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ABSTRACT

STRUCTURES, INTRAMOLECULAR ROTATION BARRIERS, AND
THERMODYNAMIC PROPERTIES OF METHANE AND ETHYLENE

CARBONS BONDING TO TWO UNSATURATED GROUPS:
ETHYLENE, ACETYLENE, PHENYL AND CARBONYL

by
Manish H. Gurbani

Enthalpy, ΔHf °298, entropy, S°298 and heat capacities C p(T) (300 T/K 	 1500) are

determined for Methane, bi-phenyl (CCB2H2); Methane, phenyl-vinyl (CCBCDH2);

Toluene, 1-formyl (CCBCOH2), Propyne, 3-phenyl (CCBCTH2); 1,4-pentadiene

(CCD2H2); Propene, 3-formyl (CCDCOH2); Methane, di-formyl (CCO2H2); Propyne,

3-formyl (CCOCTH2); Methane, di-ethynl (CCT2H2); Ethene, bi-phenyl (CDCB2); 1,4

Butadiene, 3-phenyl (CDCBCD); Ethene, 1-ethyn1-1-phenyl (CDCBCT); 1,4 Butadiene,

3-vinyl (CDCD2); 1,4 Butadiene, 2-ethynl (CDCDCT) and Ethene, 1,1-di-ethynl

(CDCT2) using density functional B3LYP/6-31G(d) calculation method. Molecular

structures and vibration frequencies are determined at the B3LYP/6-31G(d) density

functional calculation level. Evaluation of data from the isodesmic reactions results in

ΔHf°298 values for CCB2H2 of 42.41 kcal/mol, CCBCDH2 of 34.7 kcal/mol, CCBCOH2

of —13.35 kcal/mol, CCBCTH2 of 74.7 kcal/mol, CCD2H2 of 27.08 kcal/mol,

CCDCOH2 of —20.68 kcal/mol, CCO2H2 of —64.88 kcal/mol, CCOCTH2 of 19.72

kcal/mol, CCT2H2 of 112.43 kcal/mol, CDCB2 of 60.86 kcal/mol, CDCBCD of 53.41

kcal/mol, CDCBCT of 94.96 kcal/mol, CDCD2 of 48.68 kcal/mol, CDCDCT of 85.45

kcal/mol and CDCT2 of 131.68 kcal/mol. Standard entropy (S°298) and heat capacity

(Cp(T)' s, 300 5_ T/K 1500) from vibrational, translational, and external rotational

contributions are calculated using the rigid-rotor-harmonic-oscillator approximation



based on the vibration frequencies and structures obtained from the density functional

studies. Potential energy as a function of internal rotation barrier is also determined using

relaxed and non relaxed calculations using the B3LYP functional. Hindered internal

rotational contributions to Entropy and Heat Capacity are calculated by the method of

Pitzer and Gwinn. Groups for use in Benson type additivity estimations are determined.

Enthalpy, entropy and C p(T) properties are determined for C/CB2/H2, C/CB/CD/H2,

C/CB/CO/H2, C/CB/CT/H2, C/CD2/H2, C/CD/CO/H2, C/CO2/H2, C/CO/CT/H2,

C/CT2/H2, CD/CB2, CD/CB/CD, CD/CB/CT, CD/CD2, CD/CD/CT, CD/CT2 groups for

use in group additivity. Calculations result Group Values for C/CB2/H2 of —1.61

kcal/mol, C/CB/CD/H2 of —2.16 kcal/mol, C/CB/CO/H2 of —5.96 kcal/mol,

C/CB/CT/H2 of —1.81 kcal/mol, C/CD2/H2 of —2.62 kcal/mol, C/CD/CO/H2 of —6.13

kcal/mol, C/CO2/H2 of —6.08 kcal/mol, C/CO/CT/H2 of —5.38 kcal/mol, C/CT2/H2 of

—3.43 kcal/mol, CD/CB2 of 10 kcal/mol, CD/CB/CD of 11.81 kcal/mol, CD/CB/CT of

11.3 kcal/mol, CD/CD2 of 12.19, CD/CD/CT of 11.05 kcal/mol, CD/CT2 of 15.22

kcal/mol.



STRUCTURES, INTRAMOLECULAR ROTATION BARRIERS, AND
THERMODYNAMIC PROPERTIES OF METHANE AND ETHYLENE

CARBONS BONDING TO TWO UNSATURATED GROUPS:
ETHYLENE, ACETYLENE, PHENYL AND CARBONYL

by
Manish H. Gurbani

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Chemical Engineering

Department of Chemical Engineering,
Chemistry and Environmental Science

May 2001



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

STRUCTURES, INTRAMOLECULAR ROTATION BARRIERS, AND
THERMODYNAMIC PROPERTIES OF METHANE AND ETHYLENE

CARBONS BONDING TO TWO UNSATURATED GROUPS:
ETHYLENE, ACETYLENE, PHENYL AND CARBONYL

Manish H. Gurbani

Dr, Joseph W Bozzelli, Thesis Advisor 	 Date
Distinguished Professor of Chemistry, NJIT

Dr. Robert Pfeffer, Committee Member	 Date
Distinguished Professor of Chemical Engineering, NJIT

Dr. Basil C Baltzis, Committee Member 	 Date
Professor of Chemical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Manish H. Gurbani

Degree:	 Master of Science

Date:	 January 2001

Undergraduate and Graduate Education:

• Master of Science in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2001

• Bachelor of Science in Chemical Engineering,
University of Bombay, Mumbai, India, 1999

Major:	 Chemical Engineering



This thesis is dedicated to my family
for their unending love and encouragement.

v



ACKNOWLEDGMENT

I start by expressing my sincere appreciation to my advisor, Dr. Joseph Bozzelli,

for his dedication, patience, and wisdom throughout the length of this study and the

preparation of this thesis, and without whose guidance this research would not have been

possible. I am grateful to Dr. Robert Pfeffer and Dr. Basil C Baltzis, who served as my

committee members, for their inspirational and timely support, technical expertise, and

acuity throughout the duration of the project.

I would also like to take this opportunity to thank Dr. Larry Lay for developing

Vibir program and Mr. Chad Sheng for developing SMCps program. Vibir was very

useful in calculating the Internal Rotation contribution to Entropy and Heat Capacity and

SMCps was extremely useful in calculating the Translational, Vibrational, External

Rotation contributions to Entropy and Heat Capacity. A special mention also has to be

made of Mr. Jong Woo Lee and Mrs Hongyan Sun at New Jersey Institute of Technology

for their help in this work and it's presentation.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	  1

2 STRUCTURES, INTRAMOLECULAR ROTATION BARRIERS, AND
THERMODYNAMIC PROPERTIES OF METHANE AND ETHYLENE
CARBONS BONDING TO TWO UNSATURATED GROUPS  4

2.1 Overview 	  4

2.2 Background 	  6

2.3 Computational Methods 	  8

2.3.1 Selection of Method  	 8

2.3.2 Enthalpies of Formation (ΔHf° 298)  	 9

2.3.3 Entropy (S °298) and Heat Capacities (Cp(T)'s, 300 T/K 1500))
Hindered Rotation Contribution to Thermodynamic Parameters 	  10

2.4 Results and Discussion 	  11

2.4.1 Geometries and Vibrational Frequencies 	  11

2.4.2 Enthalpies of Formation (ΔHf298) 	  50

2.4.3 Rotational Barriers 	  59

2.4.4 Entropy (S °298) and Heat Capacity (C p(T)'s (300 T/K 1500)) 	  97

2.4.5 Group Additivity Values 	  116

2.5 Summary 	  121

3 CONCLUSION 	  122

APPENDIX A SPREADSHEET FOR CALCULATING SPECIES ENTHALPIES
FROM ISODESMIC REACTIONS AND B3LYP/6-31G(d) ENERGIES 	  124

APPENDIX B REFERENCE GROUP VALUES USED TO CALCULATE THE
GROUP VALUES OF TARGET GROUPS 	  129

REFERENCES 	  131

vii



LIST OF TABLES

Table Page

2.1 Structure Parameters for CCB2H2 	 12

2.2 Structure Parameters for CCBCDH2 	 14

2.3 Structure Parameters for CCBCOH2 	 16

2.4 Structure Parameters for CCBCTH2 	 18

2.5 Structure Parameters for CCD2H2 	 20

2.6 Structure Parameters for CCDCOH2 	 22

2.7 Structure Parameters for CCO2H2 	 24

2.8 Structure Parameters for CCOCTH2 	 26

2.9 Structure Parameters for CCT2H2 	 28

2.10 Structure Parameters for CDCB2 	 30

2.11 Structure Parameters for CDCBCD 	 32

2.12 Structure Parameters for CDCBCT 	 34

2.13 Structure Parameters for CDCD2 	 36

2.14 Structure Parameters for CDCDCT 	 38

2.15 Structure Parameters for CDCT2 	 40

2.16 Vibration Frequencies for CCB2H2 	 43

2.17 Vibration Frequencies for CCBCDH2 	 44

2.18 Vibration Frequencies for CCBCOH2 	 44

2.19 Vibration Frequencies for CCBCTH2 	 45

2.20 Vibration Frequencies for CCD2H2 	 45

2.21 Vibration Frequencies for CCDCOH2 	 46

viii



LIST OF TABLES
(Continued)

Table Page

2.22 Vibration Frequencies for CCO2H2 	 46

2.23 Vibration Frequencies for CCOCTH2 	 46

2.24 Vibration Frequencies for CCT2H2 	 47

2.25 Vibration Frequencies for CDCB2 	 47

2.26 Vibration Frequencies for CDCBCD 	 48

2.27 Vibration Frequencies for CDCBCT 	 48

2.28 Vibration Frequencies for CDCD2 	 49

2.29 Vibration Frequencies for CDCDCT 	 49

2.30 Vibration Frequencies for CDCT2 	 50

2.31 Total Energies at 298 K 	 51

2.32 Calculated Enthalpies at 298K 	 58

2.33 Total Energies at 298 K and ΔHf°298 for Reference Species in the
Reaction Schemes 	 58

2.34 Moments of Inertia of Internal Rotors, Rotational Barrier & Foldness. 62

2.35 Total Energy and Internal Rotation Barriers for CCB2H2 	 63

2.36 Total Energy and Internal Rotation Barriers for CCBCDH2 	 66

2.37 Total Energy and Internal Rotation Barriers for CCBCOH2 	 69

2.38 Total Energy and Internal Rotation Barriers for CCBCTH2 	 72

2.39 Total Energy and Internal Rotation Barriers for CCD2H2 	 74

2.40 Total Energy and Internal Rotation Barriers for CCDCOH2 	 77

2.41 Total Energy and Internal Rotation Barriers for CCO2H2 	 80

ix



LIST OF TABLES
(Continued)

Table	 Page

2.42 	 Total Energy and Internal Rotation Barriers for CCOCTH2 	  83

2.43 	 Total Energy and Internal Rotation Barriers for CDCB2 	  85

2.44 	 Total Energy and Internal Rotation Barriers for CDCBCD 	  88

2.45 	 Total Energy and Internal Rotation Barriers for CDCBCT 	  90

2.46 	 Total Energy and Internal Rotation Barriers for CDCD2 	  92

2.47 	 Total Energy and Internal Rotation Barriers for CDCDCT 	  95

2.48 	 Number of Internal Rotors, Symmetry and Moments of Inertia used
in the estimation of contributions to Entropy and Heat Capacity 	  98

2.49 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCB2H2 at different temperatures 	  99

2.50 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCBCDH2 at different temperatures 	  100

2.5 1	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCBCOH2 at different temperatures 	  101

2.52 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCBCTH2 at different temperatures 	  102

2.53 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCD2H2 at different temperatures 	  103

2.54 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCDCOH2 at different temperatures 	  104

2.55 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCOCTH2 at different temperatures 	  105

2.56 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCT2H2 at different temperatures 	  106

2.57 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCBCT at different temperatures 	  107



LIST OF TABLES
(Continued)

Table 	 Page

2.58 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCDCT at different temperatures 	  108

2.59 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCT2 at different temperatures 	  109

2.60 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CCO2H2 at different temperatures 	  110

2.61 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCB2 at different temperatures 	  111

2.62 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCBCD at different temperatures 	  112

2.63 	 Translation,Vibration and External Rotation contributions to Entropy
and Heat Capacity for CDCD2 at different temperatures 	  113

2.64 	 Internal Rotor Contributions to Entropy and Heat Capacity for Each
Species 	  114

2.65 	 Ideal Gas-phase Thermodynamic Properties 	  115

2.66 	 Groups (for Group Additivity) and Structure Parameters for Species 	  118

2.67 	 Group Values 	  120

xi



LIST OF FIGURES

Figure Page

2.1 B3LYP/6-31G(d) optimized geometry of CCB2H2 	 13

2.2 B3LYP/6-31G(d) optimized geometry of CCBCDH2 	 15

2.3 B3LYP/6-31G(d) optimized geometry of CCBCOH2 	 17

2.4 B3LYP/6-31G(d) optimized geometry of CCBCTH2 	 19

2.5 B3LYP/6-31G(d) optimized geometry of CCD2H2 	 21

2.6 B3LYP/6-31G(d) optimized geometry of CCDCOH2 	 23

2.7 B3LYP/6-31G(d) optimized geometry of CCO2H2 	 25

2.8 B3LYP/6-31G(d) optimized geometry of CCOCTH2 	 27

2.9 B3LYP/6-31G(d) optimized geometry of CCT2H2 	 29

2.10 B3LYP/6-31G(d) optimized geometry of CDCB2 	 31

2.11 B3LYP/6-31G(d) optimized geometry of CDCBCD 	 33

2.12 B3LYP/6-31G(d) optimized geometry of CDCBCT 	 35

2.13 B3LYP/6-31G(d) optimized geometry of CDCD2 	 37

2.14 B3LYP/6-31G(d) optimized geometry of CDCDCT 	 39

2.15 B3LYP/6-31G(d) optimized geometry of CDCT2 	 41

2.16 Potential Barriers for Internal Rotation about CB-CCBH2 bond
(Dihedral 9876) of CCB2H2 	 64

2.17 Potential Barriers for Internal Rotation about CB-CCBH2 bond
(Dihedral 8761) of CCB2H2 	 65

2.18 Potential Barriers for Internal Rotation about CB-CCDH2 bond
(Dihedral 9876) of CCBCDH2 	 67

2.19 Potential Barriers for Internal Rotation about CD-CCBH2 bond
(Dihedral 8761) of CCBCDH2 	 68

xii



LIST OF FIGURES
(Continued)

