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ABSTRACT
PROPAGATION AND SCATTERING OF

COLLIMATED BEAM WAVE IN VEGETATION
USING SCALAR TRANSPORT THEORY

by
Michael Yu-Chi Wu

The scalar time-dependent equation of radiative transfer is used to develop a theory of pulse beam-
wave propagation and scattering in a medium characterized by many random discrete scatterers
which scatter energy strongly in the forward scattering direction. Applications include the scattering
of highly collimated millimeter waves in vegetation and optical beams in the atmosphere. The
specific problem analyzed is that of a periodic sequence of Gaussian shaped pulses normally
incident from free space onto the planar boundary surface of a random medium half-space, such as
a forest, that possesses a power scatter (phase) function consisting of a strong, narrow forward
lobe superimposed over an isotropic background. After splitting the specific intensity into the
reduced incident and diffuse intensities, the solution of the transport equation expressed in
cylindrical coordinates in the random medium half-space is obtained by expanding the angular
dependence of both the scatter function and the diffuse intensity in terms of Associate Legendre
polynomials, by using a Fourier series/Hankel transform to obtain the equation of transfer for each
spatial frequency, and by employing the weighted residual method to satisfy the boundary
condition that the forward traveling diffuse intensity be zero at the interface. Data generated from
the solution will be compared to results obtained from a computationally intensive second method
of solution, which follows the procedure used by Chang and Ishimaru to study the propagation and
scattering of monochromatic beam waves in random media. In this second method, the time-
dependent scalar transport equation is solved using a Fourier Series/Hankel transform along with
the two-dimensional Gauss quadrature formula and an eigenvalue eigenvector technique.
Numerical results are given for received power at different penetration depths, different beam sizes

and different scatter directions.
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CHAPTER 1

INTRODUCTION

For line-of-sight communication, cellular communication in particular, current interest centers on
radio-link performance, and how it is affected by wave attenuation, fading and co-channel
interference. When vegetation, such as a forest, lies along the path of a radio-link, the radio
performance will be affected by strong multiscattering effects. This needs to be understood and
therefore warrants investigation.

There are two methods that are usually rused to study multiscattering effect, namely,
analytical theory and transport theory[1]. Analytical theory is a very rigorous mathematical
approach based on Maxwell's Equations. It is very complex and obtaining solutions often requires
introducing strong simplications which limit the applicable parameter ranges. In contrast, radiative
transfer theory deals with the transfer of energy through the muitscattering medium. In this
theory, the basic equation that is solved is the equation of radiative transfer or tranpsort theory.
The radiative transfer theory developed heuristically from the conservation of energy principle in
radiation space. The transport equation is equivalent to Boltzmann’s equation found in the kinetic
theory of gases and in neutron transport theory and is less rigorously than the analytical theory.
However, transport theory has been very successfully applied in the study of many radiation
problems, such as, optical propagation through the atmosphere, remote sensing and radiation from
stars.

In previous work, continuous wave (CW) milimeter wave and plane wave pulse
propagation in vegetation were studied using the scalar transport theory [2-6]. In these studies,
interest focused on the determination of the range and directional dependency of the received
power as well as on pulse broadening and distortion. The scalar transport equation is capable of
specifying the total energy density of radiation in two orthogonal polarizations, but not polarization

or depolarization effects (see [4] for experimental justification of their neglect in these studies). In



the earlier developed theory of a plane wave incident upon the forest half-space, it was shown that
the range dependence in the forest (treated as a random medium) is not be simply an exponential
decrease at constant attenuation rate. What actually occurs for the received power is a high
attenuation rate at short distances into the medium that evolves into a much lower attenuation rate
at large distances. The theory explains this in terms of the interaction between the coherent and
incoherent field components. The coherent component, dominating at short distances, is highly
attenuated (by absorption and scattering ) while the incoherent component, which is generated by
the scattering of the coherent component, does not loose power by further (multiple) scattering - it
scatters into itself - and thus dominates at large distances into the forest, decreasing at a much
reduced attenuation rate. In the transition region between the high and low attenuation regimes
significant beam broadening and pulse broadening occurs.

