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ABSTRACT

AN AUTOMATED APPROACH FOR COMPARATIVE ANALYSIS OF
QT INTERVAL AND HEART RATE VARIABILITY

by

Taral Oza

Cardiovascular disease is the primary cause of death in the adult population. Half of these

cardiac deaths occur as sudden death. Some of the parameters from the surface ECG

recording (a noninvasive technique) carry important information and have special

significance in research, as they are good indicators of diseases leading to heart attacks,

sudden cardiac death and other similar cardiac problems. Measurement of

QT interval variability and heart rate variability are two such parameters, which has

received much attention of researchers.

An algorithm has been developed to measure and compare the two significant

parameters, the QT interval variability and the heart rate variability. Agilent's VEE Pro ©

6.0 software is used as graphical tool to implement signal processing operations. This

algorithm detects peaks from the ECG including the Q, R, S, T and the end of the T

wave. These peaks are use to calculate both, the heart rate variability and QT interval

variability. The algorithms have been tested on normal and diseased patient data from

the standard MIT ECG library to prove the accuracy and reproducibility of the system.

Observations about the amount of influence of the autonomic nervous system on the heart

rate variability and QT interval variability have been carried out. Results indicate that

behavior of the autonomic nervous system is different for normal patient and diseased

patients. Diagnosis of Coronary Artery Disease is done very reliably using this system.
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CHAPTER 1

INTRODUCTION

1.1 The Heart — A Synopsis

The use of engineering methods, the development of instrumentation and use of

computers for diagnosis has contributed substantially to progress made in recent years in

helping reduce the number of death from heart diseases. One such advancement in the

diagnosis of heart disease is non-invasive measurement of the heart's electrical activity .

The heart is a hollow muscular organ lying in the center of the chest (thorax)

contains four chambers; right atrium, right ventricle, left atrium and left ventricle. Each

of the four chambers of the heart is different from the others because of its functions.

The heart normally behaves as a pump used to force the blood through the cardiovascular

system with the function of providing oxygen to the whole body and eliminating the body

of metabolic wastes, like carbon dioxide.

Figure 1: Cross sectional view of the heart [1].

1
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1.2 Electrophysiology

Unlike most other muscle innervations, excitation of the heart does not proceed directly

from the central nervous system but is initiated in the sinoatrial (SA) node (also known as

the pacemaker of the heart). The SA node is a collection of excitable cells. The SA node

generates an impulse of excitation that spreads across the left and right atrium causing the

atria to contract. A short time later, it simulates the atrioventricular (AV) node initiating

the impulse into the ventricles. From the AV node the impulse continues down through

the bundle of His followed by special conducting fibers called the Purkinje Fibers on

either side of the ventricle causing simultaneous contraction throughout the ventricle [1].

The contraction resulting in the myocardium supplies the force to pump the blood into the

circulatory system. Hence, the frequency of SA node impulses mainly controls the heart

rate. A detail discussion on the electrical events of the heart is presented in the following

sections.

Activation of the atria 	 Activation of 	 Recovery wave
ventricals

Figure 2: Steps of excitation in the heart [1].



3

Figure 3: The electrical pathway of impulse through the heart [1].

In figure 3, an electrical impulse generated by the SA node (1) flows over the right and

left atria (2) causing them to contract. When the electrical impulse reaches the AV node

(3), it is delayed slightly. The impulse then travels down the bundle of His (4), which

divides into the right bundle branch for the right ventricle (5) and the left bundle branch

for the left ventricle (5). The impulse then spreads over the ventricles, making them

contract.

An electrocardiogram (ECG or EKG) is a measure of the electrical events within

the heart or a display of the time-variant voltages produced by the myocardium during the

cardiac cycle. The ECG is used clinically to diagnose various diseases and to assess

cardiac health. Since the ECG is measured with respect to time, it also serves as a timing

reference for other measurements. In a typical ECG, alphabetical designations (P, Q, R,
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S, and T) have been assigned to each of the prominent features. These can be identified

with events related to the action potential propagation pattern.

The P, QRS and T waves reflect the rhythmic electrical depolarization and

repolarization of the myocardium associated with the contractions of the atria and

ventricles. The P wave represents depolarization of the atrial musculature.

The QRS complex is the combined result of the repolarization of the atria and the

depolarization of ventricles that occurs almost simultaneously. The T wave represents

ventricular repolarization. Typical amplitude of each wave is listed below [2].

