies showed response in

the storage buffer of the left posterior parietal cortex with the two n-back tasks also

demonstrating right hemisphere responses. The hypothesized location for the executive

functions of working memory, the DLPFC, was responsive bilaterally for Braver et al,,

left sided for Barch et al, and right sided for Cohen et al.'s experiment.

The experiments above look for the effects on the working memory system with

the manipulation of one slave system subcomponent. However, only Cohen et al, address

the interaction of one subcomponent of verbal WM with another, how one-slave system

subcomponent changes in the context of another. Their task however, does not directly

manipulate the length of rehearsal period and therefore does not reveal the effects of an

increased load over varied rehearsal periods. Table 1 summarizes these experiments and

their findings. The table list the four studies described above and whether they found

activation in the listed regions as well as the hemisphere.
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TABLE 1 Summary of literature review

Inferior
Frontal
Gyms
(BA 44)

Inferior
Precentral
(BA 6)

Superior
Precentral
(BA 6)

Parietal
Cortex
(BA 7
BA 40)

DLPFC
(BA 9
BA 46)

Caud-
ate

Barch et al.
(1997)

Left Left Left

Braver et al.
(1997)

Left
Right

Left Left Left
Right

Left
Right

Right

Cohen et al.
(1997)

Left
Right

Left
Right

Left
Right

Right

Rypma et al.
(1999)

Left
Right

Left
Right

Left Left
Right

The proposed design used in this study attempted to replicate the findings of

Rypma et al, I999 [6] and Barch et al. I997 [7] while examining the effect of one

working memory subcomponent in the context of another. To achieve this goal a factorial

design with two factors, memory load and rehearsal period was used. Friston et al. [9]

provide an example showing the benefit of a factorial design for investigating the

importance of interaction among processes in cognition. In their paper, they describe the

modulation of object recognition by phonological retrieval, Comparisons of tasks

involving object recognition and those not involving object recognition revealed blood

oxygen level dependent, BOLD, effects. However, it was not until the interaction of

object recognition and phonological retrieval was tested that other modulating effects

were revealed. The interaction term showed those regions that respond to object

recognition only when phonological retrieval is also involved. This is why these "new"

regions did not show effects in the initial comparisons.

The aim of this study was to reveal responses in the neural substrates described by

Smith et al. as being involved in Baddeley's model of working memory using a factorial
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design, Expected findings include DLPFC (BA 9/46), inferior frontal gyri (BA 44),

inferior and superior aspects of the prefrontal gyri (BA 6), and posterior parietal regions

(BA 7/40). The use of a two-factor design was not only to replicate the findings of others

but also to investigate the relationship between the two working memory subcomponents.

This study questioned whether there may be some interaction between the two factors of

the experiment. The study was designed to test this question about the involvement of

regions that increase in activity when the memory load and rehearsal period are varied.

Responsiveness of regions during the interaction test provides evidence that activation in

the region is evoked when the two factors interact. This interaction is not testable in

designs that vary demands on each slave subcomponent independently.
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2.2 Functional Magnetic Resonance Imaging Background

The signal measured in magnetic resonance imaging (MRI) comes from the protons of

water molecules. When a subject is placed in a large magnetic field, some of their tissues'

water molecule protons align their magnetic moments with the external field, The number

of protons aligned with the external field is related to the external magnetic field strength,

The MRI unit used in this experiment had a field strength of 1.5 Tesla, which is 37,500

times stronger than earth's average field strength of 4* I0 -5 Tesla. To create a signal, an

excitation radiofrequency magnetic field pulse (if pulse) is applied to the area of interest,

for this experiment only the brain is of interest. The alignment of the protons absorbing

this pulse changes to that of the if pulse. After the short if pulse, the protons begin to

realign themselves with the external field and induce a signal voltage detectable with an

external antenna.

The length of time required for a proton to realign itself with the external field is

related to its surrounding tissue. Each tissue type has its own relaxation time constant

called its Ti relaxation time. For the brain, there are three tissue types of interest, gray

matter, white matter and cerebrospinal fluid (CSF). CSF has the longest TI relaxation

time and white matter has the shortest with gray matter's T1 relaxation time being closer

to that of white matter than CSF. An image whose signal intensity relies on this T1

relaxation time is called a T1 weighted image. [I0]
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Figure 2.1 Left: T1 weighted MR image with cervical spinal fluid appearing black.
Right: T2* weighted image with cervical spinal fluid appearing white.

Seen in the left hand side of Figure 2.1 is a T1 weighted image. Not including the

scalp, the tissue with the greatest signal intensity is the white matter with the gray matter

being slightly darker and the CSF in the ventricles being the darkest. The reason for these

intensity differences is due to T1 relaxation time differences. Creating an image that has

differential signal intensities for the different tissue types requires reading the signal

strengths before the different tissues completely relax. Figure 2.2 shows relative Ti

relaxation time courses for the three tissue types. By acquiring an image at the readout

time indicated in the figure, the different tissue types will have different intensity values.



Figure 2.2 TI Relative Relaxation Curves

T1 relaxation is not the only relaxation time occurring while protons realign

themselves with the external field. A proton that is aligned with a magnetic field

precesses, or spins, about the direction of the field as seen if Figure 2.3. After the rf pulse,

the protons are in line with the rf pulse and are still precessing about the external field

direction. An ideal situation would be one where all the protons precess about the field

axis at the same frequency. However, due to small differences in the local magnetic field

the protons precess at slightly different frequencies. As the differences in protons'

precessions increase over time, the signal intensity decreases due to destructive

interference, This decrease in signal intensity has its own time constant called T2

relaxation time. As with the TI relaxation time, different tissue types have different T2

relaxation times.