In this study, the scalar time-dependent equation of radiative transfer is used to develop a
theory for the propagation and scattering of pulsed beam waves of finite cross-section in a medium
that is characterized by many random discrete scatterers (vegetation). Such a medium scatters
energy strongly in the forward scattering direction. Applications include the scattering of millimeter-
waves in vegetation and the scattering of optical beams in the atmosphere. Strong forward
scattering occurs at millimeter and optical frequencies since all scatter objects in a forest or in the
atmosphere are large compared to wavelength. Again of interest are the range and directional
dependency of received power, pulse broadening and distortion, in addition to the effect of a finite
beamwidth when the incident ﬁéld is not a plane wave. This case differs basically from the plane
wave case in that scattering out of the beam occurs (while in the plane wave case any
multiscattered wave trains will always remain within the infinitely wide beam); this is likely to have

a significant effect on range dependence, as well as on beam broadening and pulse broadening.






2.2 Incident Gaussian Beam Pulses

A collimated beam wave pulse train is assumed to be normélly incident from the air region (z <0) to
the random scattering medium (i.e., the forest), which occupies the half-space region z =2 0 . At
z=0 and p=0 (see Figure A.1 in Appendix for the geometry), the magnitude of the
instantaneous ~ Poynting  vector of the incident beam wave is given by
S(z=0,p=0,0)=2S » f (O,t)cos2 (coct), where S, is the incident Poynting vector time-averaged
with respect to the carrier frequency @, . Being a positive even function of time that is periodic with

period T>>T, = i—” , f(0,1)is normalized such that

1 T/2
— [fO,)dt =1 (2.2.1)
T 12

For Gaussian incident pulses, f(0,t) is taken to be

Ay —(a,t/T) T T
0,t)=—Le \Fo , ——<t<—
1(0,1) pd > 2 (2.2.2)
o = const.

Since the incident beam wave pulses are even, this periodic function of time can be represented by

an even Fourier series at z=0:

o0 0 .
£(0,0)= b, b, cos(vax) = Re{ ¥ fue’“‘”‘} ) (2.2.3)
2 o v=0
where
T/2
= 2 , b, = 2 [f(O,t)cos(uwt)dt (2.2.4)
r T 112

Hence, for the Gaussian beam wave pulse train,

b _ 2 1, v=0
7= 5020 _sye (ria,) £, ={2 U#O} (2.2.5)



o, has to be chosen properly to ensure that the Gaussian function in (2.2.2) approaches zero as

t > £ T/2 allowing the limit of the integration in (2.2.4) to be replaced by to * oo .

The specific intensity (power per unit area and per unit solid angle) of the incident beam

wave pulse train travels through air at the speed of light "c" in the positive z direction and is given by

_g o PIW? oy s(9)
I,=S,e f@t-z/c) 27 5in(@) (2.2.6)
with
ft-z/c)= Re{ § fuei“a’(’_z/c)} . (2.2.7)
v=0

In (2.2.6), 6(@) is the Dirac delta function, and 6 is defined as the scatter angle measured

positive from the positive direction of the z-axis (see Figure A.1.).

2.3 Phase Function

The random scatter medium is characterized by an absorption cross-section per unit volume (o, ),
the scattering cross-section per unit volume (o) and a power scatter or phase function p(§,§').

The phase function depends on both the incident power unit vector direction (§') and the scatter

power unit vector direction (§ ).
A forest scatters energy symmetrically about the direction of the incident radiation because

the scattering surfaces in a forest essentially have random orientation. As a result, the scattering
depends only on the angle ¥ between §' and §, where y = cos"1(§’-§) and therefore the phase
can be written as
p(s,8Y)=p(s-5) = p(cos v). (2.3.1)
Since all scatter objects in a forest are large compare to the wavelength at millimeter-wave

and optical frequencies, a forest scatters energy strongly in the forward direction but weakly in all

other directions. For that reason, the scatter function can be assumed to be characterized by a
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strong narrow lobe superimposed over an isotropic background. This type of scatter function can

analytically be expressed as a Gaussian function added to a homogeneous term, i.e.

2
)= aalr)+1-a) . alr)=| | O a7, <, @32

which is normalized such that

Hp(y)dQ =4r. ' (2.3.3)
4r

dQ is the differential solid angle about the scatter angle s. Ay, denotes the width of the forward
lobe in the scatter pattern. « is the ratio of the forward scattered power to the total scattered

power.

