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ABSTRACT.

PROPAGATION AND SCATTERING OF
COLLIMATED BEAM WAVE IN VEGETATION

USING SCALAR TRANSPORT THEORY

by
Michael Yu-Chi Wu

The scalar time-dependent equation of radiative transfer is used to develop a theory of pulse beam-

wave propagation and scattering in a medium characterized by many random discrete scatterers

which scatter energy strongly in the forward scattering direction. Applications include the scattering

of highly collimated millimeter waves in vegetation and optical beams in the atmosphere. The

specific problem analyzed is that of a periodic sequence of Gaussian shaped pulses normally

incident from free space onto the planar boundary surface of a random medium half-space, such as

a forest, that possesses a power scatter (phase) function consisting of a strong, narrow forward

lobe superimposed over an isotropic background. After splitting the specific intensity into the

reduced incident and diffuse intensities, the solution of the transport equation expressed in

cylindrical coordinates in the random medium half-space is obtained by expanding the angular

dependence of both the scatter function and the diffuse intensity in terms of Associate Legendre

polynomials, by using a Fourier series/Hankel transform to obtain the equation of transfer for each

spatial frequency, and by employing the weighted residual method to satisfy the boundary

condition that the forward traveling diffuse intensity be zero at the interface. Data generated from

the solution will be compared to results obtained from a computationally intensive second method

of solution, which follows the procedure used by Chang and Ishimaru to study the propagation and

scattering of monochromatic beam waves in random media. In this second method, the time-

dependent scalar transport equation is solved using a Fourier Series/Hankel transform along with

the two-dimensional Gauss quadrature formula and an eigenvalue eigenvector technique.

Numerical results are given for received power at different penetration depths, different beam sizes

and different scatter directions.
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CHAPTER 1

INTRODUCTION

For line-of-sight communication, cellular communication in particular, current interest centers on

radio-link performance, and how it is affected by wave attenuation, fading and co-channel

interference. When vegetation, such as a forest, lies along the path of a radio-link, the radio

performance will be affected by strong multiscattering effects. This needs to be understood and

therefore warrants investigation.

There are two methods that are usually used to study multiscattering effect, namely,

analytical theory and transport theory[1]. Analytical theory is a very rigorous mathematical

approach based on Maxwell's Equations. It is very complex and obtaining solutions often requires

introducing strong simplications which limit the applicable parameter ranges. In contrast, radiative

transfer theory deals with the transfer of energy through the multscattering medium. In this

theory, the basic equation that is solved is the equation of radiative transfer or tranpsort theory.

The radiative transfer theory developed heuristically from the conservation of energy principle in

radiation space. The transport equation is equivalent to Boltzmann's equation found in the kinetic

theory of gases and in neutron transport theory and is less rigorously than the analytical theory.

However, transport theory has been very successfully applied in the study of many radiation

problems, such as, optical propagation through the atmosphere, remote sensing and radiation from

stars.

In previous work, continuous wave (CW) millimeter wave and plane wave pulse

propagation in vegetation were studied using the scalar transport theory [2-6]. In these studies,

interest focused on the determination of the range and directional dependency of the received

power as well as on pulse broadening and distortion. The scalar transport equation is capable of

specifying the total energy density of radiation in two orthogonal polarizations, but not polarization

or depolarization effects (see [4] for experimental justification of their neglect in these studies). In
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the earlier developed theory of a plane wave incident upon the forest half-space, it was shown that

the range dependence in the forest (treated as a random medium) is not be simply an exponential

decrease at constant attenuation rate. What actually occurs for the received power is a high

attenuation rate at short distances into the medium that evolves into a much lower attenuation rate

at large distances. The theory explains this in terms of the interaction between the coherent and

incoherent field components. The coherent component, dominating at short distances, is highly

attenuated (by absorption and scattering ) while the incoherent component, which is generated by

the scattering of the coherent component, does not loose power by further (multiple) scattering - it

scatters into itself - and thus dominates at large distances into the forest, decreasing at a much

reduced attenuation rate. In the transition region between the high and low attenuation regimes

significant beam broadening and pulse broadening occurs.