9
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Figure 2.3 A proton precessing about an external magnetic field,

A further decrease in a tissue's T2 relaxation time is the presence of paramagnetic

particles. The presence of a paramagnetic particle causes a more rapid decrease in T2

relaxation time and is referred to as T2' relaxation time. The sum of the T2 and T2'

relaxation times is called T2* relaxation. A naturally occurring paramagnetic particle in

the body is deoxyhemoglobin and its presence causes local T2* relaxation time to

decrease and thereby reduce signal intensity more rapidly. An image relying on the T2*

relaxation time is called a T2* weighted image,

Seen on the right hand of Figure 2.I is a T2* weighted image. The tissue with the

greatest signal intensity is the CSF with gray matter being slightly darker and white

matter being the darkest, By reading the signal at the readout time indicated in Figure 2.4

a T2* image is created with the three tissue types being differentiable. Figure 2.4 shows

relative T2* relaxation time courses for the three tissue types.
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Figure 2.4 T2* relative Relaxationcurves

Kwong et al. and Ogawa et al. [1I, 12] used the natural presence of

deoxyhemoglobin as a contrast agent to create the blood oxygen level dependent (BOLD)

technique. The presence of deoxyhemoglobin in the blood causes a local decrease in

signal intensity when acquiring a T2* weighted image, on the other hand a decrease in

the local amount of deoxyhemoglobin will cause a local signal increase,

The presence of deoxyhemoglobin in blood vessels decreases when replaced by

oxyhemoglobin thereby increasing the signal. When neuronal activation increases in a

region, the body responds with an increase in oxygenated blood sent to the area, The

amount of oxygenated blood sent to the area exceeds the needs of the tissues and the

excess oxygenated blood drains into the venous system displacing the deoxygenated
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blood and its deoxyhemoglobin. This displacement of deoxyhemoglobin causes a local

signal change dependent on neuronal firing.

The rapid acquisition of T2* weighted images allows for the collection of images

where the signal intensities change as a function of neuronal response. To get a rapid

acquisition of images comes a trade off between spatial resolution and temporal

resolution. To increase the temporal resolution of a time series, spatial resolution is

sacrificed. In order to gain the temporal resolution of one scan every four seconds for this

experiment images were acquired with the dimensions 64x64x28. The result is an image

with voxel dimensions of 3.75mm x 3.75mm x 5mm (x, y, z).

With one image of the brain acquired every four seconds, for this experiment,

changes in blood flow that occurred because of the task were detectable. The subjects

engaged in the tasks and the neuronal responses increased the local blood flow resulting

in detectable signal changes. After subjecting the images to spatial processing and

statistical analysis, regional changes in blood flow to the brain that occurred as a result of

engaging in the experimental task were detected.



CHAPTER 3

METHODS

3.1 Participants

All subjects signed an informed consent approved by the Institutional Review Board of

the University of Medicine and Dentistry of New Jersey. Eight subjects (6 female, 2

male) between the ages of 21 and 43 (mean age of 32,5 years) participated in this study.

3.2 Task

The task used in this study consisted of two factors: memory load (i.e., number of items

to be retained in the temporary storage buffer) and rehearsal period (i.e., length of time

during which the items in the temporary storage buffer have to be rehearsed so the

memory trace is maintained). Each factor had two levels. The memory load levels are

two letters (Low) or five letters (High) and the rehearsal period levels are four seconds

(Short) or twelve seconds (Long).

A graphical example of this is seen in Figure 3,1. This figure shows the two

factors of this experiment, memory load and delay, each with their two levels. The result

is four conditions, or as shown here the four cells of the experiment.

13
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Figure 3.1 The experiments' two factors each with their respective two levels

With a two-factor design two main effects exist, one for each factor, and an

interaction term. Testing of the memory load main effect involved a contrast consisting of

subtracting the two low load conditions from the two high load conditions {(High/Long +

High/Short) — (Low/Long + Low/Short)). The main effect of memory load is designed to

show those brain regions selectively associated with an increase in memory load.

Testing of the rehearsal period main effect involved a contrast consisting of

subtraction of the two short rehearsal period conditions from the two long rehearsal

period conditions {(High/Long + Low/Long) — (High/Short + Low/Short)). The main

effect of rehearsal period is designed to reveal those brain regions selectively associated

with an increase in the length of rehearsal period.

What this experiment has to offer beyond the testing of two main effects is the

test of an interaction between the two factors. The interaction tests for those brain regions

selectively more sensitive to the difference between high memory loads in long versus

short rehearsal periods than low memory loads in long versus short rehearsal periods
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{(High/Long - High/Short) - (Low/Long - Low/Short)) [13]. This test therefore reveals

brain regions more selective for the high memory load and long rehearsal period

conditions. The converse of this test is that which tests for those regions selectively more

sensitive to the difference between low memory loads in long versus short rehearsal

periods than high memory load conditions in long versus short rehearsal periods

{(High/Short — Low/Short) — (High/Long — Low/Long)). This test reveals brain regions

more selective for the high memory load and short rehearsal period conditions.

To summarize these contrasts see Table I. The columns represent the four

conditions of the experiment and the rows represent the four different tests. Take row one

as an example. The test is the Main Effect of Rehearsal Period, and the contrast vector is

(-I -1 +1 +1). This test multiplies the respective columns by the value in each box, either

-1 or +1, The result is —{Low Load / Short Delay) — {High Load / Short Delay} + {Low

Load / Long Delay) + {High Load / Long Delay).

Table 2 Summary of test performed and their contrast vectors

Test
Low Load /
Short Delay

High Load /
Short Delay

Low Load /
Long Delay

High Load /
Long Delay

Main Effect of Rehearsal
Period

-1 -1 +I +I

Main Effect of Memory
Load

-I +I -I +I

Test for sensitivity of a
High Load held over a
Long Delay

+1 -1 -I +1

Test for sensitivity of a
High Load held over a
Short Delay

-I +I +1 -1
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3.3 Experimental Procedure

The task included thirty-two trials with each trial lasting twenty-four seconds. Within the

first five seconds of each trial, the letters of the memory load were presented. Following

was the delay period and finally a probe letter presentation. Within a low load memory

level and short rehearsal period trial, two letters were presented in the first five seconds

followed by a four second delay and finally probe letter presentation. The inter-stimulus

time interval for a trial with a short delay is thus thirteen seconds. A high load memory

level with a long rehearsal period consists of five letters presented in the first five

seconds of the task followed by a twelve second delay period and concluding with the

probe letter presentation. For a long delay period block the inter-stimulus time interval is

five seconds.

Figure 3.2 The Behavioral Experiment

Figure 3.2 shows a graphical representation of the task. The top row shows the

presentation of five letters with the bottom showing two letters.
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3.4 fMRI Scanning

A 1.5 Tesla GE Signa scanner was used to acquire all data for this study. Prior to

functional scanning TI anatomical images were obtained for data overlay. (256x256x28

voxels, Field of View = 240x240 mm, slice thickness=5 mm) Functional images

consisted of 28 slice T2* weighted echoplaner images chosen to cover the entire brain.