2.4  The Scalar Time-Dependent Transport Equation in Cylindrical Coordinates

2.4.1 Scalar Transport or Radiative Transfer Equation
In transport theory, the specific intensity "/ " of the field in a random medium is governed by the
radiative transfer equation (transport equation). In the normalized cylindrical coordinate system

(p',l/l',Z') for symmetric scattering about the direction of the incident radiation, the scalar transport

equation takes the form [10]:

%1(7,:',§)+ §-V'IF,t,5) =-IF,t,8)+ Zﬂz 4” p(5-§VI(F,4,8)dQY,  (2.4.1)
where
R o . o 1 . . 0
§-V' =cos(@)—+ s1n(9)cos(t//)—— -— sm(@)sm(y/)— . (2.4.1a)
oz op p oy
5-8 =cos7/=,u;t'+\/1—,uz\/1—-,u'2 cos(y —y') (2.4.1b)

dQ' =sin8d0dy',y' =¢ —¢', 4’ =cosb'. (2.4.1¢c)



The normalized space and time variable in (2.4.1) are given by p'=0,p, z'=0,z, t'=0,t, and
Wy=o0,/0,;, 0,=0,+0,. The parameter W, is called the albedo and the parameters o,, o,
and o, are the extinction, the scatter and the absorption cross-sections per unit volume,

respectively. See Figure A.1.
To obtain a unique solution to (2.4.1) with I assumed to be time periodic, requires satisfying

two boundary conditions that take the form

(2.4.2)

2.4.2 Intensities

As is customary, the specific intesntiy is separated into two components, namely, the reduced

incident intensity 7, and the diffuse intensity /, by letting
I=1,+1;. (2.4.3)

Substituting (2.4.3) into (2.4.1) and (2.4.2) yield the defining equations for 7,; and [;, which take

the forms
0 R 0
Bt—,lri+s'VIri§Iri+Iri=0' (2.4.4)
A 74 A A
[j,ld +5-VI, =-1, +Z;0; _Up(s-s')[],,. +1,1dCY, (2.4.5)
4n

where §-V is defined in (2.4.1b) with boundary conditions

I,=1, , I,=0 at z'=0, 0<@<

ri P

oy

(2.4.6)
I,—>0 at z > ®

2.4.3 The Reduced Incident Intensity
To solve (2.4.4) and (2.4.5), Fourier series representations are introduced for the time dependence of

the intensities:



1,(p2,t,0,p) = RC{Z 1,,(0.2,0,p)e™" },j = p,ri,d, (24.7)
v=0

where T'=o,cT and &' =2x/T' .‘ Note that because (2.4.1) is linear, the angular frequency @' in
(2.4.7) is the normalized version of the frequency @ in (2.2.3). Note also that although the specific
intensity (power quantity) is always positive, the individual Fourier constituents 7 jo may be negative;
hence, they cannot physically represent power. Substituting (2.4.7) into (2.4.4) yields for z'>0,

vy, +5- Vi, + 1, =0 (2.4.8a)
subject to the boundary conditions

l,, =1, a 2z2'=0 |, 0<o<Z
’ 2

I.,»0 as z'>w

) (2.4.8b)

where [ p IS the specific intensity of the incident beam wave pulse train. Solution to (2.4.8a) and

(2.4.8b) gives

5(6)

m (2-4.9)

Iri,u = Spe_(p'/w’)zf(t' - Z')

where f(t'—z') is defined in (2.2.7) expressed in normalized variables. 5(¢) is the Dirac delta

function, w' =o,w is the normalized beamwidth, ¢’ is the normalized time and S, is the magnitude

of the time-averaged Poynting vector. Variables p' and &, are depicted in Figure A.1.
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Accordingly, the representation in (2.4.12) for I, is an expansion in terms of basis functions,
cos(m I/I)Jm (k’p’), which are complete and obey well known orthogonality properties. In addition,

the 8-dependent expansion coefficient is expanded in terms of Associate Legendre functions

42(52',6)= 548 (K32 )P (cos(0)) = S1+1)AS (K52 cos(e))  (24.13)
I=m I=m
Consequently,
I (p20w)= 3 | S+, E:2)P" cos@)V, (Ko )coslmy k'dk (2.4.14)
m= Ok 0l=m

