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ABSTRACT

COMPUTATIONALLY EFFICIENT SEARCH
FOR PRIME NUMBERS

by
Wieslawa E Amber

To satisfy the speed of communication and to meet the demand for the continuously

larger prime numbers, the primality testing and prime numbers generating algorithms

require continuous advancement. To find the most efficient algorithm, a need for a survey

of methods arises. Concurrently, an urge for the analysis of algorithms' performances

emanates. The critical criteria in the analysis of the prime numbers generation are the

number of probes, number of generated primes, and an average time required in

producing one prime. Hence, the purpose of this thesis is to indicate the best performing

algorithm. The survey the methods, establishment of the comparison criteria, and

comparison of approaches are the required steps to find the best performing algorithm.

In the first step of this research paper the methods were surveyed and classified

using the approach described in Menezes [66]. While chapter 2 sorted, described,

compared, and summarized primality testing methods, chapter 3 sorted, described,

compared, and summarized prime numbers generating methods. In the next step applying

a uniform technique, the computer programs were written to the selected algorithms. The

programs were installed on the Unix operating system, running on the Sun 5.8 server to

perform the computer experiments. The computer experiments' results pertaining to the

selected algorithms, provided required parameters to compare the algorithms'

performances. The results from the computer experiments were tabulated to compare the

parameters and to indicate the best performing algorithm.



Survey of methods indicated that the deterministic and randomized are the main

approaches in prime numbers generation. Random number generation found application

in the cryptographic keys generation. Contemporaneously, a need for deterministically

generated provable primes emerged in the code encryption, decryption, and in the other

cryptographic areas.

The analysis of algorithms' performances indicated that the prime numbers

generated through the randomized techniques required smaller number of probes. This is

due to the method that eliminates the non-primes in the initial step, that pre-tests

randomly generated primes for possible divisibility factors. Analysis indicated that the

smaller number of probes increases algorithm's efficiency. Further analysis indicated that

a ratio of randomly generated primes to the expected number of primes, generated in the

specific interval is smaller than the deterministically generated primes. In this comparison

the Miller-Rabin's and the Gordon's algorithms that randomly generate primes were

compared versus the SFA and the Sequences Containing Primes. The name Sequences

Containing Primes algorithm is abbreviated in this thesis as 6kseq. In the interval

[99000,100000] the Miller Rabin method generated 57 out of 87 expected primes, the

SFA algorithm generated 83 out of 87 approximated primes. The expected number of

primes was computed using the approximation n/ln(n) presented by Menezes [66]. The

average consumed time of originating one prime in the [99000,100000] interval recorded

0.056 [s] for Miller-Rabin test, 0.0001 [s] for SFA, and 0.0003 [s] for 6kseq. The

Gordon's algorithm in the interval [1,100000] required 100578 probes and generated 32

out of 8686 expected number of primes.

Algorithm Parametric Representation of Composite Twins and Generation of Prime

and Quasi Prime Numbers invented by Doctor Verkhovsky [108] verifies and generates



primes and quasi primes using special mathematical constructs. This algorithm indicated

best performance in the interval [1,1000] generating and verifying 3585 variances of

provable primes or quasi primes. The Parametric Representation of Composite Twins

algorithm consumed an average time per prime, or quasi prime of 0.0022315 [s]. The

Parametric Representation of Composite Twins and Generation of Prime and Quasi

Prime Numbers algorithm implements very unique method of testing both primes and

quasi-primes. Because of the uniqueness of the method that verifies both primes and

quasi-primes, this algorithm cannot be compared with the other primality testing or prime

numbers generating algorithms.

The ((a!)^2)*((-1)^b) Function In Generating Primes algorithm [105] developed by

Doctor Verkhovsky was compared versus extended Fermat algorithm. In the range of

[1,1000] the [105] algorithm exhausted an average 0.00001 [s] per prime, originated 167

primes, while the extended Fermat algorithm also produced 167 primes, but consumed an

average 0.00599 [s] per prime.

Thus, the computer experiments and comparison of methods proved that the SFA

algorithm is deterministic, that originates provable primes. The survey of methods and

analysis of selected approaches indicated that the SFA sieve algorithm that sequentially

generates primes is computationally efficient, indicated better performance considering

the computational speed, the simplicity of method, and the number of generated primes in

the specified intervals.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to survey the methods for primality testing, for generating

prime numbers, to compare the efficiency of selected algorithms, and indicate the best

performing algorithm. Initially this paper will review, survey, and compare different

approaches. In the next step the performance of algorithms will be tested through the

series of computer experiments. Uniformly designed computer programs will test

algorithms in the specified interval [smalIest,largest] and report the number of probes,

number of generated primes, CPU time, and the average time required to generate one

prime in the specified interval. Results obtained from the computer experiments will

serve to compare the efficiency of algorithms in the specified interval using the time

complexity, number of probes, and -number of generated primes as comparison criteria.

The most efficient algorithm will be indicated from the tabulated results furnished in the

form of comparison tables.

1.2 Background Information

This subchapter provides an introduction to the survey of methods_ This subchapter also

lists and organizes different approaches,_ formulas, and techniques used in primality

testing and prime numbers- generation. Menezes [66] summarized primality testing

criteria and outlined the following fundamentals -,

1) Each test should prove that the candidate is a prime or a weaker test should verify the

result that n is a probably prime.

1
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2) If a method provides result such that the candidate is a probably prime then this

approach is called a probabilistic primality test, or compositeness test.

3) If the applied technique that serves to determine the primality of the candidates

does not employ random numbers then the approach is called deterministic and the

results are reproducible, otherwise the technique is called randomized.

Menezes [66] divided primality field in the two distinct categories primality testing and

prime number generation. Probabilistic approach and provable approach are the two

fundamental methods applied in primality testing. The test that proves that the candidate

is a prime is called true primality test or a provable test. If the test provides an outcome

that furnishes weaker results, then the approach is called probabilistic. The prime number

generation methodology introduces two approaches deterministic and randomized. The

use of randomness is applied to judge the technique. If the candidates are generated

through the randomly input tec hnique, then the method is called randomized. Otherwise

if the method does not use the random input, then the approach is called deterministic and

the results are reproducible. The primality test that proves candidate's primality is called

provable primality test. A test that establishes weaker results is called probabilistic.

The Fermat's and Euler's theorems provided foundation to numerous new and

revised approaches in primality testing and prime number generation. The Fermat's Little

Theorem was converted by Edouard Lucas into a formal primality test. The Fermat,

Solovay-Strassen, and earlier Miller-Rabin tests are the examples of probabilistic

approaches. The advanced Miller-Rabin algorithm for generating prime numbers is

considered to be provable and randomized technique. The factorization method is

considered to be a true primality test. True primality tests can determine with
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mathematical certainty whether the candidate is a prime. The newest techniques include

the application of prime factorization [99] methods on a quantum computer as presented

by Peter W. Shor. The Pocklington's theorem requires partial factorization of n-1. The

Jacobi sum test requires testing sets of congruences in cyclotomic rings and the algorithm

simulates behavior similar to the polynomial algorithm, since the exponent in On On (n)))

serves as a constant for the certain range of n values. Menezes [66] provides three trivial

examples of prime number generation methods this includes the generation of probable

primes, generation of strong primes, and generation of provable primes. Random search

for a provable prime is exemplified by improved Miller-Rabin Algorithm. Gordon's

algorithm represents a strong prime generation method, while Maurer's algorithm

produces provable primes. Haas [45] developed a multiple prime random number

generator utilizing the randomized approach.

The factoring techniques found application in factoring algorithms by addition,

subtraction, and factoring with sieves. The Mairson's algorithm [62] presents an example

of multiplicative sieve. The Sieve of Eratosthenes provided foundation to different

sieving methods such as segmented sieve, linear sieve, sublinear additive sieve, linear

segmented sieve, and other sieving techniques. The Pritchard's algorithm [83]

exemplifies a sublinear additive sieve for finding prime numbers, while the Pritchard's

publication [84] describes the wheel sieves, and the segmented wheel sieves techniques.

On the distribution of prime numbers Menezes [66] indicated that the number of

primes in the specified interval [2,x] is nearly equal to the quotient of upper bound x

divided by In (x.). On the distribution of prime numbers method will be utilized in

estimating the number of generated primes. The Dirchelet theorem says that if the gcd of
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n and a is equal 1, then the number of primes congruent to a modulo n is infinite. For

example, if a function π(x, n, a) denotes a number of primes in the interval [2,x] and these

numbers are congruent to a modulo n, where gcd (a, n) is equal to 1, then, π(x, n, a) is

nearly equal to x divided by (On) In x). Prime numbers are uniformly distributed among

the On) congruence classes in Zn* for any value of n, where Zn denotes a set. Describing

the approximation of prime numbers Menezes [66] states that if pn is denoting the nth

prime number that results in pn being nearly equal to a product of n and In (n). The

product of n In (n) is less than pn where pn is less than a product n*(In n + In In n) for

Thus, this thesis will group the primality testing algorithms in two categories:

probabilistic primality tests, and the true primality tests. The true primality tests will be

further broken into deterministic tests, randomized tests, and provable primality tests.

Primality tests for the elliptic curves will be placed in the group of true primality tests.

The primality tests that use the factorization of n-1 method will represent the provable

primality tests. The prime number generation algorithms will be divided accordingly to

Menezes [66] in two categories deterministic and randomized. Further these approaches

will be refined in three categories; generating provable primes, generating strong primes,

and generating probable primes. Miller-Rabin random search for primes exemplifies

probable primes. These methods are described in details in the chapters 2 and 3.



CHAPTER 2

PRIMALITY TESTING ALGORITHMS

2.1 Problem Statement

A. J. Menezes, [66] classified algorithms for primality testing and provided fundamental

details pertaining to the presented algorithms. New algorithmic ideas have been emerged

and have been implemented since the Menezes book was published. Thus, using Menezes

classification in this chapter the algorithms will be sorted, placed into appropriate

categories, and compared, to indicate the best performing algorithm. The time

complexity, the number of generated primes, and the number of probes will be used in

the comparison criteria to indicate the most efficient algorithm.

2.2 Previous Works

Menezes [66] delineated generalized framework for Probabilistic Primality Testing,

which is included in the Appendix A. Probabilistic approaches for primality testing are

exemplified in the Fermat, Solovay-Strassen, and Miller-Rabin methods.

Menezes summarized the properties of Probabilistic Primality Tests in the general

form, that for each odd positive integer n a set W(n) is a proper subset of Z. such that the

listed properties hold. The number a, that is an element of Z. can be defined in the

deterministic polynomial time if the number a is an element of W(n). If number n is a

prime, then the set is empty and W(n) is equal to 0. If the number n is a composite, then

an element in W(n) is greater or equal to number n divided by 2. If the number n is a

composite, then the elements of W(n) are called witnesses to the compositeness of n, and

the elements of the complementary set L(n) that are equal to Z.. in W(n) are called liars

5
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An element a of Zn is chosen at random, and it is tested if a belongs to the W(n) subset.

The test will output composite if a is an element of W(n), and will output prime if a does

not belong to subset W(n). Menezes [66] defines an integer n as a probable prime, if

based upon a probabilistic primality test the number n is believed to be a prime.

2.2.1 Probabilistic Primality Tests

The Fermat's theorem referenced in Menezes [66] upholds, if the number n is a prime and

the number a is an integer, such that a is greater then or equal to 1, but smaller than or

equal to n-1, then a^(n-1) will be equal to 1 (mod n). The Fermat's theorem endorses, that

the odd, composite integer n is called Fermat's witness to compositeness for n, if an odd,

composite integer a is a pseudoprime to the base a, and if the number a raised to the

power of n-1 is equal to 1 (mod n), then the integer a is called Fermat's liar to primality

for n.

Brillhart, Tonascia, and Weinberger [18] in collaboration with D.H. and Emma

Lehmer conducted a search for odd solutions of N for the congruence a^(N - 1) equal to 1

(mod N^2). Basic scheme developed by Brillhart, Tonascia, and Weinberger is included

in the Appendix A.

The Solovay-Strassen Test outlined in Menezes [66] implements Euler's criterion.

In this algorithm the number n is an odd prime and the number a raised to the power of

(n-1) divided by 2 is equal to (a/n) mod n for all integers a, that satisfy the gcd (a,n) equal

to 1. The quotient (n / a) denotes a Jacobi symbol and (n / a) is equal to Legendre symbol

if n is a prime. The number a is called Euler witness for compositeness if a satisfies one

of the following categories. If n is an odd composite integer and a is an integer in the
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interval [1, n-1], then the number a is Euler's witness for compositeness. If gcd (a, n) is

greater than 1, or if the number a raised to the exponent (n-1)/2, is not equal to (a/n) mod

n, then the number n is called Euler's pseudoprime to the base a. The number n is called

Euler's pseudoprime to the base a only, if gcd (a, n) is equal to 1, and if a raised to the

power (n - 1)/2 is equal to (a/n) mod n. If n is an odd composite integer, then (1)(n)/2 for

all the numbers a, are called Euler's liars. Where a is defined by [1, n-1].

The Miller-Rabin probabilistic primality test presented in Menezes [66] is

considered to be a strong pseudoprime test. In this delineation n is an odd prime and n-1

is equal to 2 to the power of s and multiplied by r, where r is an odd integer. If gcd (a, n)

is equal 1, then base a raised to the power of r is equal to 1 (mod n) or for j in the range of

[0, s-1] base a raised to the power of 2^j and multiplied by r is equal to -1 (mod n). The

number n is called a strong pseudoprime to the base a, if a raised to the exponent r is not

equal to 1 (mod n), or a raised to the power of (2^j)*r is not equal to -1 (mod n), for all j

numbers in the range of [0,s-1]. The integer a is also called a strong liar to primality for n.

Base a raised to the power of r is equal to 1 (mod n). Base a raised to the power of

(2^j)*r is equal to -1 (mod n). If n is not equal to 0, then the number of strong liars for n

is equal to 4(n)/4. If n is an odd composite integer, then 1/4 of all the numbers a that refer

to [1,n-1] are strong liars for n.

Davenport [31] referred the Rabin's algorithm as widely adapted in the computer

algebra and for primality testing purpose. Davenport suggested essential strengthening to

Rabin's algorithm, and correlated to Fermat-Euler theorem. (Appendix A)

Gupta, et al, summarized Solovay-Strassen [103] probabilistic algorithm for

primality testing. If x and n are relatively prime then computing x^((n - 1)/2) (mod n) and
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the Jacobi symbol (x/n) can be accomplished in logarithmic time. If n is prime then Zn is

cyclic and x^((n - 1)/2)≡(x/n) (mod n). Thus, when n is a prime, no x will be certified as

witness, if n is composite according to Solovay and Strassen then the set of false

witnesses, the numbers that violate the conditions (2) and (3) will form a proper subgroup

Zn. According to Gupta, et al the cardinality of the Zn subgroup can be equal at most to

(n - 1)/2. Solovay & Strassen [103] in their work demonstrated that the composites were

recognizable in the random polynomial time. Similarly to Rabin's algorithm, the Solovay-

Strassen probabilistic primality tests essentially performed probabilistic search for a proof

of compositeness. Failure provides a proof that the number n is not a composite. This

algorithm will always terminate in polynomial time on input. Upon termination, a

certificate will be issued that the number is either a composite, or a probably prime.

Although probably prime provides high probability, but there is no guarantee that the

number n is a prime.

