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ABSTRACT

REACTIVE MEDIA FOR CHROMIUM REDUCTION UNDER ALKALINE
CONDITIONS FOR USE IN PERMEABLE REACTIVE BARRIERS

by
Sachin V. Apte

The purpose of this study was to select the appropriate reactive media for chromate

reduction to treat groundwater (high pH) with permeable reactive barriers. The study

addresses groundwater contamination for three chromium refining sites located in

Hudson County, New Jersey. The use of iron (Fe °) as a reactive medium was studied and

found to be insufficient for use in permeable reactive barriers because of the high pH

conditions of groundwater at these sites. Pyrite and iron (Fe °)-pyrite mixtures were

studied as viable reactive media by considering their passivation kinetics, reductive

capacities and solubility properties.

Column experiments were carried out with different volumetric ratios of pyrite and

iron (Fe°)-pyrite mixtures with combination of aquifer materials (sand) to calculate the

maximal chromium accumulation necessary to accurately estimate the capacities of

reactive media. The iron (Fe°)-pyrite mixture was found to be suitable for treating

chromate-contaminated groundwater at the high pH conditions. The reactive media

capacities of these mixtures were found to be satisfactory for successful use of permeable

reactive barriers to treat the three sites.

We recommend the use of iron (Fe °)-sand mixture as a reactive medium for the

Allied Signal site (#NJL 000005033) and iron (Fe^0-pyrite-sand mixture as the reactive

medium for both the P.P.G (#NJL 000005017) and the Chemical Land Holding sites.
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CHAPTER 1

INTRODUCTION

1.1 Permeable Reactive Barrier

A permeable reactive barrier (PRB) is a passive treatment zone of reactive material that

degrades or immobilizes contaminants as groundwater flows through it Figure 1.1. The

contaminants in groundwater react with the reactive media where they are transformed

into harmless precipitates within the barrier (1,2). Being passive, the barrier does not

require any power or maintenance for a long period of time, possibly years. The

application of the permeable reactive barrier technology requires a thorough knowledge

of the reactivity of reactive media with the specific contaminant present in the

groundwater. In this study, we are concerned with the treatment of chromium-

contaminated groundwater, specifically for the case of chromium refining waste sites

located in Hudson County, New Jersey.

Figure 1.1 Permeable Reactive Barrier

1
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1.2 Oxidation States of Chromium and Mechanism of Chromate Reduction

Chromium is a commonly identified groundwater contaminant. It is present in nature

mostly as chromite ore, with a nominal composition of FeO.Cr2O3  (3). Chromium present

in the chromite ore is in the trivalent state, Cr (III). The other most common valence state

of chromium is hexavalent, Cr (VI). Oxidation potential and pH of the environment are

the two most important factors determining the ratio of the two common valence states

(Cr III/Cr VI) in any physical system.

Hexavalent chromium species are stable in an oxidizing atmosphere, whereas the

trivalent species dominate in a reducing environment (4). At pH>6, Cr can exist as

chromate ion, CrO4^2-. Despite the strong adsorption affinity of chromate ion to certain

mineral surfaces, it is mobile in subsurface systems compared to Cr (III) species (5). Due

to its mobility, chromate ion is an environmental concern due to its toxic and

carcinogenic properties (4).

Reduction of Cr (VI) by iron, with main focus on ferrous ions in solution, and in the

presence of iron bearing minerals are reported in the literature. Gould (6) examined the

reduction of Cr (VI) and showed that iron (Fe °) surfaces are effective in reducing Cr (VI)

to Cr (III) under low pH conditions. A corrosion mechanism proposed to explain this

reduction process (7). As iron metal corrodes in water, ferrous ion is produced at local

anodic sites, and acid is consumed by forming hydrogen gas at local cathodic sites (8).

Elemental iron (Fe°) is also used in permeable reactive processes as a means of enhancing

abiotic reductive dechlorination of organic compounds (9,10). Reduction of Cr (VI) to Cr

(III) occurs rapidly under acidic conditions (11,12). The reduction rate decreases with

increasing the pH of groundwater to be treated (13,14,15). Elemental iron (Fe °) has the
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potential to induce rapid reduction to Cr (III) which subsequently precipitates to form a

mixed Cr (III)-Fe (III) oxyhydroxide (16).

1.3 Iron as Reductive Media for Cr (VI) at Different pH

Iron, as the reductive media for Cr (VI) reduction at different pH, has been studied for its

effectiveness in the treatment of contaminated groundwater. Experimental modeling

(16,17), barrier installation and post-installation monitoring (18,19) have confirmed that

elemental iron is effective in removing CrO4^2- ion from the aqueous phase at intermediate

pH conditions. The systematic investigation for chromium reductions with ferrous ions is

well known (20,21,22) and is sufficiently rapid (20) at neutral to alkaline pH (7-10). The

precipitation of a mixed Cr (III)-Fe (III) oxyhydroxide occurs at pH values between 5-11

(19,21) which generally lowers the total dissolved concentration of Cr (III) less than the

drinking water standards of 0.1 ppm. However formation of the hydroxide complexes

results in higher solubilities if the pH is increased above 11 (21). This is often considered

as a serious restriction for the treatment of hexavalent chromium at higher pH (>11).

Fundamentally the decline in reduced chromium precipitation can occur too at initial pH

values lower than 11, because of the oxidation of Fe ° to Fe2+ results in increase in pH

(7,15), as follows:

The pH increase due chromium reduction and chromium-iron hydroxide formation is

confirmed from the following net reaction (7):
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As the moderate pH is more favorable for chromium removal, the application of ferrous

(Fe2+) bearing minerals, such as pyrite and siderite, is well known. Prior to this study,

there was no systematic investigation of Cr (VI) reduction with the use of elemental iron

(Fe°) at extreme high pH (>11).

1.4 Pyrite as a Reductive Media for Cr (VI) at Different pH

Pyrite is used as reductive media for moderating the pH of contaminated groundwater

(23,24). The oxidation of pyrite produces acid, which offsets the acid consumed during

the oxidation of Fe° . In the presence of oxygen, the net reaction of pyrite oxidation is as

follows:

Desai (38) shows that these minerals even under high pH conditions have lowered

chromium concentrations. Also the Cr (VI) reduction with pyrites in the absence of

oxygen is increased due to the production of acids, as shown in the Equation [1.4.1] .

There is no systematic investigation of Cr (VI) reduction with the use of pyrite at high

alkaline pH. Reduction of Cr (VI) with pyrite under highly alkaline pH condition is a

major part of this research.