Figure 	 Page

2.20 	 Potential Barriers for Internal Rotation about CO-CCBH2 bond
(Dihedral 5123) of CCBCOH2 	  70

2.21 	 Potential Barriers for Internal Rotation about CB-CCOH2 bond
(Dihedral 9876) of CCBCOH2 	  71

2.22 	 Potential Barriers for Internal Rotation about CB-CCTH2 bond
(Dihedral 8761) of CCBCTH2 	  72

2.23 	 Potential Barriers for Internal Rotation about CD-CCDH2 bond
(Dihedral 9514) of CCD2H2 	  75

2.24 	 Potential Barriers for Internal Rotation about CD-CCDH2 bond
(Dihedral 9514) of CCD2H2 	  76

2.25 	 Potential Barriers for Internal Rotation about CO-CCDH2 bond
(Dihedral 10712) of CCDCOH2 	  78

2.26 	 Potential Barriers for Internal Rotation about CD-CCOH2 bond
(Dihedral 7126) of CCDCOH2 	  79

2.27 	 Potential Barriers for Internal Rotation about CO-CCOH2 bond
(Dihedral 4312) of CCO2H2 	  81

2.28 	 Potential Barriers for Internal Rotation about CO-CCOH2 bond
(Dihedral 5213) of CCO2H2 	  82

2.29 	 Potential Barriers for Internal Rotation about CO-CCTH2 bond
(Dihedral 5124) of CCOCTH2 	  84

2.30 	 Potential Barriers for Internal Rotation about CB-CDCB bond
(Dihedral 171621) of CDCB2 	  86

2.31 	 Potential Barriers for Internal Rotation about CB-CDCB bond
(Dihedral 6521) of CDCB2 	  87

2.32 	 Potential Barriers for Internal Rotation about CD-CBCD bond
(Dihedral 6512) of CDCBCD 	  89

2.33 	 Potential Barriers for Internal Rotation about CD-CBCT bond
(Dihedral 5412) of CDCBCT 	  91



LIST OF FIGURES
(Continued)

Page

93

94

96

Figure

	2.34	 Potential Barriers for Internal Rotation about
(Dihedral 111012) of CDCD2 	

	

2.35 	 Potential Barriers for Internal Rotation about
(Dihedral 6512) of CDCD2 	

	

2.36 	 Potential Barriers for Internal Rotation about

CD-CDCD bond

CD-CDCD bond

CD-CDCT bond
(Dihedral 4321) of CDCDCT  

xiv



CHAPTER 1

INTRODUCTION

The importance of reliable and conveniently accessible thermochemical data (Enthalpies

of Formation, Entropies, and Heat Capacities) is universally accepted among both

scientists and engineers. This work is an attempt to provide thermochemical data for

certain selected Hydrocarbons and Oxygenated Hydrocarbons, which are important

intermediates in pyrolysis and thermal combustion processes. The species are also

important in soot formation and low-pressure vapor deposition processes. 1

The pyrolysis of light hydrocarbons such as methane, ethylene, acetylene or

benzene is an important technical process. Chemical vapor deposition (CVD) or chemical

vapor infiltration (CVI) are commonly used techniques to deposit materials with a large

variety of functional and structural properties. 2-5 Depending on temperature, pressure and

other conditions, the reaction may either lead to soot or, if the reaction co-ordinates are

properly tuned, to products like improved carbon fibres, and other useful materials. 6

However, despite the technical and industrial importance of CVD and CVI

processes, comparatively little is known about the underlying chemical reactions that

promote the formation of one material or the other.' The reaction system consists of

virtually thousands of different elementary steps, all of which can be important at the

high temperatures commonly employed in this field of material science.' Detailed

information about the possible reaction mechanisms is, however, mandatory for a better

understanding and a systematic improvement of existing synthetic strategies. Ultimately,

1
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this knowledge may lead to the accelerated development of materials with desired

properties. Furthermore, important information about the reverse process, i.e. carbon

gasification reactions, may also be obtained.

It has been suggested that PACHs are precursors to soot in hydrocarbon flames. 7-9

and one area of uncertainty in these polycyclic aromatic systems concerns the

fundamental thermodynamic properties and the kinetic behavior of PCAH formation and

destruction, specifically as the temperature of varied pyrolysis, synthesis and combustion

processes covers a wide range. An example of the limited level of understanding is that

the influence of temperature, size, degree of ring condensation, etc. on individual PCAH

stability is not quantitatively known or modeled. This is primarily due to the lack of

requisite thermochemical properties of PCAHs. 10  It is, however, the molecules and

intermediate stable species, which are an important part of the formation and synthesis

processes, (precursors) that are a target of this study. We need to know the

thermochemical properties of these species before we can model the formation and

destruction of the polycyclics accurately.

Thermochemical property data on these precursor molecules are needed for

evaluation of reaction paths and kinetic processes, including stability of intermediate

adducts and prediction of final products. Thermochemical properties are also needed for

use in kinetic modeling and in equilibrium codes. There is very little or no data on

thermochemical properties of these species in the literature. 22 '33 '34 '35 '36 This thesis is an

attempt to estimate fundamental thermochemical property data on a series of molecules

which contain important chemical moieties — sp3 carbon structures (--CH2--) bonded to
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two highly unsaturated groups and sp2 carbons (>C=CH2) bonded to two unsaturated

groups. The unsaturated groups bonding to the Methane and Ethylene are Ethylene,

Acetylene, Phenyl and Carbonyl.

During the past decade molecular electronic structure theory has evolved to the

stage where it can provide critical information on structures, energetics and other

properties that are difficult to obtain experimentally or are not accessible at al1. 1

Especially with the progress in density functional theory (DFT) along with development

of efficient algorithms and computer programs, molecular modeling has reached a

reliability that allows for a description of molecular processes often with chemical

accuracy. In this work the method is to use ab initio and moderate level Density

Functional Computational chemistry on target molecules where enthalpy values can be

determined to within a 1 to 2 kcal/mole. 16 Once the enthalpy of the target molecule is

known, the target group is determined from known molecular values and the remaining

known groups. Group values for use in group additivity have been calculated in order to

construct (estimate) the thermochemical properties of larger molecule systems, where

computational chemistry is not sufficiently accurate.



CHAPTER 2

STRUCTURES, INTRAMOLECULAR ROTATION BARRIERS, AND
THERMODYNAMIC PROPERTIES OF METHANE AND ETHYLENE

CARBONS BONDING TO TWO UNSATURATED GROUPS:
ETHYLENE, ACETYLENE, PHENYL AND CARBONYL

2.1 Overview

Unsaturated Hydrocarbons and Oxygenated Hydrocarbons are important intermediates in

pyrolysis, in combustion, in commercial thermal processes including soot formation as

well as in low-pressure vapor deposition processes. Thermochemical property data on

these species are important to understanding their stability, reaction paths and kinetics.

Enthalpy, OHf °298; entropy, S °298; and Heat Capacities, Cp(T) (300 5 T/K S 1500); are

determined for Methane, bi-phenyl (CCB2H2); Methane, phenyl-vinyl (CCBCDH2);

Toluene, 1-formyl (CCBCOH2), Propyne, 3-phenyl (CCBCTH2); 1,4-pentadiene

(CCD2H2); Propene, 3-formyl (CCDCOH2); Methane, di-formyl (CCO2H2); Propyne,

3-formyl (CCOCTH2); Methane, di-ethynl (CCT2H2); Ethene, bi-phenyl (CDCB2); 1,4

Butadiene, 3-phenyl (CDCBCD); Ethene, 1-ethyn1-1-phenyl (CDCBCT); 1,4 Butadiene,

3-vinyl (CDCD2); 1,4 Butadiene, 2-ethynl (CDCDCT) and Ethene, 1,1-di-ethynl

(CDCT2) using density functional calculation methods — moderate level computational

chemistry.

Molecular structures and vibration frequencies are determined at the B3LYP/6-

31 G(d) density functional calculation level. Vibration frequencies are scaled for zero

point energies and for thermal corrections. Enthalpies of formation (ΔHf°2 98) are

determined using the ΔH°rxn,298 with known enthalpies of other reactants and products in

isodesmic reactions. Standard entropy (S°298) and heat capacity (C p(T),300 T/K 1500)

4
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from vibration, translation, and external rotational contributions are calculated using the

rigid-rotor-harmonic-oscillator approximation based on the vibration frequencies and

structures obtained from the density functional studies. Potential energy as a function of

internal rotation barrier is determined using relaxed and non relaxed calculations using

the B3LYP functional. Evaluation of data from the reactions results in ΔHf°298 values for

CCB2H2 of 42.41 kcal/mol, CCBCDH2 of 34.7 kcal/mol, CCBCOH2 of —13.35

kcal/mol, CCBCTH2 of 74.7 kcal/mol, CCD2H2 of 27.08 kcal/mol, CCDCOH2 of

—20.68 kcal/mol, CCO2H2 of — 64.88 kcal/mol, CCOCTH2 of 19.72 kcal/mol, CCT2H2

of 112.43 kcal/mol, CDCB2 of 60.86 kcal/mol, CDCBCD of 53.41 kcal/mol, CDCBCT

of 94.96 kcal/mol, CDCD2 of 48.68 kcal/mol, CDCDCT of 85.45 kcal/mol and CDCT2

of 131.68 kcal/mol.

Groups for use in Benson type additivity estimation schemes are of value because

they can allow accurate estimation of much larger molecules, where ab initio or density

functional computational chemistry can not be used. Enthalpy, Entropy and Cp(T)

properties are determined for two series of target groups in this study. The first series

comprises unsaturated moieties bonded to methylene (—CH2--) C/CB2/H2, C/CB/CD/H2,

C/CB/CO/H2, C/CB/CT/H2, C/CD2/H2, C/CD/CO/H2, C/CO2/H2, C/CO/CT/H2,

C/CT2/H2. The second series of groups developed in this work are for unsaturated

moieties bonded to the sp2 hybridized carbon (ethylene, >C=CH2): CD/CB2,

CD/CB/CD, CD/CB/CT, CD/CD2, CD/CD/CT, CD/CT2 groups. Calculations result in

Group Values for C/CB2/H2 of —1.61 kcal/mol, C/CB/CD/H2 of —2.16 kcal/mol,

C/CB/CO/H2 of —5.96 kcal/mol, C/CB/CT/H2 of —1.81 kcal/mol, C/CD2/H2 of —2.62

kcal/mol, C/CD/CO/H2 of-6.13 kcal/mol, C/CO2/H2 of —6.08 kcal/mol, C/CO/CT/H2 of
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—5.38 kcal/mol, C/CT2/H2 of —3.43 kcal/mol, CD/CB2 of 10 kcal/mol, CD/CB/CD of

11.81 kcal/mol, CD/CB/CT of 11.3 kcal/mol, CD/CD2 of 12.19, CD/CD/CT of 11.05

kcal/mol, CD/CT2 of 15.22 kcal/mol. Group values determined in this work show

reasonable agreement with literature values; but only a limited number of literature

values are available for comparison. Reasonable agreement between the calculated and

previously reported values suggests that the use of isodesmic reaction analysis results in

effective cancellation of errors and thus accurate enthalpy values.

2.2 Background

The molecules studied in this work are specifically selected because of their relevance to

formation and destruction processes in pyrolysis, vapor deposition, soot and carbon black

formation and in combustion. Unsaturated hydrocarbons and qxygenated hydrocarbons

are important intermediates in pyrolysis and combustion thermal processes including soot

formation as well as in low-pressure vapor deposition processes. Thermochemical

property data on these species are important to understanding their stability, reaction

paths. and kinetics. Knowledge of the thermodynamic parameters for these species is

central to understanding and predicting reaction pathways, rate constants and equilibrium

constants. There is little or no experimental studies on the thermodynamic properties of

these species, probably due (at least in part) to the difficulty in synthesis of pure

compounds.

In this work, enthalpy, ΔHf º298, entropy, S°298 and heat capacities Cp(T) are

determined for the target species using density functional calculation methods.

Enthalpies of formation are evaluated at B3LYP/6-31G(d) calculation level, using
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working reactions for a high level of accuracy in the enthalpy values. The working

reactions used are isodesmic, that is they have bond balance on both sides of the reaction

for effective cancellation of errors.

Enthalpies of formation for the target species are estimated using total energies

from the B3LYP calculations and isodesmic reactions. The B3LYP Density functional

and ab initio calculations with ZPVE and thermal correction are performed for all four

compounds in each reaction, and enthalpy of reaction ΔH°r xn,298 is calculated. Since

enthalpy of formation of three compounds, have been experimentally determined or

theoretical calculated, the unknown enthalpy of formation of target compound is

obtained.

As an example, the following formula illustrates the calculation of

ΔHf°298(CCBCDH2) for a given level of calculation:

The enthalpies of formation (ΔHf°298) and their respective uncertainties for

standard species used in the working reactions.

