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ABSTRACT

DATA MINING USING NEURAL NETWORKS
FOR LARGE CREDIT CARD RECORD SETS

by
Wei Wei

Data mining using neural networks has been applied in various financial fields such as

risk mitigation, missing data filling, fraud detection, and customer profile classification

etc. This master thesis work aims to develop methodologies to mine large sets of records

and in particular to fill missing data in these records. The steps include data cleansing,

data selection, data preprocessing, data representation, data clustering and finally the

missing data filling. Furthermore, this work designs algorithms to evaluate the supervised

neural networks' performance, which is helpful for the future research on data prediction

and classification. A case study based on a large data set of credit card records, which

contains incomplete records, is performed to demonstrate that the proposed algorithms

and their implementations accomplish the task of filling missing data in such records.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Data Mining for Decision-making

The last four decades have experienced a revolution in information technology. The use

of computer has evolved from the piecemeal automation of certain business operations,

such as accounting and billing, into today's integrated computing environments, which

offer end-to-end automation of all major business processes [Bigus, 1996]. One problem

with the proliferation of computers throughout the business is the large number of

database scattered across systems. Increasingly, people want to leverage their investments

in this data, to use it as an aid in decision-making, and to turn it into operational

applications. Data mining, more than just complex queries, promises to do just that,

which is to extract useful regularities from large data archives, either directly in the form

of "knowledge" characterizing the relations between the variables of interest, or

indirectly as functions that allow to predict, classify or represent regularities in the

distribution of the data [Bengio et al., 2000].

A number of business trends have made the usage of data mining tools and services

mandatory for companies vying for business in today's competitive market place

[Kleissner, 1998]:

•	 Data explosion: As companies are confronted with the challenge of handling an

ever-increasing amount of data, it is becoming more difficult for business
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professionals to understand the desired information from this data. Data mining

promises to alleviate some of this difficulty.

• Business reengineering and organizational decentralization: Over the past few

years, corporations have been reengineering their business processes and

organizations. This has resulted in flatter and leaner organizations where knowledge

workers have the authority and responsibility to implement and recommend

business process optimizations and improvements.

• Faster product cycles: Most companies are challenged by the need for faster product

and service development cycles in order to take advantage of newly emerging

market opportunities. Data mining provides the means for identifying new product

chances and cross-selling products and services into existing customer accounts.

• Globalization and enterprise topologies: The globalization of the economy is in part

supported and enabled by enterprise information system topologies where

distributed computing is becoming the dominant computing paradigm. Data mining

technologies, methodologies, tools, and services need to take advantage of and add

new components to this enterprise infrastructure.

Data mining manifests a synergy of a diverse set of computational technologies to

glean decision-quality knowledge buried in the enormous stocks of collected data, which

consists of three major steps as follows:

(1) Data preparation: select, clean, and preprocess data under the guidance and

knowledge of a domain expert.
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(2) Data mining algorithm: process the prepared data, compressing and transforming it

to make it easy to identify any valuable nuggets of information through a data-

mining algorithm.

(3) Data analysis: evaluate the data mining outputs, discover additional domain

knowledge, and determine the relative importance of the facts generated by the

mining algorithms.

1.1.2 Neural Networks: A Data Mining Engine

Widely diverse arrays of developments and inventions in artificial intelligence have laid

the groundwork for artificial neural networks. This new approach to intelligent systems

involves constructing computers with architectures and processing capabilities that mimic

the processing characteristics of the brain. The results are knowledge representations

based on massive parallel processing, fast retrieval of large amounts of information, and

the ability to recognize patterns based on experience.

An artificial neural system models, in a very simplified way, the biological systems

of the human brain, which performs many of the kinds of tasks that humans do [Bigus,

1996]:

• Classification: group items based on a predefined attribute.

• Clustering: group items based on a previously undefined attribute.

• Association: make correlations between items and individuals, and deduce rules that

define relationships.

• Modeling: model relationships through a few exact examples and generalize novel

cases or problems.

• Prediction: forecast trends based on current information.
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•	 Constraint satisfaction: solve constraint satisfaction and optimization problems with

weighted connection and analog computing.

Neural network technology has significant advantages over conventional rules in

some applications [Medsker et al., 1996; Trippi and Turban, 1996]:

(1) Fault tolerance: since there are many processing nodes, each with primarily local

connections, damage to a few nodes or links does not bring the system to a halt.

(2) Generalization: when a neural network is presented with noisy, incomplete, or

previously unseen input, it generates a reasonable response.

(3) Adaptability: since the network learns in new environments, training can occur

continuously over its useful life and occur concurrently with the deployment of the

network.

1.2 Motivation

As shown in Section 1.1, data mining is a powerful tool for extracting useful information

from tons of data [Thuraisingham, 2000]. Then, the extremely large amounts of data are

compressed to reveal the inner relationships among the data elements. It is clear that

"large collection of data" is the central issue of data mining. Moreover, just collecting the

data in one place and making it easily available isn't enough. When operational data from

transactions is loaded into the data warehouse, it may contain missing or inaccurate data.

To overcome this problem, the operational data must go through a "cleansing" process,

which takes care of missing or out-of-range values. Furthermore, how to predict such

kind of data based on the existing complete or incomplete raw data set becomes

extremely crucial.
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1.3 Objective

The goal of this research is to provide a neural-network-based data mining methodology

to fill missing data for credit card record sets. Specific objectives are to:

(1) Analyze data set includes: data distribution pattern and data records patterns, etc.

(2) Develop methodologies for data cleansing, data selection, and data preprocessing

and data representation.

(3) Design algorithms to accurately fill missing data.

(4) Implement the above concepts and methodologies into software applications.

1.4 Organization

This thesis is organized as follows. Chapter 2 makes a literature review for the current

research issues in data mining and neural networks. A generic framework for data mining

by using neural network is presented in Chapter 3. Implementation details and final

results are addressed in Chapter 4. Finally, Chapter 5 gives the conclusions and future

research directions.



CHAPTER 2

LITERATURE REVIEW

As mentioned in Chapter 1, data mining, referred to as knowledge discovery, has become

a buzzword in business circles [Frawley et al., 1992]. Significant research efforts have

been carried out in industries and academia addressing various problems in these areas.

This chapter reviews the major issues in these fields.

2.1 Data Mining and Knowledge Discovery

Data mining (DM) is a folkloric denomination of a complex activity that aims at

extracting synthesized and previously unknown information from large data set. DM is

sometimes considered as just a step in a broader overall process called knowledge

discovery in data set [Olaru et al., 1996]. The tasks of DM are very diverse and distinct

because many patterns exist in a large data set. Based on the patterns that are being

looked for, tasks in DM can be classified as follows [Fu, 1997]:

(1) Summarization: produce compact and characteristic descriptions for a given set of

data.

(2) Classification: derive a function or model to determine the class of an object based

on its attributes.

(3) Clustering: identify clusters of similar objects sharing a number of interesting

properties.

(4) Association: discover the connection of objects.

6
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(5) Trend analysis: identify patterns in an object's evolution and match objects'

changing trends.