1.5 Chromite Ore Processing Residue (COPR)

The industrial conversion of Cr (III) in chromite ore to the soluble hexavalent form is

called the chromium refining process. This process is accomplished by roasting the

chromite ore in the presence of soda ash, lime and air at about 1100-1150 °C, and thereby

converting the trivalent chromium to water-soluble chromate i.e., Cr (VI). The yield of

this process is usually between 65 % to 85 %, based on the content of chromium in the
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ore (25,26). Mixed Cr (III)-Cr (VI) solid residue waste is generated from this high

temperature kiln process. This residue is alkaline in nature since lime and soda ash are

used in this process. Earlier in the century, such residue was landfilled in sites near the

production facilities. The ratio of Cr (III) to Cr (VI) in refining wastes varied depending

on the original nature of the residue, production process, pH and other transformations

that may have taken place since landfilling (27,28,29). Because of these reasons, soluble

Cr (VI) species from these landfills have been found to significantly contaminate

groundwater in the vicinity of these sites (30). That is why it is necessary to develop a

technology to treat groundwater with high pH values, > 11.

1.6 Reactive Media Selection for PRB Application at High Alkaline pH

The selection of reactive media for chromate removal with permeable reactive barriers

from groundwater under alkaline conditions (pH about 12) needs to be investigated as

most of the chromium-contaminated sites in New Jersey are high pH. The reactivity of

reactive media was measured for elemental iron (Fe °) of different types and for their

mixtures with pyrite using groundwater from three COPR sites in Hudson County, New

Jersey. The reactive capacity of Fe° at high pH is low, and is deemed inefficient for use in

permeable reactive barriers. Mixtures of elemental iron (Fe °) with pyrite mineral has been

found to have reactive capacities almost 10 times larger than those of iron alone, and thus

making such mixtures as potential candidates for groundwater remediation at pH > 11.

1.7 Objective of the Work

The main objective of this research was to select the best reactive medium to be used in

permeable reactive barriers to treat chromate-contaminated groundwater under the high
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alkaline conditions present at New Jersey sites. The study was carried out with the

following objectives:

1. To study the performance of elemental iron (Fe °) at pH > 11.0,

2. To assess pyrite and siderite minerals as reduction media under the high pH

conditions, > 11.0,

3. To determine the reactive capacities of Fe°-pyrite and Fe°-siderite mixtures, at high

pH, > 11.0,

4. To experimentally determine the reactive media capacity, and to predict the PRB

lifetime by batch experiments,

5. To combine the generated information with existing literature to evaluate models,

especially with respect to assessment of long-term performance and passivation of

permeable reactive barriers, and

6. To evaluate the barrier critical thickness necessary for 30 years active life for the

three COPR sites in New Jersey.

1.8 Organization of Thesis

In Chapter 2, we will discuss the materials, experimental procedures and analytical

methods used in this research. In Chapter 3, we will discuss reactive media capacity and

prediction of permeable reactive barrier lifetime for the three COPR sites from Hudson

County, New Jersey. In Chapter 4, we present and discuss the results of the various

experiments for predicting the suitable reactive media for all the sites, and evaluate the

critical barrier thickness for each of the sites.



CHAPTER 2

EXPERIMENTAL PROCEDURES

The groundwater samples used in the thesis were obtained from extraction wells present

at three sites located in Hudson County, New Jersey, namely: Chemical Land Holding,

Allied Signal and P.P.G sites. Table 2.1 summarizes the pH, Eh, and total chromium

concentrations of groundwater samples used in this study. The pH of all groundwater of

these sites is alkaline and ranges between 11.5 and 12.35. For the evaluation of residence

time the Table 2.1 is supplemented with mean values of pore velocity of groundwater

within the aquifer at the site, with account for their seasonal variation. Estimation of pore

velocity with the use of groundwater velocity is done by assuming the field-cell porosity

of 0.65 (31). Residence time refers to the duration of time the contaminated groundwater

remains in contact with the reactive media in the permeable reactive barrier, assuming the

same hydraulic conductivity of barrier as the aquifer.

Table 2.1: Groundwater Stream Characteristics for Three Sites of Hudson County

Characteristics Chemical Land Holding Allied Signal P.P.G
Total Chromium

Concentration (ppm)
55 25 16

PH 12.3 12.2 11.5
Eh (mV) 155 167 240

Groundwater velocity
(cm/day)

5-26 1.1-3 15

Residence time
(hours)

480-92 2200-800 160

2.1 Materials

Two types of reductive iron media, namely Fisher iron and Peerless iron, were used in

our experiments. Peerless iron was supplied by the Peerless Iron Company, while the

Fisher iron was purchased from the Fisher Scientific Company. The Peerless iron was

7
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used for the extensive evaluation in this research. Information about the particle

dimension of the iron media used in this study is given in Table 2.2. The Peerless iron

was used without any pretreatment. Pyrite and siderite minerals used in our experiments

were obtained from Chemalloy Company and Scott Resources Company, respectively.

Table 2.2: Information about Different Types of Peerless Iron Used in Experiments

Iron #1 Iron # 2 Iron # 3
Mesh size % Retained Mesh size % Retained Mesh size % Retained

16 0 50 0 60 0
18 0 60 2 80 0.6
25 7 70 20 100 4
40 42 80 17 325 73.2
50 22 100 25 Pan 22
80 19 120 11
100 4 Pan 25
Pan 5

2.2 Analytical Procedure

A microprocessor-based pH meter with a Eh measuring mode (JENCO model 6071) was

used. The pH and the corresponding temperature were measured using a 3-in-1 electrode

(pH and reference electrode combined with temperature probe JENCO model 6000). The

pH meter was calibrated with standard solutions of pH 4, 7 and 10. The pH was regularly

calibrated before the measurements.

An oxidation-reduction potential electrode (ORP) electrode was used to measure

the Eh of the solution. The electromotive force between the potentials on the standard

Ag I AgCl reference and the platinum band, which acts as the second electrode, is

measured by the combination ORP electrode. The ORP electrode was routinely tested for

with the quinhydrone standard test solution, as per standard methods.

The total chromium concentration in groundwater samples was analyzed by Atomic

Adsorption (AA) spectroscopy. The analysis of samples was carried out using Smith-
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Heiftje atomic adsorption spectrophotometer. The light source used for the analysis was a

hollow cathode lamp with a current of 6.0 mA. The wavelength required is 357.9 nm and

with a bandpass of 0.5 nm. The linear range of the instrument was between 0-5μg/ml of

total chromium. The total chromium measurement was done following the EPA protocols

under method #7000 and method # 7191 (32,33). The hexavalent chromium

concentrations in the samples were measured by colorimetric analysis based on

absorption spectroscopy at 540 nm. The analysis was carried out using the Varian DMS

3000 UV-visible spectrophotometer. The hexavalent chromium was done following the

EPA protocols under the method # 7169A (34). Diphenylcarbazide was used as a

coloring agent and the sample was acidified for color development using 10% HCl

(vol/vol), as per the standard method.

2.3 Shaken Packed Bed Experiment

The evaluation of reductive systems and reduction rate calculations for different types of

iron at pH 12 were done by the shaken packed-bed experiment. In this case, a known

quantity of reactive media was mixed with the groundwater for a short period of time,

normally overnight. The bottles with the measured quantity of mixture were then placed

on a shaker. The experiments were carried out for different groundwater characteristics

for a definite time, and then the solids were separated from solution by filtration. The

final chromate concentrations and pH were measured. The construction set up (7) of

shaken bottle experiments almost eliminated oxygen penetration from the atmosphere by

the use of sealed bottles. This method enabled us to shorten the time needed to perform a

large number of experiments. A large solid to liquid ratio was maintained in these

experiments so that the liquid will fill pore volume only. This corresponds to the maximal
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rate of reduction. It was found (35,36,37) that the primary factor in determining the rate

of reaction is the available specific surface area, i.e. surface area of reactive medium per

unit volume. The latter is directly proportional to the volume fraction in the solid-liquid

mixture. The aquifer materials or sand were not added to the reactive media even though

certain aquifer materials are known to contribute to the reduction rate in experiment (7).