Contributions to Entropy and Heat Capacity from Internal Rotation also need to

be evaluated. They are estimated using calculated barriers to internal rotation about the

CH2—Cd, CH2—Ct, CH2—Cb and CH2—C=0 single bonds, and foldness of the

intramolecular rotation using the method of Pitzer and Gwinn.1 7 Rotation barriers are

determined with relaxed (fully optimized) and non-relaxed (scan mode in Gaussian where

other rotors structure properties are held rigid) and the use of B3LYP density functional

calculations.
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2.3 Computational Methods

2.3.1 Selection of Method

All ab initio calculations are performed using the Gaussian 94 and Gaussian 98 program

suites. 18 The structural parameters are fully optimized at the B3LYP/6-31g(d) level of

theory. Harmonic vibration frequencies and zero-point vibrational energies (ZPVE) are

computed at the same level. The optimized geometrical parameters are used to obtain

total electronic energies in the B3LYP/6-31G(d) single point calculations. 19-21

B3LYP/6-31G(d) is chosen because it is commonly used and is reported to yield

accurate geometries and reasonable energies. 22 '23 Durant 21,23 has compared density

functional calculations B3LYP and hybrid (BH and H) with MP2 and Hartree-Fock

methods for geometry and vibration frequencies. He reports that these density functional

methods provide excellent geometries and vibration frequencies, relative to MP2 at a

reduced computational expense. Petersson et al. 24 currently recommends use of B3LYP

for geometry and frequencies in several of his CBS calculation methods. Comparison of

calculation results from B3LYP/6-31G(d) with use of working reactions for ΔHfº 298,

against data from higher calculation levels will provide some calibration of the B3LYP/6-

31G(d) values for larger molecules where this may be one of the few available

calculation methods (with similar working reactions). The geometry is obtained at the

B3LYP/6-31G(d) level of theory, while the ZPE used is the scaled (by 0.9806) HF/6-31G

value.
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2.3.2 Enthalpies of Formation (All f 0298)

Enthalpies of formation (ΔHf °298) for the species are estimated using total energies

obtained by the B3LYP/6-31G(d) and isodesmic reactions. Total energies are corrected

by zero-point vibration energies (ZPVE) which are scaled by 0.9806 as recommended by

Scott et al. 25 Thermal correction, 0 K to 298.15 K, is calculated to estimate Δ Hfº 298 at

298.15 K.26

The method of isodesmic reactions relies on the similarity of the bonding

environments in the reactants and products that leads to partial cancellation of systematic

errors in the density functional and ab initio molecular orbital calculations. 26 Reactions

selected to determine ΔHfº298 of each species are represented in Table 2.32. The basic

requirement of an isodesmic reaction is that the number of each type of bond is conserved

in the reaction; this leads to an accurate cancellation of error on both sides of a reaction

and results in an accurate calculated enthalpy of reaction. This enthalpy of reaction is

then used, in conjunction with the enthalpy of formation of the three standard molecules

in the working reaction to find the enthalpy of formation on the target molecule. Density

functional and ab initio calculations with ZPVE and thermal correction are performed for

all four compounds in each reaction, and enthalpy of reaction ΔHºrxn , 298 is calculated.

Since accurate enthalpies of formation of the three standard compounds, have been

experimentally determined or theoretically calculated, along with the enthalpy of

reaction, the unknown enthalpy of the target compound is obtained. The Density

functional and ab initio calculations are performed on the most stable conformer of each

compound, and the ΔHf°298 of this conformer is calculated using isodesmic reactions.
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Corrections have not been made to the Δ Hfº 298 for each species to include other

conformers beside the lowest energy conformer.

2.3.3 Entropy (S °298) and Heat Capacities (C p(T)'s, 300 T/K S 1500)) and Hindered

Rotation Contribution to Thermodynamic Parameters

Entropies S °298 and heat capacities (C p(T)'s, 300 T/K 1500) are calculated using the

rigid-rotor-harmonic-oscillator approximation based on frequencies and moments of

inertia of the optimized B3LYP/6-31G(d) structures. Calculated Entropies are for the

lowest Energy, most stable conformer and corrections have not been made for higher

energy conformers. Contributions to entropy and heat capacity from internal rotation are

estimated using the B3LYP determined barriers and foldness of the intramolecular

rotation and the method of Pitzer and Gwinn1 7 . Rotation barriers are determined with the

B3LYP calculations. Potential energy as a function of internal rotation barrier is

determined using relaxed and non relaxed calculations at using the B3LYP functional.

Potential barriers for internal rotation are calculated at the B3LYP/6-31G(d) level,

relaxed scan (optimized) for CCBCTH2 and CCD2H2; B3LYP/6-31G(d) with rigid scan

for CDCBCT; B3LYP/6-31G(d,p) relaxed scan (optimized) for CCO2H2, CDCD2;

B3LYP/6-31G(d,p) with rigid scan for CCBCOH2, CCOCTH2; B3LYP/6-31+G(d,p)

relaxed scan (optimized) for CCDCOH2; B3LYP/3-21G relaxed scan (optimized) for
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2.4 Results and Discussion

2.4.1 Geometries and Vibrational Frequencies

The fully optimized geometries at the B3LYP/6-31g(d) density functional

calculation level for the species are presented in Figures 2.1 to 2.15. Numerical values of

the optimized structural parameters including carbon-hydrogen, carbon-oxygen, oxygen-

oxygen, oxygen-hydrogen bond distances along with applicable bond angles and dihedral

(twist) angles are listed in Tables 2.1 to 2.15.



Table 2.1 Structure Parameters a 'b for CCB2H2

12

aDistances in Angstroms and Angles in Degrees.
bGeometry Parameters optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.1 B3LYP/6-31G(d) optimized geometry of CCB2H2. See Table 2.1 for
structure parameters.
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Table 2.2 Structure Parameters a'b for CCBCDH2

14

'Distances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.2 B3LYP/6-31G(d) Optimized Geometry ofCCBCDH2. See Table 2.2 for 
Structure Parameters. 
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Table 2.3 Structure Parameters a'b for CCBCOH2

16

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.3 B3LYP/6-31G(d) optimized geometry ofCCBCOH2. See Table 2.3 for 
structure parameters. 
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Table 2.4 Structure Parameters a'b for CCBCTH2

18

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.4 B3L YP/6-31 G( d) optimized geometry of CCBCTH2. See Table 2.4 for 
structure parameters. 
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Table 2.5 Structure Parameters a 'b for CCD2H2

20

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.5 B3L YP/6-31 G( d) optimized geometry of CCD2H2. See Table 2.5 for 
structure parameters. 
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Table 2.6 Structure Parameters a 'b for CCDCOH2

22

'Distances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.6 B3LYP/6-31G(d) optimized geometry ofCCDCOH2. See Table 2.6 for 
structure parameters. 
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Table 2.7 Structure Parameters a'b for CCO2H2

24

'Distances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.7 B3LYP/6-31G(d) optimized geometry ofCC02H2. See Table 2.7 for 
structure parameters. 
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Table 2.8 Structure Parameters a'b for CCOCTH2
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB 	 NC
1 C
2 C 1.53 1
3 0 1.21 123.07 2 1
4 H 1.11 121.89 -178.63 2 3 1
5 C 1.46 112.88 -32.45 1 2 4
6 H 1.10 106.70 121.01 1 2 5
7 H 1.10 108.07 -124.72 1 2 5
8 C 1.21 151.73 176.11 5 6 1
9 H 1.07 161.74 -178.04 8 6 5

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.8 B3LYP/6-31G(d) optimized geometry ofCCOCTH2. See Table 2.8 for 
structure parameters. 
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Table 2.9 Structure Parameters 24) for CCT2H2
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB 	 NC
1 C
2 C 1.47 1.00
3 C 1.47 113.65 1.00 2
4 H 1.10 109.33 122.46 1 2 3
5 H 1.10 109.33 -122.46 1 2 3
6 C 1.21 150.26 179.32 2 4 1
7 C 1.21 150.24 179.38 3 5 1
8 H 1.07 179.74 123.03 6 2 4
9 H 1.07 179.75 123.60 7 3 5

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.9 B3LYP/6-31G(d) optimized geometry ofCCT2H2. See Table 2.9 for 
structure parameters. 
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Table 2.10 Structure Parameters a'b for CDCB2
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB NC
1 C
2 C 1.35 1
3 H 1.09 121.58 1 2
4 H 1.09 121.59 -180.00 1 2 3
5 C 1.49 120.63 -3.41 2 1 3
6 C 1.41 120.95 139.80 5 2 1
7 C 1.39 120.88 -177.55 6 5 2
8 C 1.40 120.28 -0.57 7 6 5
9 C 1.40 119.49 -0.12 8 7 6
10 C 1.41 120.87 -178.58 5 2 6
11 H 1.09 119.12 -3.55 10 5 2
12 H 1.09 120.12 -179.08 9 8 7
13 H 1.09 120.25 -179.62 8 7 6
14 H 1.09 119.63 179.34 7 6 5
15 H 1.09 119.36 1.66 6 5 2
16 C 1.49 120.64 176.59 2 1 3
17 C 1.41 120.95 139.82 16 2 1
18 C 1.39 120.88 -177.54 17 16 2
19 C 1.40 120.28 -0.57 18 17 16
20 C 1.40 119.49 -0.11 19 18 17
21 C 1.41 120.87 -178.58 16 2 17
22 H 1.09 119.12 -3.56 21 16 2
23 H 1.09 120.12 -179.08 20 19 18
24 H 1.09 120.25 -179.62 19 18 17
25 H 1.09 119.63 179.34 18 17 16
26 H 1.09 119.36 1.66 17 16 2

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.10 B3LYP/6-31G(d) optimized geometry ofCDCB2. See Table 2.10 for 
structure parameters. 
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Table 2.11 Structure Parameters a' 13 for CDCBCD
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB 	 NC
1 C
2 C 1.35 1
3 H 1.09 121.86 2 1
4 H 1.09 121.21 179.71 2 1 3
5 C 1.49 121.86 4.44 1 2 3
6 C 1.41 121.46 32.87 5 1 2
7 C 1.39 120.94 -179.02 6 5 1
8 C 1.40 120.26 -0.45 7 6 5
9 C 1.40 119.49 -0.14 8 7 6
10 C 1.39 120.20 0.16 9 8 7
11 H 1.09 119.29 0.31 10 5 1
12 H 1.09 120.12 180.00 9 8 7
13 H 1.09 120.24 -179.68 8 7 6
14 H 1.09 119.66 -179.66 7 6 5
15 H 1.09 119.29 2.49 6 5 1
16 C 1.48 121.08 -176.08 1 2 3
17 C 1.34 125.26 38.74 16 1 2
18 H 1.09 121.40 -178.01 17 16 1
19 H 1.09 121.73 2.50 17 16 1
20 H 1.09 115.82 -142.17 16 1 2

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.11 B3LYP/6-31G(d) optimized geometry of CDC BCD. See Table 2.11 for 
structure parameters. 
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Table 2.12 Structure Parameters a,b for CDCBCT
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB NC
1 C
2 C 1.35 1
3 C 1.44 119.19 1 2
4 C 1.49 123.25 -179.24 1 2 3
5 C 1.40 120.51 154.07 4 1 2

6 C 1.39 120.80 -178.48 5 4 1
7 C 1.40 120.29 -0.56 6 5 4
8 C 1.40 119.46 -0.30 7 6 5
9 C 1.41 121.13 -179.79 4 1 5
10 C 1.21 179.28 174.33 3 1 2
11 H 1.08 121.03 -1.67 2 1 3
12 H 1.08 121.64 177.30 2 1 3
13 H 1.09 119.21 1.13 5 4 1
14 H 1.09 119.58 179.56 6 5 4
15 H 1.09 120.31 -179.69 7 6 5
16 H 1.09 120.11 -178.83 8 7 6
17 H 1.09 119.71 -3.10 9 4 1
18 H 1.07 179.14 25.10 10 3 2

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.12 B3LYP/6-31G(d) optimized geometry ofCDCBCT. See Table 2.12 for 
structure parameters. 
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Table 2.13 Structure Parameters a,b for CDCD2
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

NA NB NC
1 C
2 C 1.35 1.00
3 H 1.09 121.35 2 1
4 H 1.09 121.67 179.42461 2 1 3
5 C 1.48 121.36 178.96216 1 2 3
6 H 1.09 115.95 139.42916 5 1 2
7 C 1.34 125.15 -40.8883 5 1 2
8 H 1.09 121.80 -2.4857 7 5 1
9 H 1.09 121.39 178.12109 7 5 1
10 C 1.47 119.87 -2.40 1 2 3
11 H 1.09 115.05 -5.99 10 1 2
12 C 1.34 126.15 179.59 10 1 11
13 H 1.09 121.12 179.89 12 10 1
14 H 1.09 122.41 -0.85 12 10 1

'Distances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
'Connecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.13 B3LYP/6-31G(d) optimized geometry ofCDCD2. See Table 2.13 for 
structure parameters. 
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Table 2.14 Structure Parameters a,b for CDCDCT
Atom

Number
(I)

Chemical
Symbol

Bond Length
NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB 	 NC
1 C
2 C 1.35 1.00
3 C 1.47 121.12 2 1
4 C 1.34 125.48 179.99117 3 2 1
5 C 1.43 120.34 -179.98452 2 1 3
6 C 1.21 152.09 179.98978 5 1 2
7 H 1.09 120.83 -179.98646 1 2 5
8 H 1.08 121.73 179.98957 1 2 3
9 H 1.09 121.61 0.00438 4 3 2
10 H 1.09 121.17 -179.99 4 3 2
11 H 1.07 160.39 -179.97 6 1 2
12 H 1.09 119.86 179.99 3 4 2

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.14 B3LYP/6-31G(d) optimized geometry of CD CD CT. See Table 2.14 for 
structure parameters. 
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Table 2.15 Structure Parameters a,b for CDCT2
Atom

Number
(I)

Chemical Bond Length
Symbol 	 NA : I

Bond Angle
NB : NA : I

Dihedral Angle
NC : NB : NA : I

Connecting
Atoms

NA NB NC
1 C
2 C 1.35 1.00
3 H 1.08 120.82 1 2
4 H 1.08 120.82 180 1 2 3
5 C 1.44 121.63 180 2 1 3
6 C 1.21 152.95 0 5 1 4
7 H 1.07 161.58 0 6 1 4
8 C 1.44 121.63 0 2 1 3
9 C 1.21 152.95 0 8 1 3
10 H 1.07 161.58 0.00 9 1 3

aDistances in Angstroms and Angles in Degrees.
bStructure Parameters Optimized at the B3LYP/6-31g(d) level of theory.
cConnecting Atoms indicates the Atoms used to indicate the relative position of the Atom
shown under Atom Number.



Figure 2.15 B3LYP/6-31G(d) optimized geometry of CDCT2. See Table 2.15 for 
structure parameters. 
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Harmonic vibrational frequencies are calculated for the species at the B3LYP/6-

31 G(d) level of theory on the basis of optimized geometries at the same level of theory.

The unscaled vibrational frequencies and moments of inertia for the species are given in

Tables 2.16 to 2.30 and 2.31 respectively. In Tables 2.16 to 2.30, the two lowest

frequencies (corresponding to torsional motions) are omitted in calculation of entropies

S°298 and heat capacities C p(T), but their contributions have been replaced with values

from analysis of the internal rotations (see Table 2.64).