2.1.1 Issues in Feature Selection

The classification task in DM is to discover some kind of relationship between the input

attributes and the output class, so that the discovered knowledge can be used to predict

the class of a new unknown object. One of the first stages of the classification process is

the Feature Selection (FS), by means of which the complexity of the problem is reduced

by the elimination of irrelevant features to consider later in the classification stage

[Martin-Bautista and Vila, 1999].

The first experiments about FS have been realized in machine learning, and most of

the methods of classification and reduction of the features set have been proposed [Dash

and Liu, 1997]. These methods may be classified into two categories [Langley, 1994].

One is filter method, which is applied before the classification, and its evaluation does

not depend on the classification but usually based on different measures of distance

between the examples. The other is wrapper method, which is applied while the

classification or rather their goodness is based on the result of the classification by a

certain method. However, the wrapper methods have some drawbacks as follows:

• In the mining context, the number of features with which people have to deal is

quite large. Thus, the complexity and the execution time for the FS process make it

unfeasible.

• As the feature selection depends on the classification algorithm, the generality is

lost because of the behavior of the classification algorithm in terms of accuracy and
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efficiency. Moreover, the selection of a classification algorithm slightly suitable for

a certain problem may give a rise to choose features wrongly.

•	 It is very tough to combine the wrapper methods with soft computing techniques,

especially when the set of features are large.

The Generic Algorithm (GA) has been proved as a powerful tool to optimize the

process of classification, especially when the domain knowledge is costly to exploit or

unavailable, because of its relative insensitivity to noise and the requirement of no

domain knowledge [Vafaie and De Jong, 1992]. Furthermore, standard rule induction

systems like AQ15 and the standard implementation of ID3, C4.5 [Vafaie and De Jong,

1992, 1995] have been utilized as classifiers to evaluate error rate when the feature set is

reduced. An approach combining Gas and the K-NN algorithm to find out for an optimal

feature weighting to determine the relative importance of each feature are presented in

[Kelly and Davis, 1991; Punch et al., 1993]. A complete different method to this problem

is addressed, in which a GA is combined with a production decision rule system [Pei et

al., 1997]. Yang and Honavar (1998) studied the feasibility of FS in combination with

GA to design neural networks for pattern classification. The main advantage of using GA

is akin to the advantage of natural selection in the sense that it is a solid technique that

finds a solution if one exists [Kleissner, 1998]. A survey of generic FS in mining issues is

presented in [Martin-Bautista and Vila, 1999]. The large over-production of solutions on

the other hand requires a lot of computing power and an expert is required to code the

problem as well as the artificial environment necessary for the evolutionary game.
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2.1.2 Issues in Data Clustering

Clustering studies identify the kind of data that trends to occur together with other data.

Data within a cluster have similarities, but different significantly from other data outside

the cluster. Artificial neural networks (ANN), as a non-symbolic, inductive paradigm,

have been used to perform data clustering in data mining [Craven and Shavlik, 1997].

In the ANN paradigm, typically, unsupervised learning based SOM are used for

data clustering, due to their natural propensity to (a) find similarities amongst data items

and (b) to group similar data items in proximity [Kohonen, 1982, 1990]. However, SOM

may lead to undesirable ambiguity about a cluster's structure and membership when the

output of the SOM does not exhibit distinct clusters, rather the boundaries of the

emergent 'implied' cluster are rather vague. To solve these problems, Abidi and Ong

(2000) proposed a strategy to determine the boundaries of data cluster derived from SOM

type ANN. The general ides is to give a high-level topological ordering by a SOM, feed

the SOM-driven clustering information to a K-Means algorithm to refine the SOM's

output by way of demarcating the output layer of the SOM into distinct clusters. A

clustering genetic algorithm designed for rule extraction from supervised neural networks

was presented in [Hruschka and Ebecken, 2000].

2.1.3 Issues in Association Rule

Association rule mining (ARM) has become one of the core data mining tasks because of

its inception, which includes parallel ARM and distributed ARM. This work uses a

bookstore database shown in Fig. 2.1 as an example to illustrate each ARM algorithm.
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Figure 2.1 (a) Bookstore Database; (b) Frequent Item Sets; and (c) Strong Rules

A. Apriori

The Apriori algorithm has merged as one of the best ARM algorithms, which uses a

complete, bottom-up search with a horizontal layout and enumerates all frequent itemsets
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[Fayyad, et al., 1996]. Using the database example in Fig. 2.1, the iterative algorithm can

be understood in depth and shown in Fig. 2.2:

(1) Generate candidates of length k from the frequent (k-1) length itemsets. For

example, for F2 = {AC, AT, AW, CD, CT, CW, DW, TW}, C3 is obtained as C3 =

{ACT, ACW, ATW, CDT, CDW, CTW}.

(2) Prune any candidate that has at least one infrequent subset. For example, CDT will

be pruned because DT is not frequent.

(3) Scan all transactions to obtain candidate supports. Apriori stores the candidates in a

hash tree for fast support counting. In a hash tree, itemsets are stored in the leaves;

internal nodes contain hash tables to direct the search for a candidate.

Figure 2.2 Apriori algorithm runs through bookstore database

B. Dynamic Hashing and Pruning (DHP)

Park et al. (1995) proposed the DHP algorithm, which is an extension of the Apriori

approach by using a hash table to pre-compute approximate support of 2-itemsets during

the first iteration. The second iteration need count only those candidates falling in hash
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cells with minimum support. The whole steps through the example data shown in Fig. 2.1

are presented in Fig. 2.3.

Figure 2.3 DHP algorithm runs through bookstore database

C. Partition

Savasere et al. (1995) proposed the two-pass partition algorithm, which logically divides

the horizontal database into non-overlapping partitions. This algorithm includes the

following main steps:

(1) Read each partition, and form vertical tidlists for each item.

(2) Generate all locally frequent itemsets through tidlist intersections.

(3) Merge locally frequent itemsets to form a global candidate set.

(4) Pass all partitions and obtain all candidates' global counts.

Fig. 2.4 shows how partition algorithm works on bookstore database in Fig. 2.1.

D. Dynamic Itemset Counting (DIC)

Brim et al. (1997) proposed the DIC algorithm, which is a generalization of Apriori. The

database is divided into p equal-sized partitions so that each partition fits in memory. For

partition 1, DIC gathers the supports of single items. Items found to be locally frequent

generate candidate 2-itemsets. Then DIC reads partition 2 and obtains support for all

current candidates. This process repeats for the remaining partitions. DIC is effective in

reducing the number of database scans if most partitions are homogeneous. If data is not
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homogeneous, DIC might generate many false positives and scan the database more than

Apriori does. Fig. 2.5 shows how DIC works on the example database in Fig. 2.1.

Figure 2.4 Partition algorithm runs through bookstore database
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the example database shown in Fig. 2.1, the algorithm can be understood as follows, Fig.

2.6 gives the detailed information how it works:

(1) Build an association graph from the frequent 2-itemsets;

(2) Find the maximal cliques in the graph (ACTW, CDW); and

(3) Use hybrid search to process these two classes.

