

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

VISUALIZATION TECHNIQUES FOR
ROUTING PROTOCOLS AND ROUTER CONFIGURATIONS

By
Vandana Pursnani

An autonomous system (AS) is a group of routers managed by a particular

organization. Exterior gateway protocols (EGP) are used between AS's.Internal

Gateway Protocols (IGP) is used within an AS. The most common protocols used

with TCP/IP are RIP , OSPF (Open Shortest Path First), IGRP / Enhanced IGRP .

The thesis revolves around OSPF protocol OSPF uses flooding to exchange

link -state updates between routers. Any change in routing information is flooded to

all routers in the network. Areas are introduced to put a boundary on the explosion of

link-state updates. Flooding and calculation of the Dijkstra algorithm on a router is

limited to changes within an area. Routers that belong to multiple areas, called area

border routers (ABR), have the duty of disseminating routing information or routing

changes between areas. Once information about routers is gathered there is no way to

clearly visualize and manipulate it visually.

The thesis was aimed at visualizing this kind of Router configuration

information Visually using powerful tools and to be able to manipulate the figure

generated. It also aimed visualizing bottleneck paths in the router configurations. The

Powerful features of Java 3D were utilized for Visualization. We utilized the GMatrix

class in the Java 3D API to store the router information. This was mapped onto a 3D

Cylinder. Also due to the platform independence, robustness, scalability Java was the

choice for such a development since routers would be cross platform.

VISUALIZATION TECHNIQUES FOR
ROUTING PROTOCOLS AND ROUTER CONFIGURATIONS

By
Vandana Pursnani

A Thesis
Submitted to the faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January 2001

APPROVAL PAGE

VISUALIZATION TECHNIQUES FOR
ROUTING PROTOCOLS AND ROUTER CONFIGURATIONS

Vandana Pursnani

Dr. Constantine. N. Manikopoulos 	 Date
Associate Professor of Electrical and Computer Engineering,
Computer and Information Science, NJIT

Dr. Jay Jorgenson 	 Date
Assodate Professor of Department of Mathematics,
The City College of New York (CUNY)

Dr. Sotirios Ziavras	 Date
Associate Professor of Electrical and Computer Engineering,
Computer and Information Science, NJIT

Dr. Frank Y Shih	 Date
Associate Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Vandana Pursnani

Degree:	 Master of Science

Date:	 December 2000

Undergraduate and Graduate Education:

• Master of Science, Computer Sciences
New Jersey Institute of Technology (NJIT) Newark, New Jersey,2000

• MS, Computers Management
Devi Ahilya Vishwa Vidhyalaya (DAVIT) University, Indore, India, 1999

• Bachelor Of Science
Devi Ahilya Vishwa Vidhyalaya (DAVV) University Indore, India, 1997

Major :	 Computer Science

Presentations and Publications:

Vandana Pursnani and Manish Joshi
"Introduction to Internet and Web Technologies,"
CMC ATC, Indore, India,1998

Vandana Pursnani and Abhijeet Phatak
"Impact of World Wide Web on HR Practices"
Devi Ahilya VishwaVidhyalaya, Indore, India, 1999

iv

To my beloved mother and
the supreme Mystic Law

in the Gohonzon

v

ACKNOWELDGEMENT

I would like to express my deepest appreciation to Dr. Manikopoulos, my research

Advisor and Dr.Jay Jorgenson for providing valuable and countless resources, insight,

invaluable support, encouragement and reassurance during the entire period of the

research work. I would like to forward my special thanks to Dr. Ziavaras and

Dr. Frank Shih for actively participating in the committee.

I would also like to take the opportunity to forward my thanks to many of my

colleagues for their constant support and encouragement. I would especially like to

thank Mr. Jatin Doshi, Miss. Sonal Panchal and Mr. Mukul Janeja.

vi

TABLE OF CONTENTS

Chapter	 Page

1 Introduction 	 1

1.1 Objective 	 1

1.2 BackGround Information 	 1

	

2 Router Configuration Visualization . .3

2.1 Problem Statement 	 3

2.2 Router and Routing Protocols 	 3

2.3 Interior Gateway Routing Protocol OSPF 	 ..4

2.4 Graph theory and Applications to Networks 6

2.5 Deriving Generalized Matrix for Graph Visualization 	 7

3 Programming aspects for visualization 	 10

3.1 Programming Aspects and Logic Flow 	 10

4 Materials and Method 	 ..12

4.1 Java 3D API and choice ofjava 3d API 	 12

4.2 Visualization techniques,3d user interface and scene graph 	 15

4.3 Methods and Algorithms 	 ..17

5 Results and Observations... 	 20

5.1 Improvements due to Visualization 	 20

5.2 Manipulations after Visualization 	 20

APPENDIX A Program Listings (Cy1Pkg) 	 21

References 	 41

vii

LIST OF FIGURES

Figure Page

2.2.1 The OSI and TCP/IP Reference Model..... 	 .3

2.3.1 An Autonomous System 5

2.3.2 A graph representation of Fig 2.3.1 	 .5

2.5.1 Peterson Graph 7

	

2.5.2 Generating the N x N Gmatrix 8

2.5.3 3D Representation as a cylinder 9

3.2.1 Logic Flow of the Program ...10

4.1.1 Example from www.java.sun.com demonstrating User Input 	 .13

4.1.2 Example from www.java.sun.com demonstrating Compatibility with VRML

and Level of Detail. 	 14

4.2.1 Example Scene Graph 	 16

4.3.1 Orientation of axes in Virtual world. 	 17

4.3.2 Creation of a Scene Graph and attaching it to a virtual Universe 	 17

4.3.3 Creation of Branch Group to place into the Scene Graph 	 18

4.3.4 Router Configuration Scene graph (contained in Package Cy1Pkg) 	 19

viii

CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of the thesis is to create visualization tools for routers in a network

where information about router connectivity with other routers can be determined by

routing protocols like Open shortest path first (OSPF) and flooding algorithms. The

router connectivity was read from a simple graph representation of the network area

of routers for simulation purposes.

For generating the three dimensional representation a generalized matrix was

proposed which would contain the connectivity data of each router to the other

starting from one base router. For simulation purposes a matrix was generated from

the graph representation of the network area with the set of routers. Once the matrix is

generated it is sent to the 3D tool as a file and is read to create the figure. The matrix

is a generalized matrix so that it can be expanded dynamically. The 3D figure itself is

object oriented, where each element of the figure is a class so that various elements of

the figure can be manipulated. The generic figure used for representation is a cylinder.