In this study, the scalar time-dependent equation of radiative transfer is used to develop a

theory for the propagation and scattering of pulsed beam waves of finite cross-section in a medium

that is characterized by many random discrete scatterers (vegetation). Such a medium scatters

energy strongly in the forward scattering direction. Applications include the scattering of millimeter-

waves in vegetation and the scattering of optical beams in the atmosphere. Strong forward

scattering occurs at millimeter and optical frequencies since all scatter objects in a forest or in the

atmosphere are large compared to wavelength. Again of interest are the range and directional

dependency of received power, pulse broadening and distortion, in addition to the effect of a finite

beamwidth when the incident field is not a plane wave. This case differs basically from the plane

wave case in that scattering out of the beam occurs (while in the plane wave case any

multiscattered wave trains will always remain within the infinitely wide beam); this is likely to have

a significant effect on range dependence, as well as on beam broadening and pulse broadening.



CHAPTER 2

FORMULATION AND SOLUTION

2.1 	 Introduction

The forest is modeled as a statistically homogeneous half-space of randomly distributed particles,

which scatter and absorb electromagnetic energy. A periodic sequence of Gaussian pulses is taken to

be normally incident from free space onto the planar boundary of a forest. The incident pulse train is

assumed to be a collimated beam-wave; see Figure 2.1.1.

Figure 2.1.1 Collimated beam wave pulse train normally incident onto a forest half-space

Chang and Ishimaru [7] used scalar transport theory to study the scattering of a

monochromatic collimated beam-wave in a random medium. Their approach, however, is

computational intensive, and does not provide numerical data for off-axis beam scattering. In the

method presented here — which also involves using the scalar transport equation in cylindrical

coordinates — a more analytical development is achieved, which permits numerical data to be

obtained for off-axis beam scattering in the forest.

3



4

2.2 	 Incident Gaussian Beam Pulses

A collimated beam wave pulse train is assumed to be normally incident from the air region ( z 0) to

the random scattering medium (i.e., the forest), which occupies the half-space region z 	 0 . At

see Figure A.1 in Appendix for the geometry), the magnitude of the

instantaneous 	 Poynting 	 vector 	 of 	 the 	 incident 	 beam 	 wave 	 is 	 given 	 by

where Sp is the incident Poynting vector time-averaged

with respect to the carrier frequency ωc . Being a positive even function of time that is periodic with

f(0, t) is normalized such that

For Gaussian incident pulses, f(0,t) is taken to be

Since the incident beam wave pulses are even, this periodic function of time can be represented by

an even Fourier series at z = 0:

where

Hence, for the Gaussian beam wave pulse train,
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ao has to be chosen properly to ensure that the Gaussian function in (2.2.2) approaches zero as

allowing the limit of the integration in (2.2.4) to be replaced by to ± 00 .

The specific intensity (power per unit area and per unit solid angle) of the incident beam

wave pulse train travels through air at the speed of light "c" in the positive z direction and is given by

is the Dirac delta function, and 0 is defined as the scatter angle measured

positive from the positive direction of the z-axis (see Figure A.1.).

2.3 	 Phase Function

The random scatter medium is characterized by an absorption cross-section per unit volume (σa ),

the scattering cross-section per unit volume (σs) and a power scatter or phase function p(s,s ').

The phase function depends on both the incident power unit vector direction ) and the scatter

power unit vector direction (

A forest scatters energy symmetrically about the direction of the incident radiation because

the scattering surfaces in a forest essentially have random orientation. As a result, the scattering

depends only on the angle y between S' and g , where y = cos-¹(s',s) and therefore the phase

can be written as

Since all scatter objects in a forest are large compare to the wavelength at millimeter-wave

and optical frequencies, a forest scatters energy strongly in the forward direction but weakly in all

other directions. For that reason, the scatter function can be assumed to be characterized by a
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strong narrow lobe superimposed over an isotropic background. This type of scatter function can

analytically be expressed as a Gaussian function added to a homogeneous term, i.e.

which is normalized such that

c1C2 is the differential solid angle about the scatter angle . Ay s denotes the width of the forward

lobe in the scatter pattern. a is the ratio of the forward scattered power to the total scattered

power.