2.4.4.3 Phase Function as a Series Expansion in Legendre Polynomials Conveniently, the

phase function is represented as a series expansion in terms of Legendre polynomials B as follows

pl)= S+ giri(eosly), (2:415)

where because of the orthogonality of Legendre polynomials, the expansion coefficients g; are found

to be
20 % _ 2 .
g == e /A7) B (cosy)sinydy + (1 - a)Sy (2.4.16)
A?’s y=0
5 1, fori=0 2.4.16
070, fori=0 (24162

Appropriate for the theoretical development here, the Legendre polynomials are expressed in terms

of Assiciated Legendre functions via the well-known relationship:

Beosy) = BB ) +2 3 < = 7 B ) B (' ycos(n(y )
/ 2(1—n)! n=t (! (2.4.17)
n

= 5 20 po iy coslnty —v))
n=0 n(l )'

with u defined in (2.4.1c)

2,n=0
g, = (2.4.17a)
Ln=12,...



Substituting (2.4.17) into (2.4.15) gives

pleosy)= 3 2(21+1) 2(’ L gy B () () cosny —y)

1=0n=0 +n)!

11

(2.4.18)

2.4.4.4 System of Linear Equations Substitution of p(cos(}/)) and 14, (p’,2',0,y) from

(2.4.18) and (2.4.16), respectively, into (2.4.11) yields the inhomogeneous system of linear first-

order differential equations

(l—m{ai Ar - iua)’Z,;”,_,}+(l+m+1{aa,A,:f,+1 —ive'd!

+(Q2+1)1-W,g, +iva'|4?,

+—[(1 m—1\-m)d’, .~ +m+ ) +m+2)ds, . |+

m+1,1-1

—I[Amlll Ar:lh-l]

=g, (21 + 1)@” (k’, w')5moe"'

where upon truncation

m=0,12, ---,N,I=m, m+1, ---,N

and

2

N Lt W WI 2 —(kw'/2 2
Q”(k,w)=‘;£5pfu(—( P -ty |
Convenient normalizations are introduced into (2.4.12) and (2.4.19):

[ & 2 !
2552 b s L),

urv™
ol ot Wo 12 _-(kw/2)
0 (k,w)=\/7£4—Spfvw e ,
r

2 U+m)
urn = |- 2770,
FoN2r+1(1-m)

y™ = re,, ,and

(2.4.19)

(2.4.19a)

(2.4.19b)

(2.4.20a)

(2.4.20b)

(2.4.20¢)

(2.4.20d)
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2, m=0
Ep = , (2.4.20e)

Thus for (2.4.15) is rewritten as

Idv(p,z,ﬁ,!//)=

S T o . B (cos(8)) cos(m o (2.4.21)
$ T 5 Crenoetawipy ) o) eostnn); gy
m=0k=0l=m Ul V
and simplifies (2.4.19) to produce
0 0
oy| b, —ivwb, | |+a,| b, ., —ivo'b, ., |+
oz' ™ ’ oz' ™ ’
a,[1-W,g, +iva' b, + (2.4.22)
k' _ v k' v -z
5 Em [a4b:+1,1—1 = Qsb, ]'*' ?5»1 [asbm—l,l—l —a;b, ] = 8,0,,0€
with

£, = V2, m=0 (2.4.22a)

1 , m=123,... . N-1LN

0 , m=0
5,=4v2 , m=1 (2.4.22b)

1 , m=23,....N-1N

1 =0 ’
Swo=1 ", (2.4.22¢)
0, m#0
o = (1 —m)1+ m)2(21 -1) (2.4.220)
(21+1)

oy = (-m+1)I+m+1)20+3) (2.4.220)
(21 +1)?
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=21 +1 (2.4.22)
\/(l m (12)1(l+ 1;'21)(2’ 1) (2.4.229)

g \/(’ +le(;:1_)21)(2] -1) (2.4.22i)
a; = \/(l m+2éll +T); 1)(2”3) (2.4.22j)