• P wave — 0.25 mV

• R wave — 1.6 mV

• Q wave — 25% of R wave

• T wave — 0.1 to 0.5 mV

Figure 4: Amplitudes and time intervals in the ECG [3].

The shape and polarity of each of these features vary with the location of the

measuring electrodes with respect to the heart. To measure an ECG, a number of
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electrodes are affixed on the skin of the person's arms, legs, and chest. These electrodes

measure the flow and direction of electric currents in the heart during each heartbeat.

The electrodes are connected to a machine, through wires or wireless transmission, which

produces a tracing for each electrode. A particular group of electrodes, when they are

connected with recording amplifiers, represents a particular "view" of the heart's

electrical patterns; these views are called leads. The 12 standard leads used most

frequently are shown in the following diagram. The three bipolar limb lead selections,

first introduced by Einthoven, are derived from electrodes placed on the limbs [2].

• Lead I 	 : Left Arm and Right Arm

• Lead II : Left Leg and Right Arm

• Lead In: Left Leg and Left Arm

Generally the bipolar leads are arranged such that the R wave of a normal heart is

positive. The other leads can be divided into unipolar limb leads and unipolar chest

leads. Unipolar limb leads include aVR, aVL and aVF. Six unipolar chest leads are

designated as V1 to V6.



Bipolar limb leads

. 	 II 	 t 	 1 I I

6

(Augmented) Unipolar limb leads 	 Lead aVF

V1 Fourth intercostal space,
at right sternal margin.

V2 Fourth intercostal space,
at left sternal margin.

V3 Midway between V2 and V4.

V4 Fifth intercostal space, at
mid-clavicular line,

V5 Same level as V4, on an-
terior axillary line.

V5 Same level as V4, on mid-
axillary line.

Figure 5: Lead arrangement [2].
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1.3 Interval Measurement — An Overview

As each ECG interval is related to some physiological activity, each interval gives vital

information about the patient's heart. The accepted normal interval durations are as

follows [2]:

• P-R interval — 0.12 to 0.2 second

• Q-T interval — 0.35 to 0.44 second

• S-T segment — 0.05 to 0.15 second

• P wave duration — 0.11 seconds

• QRS duration — 0.09 seconds

Figure 6: Intervals in the ECG [3].

The P-Q interval represents the time delay caused by the AV node. If the

P-R interval is greater than 0.2 second, blockage of the AV node can be suggested. The

R-R interval is used to measure the person's heart rate.
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1.3.1 QT Interval

Cardiovascular diseases have engaged researchers to develop new methods to diagnose

the onset of the diseases that can lead to mortality. Measurement of beat-to-beat QT

interval is also considered for various such research studies. Alagra et at [4] hypothesize

that rapid changes of the QT interval can lead to life threatening situations

The measurement of QT interval has influence of heart rate changes while performing

analysis on it. Hence, to obtain better results, QT interval is corrected by a formula

called Bazett's formula (QTc = QT/(RR) 1/2 ) and a new parameter is called QTc

(QT corrected) [5]. An abnormal QTc can be associated with serious ventricular

arrhythmias, syncope and sudden cardiac death [5]. Also, increased risk of sudden

cardiac death due to the QTc prolongation is independent of age, history of acute

myocardial infarction, heart rate and drug usage [6].

Abnormal changes in the activity of the sympathetic nervous system can cause

QTc prolongation and deterioration of an initial sinus rhythm into ventricular fibrillation

[7]. The present research emphasis is to resolve some of the problems encountered in the

QT interval analysis and to describe a new algorithm that is robust and reliable to analyze

the QT interval on a beat-to-beat basis. Several methods exist for the measurement of the

QT interval. Correct detection of the Q wave and the end of the T wave are required to

accurately measure the QT interval and QT interval variability. Some QRS morphologies

allow consistent detection of the Q wave and the end of the T wave whereas some

continuously changing QRS morphologies can cause error in the accurate detection

process.
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1.3.2 Heart Rate Variability

The measurement of RR interval variability is called heart rate variability (HRV).

Generally low heart rate variability predicts increased mortality. M. Malik,

V. Batchvarov [8] accredited Hon and Lee [9] with first appreciating the clinical

significance of HRV in 1965. The authors also mentioned Wolf [10] as the first to

associate higher risk of post infarction mortality with reduced HRV in 1977 and Akselrod

[11] introduced power spectral analysis of heart rate fluctuations to quantitatively

evaluate beat-to-beat cardiovascular control.