2.4 	 The Scalar Time-Dependent Transport Equation in Cylindrical Coordinates

2.4.1 Scalar Transport or Radiative Transfer Equation

In transport theory, the specific intensity "I" of the field in a random medium is governed by the

radiative transfer equation (transport equation). In the normalized cylindrical coordinate system

for symmetric scattering about the direction of the incident radiation, the scalar transport

equation takes the form [10]:

where
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The normalized space and time variable in (2.4.1) are given by

"he parameter Wo is called the albedo and the parameters σt,

and aa are the extinction, the scatter and the absorption cross-sections per unit volume,

respectively. See Figure A.1.

To obtain a unique solution to (2.4.1) with I assumed to be time periodic, requires satisfying

two boundary conditions that take the form

2.4.2 Intensities

As is customary, the specific intesntiy is separated into two components, namely, the reduced

incident intensity Iri and the diffuse intensity I'd by letting

Substituting (2.4.3) into (2.4.1) and (2.4.2) yield the defining equations for /ri and Id, which take

the forms

where g • V is defined in (2.4.1b) with boundary conditions

2.4.3 The Reduced Incident Intensity

To solve (2.4.4) and (2.4.5), Fourier series representations are introduced for the time dependence of

the intensities:
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where T' =o-tcT and co' = 27r IT' . Note that because (2.4.1) is linear, the angular frequency of in

(2.4.7) is the normalized version of the frequency co in (2.2.3). Note also that although the specific

intensity (power quantity) is always positive, the individual Fourier constituents Ijv be negative;

hence, they cannot physically represent power. Substituting (2.4.7) into (2.4.4) yields for z'> 0,

subject to the boundary conditions

where Ip  is the specific intensity of the incident beam wave pulse train. Solution to (2.4.8a) and

(2.4.8b) gives

is defined in (2.2.7) expressed in normalized variables. 49) is the Dirac delta

function, w' = crtw is the normalized beamwidth, t' is the normalized time and Sp is the magnitude

of the time-averaged Poynting vector. Variables p' and θ , are depicted in Figure A.1.



2.4.4 The Diffuse Intensity

Table 2.4.1 	 Ranges of the original independent variables and the transform and/or
discretized variables that are used in the calculations.

2.4.4.1 Transport Equation for Idv To solve for the diffuse intensity in (2.4.5), the Fourier

series representation is introduced again via (2.4.7) to obtain

with boundary conditions

9

2.4.4.2 Fourier-Series/Hankel-Transforms and Associated Legendre Functions In order

to solve (2.4.12), Ido is represented in terms of a Fourier series in v and a Hankel transform in

p, i.e.
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Accordingly, the representation in (2.4.12) for Idt, is an expansion in terms of basis functions,

cos(m vi)Jm (k'p'), which are complete and obey well known orthogonality properties. In addition,

the 0-dependent expansion coefficient is expanded in terms of Associate Legendre functions

Consequently,

2.4.4.3 Phase Function as a Series Expansion in Legendre Polynomials Conveniently, the

phase function is represented as a series expansion in terms of Legendre polynomials P1 as follows

where because of the orthogonality of Legendre polynomials, the expansion coefficients g1 are found

to be

Appropriate for the theoretical development here, the Legendre polynomials are expressed in terms

of Assiciated Legendre functions via the well-known relationship:

with p defined in (2.4.1c)



ihctittitina (2.4.17 into (2.4.15) gives

2.4.4.4 System of Linear Equations Substitution of Acos01 and Idv(p' , z', 0 ,v) from

(2.4.18) and (2.4.16), respectively, into (2.4.11) yields the inhomogeneous system of linear first-

order differential equations

11

where upon truncation

and

Convenient normalizations are introduced into (2.4.12) and (2.4.19):



Thus for (2.4.15) is rewritten as

12

and simplifies (2.4.19) to produce
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2.4.4.5 Homogeneous Solution The solution of (2.4.22) requires determination of both the

homogeneous and particular solutions. For the former, the right hand side of (2.4.22) is set equal

to zero an the homogeneous solution is taken to be of the form

Generalized eigenvalue equation

The matrices [A0] and [C0] are given Appendix B. The eigenvalues (A) and eigenvectors (G) of