2.4 Column Reactor Experiment

There is a trend in the recent design of column experiment (16), which is aimed to

characterize reactive media and to model some significant features of permeable reactive

barriers. This is done by the use of rather small (short) columns (about 5-10 cm in

length). The use of small columns in our experimental research was admissible because

the effluent concentration measurement was sufficient to study the suitability of iron-

pyrite mixture for chromate reduction at pH about 12. The short column experiment was

necessary to carry out many experiments in parallel in order to determine the long-term

performance of different types of reactive media. The column construction used in our

experiments almost eliminated the oxygen penetration from the atmosphere.

Different reactive media loosely packed in 100-ml glass columns (cross-section of 5

cm2
, height 20 cm). The columns were attached to the reservoir bottles that contained the

groundwater. The pressure head was adjusted for the flow with two-velocity range. The

first range of velocities corresponds to the larger linear velocities of the groundwater

stream measured at the sites under investigation. The second range of velocities

corresponds to smaller velocities, as needed for the investigation. The column effluent

was collected periodically at a designated velocity. The continuous monitoring of effluent

chromium concentration and its pH measurements were performed on a regular basis.



CHAPTER 3

REACTIVE MEDIA CAPACITY AND PREDICTION OF PRB LIFETIME

3.1 Passivation of Reductive Media Surface, Reductive Capacity and Surface Area

The study of passivation kinetics (the decrease in reaction rates due to surface effects of

reactive media when chromate-contaminated groundwater resides in the barrier), has to

be understood, especially for case of high pH conditions when it becomes very important.

Two major types of passivation are anticipated. The first type is the passivation in short

time duration where a major drop in the reduction rate takes place, which may also lead

to a stage where the reduction rate becomes negligible. This type of passivation is

significant if the reductive media capacity is large and sufficient for accumulation of all

the chromium entering the barrier during some time. The passivation occurring inside the

barrier is important; however, the more important parameter is the amount of chromium

accumulation per unit volume. The second type of passivation is characterized by an

initial drop in reduction rate but then followed by a finite reduction rate lasting for a long

time. If total rate of the later stage is large, it may account for additional and possibly

significant chromium accumulation during long treatment times.

Reactive media capacity is a function of the linear groundwater velocity and the

initial concentration of chromate in the sample. The smaller velocity and the smaller

initial chromate concentration, the larger is the reductive media capacity. This regularity

also agrees with the assumption that corrosion suppresses the passivation. For a time, T,

if the rate of the chromium accumulation is smaller than the rate of corrosion, ability to

create defects in the chromium deposits, a condition may arise where the high initial

reduction rate is preserved. If during the same time, T, the chromium amount

11
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accumulated is large such that corrosion may not be able to create sufficient number of

defects, the reduction rate will decrease. However at larger groundwater linear velocity

and high initial chromate concentration, the large amount of chromate is available for

reduction and passivation. Increasing the residence time is expected to prevent the

passivation of the reductive media. Thus, the reactive media has to be defined by its

reactive capacity dependence on groundwater velocity.

Also, the surface area of reactive media exposed to groundwater has to be taken into

consideration. Agrawal and Tratnyek (1996) (35) and Matheson and Tratnyek (1994) (36)

have found that the primary determinant of reduction rate is the available reactive surface

area of the reactive medium. It is clear that the larger the surface area of the reactive

medium, the larger chromium amount necessary for effecting passivation. Simple

evaluation demonstrates that the passivation caused by the formation of chromium

compound on the surface of reactive medium corresponds to a very short passivation

time. This means that there is a mechanism, which controls the surface area available for

the reduction even at continuous deposition; this is believed to be corrosion. Chromium

reduction in a column containing reactive media may be considered a coupling of two

processes, with opposite influence on the surface processes, namely: the surface

passivation by the chromium deposition and surface activation due to the corrosion of

reactive medium surface. The interplay between these two processes depends primarily

on the pH.

3.2 Reduction Rate and Time Dependence

For CrO4^2- reduction, the elemental iron is used as a plug (short-column) filled with

chromate-contaminated groundwater at pH>11. The chromium concentration is measured
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as a function of time. It was found that the concentration decrease is described by the

exponential dependence with rate constant K. 44 hour -1 , according to

where n, = 55 ppm is the initial concentration. The exponential dependence corresponds

to the first order kinetics reaction, then

K is the reaction rate constant and t is the time. Its integration yields

The first order kinetics simplifies the permeable reactive barrier (PRB) modeling using

our batch experiment results.

The first order kinetics arises because Cr (VI) reduction is surface controlled

reaction (terminology of Stumm W. " Aquatic Surface Chemistry"). As Cr (VI) ion

collides with the iron particle surface, iron donates an electron to Cr (VI) and the

reduction rate is proportional to the quantity of collisions of Cr (VI) ions with surface, i.e.

proportional to Cr (VI) concentration. The Cr (VI) here refers to the chromate ion.

3.3 Modeling Cr (VI) Removal within PRB at Known Filtration Velocity

At a known filtration velocity, (u), through a barrier with thickness (d), Cr (VI) ion

residence time is 1„„ is defined by:
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This residence time for the barrier is analogous to the time, T , for the batch experiments.

The difference between batch experiments and Cr (VI) removal by PRB is the

hydrodynamic conditions and the influence of this difference with respect to reduction

and passivation processes are negligible. Thus the chromium removal in batch

experiments and within the PRB can be evaluated by the same set of equations using the

same reaction constant K .

where n i and ne are the Cr (VI) influent and effluent concentrations.

3.4 Different Modes of Passivation Kinetics

The interplay between the effects of reduction rate decrease caused by passivation and

corrosion, especially over the long-term has to be quantified. As chromium is reduced

within the barrier, different modes of passivation kinetics take place (Figure 3.1(a)).

Curve 1 corresponds to Mode 1 where high reduction rate preserves for longer duration

time as compared to Mode 3. After this, reduction rate decreases rapidly to almost zero.

The maximal amount of reduced chromium corresponding to instance at which reduction

rate reduces is denoted by Curve 1 in Figure 3.1(b). The stage of rapid reduction for

Curve 2 corresponding to Mode 2 coincides with that of Mode 1. The reduction continues

even after maximal chromium mass accumulation as seen in Curve 2 of Figure 3.1(b).

Curve 3 corresponds to Mode 3 where the stage of rapid reduction is short. Accumulation

of chromium mainly occurs during this stage as seen from Curve 3 in Figure 3.1(b).