It is a wire frame cylinder where the lines represent the connectivity and the router

information. in the Cylinder the top and bottom, points on the circumference are

connected with vertical lines representing the routers. The horizontal lines at different

levels originating from these lines are the connectivity from each router to the other.

1.2 Background

Routers include an address for the network, which aids routers in finding the

destination.Routing tables contain information about each of the networks in the fixed

area. So when a packet arrives with an address, it compares the network addresses and

1

2

forwards the packet to the destination. But when a section of the network fails the

router has the responsibility to reroute the traffic. For this Routing Protocols are used.

These are protocols that routers use to communicate to each other. These protocols are

used to exchange the information contained in the routing table. By this a router can

add a network and all other networks will know the route to that destination.

An autonomous system (AS) is a group of routers managed by a particular

organization. Exterior gateway protocols (EGP) are used between AS's. Internal

Gateway Protocols (IGP) is used within an AS. The most common protocols used

with TCP/IP are RIP (Routing Information protocol), OSPF (Open Shortest Path

First), IGRP / Enhanced IGRP. The thesis is based on the theoretical background of

OSPF protocol. OSPF uses flooding to exchange link -state updates between routers.

These protocols are discussed in details in Section 2.x. Any change in routing

information is flooded to all routers in the network. Areas are introduced to put a

boundary on the explosion of link-state updates. Flooding and calculation of the

Dijkstra algorithm on a router is limited to changes within an area. Routers that

belong to multiple areas, called area border routers (ABR), have the duty of

disseminating routing information or routing changes between areas.

Once such information is gathered it would be very difficult to clearly

visualize and manipulate this router information visually since the output of such

protocols is text based or in 2D figures. The aim was visualizing this kind of Router

configuration information Visually using powerful tools and to be able to manipulate

the figure generated and visualizing bottleneck paths in the router configurations. The

Powerful features of Java 3D were utilized for Visualization. Also due to the platform

independence, robustness, scalability Java was the choice for such a development

since routers would be cross platform.

CHAPTER 2

ROUTERS CONFIGURATION AND PROTOCOLS

2.1 Problem Statement

The Internet grew from a small-interconnected set of systems to a huge explosion of

points over the entire globe. These systems are connected to their network. The

networks are connected to routers. The thesis generating a mathematical model for

this connectivity and Visualize the same. The Visualization tool is capable of

manipulating the structure and generating different connectivity thus working as a

simulation tool for manipulating router connectivity. The Autonomous system is

visualized as a Cylinder. The vertical lines represented the routers and the horizontal

lines at each level originating at the vertical lines represented the connections between

routers.

2.2 Routers and Routing Protocols

At the network layer, the internet can be viewed as a collection of subnet works or

Autonomous Systems (AS) that are connected together. There is no fixed structure but

several backbones exist. These are constructed from high-bandwidth lines and fast

routers. The local area networks (LANs) at many universities, companies and ISPs are

connected to this backbone. The Internet is held together by Internet Protocol (IP)

Figure 2.2.1 The OSI and TCP/IP Reference Model

3

4

The router is an intelligent element in the network because it analyzes the electric

signals on a wire and translates them into meaningful data router's Network interface

card can determine whether the packet is to be sent to the host. Routing is the act of

moving information across a network from a source to a destination. Routing involves

two basic activities: determining optimal routing paths and transporting information

groups or packets through a network.

A metric is a standard of measurement, such as path length, that is used by

routing algorithms to determine the optimal path to a destination. Routing algorithms

initialize and maintain routing tables, which contain route information. Route

information varies depending on the routing algorithm used. Routing algorithm in an

AS is called as Interior Gateway Protocol (IGP), an algorithm for routing between

ASes is called as Exterior Gateway Protocol (EGP).

2.3 Interior Gateway Routing Protocol OSPF

Open shortest Path First became a standard in 1990It has open literature .It supports a

variety of distance metrics, including physical distance, delay and so on. I is a

dynamic algorithm, which adapts to changes in the topology automatically and

quickly. It is capable of routing real time traffic one way and other traffic a different

way. I is also capable of doing load balancing, splitting the load over multiple lines by

utilizing the second best route also. It also has a strong security protocol. OSPF works

by abstracting the collection of actual networks, routers and lines into a directed graph

in which each arc is assigned a cost (distance, delay, etc.). It computes the shortest

path based on the weights of the arcs. A serial connection between two routers is

represented by a pair of arcs, one in each direction. The weights may be different. A

node for the networkitself plus a node for each router represent a multi-access

5

network. The arcs from the network node to the routers have weight 0 and are omitted

from the graph. What OSPF does is represent the actual network as a graph and then

compute the shortest path from every router to every other router. OSPF allows large

networks to be divided into numbered areas. These numbered area could be a network

or a set of contiguous networks. Some routers may belong to no area and the areas do

not overlap. Outside the area its details are not visible. Every AS is connected to a

backbone called as Area 0 by tunnels. The data can travel from one Area to another

through these tunnels. The tunnels are represented with arcs in the graph and have a

cost. Each router connected to two or more areas is a part of the Backbone. Within an

area each router has the same Link state Database and runs the same shortest path

algorithm. The main task for each router is to find the shortest path from itself to each

other router, including the router connected to the backbone. Separate metrics can be

provided with the graphs for optimizing routes in terms of delay, throughput and

reliability. WAN 1

Figure 2.3.1 An Autonomous System

Figure 2.3.2 A graph representation of Fig 2.3.1

6

2.4 Graph Theory and Applications to Networks

Graph theory finds a lot of application in the real world. It has been widely used in the

theory of electrical networks and several other applications. A graph is a series of

vertices connected by segments called edges. One mathematical representation of a

graph is through an adjacency matrix. If there are N edges, then an NxN matrix would

be used to represent it. Each element of the matrix is either a 1 or a 0. 0 in entry (i, j)

of the matrix means there is no direct edge connecting vertex i to vertex j. An entry

of 1 means an edge exists between vertex i and j. In a directed graph an edge between

vertex i and j does not necessarily mean that there is an edge between j and i .The

adjacency matrix is not necessarily symmetric in such a case. The Peterson graph in

section 2.5 is one such example.

The Gmatrix class of Java 3D API is a class to hold the adjacency matrix of

the router network graph. The matrix is mapped onto a 3D figure of a Cylinder.The

vertical lines represent the routers. N routers correspond to N Vertical lines. The

horizontal lines are spaced across N levels on each vertical line representing that

routers connectivity to other routers which is represented as a 1 in ith row and j th

column.