(2.4.24) are determined by using the QZ method algorithm in the MATLAB library. The homogeneous

system of linear equations corresponding to (2.4.24) takes the form



2.4.4.6 Particular Solution The particular solution to (2.4.22) is obtained by assuming

which when substituted into (2.4.22) gives in matrix form

The matrix [130] in (2.4.27) is shown in Appendix B. The system of linear equations corresponding

to (2.4.27) and taken the form

where

The LU factorization with iterative refinement found in the LAPACK is used to find the

particular solution. The solution vector F is shown in Appendix B and g is given below:

14
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The general solution to (2.4.22) is the superposition of the particular solution and the

Ni = (N +1)2/4 allowable homogeneous solutions, which obey the condition that Re11/21> 0 to

ensure that solutions decay as z' ----> ∞ . The general solution is

The diffuse intensity as expressed in (2.4.21) becomes with the proper truncation

2.4.4.7 Boundary Condition for the Determination of Constants ai From (2.4.10a), Ido

satisfies the boundary condition
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It can then be shown using the orthogonality and completeness properties of Bessel functions that

The above boundary condition is satisfied by using the normalized spherical harmonic functions as

testing functions in the weighted residual method [12]. Hence,

for values of — m) which are odd.

Substituting (2.4.33) into (2.4.34) yields

(2.4.35) shows the values for two uncoupled integrations, which yield

Equation (2.4.36) defines a second linear system of equations as

where



The evaluation of I ml.l is displayed in Table 2.4.3; to summarize,

17

with

Table 2.4.2 	 Boundary Condition Coefficient ./;,

2.5 	 Received Power

The power received by a highly directive, narrow beamwidth antenna located in the forest is

derived in Appendix C given by



where

18

Vmax is the truncated value to ensure that the summation converges.



CHAPTER 3

DATA INACCURACIES

3.1 Introduction

Numerical solutions by their very nature are approximate solutions. Therefore, attention must be

paid to sources of inaccuracies. As several data are examined, characteristic graphs are provide to

indicate which graphs are sufficiently accurate and which ones need to be improved. For instance,

because the Quadrature method in [11] used a completely different approach than in the current

method — the Legendre method (Pn-method), the plots of the data that were generated by these

two distinct methods are compared to validate the results.

In general, errors can be minimized by increasing the value for N at the expense of the

computational time. In Appendix B, the size of the matrix for solving the system of linear equation

and generalized eigenvalue problem is

It appears from (3.1.1) that the Matrix is in the order of N4. The computational

complexity for the solving linear system of equationsplus the generalized eigenvalue problem is in

the order of n3 [13], where n is the size of the square matrix. When N is increased slightly, the

time to simulate a certain system will take longer than the time to complete the exact same system

when N is taken slightly smaller. Moreover, because all of the matrices are stored into the memory

of a computer during the simulations, the computer will require vaster memory storage and faster

memory transfer speed to accelerate these simulations.

The following global parameters are used in all of the simulations in this thesis since they

were utilized in [2] and [11]:

Wo = 0.75

19



The following parameters vary among different simulations:

3.2 	 Scatter or Phase Function

20

Figure 3.2.1 Scatter or phase function Acos 7) simplified by (2.3.2) and by (2.4.17) and

truncated at N=31.
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Figure 3.2.2 Error analysis of the phase function. n is the number of terms for the truncation 
of (2.4.18) 

Figure 3.2.1 shows the polar plot of both the exact value (2.3.2) and the truncated series expansion 

(2.4.17) of the phase function. Needless to say, the figure shows no difference between the exact 

phase function and the approximated phase function. Figure 3.2.2 shows the semilog plot of the 

error S p between the exact and the approximated phase function, i.e. 