Figure 3.1 (a): Reduction Rate Coefficient Dependency on Time

Figure 3.1 (b): Reduction Rate Coefficient Dependency on Chromium Accumulated
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The prevailing mode of passivation will thus determine the prediction of barrier's

performance. The measurement of the reaction rate constant, K , as shown together with

the mass of chromium accumulated M (t) as a function of time is calculated from the thin

plug experiments. The development of passivation within the barrier is expected to yield

different profiles of K as the mass of accumulated chromium increases in the barrier as

shown in Figure 3.1(b).

The above approach is advantageous for the initial investigation of iron passivation

accomplished in a short duration of time, i.e. if the first or second mode of passivation is

the prevailing mechanism. For these two modes, the reduction will practically cease after

the accumulation of maximal chromium amount,

In the absence of passivation, prediction of the barrier performance is easily solved

by the comparison of the residence time in barrier with the measured half-life time for

chromate reduction. In contrast with this simple situation, the occurrence of passivation

complicates the prediction of barrier performance because the accumulated chromium

changes the reduction rate within the barrier. The barrier performance, in terms of

chromium distribution at different times is illustrated in Figure 3.2 for the simplest mode

of passivation kinetics.

For a simplified mode of reduction, the barrier can be characterized as composed of

two parts. Near the barrier's front, there is a completely passivated iron layer, where the

maximum chromium amount has already been accumulated and thus can be rendered un-

reactive, i.e. the chromium concentration in flowing groundwater does not decrease

within this layer and remains same as the influent concentration. This means that at any

moment of time, t , chromium reduction is provided by a barrier having a smaller
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effective thickness dbe (t) = db — /(t), where /(t) is the thickness of the completely

passivated layer which is a linear function of time.

If reduction does not stop such that the rate decreases in the barrier, because of the

partial chromium accumulation, the situation of a completely passivated layer does not

arise. This implies that a two-zone passivation kinetics model will not be valid for the

third mode of passivation kinetics. In this case, the accumulated chromium mass will be

maximal at the front section of the barrier, and then decreases in the direction of water

flow near the back section of the barrier (Figure 3.3).

In the above case, the barrier can be viewed as consisting of a sequence of thin

barriers having different reduction rates. This series will change as a function of time in

such a way that their reduction rate will decrease according to an unknown time

dependence behavior. The latter model seems to be more realistic than the previous ones.
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Figure 3.2: Schematic Illustration of Barrier Performance during Time in Years
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Figure 33: Schematic Distribution of Accumulated Reduced Chromium Distribution
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3.5 Prediction of Chromium Distribution as a Function of Time

The reactive barrier properties are considered as invariant in time, the steady distribution

of chromium accumulation can be of the form

arises. Since there is a finite reactive medium capacity with respect to chromate

reduction, a layer arises within the barrier consisting of completely passivated (or

consumed) reactive media particles. Since the chromium reduction starts at the barrier's

entrance a completely passivated layer (CPL) is formed near the entrance. The thickness

of the layer /(t) increases with time. Since there is no further reduction possible within

the CPL, the chromium concentration would not decrease along this layer, and thus

would be equal to that its value before entering the barrier. Thus, the chromium

distribution within the reactive barrier can be characterized as consisting of two zones.

The first zone will be having length /(t) and the invariant initial concentration, n,, and a

second zone where the chromium concentration decreases from n i to effluent

concentration, ne . Since the CPL is expanding with time, the rate of this expansion is

very small compared to the ground water velocity

Typically, water crosses the entire length of the barrier in a period ranging from 1 to

10 days. When the CPL occupies the entire barrier, chromium leakage will become large,

because the effluent concentration will be almost equal to the influent concentration.

Therefore, to satisfy the long time requirement of the barrier the left-hand side of

Equation [3.5.2] has to be larger than the right hand side by almost 100 to 1000 times.
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The above prediction will enable us to formulate the chromate concentration

decrease in the second zone of the barrier that is a quasi-steady state, i. e., the boundary

condition relates to the mobile boundary,

but its mobility is so low that it can be neglected. Correspondingly, the sought

distribution follows Equation [3.5.1] taking into account that 1(t) has to be used instead

of x = 0, gives:

Therefore, CPL extends very slowly, and its extension rate is determined by the

chromium transport into this zone. The chromium accumulation in CPL during a time, t,

cannot exceed the total chromium amount entering into the barrier during this time.

Moreover, it must be even smaller, because the second part of chromium present is

second zone, and the third part penetrates the barrier (Figure 3.2).

We need to quantify the conditions needed for the efficient performance of the

barrier, i.e., effluent flux must be small in comparison with influent flux. Thus their part

can be neglected. As to the second part, let us restrict the consideration by the situation,

when the CPL zone occupy the main part of the barrier after a long time, i. e., when

In this case, the chromium amount in the second zone is very small in comparison

with that in CPL and can be neglected. Keeping in mind these two conditions, the

chromate conservation means, that all chromium is accumulated in CPL

In this equation the units of n i and M. are grams per unit volume. Thus the ratio
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is a dimensionless one.

It is easy to generalize Equation [3.5.6] with account for chromium accumulated in

the second zone, when the restriction in Equation [3.5.5] is not satisfied. The condition of

barrier efficient work is

where Tb is the necessary time for efficient barrier work, or barrier effective life.

Naturally, the difference between l(Tb ) and d has to be not very small. But it can be

rather small, that is clarified with the analysis of the condition, following from Equation

[3.5.3]

is the second zone thickness.

The specification of the condition for K= 10 hour -1 , d = 100 cm, u= 100 cm/day

demonstrates, that the condition

is satisfied due to very rapid reduction rate.

The prediction of chromium concentration within the zone

needs further investigation, because the distribution [3.5.9] has to be considered, at first

approximation, based on reduction rate identification with its initial value K. In the

meantime, as the CPL grows the chromate-contaminated groundwater crosses the second
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zone and chromium reduction causes a decrease in the reduction rate. This decreased

reduction rate constant K [M (x,0] has to be used in the equation to be more exact, than

the equation do = —Kndx and M value approaches to M. in small vicinity of the CPL

edge, i.e.

This means that K(M) deviation from K is large near the CPL edge only. It enables to

apply the method of sequent approximation. The second approximation is

where z = K/u(x —1(t)) . The essential difference between first i.e. equation [3.5.9] and

second Equation [3.5.13] approximations shows that further approximations are

necessary. As a result, the zone becomes more wide which calls for using a correction to

the evaluation of the second zone thickness.

3.6 Evaluation of Reactive Media Capacity for Thin Plug Passivation Kinetics

The effluent concentration for a thin reactive media plug is measured as a function of

time in long term experiments at the definite values of linear groundwater velocity and at

its initial chromate concentration. As the effluent concentration increases till value

the experiment continues at smaller velocity.

