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AMSTRA CT

OPTIMIZATION OF NITROGEN REMOVAL
IN SEQUENCING BATCH REACTOR

by
Suppakit Poonyachat

Operating parameters for sequencing batch reactor have the influence on each substrate

concentration. Concentration profile changes as operation parameters are changed. The

study was conducted to model the variation in effluent concentration from sequencing

batch reactor. MLVSS and cycle time are the parameters that were varied. Concentration

in Fill, React, and Settle period were calculated by using kinetic equations.

The results can show that these parameters have effects on the concentration

profile. The increase of MLVSS can lower the concentration of BOD and ammonium

concentration in React period. Increasing MLVSS can show that more substrate

utilization and nitrification process occur more rapidly. Concentration of nitrate at the

end of settle period varies with the MLVSS concentration in the system. Cycle time is

another parameter that shows the effect on concentration profiles. The increasing of react

time provides more time for biomass to react and makes the BOD effluent and

ammonium concentration decrease. Settle period, which is anoxic, makes the system in

denitrification environment influences on nitrate removal. When settle period decreases,

nitrate has less time to transform to nitrogen gas.
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CHAPTER 1

INTRODUCTION

1.1 General

Wastewater is produced by water usage of every community for domestic and industrial

activities. It has become a major environmental and social problem in many countries

around the world. Discharge of untreated wastewater can cause environmental

degradation and affect public health. State and federal regulations have been established

to regulate the discharge of wastewater to the environment.

To comply with regulatory standards, wastewater treatment plants are designed

and operated to remove gross and specific contaminants from wastewater.

The characteristics of wastewater are an important factor in the design and

operation of wastewater treatment facilities. Properties and constituents in wastewater

depend primarily on the source of the wastewater. Traditionally wastewater treatment has

focused on the removal of gross organic and inorganic constituents and pathogens in

wastewater that primarily included carbonaceous BOD and suspended solids removal and

disinfection processes. Nutrients such as nitrogen and phosphorus are also considered as

a significant problem.

Nutrients have become contaminants of concern in wastewater because both

nitrogen and phosphorus are essential nutrients for growth. When discharged to receiving

bodies of water, they can lead to the undesirable problems such as algae blooms and

eutrophication. The presence of algae and aquatic plants may obstruct the uses of water

1
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resources, the growth of aquatic life and cause aesthetic problems. When it is discharged

in excessive amounts on land, it can pollute groundwater.

Nutrients in sufficient amounts can result in oxygen depletion in receiving bodies

of water. Excess nitrogen is a common problem encountered in the influent and effluents

of many wastewater treatment plants. Nitrogen in wastewater is present in different forms

depending on the source and characteristics of the wastewater. Organic nitrogen,

ammonia nitrogen, nitrite and nitrate are the general forms of nitrogen found in

wastewater. Untreated wastewater usually has nitrogen in the form of organic nitrogen

and ammonia nitrogen. Organic nitrogen is decomposed to ammonia by microorganisms.

Ammonia nitrogen is then oxidized to nitrite and nitrate by certain species of bacteria

under suitable conditions (Metcalf & Eddy, 1991). Nitrite and nitrate may be removed

from effluent wastewaters in a subsequent denitrification step accomplished by species of

denitrifying microorganisms.

Nitrification followed by denitrification is a widespread process for biological

nitrogen removal from wastewater (Bernades et al., 1996). While nitrification primarily

occurs in an aerobic environment, denitrification occurs in an anoxic or sometimes

facultative environment.

Phosphorus is also a nutrient of concern for reasons similar to those for nitrogen.

The discharge of phosphorus to receiving bodies of water is also regulated under various

state and federal regulations, and a variety of treatment technologies and process

modifications have been developed to address this problem. Phosphorus removal has not

been studied under the scope of this thesis.
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1.2 Objectives of Present Study

The primary objective of this study is to develop a rationale for the optimization of

nitrogen removal in existing wastewater treatment plants, specifically the aerobic

sequencing batch reactor. The objectives include:

• Optimization of the nitrification process by controlling operating conditions

within the reactor.

• Optimization of the denitrification by controlling operating conditions within the

reactor.



CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this section, literature review is presented of nutrient removal, nitrogen removal, and

sequencing batch reactor. This thesis is considered in the modeling the performance of

nutrient removal in Sequencing Batch Reactor (SBR). Operating parameters were varied

to investigate the removal efficiency and concentration profile.