Table 2.16 Vibration Frequencies a,b (cm'')
for CCB2H2
24.14 26.21 66.05

195.13 226.91 290.39

344.53 416.98 417.74
462.71 483.01 565.19
623.73 635.21 637.64
712.22 716.53 752.49
754.81 833.20 837.34
861.00 861.67 908.39

931.06 954.55 966.44
967.13 994.35 994.42
1018.50 1018.79 1058.60
1059.80 1107.23 1117.17

1192.05 1192.39 1212.42
1214.15 1214.98 1221.53
1231.84 1321.09 1362.34
1364.94 1373.13 1382.76
1499.47 1500.16 1513.33
1546.00 1547.40 1642.21
1646.24 1662.32 1667.37
3033.40 3066.99 3172.51
3173.06 3178.41 3179.81
3188.27 3188.94 3196.35
3196.88 3207.74 3208.28

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).
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Table 2.17 Vibration Frequencies a,b (cm-1)
for CCBCDH2
26.35 85.23 147.21

274.93 330.53 399.91

417.74 498.08 538.51

635.68 668.54 715.78

758.05 834.65 862.13

913.76 934.10 940.29

951.70 967.45 994.56

1018.47 1037.26 1059.21

1109.30 1136.97 1192.06

1214.07 1221.26 1248.01

1322.68 1339.14 1363.46

1375.61 1472.27 1498.87

1507.52 1546.22 1644.21

1664.49 1728.50 3026.45

3061.24 3148.98 3158.15

3172.82 3179.64 3189.36

3197.26 3208.43 3235.23

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.18 Vibration Frequencies a,b
 (cm-1)

for CCBCOH2
29.31 52.79 142.85

292.34 322.71 416.76

449.11 519.61 577.49

635.52 715.48 765.82

780.37 858.43 862.43

923.17 968.66 998.34

1013.20 1020.87 1058.00

1063.57 1117.89 1193.62

1205.79 1215.67 1225.23

1308.50 1358.55 1370.54

1433.48 1492.17 1502.14

1545.54 1644.12 1663.20

1831.82 2910.79 3046.27

3115.73 3177.24 3181.60

3191.27 3200.39 3211.34

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S °298 and Heat
Capacities Cp(T).
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Table 2.19 Vibration Frequencies a,b (cm-1)
for CCBCTH2

15.35 130.73 196.06

312.16 332.37 416.28
424.17 472.22 594.78
610.01 632.58 635.03
709.80 744.83 806.24
862.80 905.72 967.65

974.54 978.53 998.87

1019.41 1059.96 1113.47

1192.61 1209.11 1215.94

1251.09 1313.92 1366.45

1379.26 1493.27 1501.83
1546.85 1646.58 1665.89
2242.86 3018.85 3048.09
3170.00 3183.14 3193.68
3205.80 3213.46 3495.13

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.20 Vibration Frequencies a,b (011-1)
for CCD2H2
90.66 104.62 299.65

372.81 454.35 614.77
679.80 906.15 918.64

941.45 942.54 972.51
1037.13 1039.32 1094.49

1179.66 1275.86 1319.53
1332.80 1346.12 1470.63
1472.67 1502.55 1722.09
1736.19 3022.52 3061.07

3148.48 3149.01 3158.03
3158.63 3234.86 3234.98

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).
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Table 2.21 Vibration Frequencies a,b  (cm-1)

for CCDCOH2
62.13 86.84 312.57

394.02 502.64 649.44

814.73 946.04 952.01

973.20 1037.65 1066.15

1150.02 1255.98 1301.06
1339.29 1430.64 1469.31

1489.36 1724.52 1836.13

2909.63 3039.40 3107.15

3157.14 3164.50 3240.90

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.22 Vibration Frequencies a,b (C111-1 )
for CCO2H2
26.24 95.55 232.14

462.30 640.45 699.28
860.84 922.33 1067.75

1098.45 1226.14 1324.61

1431.87 1439.06 1454.85
1828.50 1841.35 2921.36
2974.88 3014.35 3094.05

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.23 Vibration Frequencies a,b (cm-1 )
for CCOCTH2
53.93 174.13 330.55
462.86 507.82 609.47
635.63 732.09 984.80
1036.73 1051.32 1230.64
1307.95 1427.67 1468.56

1841.14 2245.76 2942.24

3016.11 3094.32 3494.33

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities C p(T).
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Table 2.24 Vibration Frequencies a ,b (C111-1

for CCT2H2
138.17 313.88 329.84

340.86 558.42 604.55

605.65 628.32 631.12

908.51 953.55 1003.76

1254.00 1359.96 1486.12

2247.74 2253.56 3019.08

3044.57 3494.88 3495.45

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.25 Vibration Frequencies a,b (C111-1)

for CDCB2
45.63 63.41 81.59

142.93 220.06 236.89

296.38 345.12 419.61

423.52 449.23 461.94

579.65 603.39 629.44

634.87 655.77 705.71

714.53 726.69 738.99

791.94 801.93 850.54

862.98 865.19 919.23

936.87 937.88 972.48

974.00 996.75 997.22

1017.37 1017.42 1056.25

1058.18 1097.63 1114.24

1120.26 1179.57 1192.91

1193.14 1215.60 1217.12

1319.56 1339.61 1357.18

1367.00 1367.93 1456.32

1490.76 1493.72 1542.02

1545.30 1631.84 1633.21

1659.51 1661.52 1681.65

3174.01 3180.86 3181.44

3188.96 3189.11 3200.04

3200.22 3206.80 3207.31

3212.29 3212.63 3254.77

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

47



Table 2.26 Vibration Frequencies a,b (cm')
for CDCBCD
62.74 106.08 132.51

227.97 295.03 350.75

383.03 420.22 470.95

527.04 628.41 638.42

693.56 717.92 760.05

776.21 796.81 863.63

911.99 926.07 936.58
944.97 972.37 997.19

1017.46 1037.00 1057.13

1100.12 1111.40 1129.84

1193.16 1217.01 1298.85

1333.74 1349.83 1368.22

1455.17 1474.17 1494.72
1544.71 1633.44 1661.90
1678.73 1711.09 3151.69
3167.52 3175.41 3180.39

3187.79 3198.26 3204.42
3211.34 3247.01 3256.75

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

Table 2.27 Vibration Frequencies a,b (C111-1)
for CDCBCT
45.41 122.84 161.50

257.87 301.59 401.85

417.42 422.32 483.73

574.99 612.59 630.75

634.04 651.56 706.19
733.78 743.20 793.59

860.03 918.96 921.55
935.91 970.91 997.15
1018.11 1057.77 1112.97

1134.71 1193.90 1219.09

1308.43 1349.45 1370.18

1450.96 1495.01 1544.94

1634.06 1661.24 1669.95
2220.71 3182.84 3186.62

3191.83 3202.94 3210.10
3216.05 3272.81 3494.03

allonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).
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Table 2.28 Vibration Frequencies a,b (cm"')
for CDCD2

107.94 153.72 248.81

311.65 379.38 501.84

528.58 636.26 767.16

785.42 798.50 922.72

932.45 945.36 954.86

1034.44 1042.42 1069.06

1099.39 1303.98 1341.85

1349.38 1440.40 1476.93

1488.10 1666.64 1708.66

1719.57 3155.14 3156.34

3166.82 3170.04 3174.85

3245.33 3251.47 3254.84

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S °298 and Heat
Capacities Cp(T).

Table 2.29 Vibration Frequencies a ,b (cm-1 )
for CDCDCT

151.47 161.56 276.12

307.47 468.20 506.51

584.43 613.04 631.38

724.39 759.63 777.27

918.76 945.62 954.20

1027.97 1068.43 1330.65

1337.45 1435.81 1476.03

1655.68 1712.63 2226.05

3165.26 3177.98 3179.00

3259.40 3269.04 3494.90

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).
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Table 2.30 Vibration Frequencies a,b (cm'')
for CDCT2

137.35 235.02 249.02

359.63 488.32 584.79

584.94 590.82 630.43
632.71 685.93 737.33
762.09 927.50 961.66
1288.09 1439.56 1651.56

2226.68 2233.17 3188.28
3283.52 3494.41 3495.04

aNonscaled. Frequencies are calculated at the B3LYP/6-31G(d) level of theory.
bTorsion frequencies are not included in the calculation of Entropies S°298 and Heat
Capacities Cp(T).

2.4.2 Enthalpies of Formation (ΔHf°298)

Enthalpies of formation (ΔHfº298) are estimated using total energies and calculated

ΔHºrxn,298 for the listed reactions(Table 2.32). Calculated ΔH°rxn,298 for each reaction and

evaluated literature thermodynamic properties for these reference reactants and products

are utilized to estimate ΔHf°298 of the target species. Enthalpies of reaction (ΔHºrxn,298) (ΔHºrxn,298)

are estimated using total energies obtained by the density functional calculations. Zero-

point energies (ZPVE,s) and thermal correction to 298.15 K are taken into account. The

total energies at 298 K from B3LYP/6-31G(d) calculation level, ZPVE,s, and thermal

corrections to 298.15 K are listed in Table 2.31.
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Table 2.31 Total Energies at 298 K
Formula 	 Species 	 Molecular 	 ZPVEb 	 Therm. 	 Electronic 	 B3LYP

Corr.c 	Energyd	 /6-31G(d)aWeight 	
C13H12 CCB2H2 168 0.210357 0.221618 -502.615372 -502.187604
C9H10 CCBCDH2 118 0.162145 0.17121 -348.956969 -348.626857
C8H8O CCBCO 120 0.138079 0.146927 -384.879569 -384.597325
C9H8 CCBCT 116 0.137694 0.145687 -347.700884 -347.420257
C7H12 CCD2H2 68 0.113897 0.120847 -195.297772 -195.065306
C4H6O CCDCO 70 0.089788 0.096552 -231.219843 -231.035299
C3H4O2 CCO2H2 72 0.065284 0.071919 -267.139597 	 -267.0037
C5H4 CCT2H2 68 0.06532 0.071867 -192.782876 -192.646995
C4H4O CCTCO 64 0.065265 0.071863 -229.963583 -229.82776
C14H12 CDCB2 180 0.215327 0.227283 -540.702694 -540.264391
C10H10 CDCBCD 130 0.167325 0.177011 -387.045971 -386.704982
ClOH8 CDCBCT 128 0.142837 0.152408 -385.79032 -385.497932
C6H8 CDCD2 80 0.119126 0.126657 -233.387827 -233.144427
C6H6 CDCDCT 78 0.094763 0.102116 -232.135083 -231.940099
C6H4 CDCT2 76 0.070322 0.077552 -230.873763 -230.727295

a Total Energy. Calculation based on the geometries optimized at B3LYP/6-31G(d)
level of theory, ZPVE,s and thermal corrections to 298 K are included. Units in Hartree.

b ZPVE: scaled zero-point energies in hartrees. Two hindered rotational frequencies
are included in ZPVE which are scaled by 0.9806 (Scott 25 and Radom).
Therm.Corr.: Thermal corrections in hartrees.

d B3LYP/6-31G(d) Electronic Energy (without considering ZPVE or Thermal Correction)
Unit is Hartrees.

As an example, one reaction used to calculated ΔHfº298 CCBCDH2 is:

The reaction enthalpies and ΔHf°298 ' s of the species obtained from use of the

reaction schemes are tabulated in Tables 2.32. Enthalpies of formation and uncertainties

of reference species (data from literature) which are used to determine ΔHf°298 values of

species studied in this work are listed in Table 2.33.

Isodesmic reaction used for Enthalpy calculation of each species is shown in Table 2.32.



where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCD2H2).

is calculated in this work to be 27.08 kcal/mol which is in reasonable

agreement with the literature 41 reported value of 25.41 kcal/mol.

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHf°298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCB2H2).

ΔHfº298(CCB2H2 ) is calculated in this work to be 42.41 kcal/mol which is in reasonable

agreement with the literature" reported value of 39.39 kcal/mol.

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)
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where ΔHf°298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCDCT).
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ΔHf°298(CCDCT) is calculated in this work to be 67.62 kcal/mol. No ΔHf°298 value for this

species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)

where ΔHf°298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCBCDH2).

) is calculated in this work to be 34.71 kcal/mol. No ΔHf° 298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCT2H2).

ΔHfº298(CCT2H2) is calculated in this work to be 112.43 kcal/mol. No ΔHfº298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)
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where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCBCT).

ΔHfº298(CCBCT) is calculated in this work to be 74.06 kcal/mol. No ΔHfº298  value for this

species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCO2H2).

ΔHfº298(CCO2H2) is calculated in this work to be -64.88 kcal/mol. No ΔHfº298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)

where ΔHf298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCD2).

1 is calculated in this work to be 44.54 kcal/mol. No ΔHfº 298 value for this

species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15
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 of CDCDCT is calculated as:

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCDCT).

is calculated in this work to be 85.45 kcal/mol. No ΔHfº298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCBCT).

ΔHfº298(CDCBCT) is calculated in this work to be 94.96 kcal/mol. No ΔHfº298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCDCO).
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is calculated in this work to be -20.68 kcal/mol. No ΔHfº298  value for

this species were found in the literature. 11,12,13,14,15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCTCO).

ΔHfº298(CCTCO) is calculated in this work to be 19.72 kcal/mol. No ΔHfº298 value for this

species were found in the literature. 11 ' 12 ' 13 ' 14' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CCBCO).

ΔHfº298(CCBCO) is calculated in this work to be -13.35 kcal/mol. No  value for

this species were found in the literature. 11 ' 12' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)
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where  is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCBCD).

ΔHfº298(CDCBCD) is calculated in this work to be 52.34 kcal/mol. No ΔHfº 298 value for

this species were found in the literature. 11 ' 12 ' 13 '14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE's and thermal corrections to 298 K
are included)

where  is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCT2).

ΔHfº298(CDCT2) is calculated in this work to be 131.68 kcal/mol. No ΔHfº298 value for

this species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15

where E298 is the B3LYP/6-31G(d) Energy (ZPVE,s and thermal corrections to 298 K
are included)

where ΔHfº298 is the Enthalpy of formation of species, known for three species in the
reaction, and calculated for the fourth species (CDCB2).