P exact - P approximated 
Sp = 

Pexact 

(3.2.1) 

Figure 3.2.2 shows that the error between the exact and the approximated phase function 

is small when taking a large number of terms for the Legendre polynomial expansion. 
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3.3 Convergence in the Received Diffuse Power

Several graphs are provided to allow one to observe the convergence in the numerical data that is

provided for the received diffuse power. By changing several parameters, particularly the value of

N, and for different observation point, the convergence for received power curves is seen to

improve.

When the incident beam is a plane wave, all of the received diffuse power curves in the

crest region overlap with each for different values of N. When N is taken as 23, the trough region

for the received diffuse power is seen to be the most accurate. When N is 47, the received diffuse

power in the trough region is observed to be the most improved. Therefore, by increasing N,

better convergence is obtained.
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Like the plane wave case, the collimated beam wave with the beamwidth of ten shows a

problematic convergence in the trough region. Even when N is thirty-nine, the curve in the trough

region does not converge nicely. It should be noted the values of power in the trough region are

very small which indicates that numerical inaccuracy becomes evident in this region unless much

larger values of N are taken to improve the series representation of the solution.



Figure 3.3.3 Normalized received diffuse power versus normalized time for different values of

Received power in the trough region seems to converge for better values near 0 = 9° but

appears to require larger value of N as 0 approaches zero.

24
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Figure 3.3.4 Normalized received diffuse power versus normalized time at N=39, w'=10,
p'=0, z'=1, θ=0º and 4.83°.

Similar to the plane wave case in Figure 3.3.3, Figure 3.3.4 shows that as 0 approaches

zero, inaccuracies appear in the triangle region. As shown in Figure 3.3.1, it is expected that if N

were to be increasing, better results whould be obtained in the trough region. Since very low

power coccurs in the trough region and increasing N necessitates a considerable increase in

computational time, it was not warranted generating data for large w'. As will be seen shortly,

small beam widths, say w' =1 does not yield such inaccuracies in trough regions.



26

Figure 3.3.5 Normalized received diffuse power versus normalized time for w'=1 and 10 and
for w'=09 (plane wave) at p'=0, z'=1, θ=0º.

Regardless of different values of N used, it appears as shown in Figure 3.3.5 that as the

width (w') of the incident beam wave becomes smaller, better convergence is obtained in the

trough region.
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3.4 	 Other Justifications

Figure 3.4.1 Comparisons between Quadrature method (Q) [11] and Polynomial method (Pn)
of normalized received power versus normalized time for z'=1,3,5,10 with w'=1
and p'=0, 0=4.83°.

The curves that are generated by the Quadrature method (lighter and thinner lines) lie

very close to the curves that are generated by the polynomial method (darker and thicker lines),

which are developed in this thesis.
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Figure 3.4.2 Comparison between Quadrature method (Q) [11] and Polynomial method (Pn)
of the normalized received power versus normalized time for w' = 0.5,1,3,5,0o
and p'=0, z'=1, 0=4.83°.

The two set of curves in Figure 3.4.2 display simlar shapes and characteristics. Values

nearly match each other over the crest region and possess the same shapes in the trough region.

The Quadrature (Q) method yields consistently lower values for received power in the trough

region and in the vicinity of the crest maximum. Since the plane wave result was obtained using

the method presented in [2] and agrees with the Legendre polynomial (Pn) method, it is

reasonable to assume that the Pn-method is more accurate than the Q-method, which is also an

expected result since the Q-method is highly numerical as compared to the Pn-method. Hence,

curves that are generated by the Pn-method are substatiate.



29

3.5 Discussion

v„„ must be at least 10 in order for the received diffuse power curves to be accurate. In all of

the graphs, vmax is chosen to lie between ten and fifteen, in which the choice of the value of

u„,„ to be used is determined by a minimum error criteria. The normalized reduced incident

power for different value of umax is plotted in Figure 3.5.1. Figure 3.5.1 shows that u„. 12 is

needed for sufficiently accurate results to be obtained.