2.1 Nutrient Removal

Nutrients are a major concern in the design and operation of wastewater treatment plants.

Various treatment methods, such as physical, chemical, and biological, have been used to

deal with nutrient control and removal from the discharged system. Nutrient removal can

be implemented by using biological treatment system because of it is low-cost, reliable,

and effective (Metcalf & Eddy Inc., 1991). Basic steps for the nitrogen removal are

nitrification and denitrification, which are used for the operating wastewater treatment

system. Classification of nitrogen removal based on carbon sources in denitrification

removal (1) in combined carbon oxidation nitrification/denitrification systems using

internal and endogenous carbon sources or (2) in separate reactors using methanol or

another suitable external source of organic carbon.

Biological nutrient removal (BNR) processes are modifications of activated

sludge by using anaerobic, anoxic and aerobic zones to optimize suitable environments

for nitrogen and/or phosphorus removal. Low loading rates and a long solid retention

time is required to operate sequencing batch reactor for nutrient removal (Jones, 1990).

4
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Ammonia and organic nitrogen are the principal forms of nitrogen in wastewater

that may be present in the soluble and particulate forms (Metcalf & Eddy Inc., 1991).

Soluble nitrogen is in the form of urea and amino acids. Untreated wastewater usually has

little or no nitrite or nitrate. Most of organic nitrogen is transformed to ammonia and

inorganic forms.

The two principal mechanisms for the removal of nitrogen are assimilation and

nitrification-denitrification. Microorganisms in wastewater can assimilate ammonia-

nitrogen into cell mass and can be returned to wastewater when cells die or lysis occurs

(Metcalf & Eddy Inc., 1991). Nitrification followed by denitrification is a well-known

process for biological nitrogen removal (Bernades et al., 1996).

Nitrification is the first step in nitrogen removal process and it is aerobic process.

Oxidation of ammonia to nitrite and then to nitrate is carried out by two bacteria genera,

Nitrosomonas and Nitrobacter. Approximate equations for nitrification process are

For Nitrosomonas the equation is

55NH4+ + 7602 + 109HCO3 —> C5H7O2N + 54NO2 - + 57 H20 + 104H2CO3

For Nitrobacter the equation is

400NO2 - + NH4+ + 4H2CO3 + HCO3 - + 19502 —> C5H7O2N + 3H20 + 400NO3 -

From the equations, the nitrification process consumes oxygen and large amount

of alkalinity (HCO3 -). Nitrification processes may be classified into single stage, which

carbon oxidation and nitrification occur in the same reactor, and separate-stage, which
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both processes occur in different reactors (Metcalf & Eddy Inc., 1991). The ability of this

process to nitrify relates with the relationship of BOD5/TKN ratio.

Both are very slow growing and do not compete well with heterotrophic bacteria

for oxygen. Therefore, nitrification should be separated from carbon removal (Jones et

al., 1990). Ammonia is oxidized to nitrite by Nitrosomonas. Nitrobacter converts nitrite

to nitrate (Coelho et al., 2000, Metcalf & Eddy Inc., 1991, Leslie et al., 1990).

Figure 2.1 Nitrogen transformations in biological treatment process.
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Denitrification is the second step in nitrogen removal process. This process occurs

under anoxic conditions by transforming nitrate to the form of nitrogen gas. Microbial

reduction of nitrate and nitrite is carried out by several types of facultative

microorganisms. It is analogous to aerobic heterotrophic metabolism, which nitrate and

nitrite acting instead of oxygen as electron acceptor (Jones et al., 1990).

For the removal of nitrate, two types of enzyme systems are involved in the

reduction of nitrate: assimilatory and dissimilatory. Nitrate is transformed to ammonia

and used by cells for biosynthesis in assimilatory process. This process occurs when

nitrate is the only form available in the system. In the dissimilatory process, nitrate

reduces to nitrogen gas and results in denitrification process.

In denitrification process, wastewater must contain sufficient carbon sources

(organic matter) to be bacteria's energy source in order to convert nitrate to nitrogen gas.

Carbon sources can be in the form of internal sources, such as cell material and

wastewater, or external sources, such as methanol. If the carbon source is not enough, this

process cannot be occurred (Metcalf & Eddy Inc., 1991).