Adleman and Huang applied the Solovay-Strassen [103] results pertaining to

probabilistic algorithm in the primality testing. The Adleman and Huang method was

summarized by Gupta, et al. In the Solovay and Strassen algorithm x is an element of

(1,..,n - 1) to be a witness to compositeness of n, if gcd (x, n) is greater then 1, or x

raised to the exponent of ((n - 1)/2) (mod n) is not equal to (x / n). If x and n are relatively

prime then computing x raised to the power of ((n - 1)/2) (mod n) and the Jacobi symbol

(x / n) can be accomplished in logarithmic time. Gupta, et al indicated that if n is a prime

then Zn is cyclic and x raised to the power of ((n - 1)/2), is indeed equal to (x) (mod n).

Gupta, et al concluded that, when n is a prime, no x will be certified as witness, if n is

composite then according to Solovay and Strassen the set of false witnesses, specifically
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the numbers that violate the conditions (2) and (3) will form a proper subgroup of Zn.

According to Gupta, et al the cardinality of the Zn subgroup can reach at most (n - 1)/2.

Rabin [87] introduced algorithm for fast, randomized primality testing. The

probabilistic primality tests essentially performed a probabilistic search for a proof of

compositeness. Failure provided the evidence that the number was not a composite. This

algorithm will always terminate in polynomial time on input. Upon termination, a

certificate will be issued that the number is either a composite, or a probably prime.

Probably prime provides high probability, but not a certainty that the number is a prime.

Under the extended Rieman hypothesis and probabilistically by Rabin [88] Miller

developed Analysis of Prime Testing Algorithm..

Davenport and Smith [28] suggested that the results of Rabin's algorithm indicate

a single iteration applied to a number N, and that N has a probability of 0.25 claiming N

as a probably prime. A proof of Group Theory View presented that 10 elements in the set

of N provides a probability of less than 1 in 10^6 of giving wrong answer.

The tests results of Damgard and Landrock [29] that referred to Rabin's algorithm

in which a single iteration applied to a number N has a probability of 0.25 claiming N as

a probably prime. Damgard and Landrock proved that for 256-bit integers, in the 6 tests a

probability of less than 2^(-51) of providing wrong answer is possible. The number of

primes tested should be proportional to log N. The constant of proportionality in the

explicit tests for the numbers is provided in the form (K+1)*(2K+1).

Rabin [88] introduced algorithm for fast, randomized primality testing. The

probabilistic primality tests essentially perform a probabilistic search for a proof of

compositeness. Failure provides evidence that the number is not a composite. This
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algorithm always will terminate in a polynomial time on input. Upon termination, a

certificate is issued that the number n is either a composite, or a probably prime. While

probably prime provides high probability, but not a certainty that the number is a prime.

Monier [70] compared Miller-Rabin algorithm versus Solovay-Strassen primality

testing algorithm. These two described methods are considered to be the Monte Carlo

variety algorithms because when n is a prime these algorithms can report only with a

certain probabilistic measure of confidence, but no proof is provided.

Erdos and Spencer [36] introduced a small power packed monograph on non-

constructive probabilistic methods in combinatorics. As Gupta, et al quoted, the sample

space is so abundant with good points that the checking steps inherent to primality testing

are dispensed with.

Lehmann [56] presented two algorithms for primality testing that referred to the

extended Rieman hypothesis. Lehmann discovered an algorithm utilizing different

number-theoretic properties for defining witnesses to compositenesses and primality.

Galligo and Watt [38] presented a new numerical absolute primality criterion for

bivariate polynomials. Galligo and Watt test was based on a simple property of

monomials appearing after a generic linear change of coordinates. Galligo and Watt

method provided a probabilistic algorithm for detecting absolute factors.

Goldwasser and Kilian [41] emphasized on primality proving algorithm, a

probabilistic primality test that generates short proofs of primality on the prime input.

Goldwasser and Killian proved that the specified test is expected to run in polynomial

time for all primes. Goldwasser and Killian test was based on a method applying a group

theory to the problem of prime certification and the application of this methodology using
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groups generated by elliptic curves over the finite fields. This method provided an

algorithm for generating large certified primes with a distribution that was statistically

close to uniform. The gap between the consecutive primes is bounded by a polynomial in

their size and the test yields the Las Vegas primality test.

Wunderlich [111] discussed the heuristics that will efficiently find certificates for

some primes. The set of primes certifiable in this method is sparse and has not been

proven to be infinite. It shows that these techniques, in much more general form are

applied in the efficient generation of certificates of primality for most primes.

2.2.2 True Primality Tests

According to Menezes [66], true primality tests can determine with mathematical

certainty whether a random candidate is a prime. If the input is sequential, but the

primality tests can establish with mathematical certainty, that a candidate is a prime, then

the technique is called deterministic and the results are reproducible.

2.2.2.1 Randomized Primality Tests. Pomerance, Selfridge, and Wagstaff [79] indicated

that the primes should be presented in the form of x-values, because the value of x = 4

provides the information as the values of x = 2, and value 6 provides the information as

the orders of 2 and 3 to be adjacent. Rabin's algorithm begins with a choice of a random

seed x, not congruent to 0 modulo N.

Arnault [7] disputed Leech form N = (K+ 1) (2K+1) (3K+1) to defeat the theorem

of the set of prime x-values {2,3,5,7,11,13,17,19,23,29). According to Leech N is a

Carmichael number.
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Pratt's [80] short proofs of primality demonstrated that the primes are

recognizable in non-deterministic polynomial time. For a known prime p, Pratt proved

that p is prime by exhibiting that some g are elements of Zp such that Op(g) is equal to

p-1. To prove that Op(g) is equal to p-1 the decomposition of prime was introduced in the

form p-1 is equal to p1^(e 1) p2^(e2)... pk^(ek). Thus, pi's should be recursively proven

primes. Algorithm was considered ineffective since it is hard to generate the

decomposition of primes p-1.

Gupta, Smolka, and Bhaskar [44] approach emphasized on the conventional

probabilistic and randomized algorithms. Gupta, et al presented five different techniques

applying 12 randomized algorithms both sequential and distributed that reached a wide

range of applications including primality testing.

In the Primality Testing the authors overviewed the following methods;

1) Ancient Chinese assertion that n is a prime if and only if n divides 2^n - 2 which

appeared to be wrong according to Gupta, Smolka, and Bhaskar.

2) Schroeder's [95] article on prime numbers, their distribution, fractions, and

congruences found application in the search for large prime numbers in primality

testing as presented by Gupta et al. [44]. The mean distance between primes in the

neighborhood of a number n is O(log n).

3) Wilson's theorem states that a number n is a prime if and only if n divides (n - 1)! + 1

without the reminder.

4) The Fermat's congruence x^(n - 1) (mod n) implies that "n divides x^(n-1)".

Thus, n can be a proven composite if n does not divide x or x^(n - 1) - 1, where x is a

witnesses to the compositeness of n.
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Adleman and Huang [4] invented algorithm that employed a separate Monte

Carlo scheme to test for primality instead of deciding the primality. A random

polynomial time algorithm exists for the set of prime numbers. Algorithm oscillates from

searching for witnesses to compositeness and from witnesses to primality and eventually

finding one in polynomial limited expected time. This algorithm represents the Las Vegas

variety and per Adleman and Huang will never declare a composite number to be a prime

or vice versa. This algorithm may not terminate in polynomial time for certain inputs.

Shanks [97] proved that for the incremented sequence, if k is equal to 1/2 log p,

then the randomized algorithms of Lehmer and Shanks for computing square roots

modulo a prime p have probability error that is equal to O(log p

Sipser [102] considered in his model that the random numbers are a scarce

resource. To get probability error of 0(p^( -1/2 + c)) for the square root algorithm, it

would be expected to have O(log p)^2 random bits. The results of the experiment implied

that O(log p) is sufficient. Schoff [94] proved that the primes are recognizable in the

random polynomial time.

2.2.2.2 Primality Tests Using Factorization n-1 Primality testing using factorization

method n-1 is described in Menezes [66]. This method is delineated in details in the

Appendix A. Let the number n to be an integer, that is greater than or equal to 3, then

number n is a prime, if and only, if there exists an integer a, that satisfies three

conditions: a^(n - 1) equal to 1 (mod n) and a^((n - 1)/q) is not equal to 1 (mod n) for

each prime divisor q of n - 1.
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The special case algorithms that represented the factorization methods are

Pocklington's theorem and Jacobi sum test [66]. The Jacobi sum test is implemented in

the Solovay-Strassen approach that exemplified a true primality test and that examed the

sets of congruences analogous to Fermat's method [66]. The Jacobi sum test algorithm is

detailed in the Appendix A.

Pocklington's theorem represents another method for proving primality by

implementing partial factorization of n-1. Pocklington's algorithm presented in Menezes

[66] is described in the Appendix A.

Brillhart, Lehmer, and Selfridge [18] invented an algorithm that was based on the

work of Fermat and Gauss, which relied mostly on factoring and according to

Goldwasser and Kilian this algorithm appeared to be impractical. Heintz and Sieveking

[47] introduced a method of absolute factorization of polynomials with coefficients in a

number field k, explained as factorization over the algebraic closure of k.

Carmichael J21] presented a unique method of factorization of prime n including

a proof that n can satisfy the Fermat's congruence a^(p -1) = p. Mignotte j67] surveyed

the primality testing from the computational complexity perspective. Mihalescu_[68]

invented a super-polynomial-time, fast algorithm based on the cyclotomy, that was

designated for numbers comprised of a few thousand of digits to verify the primality

proofs. Shor [100] invented a polynomial-time algorithm for prime factorization to be

implemented on the quantum computer.

Mawata_[58] implemented the isomorphic image of the ring of polynomials in n

variables with rational coefficients. This scheme is used to uniquely factorize the prime
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of positive integers to represent the multivariate polynomials. (The speed of Kronecker's

trick to transform multivariate polynomials to univariate polynomials.)

Ribenboim [91] book includes generalization algorithm for primality proving tests

on the factorization of N-1 where N is considered as a number to be a proven prime.

According to Ribenboim there are the easy numbers for the N - 1 test, those N for which

the N - 1 factorization is trivial, such as Fermat numbers N = 1 + k!, N = 1 + k*a^n,...

Bressoud and Wagon [20] focused on prime numbers in particular prime testing

and certification. The application of Lucas sequences to primality testing is presented in

chapter 8. Chapter 9 concerns Gaussian numbers and the decomposition of primes in

sums of 2 squares. The Adleman-Manders-Miller [6] algorithm computes the q-th root

modulo prime, when q has (p -1) divisor and k is equal to 1/2 log qp

2.2.2.3 Primality Tests for Elliptic Curves._Bosma [16] introduced numbers called

Elliptic Mersenne primes. These numbers found application in the Morain's article

entitled Easy Numbers for the Elliptic Curve Primality Proving algorithm. Chudnovsky

and Chudnovsky [24] presented a deterministic polynomial time algorithm for testing the

primality applying the orders of elliptic curve.

Schoff's deterministic algorithm was designated to compute square roots modulo

prime. Concurrently Schoff provides a polynomial time algorithm to compute the order

of the group generated by an elliptic curve over a finite field.

The Goldwasser-Kilian [40] algorithm generated elliptic curves randomly and

counts their points. This probabilistic primality test due to Goldwasser and Kilian was

adopted first in the elliptic curve application and to produce a certificate of correctness
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for its assertion of primality. The recursive algorithm served as a model for Atkin's test

and modifications. If qP denotes repeated addition of P + P +,... ,+ P which probably will

fail. If a failure had occurred, then the test terminated with an essential result, and p

became a certificate of p's compositeness. This algorithm adopted Schoffs [83]

O(log^8(p)) algorithm for computing the order of ER(a, b), where a and b were given.

The following result provided the basis for a recursive call of Kaltofen-Valente Theorem:

Atkin [8] improved the Schoffs algorithm and developed a variant method in

which groups and their orders are picked at the same time that runs much quicker. The

Atkin's test used a concept of a complex multiplication field to compute the elliptic

curve's order. This theorem certified that N is a prime provided Q is a prime.

Morain j72] presented new classes of numbers that are easier to test for primality

with the Elliptic Curve Primality Proving Algorithm than average numbers. Morain

presented an algorithm that generalized the Fermat-like primality proving tests based on

the factorization of N -1, when N is the number to be the proven prime. An algorithm is

included in the Appendix A.

The results obtained by Adleman-Huang [3] counterpart the Solovay-Strassen

results considering the existence of a random polynomial time algorithm for the set of

composites. In further work, Adleman and Huang [5] invented an algorithm that

guaranteed to find the short certificates for all prime numbers. They correlated to

Goldwasser and Kilian [40] analysis to set limits above the fraction of k-bit primes. The

elliptic curve based algorithms could not certify quickly down to 2 to the power of -0(k).

Adleman and Huang algorithm takes more than O(k^11) expected time on most k-bit

primes.
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2.2.2.4 Deterministic Primality Tests. Miller [69] demonstrated that the Riemann

hypothesis for Dirichlet L-functions implied that the primes were decidable in

deterministic polynomial time. Miller's algorithm exemplified a deterministic polynomial

time procedure. As Miller indicated the declarations of primality made by the algorithm

are always correct if the ERH (Extended Riemann Hypothesis) is true. If the ERH is false

then the numbers declared as primes are composites. Thus, the ERH is not used to

constrain the running time of the algorithm, but to test the correctness of the answer

Gupta, et al, provided that there were few heuristic methods for perfect hashing.

The discussion on these methods is provided by Melhorn. [65] Melhorn demonstrated that

a program of length O((n^2)/(m + log log N) computes a perfect hash function for a given

set S c U. To find an actual perfect hash function a family H of hash functions is

presented H = (Mc i hk(x) = (k*x mod N) mod m; where 1 k < NI . Melhorn stated that

without loss of notion, if U = [0,..,N - 1] represents the totality of the keys with N prime.

Primality of N can be achieved by adding nonexistent keys to U. As Melhorn uttered the

resulting universe will not be substantially larger than the original U since prime numbers

are sufficiently dense.

Cohen and Lenstra [26] provided nearly polynomial-time deterministic primality

tests that do not relay on any unproven assumptions. The test required k^(θ(ln In k))

computational steps on an input N of length k. These tests did not provide any succinct

primality proof related to the number that is declared as a prime.

Gupta, et al, outlined Miller's deterministic algorithm for primality testing. [69]

Gupta indicated that Miller divided the composite numbers applying the following

function λ'(n) = icm (p1-1),..,(pm-1)} and paired the set of composite numbers to satisfy
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the Fermat's congruence. Miller did not apply the Carmichael X. function. The framework

of the Miller's algorithm is presented in the Appendix A. Gupta, et al, outlined that

Rabin's probabilistic algorithm for primality testing.[88] demonstrated that more than 1/2

of the values of x were elements of { 1, 2, 3,..,n - 1) that satisfied the (2) and (3)

conditions of the algorithm if n was certainly composite.

Konyagin [52] invented a deterministic polynomial time algorithm that proved

primality for infinite sets of primes. Kronsjo [53] described the probabilistic algorithms

and Rabin's algorithms for primality.

Kaltofen, Valente, and Yui [49] presented modifications to Goldwasser-Kilian-

Atkin primality test. If n is an input, then the output is either prime or composite, and

along with an output a certificate of correctness is issued that is verified in polynomial

time. This modification substitutes the root of the Hilbert's class equation with the root of

Watson's class equation for Q(√-D) and reconstructs to a root of the corresponding

Hilbert equation. The Watson class equations have very small coefficients comparing to

those of their Hilbert counterparts.