Figure 3.5.1 Normalized reduced incident power versus normalized time for p'=0, z'=1, 0=00,
for different values of

The km' ax value is required in the truncation of the Hankel transform in (2.4.12) so that

more than 99% of the integrand is included. To ensure that this be the case, k„' ax is selected to

be , where w' is the normalized beam width.
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The Gaussian Quadrature method was used to perform the two integration needed in the

simulation. The k'-integration (see 2.4.12) is approximated by thirty-two terms whilst there are

ninety-six terms for the integration over y, which is needed to determine the expansion coeffcient

g1 in (2.4.16).

The solutions to the linear system of equations (2.4.27) or (2.4.28) for finding the

particular solution and (2.4.37) for solving the boundary condition at z' =0 were obtained by using

LU factorization, linear equation solver, and iterative refinement packages provided by the

optimized LAPACK. The eigenvalue solutions were obtained by using the Matlab library that is

based on the QZ method in EISPACK. When tested, both of these procedures gave absolute errors

ranging from 10-10 to 10-16. This accuracy is unable to be improve because the computer

handles all variables using double precision, which means a precision that is accurate up to about

sixteen digits.

The phase function is normalized such that

This dictates that go equals 1. However, go does not equal one when determined numerically

from (2.4.16) which gives go = 0.9881 when Ay, = 0.3,a = 0.8. To ensure that the go is unity,

which guarantees that



CHAPTER 4

NUMERICAL RESULTS

4.1 	 Boundary Conditions

Figure 4.1.1 Diffuse Intensity versus θ for p' =0,z' = 0, w'=10.

The diffuse intensity is plotted in Figure 4.1.1 to indicate that the boundary condition

is satisfied. As seen in the graph, when θ lies between 0º and 90°, the diffuse intensity is nearly

zero. As N increases, the diffuse intensity becomes even smaller and closer to zero at z' 0 over

the range 0 	 7/12
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Figure 4.1.2 Diffuse intensity versus 0 for beamwidths w' = 0.5,1,2,3,5,7,10,09 when u=0,

N=31, z'=0, p'=0.

Figure 4.1.2 shows that for different beamwidths ( w' ), the boundary confition (4.1.1) is

very well satisfied for the case u = 0. For u # 0, (4.1.1) was also shown to be well satisfied; see

Figure 4.1.3. As seen in Figure 4.1.2, numerical inaccuracies produce the negligibly values for Ido,

which physically ought to be positive real.



Figure 4.1.3 Magnitude of diffuse intensity /dl versus 0 for w'=1,2 and u=1, p'=0, z'=0.

33

'dlObserve that the values of are significantly smaller than idol as indicated in Figure

4.1.2 using the same parameters. From Figure 4.1.3, the boundary condition (4.1.1) is well

satisfied for v =1. Since u # 0, the diffuse intensity is complex, so its magnitude is plotted as

distinct from the v = 0 case which is purely real.
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4.2 	 Power Attenuations

Figure 4.2.1 Time independent diffuse intensity (o=0) versus z' for w'=1, p'=0, 0=0.

The diffuse intensity in Figure 4.2.1 attenuates after reaching its maximum value in the

vicinity of z' =1 . Notice that the diffuse intensity first increases, reaches a maximum level and

then decreases as the beam wave penetrates deeper into the forest.
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Figure 4.2.2 Normalized received power versus normalized time for p' varying from 0 to 5
and N=31, w'=1, z'=1, 0=0°, y =0°.

Observe that the pulse in Figure 4.2.2 is strongest on the beam axis (p' = 0) and as

expected gets weaker the further the receiver is from p' = 0.



Figure 4.2.3 Normalized received power versus normalized time for z'=0.5,0.7,1,1.5,2,3 and
N=27, w'=1, 8=0, w=0, (a) p' = 0 , (b) p' =1 , (c) p' = 2, (d) p' = 3 .

As p' increases, the curves in Figure 4.2.3(a)-(d) shift downwards. This means that the

received power [dB] is more attenuated as one moves further away from the z-axis.
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Figure 4.2.4 Normalized received power versus normalized time for p' = 0,1,2,3 and N=27,

w'=1, z'=3, 0=0, w=0°.

Observe in Figure 4.2.4 that when the point of observation moves away from the z'-axis,

the power tends to decrease more. Distortion in the trough region occurs due to small numerical

inaccuracy at the very low power levels.
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Figure 4.2.5 Normalized received power versus normalized time t' for z'=1,3,5,10 and for
w'=1.0, N=27, p'=0, 0=4.83°, w=0°.