ΔHfº298(CDCB2) is calculated in this work to be 60.86 kcal/mol. No  value for this

species were found in the literature. 11 ' 12 ' 13 ' 14 ' 15
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Table 2.32 Calculated Enthalpies at 298K

Reaction
ΔHrxnº298a ΔHfº298a

C5H8(CCD2H2) +	 C2H4 ---> C3H6 + C4H6 -8.74 27.08

C13H12(CCB2H2) +	 C2H4 ---> C7H8 + C8H8 -7.87 42.39

C5H6(CCDCT) +	 C2H4 ---> C3H4 + C4H6 -9.84 67.62

C9H10(CCBCDH2) +	 C2H4 ---> C7H8 + C4H6 -9.29 34.71

C5H4(CCT2H2) +	 C2H4 ---> C4H4 + C3H4 -10.15 112.43

C9H8(CCBCT) +	 C2H4 ---> C8H8 + C3H4 -7.18 74.06

C3H4O2(CCO2H2) +	 C2H4 ---> C2H40 + C3H4O -8.54 -64.88

C6H8(CDCD2) +	 C2H4 ---> C4146 + C4H6 -5.07 44.54

C6H6(CDCDCT) +	 C2H4 ---> C416 + C4H4 -1.48 85.45

C10H8(CDCBCT) +	 C2H4 ---> C8H8 + C4H4 -1.88 94.96

C4H6O(CCDCO) +	 C2H4 ---> C3H6 + C3H4O -7.06 -20.68

C4H4O(CCTCO) +	 C2H4 ---> C3H4 + C3H4O -8.03 19.72

C8H8O(CCBCO) +	 C2H4 ---> C7H8 + C3H4O -7.32 -13.35

ClOH10(CDCBCD) +	 C2H4 ---> C4H6 + C8H8 -3.77 52.34

C6H4(CDCT2) +	 C2H4 ---> C4H4 + C4H4 -3.20 131.68

C14H12(CDCB2) +	 C2H4 ---> C8H8 + C8H8 -3.18 60.86

a Reaction enthalpies obtained at B3LYP/6-31G(d). Reaction enthalpies include thermal
correction and zero-point energy. Units in kcal/mol. Reactions are isodesmic. No reaction
series conserves groups. Uncertainties of reference compound enthalpy not included.
Species Enthalpy Values are for the lowest energy conformer and corrections have not
been made for higher energy conformers.

Table 2.33 Total Energies at 298 K and ΔHf°298 for Reference Species
in the Reaction Schemes

Name Formula B3LYP

/6-31 G(d) a

ZPVEb Therm.
Come

Allf°298 d

Ethylene C2144 -78.482054 0.05122 0.055207 12.54 e

Propylene C3H6 -117.744 0.080067 0.085085 4.87f

Acetaldehyde C2H4O -153.71475 0.055824 0.060661 -40.8g ± 0.35

Acrolein C3H4O -191.7846 0.061652 0.066951 -20.08b

Vinylacetylene C4H4 -154.60723 0.061176 0.066619 70.51'

Propyne C3H4 -116.538 0.055721 0.060661 44.31 i ± 0.21

Styrene C8H8 -309.37576 0.133732 0.141446 35.11 k ± 0.24

Toluene C7H8 -271.30644 0.128231 0.134519 11.95 1 ± 0.15

1,3-Butadiene C4H6 -155.81728 0.085492 0.091081 26.00m ± 0.19

a Total Energy. Calculation based on the geometries optimized at B3LYP/6-31G(d)
level of theory, ZPVE's and thermal corrections to 298 K are included. Units in Hartree.

b ZPVE: scaled zero-point
energies in hartrees. Two hindered rotational frequencies are included in ZPVE which are scaled

by 0.9806 (Scott and Radom).

Therm.Corr.: Thermal corrections in hartrees.
d	 •	 •Units in kcal/mol.
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The uncertainties are given in the reference.

e Reference 34 "Reference 35 g Reference 36 h Reference 11

Reference 37 j Reference 38 kReference 39 'Reference 39

'Reference 40

The accuracy of the enthalpies of formation obtained theoretically is controlled by

several factors: the level of sophistication (method + basis set) applied to calculate the

electronic energy, the reliability of the enthalpies of formation of the reference

compounds, the uncertainty in the thermal corrections, and the choice of the working

chemical reaction used in the cancellation of calculation errors. The ZPVE and thermal

correction in data of Table 2.31 have small contributions to the error on relative base.

Scott25 and Radom report errors after scaling (0.9806) for B3LYP/6-31G(d,p) of 0.1

kcal/mol for ZPVE in their study on 39 molecules incorporating 1066 known vibrations.

They also report errors of 0.01 kcal/mol for thermal correction from 0 to 298 K in

density function theory. 25 These reported error values are likely smaller than in this

study; but in this work it has been assumed that the errors are non-random and that they

are cancelled in the isodesmic reactions to a significant extent.

2.4.3 Rotational Barriers

Potential barriers for internal rotations of C-C bonds in the species are calculated at the

B3LYP/3-21G, B3LYP/6-31G(d), B3LYP/6-31G(d,p) and in some cases at the

B3LYP/6-31+g(d,p) levels of theory (please refer to the Figures 2.16 to 2.37 for details).

Potential energy as function of dihedral angle is determined by scanning the torsion

angles from 0 ° to 360° at 15° intervals and allowing the remaining molecular structural
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parameters to be optimized — relaxed scan. Some molecules have the internal rotation

potentials calculated using a rigid scan method as noted in the Figures 2.17 to 2.37, on a

case-by-case basis.

Rotation data for the C—C bonds in the species are shown in Table 2.34, which

indicates the rotational barriers and the foldness obtained from the rotations. The

geometries at the points of these minima are optimized at the B3LYP/6-31G(d) level.

The barriers for internal rotations are calculated from the differences between the total

energy of each structure and that of the global equilibrium. The total energies and

calculated rotation barriers about C—C bond for each rotational structure of the species

listed in Tables 2.35 to 2.47. Potential Energy vs. Torsion angle diagrams for internal

rotations about C—C bond of the species are shown in Figures 2.16 to 2.37. Points are

values calculated using relaxed and non-relaxed density functional B3LYP calculations.



Table 2.34 Moments of Inertia of Rotors, Rotational Barrier and Foldness
Species MI-la MI-2 b V°
CCB2H2

C6H5-CH2C6H5 89 161.15 0.62 4
C6H5-CH2C6H5 89 161.15 1.84 2

CCBCDH2
C6H5-CH2C2H3 89 58.6 2.27 2
C2H3-CH2C6H5 19.73 161.15 3.83 3

CCBCOH2
C6H5-CH2CHO 89 62.78 6.7 2
CHO-CH2C6H5 18.74 161.15 2.23 2

CCBCTH2
C6H5-CH2C2H 89 54.41 0.39 2

CCD2H2
CH2(C2H3)-C2H3 58.6 19.73 2.47 2
CH2(C2H3)-C2H3 58.6 19.73 1.79 2

CCDCOH2
CHO-CH2C2H3 18.74 58.6 2.32 3
C2H3-CH2CHO 19.73 62.78 2.63 3

CCO2H2
CHO-CH2CHO 18.74 62.78 0.66 4
CHO-CH2CHO 18.74 62.78 0.54 4

CCOCTH2
CHO-CH2C2H 18.74 54.41 2.65 2

CDCB2
C6H5-C(CH2)C6H 89 154.04 2.57 4
C6H5-C(CH2)C6H 89 154.04 9.37 2

CDCBCD
C6H5-C(CH2)C2H3 89 66.26 2.69 4

CDCBCT
C6H5-C(CH2)C2H 89 62.75 2.97 2

CDCD2
C2H3-C(CH2)C2H 19.73 66.26 4.99 2
C2H3-C(CH2)C2H 19.73 66.26 5.71 4

CDCDCT
C2H3-C(CH2)C2H 19.73 62.75 5.76 2

a Moment of Inertia of the group on left of rotor (as represented here), Units in amu-
Bohr2

bMoment of Inertia of the group on right of rotor (as represented here), Units in amu-
Bohr2

cRotation Barrier, Units in kcal
dFoldness from Rotation Plot shown in Figures 2.16 to 2.37
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Table 2.35 Total Energy and Internal Rotation Barriers for
CCB2H2

Torsion

Angle

CB-CCBH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CB-CCBH2

Total

Energy a

Rotational

barrierb
120.71 -499.859379 0.14 89.70 -499.858547 0.55
135.71 -499.859509 0.06 134.70 -499.859419 0.00
150.71 -499.859391 0.13 179.70 -499.858806 0.38
165.71 -499.859253 0.22 224.70 -499.856487 1.84
180.71 -499.859069 0.33 269.70 -499.858597 0.52
195.71 -499.858898 0.44
210.71 -499.858941 0.41
225.71 -499.859312 0.18
240.71 -499.859524 0.05
255.71 -499.85945 0.09
270.71 -499.85861 0.62
285.71 -499.859598 0.00
300.71 -499.859467 0.08

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.16 Potential Barriers for Internal Rotation about CB-CCBH2 bond (Dihedral 9-
8-7-6) of CCB2H2. Points are Calculated Values at non-relaxed B3LYP/3-21G level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.35 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 
2.15). Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom 
d about Rotation Axis c-b 
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Figure 2.17 Potential Barriers for Internal Rotation about CB-CCBH2 bond (Dihedral 8-7-
6-1) of CCB2H2. Points are Calculated Values at non-relaxed B3LYP/3-21G level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.35 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom dabout 
Rotation Axis c-b 
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Table 2.36 Total Energy and Internal Rotation Barriers for
CCBCDH2

Torsion

Angle

CB-CCDH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CD-CCBH2

Total

Energy a

Rotational

barrierb
3.35 -347.046208 0.88 7.67 -347.045797 1.05
18.35 -347.04531 1.44 22.67 -347.044465 1.88
33.35 -347.044415 2.01 37.67 -347.043223 2.66
48.35 -347.043992 2.27 52.67 -347.04286 2.89
63.35 -347.044647 1.86 67.67 -347.043896 2.24
78.35 -347.045817 1.13 82.67 -347.045796 1.05
93.35 -347.046651 0.60 97.67 -347.047326 0.09
108.35 -347.047157 0.28 112.67 -347.047398 0.04
123.35 -347.047431 0.11 127.67 -347.046586 0.55
138.35 -347.047587 0.01 142.67 -347.045253 1.39
153.35 -347.047507 0.07 157.67 -347.044057 2.14
168.35 -347.047081 0.33 172.67 -347.043968 2.19
183.35 -347.046292 0.83 187.67 -347.045226 1.40
198.35 -347.045278 1.46 202.67 -347.046657 0.51
213.35 -347.044315 2.07 217.67 -347.047462 0.00
228.35 -347.044034 2.24 232.67 -347.04736 0.06
243.35 -347.04475 1.80 247.67 -347.046171 0.81
258.35 -347.045779 1.15 262.67 -347.043838 2.27
273.35 -347.046572 0.65 277.67 -347.041351 3.83
288.35 -347.047109 0.31 292.67 -347.042587 3.06
303.35 -347.047426 0.12 307.67 -347.044537 1.84
318.35 -347.047611 0.00 322.67 -347.045893 0.98
333.35 -347.047485 0.08 337.67 -347.046647 0.51
348.35 -347.046992 0.39 352.67 -347.046609 0.54

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.19 Potential Barriers for Internal Rotation about CB-CCDH2 bond (Dihedral 9-
8-7-6) of CCBCDH2. Points are Calculated Values at B3LYP/3-21G level of theory. 
Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.36 for 
Actual Energy Values. Further illustration of the specific dihedral of the Internal Rotation 
is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). Note 
that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Figure 2.18 Potential Barriers for Internal Rotation about CD-CCBH2 bond (Dihedral 8-
7-6-1) of CCBCDH2. Points are Calculated Values at non-relaxed B3LYP/3-21G level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.36 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Table 2.37 Total Energy and Internal Rotation Barriers for
CCB COH2

Torsion

Angle

CO-CCBH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CB-CCOH2

Total

Energy a

Rotational

barrierb
1.14 -384.887657 1.03 101.58 -384.889172 0.10
11.14 -384.887665 1.02 111.58 -384.888833 0.31
21.14 -384.887534 1.10 121.58 -384.887992 0.84
31.14 -384.887361 1.21 131.58 -384.886313 1.89
41.14 -384.887241 1.29 141.58 -384.883715 3.52
51.14 -384.887265 1.27 151.58 -384.880772 5.37
61.14 -384.887476 1.14 161.58 -384.87872 6.66
71.14 -384.887862 0.90 171.58 -384.878661 6.70
81.14 -384.888353 0.59 181.58 -384.880455 5.57
91.14 -384.888868 0.27 191.58 -384.883041 3.95
101.14 -384.889291 0.00 201.58 -384.885403 2.46
221.14 -384.889172 0.07 211.58 -384.887105 1.40
231.14 -384.889233 0.04 221.58 -384.88816 0.73
241.14 -384.889051 0.15 231.58 -384.88877 0.35
251.14 -384.888619 0.42 241.58 -384.889095 0.15
261.14 -384.887977 0.82 251.58 -384.889263 0.04
271.14 -384.887244 1.28 261.58 -384.889331 0.00
281.14 -384.886551 1.72 271.58 -384.889317 0.01
291.14 -384.886014 2.06 281.58 -384.88917 0.10
301.14 -384.88573 2.23 291.58 -384.888829 0.31
311.14 -384.885744 2.23 301.58 -384.887986 0.84
321.14 -384.886031 2.05 311.58 -384.886308 1.90
331.14 -384.886502 1.75 321.58 -384.883718 3.52
341.14 -384.887023 1.42 331.58 -384.880796 5.36
351.14 -384.887433 1.17 341.58 -384.878776 6.62

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.20 Potential Barriers for Internal Rotation about CO-CCBH2 bond (Dihedral 5-
1-2-3) of CCBCOH2. Points are Calculated Values at relaxed B3LYP/6-31G(d,p) level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.37 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b. Energy Values between 101 degrees and 231 degrees have been 
estimated from the energy values for CO-CCDH2 plot. (Figure 2.25) 
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Figure 2.21 Potential Barriers for Internal Rotation about CB-CCOH2 bond (Dihedral 8-
5-1-2) of CCBCOH2. Points are Calculated Values at relaxed B3L YP/6-31 G( d,p) level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.37 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Table 2.38 Total Energy and Internal Rotation Barriers for
CCBCTH2