The reactions for denitrifying bacteria, with glucose as the carbon sources

as follows:

C6111206 + 12NO3 - —> 6CO2 + 12NO2 - + 6H20 + energy

C6111206 + 8NO2 - + 8H+ —> 6CO2 + 4N2 + 10H20 + energy

Facultative anaerobes had an important role in this process by conversion of

nitrate to nitrite and then to nitric oxide, nitrous oxide, and nitrogen gas. These reactions

are



Anoxic 	 • Denitrification

• Alkalinity production

Aerobic • Nitrification

• Metabolism of stored and

• Conversion of NO 3-N to • Nitrogen removal

N2

• Selection of denitrifying

bacteria

• Conversion of NH3-N to • Nitrogen removal

NO3-N • Phosphorus removal

8

NO3 - --• NO2 - —> NO —> NO --> N2

Conversion of nitrate to nitrogen gas provides energy for growth of anaerobic

bacteria. Anyway, bacteria still require a source of carbon for cell synthesis. NO, N20

Table 2.1 Summaries of Biological Nutrient Removal Process Zones.

Zone 	 Biological transformations 	 Functions 	 Zone required for

Anaerobic • Uptake and storage of VFAs 	 • Selection of PAOs 	 • Phosphorus removal

by PAOs

• Fermentation of readily

biodegradable organic matter

by heterotrophic bacteria

• Phosphorus release

exogenous substrate by PAOs • Nitrogen removal

• Metabolism of exogenous 	 through gas stripping

substrate by heterotrophic 	 • Formation of

bacteria 	 polyphosphate

• Phosphorus uptake

• Alkalinity consumption
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and N2 are gaseous products and can be released to the atmosphere. In this process

dissolved oxygen is critical parameters (Metcalf & Eddy Inc., 1991). Dissolved oxygen

should be absent from this process because it will restrain the enzyme system needed for

denitrification. Temperature and pH have the effects on the growth of denitrifier. The

optimum pH is in the range of 7 and 8 depends on bacterial populations. The organisms

are sensitive to the change of temperature. Conversion of nitrate to nitrogen gas produces

alkalinity and makes the pH increases.

The effect of cycle time on nutrient removal is showed by Grady, Daigger, and

Lim (1999). Their results showed that soluble organics and ammonia N rose during the

fill period as wastewater was added. Concentration of Nitrate-N from the previous cycle

dropped. Carbon oxidation occurred all over the fill period and this will limit the buildup

Figure 2.2 Performance of SBR during a single cycle. Anoxic and aerobic periods
each occupied 50% of the fill plus react time (Grady et al., 1999).
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of soluble organics. Soluble organics and nitrate-N were rapidly depleted upon the

completion of fill period. The length of the fill period depends on many factors, including

the nature of the facility and treatment objectives. If this period is short, the biomass will

be exposed to the high concentration of both organic matter and other wastewater

constituents, but the concentration will drop over time. In the other ways, if this period is

long, the instantaneous process-loading factor will be small and the biomass will receive

low and relatively constant concentrations of wastewater.

In anoxic period, nitrate was rapidly depleted because denitrification process

occurred. Ammonia-N remained the same and all nitrate-N was removed while little

soluble organic matter existed. Nitrification occurs during aerobic period (react period).

In this period, biomass utilizes the organic matters and nitrifying bacteria transforms

ammonia nitrogen into nitrate form. Soluble organics rose slightly because of their

production by hydrolysis reactions.

Bernades and Klapwijk (1996) conducted the experiment to monitor biological

nutrient, nitrification, denitrification, carbon oxidation, and phosphorus removal in

sequencing batch reactor. They operated two sequencing batch reactors. Reactor 1 has

three periods, mixed fill, mixed react and draw. For reactor 2, the periods are mixed react,

mixed fill, mixed react II, aerated react, settle and draw. From their results, the system

achieves a good performance in P removal. After aerated react, ammonia will be

converted to nitrate so there is nitrate in the effluent. Percentage of phosphorus in

microbial is increasing with time. Denitrification rate is related to the presence of soluble

substrate in the influent.
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From Jones, Wilderer, and Schroeder (1990)'s experiments on investigation

sequencing batch reactor process, concentration of organic increased rapidly during fill

period, and slightly decreased in anaerobic period. And concentration will drop rapidly

during aerobic period. Ammonia nitrogen increased during fill period.