2.4.4.5 Homogeneous Solution The solution of (2.4.22) requires determination of both the
homogeneous and particular solutions. For the former, the right hand side of (2.4.22) is set equal
to zero an the homogeneous solution is taken to be of the form

btz k)= Gh (ke 1A (2.4.23)
Generalized eigenvalue equation

[Ao)G =2[colG. (2.4.24)
The matrices [Ao] and [Cq] are given Appendix B. The eigenvalues (1) and eigenvectors (G ) of
(2.4.24) are determined by using the QZ method algorithm in the MATLAB library. The homogeneous
system of linear equations corresponding to (2.4.24) takes the form

v v
a,G, . +a,G

m,l+1 =

’1{ [ale11+a2 ml+l]+b [a3 U,l]+

. : (2.4.25)
[a4 m+1 U= 1 Gm+1 1+1 ]
k' 0 v
—9, [aa Gy =G ] }
where
By = V2, m=0 , (2.4.25a)
1 , m=123,... . N-1LN
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0 , m=0
5,=v2 , m=1 , (2.4.25b)
1, m=234,.,N-1N

by =1-Wyg; +iva’, (2.4.25¢)

¢, =ivw’, (2.4.25d)
and a,(n=12,3,4,5,6,7) are given in (2.4.22a) to (2.4.22j)
2.4.4.6 Particular Solution The particular solution to (2.4.22) is obtained by assuming

b (2 k) = Fp (ke (2.4.26)
which when substituted into (2.4.22) gives in matrix form

[BolF=g (2.4.27)
The matrix [Bg] in (2.4.27) is shown in Appendix B. The system of linear equations corresponding
to (2.4.27) and taken the form

wp up up
(2] [_ Fm,l—lav]+ a, [_ Fm,l+lau]+ ab,F.h +

k' _ k' 0 0

_2“‘9m [a4FrK1,l-1 _aSlefl,l+l]+ "2_5m [a6Fm-1,l—1 —a7Fm—l,I+l]’ (2.4.28)

= gl5m()e-z'

where

1, m=0

8,0 = "=s (2.4.28a)
0, m=0

b, =1-Wyg; +ive', and (2.4.28b)

vl 081
a, =1+ive’. (2.4.28¢)

The LU factorization with iterative refinement found in the LAPACK is used to find the

particular solution. The solution vector F is shown in Appendix B and g is given below:
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—&o
— &
- &
—&;

—8na
—8n

O O O O O O

(2.4.29)

0
The general solution to (2.4.22) is the superposition of the particular solution and the

N; =(N+1)*/4 allowable homogeneous solutions, which obey the condition that Re{l/}>0 to

ensure that solutions decay as z' — «. The general solution is

N; .
e b":f,’l (k',z')+ .lea,-b,‘,)l”’, (k',z")
i

=N . (2.4.30)
=FX(k,2)e " + Zla,-G;;;j, (k',2)e %1%
i=
The diffuse intensity as expressed in (2.4.21) becomes with the proper truncation
kmax N N , N;i-1 S
Ii(p.2.0w)= | X X (@+)0°(k W) Fne®+ X a,Ge?/C |.
F=om=0i=m =0 (2.4.31)
B (cos(@)) [cos(mt//)] Jm(k'p ’)k'dk'
ur ym

2.4.4.7 Boundary Condition for the Determination of Constants «; From (2.4.10a), /,,

satisfies the boundary condition

1,,(p,z,0,w)=0 forz' =0, osesiz’-, 0<p' <00y <27 (2432
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It can then be shown using the orthogonality and completeness properties of Bessel functions that

I,(k;z'=0,0,p)=

i i (21 +1)" (k', w2, (k';2') P (cos(#)) cos(m (//)

0 iom ' ur ym (2.4.33)

2' =0, oses%, 0<k'<w, 0<y<2r

The above boundary condition is satisfied by using the normalized spherical harmonic functions as

testing functions in the weighted residual method [12]. Hence,

217: nj{z L, ( 0.6 V/){ A" (005(6’))}{ CO?SZ V/)] sin(e)d Gy =0 (2.4.34)

y=06=0 urt
for values of (/ — ) which are odd.