7

2.5 Deriving Generalized Matrix for Graph Visualization

Due to the expanding nature of networks and the Internet in general it is important to

have a dynamic structure representing the router configuration. Matrix Algebra has

applications in many areas of mathematics, and especially in Graph Theory. A graph

is a series of vertices connected by segments called edges. A matrix whose entries are

the number of edges that connect one vertex to another may represent the term

"graph". Such matrix is also known as an Adjacency Matrix.

The adjacency matrix is a representation of a directed graph with n vertices

using an n x n matrix, where the entry at (i,j) is 1 if there is an edge from vertex i to

vertex j; otherwise the entry is 0. A Weighted graph may be represented using the

weight as the entry. An Undirected graph may be represented using the same entry in

both (i,j) and (j,i) or using an Upper Triangular Matrix. Example (Graph figure Taken

From http ://www. cs.oberl in ed u/cla ss es/dra gn/labs/graph s/graphs33 .html on 11/21/00

at 12:49 PM)

Figure 2.5.1 Peterson Graph

8

Adjacency Matrix:
1 : [2,6]
2 : [3,7]
3 : [4,8]
4 : [5,9]
5 : [1,10]
6 : [8]
7 : [9]
8 : [10]
9 : [6]
10: [7]

Generating the N x N GMatrix:

1 2 1 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 0 0 0 0

2 0 0 1 0 0 10 1 0 0 0

3 0 0 0 1 0 0 0 1 0 0

4 0 0 0 0 1 0 0 0 1 0

5 1 0 0 0 0 0 0 0 0 1

6 0 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 0 0 0 1 0

8 0 0 0 0 0 ,0 0 0 0 1

9 0 0 0 0 0 1 0 0 0 0

10 0 0 0 0 0 0 1 0 0 0

Figure 2.5.2 Generating the N x N GMatrix

A Generalized matrix is created from Java 3D class GMatrix. This GMatrix is used to

generate the 3 dimensional cylinder. This Matrix maps on to a 3D Cylinder. The

vertical lines represent the routers. N routers correspond to N Vertical lines. The

horizontal lines are spaced across N levels on each vertical line representing that

routers connectivity to other routers.

CHAPTER 3

PROGRAMMING ASPECTS FOR VISUALIZATION

3.1 Programming Aspects and Logic Flow

The program involves the following:

Figure 3.2.1 Logic Flow of the Program

Reading the matrix from a text file .The format of the file is such that the first line of

the file has a number which determines the dimension of the matrix which is a

generalized matrix — which means the dimensions of the matrix are variable and can

be decided at runtime. Generating a three dimensional figure for the matrix. The 3 D

figure is broken into different parts Which are:

• Top and Bottom of the figure Which is made of N Lines

• N lines joining the top and Bottom vertices

• Horizontal lines at different levels on the vertical lines representing the 1's in

the matrix.

• Colors to represent the incoming lines from various points at various levels on

the vertical lines.

10

1 1

• Two text Fields to accept the seed from the user in terms of row numbers and

column numbers, and a button to activate the drawing of the figure again with

the interchanged rows and columns, for visualizing various configurations.

• Two input fields to accept the color combination; this is essential to bring out

clarity of appearance and representation of the matrix.

• Various other features are attached to the 3D figure like:

o Rotation of the 3D figure about an axis

o Zoom in and Zoom out of the figure to observe the figure closely as the

lines change position or to observe a particular intensity of lines at a

particular spot.

• Various programming aspects are taken care of like Object Oriented

programming using different classes for:

o Class for top and Bottom lines

o Class for Vertical Lines for N vertical lines between top and bottom

vertices.

o Class for horizontal lines to represent l's

o Class to generate the 3D Universe in which all these geometries are put

together and various appearances and transformations and translations

applied to it.

• Platform independence Using Java and Java 3D API: this program is capable

of working on any platform provided it has the Java Virtual Machine for that

particular platform.

CHAPTER 4

MATERIALS AND METHODS

4.1 Java 3D API and choice of Java 3D API

" Java 3D is a network centric, scene-graph-based API for developing 3D Applets and

Applications" source - An official Sun statement

Java 3D's scene graph architecture makes it easier than ever to write 3D programs.

Java 3D is designed to work well across the network hence the relevance to this

project for visualizing cross platform router configurations. Java itself has a very

string scalability factor, Java 3D can run on everything from a laptop pc to a high-end

workstation and even a supercomputer, and takes advantage of the hardware as it

scales. It also scales across a range of viewing environments, from flat screens to fully

immersive computer assisted virtual environments (CAVE) systems -- without

rewriting code. Java 3D also supports the latest in virtual reality —sensor and display

devices, including head mounted displays. Java 3D is considered to be a mid — to a

high-level fourth generation 3D API. It is set apart from its predecessors by the Scene

graph architecture for organizing graphical objects in the virtual 3D world. Scene

graphs hide a lot of rendering details from the programmer along with several

advanced features for more flexible and efficient rendering.

It is possible to add 3D graphics to Java applets and applications so that a

whole Application can be created around this Visualization of routers and thus be

very useful for real world applications utilizing the features of Java paradigm itself

The application would be platform independent provided the Java Virtual Machine is

present on the system. Another reason for selecting Java 3D API for development is

because of the level of detail, flexibility and Integration with other Java Applications.

12

This can be easily seen in the following examples taken from the Java web site at

imp ://w www. java.sun. co m; and http://www.java.sun.com/produts/java

media/3D/collateral

Examples Demonstrating Integration with other Java Features

13

Fig 4.1.1 Example from www.java.sun.com demonstrating User Input

Examples demonstrating Java 3D 's compatibility with other languages like VRML

and the level of detail that can be manipulated.

14

Fig 4.1.2 Example from www.java.sun.com demonstrating Compatibility with
VRML and Level of Detail

1 5

The Java 3D core is found in the javax.media.j3d package. Java 3D relies heavily on

the javax.vecmath and java.awt packages. The vecmath package provides support for

point, vector and matrix data constructors and operations, while awt provides access

to the java windowing toolkit. The most commonly used constructors are Point 2D,

3D like Point2d, Point 3d for double precision or Point2f, Point3f for float precision.

There is also a external utility package which comes with the Java 3D core packages.

The com.sun.j3d.utils is a higher-level package. It provides some 3D objects like box,

sphere and operations like picking.

4.2 VISUALIZATION TECHNIQUES,

3D USER INTERFACE AND SCENE GRAPH

The SceneGraph is the backbone of Java 3D.In Java 3D the VirtualUniverse class

defines the highest level of object aggregation. Everything that exists in a Java 3D

scene must be attached to the Virtual Universe. It could be visible objects or invisible

elements like sound etc. There can be more than one Universe in an application but

objects can exist only in one Universe at a time.