Furumai, Kazmi, Fujita, Furuya, and Sasaki (1999) concluded from their

experiment about modelling sequencing batch reactor that both disturbed loading, large

variation in organic loading, has no effect on carbon oxidation and nitrification. There

was a significant change in effluent nitrate and phosphate concentrations when organic

loading is changed. During the cycle, there is the release of phosphorus during anoxic and

anaerobic conditions during feed and the mixing phase. In the following aeration phase,

carbonaceous BOD removal, phosphorus uptake and nitrification take place.

Denitrification occurs during settling and the following feed phase.

Artan and Tasli (1999) showed that aeration time fraction is very important to

nutrient removal efficiency and filling pattern has an important role in efficient utilization

of external carbon source. And for effective nutrient removal, filling under aerobic

condition should be avoided.

The experiments by varying solid retention time (SRT) to investigate the

efficiency of nutrient removal can show that SRT has little effect on COD removal. At

higher SRT, there is less active biomass, so that lower phosphorus removal is occurred.

Nitrification is accomplished at all SRT values and carbon source addition during anoxic

period would enhance denitrification which leading to lower effluent nitrogen

concentration (Mines et al., 1997). Furumai, Kazmi, Furuya, and Sasaki (1999) also

conducted the experiment by varying SRT. They concluded that poor nitrification will
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help higher phosphorus removal activity and carbon source is important to enhance for

denitrification and phosphorus removal. Elevated nitrate concentration deteriorates

phosphorus removal. Their study has some conflicts with Mines et al.'s because they

concluded that higher SRT helps phosphorus-accumulating organisms.

2.2 Sequencing Batch Reactor

The Sequencing Batch Reactor (SBR) is similar to a conventional activated sludge

process, operated in a batch mode through a sequence of steps. Typically, the SBR

process consists of 5 steps: (1) fill (with or without aeration), (2) react, (3) settle

(sedimentation/clarification), (4) decant (draw), and (5) idle. The process starts with the

introduction of wastewater to a partially filled reactor containing settled sludge from a

previous cycle. Reaction phase is provided for a period of time to produce the effluent of

the desired quality. Microbial flocs settles in the subsequent phase and the supernatant is

drawn out of the reactor. The idle period is optional and is typically adjusted to meet

operational requirements of the production facility.

In many instances a Sequencing Batch Reactor (SBR) systems can be an

alternative to the continuous flow treatment systems in meeting effluent quality

requirements (Branner, 1997). The major advantage of a SBR system is its operational

flexibility to meet a wide range of treatment and operational requirements for a relatively

small footprint (Coelho et al., 2000, Zhao et al., 1997).

In continuous wastewater treatment processes, wastewater and biomass have to

move from tank to tank within the system. Time spent in each process and environmental

conditions are fixed. Hence these systems are not very flexible to change in operational
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requirement. Batch reactor can overcome this problem by changing the environment

temporally as well as change the contact time required for each environment (Leslie et

al., 1999, Coelho et al., 2000).

Sequencing batch reactor has been used to successfully for nutrient removal from

a range of municipal and industrial wastewaters.

Figure 2.3 Basic steps of the sequencing batch reactor process.
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As mentioned earlier, the operation of a SBR has five basic steps (processes): Fill,

React, Settle, Decant, and Idle. Each of these processes is correlated as they occur in

sequence optionally. Environmental conditions in each of these steps (processes) have

designed to optimize removal efficiencies for the different constituents. The alternating of

the cycle time and the sequence of each process affects the quality of the effluent.

Therefore it is possible to operate within a single SBR conditions which are anaerobic,

anoxic and aerobic for simultaneous nitrogen and phosphorus removal in addition to

organic carbon removal (Artan et al., 1999, Mines, Jr. et al., 1997).

In order to improve settling performance, floc-forming or filamentous

microorganisms maybe selected by changing the filling pattern may influence the sludge

settling characteristics, which is called kinetic selection (Artan et al., 1999). The selection

is chosen by adjusting the condition, which is suitable for the growth of floc-forming

bacteria than filamentous bacteria. High substrate at the beginning of the cycle will result

in the dominating of the floc-forming bacteria (Artan et al., 1999).



CHAPTER 3

MODELING AND EXPERIMENTAL METHODS

The main purpose for this study was to find the suitable condition for nutrient removal.