Substituting (2.4.33) into (2.4.34) yields

N N N;-1 )
(&,w)> > (2r+ 1){F,;’., + ZaiG;:f,,] .
i=0

m'=0l'=m'
et entesll, )] 0N oo - 24
w=0 4 4 6=0 Uy U, )

i {l

(2.4.35) shows the values for two uncoupled integrations, which yield

N-1 N
zai(k')[lg @r+1 m,,(k),,,} [

i=0

> @ +1)Fy (k)] ,,} (2.4.36)

ES;,!l(k ) ET.,'i,z(k')

Equation (2.4.36) defines a second linear system of equations as

Za (k)se: =12, (k) (2.4.37a)
where
Sw (k)= z @+ 1G5 (k)i , and (2.4.37b)
Ty, (k') = —Z @1 +1)Fy, (k) (2.4.37¢)
I'=m

and 1, is defined in (2.4.35) to be






where

P2, 0,6, W) = Poy (2 0,6, 00 )+ i (20,6, 04)

DBy) -yiwy » -
P'. ZI, r’e , =—Me (p' /W) ez
rt,u( ,D M ‘//M) D(O) f:)
4r
AR LA ¢ (Z' prg v )
dyp dv ’ yVYns¥Yu
§,D(0)

and

2
D(n)z[Aazf J eI, Ay <<7
M

(]

Ay ym

Umax s the truncated value to ensure that the summation converges.
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(2.4.40a)

(2.4.40b)

(2.4.40¢)

(2.4.40d)

(2.4.40e)



CHAPTER 3

DATA INACCURACIES

3.1 Introduction

Numerical solutions by their very nature are approximate solutions. Therefore, attention must be
paid to sources of inaccuracies. As several data are examined, characteristic graphs are provide to
indicate which graphs are sufficiently accurate and which ones need to be improved. For instance,
because the Quadrature method in [11] used a completely different approach than in the current
method — the Legendre method (Pn-method), the plots of the data that were generated by these
two distinct methods are compared to validate the results.

In general, errors can be minimized by increasing the value for N at the expense of the
computational time. In Appendix B, the size of the matrix for solving the system of linear equation

and generalized eigenvalue problem is

M2 = (M_%_N"'_z))z | (3.1.1)

It appears from (3.1.1) that the Matrix is in the order of N*. The computational

complexity for the solving linear system of equationsplus the generalized eigenvalue problem is in

the order of n° [13], where n is the size of the square matrix. When N is increased slightly, the
time to simulate a certain system will take longer than the time to complete the exact same system
when N is taken slightly smaller. Moreover, because all of the matrices are stored into the memory
of a computer during the simulations, the computer will require vaster memory storage and faster
memory transfer speed to accelerate these simulations.

The following global parameters are used in all of the simulations in this thesis since they
were utilized in [2] and [11]:

W, =0.75
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Figure 3.2.2 Error analysis of the phase function. n is the number of terms for the truncation
of (2.4.18)

Figure 3.2.1 shows the polar plot of both the exact value (2.3.2) and the truncated series expansion
(2.4.17) of the phase function. Needless to say, the figure shows no difference between the exact

phase function and the approximated phase function. Figure 3.2.2 shows the semilog plot of the

error &, between the exact and the approximated phase function, i.e.

pexact o papproximakd | p (321)
y |

Figure 3.2.2 shows that the error between the exact and the approximated phase function

8p=|

is small when taking a large number of terms for the Legendre polynomial expansion.
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The Gaussian Quadrature method was used to perform the two integration needed in the
simulation. The k'-integration (see 2.4.12) is approximated by thirty-two terms whilst there are
ninety-six terms for the integration over y , which is needed to determine the expansion coeffcient
g;in (2.4.16).

The solutions to the linear system of equations (2.4.27) or (2.4.28) for finding the
particular solution and (2.4.37) for solving the boundary condition at z' =0 were obtained by using
LU factorization, linear equation solver, and iterative refinement packages provided by the
optimized LAPACK. The eigenvalue solutions were obtained by using the Matlab library that is

based on the QZ method in EISPACK. When tested, both of these procedures gave absolute errors
ranging from 1071 to 10716, This accuracy is unable to be improve because the computer
handles all variables using double precision, which means a precision that is accurate up to about
sixteen digits.