CB-CCTH2

Torsion 	 Total 	 Rotational

Angle 	 Energy a 	barrierb
1.06 -347.700881 0.01

11.06 -347.700891 0.00
21.06 -347.700883 0.01
31.06 -347.700832 0.04
41.06 -347.700729 0.10
51.06 -347.700592 0.19
61.06 -347.700447 0.28
71.06 -347.70034 0.35
81.06 -347.700287 0.38
91.06 -347.700276 0.39
101.06 -347.700298 0.37
111.06 -347.700358 0.34
121.06 -347.700464 0.27
131.06 -347.7006 0.18
141.06 -347.70073 0.10
151.06 -347.700832 0.04
161.06 -347.700884 0.01
171.06 -347.700891 0.00
181.06 -347.700884 0.01
191.06 -347.700892 0.00
201.06 -347.700877 0.01

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.22 Potential Barriers for Internal Rotation about CB-CCTH2 bond (Dihedral 8-7-
6-1) of CCBCTH2. Points are Calculated Values at non-relaxed B3LYP/6-31G(d) level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.38
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.39 Total Energy and Internal Rotation Barriers for
CCD2H2

Torsion

Angle

CD-CCDH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CD-CCDH2

Total

Energy a

Rotational

barrier"
90.74 -195.297358 0.20 60.74 -195.294227 1.49
105.74 -195.29767 0.00 75.74 -195.294277 1.46
120.74 -195.297048 0.39 90.74 -195.296141 0.29
135.74 -195.295794 1.18 105.74 -195.296602 0.00
150.74 -195.294425 2.04 120.74 -195.295313 0.81
165.74 -195.29374 2.47 135.74 -195.295313 0.81
180.74 -195.294248 2.15 150.74 -195.294205 1.50
195.74 -195.295439 1.40 165.74 -195.293749 1.79
210.74 -195.296373 0.81 180.74 -195.294483 1.33
225.74 -195.2966 0.67 195.74 -195.294557 1.28
240.74 -195.296056 1.01
255.74 -195.295067 1.63
270.74 -195.294267 2.14
285.74 -195.294233 2.16
300.74 -195.295118 1.60
315.74 -195.296241 0.90
330.74 -195.296764 0.57
345.74 -195.296354 0.83
360.74 -195.295234 1.53

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.23 Potential Barriers for Internal Rotation about CD-CCDH2 bond (Dihedral 9-
5-1-4) of CCD2H2. Points are Calculated Values at non-relaxed B3L YP/6-31 G( d) level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.39 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Figure 2.24 Potential Barriers for Internal Rotation about CD-CCDH2 bond (Dihedral 9-
5-1-4) of CCD2H2. Points are Calculated Values at non-relaxed B3L YP/6-31 G( d) level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.39 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Table 2.40 Total Energy and Internal Rotation Barriers for
CCDCOH2

Torsion

Angle

CO-CCDH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CD-CCOH2

Total

Energy a

Rotational

barrierb
11.95 -231.241165 0.50 0.90 -231.238214 2.35
26.95 -231.240139 1.14 15.90 -231.238936 1.89
41.95 -231.23894 1.89 30.90 -231.240122 1.15
56.95 -231.238255 2.32 45.90 -231.241136 0.51
71.95 -231.23849 2.18 60.90 -231.241524 0.27
86.95 -231.23941 1.60 60.90 -231.241524 0.27
101.95 -231.240479 0.93 75.90 -231.241235 0.45
116.95 -231.241236 0.45 90.90 -231.240494 0.92
131.95 -231.241524 0.27 105.90 -231.239775 1.37
131.95 -231.241525 0.27 120.90 -231.23951 1.53
146.95 -231.241388 0.36 135.90 -231.239735 1.39
161.95 -231.241026 0.58 150.90 -231.240028 1.21
176.95 -231.240749 0.76 165.90 -231.239868 1.31
191.95 -231.240872 0.68 180.90 -231.23913 1.77
206.95 -231.241287 0.42 195.90 -231.238192 2.36
221.95 -231.241719 0.15 210.90 -231.237769 2.63
236.95 -231.241956 0.00 225.90 -231.238258 2.32
251.95 -231.241916 0.02 240.90 -231.239315 1.66
266.95 -231.241573 0.24 255.90 -231.24046 0.94
281.95 -231.240936 0.64 270.90 -231.24143 0.33
296.95 -231.240297 1.04 285.90 -231.241955 0.00
311.95 -231.240122 1.15 300.90 -231.24178 0.11
326.95 -231.240594 0.85 315.90 -231.240882 0.67
341.95 -231.241257 0.44 330.90 -231.239585 1.49
356.95 -231.241568 0.24 345.90 -231.238483 2.18

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.25 Potential Barriers for Internal Rotation about CO-CCDH2 bond (Dihedral 10-
7-1-2) of CCDCOH2. Points are Calculated Values at non-relaxed B3LYP/6-31+G(d,p) 
level of theory. Potential Barrier is in kcaJ while Dihedral Angle is in Degrees. Refer to 
table 2.40 for Actual Energy Values. Further illustration of the specific dihedral of the 
Internal Rotation is in the specific table for structure parameters of the species (Tables 2.1 
to 2.15). Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to 
Atom d about Rotation Axis c-b 
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Figure 2.26 Potential Barriers for Internal Rotation about CD-CCOH2 bond (Dihedral 7-
1-2-6) of CCDCOH2. Points are Calculated Values at non-relaxed B3LYP/6-31+G(d,p) 
level of theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to 
table 2.40 for Actual Energy Values. Further illustration of the specific dihedral of the 
Internal Rotation is in the specific table for structure parameters of the species (Tables 2.1 
to 2.15). Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to 
Atom d about Rotation Axis c-b 
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Table 2.41 Total Energy and Internal Rotation Barriers for
CCO2H2

Torsion

Angle

CO-CCOH2

Total

Energy a

Rotational

barrierb

Torsion

Angle

CO-CCOH2

Total

Energy a

Rotational

barrier"
12.02 -267.145021 0.21 9.05 -267.1451 0.16
27.02 -267.144297 0.66 24.05 -267.144489 0.54
42.02 -267.145351 0.00 39.05 -267.145349 0.00
57.02 -267.145259 0.06 54.05 -267.145285 0.04
72.02 -267.145024 0.21 69.05 -267.145075 0.17
87.02 -267.144805 0.34 84.05 -267.144847 0.31
102.02 -267.144717 0.40 99.05 -267.144724 0.39
117.02 -267.144865 0.31 114.05 -267.14481 0.34
132.02 -267.145221 0.08 129.05 -267.14516 0.12
147.02 -267.145344 0.00 144.05 -267.145347 0.00
162.02 -267.145155 0.12 144.05 -267.145348 0.00
177.02 -267.144923 0.27 159.05 -267.145215 0.08
192.02 -267.145044 0.19 174.05 -267.144953 0.25
207.02 -267.145299 0.03 189.05 -267.144995 0.22
222.02 -267.145311 0.02 204.05 -267.145266 0.05
237.02 -267.14501 0.21 219.05 -267.145335 0.01
252.02 -267.144734 0.39 234.05 -267.145088 0.16
267.02 -267.144754 0.37 249.05 -267.144762 0.37
282.02 -267.144927 0.27 264.05 -267.144733 0.39
297.02 -267.145175 0.11 279.05 -267.144889 0.29
312.02 -267.145337 0.01 294.05 -267.145126 0.14
327.02 -267.145334 0.01 309.05 -267.145312 0.02
342.02 -267.145263 0.06 324.05 -267.145344 0.00
357.02 -267.145222 0.08 339.05 -267.145279 0.04
357.02 -267.145222 0.08 354.05 -267.145236 0.07

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.27 Potential Barriers for Internal Rotation about CO-CCOH2 bond (Dihedral 4-
3-1-2) of CCO2H2. Points are Calculated Values at non-relaxed B3LYP/6-31G(d,p) level
of theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table
2.41 for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b



Figure 2.28 Potential Barriers for Internal Rotation about CO-CCOH2 bond (Dihedral 5-
2-1-3) of CCO2H2. Points are Calculated Values at non-relaxed B3LYP/6-31G(d,p) level
of theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table
2.41 for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.42 Total Energy and Internal
Rotation Barriers for CCOCTH2

CO-CCTH2

Torsion 	 Total 	 Rotational

Angle 	 Energy a 	barrierb 
9.68 -229.967124 0.19
24.68 -229.967255 0.11
39.68 -229.96737 0.03
54.68 -229.967196 0.14
69.68 -229.966555 0.54
84.68 -229.965515 1.20
99.68 -229.964414 1.89
114.68 -229.963702 2.34
129.68 -229.963667 2.36
144.68 -229.96427 1.98
159.68 -229.965078 1.47
174.68 -229.965552 1.17
189.68 -229.965362 1.29
204.68 -229.964589 1.78
219.68 -229.96369 2.34
234.68 -229.963206 2.65
249.68 -229.963453 2.49
264.68 -229.964355 1.93
279.68 -229.965556 1.17
294.68 -229.96662 0.50
309.68 -229.967256 0.10
324.68 -229.967424 0.00
324.68 -229.967424 0.00
339.68 -229.967302 0.08
354.68 -229.967144 0.18

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.29 Potential Barriers for Internal Rotation about CO-CCTH2 bond (Dihedral 5-1-
2-4) of CCOCTH2. Points are Calculated Values at relaxed B3LYP/6-31G(d,p) level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.42
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.43 Total Energy and Internal Rotation Barriers for
CDCB2

Torsion

Angle

CB-CDCB

Total

Energy a

Rotational

barrierb

Torsion

Angle

CB-CDCB

Total

Energy a

Rotational

barrierb
-0.41 -537.730048 2.57 0.00 -540.824434 3.79
14.59 -537.733599 0.34 10.00 -540.82213 5.23
29.59 -537.733997 0.09 20.00 -540.819631 6.80
44.59 -537.733365 0.49 30.00 -540.817139 8.36
59.59 -537.732203 1.22 40.00 -540.815826 9.19
74.59 -537.73113 1.89 50.00 -540.816989 8.46
89.59 -537.730226 2.46 60.00 -540.819896 6.63
104.59 -537.733485 0.41 70.00 -540.822671 4.89
119.59 -537.734141 0.00 80.00 -540.824422 3.79
134.59 -537.733481 0.41 90.00 -540.825511 3.11
149.59 -537.731711 1.52 100.00 -540.826539 2.47
164.59 -537.730148 2.51 110.00 -540.827691 1.74
179.59 -537.730197 2.47 120.00 -540.828931 0.96
194.59 -537.733492 0.41 130.00 -540.829974 0.31
209.59 -537.734015 0.08 140.00 -540.830467 0.00
224.59 -537.733448 0.43 150.00 -540.830145 0.20
239.59 -537.732228 1.20 160.00 -540.828818 1.03
254.59 -537.731169 1.86 170.00 -540.826734 2.34
269.59 -537.730296 2.41 180.00 -540.82441 3.80
284.59 -537.733417 0.45 190.00 -540.822012 5.31
299.59 -537.734078 0.04 200.00 -540.819412 6.94
314.59 -537.73359 0.35 210.00 -540.816849 8.55
329.59 -537.73188 1.42 220.00 -540.815541 9.37
344.59 -537.730213 2.46 230.00 -540.816787 8.58

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.30 Potential Barriers for Internal Rotation about CB-CDCB bond (Dihedral 17-
16-1-2) of CDCB2. Points are Calculated Values at non-relaxed B3LYP/3-21G level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.43
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b



87

Figure 2.31 Potential Barriers for Internal Rotation about CB-CDCB bond (Dihedral 6-5-
2-1) of CDCB2. Points are Calculated Values at non-relaxed B3LYP/3-21G level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.43
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.44 Total Energy and Internal
Rotation Barriers for CDCBCD

CB-CDCD

Torsion

Angle

Total

Energy a

Rotational

barrierb
6.03 -384.920858 0.43
21.03 -384.921547 0.00
36.03 -384.921051 0.31
51.03 -384.919771 1.11
66.03 -384.918551 1.88
81.03 -384.918163 2.12
96.03 -384.918634 1.83
111.03 -384.919094 1.54
126.03 -384.918548 1.88
141.03 -384.917269 2.68
156.03 -384.917339 2.64
171.03 -384.919211 1.47
186.03 -384.920854 0.44
201.03 -384.921548 0.00
216.03 -384.921051 0.31
231.03 -384.919739 1.14
246.03 -384.918456 1.94
261.03 -384.918146 2.13
276.03 -384.918634 1.83
291.03 -384.919066 1.56
306.03 -384.918582 1.86
321.03 -384.917266 2.69
336.03 -384.91729 2.67
351.03 -384.919288 1.42

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.32 Potential Barriers for Internal Rotation about CD-CBCD bond (Dihedral 6-5-
1-2) of CDCBCD. Points are Calculated Values at non-relaxed B3LYP/3-21G level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.44
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.45 Total Energy and Internal
Rotation Barriers for CDCBCT

CB-CDCT

Torsion

Angle

Total

Energy a

Rotational

barrierb
4.76 -385.786472 0.98
19.76 -385.787327 0.44
34.76 -385.787835 0.12
34.76 -385.787835 0.12
49.76 -385.786835 0.75
64.76 -385.785034 1.88
79.76 -385.783574 2.79
94.76 -385.783291 2.97
109.76 -385.784318 2.33
124.76 -385.786149 1.18
139.76 -385.787737 0.18
154.76 -385.788026 0.00
169.76 -385.787157 0.55
184.76 -385.786805 0.77
199.76 -385.787579 0.28
214.76 -385.787954 0.04
229.76 -385.786873 0.72
244.76 -385.785036 1.88
259.76 -385.783566 2.80
274.76 -385.783292 2.97
289.76 -385.784337 2.31
304.76 -385.786185 1.16
319.76 -385.787752 0.17
334.76 -385.787942 0.05
349.76 -385.786912 0.70

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.33 Potential Barriers for Internal Rotation about CD-CBCT bond (Dihedral 5-4-
1-2) of CDCBCT. Points are Calculated Values at relaxed B3LYP/6-31G(d) level of
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.45
for Actual Energy Values. Further illustration of the specific dihedral of the Internal
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15).
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about
Rotation Axis c-b
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Table 2.46 Total Energy and Internal Rotation Barriers for
CDCD2