Therefore operating parameters were varied and investigate the nutrient removal

efficiency. In order to construct concentration profile, kinetic equations were used for

calculation.

3.1 Kinetics of Nutrient Removal

Characteristics and the growth patterns of microorganisms have been described by many

kinetic equations. For example, Monod equation shows the effect of a limiting nutrient on

the specific growth rate.

Substrate utilization rate can be calculated by using

There are many environmental variables that have effects on operational system.

The following equations were used to create the concentration profile and calculate

nutrient removal efficiency.

For nitrification process, DO level has the effect on maximum specific growth

rate μm of nitrifying organisms and nitrification rate decreases when temperature is

decreased (Metcalf & Eddy, Inc., 1991).

15
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DO concentration also has the influence on maximum specific growth rate μm of

the nitrifying organisms.

Maximum rate of nitrification occurs when pH values between 7.2 and 9.0.

To determine the maximum growth rate of nitrifying organisms, the effects of pH,

DO concentration and temperature are involved.

Maximum rate of substrate utilization k can be calculated by:

To determine the mean cell-residence times and substrate-utilization factor U,

these equations can be used:

Substrate concentration in effluent can be determined by:

These equations are used to determine both BOD and N effluent in nitrification

process. The different is between the constant for BOD utilization and nitrification

process. In denitrification process, dissolved oxygen concentration, wastewater
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temperature and carbon source have the influences on denitrification rate. Rate of

denitrification can be described by:

Other operational parameters and environmental variables that have the effects are

nitrate concentration and pH (Metcalf & Eddy, Inc., 1991). In the fill cycle period, the

assumption is made that there will be no reaction or degradation of both BOD and

nitrogen.

Nomenclature

k	 maximum rate of substrate utilization, time -I

DO	 dissolved oxygen concentration, mass per unit volume

T	 temperature, °C

pH	 operating pH, the numerical value of the pH term is taken as 1 for the above

values

kd 	endogenous decay coefficient, time -1

K02 	 dissolved-oxygen half velocity constant

Ks 	half-velocity constant, substrate concentration at one-half the maximum growth

rate, mass per unit volume

S	 substrate concentration in solution, mass per unit volume

So	 influent concentration, mass per unit volume

specific growth rate, time -1

1-6	 maximum specific growth rate, time-1
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g m 	growth rate under the stated conditions of temperature, dissolved oxygen, and pH,

time-1

hydraulic detention time, time

0, 	 design mean cell-residence time, time

U 	 substrate utilization rate, time 1

UDN overall denitrification rate, time -1

U'DN specific denitrification rate under the stated conditions of temperature, and

dissolved oxygen, time -1

X 	 concentration of microorganisms, mass per unit volume

Xn 	concentratnion of nitrifier, mass per unit volume

Y 	 maximum yield coefficient measured during a finite period of logarithmic growth,

mass of cell formed per mass of substrate consumed, mass of cell formed per

mass of substrate consumed

3.2 Modeling Procedures

Spreadsheets are built from these above equations and illustrate the concentration profile

of each nitrogen components and BOD profile.

In this study, two parameters are varied.

1 .MLVS S

2.Cycle time (fill-react-settle period)

MLVSS or biomass concentration in wastewater treatment system has the ability

to utilize substrate in wastewater. Variation of MLVSS can show the influence of

biomass on the nutrient removal efficiency. The unique point of sequencing batch reactor
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is the operation by varying cycle time. This study also tries to investigate the effects of

cycle time variation in Fill, React, and Idle.

3.2.1 MLVSS Variation

This model MLVSS is varied to study the effects of active biomass concentration on

nitrogen profile in SBR system and the effluent concentration after settle period. In order

to monitor on the effects, other parameters besides MLVSS are fixed. Those parameters

(for ammonium removal), U (for BOD removal), and U

(denitrification). Table 3.1 shows the set of cases that was conducted by using

spreadsheet.

Table 3.1 Modeling condition for different MLVSS.

No. X (mg/1) Xn (mg/1) Fill-React-Settle (hrs.)

1 1500 120 0.6-2.4-1

2 2000 160 0.6-2.4-1

3 2500 200 0.6-2.4-1

4 3000 240 0.6-2.4-1

5 3500 280 0.6-2.4-1

6 4000 320 0.6-2.4-1

7 5000 400 0.6-2.4-1
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In this model, designed parameters are: influent flow rate = 3400 CMD, designed

temperature = 15 °C, maximum specific growth rate (μm) = 0.5 d -1 , yield (for BOD

removal) = 0.5), yield (for nitrogen removal) = 0.2, and pH for the system = 7.2.