Miller [69] demonstrated that the Riemann hypothesis for Dirichlet L-functions

have implied that the primes were decidable in deterministic polynomial time. Miller

algorithm is a deterministic polynomial time procedure. The assertions of primality made

in the algorithm are always correct if the ERH (Extended Riemann Hypothesis) is true. If

the ERH is false then the numbers declared primes still could be composites. Thus, the

ERH is not used to bind the running time of the algorithm, but to test the correctness of

the answer. Pratt [80] used Lucas-Lehmer heuristic for primality testing to demonstrate

that a succinct proof of primness of number n can be verified in 0 (log n) lines.
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The algorithmic Schoffs [94] ideas provided foundation to Adleman and Huang

[3] to prove the hypothesis, that the primes are recognizable in a random polynomial

time. The Schoffs deterministic algorithm was intended to compute square roots modulo

prime. Concurrently Schoff provided a polynomial time algorithm to compute the order

of the group generated by an elliptic curve over a finite field.

Doctor Verkhovsky [108] algorithm verifies and generates primes and quasi

primes using special mathematical constructs to verify the primes or quasi primes.

Algorithm provided in the Appendix A. In the range [1,200] this algorithm generates and

verifies 84 combinations of provable primes or quasi primes, while an average time per

prime 0.0119048 [s]. In the range [1,1000] this algorithm generates and verifies 3585

variances of provable primes or quasi primes, while an average time per prime 0.0022315

[s]. In the range [1,10000] this algorithm generates and verifies 4492 variances of

provable primes or quasi primes, while an average time per prime 0.0164737 [s].

Algorithms invented by Doctor Verkhovsky [106] and [107] that are particularly

designated to generate prime numbers in the desired interval and described by functions

m=12k+r, or m=6k+1 are using modulo arithmetic to verify the primness. The SFA and

the 6kseq algorithms' performances are described in details in chapter 3. Chapter 3

compares various algorithms for generating prime numbers.

2.3 Algorithms' Performance Evaluation

Tables 1, 2, and 3 in the Appendix C provide the results pertaining to the Fermat's,

Miller-Rabin's, and the Solovay-Strassen primality tests. The results of the computer

experiments indicate that the number of probes in the Fermat's test is the largest among
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the three tested algorithms. While Fermat's, Miller-Rabin's, and Solovay-Strassen's

algorithms are constructed using exponentiation, the Doctor Verkhovsky algorithms are

simplified to the incremental multiplication and modulo arithmetic. The Fermat's, Miller-

Rabin's, and Solovay-Strassen's algorithms are designated to test the numbers for

primality.

The SFA, Sequences Containing Primes (also known as 6kseq) algorithms are

designated for generating prime numbers in the specified intervals. The Parametric

Representation of Composite Twins and Generation of Prime and Quasi-Prime Numbers

algorithm's principal function is to verify the primality, while generating prime and quasi

prime numbers. Thus, the algorithm named Parametric Representation of Composite

Twins and Generation of Prime and Quasi Prime Numbers indicated best performance in

the interval [1,1000] generating and verifying 3585 variances of provable primes or quasi

primes, while an average time per prime, or quasi prime was 0.0022315 [s].

2.4 Summary

The Primality Testing algorithms are divided in two categories; probabilistic primality

tests, and the true primality tests. The true primality tests are further broken into

deterministic tests, randomized tests, and provable primality tests. Primality tests for the

Elliptic Curves represent the true primality tests. The primality tests that use the

factorization of n-1 method represent the provable primality tests.

The results from the computer experiments indicated that the number of probes in

the probabilistic Fermat's test is the largest among the three tested algorithms. While

Fermat's, Miller-Rabin's, and Solovay-Strassen's algorithms have been constructed using
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exponentiation. Among these three probabilistic algorithms the Solovay-Strassen

indicates better computational efficiency.

Algorithm Parametric Representation of Composite Twins and Generation of

Prime and Quasi Prime Numbers invented by Doctor Verkhovsky [108] verifies and

generates primes and quasi primes applying special mathematical constructs to verify the

primes or quasi primes. This algorithm indicated best performance in the interval

[1,1000] generating and verifying 3585 variances of provable primes or quasi primes,

while an average time per prime, or quasi prime was 0.0022315 [s]. This algorithm

implemented very unique method of testing both primes and quasi primes that cannot be

compared with the other primality testing algorithms. Results pertaining to the other

algorithms developed by Doctor Verkhovsky particularly the SFA and Sequences

Containing Primes (also known as 6kseq) designated for generating prime numbers in the

specified intervals are described in the chapter 3.



CHAPTER 3

PRIME NUMBERS GENERATING METHODS

3.1 Problem Statement

Menezes, A.J. [66] classified algorithms for generating prime numbers and provided

fundamental details pertaining to the introduced algorithms. Since the Menezes book was

published, numerous advancements have been done and implemented in the area of prime

numbers generation. Similarly to the chapter 2, the prime numbers generating algorithms

will be classified, placed into appropriate categories, and compared, to indicate the best

performing algorithm.

In this chapter, the SFA and the Sequences Containing Primes Algorithms will be

compared with selected algorithms, that generate prime numbers. The comparison criteria

are: the number of generated primes per interval, the number of required probes, and the

average time required to find one prime in the specified interval.

3.2 Previous Work

Menezes [66] introduced following generalized approach to generate large prime

numbers; Generate a candidate, a random odd number n of appropriate size, or search a

sequence of candidates starting from n such as n, n+2, n+4,.., to find a prime, which will

have desirable properties, called a priori. If the n candidates are specially constructed for

mathematical reasoning to provide an establishment, then the method is called a

constructive prime generation technique. This technique is designated for the true

primality tests.

22
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3.2.1 Random Search for Probable Primes

Algorithm Finding Square Roots modulo a prime p, which was presented in Menezes

[66] exemplified randomized approach because of the method in which the quadratic

non-residue b was selected in the step 2. A diverse range of algorithms for finding square

roots modulo a prime p is furnished in the Appendix A.

Miller-Rabin random search algorithm presented in the Menezes book [66]

generates randomly an odd k-bit integers n. Using a trial division, the numbers are pre-

tested for divisibility factors. Miller-Rabin algorithm that is designated for primality

testing outputs prime's certificate and returns n.

Adleman and Huang [3] approach emphasized on the existence of a random

polynomial time algorithm for the set of primes. They proved that the primes are

recognizable in a random polynomial time. In their analysis the authors applied the theory

of Abelian varieties. Adleman and Huang [3] adopted results from Pratt, and

Solovay-Strassen framework.

Pratt [80] provided short proofs of primality. Contrary to Adleman, Huang,

Pomerance, and Rumely, Pratt demonstrated that the primes were recognizable in non-

deterministic polynomial time. Pratt used Lucas-Lehmer heuristic for testing primness

and proved that for some given prime p, that p is a prime by exhibiting property such that

g belongs to Zp such that Op(g) = p - 1. To prove that Op(g) is equal to p - 1 Pratt

implemented a decomposition of prime in the following form p - 1 is equal to p1^(e1)

p2^(e2)... pk^(ek). Then, the pi's were recursively proven primes by Pratt.

Bach [11] stated that the primality testing could be solved efficiently using a source

of independent, but identically distributed random numbers. Eric Bach adopted Andre
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Weil's [109] results concerning the number of points on algebraic varieties over the finite

fields. Bach's method used iteratively generated sequences applying functions f(x) = ax +

13 (mod p) to the randomly chosen set of x and estimating the probability that an

algorithm will fail. Bach considered 2 bounds; finding square roots modulo a prime p,

where probability of failure is 0 (log (p p)), and testing p for primality, where

probability of failure is O(p^(-1/( 4 + c ))) for any c > 0. The number of Bach's trials in

the cases 1) and 2) counted approximately 1/2 log p. Function f produces randomly a

sequence x f(x), f^2(x),..., f^(k-1) (x); where x denotes a seed and k quantities denote

random input to the algorithm successive trials. Analysis of the Square Root Algorithm

by_Bach [11]_outlines the analysis due to the Lehmer's modular square algorithm,

included in the Appendix A.

Lehmer [58] introduced a Binomial Congruence Algorithm where_x^q a (mod p)

represents randomized method for solving congruences that was presented by Adleman-

Manders, and Miller [6], where q denotes a prime divisor of p - 1. If q is equal 2 then it

reduces to another square algorithm published by Shanks [96].

The Adleman and Huang [3] article emphasized on the existence of a random

polynomial time algorithm for the set of primes. Adleman and Huang proved that the

primes were recognizable in the random polynomial time.

Chang [22] presentd application of hash functions in the form of h(x) equal to C

mod p(x) where C stands for an integer constant and where p(x) generates different prime

for each introduced integer x. Author does not provide general method for finding p(x).

Cormen, Leiserson, and Rivest [27] encyclopedic introduction to algorithms

covered a large diversity of randomized algorithms including primality testing.
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The first part of Kilian's [50] dissertation described randomized algorithm that is

designated to generate large prime numbers, which have short easily verified certificates

of primality. This algorithm provides deterministically verifiable proofs of primality but

vanishing fraction of prime numbers.

Lehmer [58] invented modular square root algorithm. This algorithm provided

foundation to Eric Bach analysis on randomized algorithms. If a is equal to a nonzero

square modulo p, then the randomized algorithm will compute b = Ala (mod p), this

algorithm requires O(log p)^3 steps and is successful with 1/2 probability.

Blum, Blum, and Shub [15] introduced the cryptographicaly secure pseudo-random

generators that produce high quality pseudo-random bits from a random initial seed in a

deterministic process. The drawbacks are that setting up the generator is expensive to

obtain large primes. The Blum et al, method requires one multi-precision multiplication

per random bit. The randomness of these numbers is conjectured relying on the

computational difficulty related to integer factoring problem.

Goldwasser and Killian suggested that Cramer's conjecture on gaps between primes

implied that the primes were recognizable in random polynomial time. Goldwasser and

Kilian indicated that in reference to the Prime Number Theorem for sufficiently large x,

π(x) --> (x / log x), where the best known bound for the maximal gap between two primes

is given by Heath-Brown [46]and Iwaniec [48] that for sufficiently large x, there always

exists a prime in the interval [x, x + )0(11/20]. The density of primes in the small

intervals was described by Heath-Brown [41] as follows for the integers a, b where

#p[a,b] denote the number of primes x satisfying a x b. There exist constants c1, c2

such that for sufficiently large x, the number of intervals [y, y +4y] where x y 2x in
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which there are less than (c1 √y)/(log y) primes is less than x^(516) (log^(c2) x). Haas [45]

developed a multiple prime random number generator and in his article presented a

partial Fortran code for this generator.

3.2.2 Deterministic Approach

Algorithm Finding Square Roots modulo a prime p yields a simple deterministic

algorithm for a special case where p 3 (mod 4), p 5 (mod 8). Menezes indicates that

computing square roots in a finite field can be extended to find square roots in any finite

field Fq of an odd order q = p^m, where p is a prime and m 1. Each element a E F2^m

has exactly one square root, specifically a^(2^(m - 1)).

Adleman, Pomerance, and Rumely [2] introduced a method, that is based on the

existence of c where c is an element of N, such that the primes are decidable in

deterministic polynomial time O ((log n)^(c log log log n)). Thus, for all r that belong to

N, if r denotes the length of r when written in binary form, then for all c, 1, r that

represent the elements of N, there exists such c that is equal to the SLICE (1, r).

Dressler and Parker [34] presented two theorems. Theorem 1 by Reichert [89]

stated that every integer greater than 6 can be represented as a sum of distinct primes.

The theorem 2 by Dressler, Makowski, and Parker [35] considered that every integer

greater than 1969, 1349, 1387, 1475 can be presented as a sum of distinct primes in the

form 12n+1, 12n+5, 12n+7, 12n+11, respectively. Dressler and Parker [34] introduced a

subscript to present p[i] as the ith prime and q[i] represented a very thin subsequence of

the primes defined by q[i] = p[p[i]]. They concluded that every integer greater than 96

can be represented as a sum of distinct members of sequence equal to {q[i]) .
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Goldwasser and Kilian[40] demonstrated that for given prime p of length k, the

algorithm outputs a certificate of correctness of size 0(k^2), verified in O(k^4)

deterministic time.

Kuo and Chou [54] Article presented fast algorithm to generate essential primes

without generating a prime cover of the Boolean function. A condition for detecting

essential primes for a Boolean function with multiple-valued inputs. The detection of

essential primes is performed with application of a tautology-checking algorithm.

Applying Exponential Function ((a!)^2)*((-1)^b) in Generating Primes [105]

developed by Doctor Verkhovsky and comparing versus extended Fermat algorithm, that

generates primes in the specified sequential interval provided following results. Extended

Fermat algorithm was constructed from original Fermat algorithm adding a function that

generates primes in the specified interval and fuction that tests generated probable primes

for possible divisibility factors. The number of generated primes was verified in both

algorithms applying divisibility test.

3.2.3 Generating Probable Primes

Goldwasser and Kilian J40] publication emphasized on a new probabilistic primality test,

which was different from Miller [68], Solovay-Strassen [103], and Rabin [87]. The

results of the Goldwasser-Kilian test implicated that there exist infinite sets of primes,

which can be recognized in expected polynomial time, and that the large certified primes

can be generated in expected polynomial time.
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3.2.4 Generating Strong Primes

Menezes [66] described that a number p is a strong prime, if the integers r, s, and t satisfy

the three outlined conditions. A number p-1 has a large prime factor denoted r, p+1 has a

large prime factor denoted s, and r-1 has a large prime factor denoted t. Primes s and t are

generated in step 1 applying Miller-Rabin test. Each candidate is pre-tested for primality

in steps 2 and 4. Gordon's algorithm exemplifies a method of generating strong prime.

3.2.5 Constructive Techniques for Provable Primes

Maurer's algorithm provided in Appendix A exemplifies a technique for generating

provable primes. The Maurer's algorithm originates random provable primes that are

almost uniformly distributed over the set of all primes of a specified size. Maurer's

algorithm utilizes Pocklington's theorem.

3.2.6 Sieves

Doctor Verkhovsky developed two methods for generating primes using two functions

m=6k+r, or m=12k+r to originate prime numbers. These two algorithms can be

implemented using few different programming techniques, languages, to be coded in the

C for UNIX, or even in the assembly language. Running programs on the layer closest to

the kernel level increases the processing speed while generating very large numbers. Both

methods produce provable primes. The algorithm Sequences Containing Primes [106]

generates a set of primes in the specified interval of odd numbers only [Smlst, Lrgst]. The

algorithm Sequences Containing Primes utilizes function m=6k+1 or m=6k-1 and

eliminates multiples of k or 5k-1. The SFA algorithm [107] generates a set of primes or



29

quasi-primes on the specified interval [Smlst, Lrgst]. Using two functions 12k + r,

applying four sieves, and modulo arithmetic composites are eliminated and remaining

primes are printed.

3.2.6.1 Sieve of Eratosthenes. Pettofrezzo and Byrkit [75] presented properties of prime

numbers (sieve of Eratosthenes, prime number theorem, twin primes, Goldbach's

conjecture), and primes factorization

Pintz, Steiger, and Szemeredi [76] article documents that there exists an infinite set

of primes whose membership can be tested in the polynomial time. For every n E Q, a

certificate of length O(log n) is produced at random, which can be verified in

deterministic time O((log 0'3).

Xuedong Luo [113] invented a sieve algorithm that has a complexity coherent to

Eratosthenes' sieve rendering more practical significance. Xuedong Luo in his paper

refered to Eratosthenes algorithm for finding primes between [2,..,N], Mairson [62]

primal sieve that executes in linear time, Gries and Misra [43] linear multiplicative sieve,

and Pritchard's [83] method that improved multiplicative sieves and modified Mairson's

algorithm. Xuedong Luo delineated an algorithm of the Eratosthenes' complexity with

more practical significance.