The phase function is normalized such that

[[p(r)dQ =4ar
A ) (3.5.1)

This dictates that g, equals 1. However, g, does not equal one when determined numerically
from (2.4.16) which gives g, = 0.9881 when Ay, =0.3,a =0.8. To ensure that the g, is unity,

the phase function p(y) is redefined as p, . (v)= p(y)/g, which guarantees that

Hpnorm (y¥Q=4r
Ax ) (3.5.2)










































CHAPTER 5

CONCLUSIONS

The theory of beam wave pulse propagation and scattering in vegetation was presented. This
theory was based on the solution to the scalar radiative transfer equation in vegetation. The
vegetation was modeled as a statistically homogeneous half-space of randomly distributed particles,
which scatter and absorb electromagnetic energy and are large compare to the wavelength. The
results obtained show how vegetation attenuates, broadens, and distorts a beam wave pulse train

both on and off the beam-axis.
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APPENDIX A

DIAGRAMS

Diagrams for the problem configuration of the vegetation and spy plots of the sparse matrices are

provided in this appendix.
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Basic geometry for an incident beam wave pulse train enters the forest half-

Figure A.1

space. The “sphere” represents a scatter point in the forest. The tiled cylinder

represents a received antenna, which is shown in Figure A.2.
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has a triangular distribution. We consider this triangle distribution to be summed from 0 to m—1

plus offset (I —m). Asa result, n(m,!) becomes

3

n(m,1)= (]V—i)+(l—m) (B.5a)
mz-l(ﬁ—i)=mﬁ—ii=mﬁ—(0+l+2+3+---+(m—2)+(m—1) =mN—(ﬂ—21—)m-
- - (B.5b)

Substituting (B.5b) into (B.5a) gives(B.4a):

N2 2
n(m,l)=mﬁ——(—m_2ﬂ+(l—m)=2m—]v_;n—_rﬁ+l (B.6)

For simplicity, we rewrite the expression in (B.3) and (B.4) as follows:
Fn‘j’l (B.7)
Gy (B.8)
In general, any elements of a vector that has a subscript of m,/ represents one

dimensional rather than the usual two dimensional matrix element. Thus, F,,',’ ,in (B.7) has one
dimension, namely, (m,l). L in the superscript means that F,,‘,", depends on integer v. For
v,i

equation (B.8), G} has two dimensions, (m,!) and i and depends on the integer v. i in G,

is the index for the eigenvalue that is associated with an eigenvector. For example, F,, can be

expressed as follows
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v
Foo

v
£y,

v
Foy

v
¥

v
F,

v
By

v
%

v
F2,3

v
FZ,N
v

FN—],N—I

F°.
LN (B.9a)

where
FY (B.9b)

B.2  Matrix Representation

The homogeneous system of equations in (2.4.25) is rewritten here as

v v _
ale’,_l +a,G, =

m,l+1

m

z{ e A AR e S P

, (B.10)
%Em [a4G”

m+l1,l-1

1%
— Gm+l J+1 ]+

%5 m [aGG;—U-l - a7G:r)1—1,l+l ] }

The particular system of equations in (2.4.28) is rewritten here as
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a|-F2a )+ |- F2 o0 |+ ab Fn +

% g leFr, —a )+ %5,,, R (B.11)

=g,0 e
The remaining variables in (B.10) and (B.11) are found in equations (2.4.22a~j), (2.4.25a~d), and
(2.4.28a~c). Table B.2 denotes the values for the square matrices [Ao],[Bo],[Co] as used in
(B.1) and (B.2) from (B.10) and (B.11), respectively.

The size of the square matrices [Ao] , [Bo], [Co] are calculated by

M= é_i=]7+(]7—1)+---+2+1:E(—N—+1—) (B.12)
i=N

The proof of (B.12) follows from the triangle in Table B.1. The spy graphs or the plot of

nonzero sparse matrices for [Ao],[BO], and [Co] are shown in Figure A.3 and Figure A.4 in

Appendix B.