The graph in Figure 4.2.5 indicates that as the observation point moves away from the

z' = 0 boundary between the forest and the air, the power, which for 0 # 0 is the diffuse power,

attenuates and distorts due to pulse spreading.



Figure 4.2.6 Received power versus normalized time when (a) w'=2, (b) w'=3, (c) w'=5, (d)
w'=7 for z'=1, p'=0,1,5,10, 0=4.83°, w=0°.

In Figure 4.2.6, the curves of received power that were below —70 dB were not included

because of inaccuracies.



40

4.3 	 Angular Spread

Figure 4.3.1 Normalized received diffuse power versus normalized time for beam wave with
beannwidths w'=0.5,1,2,3,5,7, and for a plane wave. N=31 for the plane wave
case and N=27 for collimated beam waves; p=0°, z'=1, 0=5°.

Figure 4.3.1 shows that in the crest region all curves lie close together. The only difference

occurs in the trough region; these more pulse distortion occurs as the beam width w' gets smaller.

Note that the w'=7 case lies extremely close to the plane wave result, which shows the correct

behavior of the solution as the beamwidth approaches large values.
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Figure 4.3.2 Normalized received diffuse power versus normalized time for beam waves with
beamwidth w'=0.5,1,2,3,5,7, and for a plane wave. N=31 for the plane wave
case and N=27 for collimated beam waves; p=0°, z'=1, 0=62°.

Figure depicts various plots of normalized received power for° -=- 62°. It can be seen that

the received power is extremely low and exhibits considerable distortion. The smaller widths

possess the lowest received power in the trough region. The power received for the beam wave

with w'=7 resembles the plane wave case as noted previously.
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Figure 4.3.3 Normalized received diffuse power versus normalized time for beam waves with
beamwidth w'=0.5,1,2,3,5,7, and for a plane wave. N=31 for the plane wave
case and N=27 for collimated beam waves; p=0°, z'=1, (a) 0=87°, (b) 0=118°,
(a) 0=150°, (a) 0=175°.

Figure 4.3.3 shows that the received powers lose their distinctive pulse shape for

90°<0<180°. In this range, the time dependence of P' remain fairly constant but with magnitudes

that continue to decrease as 0 approaches 180°. These results are indications of the fact that for

0>0°, the antenna receives the diffuse (incoherent) intensity only, and in the range of backscatter

directions 90°<0<180°, the antenna faces the unbounded region (z' —> oo), in which considerable

multiscattering occurs.



Figure 4.4.1 show what happens to the received power when changing the antenna

received angle Om = 0° . Observe that the crest of the received power decreases as Om becomes

larger. These graphs also indicate the effect of beam broadening and pulse broadening as the

beam penetrates the forest.



CHAPTER 5

CONCLUSIONS

The theory of beam wave pulse propagation and scattering in vegetation was presented. This

theory was based on the solution to the scalar radiative transfer equation in vegetation. The

vegetation was modeled as a statistically homogeneous half-space of randomly distributed particles,

which scatter and absorb electromagnetic energy and are large compare to the wavelength. The

results obtained show how vegetation attenuates, broadens, and distorts a beam wave pulse train

both on and off the beam-axis.
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APPENDIX A 

DIAGRAMS 

Diagrams for the problem configuration of the vegetation and spy plots of the sparse matrices are 

provided in this appendix. 

Figure A.l 

Air 
(z<O) 

y 

Basic geometry for an incident beam wave pulse train enters the forest half
space. The "sphere" represents a scatter point in the forest. The tiled cylinder 
represents a received antenna, which is shown in Figure A.2. 

4S 
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Figure A.2 	 The coordinate geometry of the received antenna, which is depicted as a tilted
cylinder and has a main beam direction Om , ψM ); note θ = θM•



Figure A.3 	 Spy plot of sparse matrix [A 0 ]. nz=number of nonzeros; N=27



Figure A.4 	 Spy plot of sparse matrices [Bo] and [Co]. nz=number of nonzeros; N=27.