Figure 2.6 MaxClique algorithm runs through bookstore database

Through analysis of these four methodologies, the comparison results for their

advantages and disadvantages are concluded in Table 2.1, where K denotes the size of the

longest frequent itemset and C2 array optimization uses a 2D array to count candidate 2-

itemsets rather than using hash tree or prefix trees [Zaki et al., 1999].

Table 2.1 The comparison of methodologies for sequential ARM
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2.2 Artificial Neural Networks

In the past few years, neural networks have received a great deal of attention and are

being touted as one of the greatest computational tools ever developed [Eberhart and

Dobbins, 1990]. Neural networks have been modeled according to the human brain. They

consist of a set of nodes (modeled after neurons), which are connected to each other (like

neurons are connected to each other by synapses). Typically, a neural network consists of

a set of input nodes that receive input signals, a set of output nodes, which give the output

signals, and a number of intermediate layers, which connect input and output nodes.

2.2.1 Back-Propagation Model

The back-propagation network model always has an input layer, an output layer and at

least one hidden layer. There is no theoretical limit on the number of hidden layers but

typically there will be one or two. Each layer is connected to the succeeding layer. The

arrows indicate flow of information during recall. Fig. 2.7 is a typical back-propagation

network model. During learning, information is also propagated back through the

network and used to update the connection weights. The network can either

hetero-associative or auto-associative.

2.2.2 Self-Organization Model (SOM)

Teuvo Kohonen first developed the self-organization map in 1979 and 1982, which was

used to visualize topologies and hierarchical structures of higher dimensional input

spaces [Kohonen, 1988]. The SOM typically has two layers. The input layer is fully

connected to a two-dimensional Kohonen layer. In the SOM layer, none of the process

elements (PEs) are connected to each other, regardless of relative position. Fig. 2.8 shows
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the self-organization network model. The key difference between the SOM and other

networks is that the SOM learns without supervision.

Figure 2.8 Self-organization network model



18

2.2.3 Applications in Data Mining

Neural networks have the capability of discovering nonlinear, non-obvious, and

potentially useful information and knowledge from database [Frayman and Wang, 1998].

For a given set of input-output data in a database, a neural network can be trained using

the given data set, then the trained neural network with adjusted numerical weights has

learned potential mapping knowledge between input and output data, and finally the

neural network is able to apply the discovered knowledge to predict new output data for

new input data [Zhang et al., 2000]. Because of strong nonlinear modeling ability of

neural network, it becomes a useful tool for data mining. Zhang et al. (2000) proposed a

neural-network-based knowledge discovery and data mining methodology based on

granular computing, neural computing, fuzzy computing, linguistic computing, and

pattern recognition.

When modeling the joint distribution of many random variables with complex

interactions, the famous "curse of dimensionality" yields models with exponentially too

may parameters. Bengio and Bengio (2000) proposed a method to solve this problem,

which is based on a neural network representation of the join distribution of many

variables, shows statistically significant improvements with respect to older methods for

benchmark data sets of high-dimensional discrete data. Another approach, based on

learning maximum entropy models, was proposed as a solution to the same problem,

which is very popular in the area of statistical language modeling and information

retrieval [Yan and Miller, 2000]. Using the network sensitivity analysis, Kewley et al.

(2000) presented a methodology for variable selection. Considering the unequal

importance of inputs, Shin et al. (2000) proposed a method, in which ANNs are used to
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provide weights to the different input features to be used in a K-nearest-neighbors

algorithm.

One of the big challenges of data mining is the organization and retrieval of

documents from document archives [Bengio et al., 2000]. The advantages of SOM

network model have caused much attention in this field. Several researchers have

described such new neural architectures, both in the supervised and unsupervised

paradigms. Recent works on supervised models have been reported in [Halgamuge and

Glesner, 1995; Halgamuge, 1997]. Several extensive reviews on the supervised self-

generating neural architectures have done in [Quinlan, 1998; Ash and Cottrell, 1994].

Martinetz and Shulten (1991) developed the Neural Gas algorithm, which can be

categorized as an unsupervised self-generating neural network. The network starts with

no connections and a fixed number of units floating in the input vector space. When the

inputs are presented to the network, units are adapted and connections are created

between the winning units and the closest competitor. However, this algorithm uses a

fixed number of units, which have to be decided prior to training.

Based on the SOM, Growing Cell Structures algorithm was proposed in [Fritzke,

1991]. A network of nodes whose connectivity defines a system of triangles has replaced

the basic two-dimensional grid of the SOM. This algorithm uses a drawing method,

which works well with relatively low-dimensional data, but the mapping cannot be

guaranteed to be planar for high-dimensional data.

Using the basic concepts of self-organization as the SOM, the Growing Self-

organization Map (GSOM) algorithm was developed with a dynamic structure that is

generated during the training processes itself [Alahakoon et al., 2000]. The main
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difference between the two methods is that the SOM attempts to fit in a data set into a

predefined structure by self-organizing its node weights as well as possible within its

fixed borders. With the GSOM, the borders of the network are expandable and as such

the data set can generate new nodes with a flowing out effect, expanding the network

outwards. Therefore, the different groupings in the data generate regions for themselves

in the network. The self-organization of the weights in the already generated nodes

continues at the same time to fine-tune the weights to represent the data better.

Wang et al. (2000) described a new hierarchical visualization algorithm to reduce

the dimension of data representation for visualization, which allows the complete dataset

to be visualized at the top level with clusters and sub-clusters of data points visualized at

lower levels using principal component neural network. Toward similar objectives, a

neural network technique to combine SOMs and the nonlinear mappings was proposed in

[K nig, 2000].

2.3 Summary

Data mining, the process of discovering hidden and potentially useful information from

very large databases, has been recognized as one of the most promising research topics in

the 1990s [Sung et al., 1996]. Classification is one of data mining problems receiving

great attention recently in the database community. Various classification algorithms

have been designed to tackle the problem by researchers in different fields, such as

mathematical programming, machine learning, neural networks and statistics [Lu, et al.,

1996]. To choose an association rule for the generation of large items that are presented

in at least minimal support of total database tuples is another essential problem faced in



21

the mining. A survey of association rule mining algorithms was presented in [Zaki,

1999]. Besides the popularly studied classification and association, there are many other

kinds of data mining tasks to be explored, such as clustering, predictive modeling, time-

related pattern analysis etc. A number of directions that may require more in-depth

research in data mining were addressed in [Han, 1997].

Artificial neural networks are recognized in the automatic learning framework as

universal approximators, with massively parallel computing character and good

generalization capabilities, but also as black boxes due to the difficulty to obtain insight

into the relationship learned. Recently, applications of neural networks have been

increasing in data mining. More and more development tools have emerged on the

market. Two kinds of neural network models seem promising for the task of finding data

in database, which are SOM and Back-Propagation networks with their corresponding

advantages and disadvantages [Stebbins, 1999]. SOM is best used for categorization

tasks, because it is self-organization, and resulting categorizations are not necessarily

those that would be considered useful. Backpropagation networks are good for

prediction, because the designer specifies the structures' of input and output. A historical

discussion and a review of important applications of neural networks were presented in

[Hecht-Nielsen, 1990].