(TR/TE=4000/60 ms, 64x64x28 voxels, Field of View=240x240 mm, slice

thickness=5mm) Functional data were acquired during one session lasting I3 minutes. A

total of 195 images were collected with the first three discarded to allow for T1

equilibrium effects. Subjects were reminded not to move and their heads were restrained

with padding.

3.5 Data Analysis

3.5.1 Spatial Processing

All data were analyzed using Statistical Parametric Mapping software (SPM99 Wellcome

Department of Cognitive Neurology, London, UK) [I4]. A first step in the analysis of

the time series data is to set the origin of all the images. The origin of the images is the

reference point from which locations are measured in Euclidean space, in millimeters. As

a default, the origin field of the images is set to the center of the data volume. Before the

experiment was carried out, the decision was made to transform all of the data into a

standard space, Transforming all data into a standard space allows for cross subject

comparisons and therefore group analysis. The standard space chosen was that designed

by Talairach and Tournoux [I5]. The origin of their standard space was chosen to be an

anatomical landmark called the Anterior Commisure and therefore the origin of all
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images was set to this same anatomical location. From this location, distances in

millimeters are measured. Each time point in the time series is stored as a separate image

file, Accompanying every image file is a header file, which has a description of the data

file. One descriptor is which voxel in the image file is the origin. By editing the header

file one changes the origin.

The next step is to realign the entire time series data. Even though the subjects

were instructed not to move their head and cushions were in place to restrict head motion,

movement of the head still occurs. To realign the time series, the brain was considered a

rigid body. This means that six parameters are necessary to transform one rigid body into

the space of another, The six parameters are x, y, z translations and roll, pitch, yaw

rotations.

Aligning two images requires the images to be adjusted until their sum of squared

differences is minimized. The sum of squared difference of two images is the subtraction

of the two images from each other and the square of the resultant image. When the image

alignment is as close as possible, the resultant image will be at its minimum, The

determination of the realignment parameters is performed in an iterative fashion and

stopped when the sum of squared difference stops decreasing. The results of this iterative

optimization are three four by four matrices. These matrices describe the necessary

translations and rotations to transform one image into the space of another. Figure 3.3

shows these matrices. [I6]
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Figure 3.3 Q, F, and W in radians are the rotation angles about the X, Y, Z axes
respectively

Application of the above matrices to a voxels' coordinates involved multiplying the

matrices together in the order above and the resultant matrix was multiplied to the

coordinates of the voxel (xi, yi, z 1 , 1). The new set of coordinates (x2, y2, z2, I) were then

in the transformed space.

One goal of the analysis was to allow comparisons between the results and the

results from other research groups. In order to do this, the data was spatially normalized

to Talairach coordinates [I5]. Talairach and Tournoux created a human brain atlas that

contains a coordinate system allowing locations to be described with a set of three-

millimeter distances from the origin, the Anterior Commisure. It is this standard space

that the data was transposed into for cross subject and experiment comparisons.

In order to do this normalization the functional data were first co-registered with

the high-resolution anatomical image [I7]. This registration was done between a mean

functional image and the high-resolution image, the resultant translation and rotation

matrix was than applied to all images of the time series placing all images into the same

space as the high-resolution anatomical image. The reason for this registration is to

account for any subject movement that may have occurred between the time of the

anatomical scan and the beginning of the functional scanning, That time was

approximately twenty-five minutes. This step also allows for accurate overlay of the

functional results onto the same subject's high-resolution anatomical image.
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Placing two images into the same space that are of different imaging modalities,

such as Ti weighted and T2* weighted, requires a procedure different from that

implemented in realigning images. First the T1 image was aligned to a Ti template image

and then the T2* image was aligned to a T2* template image. Instead of the six-

parameter estimation as used in the realignment step, 12 parameters are estimated at this

step for both images. The extra six parameters are three shear and three zoom parameters.

Figure 3.4 shows diagrams exemplifying these I2 parameters.

Figure 3.4 Examples of four types of transformation, a: Translation, b: Rotation,
c: shear, d: zoom

After the two images are in the same space as the two template images, they were

partitioned. Brain tissue comes in three main categories, gray matter, white matter, and

CSF. Using template probability images of the three tissue categories, the two images

were segmented into three images each. The use of template probability images makes a

determination for each voxel in the images as to which category the voxel belongs to.

The resultant six images (Ti gray, white, CSF and T2* gray, white, CSF) were

simultaneously registered together. A rigid body transformation was performed with the

same optimization technique as used in the realignment stage. Using the transformation

matrices for the T1 image to its template, the T2* image to its template and the

segmented T2* images to the segmented TI images the T2* mean image and the T1

anatomical images were transformed into the same space.



21

Another benefit of this registration appears in the spatial normalization step. This

step uses a 12-parameter transformation and a non-linear approach to put an image into

the standard Talairach and Tournoux space [I6]. With the high resolution and functional

images in register, the parameters necessary to spatially normalize the high-resolution

image are applicable to the entire low-resolution functional time series. The larger

amount of spatial information in the high-resolution image allowed for a more accurate

set of transformation parameters to be obtained. The twelve parameters are three

translational, three rotational, three zoom and three shear as seen above in the

coregistration step and Figure 8. The determination of the twelve parameters was done

with the same optimization technique as used in the realignment step; however, this time

the TI image was transformed into the space of a template image,

To account for local differences between the TI anatomical image and the

template image not accounted for by the affine transformations, non-linear deformations

were performed. Sets of 3-D cosine functions were used as a basis set for the non-linear

deformations, [I8]
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Figure 3.5 Example Deformation Field

Figure 3.5 best describes a deformation map made of cosine functions. The directions of

the arrows indicate the direction of deformation while the lengths of the arrows indicate

the amount of deformation. The axes in the above plot indicate the cosine functions used

to generate this plot. This deformation map is made of a sum of cosine functions;

therefore, it can account for any necessary deformations. This can be compared to Fourier

Series where any function can reasonably be represented by the sum of a set of sine and

cosine functions. This same technique is applied here in three dimensions. Due to

memory limitations, only eight cosine functions in each direction were used to create this

deformation map. Again, an iterative method was performed in order to minimize the

sum of squared differences between the template image and the TI anatomical image.
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Following the determination of realignment, co-registration and normalization

parameters the application of these parameters was performed. All estimated parameters

were applied by sinc interpolating the images into their new space. The result was a new

series of images all in the same standard space and in register with each other. Sinc

interpolation uses a Hanning windowed sinc function. The Hanning window was applied

so that only a 9x9x9 cube of voxels was used to determine the new value of a

transformed voxel, The sinc interpolation was performed in each of the three directions

separately. The Hanning windowed sinc function using nine nearest neighbors in one

Where d, is the distance from the sampling point to the center of the ith voxel and νi is the

ith voxel's value. An example of a sinc function is seen in Figure 3.6.