Torsion

Angle

CD-CDCD

Total

Energy a

Rotational

barrierb

Torsion

Angle

CD-CDCD

Total

Energy a

Rotational

barrier"
15.67 -232.109868 0.90 4.43 -233.394349 3.71
30.67 -232.107777 2.21 19.43 -233.391163 5.71
45.67 -232.105761 3.48 34.43 -233.397073 2.00
60.67 -232.104138 4.49 49.43 -233.396114 2.61
75.67 -232.103345 4.99 64.43 -233.395861 2.76
90.67 -232.103803 4.70 79.43 -233.396761 2.20
105.67 -232.10517 3.85 94.43 -233.398408 1.17
120.67 -232.106784 2.83 109.43 -233.3998 0.29
135.67 -232.107838 2.17 124.43 -233.400267 0.00
150.67 -232.107962 2.09 139.43 -233.399672 0.37
165.67 -232.107368 2.47 154.43 -233.398512 1.10
180.67 -232.106896 2.76 169.43 -233.398009 1.42
195.67 -232.107184 2.58 184.43 -233.399215 0.66
210.67 -232.10685 2.79 199.43 -233.400185 0.05
225.67 -232.106667 2.91 214.43 -233.400059 0.13
240.67 -232.106246 3.17 229.43 -233.398983 0.81
255.67 -232.104661 4.17 244.43 -233.397428 1.78
270.67 -232.103379 4.97 259.43 -233.396178 2.57
285.67 -232.103421 4.94 274.43 -233.396001 2.68
300.67 -232.105133 3.87 289.43 -233.396783 2.19
315.67 -232.107708 2.25 304.43 -233.397594 1.68
330.67 -232.110011 0.81 319.43 -233.398088 1.37
345.67 -232.111299 0.00 334.43 -233.398088 1.37
360.67 -232.11122 0.05 349.43 -233.396716 2.23

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.34 Potential Barriers for Internal Rotation about CD-CDCD bond (Dihedral 11-
10-1-2) of CDCD2. Points are Calculated Values at non-relaxed B3LYP/6-31G(d,p) level 
of theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 
2.46 for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Figure 2.35 Potential Barriers for Internal Rotation about CD-CDCD bond (Dihedral 6-5-
1-2) of CDCD2. Points are Calculated Values at non-relaxed B3LYP/6-31G(d,p) level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.46 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 2.15). 
Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom d about 
Rotation Axis c-b 
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Table 2.47 Total Energy and Internal
Rotation Barriers for CDCDCT

CD-CDCT

Torsion

Angle

Total

Energy a

Rotational

barrierb
1.99 -230.859567 3.14
16.99 -230.859961 2.89
31.99 -230.860404 2.61
46.99 -230.86014 2.78
61.99 -230.858956 3.52
76.99 -230.857293 4.56
91.99 -230.855838 5.48
106.99 -230.855451 5.72
121.99 -230.856919 4.80
136.99 -230.859677 3.07
151.99 -230.862338 1.40
166.99 -230.864083 0.30
181.99 -230.864567 0.00
181.99 -230.864567 0.00
196.99 -230.863735 0.52
211.99 -230.861703 1.80
226.99 -230.858902 3.56
241.99 -230.856344 5.16
256.99 -230.855394 5.76
271.99 -230.856158 5.28
286.99 -230.857746 4.28
301.99 -230.859343 3.28
316.99 -230.860305 2.67
331.99 -230.860329 2.66
346.99 -230.859815 2.98

a Electronic energies at 0 K. ZPVE and Thermal correction to 298K are not included.
Units in hartree.
b Rotational barriers are calculated as the difference between the total energy of each
conformer and that of the most stable conformer. Units in kcal/mol.
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Figure 2.36 Potential Barriers for Internal Rotation about CD-CDCT bond (Dihedral 4-3-
2-1) of CDCDCT. Points are Calculated Values at non-relaxed B3LYP/3-21G level of 
theory. Potential Barrier is in kcal while Dihedral Angle is in Degrees. Refer to table 2.47 
for Actual Energy Values. Further illustration of the specific dihedral of the Internal 
Rotation is in the specific table for structure parameters of the species (Tables 2.1 to 
2.15). Note that Dihedral a-b-c-d infers rotation of angle of Atom a with respect to Atom 
d about Rotation Axis c-b 
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2.4.4 Entropy (S °298) and Heat Capacity (C p(T)'s (300 5_ T/K 1500))

Sº298 and Cp(T)' s calculation results using B3LYP/6-31G(d) determined

geometries and frequencies are summarized in Table 2.65. TVR, represents the sum of the

contributions from translations, external rotations and vibrations for Sº298 and Cp(T),s.

The torsion frequencies calculated for the internal rotors are not included in TVR.

Instead, a more exact contribution from hindered rotations is calculated using the method

of Pitzer and Gwinn. 17 I.R., represents the contributions from the internal rotation about C-

C bond for S º298 and Cp(T), s. Translation, Vibration and External Rotation contributions

to Entropy and Heat Capacity are calculated over the temperature range 298 K to 5000 K

and represented in Tables 2.48 to 2.62. Table 2.47 shows the number of Internal Rotors,

Symmetry and Moments of Inertia. Internal Rotation Contributions to Entropy and Heat

Capacity are represented in Table 2.64.
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Table 2.48 Number of Internal Rotors, Symmetry and Moments of Inertiaa ,b used in
the estimation of contributions to Entropy` and Heat Capacity' 

Species Formula Rotors
Molecular

Wt. Ia Ib lc Symmetry
CCB2H2 C13H12 2 168 874.54 4363.73 4396.75 8
CCBCDH2 C9H10 2 118 427.78 1859.67 2187.07 2
CCBCOH2 C8H8O 2 120 442.18 1844.95 2123.22 2
CCBCTH2 C9H8 1 116 415.76 1743.27 2141.93 2
CCD2H2 C5H8 2 68 90.39 773.85 779.82 2
CCDCOH2 C4H60 2 70 90.34 743.24 751.16 1
CCO2H2 C3H4O2 2 72 121.93 596.56 684.03 2
CCOCTH2 C4H4O 1 68 70.95 717.00 761.49 1
CCT2H2 C5H4 0 64 94.54 637.33 720.83 2
CDCB2 C14H12 2 180 1124.62 4371.24 4986.43 8
CDCBCD C10H10 1 130 575.63 2094.66 2583.37 2
CDCBCT Cl0H8 1 128 637.59 1886.77 2460.12 2
CDCD2 C6H8 2 80 322.54 634.56 927.28 2
CDCDCT C6H6 1 78 380.54 513.76 894.30 1
CDCT2 C6H4 0 76 290.82 634.53 925.36 2a Optimized at the B3LYP/6-31G(d) level of theory.
Units in amu-Bohr2 .

c Multiplicity of all species is 1, Spin of all species is 0, Number of Optical Isomers for all
species is 1



Table 2.49 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCB2H2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 39.04 89.14 5.94
300 39.36 89.40 6.02
400 54.45 102.84 10.72
500 67.42 116.45 16.82
600 77.96 129.72 24.10
700 86.49 142.42 32.33
800 93.49 154.46 41.34
900 99.32 165.83 50.97
1000 104.23 176.57 61.15
1100 108.41 186.72 71.78
1200 111.98 196.32 82.79
1300 115.05 205.42 94.13
1400 117.70 214.06 105.76
1500 120.00 222.27 117.64
1600 122.00 230.09 129.73
1700 123.75 237.56 142.00
1800 125.28 244.68 154.44
1900 126.63 251.50 167.03
2000 127.83 258.04 179.74
2500 132.10 287.11 244.75
3000 134.64 311.47 311.42
3500 136.26 332.38 379.10
4000 137.34 350.68 447.45
4500 138.10 366.92 516.25
5000 138.65 381.53 585.37

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol

99



Table 2.50 Translation,Vibration and External
Rotation contribution to Entropy and Heat . Capacity
for CCBCDH2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]I

298 28.85 79.37 4.65
300 29.07 79.56 4.71

400 39.78 89.42 8.15
500 49.11 99.35 12.61

600 56.79 109.02 17.91
700 63.09 118.27 23.91

800 68.31 127.06 30.48
900 72.71 135.38 37.53
1000 76.44 143.25 44.98
1100 79.65 150.70 52.79
1200 82.40 157.76 60.88
1300 84.78 164.46 69.24
1400 86.85 170.83 77.81
1500 88.64 176.89 86.58
1600 90.21 182.67 95.52
1700 91.58 188.19 104.60
1800 92.79 193.46 113.81
1900 93.85 198.52 123.13

2000 94.79 203.36 132.56
2500 98.18 224.94 180.83
3000 100.19 243.06 230.41
3500 101.47 258.63 280.79
4000 102.33 272.26 331.71
4500 102.94 284.36 382.98
5000 103.38 295.25 434.51

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.51 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCBCOH2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 26.98 80.00 4.47
300 27.17 80.18 4.53
400 36.66 89.32 7.72
500 44.92 98.43 11.81
600 51.72 107.25 16.65
700 57.29 115.67 22.11
800 61.89 123.64 28.06
900 65.74 131.16 34.45
1000 68.99 138.27 41.18
1100 71.76 144.99 48.21
1200 74.13 151.35 55.50
1300 76.17 157.37 63.01
1400 77.93 163.09 70.71
1500 79.46 168.53 78.58
1600 80.78 173.71 86.58
1700 81.94 178.64 94.71
1800 82.96 183.36 102.95
1900 83.85 187.88 111.28
2000 84.64 192.21 119.70
2500 87.47 211.45 162.75
3000 89.15 227.58 206.89
3500 90.21 241.43 251.71
4000 90.93 253.54 296.96
4500 91.43 264.30 342.51
5000 91.79 273.96 388.27

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.52 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCBCTH2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 30.34 81.47 5.01
300 30.55 81.67 5.07
400 40.09 91.81 8.61
500 48.12 101.66 13.03
600 54.63 111.04 18.17
700 59.94 119.88 23.90
800 64.32 128.19 30.12
900 68.01 136.00 36.73
1000 71.14 143.34 43.69
1100 73.83 150.26 50.93
1200 76.13 156.79 58.42
1300 78.13 162.98 66.13
1400 79.86 168.84 74.03
1500 81.36 174.41 82.08
1600 82.68 179.71 90.28
1700 83.83 184.76 98.59
1800 84.84 189.59 107.02
1900 85.74 194.21 115.54
2000 86.53 198.63 124.15
2500 89.37 218.30 168.14
3000 91.06 234.78 213.24
3500 92.14 248.92 259.01
4000 92.87 261.29 305.23
4500 93.38 272.28 351.75
5000 93.75 282.15 398.49

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.53 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCD2H2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 18.67 67.74 3.43
300 18.80 67.87 3.47
400 25.11 74.15 5.66
500 30.80 80.39 8.46
600 35.61 86.45 11.79
700 39.66 92.26 15.55
800 43.11 97.79 19.69
900 46.08 103.05 24.15
1000 48.64 108.05 28.89
1100 50.87 112.80 33.86
1200 52.81 117.32 39.04
1300 54.51 121.62 44.41
1400 55.99 125.72 49.93
1500 57.28 129.63 55.59
1600 58.41 133.37 61.37
1700 59.41 136.94 67.25
1800 60.29 140.37 73.23
1900 61.07 143.66 79.30
2000 61.76 146.81 85.43
2500 64.24 160.90 116.96
3000 65.73 172.77 149.45
3500 66.69 183.00 182.54
4000 67.33 191.96 216.02
4500 67.78 199.92 249.77
5000 68.10 207.09 283.71

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.54 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCDCOH2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 16.80 68.30 3.26
300 16.91 68.41 3.29
400 21.98 73.98 5.23
500 26.60 79.40 7.67
600 30.54 84.61 10.53
700 33.86 89.58 13.75
800 36.69 94.30 17.28
900 39.11 98.77 21.07
1000 41.19 103.01 25.08
1100 42.99 107.02 29.29
1200 44.55 110.84 33.66
1300 45.90 114.46 38.18
1400 47.07 117.91 42.83
1500 48.09 121.20 47.58
1600 48.99 124.33 52.43
1700 49.77 127.33 57.37
1800 50.46 130.20 62.37
1900 51.07 132.95 67.45
2000 51.61 135.59 72.58
2500 53.54 147.34 98.88
3000 54.69 157.23 125.94
3500 55.43 165.73 153.46
4000 55.92 173.17 181.27
4500 56.27 179.79 209.30
5000 56.52 185.74 237.47

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol

104



Table 2.55 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCOCTH2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 18.33 70.23 3.62
300 18.41 70.35 3.65
400 22.34 76.20 5.70
500 25.66 81.56 8.10
600 28.42 86.50 10.81
700 30.75 91.06 13.76
800 32.73 95.31 16.94
900 34.44 99.27 20.30
1000 35.92 102.98 23.81
1100 37.19 106.47 27.47
1200 38.30 109.76 31.24
1300 39.26 112.87 35.12
1400 40.10 115.81 39.08
1500 40.83 118.61 43.13
1600 41.47 121.27 47.24
1700 42.04 123.80 51.41
1800 42.53 126.22 55.64
1900 42.97 128.53 59.91
2000 43.35 130.75 64.22
2500 44.74 140.60 86.25
3000 45.57 148.85 108.83
3500 46.10 155.92 131.74
4000 46.46 162.11 154.86
4500 46.71 167.61 178.13
5000 46.89 172.54 201.51

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.56 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCT2H2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 21.49 71.55 4.10
300 21.58 71.70 4.15
400 25.60 78.49 6.51
500 28.72 84.55 9.23
600 31.21 90.02 12.23
700 33.30 95.00 15.46
800 35.08 99.57 18.88
900 36.64 103.80 22.46
1000 38.00 107.74 26.19
1100 39.20 111.42 30.05
1200 40.25 114.89 34.02
1300 41.18 118.15 38.09
1400 41.99 121.23 42.24
1500 42.71 124.16 46.48
1600 43.34 126.94 50.78
1700 43.89 129.59 55.13
1800 44.39 132.11 59.54
1900 44.82 134.53 64.00
2000 45.21 136.84 68.50
2500 46.62 147.11 91.47
3000 47.48 155.70 114.99
3500 48.02 163.07. 138.85
4000 48.39 169.52 162.94
4500 48.65 175.24 187.18
5000 48.84 180.38 211.53

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol

106



Table 2.57 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCBCT at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d