To help the precise placement of the objects in the universe Java3D provides a

Locale class. A Locale provides a local Frame of spatial reference for the objects it

contains. The Locale is positioned in the universe with high precision and the objects

in the Locale are positioned with a lower precision. So a VirtualUniverse contains

none, one or more Locale objects and a Locale contains one or more scene graphs.

Scene Graphs hold the objects of the Universe and maintain the spatial relationship.

The VirtualUniverse and the Locale provide the world coordinate space and the scene

graph holds the objects that live in the virtual world. The SceneGraphObject class is

an abstract class and has a child class called as Node. The SceneGraph is a tree like

structure built from subclasses of node. I could be a Group node or a Leaf node. A

16

Group node can have none, one or more children nodes, which could be Group or

Leaf node. Although it can reference other objects, a Leaf node can have no children.

The Transform3D class supports basic geometric operations like basic translations,

rotations etc. It also provides access to raw matrix manipulations, which is utilized for

creating complex geometric transformations by multiplying them.

Fig 4.2.1 Example Scene Graph

17

4.3 Methods and Algorithms

Each Locale object in a VirtualUniverse establishes a virtual world Cartesian

coordinate system. A Locale object serves as the reference point for the visual objects

in a VirtualUniverse. With one Locale in a SimpleUniverse there is one coordinate

system in the VirtualUniverse.The Coordinate system of Java 3D VirtualUniverse is

right handed The x-axis is positive to the right, y-axis is positive up. The z-axis is

positive towards the viewer.

Fig 4.3.1 Orientation of axes in Virtual world

A Shape3D object defines the most common visual objects of a virtual universe. It is

one of the subclasses of the Leaf class, therefore it can be a leaf object in a scene

graph. However a shape object does not contain information about the shape or color

of the visual object so it refers to one Geometry and one Appearance node

component.

c = new Canvas3D (config);

// Create a simple scene and attach it to the virtual universe 	 User Defined
function for adding

BranchGroup scene = createSceneGraph 	nodes

scene.setCapability(BranchGroup.ALLOW_BOUNDS_READ);

SimpleUniverse u = new SimpleUniverse(c);

// This will move the ViewPlatform so the objects in the scene can be viewed.u.getViewingPlatform().setNominalViewingTransfonn();

u.addBranchGraph(scene);

Fig 4.3.2 Creation of a Scene Graph and attaching it to a virtual Universe

18

public BranchGroup createSceneGraph() {

// Create the root of the branch graph

BranchGroup objRoot = new BranchGroup();

objTransform = new TransformGroup();

objTransfonn.setCapability(TransformGroup.ALLOW_TRANSFORM_WRITE);

objTransform.setCapability(TransformGroup.ALLOW_TRANSFORM READ);

objTransfonmaddChild(new GCyl()); 	 ► For creating Cylinder

objTransform.addChild(new Vert()); 	 ►For Vertical lines

gh=new Ghorizontal(); 	 For horizontal lines

gh.setCapability(Shape3D.ALLOW_GEOMETRY_READ);

gh.setCapability(Shape3D.ALLOW_GEOMETRY_WRITE);

gh.setCapability(Shape3D.ALLOW_APPEARANCE_READ);

gh.setCapability(Shape3D.ALLOW_APPEARANCE WRITE);

objTransform.addChild(gh);//new GhorizontalO);

objRoot.addChild(objTransform); 	 For various transformations
.fts

MouseRotate myMouseRotate = new MouseRotate();

myMouseRotate. setTransformGroup(objTransform);

myMouseRotate.setSchedulingBounds(new BoundingSphere());

objRoot.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate();

myMouseTranslate.setTransformGroup(objTransform);

myMouseTranslate.setSchedulingBounds(new BoundingSphere());

objRoot.addChild(myMouseTranslate);

MouseZoom myMouseZoom = new MouseZoom();

my MouseZoom.setTransformGroup(objTransform);

myMouseZoom.setSchedulingBounds(new BoundingSphere());

obj Root.addChild(myMouseZoom);

return objRoot;

} // end of CreateSceneGraph method of GCylLineapp

Fig 4.3.3 Creation of Branch Group to place into the Scene Graph

Fig 4.3.4 Router Configuration Scene graph (contained in Package CylPkg)

19

CHAPTER 5

CONCLUSIONS

5.1 Results and observations

During the entire research it was observed that currently the various companies have

some basic 2 dimensional views of the data to be shown. The complex structure like

Web sites or the router networks becomes very difficult to comprehend in such

figures. It needs complex analysis and several resources to utilize such information. It

was observed that once such data is Visualized in 3 Dimensions it becomes simplified

even for a layman to understand the interconnections.

The most interesting aspect is when the frequency matrix is mapped onto the

Cylinder, which gives a real world application to this thesis, by creating as tool for

analyzing the network load.

A module was created to constantly update the matrix dynamically so that a

simulation of network load could be performed and the cylinder constantly updated

the data thus creating a very strong visualization factor to it. This could be very useful

in detecting of security breaches where the number of horizontal lines going into a

point increase dramatically could be an alarm for a network.

5.2 Manipulations after Visualization

The cylinder could be redrawn, after giving it a numeric field, which represents the

row and column number. This could be used to simulate manipulation of a network

for load balancing purposes. The research also involved applying this Visualization

technique on web sites. The result in both cases, Router configurations and Web sites,

were positive , i.e. in both cases manipulation was done much more efficiently due to

the easier understanding of 3D figures and better representation.

20

APPENDIX A

CODE LISTING

/*

1.

This program draws two line strip arrays for the top and bottom of the cylinder in a class
GCyl which has a GCylGeometry function that returns the geometry of top and bottom of
the cyl.

2.

It has a class Vert which draws a line array between the top and bottom of the cylineder
It has s function called rVert which returns the geometry object with the line strip

3.

I has a class which Draws horizontal links from various vertical lines .

4.

The Scenegraph adds two children nodes with objects of these geometries.

5.

Reads matrix from a file and incorporates into the program to create the GMatrix

6.

Color Transformations incorporated, interaction for color etc. can be done though can be
modified for much higher levels of changes like check boxes, list, textboxes etc.