Figure 3.6 An example of a sinc function. sin(πt)/πt
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The final step in what are called the preprocessing steps is to smooth the data in

three dimensions; this step suppresses noise in the data. Smoothing the data involved the

convolution of every voxel with a Gaussian curve in each of the three directions, x, y, z.

The new value of a voxel was: ti = Σd j = -d s(i-j)gi

Figure 3.7 A Gaussian Curve

FWHM refers to the full width at half maximum as indicated in Figure 3.7, This

parameter determines the amount of smoothing applied to the images. The FWHM

applied to the functional data was 8 mm, 8 mm, I0 mm in the directions x, y, z

respectively,

Before the statistical analysis, the data was temporally band-pass filtered. The low

frequency cutoff was I92 seconds and the high pass cut off for the filter was the

hemodynamic response. The hemodynamic response is the waveform of the blood flow

as it responds to an increase in neuronal activation. The hemodynamic response function
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[I9] is modeled as the difference between two Gamma functions and is intended to

provide a canonical model of the hemodynamic of the brain. The aim of using this

information is to improve the statistical analysis by incorporating physiological

information into the statistical model. The hemodynamic response function takes into

account the delay and dispersion of the blood flow response to neural activation. Since

this information is used in the model, the data is filtered at this high frequency response

to exclude any variations that occur above it.

Figure 3.8 shows the hemodynamic response function and three of its properties the time

to onset (when the blood flow begins to rise), the dispersion, and the time to peak (how

long before the blood flow reaches its maximum value).

The next step was global intensity normalization of the data, Global intensity

normalization scales the data to have a mean of 100. To scale the data, first, the mean

value of each image was subtracted from each voxel in the image and then I00 were

added to the each voxel. The mean value of each image is now 100. With the mean of the
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images scaled to one hundred the parameter estimates resulting from the least squares

analysis are also interpretable as percent signal changes. Percent signal changes hold

more meaning in the context of detecting signal changes with functional MR imaging

than do parameter estimates of a response. The number is the same but the interpretation

is more meaningful when referred to as a percentage.

3.5.2 Statistical Analysis

The assessment of a significant relationship of a voxel in the £M RI time-series data and

the behavioral experiment is based on multiple linear regression, The first step in

statistical analysis of this form is the creation of a design matrix. Figure 3.9 shows the

design matrix used in this experiment. This design matrix incorporates all of the

behavioral task conditions and timing parameters. The design consists of four conditions,

one condition per cell of the factorial design. This corresponds to one condition in the

design for each of the following: low memory load and short rehearsal period, high

memory load and short rehearsal period, low memory load and long rehearsal period, and

high memory load and long rehearsal period. The columns of the design matrix represent

each of these conditions of the experiment and the rows of the design matrix represent the

time points of the experiment. A fifth column is included in this design matrix, which

only consists of the number one. This column of ones corresponds to the y-intercept of

the linear regression as well as the overall mean.



27

Figure 3.9 The design matrix used in the experiment

To incorporate the information describing the behavioral conditions of the

experiment each of the designs' columns consisted initially of ones and zeros. A one in a

column means that during this time-point the subject was engaged in the behavioral

condition described by this column and a zero means that the subject was not engaged in

this condition. Convolution of the above described hemodynamic response function and

the columns of the design matrix incorporate physiological information into the model

with the intent of increasing statistical power. After this convolution, the columns of the

design matrix no longer consist of zeros and ones but values with a range around zero.

The columns now represent the "engaged or not-engaged" blocks convolved with the

hemodynamic response function.



Figure 3.10 An example design before and after convolution with the hemodynamic
response function.

28
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Figure 3.I0 shows the plot of an example design. The upper left hand plot shows

the design consisting of two levels. The upper right hand plot shows the hemodynamic

response function and the lower plot shows the two plots convolved together. The lower

plot is a better fitting model than the upper left hand plot due to its incorporation with the

hemodynamic response function,

The result of the least squares estimation of parameters for the data and model are

referred to as beta weights in this context, and are also known as regression slopes. For

each voxel and each column of the design matrix there is a beta weight estimated by the

least squares estimation. The result is therefore five "beta images," one for each column

of the design matrix, The beta weight for one voxel and one column of the design matrix

represents the relationship between the time course of the data and the time course of the

behavioral condition. An increase in a beta weight value represents an increase in the

relationship between the time course of that behavioral condition and that voxel's time

course. To perform the tests as described above, the main effects and the interactions, are

tested with linear combinations of these beta-images, called contrasts. The contrasts used

in the experiment are described above in Section 3.2 and displayed in Table I,

The result of performing one of the above tests is a statistical parametric map. The

described contrasts were tested with t-tests; therefore, the resultant statistical parametric

map is a t-map. Determination of significance of a voxel was performed with thresholds

placed on the t-map, Two thresholds were placed on the t-maps, a height threshold and an

extent threshold, Figure 3.I1 displays these two thresholding techniques. If the height

threshold is set at threshold 1 and the extent threshold is set to zero, only clusters e and f

containing peaks B and C would be revealed. An extent threshold of zero means that
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clusters of any size activated above the height threshold are revealed. At height threshold

2, with an extent threshold of zero peaks B and C are one large cluster g and cluster h

containing peak D is also revealed. If the height threshold is placed at threshold 2 and the

extent threshold is implemented then only the large cluster g of peaks B and C is

revealed. The extent threshold eliminates the small peak D because its extent of h is less

than the threshold.