APPENDIX C
POWER RECEIVED BY HIGHLY DIRECTIVE ANTENNA
In this study of beam wave pulses normally incident on a semi-infinite medium, the power is
assumed to be received by a highly directive antenna placed in the forest. The power calculations
were introduced in Section 2.5 and are repeated here for convenience [2].
Assume that a highly directive, lossless antenna of narrow beamwidth and narrow

bandwidth is located inside the forest. This receiving antenna is characterized by an effective

aperture  A(y,), where y, is the angle included between the direction of
observation (9, g)and the pointing direction of the antenna axis, i.e., the main beam
direction (6,7, s ) ; See Appendix A. Hence,

Cosyp =cosfg cosfy, +sinbpsinbfy, cos(Wp —Wpr)- (C.1)

In transport theory powers add. Hence, the instantaneous power received by the antenna
is the sum of the intensity contributions coming from all directions multiplied by the effective

aperture of the antenna, i.e.,

Pé‘”(z',p',t',eM,wM)=Re{ §OP;$°U’ G RV SY )e"““"("")}, (C2)

v=

where

PRS2 P60 W) = 4HAe (RIS (2, p',0r, W R)sinOpdOpdy g (C3)
x

and

Iy =1, +1,,. (C.4)

Note that @ =0, and v =y .

For millimeter waves, the carrier frequency is very large and, therefore, the bandwidth of
the received signal is narrow. For such a small bandwidth, the effective aperture and gain of the
receiving antenna can be taken to be independent of frequency and to be related by the general

expression
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2

A
Ae(yR)=4_;r'D(}/R)I . (C.5)

where A, is the free space wavelength and D(y,) is the directive gain of the antenna at the

carrier frequency.

For analytical convenience, the directive gain is assumed to be Gaussian with a narrow

beamwidth Ay,, and no sidelobes, i.e.,

2
D(7;) =(A—i—] et Ay, <<, (C.6)
M

which is normalized such that

[ID(yr)sinOrdOrdy g =4r . (C7)
4r

Using the normalized directive gain D(y ;) in (C.6) and the total intensity expressed as in (C.4),

the total received instantaneous power is obtained as the sum of diffuse power P, ;, and reduced

incident power P, ;. The received diffuse power is obtained as follows

[e¢]

PR’d (Z', pl,t',aM’WM) :RC{ PR,dU (Z'ap’ng;WM )eiua)'(t'—z )} , (C_S)
0

=

where

PR,dU(Z'9p,a0MaWM) = IIAe(YR)IdU(Z',p',QR,l//R)SinngBRdl//R
4z
22 .
=22 DGR 4, (', £ Ok $R)sinOpdOpdy g
% x (C.9)
A2 .
=221, (', POy W ar) [[ Dy R)sin OpdOrdy g
4

2 14 !
= j"O'I'd()(z ap ’QM ,WM)
Similarly, the received reduced incident power is obtained as follows

0] . Y L
PR,,i(z',p',t',eM,m)=Re{ N IR Z)}, (C.10)
0

V=
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where

PR,ri,L)(Z', p,’eM ’¢M) = IjAe(yR)]ri,U(Z" p’!eR 3¢R)Sin0Rd0Rd¢R
ar

;% (oW g 2T 50R) .
~Zogs (P IW) =2 1 [ D(y p)———R2 _sin@pdOpdyp (C.11
A pJoe e (I)(I) (?’R)Z”Sl.neR sinfprdOpdyp (C.11)

ﬂg __(pr/wr)Z —z
=205, pye e~ D(6yy)

The instantaneous received power is normalized to the received time-averaged power at z' =0,
p' =0, 0, =0 and y,,; =0, which is given by
T /2 /1
<P (0,0,#',0 O) T I P(0,0,¢',0,0)dt'= 4" D(O)S (C.12)
-T'/2

Thus, the normalized total instantaneous power is the sum of the reduced incident and the diffuse

normalized received powers, namely,

P t'0
RGPS O0 W) _ 4 P (C.13)

P' Z's ’,t’39 ’ =
(P00 W) = (P2 (0.0.£,00)

Using the expressions in (C.9) and (C.11), the total normalized instantaneous received power takes

the form:

P2, p'\t 0 W) = Re{ N A NTRIT e )}, (C14)
v=0

where

Yo DOy) o (PIW) ¢ 7 4z
P,(z',p".0p, = I 0 C.15
v (@ P Or W) = D) Joe 3 D) 0@ P00 wpy) . (C15)



The first term in (C.15) combined with (C.14) yields

Fy= 2F
v=0
_DOum) (51w} 7 Re 3° 7,600 =2)
D(0) v=0
_ DOy ) e—(p'/w')z—rf(t/_zf)
D(0)

Note thatat z'=0, p'=0 andfor 8,, =0,

Pri = f(O’t') .
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(C.16)

(C.17)
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