CHAPTER 3

A GENERIC FRAMEWORK FOR FILLING
MISSING DATA USING NEURAL NETWORK

As mentioned in Chapter 2, data mining, the idea of extracting valuable information from

data, is widely used, especially in financial field. Financial problems of managerial

decisions can be roughly classified into two categories: structured and unstructured

[Simon, 1960]. Artificial neural networks are best applied to problem environments that

are highly unstructured, require some form of pattern recognition, and may involve

incomplete or corrupted data [Trippi and Turban, 1996]. This chapter generally

introduces the framework for filling missing data in credit card record sets using neural

network.

3.1 A Solution to Credit Card Problems Using Neural Network

The task of approving customers for credit, assigning credit limits and detecting credit

fraud is a labor-intensive and time-consuming process that has significant impact on the

profitability of most companies [Trippi and Turban, 1996]. How to relieve labors from

labor-intensive task and how to find efficient solutions to reduce time complexity become

a very challenging and promising field. Furthermore, the process needs to deal with an

extremely large amount of data that may be incomplete or inaccurate. How to handle

such high-dimensional data is very crucial. An artificial neural network has demonstrated

its usefulness in the analysis of such data sets with a distinctive new flavor, which deals

with the diversity of input information without requiring that the information be restated

22
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in a standard form. It can be trained using customer data as the input vector and the actual

decisions of the credit analyst as the desired output vector. This work uses neural network

to deal with credit card record sets and develops innovative algorithms to fill missing

data. The important steps are presented in the following sections.

3.2 Data Preparation

This is the first step in data mining process. In most cases, the data used for a data mining

operation has been just sitting around collecting dust [Bigus, 1996]. There are three

important issues need to be concerned before mining these raw material:

• Are these data clean?

• Are these data reliable?

• Are these data sufficient?

A. Data Cleansing

It is often the true fact that not all operational transactions are correct. They might contain

inaccurate values, missing data, or other inconsistencies in the data set. Several

techniques are being used to clean data. These include rule-based techniques for detecting

inaccurate or inconsistent data, which evaluate each data item against metaknowledge

(knowledge about the data) about the range of data expected in that field and constraints

or relationship to other fields in the record [Simoudis et al., 1995]; Visualization can also

be used to easily identify erroneous and out-of-range data. Another way is to use

statistical information to replace missing or incorrect field values with neutral, valid

values. Data cleansing in this work focuses on filling missing data rather than detecting
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inaccurate data. Hence, We carefully develop algorithms to determine the default value

for each attribute. The work first statistically analyzes each attribute in the data set and

gets the probability distributions for all attributes. Then, designs algorithms to determine

the default values for all attributes and replaces all missing data with these default values.

The details are presented in Chapter 4.

B. Data Selection

Data selection concerns two central issues: one is how to determine the relative

importance of each attribute. The other is how to categorize all attributes. A data set may

have M attributes, which have the different contribution to the decision-making. How to

determine the importance of attributes falls into two ways. Sometimes, experts can do

this manually. However, this is a kind of case-by-case solution. Based on statistical

analysis, another method can determine the attribute importance by comparing the

similarity between target attributes and the uniform distribution functions. If the

distribution of an attribute is very similar to the uniform distribution, this attribute has the

less importance. The key point is if the distribution of an attribute is uniform, each value

has the same probability to appear in a dataset, which makes it useless to predict missing

data.

Since some attributes in a data set may have ambiguous value, attribute

classification is another important issue in data selection. For instance, value "19" can be

either interpreted as categorical data like department number, discrete number value like

age or regarded as continuous numeric data. This thesis classifies all attributes into two

categories: continuous and categorical data and develops an algorithm to solve this

problem based on attributes' output types.



25

C. Data Preprocessing

Data preprocessing is the step when the clean data, which have been selected, is

enhanced. Sometimes this enhancement involves generating new data items from one or

more fields, sometimes it means replacing several fields with a single field that contains

more information, and sometimes the data needs to be transformed into a form that is

acceptable as input to a specific data mining algorithm, such as a neural network. There

are several techniques listed below, which are mostly used in the data preprocessing

phase:

• Computed attributes: A common requirement is to combine two or more attributes

into a new attribute. This is usually in the form of a ratio of each combined value,

the sum, the product or other values.

• Scaling: Another transformation involves the more general issues of scaling data

feeding to the neural network. Normally, most neural network models adapt

Sigmoid (Sig), Hyperbolic Tangent (TanH) or their variants as transfer functions.

Equations are:

The Sigmoid transfer function requires the input range [0,1] while the Hyperbolic

Tangent requires the input range [-1, +1] to avoid "saturation" effect. Thus to scale

data into the proper range requires another necessary data preparation step.
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In this work, all neural network models such as Back-Propagation (BP), Self-

Organization-Map (SOM), etc. use the TanH transfer function; Thus, the original

data are scaled into the [-1, +1] range.

• Normalization: Vectors or arrays of numeric data can sometimes be treated as

groups of numbers. In these cases, it is necessary to normalize the vectors as a

group. There are several ways to handle this. The most common vector

normalization method is to sum the squares of each element, take the square root of

the sum, and then divide each element by its norm. Another way to normalize

vector data is to simply sum up all of the elements in the vector and divide each

number by the sum. In this approach, the normalized elements sum to 1.0, and each

has a value representing the percentage of contribution they make. The third way is

to divide each vector element by the maximum value in the array.

Considering attributes with categorical and numeric data, this work first divides

attributes into two categories: continuous data and categorical data by their nature.

For continuous data, the normalization equation is introduced as follows:

Scaled value of the ith attribute in the jth record;

Unscaled value of the ith attribute in the jth record;

Mean value of the i th attribute; and

Standard deviation of the ith attribute.
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D. Data Representations

Neural networks explore lots of categorical data to do data mining. For categorical data

the challenge of representation is to present these variable values in such a way that the

network can discern the differences between values and tell the relative magnitude of the

differences if that information is available. Various coded data types are used to represent

these values. One-of-N code has a length equal to the number of discrete categories

allowed for the variable, where every element in the code vector is a 0, except for the

single element, which represents the code value. Binary code assigns each category a

value from 1 to N and represents by a string of binary digits. Thermometer code is better

used when the discrete values are related in some way, usually by increasing or

decreasing values. For example, to represent morning, noon and night by 3 bits, noon,

morning and night can be represented as [0.5, 1, 0.5], [1, 0.5, 0] and [0, 0.5, 1],

respectively. This thermometer encoding scheme not only reveals the difference between

categories, but also shows the relationship between each other: Noon is next to morning

and night, morning next to noon but far from night etc.

This work designs a different encoding scheme to represent categorical data. The

detailed procedures are:

(1) Analyze data types in each attribute and calculate each type's percentage.

(2) Divide all data types into 3 parts, the left and right contain data types which

percentage is the lowest and middle part contains the highest percentage data types.

(3) Subgroup all categories into 3 groups, which are encoded as [-0.355, -0.355,

+0.355], [+0.355, -0.355, -0.355], and [-0.355, +0.355, -0.355], respectively. The
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reason to choose value +/-0.355 is to make sure any pair has the Euclidian distance

1, in other words, to normalize the distance of each pair.