*1

import java.awt.*;
import java.awt.event.*;
import java.awt.event.WindowAdapter;
import java.awt.Color;
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.BorderLayout;
import java.awt.Frame;
import javax.swing.*;
import javax.swing.event.*;

21

import java.applet.Applet;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.applet.MainFrame;
import com.sun.j3d.utils.universe.*;
import com.sun.j3d.utils.behaviors.mouse.*;
import javax.media.j3d.*;
import javax.vecmath. *;
import java.util.StringTokenizer;
import java.io.*;
import javax.vecmath.GMatrix;

/*
*
*Class for creating Standard Colors
*
*1

class Colors
{

public static final Color3f red = new Color3f(1.0f,0.0f,0.0f);
public static final Color3f green = new Color3f(0.0f,1.0f,0.00;
public static final Color3f blue = new Color3f(0.0f,0.0f,1.00;
public static final Color3f yellow = new Color3f(1.0f,1.0f,0.0f);
public static final Color3f cyan = new Color3f(0.0f,1.0f,1.00;
public static final Color3f magenta = new Color3f(1.0f,0.0f,1.00;
public static final Color3f white = new Color3f(1.0f,1.0f,1.00;
public static final Color3f black = new Color3f(0.0f,0.0f,0.00;

}

public class CylPkg extends Applet implements ActionListener{
/*
*

*Variable Declaration
*
*1

int N;	 //VARIABLE TO HOLD DIMENSION OF MATRIX
n+ 1=N
Point3f topc[];
Point3f botc ;
TransformGroup obj Transform;
static int objectCount;//for Standards button manipulation
JLabel text, clicked;
JButton button, clickButton,colButton,standards;
JPanel panel,fpanell,f1;

22

23

JTextField tl,t2;
JList 11,12;
char flag;
Canvas3D c;
GMatrix A;
Color3f col,coll,col2;
Ghorizontal gh;
private boolean _clickMeMode = true;

//frame for text boxes and matrix switching
public Color3f CArr[]=new
Color3f[] {Colors.red,Colors.green,Colors.blue,Colors.yellow,Colors.cyan,Colors.magent
a,Colors.white,Colors.black};

/*
*
*Class Constructor declaration
*
*/

public CylPkg() {

//Local Variables
double nbr;float percent=0.2f;

//Swing elements for user Input for Matrix switching and color manipulation
setLayout(new BorderLayout());
GraphicsConfiguration config =
SimpleUniverse.getPreferredConfiguration();
JPanel p = new Panel();
p. setLayout(new FlowLayout());
text = new JLabel("Enter row and column to switch");
button = new JButton("Click to switch");
colButton=new JButton("Color Change");
standards=new JButton("Standard Matrices");

t1=new JTextField(5);
t2=new JTextField(5);

//Variables for Color manipulation
col 1=new Color3f(1 .0f, 1 . Of,1 .00;
col2=new Color3f(1.0f,1.0f,1.01);
//declaring color constants
11=new JList(new String[] {"red","green","blue", "yellow","cyan",
"magenta", "white","black"});
12=new JList(new String[]{"red","green","blue", "yellow", "cyan",
"magenta","white","black"});

24

11.setSelectedIndex(0);
11.setVisibleRowCount(1);
ListSelectionModel lsm 11.getSelectionModel();
lsm.setSelectionMode
(ListSelectionModel. SINGLE SELECTION);
JScrollPane pane = new JScrollPane (11);
12.setSelectedInd.ex(0);
12.setVisibleRowCount(1);
ListSelectionModel Ism2 12.getSelectionModel();
lsm.setSelectionMode(ListSelectionModel.SINGLE_SELECTION
);
JScrollPane pane2 = new JScrollPane (12);

//Adding Action Listeners
button. addActionListener(this);
colButton.addActionListener(this);
standards.addActionListener(this);
p.add(t1);
p.add(t2);
p.add(button);
p.add(pane);
p.add(pane2);
p. add(colButton);
p.add(standards);
add("North", p);

//adding Canvas
c = new Canvas3D(config);
add("Center",c);
add(" South",text);

/*
*

Creating GMatrix
*1

FileRead f=new FileRead();
A=new GMatrix(fgetGM());
N=f. getN()+ 1;
topc=new Point3fIN];
botc=new Point3f[N];
System.out.println("VALUE OF N IS "+N);
System.out.println("lengths "+botc.length);

25

// Create a simple scene and attach it to the virtual universe

BranchGroup scene = createSceneGraph();
scene.setCapability(BranchGroup.ALLOW_BOUNDS_READ);
SimpleUniverse u = new SimpleUniverse(c);

/1 This will move the ViewPlatform back a bit so the objects in the scene can be viewed.

u.getViewingPlatformasetNominalViewingTransform();
u.addBranchGraph(scene);
System.out.println("obj count is"+objectCount);

Illend constr

//Another constructor with string filename
public CylPkg(String fileName) {

double nbr;float percent=0.2f,
setLayout(new BorderLayout());
GraphicsConfiguration config =
SimpleUniverse.getPreferredConfiguration();
JPanel p = new JPanel();
p. setLayout(new FlowLayout());
text = new JLabel("Enter row and column to switch");
button = new JButton("Click to switch");
colButton=new JButton("Color Change");
standards—new JButton("Standard Matrices");
t1=new JTextField(5);
t2=new JTextField(5);
col 1=new Color3 f(1 .0f, 1 .0f, 1 .00;
col2=new Color3f(1.0f,1.0f,1.00;

//declaring color constants
11=new JList(new Stringn{"red","green", "blue","yellow","cyan", "magenta", "white",
"black" });
12=new JList(new Stringn{ "red","green", "blue","yellow","cyan","magenta", "white",
"black" });
11.setSelectedIndex(0);
11.setVisibleRowCount(1);
ListSelectionModel Ism = 11.getSelectionModel();
Ism.setSelectionMode (ListSelectionModel.SINGLESELECTION);
JScrollPane pane = new JScrollPane (11);
12.setSelectedIndex(0);
12.setVisibleRowCount(1);
ListSelectionModel lsm2 = 12.getSelectionModel();

Ism.setSelectionMode (ListSelectionModel.SINGLE_SELECTION);
JScrollPane pane2 = new JScrollPane (12);
button. addActionListener(this);
colButton.addActionListener(this);
standards. addActionListener(this);
p.add(t1);
p.add(t2);
p. add(button);
p. add(pane);
p.add(pane2);
p.add(colButton);
add("North", p);
c = new Canvas3D(config);
add("Center",c);
add("South",text);

//creating GMatrix
FileRead f=new FileRead(fileName);
A=new GMatrix(fgetGM());
N=f. getN0+ 1;
topc=new Point3f[N];
botc=new Point3f[N];