The total volume of liquid entered in the packed bed during time, T , is measured as

The total chromium mass accumulated in permeable barrier equals
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It is assumed that this chromium amount is uniformly distributed within the packed bed

with the volume

Where S p and d o
 are the cross-sectional areas and width of permeable barriers

respectively. The chromium amount accumulated with 1 cm3 of permeable barrier is thus:

The measured capacity corresponds to a definite value of linear velocity and initial

concentration can be expressed by:

3.7 Non Uniform Chromium Distribution across Thin Plug

The conventional procedure for the experiments was implemented and the experiments

were performed with the condition that the effluent concentration is very small as

compared to the influent one.

The opposite situation, i.e.

corresponds to the completely passivated plug. As the plug is passivated completely, i.e.

the plug as a whole looses its ability to reduce chromium the equation mentioned above is

valid. The opposite situation means, that at least the back part of the plug remains

partially passivated and this part provides the reduction and the effluent concentration

decreases. The non-uniform chromium accumulation within the plug, its decreased
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concentration within back part of the plug shows that the notion of reactive media

capacity needs some refinement with account for incomplete chromium accumulation.

3.8 Underevaluation of Reactive Media Capacity in Thin Plug

The conventional procedure was followed for carrying out the experiments with the

condition that the effluent concentration is very small in comparison with the influent

one. This procedure may lead to the underevaluation of the reactive media capacity due

to the non-uniform chromium distribution. It is accepted that the reactive media within a

barrier accumulates the maximum amount of chromium. This is a valid statement for the

main part of a barrier volume with the exception that its smaller part is in the barrier

back. A thin layer near the barrier end has to be clean. This is understandable because the

chromium effluent concentration will be high, if the barrier as a whole accumulated the

chromium amount equal to the reactive media capacity. If the barrier as a whole is

strongly passivated then the effluent concentration is high.

Therefore we conclude that the determination of reactive media capacity in the thin

plug experiment has to be accomplished in the conditions similar to chromium effluent

concentration in the barrier during the years, namely near to plug maximal saturation with

chromium. For illustration, let us assume that for one layer:

for a thin plug and also let us consider that the barrier as a thin plug sequence i.e. 30-35

layers. The effluent concentration after the first layer corresponds to the above condition.

But after 10 layers the effluent concentration will be

if the degree of passivation is assumed to be same for the first 10 layers.
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3.9 Critical Capacity for PRB for Three Sites in Hudson County

The comparison of measured value of reactive media capacity, M. , with the barrier

critical capacity, Cbcr  would enable us to formulate the main criteria needed for

evaluating reactive media needed for this application. The reactive media can provide the

needed efficiency for a successful barrier application, if its capacity to reduce chromium

exceeds critical barrier capacity. If this condition is not satisfied, the reactive media under

investigation has to be rejected, and another reactive media with larger specific surface

area or higher reactivity has to be investigated. The following equation characterizes

barrier critical capacity, Cbcr .

is a function of barrier thickness db , the groundwater velocity u b and influent

concentration n 1 .

The left-hand side of the equation yields the total chromium amount entering the

barrier during a total period of time Tb . The right hand side shows the total amount of

accumulated chromium in the barrier.

3.10 Prediction of Maximal Reactive Media Capacity

The determination of reactive media capacity by determining the maximal chromium

amount M. can be accomplished in a short duration of time compared to barrier

passivation time. This is accounted by the equation
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where d p is the iron plug thickness, u p is the flow velocity through the plug, Tpcr

characterizes the time when the effluent concentration n e becomes equal to the influent

concentration n i .

To relate between Tper and the characteristics of the barrier and the chromium solution

flow follows comparing the above two equations

Taking into account that the cases when M. values equal to C b„ , or larger, is

interesting

and considering that u p = u b one obtains,

where T b„ is barrier lifetime and db is the barrier thickness.

The physical meaning of this result is very clear, namely the smaller the plug

thickness, the smaller is its entire capacity and shorter time T per after which the effluent

concentration approaches the influent one. Thus, with d p = 2 cm and db = 100 cm, Tper

can be 50 times smaller than T b„ , i.e. 2 months of plug performance would be equivalent

to barrier's T b„ equal to 8 years.
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3.11 Number of Pore Volumes

The number of pore volumes in column experiment for reactive media should exceed that

of the barrier ( NPVRM >> NPVb ) for reactive media suitability at pH equal to 12. The

number of pore volumes for the reactive media is calculated by the column experiments.

where NPVRM is the number of pore volumes in column, S c , d, and p c are cross-section

area , thickness and porosity of reactive media, respectively.



CHAPTER 4

RESULTS AND DISCUSSION

This chapter presents and discusses the results pertaining to the study of reactive media

selection for hexavalent chromium reduction in groundwater, especially at high pH

conditions for use in permeable reactive barriers. The groundwater used in the study was

obtained from three sites in Hudson County, New Jersey. This chapter discusses the

following results:

1. Iron shaken packed bed and column experiments

2. Assessment of using iron (Fe °) as a reactive medium at the high pH condition

3. Assessment of using pyrite mineral as a reactive medium at the high pH condition

4. Assessment of using iron (Fe °)-pyrite and iron (Fe°)-siderite mixtures as reactive

media at the high pH condition

5. Influence of hydraulic loading on the reactive capacity of iron (Fe°)

6. Two step passivation process and total capacity evaluation

7. Barrier critical thickness evaluation for three sites in Hudson county

8. Recommendations for critical barrier thickness and reactive media suitable for sites

under investigation.

The main objectives of this study were:

1. To evaluate the suitability of various reactive media for barrier applications at high

pH condition, and

2. To recommend application of suitable reactive media for long term performance of

treatment of groundwater.

29
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At the end of this chapter, recommendations are given regarding the selection of a

reactive media and applicability of permeable reactive barrier technology for treating

groundwater of chromium refining waste sites.

4.1 Shaken Packed Bed Experiment

Various types of buffering systems were studied for their acid generating capacities by

Desai (38). According to this study (38), silicic acid generating minerals did not exhibit

adequate lowering of pH to make them suitable for use as reactive medium. This was

attributed to their low dissolution rates in groundwater as discussed by Stumm (8).

Phosphoric acid generating materials showed considerable solubility and pH decrease of

groundwater; however, these materials were deemed impractical for use in barriers

because of their fast dissolution rates. The most promising reductive media among the

materials investigated by Desai (38) were H2S-generating minerals such as iron pyrite

and carbonic acid generating minerals such as siderite.

Shaken packed bed experiments were carried out with the peerless iron materials at

a residence time of 8 hours and initial chromium concentration of 16 ppm. The final

chromate concentrations in the effluent were 0.05-0.1 ppm after 8 hours. The shaken

packed bed experiments were accomplished for three peerless iron materials with

different particle size distribution namely: Iron #1, Iron #2, Iron #3 (Table 2.2). Iron #3

showed the lowest final chromium concentrations at residence time of 30 minutes when

used with groundwater having an initial chromium concentration of 55 ppm.

The reduction rate for Iron #3 at pH = 12 is smaller than that measured at

intermediate pH (upto about 9.0). Desai (38) concluded that there is a similarity in pH

dependence for chromate ion reduction rate with the use of Fe 2+ containing solutions and



31

with the use of elemental iron (Fe°) because the reduction rate in both cases decreases

with increasing pH. In addition, the increase in iron corrosion at pH > 12 appears to be

favorable for chromium reduction, as discussed below in Section 4.2.