3.3 Neural Network Models Selection

There are many different types of neural network models, which can be categorized by

the basic learning paradigm or the approach they use. Supervised neural network is the

most common training paradigm, which makes predictions or classifications for a given

problem or case. At this point, the "desired" results act as a supervisor to indicate what

the answer should be and how to update network itself to achieve this goal. The

unsupervised model is often used for clustering and segmentation in data mining, where

neural network doesn't have "standard answer", and the training goal is to group similar

characteristic vectors together.

In this work, the Back-Propagation Neural Network model is chosen to predict the

target data, because the nature of prediction task is supervised, which means there already

have some sample cases made by experts in a corresponding field during learning phase.

Back-Propagation models are just to learn how to deal with these cases, and simulate an

expert to predict target data when a new case without "answer" feeding into a network.

To fill missing data, Self-Organization-Map (SOM) model is selected to cluster all

records into some subgroups, where data have the similar characteristics. The key point is

if the missing data belong to a subgroup, it is very possible for their values to fall into the

value range determined by the subgroup's complete data records. The detailed

implementation is presented in Chapter 4.
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3.4 Training and Testing Neural Network

Once the data preparation is completed and the neural network model and architecture

have been selected, the next step is to train the neural network that includes the following

two steps:

(1) Separate training and testing data sets: For most supervised neural network models,

networks begin the training process with the connection weights initialized with

small random values. The training control parameters are set and the training data

patterns are presented to the neural network one after the other. As training

progresses, the connection weights are adjusted, and the performance of the

network is monitored. In order to evaluate the performance or to determine whether

the target model succeed in data prediction or not, implementation needs to test data

set, where all weights adjusted at training phase are fixed. This work splits the

whole data set into testing and training parts and set the ratio at 1:3.

(2) Set important neural network parameters: To obtain the best results, the critical

neural network parameters should be set properly. They are:

• Learn rate: Control the step size for weight adjustments. Decrease over time

for some types of neural network. Learn rate is very important because if

value is too large, the error factor drop very fast but the side effect is easily

falling into "unstable" state. The whole model could never meet the

convergence criteria in worst case. On the contrary, whole network will

gradually go into a "stable" state but take too much time. It is a trade-off. The

proper value based on experience and practice. In the project BP and SOM

both need to set this value.
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• Momentum: Smooth the effects of weight adjustments over time. BP model

need to set this value.

• Error tolerance: Specify how close the output value must be to the desired

value before the error is considered to be zero. In BP, the probe using to

determine error tolerance usually is Mean Square Root (RMS).

• Activation function and Learning Rule: Select the activation function (transfer

function), which is used by the neural processing unit. Most common is the

sigmoid or logistic activation function. As mentioned before, in order to get

better performance, the project always extend input value range from [-1, +1],

so for BP, the activation functions usually used are variants of TanH, learning

rules are Delta-Bar-Delta, Ext DBD and Norm-Cum-Delta. For SOM, the

functions are logistic or Euclidian.

• Neighborhood: Defines the size or area of units surrounding the winner, which

get their weights updated. Neighborhood decreases over time. SOM need to

specify this value.

• Number of epochs: determines the number of passes for networks that train

for a fixed number of passes through the training data. BP and SOM both need

to set this parameter.

3.5 Measures of Success

Once a neural network model is selected and trained with data, it is very important to

determine whether the model is well trained or not. The criteria for the measure of the

success is different in the following steps:
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• Classification: The measure of success in a classification problem is the accuracy of

the classifiers, usually defined as the percentage of correct classifications. The

algorithms to determine correctness are various. In this work, there are two

evaluators. One determines the correctness based on whether the difference between

a prediction value and desired value's RMS is lower than a specific threshold or

not. The other tool is more sophisticated by using a classification matrix and a

reverse matrix. Detailed information is explained in Chapter 4.

• Clustering: Since clustering is an unsupervised usage, where there are no "standard"

answers to verify a model. In most cases, the training regimen is determined simply

by the number of times data is presented to a network, and how fast the learning

rate and the neighborhood decay. A network will be trained for the certain number

of epochs specified by a user and then stop.

3.6 Summary

Data mining using Neural Network includes the following four steps:

(1) Data Preparation: it involves data selection, data cleansing, data preprocessing, and

data representation. Data selection is a kind of domain knowledge. The domain

expert uses his knowledge of a problem and available data to determine attributes'

importance and classification. This work classifies all attributes into two categories:

categorical and continuous data. Data cleansing in our work focuses on filling

missing data. The only purpose of filling missing data in data cleansing step is to

gain records vectors, in which every element has a valid value and "erroneous"

effects caused by missing values are minimized. In the data preprocessing phase,
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this work scales and normalizes continuous data, and transforms categorical data

into a numeric normalization form using a specific encoding scheme.

(2) Neural Network Selection: Neural network models are selected based on required

tasks. For data prediction purpose, the supervised architecture model Back-

Propagation Network is selected. To fill missing data, the unsupervised Self-

Organization-Map network is chosen.

(3) Training and testing phase: lists the most important parameters, which directly

affect the overall performance of neural network, and explains what these

parameters are for.

(4) Evaluation of results from neural network: this work not only uses a common tool

such as RMS, but also designs two evaluators: an accuracy matrix and a reverse

matrix.



CHAPTER 4

IMPLEMENTAIONS USING NEURAL NETWORK
TO FILL MISSING DATA FOR CREDIT CARD RECORD SETS

Chapter 3 generally introduces the background of the work, the given conditions and the

targets. Also, the framework of using neural network on data mining is theoretically

presented. However, data mining is not a one-hit-all-done process. On the contrary, it is

an art. This chapter explores the real implementations of this framework in details.

4.1 System Architecture

This system has the following software packages, which run on Unix and MS Window

Operating Systems:

• CREDITCARDPROJ: main software application designed for this work, which is

developed using VC++ and deals with data preprocessing, missing data filling and

neural network output analyzing etc.; and

• NeuralWare Professional II/Plus: a commercial software, which is mainly used to

build Back-Propagation neural network model for data prediction.

The CREDITCARDPROJ includes four modules shown in Figures 4.1 and 4.2:

• Data Preprocessing Model;

• Missing Data Filling Model;

• Neural Network Performance Evaluation Model; and

• Auxiliary Mathematics Tool Module.
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Figure 4.1 System Architecture
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Figure 4.2 System Architecture (cont.)
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4.2 Data Preprocessing

A. Transform Data Format

The original data set is stored in a text file "joint.txt", which is about 150 M unformatted

file. The original sample data is shown in Figure 4.3.

Figure 4.3 Original Sample Data

All these original data used for data mining operations are the collection of

symbols, which are unformatted and have variable lengths. The transform function void
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tranRawToNN() in system library "INTERFACE_H" analyzes the internal structure of

original data set, transforms data into a standard format and fulfills the following

functionalities:

(1) Delimitate each attribute value with white space and terminate each record by new

line symbol;

(2) Mark all missing value with "-99" symbol;

(3) Resign records index; and

(4) Finally determine the dimension of original data set, which is 49,9992 rows and 110

columns and stored into a file named "NN.dat".