3.2.6.2 Multiplicative Sieve. Giblin [39] presented primes by multiplication method that

is based on elimination of composites. Method is included in the Appendix A.

Pritchard [83], presented comparison of various sieves, a method for improving

multiplicative sieve and modified Mairson's algorithm to attain the O [N/log logN]
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additive sieve. Mairson [62] introduced an algorithm that uses a doubly linked list and

pointers. All the non-primes are eliminated from the list by deletion using the sub-

procedure crossoff.

3.3 Algorithms' Performances Evaluation

To compare the prime numbers generating algorithms and to provide the desired results,

the C++ computer programs were written for the selected algorithms. The results from

the computer experiments pertaining to the specified algorithms are furnished in the

tables. Each table provides the lower and the upper interval limits, the CPU time, the

number of probes required to generate the primes in the specified range, the number of

primes generated in the specified interval, and the average CPU time to generate one

prime in the specified interval. The CPU time is the time captured while generating

primes in the specified interval.

The following algorithms have been selected for the comparison of performance;

Gordon's algorithm for finding strong primes and Miller-Rabin algorithm for finding

random primes. Among the selected sieve algorithms were Xuedong Luo's algorithm 1,

Gries-Misra's algorithm, Pritchard's algorithm, conventional sieve of Eratosthenes, and

extended Fermat's algorithm. While the Xuedong Luo's, Gries-Misra's, Pritchard's, and

sieve of Eratosthenes algorithms are array based algorithms and their performance is

limited by the size of array. Tables 17 and 18 summarize the results and compare the

methods in the specified range of limits.

Considering the number of probes and the average required time to generate one

prime in the specified interval, the Gordon's algorithm in the range [1,10000000]
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generated 29 random primes, the average time spend per prime 0.000285 [s], and

required 1000512 probes. The Doctor Verkhovsky algorithm described by a function

m=6k +1 in the range of [9999900,10000000] required 4752 probes, generated 3 primes.

Comparing the algorithms in the range of [999000,1000000] the Miller-Rabin produced

55 random primes, required 9000 probes, and consumed an average time per one prime

0.378 [s]. The SFA produced 84 primes, required 142897 probes, and consumed an

average time of producing one prime 0.013 [s], while the 6k+1 algorithm generated 14

primes, required 14028 probes, and required an average time of 0.009 [s] per one prime.

Considering that the number of generated primes in the specified interval is described by

the formula n/ln(n) and comparing the computed versus the number of generated primes,

the obtained results are as follows. The Gordon's algorithm in the range [1,10000000]

generated only 29 of 620421 estimated primes, while an average time of producing one

prime took 0.0002 [s]. Comparing the generated number of primes versus estimated

(computed) number of primes in the interval [99000,100000] the Miller-Rabin algorithm

generated 57 out of 87 estimated, the SFA generated 83 out of 87, and the 6kseq

generated 23 out of 87. In the range [9000,10000] the Miller-Rabin produced 80 out of

109 primes, required an average 0.026 [s] per prime. SFA generated 90 out of 109 primes

and required an average 0.00001 [s] per prime. The 6kseq provided 28 out of 109 primes

and an average time of originating one prime reached 0.00003 [s] per prime. In the range

[9900,10000] Miller-Rabin produced 5 primes, while SFA produced 10 primes.

The application of Factorial Function ((a!)^2)*((-1)^b) in Generating Primes

method [105] developed by Doctor Verkhovsky was compared versus extended Fermat

algorithm, that generates primes in the specified sequential interval. The Factorial
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Function ((a!)^2)*((-1)^b algorithm provided best results in the lowest interval [1,1000].

In the range [1,1000] factorial algorithm exhausted an average 0.00001 [s] per prime,

originating 167 primes, while extended Fermat algorithm also produced 167 primes and

consumed an average 0.00599 [s] per prime. In the range [1,10000] both algorithms

generated 1228 primes, the factorial algorithm consumed an average 0.00651 [s] per

prime, while extended Fermat algorithm consumed an average 0.01465 [s] per prime. In

the range [1,20000] both algorithms generated 2261 primes, factorial algorithm

consumed an average 0.01371 [s] per prime, while extended Fermat algorithm consumed

an average 0.02307 [s] per prime.

3.4 Summary

The Miller-Rabin algorithm requires smaller number of probes because the algorithm

generates random numbers in the specified interval, pretests the randomly generated

numbers for possible divisibility factors and if the number did not pass the test then it is

rejected.

Thus, the number of probes in the Miller-Rabin method is significantly reduced in

the first probe. The rate of generated primes against the existing number of primes in the

specified interval places the Miller-Rabin approach after the SFA algorithm. The number

of required probes in the SFA algorithm was reduced in the first loop to the difference

between the upper and lower limits divided by 12, plus the number of iterations in four

sieves. The SFA algorithm generates more primes per interval and the computational

speed per prime is faster than the Miller-Rabin algorithm, because the non-primes are

eliminated sequentially and in parallel method applying two equations m=12k+r.
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Thus, the SFA algorithm has advantage over the Miller-Rabin's algorithm, which

utilizes the random search technique for finding primes, and over the Gordon's algorithm,

which randomly generates strong primes. As the table 18 indicates, comparing the

number of generated primes vs. the number of expected primes, Gordon's algorithm

indicates large inefficiency. Gordon's algorithm similarly to Miller-Rabin's method

eliminates the non-primes in the first step by pre-testing the randomly generated numbers

for possible divisibility factors.

While comparing the Miller-Rabin and SFA algorithms in the range of [999000,

1000000] the SFA was still found as a very efficient algorithm. The Miller-Rabin

produced 55 random primes, required 9000 probes, and consumed an average time per

one prime 0.378 [s]. The SFA produced 84 primes, required 142897 probes, and

exhausted an average time per one prime 0.013 [s], while the 6kseq algorithm generated

14 primes, required 14028 probes, and required an average time of 0.009 [s] per one

prime.

Applying Factorial Function ((a!)^2)*((-1)^b) in Generating Primes approach [105]

developed by Doctor Verkhovsky provided best results in the lowest interval [1,1000]. In

the range [1,1000] the factorial algorithm exhausted an average 0.00001 [s] per prime,

originated 167 primes, while the extended Fermat algorithm produced 167 primes, but

consumed an average 0.00599 [s] per prime.

Thus, among the selected algorithms the SFA algorithm indicated the best

performance considering the computational speed, the simplicity of method, and the

number of generated primes in the specified interval.



CHAPTER 4

CONCLUSIONS

The Primality Testing algorithms are grouped in two categories: probabilistic primality

tests, and the true primality tests. The true primality tests are further broken into

deterministic tests, randomized tests, and provable primality tests. Primality tests for the

Elliptic Curves represent the true primality tests. The primality tests that use the

factorization of n-1 method represent the provable primality tests.

The results of the computer experiments indicated that the number of probes in the

probabilistic Fermat's test was the largest, among the three tested algorithms. The

Fermat's, Miller-Rabin's, and Solovay-Strassen's are probabilistic algorithms. Among

these three techniques the Solovay-Strassen approach indicates better computational

efficiency.

The results from the computer experiments pertaining to the specified algorithms

are furnished in the tables. Each table provides the lower and the upper interval limits, the

CPU time, the number of probes required to generate the primes in the specified range,

the number of primes generated in the specified interval, and the average CPU time to

generate one prime in the specified interval. The CPU time is the time consumed to

generate all primes in the specified interval. Selected algorithms for the comparison were

sieve algorithms, Gordon's algorithm for finding strong primes, and Miller-Rabin

algorithm for finding random primes. The selected sieves algorithms were Xuedong

Luo's algorithm 1, Gries-Misra's, Pritchard's, conventional sieve of Eratosthenes, and

extended Fermat's algorithm. While the Xuedong Luo's, Gries-Misra's, Pritchard's, and

sieve of Eratosthenes algorithms are array based algorithms and their performance is

34
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limited by the size of array. Tables 17 and 18 summarize the results and compare the

methods in the specified range of limits.

Considering the number of probes and the average required time to generate one

prime in the specified interval, the Gordon's algorithm in the range [1,10000000]

generated 29 random primes, used an average time 0.000285 [s] per one prime, and

required 1000512 probes. The Doctor Verkhovsky algorithm described m=6k +1 in the

range of [9999900,10000000] required 4752 probes, and generated 3 primes. Comparing

the algorithms in the interval of [999000, 1000000] the Miller-Rabin test produced 55

random primes, used an average 0.378 [s] per prime, and required 9000 probes. The SFA

produced 84 primes, consumed an average 0.013 [s] per prime, and required 142897

probes, while the 6k+1 algorithm generated 14 primes, used an average 0.01 [s] per

prime, and required 14028 probes.

The Gordon's algorithm in the range [1,10000000] generated only 29 out of 620421

estimated primes. Comparing the generated number of primes versus approximated

(computed) number of primes in the interval [99000,100000] the Miller-Rabin algorithm

generated 57 out of 87 estimated, the SFA generated 83 out of 87 in the average time

0.0001 [s] per one prime, and the 6kseq generated 23 out of 87. In the range

[9000,10000] the Miller-Rabin produced 80 out of 109 primes, SFA 90 out of 109

primes, and 6kseq provided 28 out of 109 primes. In the range [9900,10000] Miller-

Rabin produced 5 out of 1 primes, while SFA produced 110 out of 11 primes.

The Miller-Rabin algorithm requires smaller number of probes because this

algorithm generates random numbers in the specified interval and pre-tests these

randomly generated numbers for possible divisibility factors. If the number did not pass
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the test then it is rejected. Thus, the number of probes in the Miller-Rabin method is

significantly reduced in the first stage. The rate of generated primes against the existing

number of primes in the specified interval places the Miller-Rabin approach after the

SFA algorithm. The number of required probes in the SFA algorithm is reduced in the

first loop to the difference between the upper and lower limits divided by 12, plus the

number of iterations in four sieves. The SFA algorithm generates more primes per

interval and the computational speed per prime is faster than the Miller-Rabin algorithm,

because the non-primes are eliminated sequentially and in parallel method. The SFA

processes two equations m=12k+r concurrently.

Thus, the SFA algorithm has advantage over the Miller-Rabin's, which randomly

searches for the primes and over the Gordon's algorithm, which randomly generates

strong primes. As the table 18 indicates, the Gordon's algorithm has a very small rate of

the number of generated prime versus the number of expected primes. Gordon's

algorithm similarly to Miller-Rabin's method eliminates the non-primes in the first step

by pre-testing the numbers for possible divisibility factors.

Algorithm Parametric Representation of Composite Twins and Generation of Prime

and Quasi Prime Numbers invented by Doctor Verkhovsky [108] verifies and generates

primes and quasi primes using special mathematical constructs. This algorithm indicated

best performance in the interval [1,1000] generating and verifying 3585 variances of

provable primes or quasi primes, while an average time per prime, or quasi prime was

0.0022315 [s]. The Parametric Representation of Composite Twins and Generation of

Prime and Quasi Prime Numbers algorithm implements very unique method of testing
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both primes and quasi primes that cannot be compared with the other primality testing

algorithms.

The Factorial Function ((a!)^2)*((-1)^b) in Generating Primes algorithm [105]

developed by Doctor Verkhovsky provided best results in the lowest interval [1,1000]. In

the range [1,1000] factorial algorithm exhausted an average 0.00001 [s] per prime,

originating 167 primes, while extended Fermat algorithm produced 167 primes and

consumed an average 0.00599 [s] per prime.

Thus, among the selected algorithms the deterministic sieve SFA algorithm that

generates provable primes invented by Doctor Verkhovsky indicated best performance

considering the computational speed, the simplicity of method, and the number of primes

generated in the specified interval.



APPENDIX A

PRIMES TESTING AND GENERATING ALGORITHMS

This appendix provides all algorithms presented and compared in the survey of methods.

PROBABILISTIC PRIMALITY TESTS  /* delineated as follows by Menezes [66] *1

For each positive integer is a set W(n) c- Zn is such that the following properties hold;

(i) given a E Zn can be checked in deterministic polynomial time whether a E W(n)

(ii) if n is prime, then W(n) = 0 (the empty set)

(iii) if n is composite, then #W(n) n/2

Algorithm  /* Fermat's primality test presented by Menezes [66] */

FERMAT(n, t)

INPUT: an odd integer n 3 and security parameter t

OUTPUT: an answer prime or composite to the question: "Is n prime?"

1. for i from 1 to t do the following:

1.1 choose a random integer a, 2 5 a n-2

1.2 compute r = a^(n -1) mod is

1.3 if r 	 then return "composite"

2. Return "prime".

Algorithm / * a probabilistic primality test as presented in Menezes [66] */

SOLOVAY-STRASSEN(n, t)

INPUT: an odd integer is n>= 3 and security parameter t 1

OUTPUT: an answer "prime" or "composite" to the question: "Is n a prime?"

1. for i from 1 to t do the following:

1.1 choose a random integer a, 2 _.(c n-2

1.2 compute r = a^((n - 1)/2) mod is

1.1 if r 1 and r n - 1 then return "composite"

1.2 compute the Jacobi symbol s = (a/n)

1.3 if r 	 (mod n) then return "composite"

2. Return "prime"
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Summary: If gcd(a, n) = d, then d is a divisor of r = a^((n - 1)/2) mod n.

Algorithm / * Miller-Rabin probabilistic primality test as presented in Menezes [66] */

MILLER-RABIN(n, t)

INPUT: an odd integer n 3, and a security parameter t 1.

OUTPUT: an answer "prime" or "composite" to the question: "Is n prime?"

1. Write n -1= (2 ^s) *r such that r is odd.

2. For i from 1 to t do the following:

2.1	 Choose a random integer a, 2 a n - 2

2.2 Compute y = a^r (mod n)

2.3	 If y≠ 1 and y	 - 1 then do the following:

j4-1

While j	 - 1 and y	 - I do the following:

Compute y y ^2 (mod n)

Ify = 1 then return ("composite")

j (-j+ 1

Ify n - 1 then return ("composite")

3. Return ("prime").

Algorithm P /* Probabilistic Primality Test presented in Menezes [66], by Knuth [51] */

Given an odd integer n, this algorithm attempts to decide whether or not n is a prime.

Let n =1 + 2^k * q, where q is odd.

P1.	 [Generate x] Let x be a random integer in the range 1 <x < n.

P2. [Exponentiate.] Set) 0 and y <--x^q mod n. (As in our previous primality test,

x^q mod n should be calculated in O (log q) steps)

P3. [Done?] (Now y = x^((2 ^j) *q) mod n.) If j = 0 and y = 1, or if y = n - 1, terminate

the algorithm and say " n is probably prime." If j > 0 and y = 1, go to step P5.

P4. [Increase]] Increase j by 1. If j < k, set y <--y^2 mod n and return to step P3.

P5. [Not prime.] Terminate the algorithm and say that "n is definitely not prime."



Analysis of Prime Testing Algorithm /* due to Miller under the extended Riemann

hypothesis (ERH) [69] and probabilistically by Rabin [88] */

Let p be an odd number to test for primality; generate k N (1/2) log 2p trial witnesses.

MR Algorithm: /* the primality testing algorithm[63] with the probability of failure

equal O(p^(-1/4 + c)) for any c > 0 */

1. Let n -1 = ß*2^v, where )6' is odd

2. Choose an x, 0 x < n

3. Let to = x^ß (mod n); for	 let ti = ti-i^2(mod n)

4. Let to	 apparently prime

5. Let to # 1 for 1, 0 i < v, t i= -1 apparently prime.

6. Otherwise composite

Davenport Method /* [31] implies that. */

if gcd (x,n) = 1, 	 then x^ø(n) al (mod n),	 where ø(n) is minimal.