4.2 Iron Regeneration as Reductant and Influence of Residence Time on Iron
Capacity

Due to its large specific surface area, Iron #3 was used to study the reactive media

capacity. The information about the deactivation kinetics was obtained by the multiple

reuse of the same iron sample. After the first use, the iron was separated from the reduced

groundwater. The pore volume of the same sample iron was then filled with groundwater

for the second time and allowed to stand for a fixed residence time (8 hours). The number

of pore volumes is used as a scaling factor to extrapolate column tests to barrier field

time. Increase in effluent concentration starts after the entire volume of used portions of

groundwater equals to about 10-12 pore volumes at initial chromium concentration of 16

ppm and residence time 8 hours (Figure 4.1). The reactive media stability is defined as

the length of time (or NPV) where the reactive medium maintains its reactivity.

The effluent concentration for first or even second reuse is very small in

comparison with the initial influent concentration of 16 ppm. This indicates that the

chromium amounts accumulated on the iron particle surface are almost the same for the

first and second reuses.

The deactivation of Iron #3 is stronger for short residence time than for longer

residence time at the same amount of accumulated chromium. This difference in surface

deactivation at the same chromium accumulation is caused by the regeneration of reactive

iron surface. There is a longer time available for regeneration at longer residence times.
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The regeneration mechanism (16) in this case appears to be related to corrosion whose

role is important for chromate reduction. This was verified by varying the residence time

for reuses #10 and #20 (shown by the arrows in Figure 4.1). During reuse #10 and #20,

we increased the residence time that corresponded to more corrosion (regeneration) and

thus resulting in lower effluent concentration.

Figure 4.1: Result of Shaken Packed Bed Experiment
(Arrows indicate the increase in residence time for reuse #10 and #20)

4.3 Column Experiment

The effluent concentration for column experiment as a function of time is plotted for Iron

#3 and for the initial chromium concentration of 55 ppm. The residence time at pore

velocity of 0.3 cm/hour equals to 12 hours because reactive media thickness is 4 cm. At

this longer residence time, the effluent concentration measured was 0.05 ppm. The

increase in effluent concentration started after 10 pore volumes (Figure 4.2).
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Figure 4.2: Growth of Effluent Concentration for Iron #3

4.4 Iron Assessment as Reactive Media for pH about 12

Iron (Fe°) as a reactive medium has been used for chromate reduction at intermediate pH

conditions. The estimation of iron (Fe°) as a reactive media for pH about 12 was carried

out in this research. When iron (Fe °) is used as a reactive medium, the increase of

chromium concentration in the effluent at pH = 6 to 7 occur at about 80 pore volumes.

The latter was the result is of column investigations carried out at influent chromium

concentration of 18 ppm and a pore velocity of 40m/year (16). This velocity is

comparable to the velocity used in our experiments (Figure 4.2). The stability decrease at

pH about 12 can be characterized as large if the difference in the initial concentrations is

disregarded. However, because of the difference in the initial chromium concentrations

between (16) and us, further analysis was needed as shown below.

This small difference in stability allows us to conclude that peerless Iron #3 as a

reactive medium is not worse than the iron used in the important research for

intermediate pH (16) and can also be used for further stability modeling at higher pH

about 12.
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The iron surface specificity does not seem to play a primary role as Sivavec and

Homey (1995) (37) studied the degradation rates for chlorinated compounds with 25

types of different commercial iron sources. In addition, Agrawal and Tratnyek (1996)

(35) and Matheson and Tratnyek (1994) (36) have found out that the primary determinant

of degradation rates is the available specific surface area for reduction. Thus peerless Iron

#3 provides the optimal condition because its surface area essentially exceeds the typical

values of iron surface area given in literature. This means that the measured stability for

Iron #3 can be used to assess of using Fe ° as a reactive medium at pH about 12. 10

m/year is considered in (16) to be representative of pore velocity typically observed in

shallow aquifers. For velocities not very large than this, the measured number of pore

volumes is 10-30 is rather small compared to the 80 pore volumes at intermediate pH.

These smaller values are due to the high influent chromium concentration of 55 ppm in

our case. Therefore, we conclude that the iron (Fe°) application at high pH will be limited

to extreme cases of very low groundwater velocity (less than 10m/year) and to smaller

chromium concentrations to achieve sufficient stability.

We conclude that a permeable reactive barrier with Iron #3 reactive medium may be

suitable for treating groundwater in the case of Allied Signal site where the pore velocity

is less than 10 m/year and chromium concentration is about 25 ppm. The use of iron (Fe °)

alone is not valid for the P.P.G and Chemical Land Holding sites and therefore other

reactive media are required, as will be discussed in the following sections.

4.5 Iron Siderite Mixture

Iron (Fe°) and Siderite (FeCO3) were mixed at a volumetric ratio of 50/50 and used as

reactive media. There is a two-stage process observed in our experiment as a function of
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time (Figure 4.3). During the first stage, the effluent concentration values are less than

the drinking water standards for chromium (0.1 ppm). The gradual increase of the

effluent concentration takes place during the second stage. The chromium amount

accumulated within 1 cm3 of reactive media during first stage can be called as the

reactive media capacity, regarding chromium accumulation. Two long-term experiments

were accomplished with iron (Fe °)-siderite mixture (ISM) 50/50 using Iron #2/Siderite

and Iron #3/Siderite. The effluent concentration as a function of number of pore volumes

is plotted in Figure 4.3.

The large influence of the velocity on NPV is seen in Figure 4.3. Iron #2/Siderite

had a flow velocity of 26.5 cm/hr which is very high as compared to actual groundwater

velocity, while Iron #3/Siderite had a velocity of 1.9 cm/hr. The results show that Iron

#3/Siderite mixture is more effective than Iron #2/Siderite mixture. The advantage of

ISM 50/50 at pH = 12 is apparent even at the higher influent chromium concentration of

55 ppm. However, the siderite application can be limited because of its high solubility in

water. It may occur that siderite completely dissolve in groundwater stream during time

shorter than 20-30 years which makes barrier useless for longer term application with this

mixture. It is well known that water samples collected from some iron barriers

approaches equilibrium with respect to siderite. Thus these barrier sites have to be

classified into two groups namely with quasiequilibrium in the system groundwater

siderite and one without quasiequilibrium. The ISM 50/50 is of primary interest in the

first group of barrier sites with quasiequilibrium.
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Figure 4.3: Results of Column Experiments with ISM Volumetric Ratio 50/50