298 33.81 85.02 5.47

300 34.03 85.24 5.54

400 44.35 96.50 9.47

500 52.81 107.35 14.33

600 59.58 117.62 19.96

700 65.04 127.24 26.20

800 69.54 136.24 32.92

900 73.31 144.66 40.07

1000 76.50 152.57 47.55

1100 79.24 160.00 55.34

1200 81.59 167.01 63.37

1300 83.63 173.63 71.63

1400 85.40 179.90 80.07

1500 86.94 185.86 88.68

1600 88.28 191.52 97.44

1700 89.46 196.91 106.31

1800 90.49 202.06 115.30

1900 91.41 206.99 124.39

2000 92.22 211.71 133.56
2500 95.14 232.66 180.42

3000 96.88 250.19 228.42

3500 98.00 265.24 277.11

4000 98.75 278.39 326.25

4500 99.27 290.07 375.72

5000 99.65 300.57 425.40

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.58 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCDCT at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 23.51 75.14 4.21
300 23.64 75.30 4.25
400 29.60 82.96 6.92
500 34.45 90.11 10.13
600 38.37 96.76 13.78
700 41.60 102.93 17.78
800 44.33 108.67 22.07
900 46.67 114.04 26.62
1000 48.69 119.07 31.39
1100 50.46 123.80 36.34
1200 52.00 128.26 41.46
1300 53.35 132.49 46.73
1400 54.53 136.49 52.12
1500 55.57 140.29 57.62
1600 56.48 143.91 63.21
1700 57.28 147.37 68.90
1800 57.99 150.67 74.66
1900 58.62 153.82 80.48
2000 59.18 156.85 86.37
2500 61.21 170.31 116.48
3000 62.43 181.60 147.39
3500 63.21 191.30 178.78
4000 63.74 199.79 210.49
4500 64.11 207.33 242.43
5000 64.38 214.10 274.52

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.59 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCT2 at different temperatures 

Ta Cpb Sc [H(T)-H(0K)]d

298 24.87 75.73 4.53
300 24.98 75.89 4.58

400 29.82 83.79 7.33

500 33.39 90.85 10.50

600 36.15 97.20 13.98
700 38.41 102.95 17.71

800 40.31 108.22 21.64

900 41.95 113.07 25.75

1000 43.38 117.57 30.02
1100 44.63 121.77 34.41

1200 45.73 125.70 38.93
1300 46.70 129.41 43.55

1400 47.55 132.91 48.26

1500 48.29 136.22 53.05

1600 48.95 139.36 57.90
1700 49.54 142.35 62.82

1800 50.05 145.20 67.80
1900 50.51 147.92 72.82
2000 50.92 150.52 77.89
2500 52.41 162.08 103.73

3000 53.31 171.73 130.15
3500 53.88 180.00 156.93

4000 54.27 187.23 183.95
4500 54.55 193.65 211.14

5000 54.75 199.42 238.44

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.60 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CCO2H2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]I
298 15.11 66.62 3.14
300 15.19 66.73 3.17
400 19.03 71.63 4.88
500 22.54 76.26 6.96
600 25.58 80.65 9.37
700 28.16 84.80 12.06
800 30.35 88.71 14.98
900 32.21 92.40 18.11
1000 33.81 95.88 21.41
1100 35.17 99.18 24.86
1200 36.34 102.29 28.43
1300 37.34 105.24 32.11
1400 38.21 108.05 35.89
1500 38.96 110.71 39.75
1600 39.61 113.25 43.67
1700 40.17 115.67 47.66
1800 40.67 117.98 51.70
1900 41.11 120.20 55.78
2000 41.49 122.32 59.91
2500 42.86 131.75 81.01
3000 43.67 139.65 102.64
3500 44.18 146.43 124.59
4000 44.53 152.37 146.76
4500 44.77 157.63 169.06
5000 44.94 162.36 191.47

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.61 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCB2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d

298 42.65 90.92 6.46
300 42.98 91.20 6.54

400 58.77 105.79 11.64

500 72.16 120.42 18.20

600 82.95 134.58 25.97
700 91.64 148.06 34.71
800 98.74 160.79 44.23
900 104.65 172.79 54.39
1000 109.62 184.10 65.10
1100 113.84 194.76 76.27

1200 117.46 204.84 87.83
1300 120.57 214.38 99.72

1400 123.25 223.43 111.90
1500 125.58 232.03 124.33
1600 127.61 240.21 136.98
1700 129.39 248.01 149.82

1800 130.94 255.46 162.83
1900 132.32 262.59 175.98

2000 133.53 269.42 189.26

2500 137.88 299.77 257.14
3000 140.47 325.19 326.70
3500 142.12 347.01 397.31

4000 143.22 366.09 468.58
4500 144.00 383.03 540.32
5000 144.56 398.25 612.39

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.62 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCBCD at different  temperatures

Ta Cpb Sc [H(T)-H(0K)]d
298 34.32 86.25 5.58
300 34.56 86.48 5.65
400 46.02 98.04 9.69
500 55.79 109.40 14.79
600 63.73 120.32 20.77
700 70.18 130.65 27.47
800 75.52 140.40 34.76
900 80.00 149.57 42.53
1000 83.80 158.21 50.72
1100 87.06 166.37 59.26
1200 89.86 174.08 68.10
1300 92.28 181.38 77.20
1400 94.38 188.30 86.53
1500 96.21 194.89 96.05
1600 97.81 201.16 105.74
1700 99.20 207.14 115.58
1800 100.44 212.85 125.55
1900 101.52 218.32 135.64
2000 102.48 223.56 145.83
2500 105.94 246.87 197.97
3000 108.00 266.41 251.44
3500 109.32 283.18 305.74
4000 110.20 297.86 360.57
4500 110.82 310.90 415.78
5000 111.27 322.62 471.25

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.63 Translation,Vibration and External
Rotation contribution to Entropy and Heat Capacity
for CDCD2 at different temperatures

Ta Cpb Sc [H(T)-H(0K)]d

298 22.12 71.75 3.87

300 22.26 71.90 3.91

400 29.33 79.30 6.50
500 35.45 86.53 9.74
600 40.53 93.47 13.55
700 44.75 100.05 17.81
800 48.31 106.27 22.47
900 51.36 112.15 27.45
1000 53.99 117.70 32.72
1100 56.28 122.97 38.23

1200 58.27 127.96 43.95
1300 60.00 132.70 49.86
1400 61.52 137.21 55.93
1500 62.85 141.50 62.15
1600 64.01 145.60 68.48
1700 65.04 149.52 74.93
1800 65.94 153.27 81.47
1900 66.74 156.86 88.10

2000 67.45 160.31 94.81
2500 70.02 175.68 129.20
3000 71.56 188.61 164.59
3500 72.54 199.73 200.59
4000 73.20 209.48 237.01
4500 73.67 218.14 273.69
5000 74.01 225.93 310.58

a Temperature in Kelvin
b Heat Capacity in cal/mol/K
c Entropy in cal/mol/K
d Enthalpy in kcal/mol
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Table 2.64 Internal Rotor Contributions to Entropy and Heat Capacity for Each
Species

114

N 	 ,

a Units in kcal/mol
b 	 • 	 •Units in cal/mol/K
c Only one Internal Rotor considered here, the second internal rotor was found to have a

very high Rotation Barrier during calculations, which are suspected to be erroneous. The
torsion frequency for this rotor has been used instead of the internal rotation
contribution.



Table 2.65 Ideal Gas-phase Thermodynamic Properties ^a,m
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Table 2.65 Ideal Gas-phase Thermodynamic Properties' (Continued)
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a Thermodynamic properties are referred to a standard state of an ideal gas at 1 atm.
b Units in kcal/mol.
Units in cal/mol.K.

d The sum of contributions from translations, external rotations, and vibrations.
e Contribution from internal rotations.
f Symmetry number is taken into account (—Rln(symmetry number)).
g Reference 44
h Reference 45
Reference 42

j Reference 43
kReference 44, for all Cp values, shown as literature reference.
1 Only one Internal Rotor considered here, the second internal rotor was found to have a
very high Rotation Barrier during calculations, which are suspected to be erroneous. The
torsion frequency for this rotor has been used instead of the internal rotation
contribution.

mCDCT2 and CCT2H2 do not have any internal rotors and hence no contributions from
Internal Rotors to Entropy and Heat Capacity.

2.4.5 Group Additivity Values

Group additivity 27 is a straightforward and reasonably accurate calculation

method to estimate thermodynamic properties of hydrocarbons and oxygenated

hydrocarbons;28 modifications have also been reported that make it useful for chlorinated

and fluorinated hydrocarbons.29,30,31,32 In this work a set of hydrocarbon and oxy

hydrocarbon groups has been derived from the thermodynamic property data of the

calculated species.
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For example values are reported for the group C/CB/CD/H2 derived from

where R = 1.987 cal/mol.K, a is symmetry number, and OI stand for optical isomer

group. The group values of other groups are estimated in the same manner, each one

derived from one species calculated in this work. Selection of the initial group values is

critical to development of group additivity for accurate property estimation. These

criteria are fully discussed in reference 29 and 30. The group values for ΔHfº298, S º298,

and Cp (T) of all the groups not calculated in this work are taken from the existing

literature value. 28 '33 The parameters used in calculating Group Values are shown in Table

2.65. All the group values are derived in this work are listed in Table 2.66.



Table 2.66 Groups (for Group Additivity a,b)
and Structure Parameters for Species
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Table 2.66 Groups (for Group Additivitya ,b)
and Strurture Parameters for Species (Continued)
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aMultiplicity of all species is 1, Spin of all species is 0, Number of Optical Isomers for all
species is 1
bThe last group for each species is the target group whose group value has been
determined in this work. For example the last group shown for CCB2H2 is C/CB2/H2,
whose group value has been determined in this work.



Table 2.66 Group Values
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a Units in kcal/mol.
b 	 • 	 •Units in cal/mol.K.
C Reference 28.
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2.5 Summary

Thermodynamic properties of 12 hydrocarbons and three oxygenated hydrocarbons are

calculated using density functional method with isodesmic reaction schemes for

cancellation of errors in energy. Standard enthalpies of formation, ΔHfº298,S are

calculated using only isodesmic reaction schemes based on the B3LYP/6-31G(d).

Entropies Sº298 and heat capacities (Cp(T),s (300 T/K 5_ 1500)) are determined with

B3LYP/6-31G(d) optimized geometries and frequencies. Enthalpy, Entropy and C p(T)

properties are determined for

groups for use in group

additivity. Intramolecular torsion potentials are determined and used for analysis of

Cp(T) and S.



CHAPTER 3

CONCLUSIONS

Thermodynamic Properties of

are calculated using density functional methods with isodesmic

reaction schemes for cancellation of errors in the Enthalpy calculations. Standard

enthalpy of formation, ΔHfº298 is calculated using isodesmic reaction schemes based on

B3LYP/6-31G(d) calculations level. Entropies S º298 and heat capacities (C p(T), s (300

T/K 1500)) are determined by B3LYP/6-31G(d) optimized geometries and frequencies.

Evaluation of data from the isodesmic reaction analysis, results in ΔHfº298 values for

CCB2H2 of 42.41 kcal/mol, CCBCDH2 of 34.7 kcal/mol, CCBCOH2 of —13.35

kcal/mol, CCBCTH2 of 74.7 kcal/mol, CCD2H2 of 27.08 kcal/mol, CCDCOH2 of

—20.68 kcal/mol, CCO2H2 of -64.88 kcal/mol , CCOCTH2 of 19.72 kcal/mol, CCT2H2

of 112.43 kcal/mol, CDCB2 of 60.86 kcal/mol, CDCBCD of 53.41 kcal/mol, CDCBCT

of 94.96 kcal/mol, CDCD2 of 48.68 kcal/mol, CDCDCT of 85.45 kcal/mol and CDCT2

of 131.68 kcal/mol.

Enthalpy, entropy and Cp(T) properties are determined for

CD/CT2 groups for use in group additivity. Calculations result in Group Values

for C/CB2/H2 of —1.61 kcal/mol, C/CB/CD/H2 of —2.16 kcal/mol, C/CB/CO/H2 of
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— 5.96 kcal/mol, C/CB/CT/H2 of — 1.81 kcal/mol, C/CD2/H2 of —2.62 kcal/mol,

C/CD/CO/H2 of —6.13 kcal/mol, C/CO2/H2 of —6.08 kcal/mol, C/CO/CT/H2 of —5.38

kcal/mol, C/CT2/H2 of —3.43 kcal/mol, CD/CB2 of 10 kcal/mol, CD/CB/CD of 11.81

kcal/mol, CD/CB/CT of 11.3 kcal/mol, CD/CD2 of 12.19, CD/CD/CT of 11.05 kcal/mol,

CD/CT2 of 15.22 kcal/mol.



APPENDIX A

SPREADSHEET FOR CALCULATION OF SPECIES ENTHALPY USING
ISODESMIC REACTIONS AND B3LYP/6-31G(d) ENERGY VALUES

This Appendix demonstrates the calculation of the Enthalpy value for each species using

an isodesmic reaction, known Enthalpy Values for other species in the reaction except the

target species and B3LYP/6-31G(d) Energy Values for all species in the reaction.
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Spreadsheet' for Calculating Species Enthalpy using Isodesmic Reaction and
B3LYP/6-31G(d) Energy Values
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Spreadsheet' for Calculating Species Enthalpy using Isodesmic Reaction and
B3LYP/6-31G(d) Energy Values (Continued)
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Spreadsheet' for Calculating Species Enthalpy using Isodesmic Reaction and
B3LYP/6-31G(d) Enemy Values (Continued)
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Spreadsheet' for Calculating Species Enthalpy using Isodesmic Reaction and
B3LYP/6-31G(d) Energy Values (Continued) 

128

T298 represents the B3LYP/6-31G(d) energy of the species (ZPVE and thermal
correction are considered)bΔHfº298

 represents the Enthalpy of formation of the particular species
cΔHºrxn,298 represents the Heat of reaction
dAnswer in each case is the ΔHfº298 of the target species.
Note that since 1 Hartree = 627.51 kcal/mol the energy values shown in Hartrees are

important to 6 significant figures past the decimal, while the Enthalpy values shown in
kcal/mol are important to 2 significant digits after the decimal.



APPENDIX B

REFERENCE GROUP VALUES USED TO CALCULATE THE GROUP VALUES FOR
TARGET GROUPS

This Appendix contains the following table:

Table A-1 Reference Group Values

This table gives the group values for different groups used in the Group Additivity calculations

to determine Group Values for the target groups in this work.
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Table A-1 Reference Group Values
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"Group Values for Enthalpy from Reference 28, Units kcal/mol
bGroup Values for Entropy and Heat Capacity(300K — 1500K) from Reference 33, Units
cal/mol/K
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