Lenstra Theorem /* presented by Lenstra[60] */

Let n = C*9^m + D*3^m + 1, where 0 < c < 3^m and 1 D 3^m.

Then n is a prime if and only if both conditions hold:

1) D^2 - 4*C is not a square

2) There exists I with 1^(n - 1) a 1(n) and (1^((n - 1)/3) -1, n) = 1

Condition 1) distinguishes primes satisfying 2) from products of such integers.

PrimeTest Miller 169] /* presented by Gupta [441 */

Input n, if n is a perfect power, say tie's, output 'composite' and HALT

REPEAT FOR EACH x __<1(n) {

(1) if x divides n, output 'composite' HALT

(2) if x^(n-1) 1 (mod n), output 'composite' and HALT

(3) if there is an i such that (n - 1)/2^i = m is integral,

and 1 <gcd (x^m -1, n) < n, output 'composite' and HALT

output 'prime' and HALT }
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PrimeTest(Rabin) [89] /* presented by Gupta [44] */

Input n

REPEAT r times {

(1) randomly pick an x between 1 and n

(2) if x^(n-1) 1 (mod n), output 'composite' and HALT

(3) if there is an I such that (n-1)/2^I m is integral,

and 1 < gcd (x^m -1, n) < n, output 'composite' and HALT

output 'prime' and HALT

)

Prime Test Solovay-Strassen [104] /* presented by Gupta [44] */

Input n

REPEAT r times {

(1) randomly pick an x between 1 and n

(2) if gcd (x, n)> 1, output 'composite' and HALT

(3) if _r 	 - 1)/2) (mod n) (x n) output 'composite' and HALT

) output 'prime' and HALT

}.

Morain Theorem /* presents a converse of Fermat's little Theorem [72] */

If there exists an a prime to N such that a^(N - 1) s--- 1 mod N,

but a^(N -1)/q mod N for every prime divisor q of N 1,

then N is a prime

TRUE PRIMALITY TESTS

PRIMALITY TESTS USING FACTORIZATION  of n -1 /* Menezes [66] */

Let an integer n 2.3, then n is a prime if and only if there exists an integer satisfying

(i) a^(n-1) --a-- 1 (mod n); and

(ii) a^(n-1)/q 1 (mod n) for each prime divisor q of n - 1.
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Jacobi symbol (and Legendre symbol) computation Algorithm 1 * by Menezes [66] */

JACOB I(a, n)

INPUT: an odd integer n 3 and an integer a, 0 _s a

OUTPUT: the Jacobi symbol (a/n) (and hence the Legendre symbol when n is a prime).

1. If a-4) then return (0).

2. If a=1 then return (1).

3. Write a = (2^e)*a1, where a1 is odd.

4. If e is even then set s 1. Otherwise set s 1 if n 1 or 7 (mod 8),

or set s 4- -1 if n 3 or 5 (mod 8).

5. If n 3 (mod 4) and 	 3 (mod 4) then set s - -s.

6. Set n1 n mod al.

7. 	 Return (s*JACOBI(n1,a1)).

Algorithm C /* Factoring by addition and subtraction presented in Menezes 1661 */

Given an odd number N, algorithm determines the largest factor of N that is less than or

equal to VAT.

C 1. 	 [Initialize.] Set x 	 + 1, y 4- 1, r 	 [√N]^2 - N (During algorithm x, y,

r)

Correspond respectively to 2*x + 1, 2*y + 1, x^2 - y^2 - N as we search for a

solution;

We will have Id <x andy <x.

C2. [Done?] If 	 the algorithm terminates; we have N =((x y)/2)((x + y - 2)/2).

C3. [Step x.] Set r r +x, and x 	 + 2.

C4. 	 [Step y.] Set r r + y, and y 	 + 2.

C4. 	 [Test r.] Return to step C3 if r > 0, otherwise go back to C2.
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Pocklington's Theorem /* Algorithm presented in Menezes [66] */

The prime F factorization is F	 (qi ^ el) if there exists an integer a that satisfies;

Let an integer n 2.3 and n = R*F +1 (where F divides n -1)

a^(n-1) 1 (mod n); and

(ii)	 ged ((a^((n-1)/qi) -1,n) =1 for each j, 1 <j

then every prime divisor p of n is congruent to 1 modulo F > - 1, then n is a prime.

ALGORITHMS GENERATING PRIME NUMBERS

RANDOMIZED PRIMALITY TESTING AND PRIMES GENERATING

ALGORITHMS

Algorithm Finding Square Roots Modulo a Prime p /* presented in Menezes [66] */

This algorithm is preferable when p - 1 = (2^ s)*t, when s is large.

INPUT: an odd prime p and a square a E Qp

OUTPUT: the two square roots of a modulo p

Choose random b E 4 until b^2 - 4a is a quadratic non-residue modulo p

i.e. (b^2 - 4a)4) = -1

Let f be the polynomial x^2 - bx + a in Zp[X]

Compute r = x^((p+1)/2) mod f (r is an integer)

Return (r, -r)

Computing square roots in a finite field can be extended to find square roots in any finite

field Fq of an odd order q = p^m, where p is a prime and m 1.

Each element a E F2 ^m has exactly one square root, specifically a ^(2 ^(m - 1)).
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Algorithm Finding Square Roots modulo a prime p /* a randomized method where

the quadratic non-residue is selected, presented in Menezes [66] */

INPUT: an odd primep and an integer a, 1 a 	 -1

OUTPUT: two square roots of a modulo p, provided a is a quadratic residue modulo p.

I. Compute the Legendre symbol (a/p).

If (a p) = -1 then return (a does not have a square root modulo p) and terminate.

2. Select integers 6,1 b p - 1, at random until one is found with (b /p) = - 1.

(b is quadratic non-residue modulo p.)

3. By repeated division by 2 writep - 1 = (2^s)* t, where t is odd.

4. Compute a^(-1) mod p by the extended Euclidean algorithm.

5. Set c VI mod p and r a^((t + 1)/2) mod p

6. For i from 1 to s -1 do the following:

6.1.Compute d =	 * a^( -1))^(2^(s - i - 1)) mod p.

6.2.If d	 (mod p) then set r r * c mod p.

6.3.Set c (---c^2 (mod p).

7. Return (r,-r)

Algorithm L: /* due to Lehmer [58] presented by Eric Bach */

Let a to be a nonzero square modulo p

then the following randomized algorithm will compute

b = a (mod p). This algorithm requires O(log p)^3 steps and is successful with the 1/2

probability.

1) Find x that A = x^2 - 4*a is not a square mod p

2) Let u = (x + √Δ )/2

3) In Fp 	 Fp^2 compute v = u^((p + 1)/2

4) Return b = v as a square root of a mod p

(b) the same bounds hold for Adleman-Manders-Miller [5] algorithm that computes

the q-th root

modulo prime, when q I (p -1) and k = 1/2 l ogqp



A Binomial Congruence Algorithm /* a randomized method for solving congruences

by Adleman-Manders, and Miller [5] *1

x^q a (mod p) where q is a prime divisor ofp - 1.

If q = 2 it reduces to another square algorithm published by Shanks [86].

AMM Algorithm:[5]

1) Let p - 1 = m*q^2, where qim

2) Set aq = ern; am = a^(q^k)

3) Choose q-th power nonresidue x and set g = x^m

4) Set e = 0 and repeat for i = 0,..,k - 1;

Select ei, 0	 q to make (g^(e +	 aq)^q^(k - i - 1) 7= 1 (p)

(if eo # 0, quit; the problem is unsolvable)

Replace e by e + eig^i

5) Set bq = g^(-eiq); bm = am^(q ^((-0 (mod m)))

6) Choose A and B to satisfy A *m + 	 1(p - 1)

7) Let b = bq^A*bm^B; return b as a q-th root ofx.

Random Search for Probable Prime Algorithm /*  Menezes_[66] *1

The Miller-Rabin Test

RANDOM-SEARCH(k, t)

INPUT: an integer k, and a security parameter t

OUTPUT: a random k-bit probable prime

3. Generate an odd k-bit integer at random

4. Use trivial division to determine whether n is divisible by any odd prime _<B.

If it is then go to step 1.

5. If MILLER-RABIN(n, t) outputs "prime" then return (n)

Otherwise, go to step 1.
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DETERMINISTIC PRIMALITY TESTS AND PRIME NUMBER GENERATING 

ALGORITHMS

Algorithm Finding Square Roots modulo a prime p where p 3 (mod 4)  /*

deterministic algorithm for a special case presented in Menezes [66] */

INPUT: an odd prime p where p 3 (mod 4), and a square a E Qp

OUTPUT: the two square roots of a modulo p
I. Compute r = a^((p + 1)/4) mod p
2. Return (r, -r)

Algorithm Finding Square Roots mod a prime p /* Menezes [66]*/

where p 5 (mod 8)

INPUT: an odd prime p where p 5 (mod 8), and a square a E Qp

OUTPUT: the two square roots of a modulo p

1. Compute d a^((p - 1)/4) mod p
2. If d =1 then compute r = a^((p + 3)/8) mod p
3. If d = p -1 then compute r = 2a (4a)^((p - 5)/8) mod p
4. Return (r, -r)

Adleman and Huang Theorem 3 /*  results [3] that counterpart the Solovay-Strassen

results considering the existence of a random polynomial time algorithm for the set of

composites */

There exists ad EN the number of primes between x^2 - x^(1.5) and x^2 that is greater

than x^ (1.5)/((log^d) x)

Lemma 4: There exists ac EN such that for all sufficiently large primes p,

#T(p) p^(10.5)I((log^c)p),

<p, q2, q3 > e U(p) 1
where T(p) = gyp, ql, q2, q3 > :

q3 op^8)
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Parametric Representation of Composite Twins Algortihm /* invented by B. S.

Verkhovsky, Ph.D. [107] for Generation of Prime and Quasi-Prime Numbers */

Consider a set of three integer parameters t, u, and w.

Output t,u, w, a, b, c, d, cd, ab, g, V.

Let x:=2tu+e;	 y:=2tw;	 z:=x-2t;	 R:=wy-u(x+e); 	 h:=R+x-t.

Let	 cd:=(x+y)(2h+x-y) and ab:=(y+zX2h+y-z).

If	 e^2=1, then cd-ab=2.

Let e=1 and e=-1;

For -3 t 3;	 -3	 -3<=w<=3;

compute	 x:=2tu+e; 	 y:=2tw;	 z:=x-2t;

R:=wy-u(x+e);	 h:=R+x-t;

b:=2h+y-z; c:=x+y;	 d:=2h+x-y;

g:=cd-ab;	 V:=cdmod6.

If V=1 and g=2, then output t, u, w, a, b, c, d, cd, ab, g, V.

STRONG PRIMES

Gordon's Algorithm for Generating Strong Primes /* Menezes [66] */

SUMMARY: a strong prime p is generated

1. Generate two large random primes s and t of roughly equal bit-length.

2. Select an integer io. Find the first prime in the sequence 2*i*t + 1, for i = io, io + 1,

io + 2,...

Denote this prime by r = 2*i*t +1

3. Compose po = 2*(s^(r-2) mod r) *s -1

4. Select an integer jo. Find the first prime in the sequence po + 2*j*r*s for j =jo,jo +

1,jo + 2,...

Denote this prime by p = po + 2*j*r*s

5.	 Return (p).
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CONSTRUCTIVE TECHNIQUES FOR PROVABLE PRIMES. 

Maurer's Algorithm for generating provable primes. /* Menezes [661 */

PROVABLE.PRIME(k)

INPUT: a positive integer k

OUTPUT: a k-bit prime number n

1. (Ilk is small, then test random integers by trial division. A table of small primes

my

be precomputed for this purpose.)

If k 20 then repeatedly do the following:

1.1	 Select a random k-bit integer n.

1.2	 Use trial division by all primes less than -14/ to determine whether n is a

prime.

1.3	 If n is a prime then return (n).

2. Set c 0.1 and m  4- 20.

3. (Trial division bound) Set B f- C *k^2

4. (Generate r, the size of q relative to n). If k >2*m then repeatedly do the

following:

select a random number s in the interval 10,11, set r 4-- 2^(s-1), until (k - r*k) > m.

Otherwise (i.e. k 2*m) set r 4- 0.5.

5. Compute q 4-- PROVABLE.PRIME([r*k] + 1).

6. Set I [2^(k-1)/(2*q)]

7. success +- 0

8. While (success = 0) do the following:

8.1	 (select a candidate integer n) Select a random integer R in the interval

[I+1,2*1]

and set n 2*R*q + 1.

8.2	 Use trial division to determine whether is is divisible by prime number <B

If it is not then do the following:

Select a random integer a in the interval [2,n-2]

Compute b a^(n-1) mod n



If b =1 then do the following:

Compute b a ^(2*R) mod n and d gcd(b-1,n)

If d=1 then success 4-1

9.	 Return (n).

Heath-Brown Theorem [46]. /* concerning the density of primes in small intervals */

For integers a, b let #p[a,b] denote the number of primes satisfying a<=x<=b

Let i(a,b) 4-1 if #p[a,b] (b-a)/(2[Iog a]) and 0 otherwise.

Let 3 alpha such that for sufficiently large x

E i (al a +	 x^(5/6) ((log^a)

Lehmer's Algorithm: /* to compute modular square root [581 */

Find x so that A= x^2-4a is not a square mod p

Let u = (x + 16)/2

In Fp I √Δ I F[p^2] compute v= u^(p+1)/2

Return b = vas a square root of a mod p.

Gupta et al, /*  a generalized formula for generating large prime numbers 1441 */

GenPrime

REPEAT {

Pick a large number at random;

Test whether it is a prime; 	 )

UNTIL a prime number of desired size is found }

Brillhart, Tonascia, and Weinberger /* [18] a search for odd solutions of N */

The multiplicative hashing scheme presents for the congruence a^(N - 1) 1(mod N^2)

H(k) = [M(((A/w)K) mod ii	 where M is a prime number such that

r^k	 (mod Al); for ver small k and a

A is a constant. integer relatively prime with w

w is a word size of the computer
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Goldwasser-Kilian GK(p) 1411 Algorithm computes a sequence

p = p, pa, ...,pr such that pt prime	 prime.

Algorithm /* presented by Goldwasser-Kilian 141] */

Prove (p)

pe=p;	 = 0;

lowerbound = 2^((lg p)^(c/(lg Ig lg p)))

certificate =

while pi >=lowerboud do

repeat Randomly choose A,B E Zpi

Compute Npi(A,B)

Until (4*A^3 + 27*B^2,p) =1 and

PP((Npi(A,B))/2)= "probably prime"

q = ((Npi(A,B))/2)

repeat Randomly choose M E Epi(A,B)

until M and q*M=1

i =i+1

pi= q

Append (M, pi, A,B) to certificate

If pi is composite then run Prove(p) again

1* pi is small enough to be

tested deterministcally by [APR]*/

return (certificate)

end

Pintz, Steiger, and Szemeredi Algorithm [771 

1) Find C, D : n = C9^ m + D3^ m + 1,0 < C <3^m

2) If D^2 - 4C is a square, "n is composite"

3) Else test each /, 1 < c (log n)^6 for Pin - 1) 1(n) and (1^((n - 1)/3) -1, n) = 1

If yes, "n E Pm" by certificate I.

4) Else "n Pm"
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Algorithm GK(p) /* presented by Kaltofen and Valente [491 an improved Las Vegas

Primality test */

Input: p, a highly probable prime

Output: either prime or composite along with a certificate of correctness for the assertion.