4.6 Pyrite and Siderite Solubility and its Manifestation in PRB

The most important examination concerning the pyrite and siderite relates to their

solubilities in water over the long term. It is possible that these minerals may dissolve in

less than 20 years, which will limit the barrier service life. Handbook data (39) for the

solubility of pyrite and siderite is given as:

a) Pyrite: 0.0005g/100cm' (or 1g /2 x10 5 cm 3 )

b) Siderite: 0.007g/cm 3

For the complete dissolution of one gram of pyrite, the critical volume of water v cr

necessary is given by
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Let us consider a barrier cross section perpendicular to a stream with area, S and

the pyrite volume in barrier, Sdp p where d is the width of barrier and p p is the pyrite

volume fraction. During time, Tb , the groundwater volume ( uTb S ) crosses the cross-

section of the barrier, i.e. this volume is available to dissolve the pyrite volume with

mass Sdpp p where p is the pyrite density. Thus the ratio:

where u (cm/day) and Tb (day) has to be compared with v„ . With d = 100 cm and Tb =

20 years, the results are given in the table:

Table 4.1: Groundwater Volume per Gram of Reactive Media for 20 Years Barrier Life

Small pyrite volume fraction corresponds to the reactive media soil mixture with reactive

media volume fraction 0.2. It can be seen that pyrite solubility within the barrier in this

case is not negligible. Nevertheless, this complication may not arise because groundwater

velocity is much smaller. Siderite solubility is five times larger. Siderite application in

mixture with soil at large groundwater velocity is not reasonable for the sites of the

second type, when equilibrium is absent.

4.7 Flow Rate Influence on Reduction and Accumulation of Chromium

The increase in flow rate of groundwater by approximately 10 times is accompanied

by a decrease in reactive media capacity by 15-20 times i.e. lmg/cm 3 instead of
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20mg/cm3 . This can be interpreted if we account for the competition between two

processes - passivation and regeneration. In parallel with Cr (III) accumulation on the

iron particle surface, which decreases a part of surface available for reduction, an

opposite process takes place, which regenerates the reduction ability of such surface. To

illustrate these effects, the chromium reduction is accompanied with formation of a

surface compound containing Fe 3+ . Beneath this compound, Fe° is present which in turn

reduces Fe3+ to Fe2+ . The Fe2+ formation enhances the particle ability to reduce chromium

because Fe2+ is an electron donor. Also, the simultaneous corrosion process occurring

during the reaction is expected to be involved in the regeneration process.

The slower the reduction process, the stronger is the regeneration process. At higher

Cr (VI) concentration, the reduction rate is higher and the rate of regeneration is lower

and hence the latter cannot compete with reduction, i.e. the role of regeneration is minor

in this case. At lower Cr (VI) concentration, the reduction rate is lower and the

regeneration can compete with reduction i.e. the regeneration is significant.

Two types of iron (namely Iron #2 and Iron #3) were chosen since they achieved

high reduction rates. The initial reduction rate of Iron # 2 was higher but the specific

surface area for lion #3 far exceeds that of Iron #2. Iron (Fe °)-siderite mixture

experiments discussed above can be considered as a representative for the influence of

flow rate on reduction and accumulation. The graphs in Figure 4.3 denote that lion

#2/Siderite mixture having flow rate of 26.5 cm/hr had rapid increase in increase in

effluent concentration at 50 pore volumes because of higher velocity than that of field

conditions. Iron #3/Siderite on the other hand with flow velocity of 1.9 cm/hr showed an

increase in effluent concentration at about 550-600 pore volumes which clearly indicates
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that higher velocity than field groundwater velocity is not favorable for chromate

removal. Also, the accumulated chromium amount per cubic cm of reactive media

denotes the flow rate influence on accumulation (Figure 4.4). The chromium

accumulation for Iron #2/Siderite is 2 mg/cc while that for Iron #3/Siderite is 17-18

mg/cc which clearly demonstrates the influence of flow rate on chromium accumulation.

The increase in groundwater velocity thus causes the decrease in the number of pore

volumes. The accelerated determination of reactive media capacity by means of its

measurements at velocities exceeding that of the aquifer is therefore not admissible. This

is because reactive media capacity decreases very rapidly with increasing the velocity,

which will cause immense underevaluation of the reactive media capacity.

Figure 4.4: Flow Rate Influence on Chromium Accumulation
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4.8 Two Step Passivation Process and Total Capacity Evaluation

The two step passivation process has to be discriminated in relation to kinetics of

chromium accumulation. The first step is characterized with almost zero effluent

concentration where the capacity of the reactive media is calculated in context of the

number of pore volumes (NPV). The second step of passivation takes place with

continuos increase in the effluent concentration and the reactive media capacity for this

step of passivation of reactive media is calculated by the equation:

where C RM is reactive media capacity for the second mode of passivation, M. is the

maximal accumulated chromium and VRM is the volume of groundwater cleaned through

the reactive media. The total capacity of reactive media is thus based on both first and

second step of passivation kinetics.

4.9 Pyrite and Pyrite Sand Mixture

Column experiment with entire volume of pyrite equal to 25 cubic cm was conducted

with initial groundwater chromium concentration of 55 ppm. The growth of effluent

concentration with respect to time was observed for this reactive medium. The

groundwater velocity passing through the column was maintained relatively near that of

the actual groundwater velocity. The total chromium accumulation per cubic cm of

reactive media was 21 mg/cc, which is the maximal capacity of the barrier for pyrite

reactive medium.
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Analysis of pyrite alone does not meet the active barrier life requirements so aquifer

material sand was added to pyrite to see its effectiveness in treating contaminated

groundwater. The addition of aquifer material leads to entire reduction rate decrease due

to decrease of reactive media surface area (or volume fraction). Pyrite and sand were

mixed together at a volumetric ratio of 30/70. The total chromium accumulation per cubic

cm of reactive media was 25 mg/cm3 , which is the maximal capacity of the barrier. The

maximal capacity was calculated considering the volume of pyrite alone. This capacity

was sufficient only for five years of active barrier life.

Figure 4.5: Accumulated Chromium for Pyrite Experiment

Figure 4.6: Accumulated Chromium for Pyrite Sand Experiment
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4.10 Comparison of Iron (Fe) and Pyrite at pH about 12

The reactive media capacity of iron (Fe°) alone at high pH is very low and has been

found to be insufficient for use in permeable reactive barriers for two of the three sites. In

addition, the reactive media capacities of pyrite alone were insufficient to provide the

required barrier active lifetime (30 years). Therefore, a new approach for developing their

mixture was investigated, as discussed below.

4.11 Iron (Fe)-Pyrite and Iron (Fe)-Pyrite-Sand Mixture

The passivation kinetics of iron (Fe °)-pyrite mixtures (IPM) with and without aquifer

material sand were studied. The iron (Fe °)-pyrite mixtures were used in volumetric ratio

of 50/50. The pyrite role is to decrease the pH caused by dissolution. As pyrite fraction in

the mixture decreases, the useful pH decrease diminishes. Thus small amount of pyrite in

the iron (Fe°)-pyrite mixture is not favorable. On the other hand, chromium reduction

occurs on iron particle surface so that small fraction of iron is not desirable.

The experimental results with iron (Fe °)-pyrite and iron (Fe°)-pyrite-sand (IPS)

mixtures give us the required reactive media capacity that is sufficient for 20 years of

active barrier life. The reactive media capacity of IPSM mixture 50/50 is greater than the

required barrier capacities for all the sites. The amount of chromium accumulated per

cubic cm of reactive media for iron (Fe °)-pyrite-sand (IPS) and iron (Fe °)-pyrite mixtures

is shown in Figure 4.7 and Figure 4.8 respectively.