Figure 3.11 Example of height and extent thresholds.

3.5.3 Group Analysis

The overall aim of this study is to have the ability to make inferences about the

population from which the subjects were drawn [20]. A first step in the group analysis of

the data is to only include voxels that are included in each subject's time-series data. Due

to the variability in signal dropout across subjects [23], only the minimum of all brains is

included for analysis. In the analysis, this is interpreted as that the subject with the

greatest amount of signal drop out places the largest limitation on the group results. The

group level statistics are performed only on those voxels included in every subject in the
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group. If a voxel has data for all but one subject in the group, than this voxel is not

included in the final group analysis.

To make population inferences, each subject is treated as a random, independent

variable. In order to do this two types of variation are in need of consideration, First, is

the inter-scan within subject variance and the second is the between subject variance. At

the first step of this statistical analysis, each subject is tested individually. This accounts

for the inter-scan variability. A contrast image of each test of interest and each subject is

then taken to a second step for the group analysis. The contrast image from each subject

is an image where each voxel is a linear combination of beta weights. The second step of

this analysis performs a one-sample t-test on this series of contrast images. This tests for

voxels that show a significant difference from zero. The voxels showing significant

differences from zero correspond to areas selectively responsive to the test after intra and

inter subject variance is accounted for, This means that statistical significance of a voxel

after this stage of analysis is generalized to the population.

Anatomical substrates of clusters of significant pixels were assessed using the

Talairach Daemon (RIC, UTHSA) [21]. The Talairach Daemon is an online database of

the Talairach and Tournoux Atlas. Submitting a set of x, y, z coordinates (in millimeters)

to the database results in finding the hemisphere, tissue type and region of the voxel in

the brain. All voxels showing significance in relation to a contrast were examined. Within

the software used for the analysis of the data, a cluster's location is defined by its

maximum. The problem with this approach is the fact that clusters have great variability

in size. For a small cluster, knowing just the location of the cluster maximum may be

enough information to describe the location of that cluster, However, large clusters can
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extend over neighboring brain regions and the location of this clusters' maxima may not

accurately describe it. For example, a cluster has a size of 400 contiguous voxels and the

local maxima describe the location of this cluster as being in Brodmann's area 44. Does

this mean that 400 contiguous voxels are significant in Brodmann's area 44? Or should

this be interpreted as Brodmann's area 44 is activated along with its neighbors, BA 45, 9

and 6? Inspection of just the local maxima within a statistical parametric map does not

shed light on this question. Even within one Brodmann's area that extends over more

than one gyrus or different aspects of the same, one may require more information than

the cluster's maximum to describe its extent.

Another situation is a cluster on the brain's midline. The cluster may have an

extent of four hundred contiguous voxels with its maximum located in the right

hemisphere, Does this mean that this entire cluster exists in the right hemisphere?

Inspection of the brain map could tell you otherwise; however, the amount of significant

voxels in each hemisphere is still unknown.

To circumvent the above difficulties, all significant voxels were investigated

within a statistical map instead of just the locations of the maxima. The result is a large

table of voxel coordinates, one set for every activated voxel in the brain map. The

Talairach coordinates for each voxel are determined with the Talairach Daemon (MC,

UTHSCSA) and the result is the Talairach location for every single significant voxel.

This data file is sorted by the different neural substrates; and the number of significant

voxels per different neural substrate determined. This table of summary information of a

statistical map allows one to address the questions posed above. If a cluster extends over

multiple regions one now knows the exact extent of the cluster.
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Appendixes A, B and C contain programs written in Matlab used to perform the

above steps. The program jrsstreamTAL.m in Appendix A extracts the x, y, z coordinates

from the SPM99 software and saves them to a file. The program roital.m summarizes the

results of the Talairach Daemon and creates a table showing the number of activated

voxels in each different region of the brain. The program saves this table to a file,

Appendix C has the program called merge.m, which merges two tables from roital.m and

allows for the comparison of two results.



CHAPTER 4

RESULTS

4.1 The Main Effect of Rehearsal Period

Contrasting all conditions involving a long rehearsal period with all tasks involving a

short rehearsal period will reveal brain regions selectively associated with an increase in

the length of rehearsal period [131 This test revealed activation in bilateral medial

frontal gyri (BA 9 and 6), bilateral superior frontal gyri (BA 6 and 44), left inferior

parietal lobule (BA 40) and bilateral cingulate gyri (BA 32).

The entire sub-vocal rehearsal circuit was active in this task as well as the pure

storage buffer. The DLPFC that is hypothesized to perform executive functions is also

active within this task. These results are summarized in the first column of Table 3 and

seen in Figures 4.1.

Figure 4.1 Activity during the main effect of rehearsal period
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Table 1
Results for all tests

Hemisphere Lobe Region Brodmann Area Main Effect Main Effect Interaction Interaction
of Rehearsal Period of Memory Load High Load High Load

over Long Delay over Short Delay
Left Cerebrum Frontal Lobe Inferior Frontal Gyrus 9 2

Right Cerebrum Frontal Lobe Inferior Frontal Gyrus 9 1 13
Left Cerebrum Frontal Lobe Medial Frontal Gyrus 9 7

Right Cerebrum Frontal Lobe Medial Frontal Gyrus 9 48
Right Cerebrum Parietal Lobe Paracentral Lobule 7 2
Right Cerebrum Parietal Lobe Precuneus 7 28
Left Cerebrum Frontal Lobe Medial Frontal Gyms 6 25 11

Right Cerebrum Frontal Lobe Medial Frontal Gyrus 6 48 9 19
Left Cerebrum Frontal Lobe Middle Frontal Gyms 6 11

Right Cerebrum Frontal Lobe Middle Frontal Gyms 6 9
Left Cerebrum Frontal Lobe Precentral Gyms 6 12 13

Right Cerebrum Frontal Lobe Precentral Gyms 6 2 21
Left Cerebrum Frontal Lobe Superior Frontal Gyrus 6 26 19

Right Cerebrum Frontal Lobe Superior Frontal Gyms 6 62 51 1 2
Left Cerebrum Frontal Lobe Precentral Gyms 44 - 4 5

Right Cerebrum Frontal Lobe Precentral Gyms 44 5
Left Cerebrum Parietal Lobe Inferior Parietal Lobule 40 9