System.out.println("VALUE OF N IS "+N);
System.out.println("lengths "+botc.length);

// Create a simple scene and attach it to the virtual universe
BranchGroup scene = createSceneGraph();
scene.setCapability(BranchGroup.ALLOW_BOUNDS_READ);
SimpleUniverse u = new SimpleUniverse(c);

// This will move the ViewPlatform back a bit so the
// objects in the scene can be viewed.

u.getViewingPlatform().setNominalViewingTransform();

u.addBranchGraph(scene);

}fiend constr

public BranchGroup createSceneGraph() {

// Create the root of the branch graph
BranchGroup objRoot = new BranchGroup();
objTransform = new TransformGroupO;
obj Transform. setCapability(TransformGroup.ALLOW_TRANSFORM_
WRITE);

26

27

objTransform.setCapability(TransformGroup.ALLOW_TRANSFORM_R
EAD);
objTransform.addChild(new GCy1O);
objTransform.addChild(new Vert());
gh=new GhorizontalO;
gh.setCapability(Shape3D.ALLOW_GEOMETRY_READ);
gh.setCapability(Shape3D.ALLOW_GEOMETRYWRITE);
gh.setCapability(Shape3D.ALLOW APPEARANCE READ);
gh.setCapability(Shape3D.ALLOW_APPEARANCE_WRITE);
obj Transform .addChild(gh);//new GhorizontalO);
objRoot. addChild(obj Transform);

//Adding Mouse Behaviors
MouseRotate myMouseRotate = new MouseRotate();
myMouseRotate. setTransformGroup(obj Transform);
myMouseRotate.setSchedulingBounds(new BoundingSphere());
objRoot.addChild(myMouseRotate);

MouseTranslate myMouseTranslate = new MouseTranslate();
myMouseTranslate. setTransformGroup(obj Transform);
myMouseTranslate. setSchedulingBounds(new BoundingSphere());
objRoot.addChild(myMouseTranslate);

//Zoom In / Zoom out
MouseZoom myMouseZoom = new MouseZoom();
myMouseZoom.setTransformGroup(obj Transform);
myMouseZoom.setSchedulingBounds(new BoundingSphere());
objRoot.addChild(myMouseZoom);

return objRoot;
} // end of CreateSceneGraph method of GCylLineapp

public void actionPerformed(ActionEvent event)

Object source = event.getSource();
if (source.equals(button))

///matrix transformations
//show original matrix

text.setText("Switching Matrix");
//algorithm to switch matrix.
double tinp,
//extract variables from text boxes
int nl,n2;

n1=Integer.parseInt(tl.getText());
n2=Integer.parseInt(t2.getText());
text.setText("values are "+tl.getText()+t2.getText());
try{
for(int i=0;i<N-1;i++)

{

//switching row
tmp=A.getElement(n1,i);

A.setElement(n1,i,A.getElement(n2,i));
A. setElement(n2,i,tmp);
String str=A.getElement(i,n1)+"
"+A.getElement(i,n2);
System.out.println("row
switch\t"+i+"\t"+A.getElement(i,n1)+" " +

A.getElement(i,n2));
//col
tmp=A.getElement(i,n1);
A.setElement(i,n1,A.getElement(i,n2));
A. setElement(i,n2,tmp);

}//for end

//redrawing horizontal lines
try{

requestFocusO;
c.postSwapO;
gh.setGeometry(gh.rhorz());}
catch(BadTransformException be)

{

System. out. println("BadTransformException in
here");}

}//try end
catch(ArraylndexOutOfBoundsException e)

System. out.println("Array Out of Bounds somewhere");
}fiend catch

}//if true condition end
else
{

//////Color transformations
if(source.equals(colButton))
{

float n1,n2,n3;
int cl1=11.getSelectedIndex();;
int c22=12.getSelectedIndex();

28

coll=CArr[c11];
col2=CArr[c22];
gh.setGeometry(gh.rhorz());
}//end if
else
if(source.equals(standards))
{
final Frame frCyl = new Frame();
frCyl.add(new Standards());
frCyl.pack();
frCyl.setVisible(true);
frCyl.setSize(700, 700);
}

}fiend if

}fiend action performed
/*
*

*Main Method
*
*1

// The following allows this to be run as an application as well as an applet

public static void main(String[] args) {
Frame frame = new MainFrame(new CylPkg(), 556, 556);

} // end of main method of CylPkg

1*
*

*Class Ghorizontal
*
*/

public class Ghorizontal extends Shape3D{

public Ghorizontal() {
this.setGeometry(rhorz());

} // end of GCyl constructor

private Geometry rhorz()

int NoLines=N;
LineArray tfa;
Point3f pinit[];
Point3f Pend[];

29

int k=0;
double a,b;
float x,y;
float w=-0.4f;
float r=O.4f;
int ctlines=0;

ctlines=N*N;llincrease ctlines irrespectiev of even / odd number
tfa=new LineArray (500*500,LineArray.COORDINATESILineArray.COLOR3);
pinit=new Point3f[2*ctlines];
pend=new Point3f[2*ctlines];
System.out.println("pend length = "+pend.length);

for (int i = 0; i < pinit.length; i++)
{

pinit[i] = new Point3f();
pend[i]=new Point3f();
}

float zp=botc[1].distance(topc[1]);
zp=zp/(N-2);
Point3f 122,1;int t=0;
for(int i=0;i<N-1;i++)
{

x=botc[i].x;
y=botc[i].y;

w=botc[1].z+zp*i;
for(int j=0;j<N-2;j++)
{

double q=A.getElement(i,j);

if((q==1.0)&&(i!=j))
{	 if(i=0)

{

tfa.setCoordinate(k,botc[1]);
k++;
tj+ 1 ;
tfa.setCoordinate(k,botc[t]);
k++;

}

else
{

if(j<12)
col=col 1 ;//new Color3f(1 0f,0. 0f,0. 0f);
else
col=col2;//new Color3f(0.0f,1.0f,0.0f);

30

1=new Point3f(x,y,w);
tfa.setCoordinate(k,1);
tfa.setColor(k,col);
k++;
t=j+1;
x=botc[t].x;
y=botc[t].y;
122=new Point3f(x,y,w);
tfa. setCoordinate(k,122);
tfa. setColor(k,col);
k++;
x=botc [i+1]. x;
y=botc[i+1].y;
}

}
}//end of for

}
return tfa;
} // end of method ghorz
}//end class

/**
*class Vert
*
*/

public class Veil extends Shape3D

public Vert()
{

this.setGeometry(rVert());
this. setAppearance(VertAppearanceO);