3.2.2 Cycle Time Variation

This model is conducted to study the effects of cycle time on nitrogen and BOD profile in

sequencing batch reactor system. For this model,

ammonium removal), U (for BOD removal), and U (denitrification) are fixed. The cycle

time is the varied variable.

Table 3.2 Modeling condition for different cycle time.

No. Cycle time (hrs.)

Fill React Settle

1 0.5 2.25 1.25

2 0.5 2.5 1.0

3 0.5 2.75 0.75

4 0.5 3.0 0.5

5 0.7 2.05 1.25

6 0.9 1.85 1.25

7 0.7 2.25 1.05

8 0.9 2.25 0.85
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Table 3.2 shows set of cases in this modeling. In first series, model no.1-4, Fill

period is constant; React period is increased while Settle period is decreased. The second

series is no.1, 5, and 6, Fill period is increased, React period is decreased, and Settle is

fixed. The last series, Fill period is increased, React period is constant and Settle period is

decreased.

In this model, parameters that were used for calculating are the same with the one

that first modeling used.



CHAPTER 4

RESULTS AND DISCUSSIONS

The primary objective of this study was to develop a rationale for the optimization of

process conditions for adapting existing SBR systems for enhanced nutrient (nitrogen)

removal capabilities. The operating parameters that were identified as being the most

effective and relatively easy to control were — the active biomass inventory in the system

and the hydraulic retention time in the different operational phases of the SBR.

4.1 MLVSS Variation

This study of MLVSS variation was conducted in order to understand the effects of

MLVSS concentration on BOD and nitrogen removal as described from the Table 3.1.

The concentration profiles describe the concentration from fill period, react period, and

settle period.

Table 4.1, Figure 4.1 and Figure 4.2 present effluent concentration of nitrogen in

the form of ammonium, nitrate, and BOD removal. The model assumes that there is no

reaction in the fill period.

Table 4.1 Nitrogen and BOD effluent from MLVSS variation

No. X Xn NH4+ NO3- BOD

1 1500 120 30.31 5.67 148.53

2 2000 160 27.07 7.56 131.37

3 2500 200 23.84 9.46  114.21

22
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No. X Xi, NH4+ NO3 BOD

4 3000 240 20.61 11.35 97.05

5 3500 280 17.38 13.24 79.90

6 4000 320 14.15 15.13 62.74

7 5000 400 7.68 18.91 28.42

From the results in Figure 4.3 and 4.4, ammonium-nitrogen and BOD

concentration after settle period decrease when MLVSS increases. In the other ways,

nitrate concentration increases with the increase of MLVSS. Increasing MLVSS from

1500 mg/1 to 5000 mg/1 can lower the BOD concentration 80.9% (from 148.53 mg/1 to

28.42 mg/1) and ammonium concentration 74.66% (from 30.31 mg/1 to 7.68 mg/1). But

increase nitrate nitrogen 233.5% (from 5.67 mg/1 to 18.91 mg/1).

Figure 4.3 and 4.4 show that nitrogen concentration profile from fill period to

settle period and the BOD concentration profile from fill period to react period. These

figures present the variation of MLVSS has the effects on the concentration of the BOD,

ammonium-nitrogen and nitrate-nitrogen. Concentration changes according to MLVSS,

as MLVSS increases, slope of BOD concentration in react period increases, which means

that more BOD is consumed. Ammonium concentration in react period drops rapidly

when MLVSS increases. In the settle period, which is anoxic condition, it is assumed that

ammonium has no reaction. Slope of nitrate concentration in react period decreases

rapidly and concentration of nitrate effluent also increases as MLVSS increases. The

results show that variation of MLVSS or biomass in the system has the effects on the

concentration of substrate in the system. Biomass has the ability to utilize substrate in



Figure 4.1 Effluent nitrogen concentrations at different MLVSS in the SBR.

Figure 4.2 Effluent BOD concentrations at different MLVSS in the SBR.



Figure 4.3 Concentration profile for different nitrogen species when MLVSS is varied in the SBR.