Figure 4.7: Accumulated Chromium for Iron (Fe°)-Pyrite-Sand Experiment
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Figure 4.8: Accumulated Chromium for Iron (Fe °)-Pyrite Experiment

4.12 Influence of pH

The influence of pH on treatment of groundwater was studied by comparing our results

with those of Blowes et al (16). 80 pore volumes at intermediate pH were found by

Blowes et al (16) shown in Figure 4.9. The same regularity is inherent in our

experimental data with iron (Fe°)-pyrite mixture (IPM) as a reductant. The iron (Fe °)-
pyrite mixture gave 2000 pore volumes with effluent less than the required EPA

standards (Figure 4.9).
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The results of these experiments show that even at high pH conditions, the iron

(Fe°)-pyrite mixture can be used as an effective reactive medium with significant stability

sufficient for long barrier lifetime (more than 30 years).

Figure 4.9: Comparison of Experimental Results at Neutral and High pH

4.13 Discussion of Results

The advantage of iron (Fe°)-pyrite mixture for chromate removal at pH about 12 is

interesting to discuss especially with respect to groundwater with high pH. The iron

(Fe°)-pyrite mixture gives better results than that of iron (Fe °) alone as seen from results

of the experiments conducted. The sodium sulfide/ferrous sulfate process is a well-known

treatment technology for chromate reduction at neutral pH. The important feature of this

process is that metal sulfides tend to be two to three magnitudes less soluble than
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corresponding hydroxide. The neutral process developed by the US Air Force utilizes

sulfide catalyzed by ferrous iron to reduce chromate and sulfide to precipitate heavy

metals at pH 7.4-8.4. The sulfide stoichiometrically improves hexavalent chromium

reduction and removal when added concurrently with ferrous iron. Under more alkaline

conditions i.e. pH about 10, ferrous iron was found to react stoichiometrically, but sulfide

addition contributed little and was not effective by itself. This does not contradict with

our result, since the addition of pyrite to iron (Fe °) at pH 12 results in the production of

acid that compensate for acid consumption occurring during chromate reduction.

lion (Fe°)-pyrite mixture stability at pH about 12 with initial influent chromium

concentration 16 ppm is about 2000 pore volumes at velocity of 54 m/year. This is 30

times better than iron (Fe°) stability of 80 pore volumes at initial effluent concentration

18 ppm and velocity 40 m/year at intermediate pH (Figure 4.9). IPM mixture is therefore

suitable for P.P.G and Chemical Land Holding with barrier life of 30 years, or more.

4.14 Prediction of Barrier Life Time

Our prediction of the active barrier lifetime will be done according to the two step

passivation kinetics as discussed in Section 4.8. The equation for first step of passivation

kinetics for barrier lifetime Tbcr is

Universally accepted Equation [4.14.1] mentioned above underevaluates a barrier

lifetime because the total capacity of reactive media is not accounted for. This

underevaluation occurs, because the Equation [4.14.1] is derived in context of NPV and

NPV notion is not generalized to account second step of accumulation.
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The generalized Equation [4.14.2] for barrier lifetime is derived with respect to the

proposed model of chromium accumulation in barrier space.

4.15 Barrier Critical Thickness Evaluation for Sites of Hudson County, New Jersey

The reactive media capacities for iron (Fe°), pyrite, and iron (Fe°)-pyrite mixture with

and without addition of aquifer materials (sand) are evaluated. The barrier critical

thickness dbcr should be:

where n i is the influent chromium concentration in ppm, ub is the velocity of

groundwater flowing through the barrier in cm/day, Tb is the time for barrier lifetime and

Cam;, is the total reactive media capacity for the two modes of passivation kinetics.

4.16 Recommendations for Sites under Investigation

We will now formulate our results in form of recommendations for various sites with

respect to the reactive media to be used for treatment as well as the critical barrier

thickness needed for achieving the 30 years of active barrier life (Table 4.2).

Table 4.2: Recommendations for Barrier Thickness and Reactive Media for Sites

Site Name Initial Chromium
Concentration

Barrier Thickness Reactive Media
Recommended

Allied Signal 25 ppm 100 cm Iron(Fe°)-Sand mixture
P.P.G 16 ppm 100 cm Iron(Fe°)-Pyrite-Sand

mixture
Chemical Land

Holding
55 ppm 300-400 cm Iron(Fe°)-Pyrite-Sand

mixture



CHAPTER 5

SUMMARY AND RECOMMENDATIONS

The results of this research can be summarized as follows:

1. H2S-generating minerals such as pyrite and carbonic acid generating minerals were

found out to be the most promising reductive media among the materials investigated

during our studies.

2. Assessment of iron (Fe°) was done in the shaken packed bed and column experiments

to assess its suitability for its use as a reactive media for treatment of chromium-

contaminated sites at high pH conditions. Shaken packed bed experiments carried out

with peerless iron showed that the reduction rate decreases with increasing pH. Different

types of peerless iron according with different particle size distribution were analyzed to

estimate their kinetics. Iron #3 showed considerable reduction capacity to be used for

stability modeling at higher pH about 12.

3. Assessment of siderite mineral mixed with aquifer material sand was done for two

peerless iron types (Iron #2 and Iron #3) and their reactivity was measured. The influence

of groundwater velocity on the number of pore volumes was analyzed. Chromium

accumulation was investigated and proved that the chromium accumulation per cubic cm

of reactive media is less at high flow rates. Solubility of siderite and its manifestation in

permeable reactive barriers was evaluated; its application with mixture in soil at high

groundwater velocities is not reasonable.

4. Pyrite mineral was assessed as a reactive medium with and without aquifer material

sand for use in permeable reactive barriers. The total chromium accumulation with the

initial groundwater influent concentration 55 ppm was found to be insufficient for 20

47
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years of active barrier life. Therefore, a mixture of iron (Fe °)-pyrite was investigated and

found to be satisfactory.

5. Passivation kinetics of iron (Fe °)-pyrite mixtures with volumetric ratio 50/50 was

studied. Two long-term experiments, one with iron (Fe °)-pyrite and other with iron (Fe°)-
pyrite-sand mixtures were carried out to determine their reactive media capacities. The

results showed that the latter gave capacity sufficient for 20 years of active barrier life.

6. Our results showed that iron (Fe °)-pyrite mixture stability at high pH was almost 30

times better than at intermediate pH.

Based on the foregoing results, it appears that iron (Fe °)-pyrite-sand mixtures can

be considered as a viable reactive media for treatment of chromium-contaminated sites at

high pH. Recommendations are given for three sites of Hudson County, New Jersey for

their reactive media and barrier critical thickness.

Future investigation depending on hydraulic conductivity of soil should be carried

out to avoid effects of bypassing of contaminated plume of groundwater to be treated.

Novel barrier designs for high flow rates and high concentrations need to be developed

for the high pH groundwater cases.
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