Begin

If p < B then

perform trial divisions to determine whether p is prime

and return list of trial-divisors

else

repeat

let a,b be randomly chosen elements of R=Z/pZ;

let q = |ER(a,b)|/2;

until probable prime (0;
repeat

randomly generate P ER(a,b)

until q*P =I

return ((P,q,a,b) appended to GK(q))

end;

Lehmer's Algorithm: /* to compute modular square root [581 */

Findx so that A = x ^2-4a is not a square modp

Let u = (x + 14)/2

In Fp [ √Δ]  = F [p^2] compute v= u ^(p+1)/2

Return b = vas a square root of a mod p.
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Algorithm Atkin(p) /* improved Las Vegas Primality test in Kaltofen - Valente [491 */

Procedure Atkin (p)

Input: p, a highly-probable prime.

Output: either prime or composite along with a certificate of correctness for this assertion

Begin

If p < B then

perform trial divisions to determine whether p is prime

and return a list of trial-divisors

else

repeat

repeat

find fundamental discriminant -D -7

satisfying (-D/p) = 1;

set b to .14) (mod p);

adjust b so that its parity is equal to that of -D

reducedform := Reduce [p, b, (b^2 + D)/(4*p)]

until reducedform = [1,1,(1-041;

(x y)^T:= S(1 0) ^T, where S is the transformation matrix

from [p,b, (b^2+D)/(4*p)] to [1,10 - D)/4];

(remark: now 71- = x + y*((1 + 4-D)/2)}

t := 2*p*x + b*y;	 m+ := p + 1 + t; 	 m- := p + 1 - t

until m+ or m- k*q, q> (p^(1/4)+1)^2, and probable-prime(q);

r := root mod p of II D(x); 1 := r(1728 - r)^(-1) (mod p);

(a,b) := (3*I,2*l) (mod p); E := EF(a,b);

If (POP w then

c := randomly chosen quadratic non-residue mod p;

(a,b) := (a *c^2, b*c^3);	 E := EF(a,b)

Endlf;

Randomly generate P E E until k*P I w and (k*p)*P = I Go;

Append (P,k,q,a,b) to Atkin(q)

end;
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SIEVE ALGORITHMS FOR GENERATING PRIME NUMBERS

Pritchard's Algorithm /* presents the sieve of Eratosthenes' by Pritchard [86] */

Eratosthenes(n) {

a[1]:=0

for i := 2 to n do a[i] := 1

p := 2

while p^2 <11 do

j := 2*/)

while (j n) do

a[j]:=0

j : =j+p

I repeatp := p + 1

until alp] =1

I return (a)

Sieve Algortihm /* The 6k+1 sequences invented by B. S. Verkhovsky, Ph.D. 11071 */

Sequence m = 6k + 1 is generated for k =1, 3, 5, ... {for odd k's only} ;

1. If k mod (6f+ 1) =f, then reject k;

2. If k mod (6f- 1) = 5f- 1, then reject k;

3. For every k, f is changing from 1 to ceiling(( k/6) ^.5] ;

4. Generate m's on the [smlst, lrgst]

where m = 6k + 1
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Sieve Algortihm /* The SFA invented by B.S. Verkhovsky, Ph.D. 11081 */

Let r:=7, 5;

kmin:=ceiling(A/12);

kmax:=floor(B/12);

for k from kmin to kmax step 1 do

for e from 1 to k/13 do
	

(The 1st Sieve);

if kmod(12e-r)=11 e-r

then reject k;

goto the next k;

else goto the next e;

for f from 0 to k/13 do
	

{The 2nd Sieve);

if kmod(12f+r)=f

then reject k;

goto the next k;

else goto the next f,

for g from 1 to k/(24-r) do
	

{The Std SieveI;

if kmod(12g-1)=(12-r)g-1

then reject k;

goto the next k;

else goto the next g;

for h from 1 to k/(12+r) do
	

{The 4th Sieve);

if kmod(12h+ 1)=hr

then reject k;

goto the next k;

else goto the next h;

output m:=1 2k+r;

Giblin Algorithm /* method of primes multiplication by composites elimination [39] */

r < p<=(r + 2n - 1)	 primes p in some interval

1 < k n	 where a composite c is defined as c = r + 2n -1
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Xuedong Luo Algorithm 1:1* pertaining to the sieve of Eratosthenes' [110] */

Assume that N = 2M is even and], k, p, q, S := 1, 1, 3, 4, {3, 5,...,2M-1};

a) if S[j] = 0 goto (c)

Otherwise k q

b) If k

then SA] 0, k k + p

and repeat this step

c)

if q < M, return to (a)

S = [xlx is zero or x is prime

Xuedong Luo Algorithm 2: 

In this algorithm Xuedong Luo uses an array S initially set to [5,7,11,..,3i + 2, 3(i +

1)+1,..,N] where i is odd and all non-primes are set to 0 as they are sieved out. Written in

a format of guarded commandsas per Dijkstra.[33]

Assume that N has the form of 3M+2, where M is odd;

q, S :=	 {5, 7, 11,...,N};

do i q —) put the position of square of ith element into Ci;

set zero to all multiples of ith element beginning from Ci;

i:=i+1;

od

{S = r I x is zero or prime

"set ..." is implemented:

j := Ci;

do j	 S[j] := 0;

ifj is odd --->j :=j + 2i + 1

j is even --> j :=j + 4i + 1

i is odd --> j:=j+ 4i + 3

ft

od
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Xuedong Luo Algorithm 3: 

Xuedong Luo implied that algorithm 3 is similar to algorithm 2, except algorithm 3 was

written in conventional form.

Assume c, k, t, q, M, S := 0,1, 2, √N/3, N/3, {5, 7, 11,...,N};

For i := 1 to q do begin

k:=3-k;c:=c+4k*i;j:=c;

ij:=2i*(3-k)+1; t :=t+4k;

while j<=M do begin

S[j] := 0; j := j + ij; ij:=t-ij

end

end

Algorithm D Pie Factoring with sieves presented in Menezes [66]*/

Given an odd number N, this algorithm determines the largest factor of n less than or

equal to VAT.

D1.	 [Initialize.] Set x <--[√N], and set ki (-x) mod mi for 1<=i<=r.

(Troughout this algorithm the index variables k1,k2,...,kr will be set so that

ki = (-x) mod mi.)

D2. [Sieve.] If S[i,ki] =1 for 1<=i<= r, go to step D4.

D3. [Step x.] Set x	 + 1, and set ki (ki -1) mod mi for 1

Return to step D2.

D4. [Test x^2 - N.] Set y L 4x^2-N) J, or to F Ifx^2-N) 1. Ify ^2 =x^2 N,

then (x - y) is the

desired factor, and the algorithm terminates. Otherwise return to step D3.

Pritchard Method  /* improved multiplicative sieve  [82, modified Mairson's method*/

to attain the OIN/log log NJ additive sieve.

The Pritchard's enhanced sieve is based on the property that;

= 1

where (k, pi) = 1;	 pi denotes the ith prime	 and 1 j
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A Sublinear Additive Sieves Finding Prime Numbers Algorithm 11* Pritchard [84] */

RE: Mairson's Algorithm

(I V _.- 21

p, S := 1,2, /2 ,...,

do	 pin AT

Establish C= CC;
S:= S - C;

p := + 1, next (S, p)

od

(S = the set of primes

Algorithm 21* P. Pritchard [841 */

(N 51

p, length, S, P := 2, 3, 2, (1), t21;

do	 p^2 <N or length < N --->

Extend S up to min ({p *length, ND;

Remove all multiples ofp from S;

P := P [pi;

p := i + 1, next (S, 1)

od

{S uP - Ill =the set of primes <=N}

Algorithm  1* Pritchard [86] employs Chinese Reminder Theorem in enhancement to

prime numbers generators */

k, m, u := 0, 1, 0;

[invariant: 11

do k#r-->k,m,u:=k+1, Mk+ I 	 od

(P and k = r)



A Linear Sieve Algorithm for Finding Prime Numbers Algorithm 1 

/* D.Gries and J.Misra [43]*/

n

p, q, k, x, s .---- 2, 2, 1, 4, {2,••.,,a};

do x n 	 remove {S, x};

k,x:=k+1,p*x

11x n and p*next (S, q) _ n 	 q := next (S, q);

k, x := 1, p*q

fix > tt and p*next (S, q) > n and next (S,p)^2

p := next (S, p);

q, k, x := p, 1, p*p

od

= 012 _-_‹y<=n andy prime}

Algorithm 2 /* D.Gries and J.Misra 143] */

p, S := 2, (2,...,n);

while p p n do begin

q .=p.

while p*q<=n do begin

x := p*q;

while x _<n do begin

remove (S, x); x := p *x

end;

q := next (S, q)

end;

p := next (S, p)
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A Multiplicative Sieve Algorithm for Finding Prime Numbers Algorithm 

I* H.G. Mairson [62]*/

integer arrays RLINK, LLINK, DELETE

procedure SIEVE (n):

comment create the doubly linked list

(RLINK[i]	 + 1) for i 1 to N - 1 step 1;

(LLINK[i]	 - 1) for i 2 to N step I;

comment execute the sieve

PRIME <— 2; FACTOR — 2;

while PRIME √N do It

POINTER 4- 0;

while PRIME*FACTOR N do

PRIME * FACTOR;

POINTER — POINTER + 1;DELETE[POINTER]

FACTOR RLINK[FACTOR]);

CROSSOFF(DELETE[I]) for i to POINTER step 1;

PRIME (-- RLINK[PRIME];

FACTOR <— PRIME;

comment output the primes

P RLINK[1];

while P do {

output Mk

P RLINK[p]);

end

subprocedure CROSSOFF(A);

RLINK[LLINK[A]] RLINK[A];

LLINK[RLINK[A]] F LLINK[Al;

59

END



APPENDIX B

SELECTED COMPUTER PROGRAMS

This appendix provides selected computer programs that provided results to the computer

experiments tables.

PRIMALITY TESTING PROGRAMS
// PROGRAM IMPLEMENTS SOLOVAY-STRASSEN ALGORITHM [66] TO
// TEST PRIMALITY. A CONSTANT NUMBER n IS TESTED, BASE a IS
// A RANDOM NUMBER.
// THIS PROGRAM COMPUTES LONG NUMBERS UP TO 2,147,483,647
// WHERE JACOBI SYMBOL IS SIGNED NUMBER.
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
//
long n=131303L; 	 // odd integer 1 <= n <= n-1
//
class Prime{
public:

Prime(long=0);
long a();
long r();
long agen();
long ffunct();
long jfunct();
void swap(long &, long &);

private:
long _a; 	 // random integer 2 <= a <= n-2
long _r; 	 // rem r=a^(n-1)/2 mod n if r != 1

// then composite
} ;

// Constructor
// 	
Prime::Prime(long a): a(a){};

long Prime::a() { return _a;}
long Prime::r() { return _r;}
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// Member function agen generates random number a
// 
long Prime::agen()
{
randomize();
int min=1; 	 long max=1000L;
long range=max-min+1; 	 // rand a ranges from min to max

a=rand()/100%range+min; 	 return _a;
}

// Member function ffunct computes a^(n-1)/2 mod n
// 
long Prime::ffunct()
{

long val, exp; 	 // local variables
long _r=1; 	 // initialize _r to 1

exp=(n-1)/2;
for(long j=1; j<=exp; j++){

val=_ a* _r; 	 // val is a prod of a and rem r
r=val%n;	 } // rem r obtained from val mod n
return r;

}

// Function computes Jacobi symbol
// 
long Prime::jfunct()

signed long jac=1;
while(_a!=0){
if(_a==1)

jac=1;
if( a>0 && a%2==0){

a= a/2;
if((n%8==1 II n%8==7))

jac=jac;
if((n%8==3 II n%8==5))

jac=-jac;
II call subfunction swap

swap(_a,n); 	 // interchange denominator with
// nominator

if(n%4==3 && a%4==3)
jac=-jac;
a= a%n;

}
if(n==1)

return jac;
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else
return (0);

// Member function swap interchanges the denonimator with
dominator
// 	
void Prime::swap(long &a, long &n)

long temp = a;
a = n;
n = temp;

}

main()

signed long s;
long nprob;
long cnt;
long u, a;
float avg;
long np=n;
time_t first, second;
first = time(NULL);

/1 denotes Jacobi symbol
// denotes number of probes
// denotes number of primes

// save n as np

// Gets system start time

cout<<"RESULTS"<<endl;
Prime prime;
for(int x=1; x<=5; x++){ // generate random numbers

prime.agen();
a=prime.agen();
u=prime.ffunct(); 	 // save reminder as u
if(u==1 && u==n-1){ // reminder to be equal 1 or n-1

cnt=1;
cout<<" n 	 "<<n<<"\tis a prime "<<end1;

}
else 	 // Jacobi symbol results

cout<<prime.jfunct()<<end1;
s=prime.jfunct(); 	 // save Jacobi symbol as s
if(s%np==u){ 	 // compare Jacobi symbol to rem

cnt=1;
cout<<" n = "<<np<<"\tis a prime "<<end1;}

else {
cnt=0;
cout<<" n = "<<np<<"\tis a composite "<<end1; }
cout<<endl;

cout<<np;
nprob=(np-1)*(np-1)/2; 	 // calculates number of probes
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second = time(NULL); 	 II Gets system ending time again
difftime(second,first); // Compute total CPU time
// Create an output table
//
return 0;
}

PRIME NUMBERS GENERATING PROGRAMS

RANDOM SEARCH FOR PROBABLE PRIMES

// PROGRAM IMPLEMENTS MILLER-RABIN [66] RANDOM SEARCH FOR A
// PRIME. NUMBER n AND BASE a ARE RANDOMLY GENERATED AND n
// IS PRE-TESTED FOR PRIMALITY
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
class Prime{
public:

Prime(long=0, long=0, long=0, long=0);
long a();
long r();
long y();
long s();
long agen();
long rfunct();
long ffunct();
long sfunct();

private:
long _a; 	 // random integer 2 <= a <= n-2
long _r; 	 // reminder y != 1
long _y;
long s;

} ;

long n;
const long L=39000L;
const long U=40000L;
void ngen();
long is _ divisible();
char *readOlst="read0lst.dat";

// Constructor
// 	
Prime::Prime(long a, long y, long s, long r)
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a(a), 	 Y(Y), 	 s(s), 	 r(r){};

long Prime::a()
	

{ return a;}
long Prime::r()
	

{ return r; }
long Prime::y()
	

{ return y;}
long Prime::s()
	

{ return s;}

// Member function agen generates random number a
// 
long Prime::agen()
{
randomize();
int min=2; 	 long max=1000L;
long range=max-min+1;

a=rand()/100%range+min; // random a ranges from min
to max

return _a; 	 // class object
}

// Member function computes exponents r
// 
long Prime::rfunct()

long diff;
diff=n-1;
r=diff;

do{ r=_r/2;
while(_r%2==0);

return (r);
}

// Member function ffunct computes y 	 (a^r) mod n
// 	
long Prime::ffunct()

long val; 	 // local variable
long _y=1; 	 // initialize y to 1
for(long j=1; j<=_r; j++){

val= _ a* _17; 	 // val is a prod of a and reminder r
_y=val%n; 	 } // reminder r obtained from val mod n
return y;

}

// Member function computes exponents s
// 
long Prime::sfunct()
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	long _s=0;	 long rdif;
rdif=n-1;
r=rdif;

do{_r=_r/2;

	

s++; 	 }
while(_r%2==0);

return (_s); 	 }
main()

ifstream r01st(read01st,ios::out);
long nprob;
long cnt=0;
long y;
long s;
float avg;

time _t first, second;
first = time(NULL);