Figure 4.4 shows the formatted sample data after transformation.

Figure 4.4 Formatted Sample Data

B. Analyze Data Set Features

Data set features include the following items:
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• Percentage of valid data of each attribute: This is very useful information as

shown in Table 4.1, which helps us to get an insight of the whole data set.

Furthermore, based on it, the sequence of filling missing data is decided and starts

from the lowest one. The function void rawValuePercent 0 in "INTERFACE_H"

deals with this issue. As shown in Table 4.1, more than 70% attributes have over

90% or even 100% valid data, and only 20% attributes miss values more than

90%. Moreover, the attributes from the 80 th to the 99th are full.

Table 4.1 Attribute valid data percent

• Percentage of strata: The definition of strata is the number of missing attributes that is

denoted as strata_X. For example, if a record has 3 attributes with missing data, the

record belongs to strata_3. The detailed report is enclosed in
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"BANKDATASTRTA.txt" file. The rough distribution is that most records miss 30

31 attribute values, very few records have over 70 missing attribute values, and very

few records miss less than 22 attribute values. There are no complete records.

• Sub-pattern of strata and its corresponding percentage: Following the above

definition, if strata_3 has 2 records, one of which misses attributes 1,2,3 and the other

3,5,7, then there are two sub-patterns. The report is enclosed in

"BANKDATASTRTA.txt" file. In order to visualize strata sub-pattern information,

this work deploys a Java application "Ploygram", which arranges all attributes on a

polygon and connects missing attributes with lines. The color of line stands for

percentage of this sub-pattern, and the vertex of a polygon for its corresponding

attribute. As shown in Figure 4.5, there are 12 polygons that mean strata_3 has 12

sub-patterns. The deep red color triangle shows that strata_3 sub-pattern has the

highest percentage among all strata_3 sub-patterns.

• Value patterns for each attribute: The functions void rawValuePatternRpt1() and void

raw ValuePatternRpt() in System Library "INTERFACE_H" work on this issue. The

only difference is the former uses static array and the latter uses dynamic linked-list.

Report is saved in file " BANKDATAVALUE.txt", and Figure 4.6 shows value

patterns sample.

C. Classify Categorical Attributes And Continuous Attribute

As show in Figure 4.4, it is very difficult to determine which attribute belongs to

categorical or continuous attribute from the attribute tags. To solve this domain

knowledge problem, this work introduces the rules for classification, which is that

attributes with alphabetic symbols are categorical data, the ones with numerical symbols
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whose types are less than a threshold 64 are categorical data, and the rest ones belong to 

continuous data. 

Figure 4.5 Strata Sample 

D. Calculate data types percentage for each attribute 

This analysis is necessary because the analysis can help system to classify categorical and 

continuous attributes, and detennine the attributes' default values. Moreover, the peak of 

data types of each attribute can roughly detennine the possible number of clusters, since 

an attribute may have several steep peaks that are distinguish with each other and may 

fonn corresponding clusters. Function void rawPDFEncoderO in "INTERFACE_H" 

deals with this issue and manually adjusts bin number. If an attribute is a continuous type, 

it calculates data types percentage by dividing attribute value into 64 bins. Otherwise, 

calculates categorical data types percentage based on how many categorical types. The 
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detailed information is saved in "BANKDATAPDF.txt" file. The samples are shown in

Figures 4.7 and 4.8.

Figure 4.6 Value patterns Sample



Figure 4.7 Data Type Percentage for Categorical Attributes
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Figure 4.8 Data Type Percentage for Continuous Attribute (64 bins)



44

E. Determine Sample Space

The whole data set has around 500,000 records; in the meanwhile, each record holds 110

attributes. To implement any algorithm on such a huge data set is infeasible since the

time-complexity and space-complexity are overwhelming. Based on the data analysis

presented in Chapter 3, the average traverse time of the whole data set is about 70

minutes on PC Pentium II 350MHz, 128M RAM. On the other hand, dealing with the

whole data set doesn't guarantee the best filling quality because if the original data

contain "erroneous" values, the larger the number of records, the more the "dirty" values.

Moreover, in a large data set, there are lots of similar or duplicated records together.

Hence, how to obtain the good trade-off among time and space complexity and quality is

very important. The key point to determine sample space is to obtain the smallest subset,

which can best represent the original data set. Following the line of this thought, Estimate

Representative Small Sets algorithm is developed as follows, which has two functions

Fourth Moment and Sample Size Determination:

Estimate Representative Small Sets Algorithm:

Fourth Moment 0:

Sample Size Determination 0:
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Where

N b : Total number of bins;

v i : Value of the i th bin;

p i : Possibility value of the ith bin;

: Standard deviation;

,u: Mean value;

M: Fourth moment value;

S: Sample space size;

r : Desired error; and

t : Appropriate number from the standard normal table.

The function void fourthMoment() deals with this issue to determine the thickness

of a distribution's head and tail. In the case r = 0.01 and t =2.48, the desired error is not

higher than 1.0% and the sample space size is about 8000 records.

4.3 Filling Missing Data

While the goal of data mining is to extract valuable information from data, it is an

undeniable fact that the quality of the results is related directly to the quantity and quality

of the data being mined [Bigus, 1996]. As mentioned in Chapter 3, most records in the

data set miss 30 attributes and there are no complete records. Thus, how to properly fill
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missing data is the critical point to guarantee enough and high quality data for data

mining. Furthermore, filling missing data is not a simple top-to-down process; instead it

is a recursive routine and art.

4.3.1 Default Value Determination

The most straightforward way to fill missing hole is using the most feasible values. Based

on the possibility, this way guarantees the highest "hit-ratio". For a categorical attribute,

the highest percentage type is selected as a default value. While for a continuous

attribute, the mean value is chosen as a default value. Table 4.2 lists all attributes' default

values.

Table 4.2 Default values
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4.3.2 Data Cleansing:

With the sample space representing the whole data set with small record numbers and the

default value to fill missing holes, the procedures for data cleansing are listed as follows:

• Randomly generate indexes within the whole data set with range [1, 49993] and set

a flag for each candidate record that will be contained in the sample data set.

• Open the source standard data set file, retrieve one record and check whether it is a

candidate record. If not, this record is ignored. And the next record is retrieved.

This step continues until the end of the data file is reached.

• For each candidate record, traverse its attributes. For each attribute, check whether

the value is missing (missing flag is "-99") or not. If the attribute is missing, replace

the missing hole with the default value.

• Store all filled sample records into a new file and data into another one.

4.3.3 Data Representation

After the data cleansing, all missing holes have been replaced with the default value.

However, this complete sample data set cannot be directly fed into neural network

because some attributes are categorical data, such as "A, E ..." or "Y, N" etc. Moreover,

neural network requires that its input data are ranged between —1 and +1. Thus, to convert

categorical data into numeric format by specific encoding scheme and scale all numeric

data into value range [-1, +1] is our next step to avoid possible "saturation" state in neural

network and get the best performance

For categorical attribute, the encoding scheme algorithm is developed as follows:

Categorical Attribute Encoding Scheme Algorithm:

If (categorical attribute type = 1)
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Ignore this attribute;

Else If (categorical attribute type = 2)

Then encode two types as (-0.355, +0.355) and (+0.355, -0.355).