Notice that the pseudo-banded off-diagonal spies indicate that k' is not 0.
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APPENDIX B

COMPUTATIONAL METHODOLOGIES

B.1 	 The Method for Indexing the Matrix

The particular and homogeneous solutions can be written in matrix notation as

The elements of the vector solutions are written as

Table B.1 	 The method of indexing m,/ for N=7, where the values in the cell inside the

table are represented as the values of l.

N is the total number ( m ) used. n(m,l) in (B.4a) is the index of the matrix that is

shown in Table B.1. The following is a proof of (B.6a). As one can see from Table B.1, the index
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has a triangular distribution. We consider this triangle distribution to be summed from 0 to m —1

plus offset (1 — m). As a result, n(m,l) becomes

Substituting (B.5b) into (B.5a) gives(B.4a):

For simplicity, we rewrite the expression in (B.3) and (B.4) as follows:

In general, any elements of a vector that has a subscript of m,/ represents one

dimensional rather than the usual two dimensional matrix element. Thus, F:j in (B.7) has one

dimension, namely, (m,1). v in the superscript means that F:j depends on integer v. For

equation (B.8), GZ has two dimensions, (inn and i and depends on the integer v. i in GZ;

is the index for the eigenvalue that is associated with an eigenvector. For example, F:j can be

expressed as follows
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B.2 	 Matrix Representation

The homogeneous system of equations in (2.4.25) is rewritten here as

The particular system of equations in (2.4.28) is rewritten here as



The remaining variables in (B.10) and (B.11) are found in equations

Table B.2 denotes the values for the square matrices [A0], [B0 ], [C0] as used in

(B.1) and (B.2) from (B.10) and (B.11), respectively.

The size of the square matrices [A0], [B0] , [C0] are calculated by

The proof of (B.12) follows from the triangle in Table B.1. The spy graphs or the plot of

nonzero sparse matrices for [A0], [B0], and [C0] are shown in Figure A.3 and Figure A.4 in

Appendix B.



Table B.2 	 Two-dimensional matrices represented by

are the same as (B.6a) and (B.6b), respectively.



APPENDIX C

POWER RECEIVED BY HIGHLY DIRECTIVE ANTENNA

In this study of beam wave pulses normally incident on a semi-infinite medium, the power is

assumed to be received by a highly directive antenna placed in the forest. The power calculations

were introduced in Section 2.5 and are repeated here for convenience [2].

Assume that a highly directive, lossless antenna of narrow beamwidth and narrow

bandwidth is located inside the forest. This receiving antenna is characterized by an effective

aperture A(y R) , where 7R is the angle included between the direction of

observation (OR , 	 ) and the pointing direction of the antenna axis, i.e., the main beam

see Appendix A. Hence,

In transport theory powers add. Hence, the instantaneous power received by the antenna

is the sum of the intensity contributions coming from all directions multiplied by the effective

aperture of the antenna, i.e.,

where

For millimeter waves, the carrier frequency is very large and, therefore, the bandwidth of

the received signal is narrow. For such a small bandwidth, the effective aperture and gain of the

receiving antenna can be taken to be independent of frequency and to be related by the general

expression
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where .1,0 is the free space wavelength and D(γR) is the directive gain of the antenna at the

carrier frequency.

For analytical convenience, the directive gain is assumed to be Gaussian with a narrow

beamwidth AIM and no sidelobes, i.e.,

which is normalized such that

Using the normalized directive gain D(γR) in (C.6) and the total intensity expressed as in (C.4),

the total received instantaneous power is obtained as the sum of diffuse power PR,d and reduced

incident power PRA . The received diffuse power is obtained as follows

where

Similarly, the received reduced incident power is obtained as follows
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where

The instantaneous received power is normalized to the received time-averaged power at z' = 0 ,

Thus, the normalized total instantaneous power is the sum of the reduced incident and the diffuse

normalized received powers, namely,

Using the expressions in (C.9) and (C.11), the total normalized instantaneous received power takes

the form:



The first term in (C.15) combined with (C.14) yields
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