// denotes number of probes
// denotes number of primes
// denotes the reminder
// denotes exponent s
// average time per prime

// Gets system start time

ngen();
cout<<"RESULTS"<<end1;
Prime prime;

while(r01st>>n) {
prime.agen(); 	 // generate random number
prime.rfunct();
prime.ffunct(); 	 // compute y=(a^r)mod n
y=prime.ffunct();
prime.sfunct();
s=prime.sfunct();

if(y!=1 && y!=n-1) 	 { // if mod rem is equal 1 or n-1
int j=1;
if(j<=s-1 && y!=n-1){// if reminder is not equal n-1

y=pow(y,2);
y=y%n;
if(y==1) { 	 // if reminder is not equal 1

cout<<"";} 	 // then n is a composite
j=j+1; 	 }

if(y!=n-1 && y!=l){ 	 // if reminder is not
equal n-1

cout<<" ";}
else{cout<<setw(6)<<n;
prime number

cnt++;
if(cnt%10==0)

cout<<endl; }

// then n is a composite
// otherwise n is a



}
cout<<endl;
second = time(NULL); //
difftime(second,first); //
nprob=(U-L)*s*s; //

lower limit
//

//
// Create an output table
//
return 0;
}

Gets system ending time
Compute total CPU time
calculates number of probes
tested primes diff upper to

number of r iterations
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// Function generates a range of n odd random numbers
// 	
void ngen()
{
ofstream r01st(read01st,ios::out);
int bool;
randomize();
long min=L; 	 long max=U;
long range=max-min+1;
for(int i=L; i<=U; i++){// random a ranges from min to max

n=rand()/100%range+min; bool=is_divisible();
if(bool==1){

r0lst<<n<<" ";}
}

// Member function pretests if number n has factors
// 
long is divisible()
{
double N=n, xmax;

xmax=sqrt(N);
long xM=floor(xmax);
if(n==1) return 0;
if(n%2==0) return 0;
for(long x=3; x<=xM; x++){

if(n%x==0)
return 0;

else
return 1; }

}
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EXTENDED FERMAT PROGRAM

// PROGRAM IMPLEMENTS FERMAT's ALGORITHM [60] TO TEST
// PRIMALITY AND GENERATES PRIME NUMBERS n IN THE SPECIFIED
// INTERVAL [L,U], WHERE BASE a IS A RANDOMLY GENERATED
// NUMBER.
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
class Prime{
public:

Prime(long=0, 	 long=0);
long a();
long r();
long agen();
long ffunct();
long is_prime();

private:
long _a; // random integer 2 <= a <= n-2
long _r; // reminder r=a^(n-1)/2 mod n

}; // if r != 1 then composite

long n;
const long L=99000L, U=100000L;
void ngen();
char *read01st="read01st.dat";

// Constructor
// 	
Prime::Prime(long a, long r): _a(a), _r(r){};

long Prime::a() 	 return _a;}
long Prime::r() 	 return _r;}

// Member function agen generates random number a
// 	
long Prime::agen()

randomize();
int min=1; 	 long max=U;
long range=max-min+1; 	 // random a ranges from min to max

a=rand()/100%range+min;
return a;

}

// Member function ffunct computes a^(n-1)/2 mod n



/ /
long Prime::ffunct()
{
long val; 	 // local variable
long r=1; 	 // initialize r to 1
for(long j=1; j<=n-1; j++){

val= a* _r; 	 // val is a prod of a and reminder r
r=val%n; } 	 // rem r obtained from val mod n
return r;

}

// Member function is prime tests if the number n is a
prime
// 	
long Prime::is_prime()
{
double N=n,xmax;

xmax=sqrt(N);
long kM=ceil(xmax);
if(n % 2==0) return 0;
for(long x=3; x<xM; x+=2)

if(n%x==0) return ();
if(n%x!=0) return 1;

}

main()

ifstream r01st(read01st,ios::in);
long nprob; 	 // denotes number of probes
long cnt=0; 	 // denotes number of primes
long u;
float avg;
long r;

time t first, second;
first = time(NULL); // Gets system start time
ngen();
cout<<" 	 LIST 	 OF 	 PRIMES"<<end1;
Prime prime;
while(r01st>>n){

prime.agen(); // generate random numbers
u=prime.ffunct(); 	 // save reminder as u
r=prime.is_prime(); // needs to be equal 1 or n-1
if(r==1 && (u==1 II u==n - 1)){
cout<<setw (7) <<n;

cnt++;
if(cnt%10==0) cout<<end1;
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}
else {cout<<"";}
}

second = time(NULL); 	 // Gets system ending time again
difftime(second,first); // Compute total CPU time
nprob=(U-L)*(U-L); 	 // calculates number of probes
// Create an output table
//
return 0;
}

// Function generates a range of n odd numbers
// 
void ngen()
{

ofstream r01st(read01st,ios::out);

for(long i=L/2; i<=U/2; i++){
n=i*2+1;
r01st<<n<<" ";
}

}

GENERATING STRONG PRIMES

// PROGRAM IMPLEMENTS GORDON's ALGORITHM FOR GENERATING
// STRONG PRIMES
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
long n,r,s,t,p,p0,nprime,nprob;
long U=10000000L;
long ngen(long);
int is_prime(long);
void tfunct(long);
void p0funct(long);
int p_prime(long);
void pfunct(long);
void test p(long,long &);

char *read01st="gordon0.dat";
char *readllst="gordon1.dat";
char *read2lst="gordon2.dat";
char *read3lst="gordon3.dat";
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char *read4lst="gordon4.dat";
main()
{
ifstream r01st("gordon0.dat",ios::in);
time t first, second;
first = time(NULL); 	 // Gets system start time
ngen(n);
tfunct(t);
p0funct(r);
pfunct(p):
test_p(p,nprime);
while(r01st>>n){
double N=n,sqrtN;

sqrtN=sqrt(N);
long sn=ceil(sqrtN);

nprob=2*sn*sn+U;}
second = time(NULL); 	 // Gets system ending time again
difftime(second,first); // Compute total CPU time
//
// print results
//
return 0;
}

// function generates random n numbers and pre-tests for
// possible divisors using is_prime sub-function
// 	
long ngen(long n)
{
ofstream r01st(read01st,ios::out);
int bool; int cnt=0;
randomize();
int min=1; 	 long max=U;
long range=max-min+l;
while(cnt<2){ 	 // random n ranges from min to max

n=rand()/100%range+min;
bool=is_prime(n); 	 // call subfunction is_prime
if(bool==1){

cnt++;
r01st<<n<<" ";}

else
cout<<""; }

}

// sub-function pre-tests the randomly generated numbers n
// for possible divisors
// 	
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int is_prime(long n)
{
double N=n;
double sqrtN=sqrt(N);
long sqrtn=ceil(sqrtN);
if(n%2==0) 	 return 0;
for(long x=3; x<=sqrtn; x++)

if(n%x==0)return 0;
return 1;

}

// function computes r values
//  
void tfunct(long t)

ofstream rllst("gordonl.dat",ios::out);
ifstream r01st("gordon0.dat",ios::in);
int i;
while(r01st>>t>>s){
double T=t;
double sqrtT=sqrt(T);
long sqrtt=ceil(sqrtT);
for(i=1; i<=sqrtt; i++){

r=2*i*t+1;
r11st«r«" "; 	 }

// function computes p0 values
//  
void p0funct(long r)
{

ofstream r2lst("gordon2.dat",ios::out);
ifstream r11st("gordon1.dat",ios::in);
ifstream r01st("gordon0.dat",ios::in);
int k; 	 long p0,val,u=1;
while(r01st>>t>>s){
while(rllst>>r){
for(k=1; k<=r-2; k++){

val=s*u;
u=val%r; 	 }

p0=2*u*s-1;
r21st«r<<" "<<p0<<" "; }

}
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{
ofstream r31st("gordon3.dat",ios::out);
ifstream r21st("gordon2.dat",ios::in);
ifstream r01st("gordon0.dat",ios::in);
int j; 	 long s,t,r,p0;
while (r0lst>>t>>s) {
double S=s;
double sqrtS=sqrt(S);
long sqrts=ceil(sqrtS);
while(r21st>>r>>p0){

for(j=1; j<=sqrts; j++){
p=p0+2*j*r*s;

	

r31st<<p<<" "; 	 }
}

}

}

// function computes probable primes p, pre-tests each
// candidate for possible divisors, if p does not have
// possible divisors, then is printed out as a strong prime
//
void test_p(long p,long &nprime)

ofstream r4lst(read4lst,ios::out);
ifstream r31st("gordon3.dat",ios::in);
int bool;

nprime=0;
while(r31st>>p){
bool=p prime(p); 	 // ca11 pre-test p_prime sub-function
if(bool==1){

r4lst<<endl<<p;
nprime++;}

else
cout<<""; 	 }

}

// sub-function to pre-test the prime candidates for
// possible divisors
// 	
int p_prime(long p)

double N=p,sqrtN;
sqrtN=sqrt(N);

long sqrtn=ceil(sqrtN);
if(p%2==0) return 0;
for(long x=3; x<=sqrtn; x++)

if(p%x==0)return 0;



return 1;

SIEVES

// PROGRAM IMPLEMENTS THE SIEVE OF ERATOSTHENS ALGORITHM
// Presented by the Menezes [66]
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
typedef bool;
bool false=0;
bool true=1;
long N, L;
bool S[20000]={0};
long i,j,p,nprob;
long c1=0,c2=0,nprime=0;

main()

time _t first, second;
first = time(NULL); 	 // Gets system start time
cout<<" Please enter the lower L and the upper U limits of
the interval"

<<endl<<" L: ";
cin>>L;
cout<<" U: ";
cin>>N;
cout<<endl<<" 	 LIST OF PRIMES"

<<endl;
for(i=2; i<N; i++){ 	 // assert all numbers in

S[i]=true; 	 // the range 2 to N
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for(j=2; j<N/2; j++)
S[2*j]=false;

c1++;
p=3 ;

}
while (p<N) {
for(long j=2; p*j<N; j++)

S[p*j]=false;
do {++p;}
while(!S[p]);

c2++;
}

for(i=L; i<N; i++){

// numbers that are multiples
// of 2, to be removed

// numbers that are multiple
// of n, to be removed
// increment p by 1 go to
// next p



if(S[i]){
false had

cout<<i<<" ";
nprime++;}

if(i%100=-0)
cout<<endl;
}

cout<<endl;

// print entire set after

// been removed
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nprob=c1+c2;
second = time(NULL); 	 // Gets system ending time again
// difftime(second,first); 	 // Compute total CPU time
//
// print results
//
return 0;
}

// PROGRAM IMPLEMENTS XUEDONG LUO's SIEVE ALGORITHM 1
//
// Program written by: Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
typedef bool;
bool false=0;
bool true=1;
const long U=10000; 	 // denotes uper limit
const long L=9000; 	 // denotes lower limit
bool S[U]={0};
long j,k,q,p,M;
long nprob;

main()

time t first, second;
first = time(NULL);

long M=U/2;
long nprime=0;
for(j=2; j<U; j++){

S[j]=true;
if(j==0){

q=j;

s2:if(S[j]==false)
{goto s1;}

else

// Gets system start time

// initial condition, N=U
// is even

// assert all S[j] == true

// begin step a)
// mark if S[j] == false
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k=q;
for(k=2; k<=M; k++)

S[2*k]=false;
P=3 ;
	

}

while(p<M){
for(k=2; p*k<U; k++)

S[p*k]=false; 	 // begin step b)
do{++p;} 	 // increment p and repeat

while p*k<N
while(!S[p]); } 	 // mark if S[p] == false

s1:j=j+1; 	 // begin step c)
p=p+2;
q=q+2*p-2;
if (q<M)
{goto s2;}

for(j=L; j<U; j++){
if(S[j]){ 	 // print j only if S[j] unmarked

cout<<setw(6)<<j;
nprime++;}

if(j%50==0)
cout<<endl;

}
nprob=U*(U-L);
second = time(NULL); 	 // Gets system ending time again
difftime(second,first); // Compute total CPU time
cout<<endl<<endl;
//
// results
return 0;}

// PROGRAM IMPLEMENTS SUBLINEAR ADDITIVE SIEVE ALGORITHM 2
// FOR FINDING PRIME NUMBERS. Algorithm by P.Pritchard
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
typedef bool;
bool false=0;
bool true=1;
const int U=30000;
const int L=29000;
long N=U;
bool prime[U]={0};
long i,j,p,nprob,nprime=0;



void functl();
void funct2();
void funct3();
void funct4();

main()

time t first, second;
first = time(NULL);

funct1();
funct2();
funct3();
funct4();

// Gets system start time

nprob=3*N;
second = time(NULL); 	 // Gets system ending time again
difftime(second,first); // Compute total CPU time
//
// results
//
return 0;
}

// function asserts entire set of numbers from 2 to N as
// boolean true
// 	
void functl()
{
for(i=2; i<N; i++){

prime[i]=true; }
}

// function 2 tests if the numbers in the range from 2 to N
// have factor if yes, these numbers are multiples of 2,
// marked as boolean false, and nonprimes (composites) wi11
// be removed from the set
/ /
void funct2()

for(j=2; 2*j<N; j++){
prime[2*j]=false;
p=3; 	 }
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// function 3 tests if the numbers in the range from 2 to
// N have factors if yes, these numbers are multiples of
// 3 <= p <= N, marked as boolean false, and nonprimes
// (composites) wi11 be removed from the set
//
void funct3()
{
while(p<N/2){
for(j=2; p*j<N; j++)

prime [p*j ] =false;
do {++p;}while(!prime[p]);}

}
// function 4 prints all unmarked numbers in the interval
// i=min to N
// 	
void funct4()
{
for(i=L; i<U; i++){

if(prime[i]){
cout<<i<<" ";
nprime++;}

if (i 9680=0)
cout<<endl;
}

cout<<endl;
}

// PROGRAM IMPLEMENTS THE SIEVE OF ERATOSTHENES FOR FINDING
// PRIMES
// as presented by P.Pritchard [86]
// Program written by Wieslawa E. Amber
//
typedef bool;
bool false=0;
bool true=1;
const long N=100;
const long L=90;
bool a[N]={0};
long i,j,p,M,nprime=0,nprob=0;

void sieve();
char *out0file="00000.txt";

main()
{

time t first, second;
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first = time(NULL); 	 // Get system start time

sieve();

double x = N, result;
result = sqrt(x);

long rN=ceil(result);

second = time(NULL); 	 // Get system ending time again
difftime(second,first); // Compute total CPU time
cout<<endl<<endl;
return 0; }

void sieve()
{
ofstream o0file(out0file, ios::out);
bool a[N]={0};

a[1]=0;
for(i=2; i<N; i++){

a[i]=1;
p=2;
while(p*p<N){

j=2*p;
while(j<=N){

nprob++;
a[j]=0;

j=j+p;
do{p=p+1; }

while(!a[p]);
}
if(a[i]==1 && i>=L){

nprime++;
o0file<<i<<" ";
}

}

}

// PROGRAM IMPLEMENTS THE SFA ALGORITMS USING 2 LINEAR
// EQUASIONS m=12*k+7 and m=12*k+5
// ALGORTITHM BY PROFESSOR BORIS S. VERKHOVSKY, PH.D.
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
long k,A,B;
long N71,N51,N72,N52,N73,N53,N74,N54;



long NP71,NP51,NP72,NP52,NP73,NP53,NP74,NP54;
long m,prime,kmax;

void
void

compute(long,
sieve71(long,

long,
long

long &);
&, 	 long &);

void sieve51(long, long &, long &);
void sieve72(long, long &, long &);
void sieve52(long, long &, long &);
void sieve73(long, long &, long &);
void sieve53(long, long &, long &);
void sieve74(long, long &, long &);
void sieve54(long, long &, long &);
void findm7(long,long);
void findm5(long,long);
void mergek();
void mergem();
void print(long,long);

main()
{
cout<<" PROGRAM IMPLEMENTS THE SFA ALGORITM"<<endl;
cout<<" Algorithm by Professor Boris S. Verkhovsky,
Ph.D."<<end1;

cout<<" Program written by Wieslawa E. Amber "<<endl<<endl;
cout<<" Please enter the interval [A,B]. "<<end1<<" A = ";
cin>>A;
cout<<" B = ";
cin>>B;
time t first, second;
first = time(NULL); 	 /* Gets system time */

compute (A, B, kmax) ;
sieve71(k,N71,NP71);
sieve51(k,N51,NP51);
sieve72(k,N72,NP72);
sieve52(k,N52,NP52);
sieve73(k,N73,NP73);
sieve53(k,N53,NP53);
sieve74(k,N74,NP74);
sieve54(k,N54,NP54);
findm7(m,k);
findm5(m,k);
second = time(NULL);
difftime(second,first);
mergek();
mergem();
print(m,k);