Right Cerebrum Parietal Lobe Inferior Parietal Lobule 40 2
Right Cerebrum Limbic Lobe Anterior Cingulate 32 15
Left Cerebrum Limbic Lobe Cingulate Gyms 32 35 6

Right Cerebrum Limbic Lobe Cingulate Gyrus 32 40 12
Left Cerebrum Frontal Lobe Cingulate Gyms 32 1

Right Cerebrum Frontal Lobe Cingulate Gyms 32 5
Left Cerebrum Sub-lobar Caudate Caudate Body 4 25

Right Cerebrum Sub-lobar Caudate Caudate Body 3 15
Left Cerebellum Anterior Lobe Culmen * 27

Right Cerebellum Anterior Lobe Culmen * 63
Left Cerebellum Posterior Lobe Declive * 302

Right Cerebellum Posterior Lobe Declive * 209
Left Cerebrum Sub-lobar Thalamus Ventral Lat, Nucl. 27

Right Cerebrum Sub-lobar Thalamus Ventral Lat, Nucl. 46
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4.2 The Main Effect of Memory Load

Contrasting all conditions involving a high memory load with all tasks involving a low

memory load will reveal brain regions selectively associated with an increase of memory

load. This test revealed activation in bilateral medial frontal gyri (BA 6), bilateral

superior frontal gyri (BA 6), left middle frontal gyms (BA 6), left precentral gyms (BA

6), left inferior frontal gyms (BA 44), bilateral cingulate gyri (BA 32), bilateral caudate

body, left caudate head, bilateral thalamus, and bilateral culmen and declive of the

cerebellum. This test also revealed activation in the rehearsal circuit but not the storage

buffer. These results are summarized in the second column of Table 2 and seen in Figure

4.2.

Figure 4.2 Activity during the main effect of load
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4.3	 Interactions

4.3.1 Selectivity for High Load and Long Rehearsal Periods

This interaction test is designed to reveal brain regions selectively associated with a high

memory load and a long rehearsal period while avoiding any confounds of the two main

effects. This test revealed activation in right parietal regions (BA 7), right medial frontal

gyms (BA 6) and bilateral precentral gyri (BA 6). These results are summarized in the

third column of Table 2 and seen in Figures 4.3.

Figure 4.3 Activity during the test for sensitivity to a High Load held over a Long
Rehearsal Period
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4.3.2 Selectivity for High Load and Short Rehearsal Periods

This interaction test is designed to reveal brain regions selectively associated with a high

memory load and a short rehearsal period while avoiding any confounds of the two main

effects. This test revealed activation in right inferior frontal gyms (BA 9), right middle

frontal gyms (BA 6), right precentral gyms (BA 6), right parietal regions (BA 40), and

bilateral caudate body. These results are summarized in the fourth column of Table 2 and

seen in Figure 4.4.

Figure 4.4 Activity for the test of sensitivity for a High Load held over a Short
Rehearsal Period



CHAPTER 5

DISCUSSION

5.1 Current Results

Baddeley [1] proposed a model of verbal working memory that consists of multiple

components. Verbal information enters the temporary storage buffer where it is

rehearsed until necessary manipulations occur, or the information is no longer needed.

Smith et al. [3] proposed a set of neural substrates associated with the different

components of Baddeley's model. After entering the system, phonological information is

maintained in the storage buffer by means of subvocal rehearsal, i.e. the person silently

repeats the information, This process involves Broca' s Area, BA 44, inferior and

superior aspects of BA 6. The proposed rehearsal circuit appeared to be involved in both

main effects tested in this study (of memory load and length of rehearsal period).

All four-task conditions required rehearsal of stored information. If there were no

increased involvement of these regions when the memory load increased or the rehearsal

period increased, no activation in these regions would be expected. This is due to similar

levels of activation not surviving the subtractions employed by the analysis. However, the

fact that regions show an increase in activation in the main effect tests, tells that their

involvement is related to the increased demands on the sub-systems.

Multiple regions of BA 6 are involved in the subvocal rehearsal of information.

Both main effect tests revealed activity in bilateral medial frontal gyri and bilateral

superior frontal gyri. The rehearsal sub component of working memory is therefore active
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in the task. The test for sensitivity to high loads held over a long rehearsal period

revealed activity in the right medial frontal gyms and the left precentral gyms.

The test for sensitivity to high memory load held over a short rehearsal period revealed

activity in the right precentral gyms.

The DLPFC was evoked in this experiment by the main effect of rehearsal period

and not by the main effect of memory load. Baddeley [I] hypothesized that there is a

threshold on the number of items placed into memory storage to elucidate central

executive activation. Rypma et al. [6] address this hypothesis and apply it to their study

to explain their lack of DLPFC involvement in their main effect of memory load. In other

words, they feel that they did not use enough letters in their memory load condition.

Barch et al. [7] found left sided activation in the DLPFC while testing for a main effect of

rehearsal period. The findings in this region are bilateral with the right hemisphere

greater than the left. The experiments mentioned previously that use the n-back task also

found activity in this region; they hypothesized this as being due to the increase in

memory load. [4, 8] D'Esposito et al. [22] describe a range of involvements that the

DLPFC may have in working memory. One result is that the DLPFC is recruited by

active maintenance in working memory. The results support this view of DLPFC

involvement.

The storage buffer of this system resides outside of the frontal regions in the

parietal lobes (BA 40/7). Activation in the storage region BA 40 was evoked during the

main effect of rehearsal period in the left hemisphere. This finding agrees with that of

Barch et al. [7]. The increase in this region shows there is an effective relationship

between the amount of activity and the length of time items are held in storage. Testing
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for sensitivity to high memory loads held over a long rehearsal period revealed activity in

right hemisphere BA 7. This right hemisphere activity is evident in the two n-back

studies [4, 8]. The confound of memory load and rehearsal period in the n-back task may

be the cause of their finding activity in this region.

The caudate body, implicated in other working memory studies [6, 23], is

activated to a minimal extent when the memory load increases. The interaction test for

sensitivity to a high memory load retained over a short rehearsal period; however,

revealed activation in the caudate body to a greater extent. Bilateral cingulate gyri

activation and right hemisphere anterior cingulate gyms were also active during the main

effect of delay. The bilateral cingulate gyms activation was also evident in the main

effect of load but to a lesser extent.