Figure 4.4 Concentration profile for different BOD when MLVSS is varied in the SBR.
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wastewater, so that the changes of concentration of biomass must have the influence on

BOD concentration. From kinetic equations in chapter 3, X or MLVSS is the parameter,

which is able to make the effluent concentration changes. Nitrogen in wastewater also has

the effects from the variation of biomass. When nitrifying and denitrifying biomass are

increased, there is the increasing ability to obtain more ammonium nitrogen and changing

it to oxidized nitrogen. As from Figure 4.3, the more biomass in the system, the more

nitrification occurred. This process shows that ammonium nitrogen decreases as biomass

increases. In the other words, when nitrification occurs, nitrite and nitrate are produced.

4.2 Cycle Time Variation

Cycle time, fill, react and settle period, in the second case are varied but the total time of

these three periods are four hours. In this case, it can be separated into three series: first,

constant fill period, increasing react period, and decreasing settle period. Second,

increasing fill period, decreasing react period, and constant settle period. Third,

increasing fill period, constant react period, and decreasing settle period.

Figure 4.5 and 4.6 present the first series, no.1-4. As react period increases,

therefore, there is more time for the reaction. So that, BOD concentration is lower in the

case that has more reaction time. Ammonium effluent decreases when reaction time

increases because ammonium has more time to change into nitrate form. Thus, nitrate in

react period that has longer react time increases to the higher concentration before drops

down. Nitrate concentration after settle period varies with the reaction time and inverse

varies with the settle time. From the model, case no.1, which has the longest react
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Figure 4.5 Nitrogen concentration profile when cycle time is varied
(constant fill period, increasing react period, and decreasing settle period).

Figure 4.6 BOD concentration profile when cycle time is varied
(constant fill period, increasing react period, and decreasing settle period).
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period and shortest settle time, has the highest ammonium concentration and the lowest

nitrate concentration.

Table 4.2 Nitrogen and BOD effluent from cycle time variation
(constant fill period, increasing react period, and decreasing settle period).

No. Fill (hrs.) React (hrs.) Settle (hrs.) NH4+ NO3- BOD

1 0.5 2.25 1.25 27.88 5.42 135.66

2 0.5 2.5 1.0 26.54 8.10 128.51

3 0.5 2.75 0.75 25.19 10.79 121.36

4 0.5 3.0 0.5 23.84 13.48 114.21

In the second series, fill period is increased, react period is decreased, and settle

period is fixed. Ammonium-nitrogen in the system that has lower fill period starts

dropping down first. But the total time for fill and react period is constant, so that for the

case that has shorter fill period, the react period is longer. There is more react time for

ammonium to transform to nitrate for case no.1; thus, in this period has the lowest

ammonium concentration and the ammonium concentration increases as fill period

decreases. Nitrate in case no.1, which has shortest fill period, start increasing up first and

because there is longer react period, nitrate concentration in this case is the

highest one. From Figure 4.7 and 4.8, nitrate concentration after settle period decreases

the fill period decreases. When fill period decreases and react period increases, BOD

concentration after react period decreases.
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Figure 4.7 Nitrogen concentration profile when cycle time is varied
(increasing fill period, decreasing react period, and constant settle period).

Figure 4.8 BOD concentration profile when cycle time is varied
(increasing fill period, decreasing react period, and constant settle period).
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Table 4.3 Nitrogen and BOD effluent from cycle time variation
(increasing fill period, decreasing react period, and constant settle period).

No. Fill (hrs.) React (hrs.) Settle (hrs.) NH4+ NO3- BOD

1 0.5 2.25 1.25 27.88 5.42 135.66

5 0.7 2.05 1.25 28.96 4.34 141.38

6 0.9 1.85 1.25 30.04 3.26 147.10

The third series of the case represents the cycle time variation by varying fill

period and settle period. Fill period is increased while settle period is decreased and react

period is fixed. Summation of the fill period and settle period is 1.75 hours and react

Figure 4.9 Nitrogen concentration profile when cycle time is varied
(increasing fill period, constant react period, and decreasing settle period).
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Figure 4.10 BOD concentration profile when cycle time is varied
(increasing fill period, constant react period, and decreasing settle period).

period is 2.25 hours for all 3 cases. From Figure 4.8, and 4.9 it can show that reaction

time has effects on the effluent concentration. In this series, ammonium concentration for

3 cases after react period is equal because they have the same react period. Even though,

this process has different fill period but they have the same react time, so nitrate

concentration increases to the same level. Nitrate concentration drops down in the settle

period because it converts to nitrogen gas. In case no.1, which has longest settle period,

has the lowest nitrate concentration. BOD concentration in this series is the same because

they have the same reaction time to remove BOD.