Else

i) Centralize all types so that the higher percent the near to center;

ii) Divide all types into 3 sub-group, which are left, middle and right group.

iii) If (group = left group)

Code is (+0.355, -0.355, -0.355);

Else if (group = middle group)

Code is (-0.355, +0.355, -0.355);

Else

Code is (-0.355, -0.355, +0.355).

For continuous data the scaling scheme is:

Where

: The scaled and normalized value for the ith attribute of ther record;

The original value of the ith attribute of the!' record;

The standard deviation of the ith attribute; and

The mean of the it" attribute.

Function void SOW)  is used to convert encoded attribute values to fit the Self-

Organization-Map neural network input format, and outputs two files: one is SOM format
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data file shown in Figure 4.9, the other is SOM interpretation format data file shown in

Figure 4.10.

The symbols in the sample are listed as follows:

• $ and !: indicate unfilled categorical data alternately;

• &: indicates unfilled continuous data;

• * and ^: indicate filled categorical data alternately;

• #: indicates filled continuous data;

4.3.4 Data Filling Sequence Determination

After the data cleansing, all missing "holes" are replaced with the default value. In most

data mining case studies, this way is good enough for filling missing data [Trippi and

Turban, 1996]. However, it assumes that every record in the whole data set has the

similar characteristics, which may be incorrect. Thus, to make the filling more accurate,

an innovative algorithm Second Pass Filling Missing Data is developed and presented in

the next section. The first step of this algorithm is to determine the filling sequence. In

this work, the sequence is determined on attribute valid data percentage, and ordered

from the lowest to the highest. It is fulfilled by function void SOM () in "PHASE2_H"

library. Table 4.3 shows the results.

4.3.5 Second Pass Filling Missing Data

Based on the sequence in Table 4.3, filling missing data use the following algorithm:

Second Pass Filling Missing Data Algorithm:

i)	 Based on the filling sequence and partially filled data set ignore the attribute one

time and create a subset which contains the rest attribute value.
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Figure 4.9 SOM Data Sample

Figure 4.10 Interpretation Sample SOM Data



Table 4.3 Data filling sequence
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Randomly generate vector Vi , which contain Na attributes.

1// Initialize cluster vector.

iii) For (1=0; l<C; l++)

{

For (i = 0; i< Nb ;l++)

{

Retrieve a record vector ηi from sample data set.

For (j=0; j<p; j++)

{



Calculate Euclidian Distance between Di and ηi.

}

For (k=0; k < p; k++)

{

If ( Du has the smallest Euclidian Distance value)

{

A) Update Di as: V7ew aDrd + — cOrli

B) Mark Di as winner vector.

}

Else

Continue;

}

}

}//Get all winner vectors after C loops update, suppose the number is P;

iv) For (i = 0; i< N b ; i++)

{

Retrieve a record vector i1 	sample data set.

For (j=0; j<P; j++)

{

Calculate Euclidian Distance between 77 1 and D 1 ;

}

If (The vector D i has the smallest Euclidian Distance)

52
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{

For (k=0; N a ; k++)

{

If (attribute k has valid data value)

Save the valid data value into Matrixij  ;

Else

Continue;

}

}

Else

Continue;

} // Get valid data value from sample data set for each winner cluster's every

attribute.

v) For (i = 0; i< Nb i++)

{

Retrieve a record vector ηi from sample data set.

For (j=0; j<P; j++)

{

Calculate Euclidian Distance between and V i ;

}

If (The vector V i has the smallest Euclidian Distance)

{



For (k=0; k< N a ; k++)

{

If (attribute k miss data value)

Randomly select a valid data value from Matrixij and

Replace the missing hole;

Else

Continue;

}

}

} // Partially filling missing data in sample data set.

If (there still has attributes need to fill)

Go back to step i);

Else

Continue;

vi) For (i = 0; i< Nc; i++)

{

Retrieve a record vector ηi from original data set.

For (j=0; j<P; j++)

{

Calculate Euclidian Distance between and V i ;

54

If (The vector V i has the smallest Euclidian Distance)



For (k=0; k<Na , k++)

{

If (attribute k miss data value)

Randomly select a valid data value from Matrix ij and

Replace the missing hole;

Else

Continue;

}

}

} // Fill missing data to original data set.

Where:

Na : Total number of attributes;

N b : Total number of sample set records;

N,: Total number of original data set records;

C: The number of loops;

Vi : the ith Vector;

: the ith record;

a: Learning Rate;

p: Number of initialization vectors;

P: Number of winner vectors; and

Matrixij: Valid value for the ith cluster of the jth attribute.
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Functions void Cluster() and void finalFill() in "PHASE_2.H" fulfill the algorithm.

Figures 4.11 and 4.12 present the sample report and sample winner vectors after cluster,

respectively. And Figure 4.13 shows the sample data after the second filling, where all

filled data are marked with "*" in order to distinguish them with the original values.

4.4 Neural Network Performance Evaluation

Given a set of complete data, the other important task of the work is to predict target data.

To achieve this task, Back-Propagation neural network model is selected. Before building

up Back-Propagation model to predict credit card target data, preliminary evaluation is

performed to test whether this model works and how well it is:

•	 Generate learning, testing complete data set: generate learning and testing set at

specific ratio, whose attributes, records number and output results are manageable.

This task is handled by function void RandomDataGenerator() in

"SUBFUNCTION H" library, which invoke functions in "AUXMATH H" library

listed as follows:

(1) Float ran 1 (long *) generates uniform distribution value between [0,1];

(2) Float expdev(long *) generates exponential distribution value;

(3) Float gasdev(long *idum) generates gaussian or normal distribution value;

(4) Float gamdev(int ia, long * idum) generates gamma distribution value; and

(5) Float bnldev(float pp, int n, long *idum) generates binomial distribution

value.
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Second Pass Filling Missing Data Function

Attribute 109 Total 17 Clusters

Cluster 0 has 74 Cluster 1 has 292 Cluster 2 has 689 Cluster 3 has 561 Cluster 4 has 152
Cluster 5 has 397 Cluster 6 has 1211 Cluster 7 has 161 Cluster 8 has 1619 Cluster 9 has 108
Cluster 10 has 719Cluster 11 has 119 Cluster 12 has 426Cluster 13 has 301 Cluster 14 has 474
Cluster 15 has 477Cluster 16 has 109 Cluster 17 has 111

Cluster Vadlid Data Of Attribute 109

cluster 0 has° valid data

cluster 1 has5 valid data
1960 1978 1975 1960 1986
cluster 2 has° valid data

cluster 3 has2 valid data
1984 1940
cluster 4 has1 valid data
1941
cluster 5 has° valid data

cluster 6 has2 valid data
1953 1910
cluster 7 has1 valid data
1959
cluster 8 has3 valid data
1951 1983 1978
cluster 9 has0 valid data

cluster 10 has1 valid data
1983
cluster 11 has° valid data

cluster 12 has4 valid data
1971 1956 1993 1985
cluster 13 has1 valid data
1958
cluster 14 has3 valid data
1994 1992 1995
cluster 15 has° valid data

cluster 16 has° valid data

cluster 17 has1 valid data
1939

Figure 4.11 Sample Cluster report



Figure 4.12 Winner Vector Sample
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Figure 4.13 Filled Sample Data

• Build neural network model for evaluation: build Back-Propagation, training and

testing models using software NeuralWare. Figure 4.14 shows the evaluation Back-
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Propagation Model built by NeuralWare. All parameters in Back-propagation model 

are: 

a) One hidden layer with 10 Process Elements; 

b) Transfer function: TanH; 

c) RMS = 0.02; 

d) Learning rule: Norm-Cum-Delta. 

e) Add Norm distribution noise into each input. 