Although the cerebellum and thalamus are not included in the hypothesized

regions of interest, their evocation by the experiment deserves some discussion.

Andreasen et al. [24] investigated and summarized the cerebellum's involvement in

cognitive tasks. Their hypothesis, based on anatomical studies and mounting functional

imaging evidence, is that the cerebellum is involved in episodic memory retrieval. The

results of testing for conscious recall of an episodic memory involved a network of

activations. This network involved cellebellar, medial frontal, medial dorsal thalamus,

parietal, and anterior cingulate activations. They hypothesize that these regions of

activation represent a network that may represent a feedback loop that links cortical

regions to the cerebellum through the thalamus. This network may be engaged in the

planning, initiating and coordination of conscious retrieval.
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The tests for the main effect of memory load showed activation in bilateral

cerebellum, bilateral thalamus, anterior cingulate and medial frontal regions with no

activation in parietal regions. If this hypothesized network were indeed activated,

the parietal region may not be activated due to its involvement in referencing visuospatial

associative memories [24] and not verbal memories.

5.2 Methods for Analysis

The methods of interpreting the results of this study are more revealing. The data were

analyzed using SPM99 where the output is a statistical parametric map. Shown on such a

map are the clusters of activation, A cluster as used here is a contiguous set of voxels

having significance greater than the threshold. One way of reporting a cluster of

activation is to report the location of the cluster's maxima. As discussed above this report

tells nothing of the extent of the activated cluster. Often reported in the literature is a

summary table of the maxima of the activated clusters and their anatomical regions.

Some papers go beyond this and report the number of activated voxels in a cluster. This

does not mean that the number of voxels in this cluster all exist in the anatomical region

represented by the maxima. The cluster may be focally contained within the anatomical

region defined by the maxima; however, there is a greater chance that the cluster extends

into the anatomical regions' neighbors. Just knowing the maxima and the number of

voxels contained in the cluster offer none of this insight,

A more revealing method of reporting results is that here. Taking all voxels within

a cluster into account when reporting activation gives a better description of the extent of

the clusters. This method offers the number of activated voxels in each brain region (as
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described in the atlas of Talairach and Tournoux) contained in the cluster and not only

the clusters' maxima.

The task used here is quite similar to that used by D'Espostio et al. [22]; however,

the methods of analyses between the data are quite different. The aim of this study was to

show the benefits of a factorial design in the context of a verbal working memory

experiment and not the short time scale responses occurring because of this task. There

are some critiques of a blocked design such as that used here and addressed by

D'Esposito et al, [22]. These critiques are that the temporal resolution of a blocked design

is temporally poor and ill suited for direct measure of processes operating on the order of

seconds and milliseconds. This is correct and the design is not in a position to make

direct measures of short time scale processes. The timing parameters of the task do allow

for analysis of the data in a fashion similar to that of D'Esposito, [22, 25] which would

allow for investigation of the processes operating on short time scales. For this

experiment, a design was chosen that was more parsimonious and allowed for a greater

ease of interpretation, The second critique presented, addresses the issue of pure

insertion. This is not an issue for this experiment due to the subtractions performed.

Subtraction is used to make comparisons between conditions; however, there is not a

"control" task being subtracted out, only different levels of the manipulated factors. All

conditions of this experiment involve the same cognitive components to different levels;

therefore, "pure insertion" [9] is not an assumption made here.
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5.3 Future Directions

This design has demonstrated its ability to reveal activation in all of the hypothesized

regions. Knowing this and now having a greater understanding of verbal working

memory, a step forward with more complicated analyses such as approaches taken by

D'Esposito et al. [22] is reasonable. Their methods of analyses allow them to test for

differences in the neural processes taking place when different numbers of items are

encoded. The difference between this approach and the approach taken in the current

study is that the encoding phase is that time when the items are first presented, and first

entered into the storage system before rehearsal of the stored items. Their analyses also

allow for testing between the beginning and the end of the rehearsal period. They are able

to investigate differences occurring across this time interval. The design is analyzed in

"blocks," that is the encoding phase, the entire rehearsal phase and the retrieval phase of

the verbal working memory process are collapsed across. This allowed us easier

interpretation of results.

In an experiment similar to this one, Nystrom et al. [26] describe the nature of

Broca's Area involvement. This study showed activation with different time courses

between long rehearsal periods and short rehearsal periods. They also show that activity

in this region increases with an increase in memory load. The nature of the potentially

different responses was not investigated in this study. This sort of time course

investigation may offer valuable information into the nature of the involvement for

regions involved in performing a verbal working memory task.
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5.4 Flaws in the Current Design

One flaw in the implementation of the task concerns timing issues. The rate of

presentation of letters in the initial block of letters varied depending on whether two or

five letters were presented. Presentation of letters occurred over a five second period

regardless of whether it was two or five letters. For five letters the rate was one letter

every second and for two letters the rate was one letter every two and a half seconds. This

difference in presentation rate may enter unnecessary confounds into the data. A better

method of stimulus presentation is with a fixed rate of presentation regardless of the

number of letters presented.

Another issue in this experiment is the lack of counter balancing, Since the

presentation of different trial types was a fixed pattern, ordering effects may occur. For

instance, there may be an effect of the presentation of a high load / long rehearsal interval

on the following presentation a low load / short rehearsal period presentation. Since these

two trials always occurred is this order, there was no way of accounting for any effect

these trial types may have had on one another. An improved design would randomize the

order of presentation of different trial types to average out any ordering effects.



CHAPTER 6

CONCLUSIONS

The results of this study show the DLPFC involved with an increase in memory

rehearsal, agreeing with D'Esposito et al.'s [I9] discussion of this region and the results

of Cohen et al. [8]. This region also showed sensitivity to a high load held over a short

rehearsal period. This may indicate that rehearsing a high memory load for only a short

period of time calls for greater resource allocation and executive processes. The

interaction tests show the involvement of BA 6 and 7 in working memory may be more

complex than revealed in previous findings. The use of a two-factor design has proven

effective in investigating verbal working memory. The design allowed for placement of

demands on the verbal working memory system that elucidated responses in previously

detected brain regions for similar tasks. The interaction tests furthermore allowed for

further insight into the working memory sub components.
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APPENDIX A

JRSTREAMTAL.M

This function extracts the x, y, z coordinates from the SPM99 software and saves them to a file.