The results are based on the assumption that there is no reaction in fill, and in the

settle period. It is also assumed that in settle period is in completed anoxic condition,

thus, there is no nitrification for ammonium.



33

Table 4.4 Nitrogen and BOD effluent from cycle time variation
(increasing fill period, constant react period, and decreasing settle period).

No. Fill (hrs.) React (hrs.) Settle (hrs.) NH4+ NO3- BOD

1 0.5 2.25 1.25 27.88 5.42 135.66

7 0.7 2.25 1.05 27.88 6.49 135.66

8 0.9 2.25 0.85 27.88 7.56 135.66

The model results can show that variation of cycle time has the effects on the

substrate removal efficiency. Increase of fill, which provides more aerobic period, makes

the system, has more time to remove BOD and ammonium nitrogen. In the other ways,

the decrement of ammonium nitrogen makes the system has more nitrate nitrogen. Settle

period, which is anoxic and nitrate is transformed to nitrogen gas, increases, nitrate

concentration decreases.

Artan and Tasli (1999)'s experiment, which was investigated on effect of aeration

and filling patterns, also shows that aerated time fraction is the most important parameter

that influence nutrient removal efficiency. But concentration of substrate in the system is

the parameter that has to pay attention on because when COD/TKN is low, high-

unaerated period maybe required.

In the first and third series, results can show that the effects of the anoxic period

on the concentration of the nitrate. As this period increases, nitrate concentration

decreases. Niaki (2000) had the experiment to implementation of nutrient removal by

using SBR. The results can show that nitrogen removal by SBR system increases when
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anoxic cycle increases from one to 1.5 hours and decreased the effluent nitrate

concentration by 53%.



CHAPTER 5

CONCLUSIONS

The objective of this study was to optimize the operation of existing sequencing batch

reactors (SBR) for nitrogen removal. The effects of operational parameters on nutrient

removal efficiency were observed. In this study, the concentration of active biomass

(MLVSS) and cycle time were varied. MLVSS concentrations ranging from 1500 mg/1 to

5000 mg/l were used for modeling the nutrient concentration profile during the fill, react,

and settle phases. Effect of cycle time on nutrient removal efficiency was also studied.

From this study it was concluded that:

1. Concentration of active biomass in the SBR and cycle time can be used as

effective control parameters for optimization of nutrient (nitrogen) removal in

existing SBR systems. Since the process is sequential, i.e. products from one

phase of operation are inputs to the subsequent phase; optimization of the process

requires a holistic overview of system dynamics through different operational

phases.

2. Optimization of MLVSS concentration in the reactor and react time can enhance

the effective rate and extent of conversion of ammonia nitrogen to nitrate nitrogen

during the react phase. Since the fraction of nitrifiers in the active biomass is

dependent on the ratio of TKN to BOD5 content of the particular wastewater, the

concentration of MLVSS in the system to achieve design nitrifying efficiency has

to be estimated on a case by case basis.

35
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3. The hydraulic retention time of the react phase has to selected as being greater of

(i) the retention time required to achieve design carbonaceous BOD removal or

(ii) the retention time required to achieve desired nitrification. It is important to

note here that the design carbonaceous BOD removal should be based on the

minimum substrate requirements for the denitrification stage of the process,

failing which additional substrate such as methanol may need to be added to

accomplish denitrification.

4. Variation in fill time did not show any benefit to the nitrifying process. This was

primarily due to lack of D.O. during this phase of operation. Since the fill period

also acts as a selection phase for floc formers, the effect of enhancing D.O. in this

phase to help nitrification has to be evaluated on a case-by-case basis.

5. Denitrification occurs primarily during the settle phase of the SBR operation. In

addition to maintaining optimum MLVSS concentration in the reactor, availability

of sufficient easily biodegradable substrate and depressed D.O. conditions in the

reactor are critical to this phase of operation.

6. The hydraulic retention time of the settle phase has to be selected as being the

greater of either (i) the settle time required as calculated by the Sludge Volume

Index (SVI) of the sludge, or (ii) the time required for anoxic denitrification.
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