// end

private Appearance VertAppearance 0 {

Appearance appearance = new Appearance();
PolygonAttributes polyAttrib = new PolygonAttributes();

//polyAttrib.setPolygonMode(PolygonAttributes.POLYGON_LINE);
polyAttrib.setCullFace(PolygonAttributes.CULL_NONE);

31

appearance. setPolygonAttributes(polyAttrib);
PointAttributes pointAttrs = new PointAttributes();
pointAttrs. setPointSize(3.0f);

ColoringAttributes colorAttrs = new ColoringAttributes();
colorAttrs. setColor(1.0f, 1.0f, 0.00;
appearance.setPointAttributes(pointAttrs);
appearance. setColoringAttributes(colorAttrs);

return appearance;

} // end of method gCylAppearance of class GCyI

private Geometry rVert()
{

LineArray vl=new LineArray (2*N,LineArray.COORDINATES);
Point3f pbota=new Point3f[N];
Point3f ptop[]=new Point3f[N];

Point3f pbotc[]=new Point3fIN];
LineStripArray tfa;

int totalN = 2*(N+ 1);
Point3f coords[] = new Point3f[totalN];
int stripCounts[] = N+ 1, N+1 };//, N+ 1 };
float r = 0.4f;
float w = 0.4f;
int	 n;
double a;
float x, y;

//initialise coords
for (int i = 0; i < coords.length; i++)

coords[i] = new Point3f();

//horizontal lines for top and bottom

for(a = 0,n = 0; n < N; a = 2.0*Math.P1/(N-1)*++n){
x = (float) (r * Math.cos(a));
y = (float) (r * Math.sin(a));
coords[0*(N+ 1)+n+ 1] = new Point3f(x, y, w);
coords[1 *(N+ 1)+n] = new Point3f(x, y,-w);

}

coords[0]=coords[1];

32

tfa = new LineStripArray (totalN,LineStripArray.COORDINATES,stripCounts);
tfa. setCoordinates(0, coords);

//top and bottom coords
tfa. setCapability(Shape3D.ALLOW_GEOMETRY_READ);
int i,j;

for (i 0; i < topc.length; i++)
topc[i] = new Point3f();
tfa.getCoordinates(0,topc);

for (j = 0; j < botc.length; j++)
{

botc[j] = new Point3f();

tfa.getCoordinates(i,botc);

for (j = 0; j < pbotc.length; j++)
{

pbotc[j] = new Point3f();

for(i=0,j=0;i<topc.length;i++,j++)

vl.setCoordinate(j,topc[i]);
j++;
vl.setCoordinate(j,botc[i]);

System.out.println(botc.length+" lengths "+ topc.length);
return v1;
}//end vert lines

Pend vert class

/*
*class GCyl
*/

public class GCyl extends Shape3D{

public GCyl() {
this. setGeometry(gCylGeometryO);
this.setAppearance(gCylAppearance());

// end of GCyl constructor

33

private Geometry gCylGeometry() {

LineStripArray tfa;
int totaiN = 2*(N+1);
Point3f coords[] = new Point3f[totalN];
int stripCounts[] = N+1, N+1};//, N+1};
float r = 0.4f;
float w = 0.4f;
int n;
double a;
float x, y;
for (int i = 0; i < coords.length; i++)

coords[i] = new Point3f();

//horizontal lines for top and bottom
tfa = new LineStripArray (totalN,LineStripArray.COORDINATES,stripCounts);

for(a = 0,n = 0; n <N+1; a = 2.0*Math.P1/(N-1)*++n)

X = (float) (r * Math.cos(a));
y = (float) (r * Math.sin(a));
coords[0*(N+1)+n] = new Point3f(x, y, w);
coords[1 *(N+1)+n] = new Point3f(x, y,-w);

}

tfa. setCoordinates(0, coords);
return tfa;
} // end of method gCylGeometry in class GCy1

private Appearance gCylAppearance () {

Appearance appearance = new Appearance();
PolygonAttributes polyAttrib = new PolygonAttributes();
polyAttrib.setCullFace(PolygonAttributes.CULL_NONE);
appearance. setPolygonAttributes(polyAttrib);

PointAttributes pointAttrs = new PointAttributes();
pointAttrs.setPointSize(3.00;

ColoringAttributes colorAttrs = new ColoringAttributes();
colorAttrs.setColor(1.0f, 0.0f, 1.0f);
appearance. setPointAttributes(pointAttrs);
appearance.setColoringAttributes(colorAttrs);
return appearance;

} // end of method gCylAppearance of class GCy1

} // end of class GCyI

34

/*
*File raeding class
*1

public class FileRead {

private int x=0;
private String s;
private GMatrix gm;
private int N;
FileRead()

//Read from file
try {
BufferedReader br=new BufferedReader(new
FileReader("Test.doc"));//mat.txt"));

s=br.readLine();//for.	 value of N
System.out.println(s);
N=Integer.parseInt(s);
// creating GMatrix

gm=new GMatrix(N,N);
System.out.println("GMatrix created");

try{
Thread. sleep(1000);

catch(InterruptedException ie)
{

System.out.println("th intr");
}

//READING DATA
for(int i=0;i<N;i++)

s=br.readLine();
StringTokenizer t=new StringTokenizer(s," ");
System.out.println("\n");
for(int j=0;j<N;j++)

35

{

x—Integer.parseInt(t.nextToken());
System.out.println(x);
gm.setElement(ij,x);
x=0;

//displaying from GMatrix

System. out. println("DISPLAYING FROM GMATRIX");

try(
Thread.sleep(1000);

}

catch(InterruptedException ie)
{

System.out.println("th intr");

for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
System.out.println(gm.getElement(i,j));

catch(java.io.I0Exception e)
{

System.out.println("Cannot read from text.txt");
}

}//end of constr

GMatrix getGM()

return gm;
}

int getN0
{

return N;
}

36

//other constructor for string
FileRead(String fileName)

//Read from file
try {

BufferedReader br=new BufferedReader(new FileReader(fileName));
s=br.readLine();//for value of N
System.out.println(s);
N=IntegerparseInt(s);
// creating GMatrix
gm=new GMatrix(N,N);
System.out.println("GMatrix created");

try{
Thread. sleep(1000);

}

catch(InterruptedException ie)
{

System.out.println("th intr");