%function jrstreamTAL.m
%
%This is a script which takes all the voxels activated in your glass brain and writes them %out to a
file or files. The purpose is for preparing your data to be sent to the Talairach %Daemon. It is for
this reason that there is a size limit on the extracted file size of 10000 %entries. The Talairach
Daemon stand alone program imposes this file size limit. This %script also employs the MNI to
Talairach coordinates program of Matt Brett.
%
%Jason Steffener v1.I
%July 19, 200I
%a=SPM.XYZmm';

b=mni2tal(a);
n=size(b,I);
m=n/10000;
m=ceil(m);
P=SPM.title;
q=findstr(P,");
for i=I:length(q)

P(q(i))='_';
end
for j=I:m
P=cat(2,P,'_k',num2str(SPM,k),'_T',num2str(SPM.u),'_',num2str(j),'.txt)
fid=fopen(P,'a');
for i=(j-1)*10000+1:j*10000

c=round(b(i,:));
fprintf(fid,'%2. Of 	 %2.0f %2.0f\n',c);

end
status=fclose(fid);clear abnPqc
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APPENDIX B

ROITAL.M

This function summarizes the results of the Talairach Daemon and creates a table

showing the number of activated voxels in each different region of the brain.

%function roital.m
%

%This script opens a text file which is the output of the Talairach Daemon returned by
%the Daemon and returns a comma delimitated text file with each row being a different
%brain region and the final number being the total number of activated voxels per brain
%region.
%
%Jason Steffener
%March 25, 2001
%
amount=[1];
in=spm_get(1,'*.txt','Choose the Talairach file')

file=textread(in,'%s','delimiter','\n';1whitespace' ,");
final={'Level1 ,Level2 ,Level3 ,Level4 ,Level5 	 ' };

[k,1]=size(file);
for i=1:k

tmp=char(file(i));
commas=findstr(';';tmp);
[n,m]=size(tmp);

tmp2=tmp(commas(4)+1:m);
bool=strcmp(final,tmp2);

if bool==0
[o,p]=size(final);
final{p+1 }=tmp2;
amount=[amount,1];

else
position=find(bool);
amount(position)=amount(position)+1;

end;
end

slash=findstr('\',in);
dot=findstr(',';in);

out=cat(2,'total_';in(max(slash)+1:max(dot)-1),'.txt')
fid=fopen(out,'a');
[m,n]=size(final);
for j=1:n
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temp=final{j};
temp2=cat(2,temp,';';num2str(amount(j)));
fprintf(fid,temp2);
fprintf(fid,'\n');

end
status=fclose(fid);
clear
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APPENDIX C

MERGE.M

This function merges two tables from the roital.m and allows for comparison of the

results

%function merge.m
%Jason Steffener
%May 3, 2001
%This program merges two files together.
%This program takes the results of two summarized Talairach results files and merges
%them together. It shows brain regions followed by the number of voxels in each region
%in each of the two files you give it. I use this to compare the results from two different
%contrasts. If these instructions are confusing, use it and it will be evident.
%

amount=[1];
in=spm_get(2, ' *,txt,'Choose Two Talairach Result files to merge')
inl=textread(in(1,:), '%s ' , ' delimiter', '\n','whitespace',");
in2=textread(in(2,:),'%s','delimiter', '\n';'whitespace',");
[a]=size(in1,1);
[b]=size(in2, 1);

filel=inl;
file2=in2;

[k1,11]=size(file1);
[k2,12]=size(file2);
fl sum=(zeros(k1,1));
fl=char(zeros(k1,100));
for i=1:k1	 %create array of filel sums

tmpl=char(filel(i));%take line(i) of file
if size(tmp1,2)~=0 %This checks for empty lines

commas1=findstr(';',tmpl);
[nl,m11=size(tmp1);
tmplt=tmpl(max(commas1)+1 : ml);
t=size(tmplt,2);
fl sum(i)=str2num(tmp1t);
tmpls=tmpl(1:max(commas1)-1);
s=size(tmpls,2);
fl (i,1: s)=(tmpls);

end %We no have 2 char arrays, one for the areas in the bigger TD file
end	 %and one containing the sums of the locations
f2 sum=(zero s(k2, 1));
f2=char(zeros(k2,100));
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for i=1: k2	 %create array of filel sums
tmp2=char(file2(i)); 	 %take line(i) of file
if size(tmp2,2)~=0

commas2=findstr( ' , ' ,tmp2);
[n2,m2]=size(tmp2);
tmp2t=tmp2(max(commas2)+1:m2);
t=size(tmp2t,2);
f2sum(i)=str2num(tmp2(max(commas2)+1:m2));
tmp2s=tmp2(1:max(commas2)-1);
s=size(tmp2s,2);
f2(i, 1 : s)=(tmp2s);

end
end	 %What we now have is four have arrays, 2 for each input file.
count=kl;
outfile=f1;
outfilecount=f1 sum;
for k=1:k2 %loop over file2

for j=1:k1 %loop over file1
bool=strcmp(fl (j, :),f2(k, :));
if bool== 1

outfilecount(j,2)=f2sum(k);
break

end
end
if bool==0

count=count+ 1;
outfile(count,:)=f2(k,:);
outfilecount(count,2)=f2sum(k);

end
end
m=size(outfile, 1);
out='mergeout.txt'
fid=fopen(out,'a');
fprintf(fid,';,,,,');
slash=findstr('\',in(1,:));
dot=findstr('.',in(1,:));
fprintf(fid,in(1,max(slash)+1:dot-1));
fprintf(fid,',');
slash=findstr('\',in(2,:));
dot=findstr(',',in(2,:));
fprintf(fid, in(2, max(slash)+ 1 :dot- 1));
fprintf(fid,'\n');
for j=1:m

temp=deblank(outfile(j,:));
temp3 a=outfilecount(j, 1);
temp3b=outfilecount(j,2);
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temp2=cat(2,temp,';';num2str(temp3a),';',num2str(temp3b));
fprintf(fid,temp2);
fprintf(fid,'\n');

end
status=fclose(fid);
disp('Done!!');
clear
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