/* Gets system time again */
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cout<<endl<<endl;
return 0;

void compute(long A, long B, long &kmax)
{
ofstream p00sfa(prn00sfa,ios::out);
double a=A,kM;
kM=(a/12.0);
long kmin=floor(kM);
double b=B,kX;
kX=(b/12.0);
kmax=floor(kX);
for(k=kmin; k<=kmax; k++){

p00sfa<<k<<" ";
}

}

void sieve71(long k, long &N71, long &NP71)
{
ofstream p71sfa(prn7lsfa,ios::out);
ifstream p00sfa("000sfa.dat",ios::in);

	

int r=7; N71=0; 	 long kmax;
long emax,ek,e,u=0;
while (p00sfa>>k) {
kmax=k;
if(k%r!=0 && k%(12+r)!=1){

emax=k/12;
emax=floor(emax);

for(e=1; e<emax; e++){
u=e+1;
ek=(12*e+7); 	 }
if(k % (ek)!=e || k!=(ek*u)-e){

p71sfa<<k<<" ";

	

N71++; 	 }
}

else {}
NP71= emax; }

}

void sieve51(long k, long &N51, long &NP51)

ofstream p51sfa(prn5lsfa,ios::out);
ifstream p00sfa("000sfa.dat",ios::in);

	

int r=5; N51=0; 	 long kmax;
long emax, ek, e, u=0;
while(p00sfa>>k){
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kmax=k;
if(k%r!=0 && k%(12+r)!=1){

emax=k/12;
emax=floor(emax);

for(e=1; e<emax; e++){
u=e+1;
ek=(12*e+r); 	 }
if(k%(ek)!=e || k!=(ek*u-e)){

N51++;
p51sfa<<k<<" "; }

}
else {}

NP51=emax; }
}

void findm7(long m, long k)

ofstream p75sfa(prn75sfa,ios::out);
ifstream p74sfa("074sfa.dat",ios::in);
while (p74sfa>>k) {

m=12*k+7;
p75sfa<<m<<" ";
}

}

void findm5(long m, long k)

ofstream p55sfa(prn55sfa,ios::out);
ifstream p54sfa("054sfa.dat",ios::in);
while (p54sfa>>k) {

m=12*k+5;
p55sfa<<m<<" ";
}

}

void mergek()

ofstream p0ksfa(prn0ksfa,ios::out);
ifstream p74sfa("074sfa.dat",ios::in);
ifstream p54sfa("054sfa.dat",ios::in);
long k7,k5;
while((p74sfa>>k7) && (p54sfa>>k5)){

if(k7<k5){
p0ksfa<<k7<<" "<<k5<<" u;}

else{
p0ksfa<<k5<<" "<<k7<<endl; }
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}

void mergem()

ofstream p0msfa(prn0msfa,ios::out);
ifstream p75sfa("075sfa.dat",ios::in);
ifstream p55sfa("055sfa.dat",ios::in);
long m7,m5;
while((p75sfa>>m7) && (p55sfa>>m5)){

if(m7<m5){
p0msfa<<m7<<" "<<m5<<" ";}

else{
p0msfa<<m5<<" "<<m7<<end1:}

}

}

void print(long m, long xk)
{

ofstream p07sfa(prn07sfa,ios::out);
ifstream p0msfa("00msfa.dat",ios::in);
ifstream p0ksfa("00ksfa.dat",ios::in);
cout<<endl<<" List of primes generated by SFA Algorithm"

<<endl;
int xcnt=0;
int mcnt=0;
s2: cout<<endl<<setw(8)<<" k ";

while (p0ksfa>>xk) { {
xcnt++;
cout<<setw(8)<<xk;
}

if((xcnt)%10==0){
goto s1;

}
s1: cout<<endl<<setw(8)<<" m(k) ";

while (p0msfa>>m) { {
cout<<setw (8) <<m;
mcnt++;
}

if((mcnt)%10==0){
cout<<endl;
goto s2;

}

// PROGRAM IMPLEMENTS SEQUENCES CONTAINING PRIMES 6k+1
// ALGORITHM



// ALGORITHM BY Professor Boris S. Verkhovsky, Ph.D.
//
// Program written by Wieslawa E. Amber
// Advisor Professor Boris S. Verkhovsky, Ph.D.
//
unsigned long m,k;
unsigned long A;
unsigned long B;
unsigned long prime,pcnt;
float avg;
void compute(unsigned long,unsigned long,unsigned long &);
long is_divisible(unsigned long);
void print(unsigned long,unsigned long &);

char *prn001st 	 "00prime.dat";
char *prn00six = "00sixk.dat";
char *prn01six = "01sixk.dat";

main()

cout<<" Please enter the interval limits [A,B]. "<<end1<<"
A = ";
cin>>A;
cout<<" B = ";
cin>>B;
cout<<endl<<end1<<" 	 Printing list of primes.
"<<endl;
time t first, second;
first = time(NULL); 	 // Gets system time

compute(m,k,pcnt);
print(m,prime);

second = time(NULL); 	 // Gets system time again
difftime(second,first); 	 // Total CPU time

// Create an output table
//
cout<<end1<<endl;

return 0;

void compute(unsigned long m,unsigned long k,unsigned long
&pcnt)

ofstream p00six(prn00six,ios::out);
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int bool;
pcnt=0;
	

// number of probes

unsigned long f,sf,nfs,ns;
unsigned long max,kmax,kmin;

kmin=floor(A/6);
kmax=ceil(B/6);

for(k=kmin; k<=kmax; k+=2){

double K=k,aa;
aa=sqrt(K/6);
max=ceil(aa);

for(f=1; f<=max; f++){
pcnt++;
sf=(6*f+1);
nfs=(6*f-1);
ns=5*f-1;
if((k%(sf)!=f) && (k%(nfs)!=(ns)))

m=6* k+1; 	 }

if(m>A){
bool=is divisible(m);
if(bool==1){

p00six«m«" ";}
else

cout<<""; 	 }

// Member function pretests if the number n has factors
1/ 
long isdivisible(unsigned long m)

unsigned long xM,x;
double M=m, xmax;

xmax=sqrt(M);
xM=floor(xmax);

if (m%2==0) return 0;
for(x=3; x<=xM; x++)

if(m%x==0)
return 0;

return 1;
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APPENDIX C

This appendix groups, sorts, and compares the results from the selected computer

experiments to indicate the best performing algorithm.

PRIMALITY TESTING ALGORITHMS

TABLE OF RESULTS 1
Fermat's Primality Test [66]

Tested
prime

CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

31337
131303

1311307

0.00021
0.01411
3.05030

7,928,008
40,309,714

246,525,528

1
1
1

0.00021
0.01411
3.05030

TABLE OF RESULTS 2
Miller - Rabin Primality Test [66]

Tested
prime

CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

31337
131303

1311307

0.00001
0.00183
1.00000

3,008,256
19,563,998

188 , 172,411

1
1
1

0.00001
0.00183
1.00000

TABLE OF RESULTS 3
Solovay - Strassen Primality Test [66]

Tested
prime

CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

31337
131303

1311307

0.00611
1.00230
2.00230

2,506,880
3,939,060

118 , 017,540

1
1
1

0.00611
1.00230
2.00230

PRIME NUMBERS GENERATING ALGORITHMS

TABLE OF RESULTS 4
pertaining to Sieve Algorithm 1 by Xuedong Luo

interval [L,U] CPU Number Number time/prime
time of probes of primes [s]/prime

[19000,20000] 27.003 20000000 104 0.259644
[9000,10000] 6.120 10000000 112 0.054643

900,1000 0.008 100000 14 0.000571
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TABLE OF RESULTS 5
Pritchard's Su blinear Additive Sieve Algorithm for Finding

Prime Numbers

interval [L,U] CPU Number Number time/prime
time of probes of primes [s]/prime

[19000,20000] 2.00310 60000 104 0.019261
[9000,10000] 0.00820 30000 112 0.000073

900 1000 0.00001 3000 14 0.000001

TABLE OF RESULTS 6
pertaining to the Sieve Algorithm presented by Pritchard [86]

interval [L,U] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[1000,2000]
900 1000

1.11100
0.00280

6490446
1538248

135
14

0.008230
0.000200

TABLE OF RESULTS 7
pertaining to D.Gries and J.Misra Sieve Algorithm 2

interval [L,U] CPU
time

Number
of probes

Number
of primes

time/prime
[s]/prime

[900,1000]
[100,1000]

2.0031
0.0026

2142256
2142256

14
143

0.143079
0.000018

TABLE OF RESULTS 8
Gordon's Algorithm for Finding Strong Primes

interval [L,U] CPU
time

Number
of probes

Number
of primes

time/prime
[s]/prime

[1,10000000] 0.00826 10000512 29 0.000285
[1,1000000] 0.00134 1000512 31 0.000043

[1,100000] 0.00061 100578 32 0.000019
[1,10000] 0.00012 10162 12 0.000010

1,1000 0.00001 1512 22 0.000001

The number of experiments pertaining to tables 5, 6, and 7 was limited by the 64K

automatic data segmentation resulting from array type specified in the algorithm.
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TABLE OF RESULTS 9
pertaining to the Sieve of Eratosthenes Algorithm

interval [L,U] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[24000,25000] 131 27759 94 1.393617
[19000,20000] 88 22259 104 0.846154

[9000,10000] 36 11226 112 0.321429
900 1000 9 1165 14 0.642857

The number of experiments pertaining to table 9 was limited by the 64K automatic data

segmentation resulting from array type specified in the algorithm.

TABLE OF RESULTS 10
Miller - Rabin Search for Random Primes

interval [L,U] CPU
time [5]

Number
of probes

Number
of primes

time/prime
[s]/prime

[999000,1000000] 20.8123 9000 55 0.378405
[99000,100000] 3.2083 1000 57 0.056286
[99900,100000] 0.0894 400 4 0.022350

[9000,10000] 2.1156 1000 80 0.026445
[9900,10000] 0.0078 100 5 0.001560

900,1000 0.0001 100 6 0.000017

TABLE OF RESULTS 11
Extending Fermat's Probabilistic Primality Test to

Generate Primes in the specified interval

interval [L,U] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[999000,1000000] 194.236 1000000 65 2.988246
[99000,100000] 18.763 1000000 87 0.215667

[9000,10000] 2.034 1000000 112 0.018161
[900,1000] 0.001 10000 14 0.000071
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TABLE OF RESULTS 12
Extending Fermat's Probabilistic Primality Test to

Generate Random Prime

interval [L,U] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[999000,1000000] 3.762 1000000 83 0.045325
[99000,100000] 3.056 1000000 92 0.033217

[9000,10000] 0.913 1000000 112 0.008152
900,1000 0.001 10000 21 0.000048

TABLE OF RESULTS 13
pertaining to SFA Algorithm

Interval [A,B] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[999000,1000000] 1.1008 142897 84 0.013105
[999900,1000000] 0.0935 91358 10 0.009350

[99000,100000] 0.0096 19437 83 0.000116
[9900,10000] 0.0008 1936 10 0.000080

900,1000 0.0001 178 8 0.000013

TABLE OF RESULTS 14
Sequences Containing Primes Algorithm

Interval [A,B] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[9999900,10000000] 0.01137 4752 3 0.003790
[999900,1000000] 0.00986 1503 1 0.009860
[999000,1000000] 0.00152 14028 14 0.000109

[99000,100000] 0.00087 4452 23 0.000038
[9000,10000] 0.00073 1409 28 0.000026

900,1000 0.00001 53 2 0.000005
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TABLE OF RESULTS 15
APPLYING EXPONENTIAL FUNCTION ((a!)^2)*((-1)^ b)

IN PRIME NUMBERS GENERATION [105]

Interval [A,B] CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

[1,1000] 0.078 125250 167 0.000467
[1,2000] 0.142 500500 302 0.000470

[1,10000] 8.043 12502500 1228 0.006550
1,20000 30.856 50005000 2261 0.013647

TABLE OF RESULTS 16
PARAMETRIC REPRESENTATION OF COMPOSITE TWINS AND

GENERATION OF PRIME AND QUASI PRIME NUMBERS [108]

CPU Number Number of variances Time/prime
time of probes of verified primes

[s] and quasi-primes [s]/prime
[1,200] 1 12221 84 0.0119048

[1,1000] 8 112211 3585 0.0022315
1,10000 74 1030301 4492 0.0164737

SUMMARY OF RESULTS

TABLE OF RESULTS 17
Comparison Exponential [105] vs. Fermat [66] Algorithms

Interval
[A,B]

CPU
time [s]

Number
of probes

Number
of primes

time/prime
[s]/prime

Exponential [1,1000] 0.001 125250 167 0.00001
Fermat [1,1000] 1.000 998001 167 0.00599

Exponential [1,2000] 0.010 500500 302 0.00003
Fermat [1,2000] 2.000 3996001 302 0.00662

Exponential [1,10000] 8 12502500 1228 0.00651
Fermat [1,10000] 18 99980001 1229 0.01465

Exponential [1,20000] 31 50005000 2261 0.01371
Fermat 1,20000 54 399960001 2262 0.02387
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TABLE OF RESULTS 18
Comparison Miller-Rabin, SFA, and Sequences Containing Primes Algorithms

interval [L,U] CPU Number Number time/prime
time of • robes of •times s /. rime

Miller-Rabin [999000,1000000] 20.8123 9000 55 0.378405
SFA [999000,1000000] 1.1008 142897 84 0.013105
6KSeq 999000,1000000 0.00152 14028 14 0.000109

Miller-Rabin [999900,1000000] 0.0010 100 1 0.00100
SFA [999900,1000000] 0.0935 91358 10 0.009350
6KSeq [999900,1000000] 0.0098 1503 1 0.009860

Miller-Rabin [99000,100000] 3.2083 1000 57 0.056286
SFA [99000,100000] 0.0096 19437 83 0.000116
6KS- • 99000,100000 0.0008 4452 23 0.000038

Miller-Rabin [9000,10000] 2.1156 1000 80 0.026445
SFA [9000,10000] 0.0011 1936 90 0.000012
6KSeq 9000,10000 0.0007 1409 28 0.000025

Miller-Rabin [900,1000] 0.0001 100 6 0.000017
SFA [900,1000] 0.0001 178 8 0.000013
6KSeq_ _ 	 900,1000 0.00001 53 2 0.000005
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