//READING DATA
for(int i=0;i<N;i++)

s=brreadLine();
StringTokenizer t=new StringTokenizer(s," ");
System.out.println("\n");
for(int j=0;j<N++)
{

x=Integer.parseInt(t.nextToken());
System.out.println(x);
gm.setElement(i,j,x);
x=0;

}

System.out.println("DISPLAYING FROM GMATRIX");

try{
Thread. sleep(1000);

catch(InterruptedException ie)

37

38

{

System.out.println("th intr");

for(int i=0;i<N;i++)
for(int j=0;j<N;j++)
System.out.println(gm.getElement(i,j));

catch(java.io.IOException e)
{

System.out.println("Cannot read from text.txt");
}

Illend of constr
)//end of class

// end of class CylPkg

class Standards extends Applet implements ActionListener{
// ,ListSelectionListener {

JLabel text;
JButton standards;
JPanel panel;
JList 11;//,12;

public Standards()
{

JPanel p = new JPanel();
p. setLayout(new FlowLayout());
text = new JLabel("Click on the Matrix Standard to see");
standards=new JButton("Generate Matrices");
//declaring color constants
String[] str={"Band Diagonal","Block Trianular","Block
TriDiagonal","SinglyBordered Block Diagonal","DoublyBordered Block
Diagonal","SinglyBordered Block Trianular","Bordered Band Triangular","Singly
Bordered band Diagonal","Doubly Bordered band
Diagonal","Examplel","Example2","Example3","Example4","Example5 VICIM
S","Enikia"};
11=new JList(str);
11.setSelectedIndex(0);
11.setVisibleRowCount(1);
ListSelectionModel Ism = 11.getSelectionModel();
ism. setSelectionMode
(ListSelectionModel.SINGLESELECTION);
JScrollPane pane = new JScrollPane (11);

39

standards. addActionListener(this);
p.add(text);
p.add(11);
p.add(pane);
p.add(standards);
add(p);
//end constr

public void actionPerformed(ActionEvent event)

Object source = event.getSource();
if (source. equals(standards))
{

String fileName=new String();
System.out.println("nothing");
String matrixName=(String)11.getSelectedValue();
//code for matrix
System.out.println("Matrix type selected is"+matrixName);
int x=11.getSelectedIndex();
System.out.println("Matrix type selected is"+matrixName+"index
is"+x);
//Generating Figure according to the Standard matrix form
System.out.println("Matrix type selected is"+ x);

switch(x)
{

case O:System.out.println("Band Diagonal");
fileName="BandDiag.doc";
break;

case 1:System.out.println("Block Triangular");
fileName="BlockTriangular.doc";
break;

case 2:System.out.println("Block TriDiagonal");
fileName="BlocktriDiag.doc";
break;

case 3:System.out.println("SinglyBordered Block Diagonal");
fileName="SinglyborBlkD.doc";
break;

case 4:System.out.println("DoublyBordered Block Diagonal");
fileName="DoublyBordBD.doc";
break;

case 5:System.out.println("SinglyBordered Block Trianular");
fileName="SBB1kTri.doc";
break;

case 6:System.out.println("Bordered Band Triangular");
fileName="BorderedBandTr.doc";
break;

40

case 7:System.out.println("Singly Bordered band Diagonal");
fileName="SinglyBorBDiag.doc";
break;

case 8:System.out.println("Doubly Bordered band Diagonal");
fileName="DoublyborBlkD.doc";
break;

case 9:System.out.println("Examplel");
fileName="Examplel.doc";
break;

case 10:System.out.println("Example2");
fileName="Example2.doc";
break;

case 12:System.out.println("Example3");
fileName="Example3.doc";
break;

case 13:System.out.println("Example4");
fileName="Example4.doc";
break;

case 14: System.out.println("Example5");
fileName="Example5.doc";

case 15:System.out.println("ICIMS");
fileName="icims.txt";

case 16:System.out.println("Enikia");
fileName="enikia.txt";
break;

default:System.out.println("Select another choice");
Wend switch

final Frame frCyl = new Frame();
frCyl.add(new CylPkg(fileName));
frCyl. pack();
frCyl.setVisible(true);
frCyl.setSize(500, 500);
frCyl.addWindowListener(new
WindowAdapterO
{

public void windowClosed(WindowEvent e
{

frCyl.dispose();

});
}fiend action performed

}

} // end of class Standards

REFERENCES

[1] Andrew S. Tanenbaum, Computer Networks, Prentice Hall, India, 1999.

[2] Corner, D.E, Internetworking with TCP/IP, Von, 3rd ed., Engelwood

Cliffs , NJ:Prentice Hall 1995.

[3] Day, J.D, and Zimmerman, H.: "The OSI Reference Model", Proc. Of the

IEEE, vol 71, pp.1334-1340, Dec.1983.

[4] McBryan, O.:"GENVL and WWWW: Tools of Taming the Web," Proc.

Cambridge Security WorkShop, Springer-Verlag, pp. 1-17, 1994.

[5] Ford, L.R., Jr., and Fulkerson, D.R.: Flows in Networks, Princeton, NJ:

Princeton University Press, 1962

[6] Ford, P.S., Rekhter, y., and Braun, H.-W.: "Improving the Routing and

addressing of IP," IEEE Network Magazine, vol.7, pp. 10-15, May/June

1993.

[7] Barilleaux, Jon , 3D User Interfaces, 1 st ed,Greenwich,CT Manning

2000.

[8] Ammeraal, Leen, Computer Graphics for Java Programmers,West

Sussex, England,Wiley & Sons 2000.

[9] RFC's 1131, 1245, 1253, 1583.

[10] http://archives.math.utk.edu/ICTCM/EP-10/C31/html/paper.html On

11/21/00 12:40 P.M.

[11] http://hissa.nist.gov/dads/HTML/adjcncymtrxr.htmlOn 11/21/00

12:45 PM.

[12] http://www.cs.oberlin.edu/classes/dragn/labs/graphs/graphs33.html

11/21/00 12:49 P.M.

[13] http://www.ietf.org/rfc/rfc2328.txt 11/21/00 12:57 PM.

41

[14] http://www.cse.bris.ac.uk/comms/ccejp/mrtg-shark/cse-a-cpu.html

11/20/00 11:17 P.M.

[15] http://wwwjava.sun.com 12/4/2000 12.22 P.M.

[16] Bela, Bollobas, Modern Graph Theory, Springer-Verlag volume 184, 1998.

42

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgement
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Router Configuration and Protocols
	Chapter 3: Programming Aspects for Visualization
	Chapter 4: Materials and Methods
	Chapter 5: Conclusions
	Appendix A: Code Listing
	References

	List of Figures