Figure 4.14 Back-Propagation Model 

• Analyze model's performance: analyze the performance using error range. The 

definition of accuracy is the percentage of predicating data, which fall into the 
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"desired" values' error range. For example, if predict data is 9.7 and desired data is

10, it has an error range 0.05 that means the predict value within the range [10.5, 9.5]

is regarded as correct. Of course, value 9.7 is correct. Experiments results based on

above model are listed in Tables 4.4, 4.5, and 4.6.

Table 4.4 Learning set 10000 records

Accuracy
Error range

Testl (10 samples) Test2 (100 samples) Test3 (500samples)

0.05 90 90 94.4
0.03 70 78 81.6
0.1 100 99 99.8

Table 4.5 Learning set 5000 records

Accuracy
Error range

Test1 (10 samples) Test2 (100 samples) Test3 (500samples)

0.05 90 88 90.4
0.03 60 69 71.4
0.1 100 98 99

Table 4.6 Learning set 1000 records

Accuracy
Error range

Test1 (10 samples) Test2 (100 samples) Test3 (500samples)

0.05 70 73 84.4
0.03 40 62 58.8
0.1 100 97 98.8

To make the evaluation more accurate, two RMS evaluation matrixes are both used

in this work. The procedures for the first matrix are: (1) for each record, determine its

output category from its "desired" output value; (2) evaluate its predicted output value

based on a specific RMS value; and (3) determine whether the predicted output value

falls into the right category or not. The evaluation of the second matrix, called "reverse

matrix", is to determine which output category the predicative value belongs to based on
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the predicative value and the specific RMS value, and compare this type with "desired"

output type and determine whether it falls into the right category or not.

The next experiment generates 6600 training and 3300 testing records. Each record

has 40 inputs and 5 output types. Each type has equal testing and training records. Results

are shown in Tables 4.7 and 4.8.

Table 4.7 Accuracy matrix (RMS = 0.5)

Class 0: Class 1: Class 2: Class 3: Class 4: Unknown
Class 0: 0.995 0 0 0.005 0 0
Class 1: 0.003 0.997 0 0 0 0
Class 2: 0.005 0 0.77 0.08 0 0.144
Class 3: 0.003 0 0.09_ 0.75 0 0.15
Class 4: 0 0 0 0 0.998 0.002

Table 4.8 Reverse Accuracy matrix

Class 0: Class 1: Class 2: Class 3: Class 4:
Class 0: 0.989 0 .003 0.005 0.003 0
Class 1: 0 1 0 0 0
Class 2: 0 0 0.895 0.105 0
Class 3: 0.005 0 0.096 0.899 0
Class 4: 0  0 0 0.0015 0.998

Unknown 0 0 0.482 0 .512 0 .005

In terms of error range, when error tolerance value is +/- 10%, neural network

model can correctly predict over 95% target values. In terms of accuracy matrix, based on

experiments, when RMS = 0.5, neural network can correctly predict at least 75% data.

From the analysis, Back-Propagation neural network is proved effective on data

prediction.
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4.5 Summary

Following the data-mining framework in Chapter 3, this chapter first describes the

implementation architecture with 4 modules, which are: Data Preprocessing Module,

Missing Data Filling Module, Auxiliary Mathematics Tool Module and Neural network

Performance Evaluation Module.

• Data Preprocessing Module: mainly deals with data format transformation, and data

set features analysis etc.

• Missing Data Filling Module: determines the sample size and the default value, and

fills all "holes" in the original data set through clustering, data cleansing and the

second filling.

• Neural network Performance Evaluation Module: focuses on evaluating

performance of supervised neural network model ---- Back-Propagation Model,

which is proved to be effective on data prediction and classification.

• Auxiliary Mathematics Tool Module: a supporting model for the whole

implementation, which implements some distribution function generators, sort

method, K-S and Chi-Square algorithms etc.



CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

Data mining on financial field is a very promising research area and lots of efforts have

been on it. Neural network, as a data-mining engine, is best applied to problem

environments that are highly unstructured, require some form of pattern recognition, and

may involve incomplete or corrupted data. After a review of recent methodology and

technology development activities in data mining and neural networks areas, it is clear

that neural network has many advantages over other methods in financial problems, such

as fault tolerance, generalization and adaptivity. Credit card data mining problems

include filling missing data and predicting target value etc. Based on this observation,

this thesis first proposes a generic framework for filling missing data using neural

network. Following this framework, two innovative algorithms are proposed to fill

missing data. Finally, the detailed implementations and results are presented.

This work has the following contributions:

(1) The methodology provides a mechanism to fill missing data in credit card record

sets using neural network. Two-level filling procedures guarantee all "holes" filled

with more accurate and reliable data.

(2) Applications of the methodology finally get the complete clean, high quality data

sets, which found a very solid foundation on credit card approval and fraud

detection research.

64
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(3) The evaluation for neural network Back-Propagation Model is performed, which

provides a strong proof for its further use in target data prediction.

5.2 Future Research

This work also has some limitations, which need to solve in the further research.

• Detect inaccurate and inconsistent value. This work assumes all exist data are valid

data in data cleansing step, which may not true. It is necessary to develop methods

to exclude out-of-range data or erroneous data from data set and further improve the

data set's quality.

• Determine attribute weight. In the real world, when an expertise makes' credit card

approval decisions, he or she will not consider all fields in the application forms

equally. In case of approval or not, applicants' revenue, credit history, occupation

etc., are the most important fields, while gender or marital status etc., are relevant

but less important, and name, social security number, telephone number etc., are

irrelevant to decision-making. In this research, all attributes have the same

importance. This may not fit the real situation. There is a need to design algorithm

to evaluate the importance of each attribute and optimize the quality of filled data

set.

• Make criteria to determine the necessity of further sub-cluster. This project only

clusters sample data set once. From report, it shows clusters are denser than other

clusters in other word; some clusters have record much more than others. It is

necessary to make a guideline or rule to judge whether a further cluster is needed or

not.
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• Reduce the dimensionality of data set. All operations on data filling are based on all

attributes, which is not reasonable. To solve this problem, determine attribute

weight is a usual way, but not enough. Thus, the further study to find a useful

method for eliminating some attributes deserves more effort.
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