The time domain method is one method to measure HRV. In this method, the

intervals between successive normal QRS complexes are determined. The time interval

between these successive QRS complexes allows measurement of instantaneous heart

rate. Various statistical results, such as the mean of the RR interval and the mean heart

rate can be obtained by this method.

More complex statistical time domain measurement has also been used in various

studies. The variable SDNN is the standard deviation of the interval between two

successive normal QRS complexes (called Norma-to-Normal (NN) intervals). These

methods allow comparison of HRV during various activities like pace breathing, tilt,

valsalva maneuver, phenylephrine infusion, rest, sleep and so on. Generally total

variance of HRV increases with the length of the analyzed recording [8]. Other short

term variations can be measured using parameters like the standard deviation of the

average NN intervals (SDANN) and the square root of the mean squared difference of

successive NN intervals (RMSSD).
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Various frequency domain methods are also useful for analysis of cardiac signal.

One such method is to construct the interbeat interval (IBI) signal and power spectral

calculations. Frequency domain measurements indicate the autonomic nervous system

activities. Detail explanation about frequency domain methods is described later in this

document.

1.4 The Autonomic Nervous System

The part of the nervous system that regulates the heart rate is the autonomic nervous

system, which consists of the sympathetic and parasympathetic nervous systems.

The sympathetic system speeds up the heart rate; the parasympathetic system slows it

down. Due to predominant parasympathetic activity during the resting state, the normal

heart rate is below 100 beats/minute. The sympathetic system supplies the heart with a

network of nerves, the sympathetic plexus, while the parasympathetic system supplies the

heart through a single nerve, the vagus nerve. Both the parasympathetic and the

sympathetic nervous systems terminate at the following locations: SA node, the

conduction system, atrial and ventricular myocardium and coronary vessels but the

parasympathetic nervous system also extends up to the AV node [1].

The reciprocal activity of the sympathetic and parasympathetic nervous systems

causes fluctuations in the heart rate. However, under certain conditions only one division

of the nervous system can have a significant effect on the heart rate.
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Figure 7: Rhythms of the ECG [1].

The normal heart rate at rest is usually between 60 and 100 beats per minute.

However, much lower rates may be normal in adults, particularly those who are

physically fit. The heart rate responds not only to exercise and inactivity but also to

stimuli such as pain and anger. Tachycardia and bradycardia are two cases of abnormal

heart rate. In tachycardia the heart rate is above the normal range for a particular person,

whereas in bradycardia the heart rate is abnormally low. Abnormal rhythm of the

heartbeats, called arrhythmia, is generally caused by the electrical impulses traveling in

abnormal pathways.



CHAPTER 2

RESOURCES

The software used to implement the analysis process in this thesis is Agilent's VEE Pro ©

6.0. This software is a graphical tool available to implement mathematical and logical

operations. Inclusion of Matlab functions greatly enhance the usability of VEE Pro © for

signal processing applications. The applications are created by placing graphical objects

(blocks) on the working area and wiring them together with lines. This graphical view

itself is the program. There is no need to perform any cryptic and error-prone steps like

preprocessing, compiling, or linking. The entire program is made up of 'blocks' and

looks like a 'block diagram'. There are two views in a VEE program. One is 'Panel

View' and the other is the 'Main View'. The panel view is generally used to display final

results and to create a user interface containing a navigation panel, command buttons,

menu options, etc. The main view will show each component of the program. When the

program (or 'block diagram') is ready, it can run just by pressing the 'Run' button.

Features like Program Explorer, Profiler, Function & Object Browser, etc. allows

the user to manage variables and to measure the time taken by the program to produce

results. Strong debugging features makes it easy for the development of complicated

programs.

The sample data sets used in this thesis to validate the algorithms are taken from

the MIT-BIH database. The method used to obtain data from the samples of the

MIT-BIH database is described later in this chapter.

12



13

2.1 Using. VEE

A simple example is discussed in this report to give some idea about the flexibility,

convenience and efficiency of programming using VEE. The program below is a simple

routine to detect the zero crossing from an array of numbers with size n, generated

randomly with the condition that it should cross the zero line at least once. The purpose

of the program is to find the point where the signal is crossing the zero line.

Following is the pseudo code for the routine:

1.For n=1 to n<m, increase n by step of 1;

2. If (A[n]*A[n-1] <=0), that point indicates zero crossing. Due to discrete sampling, the

signal may cross the zero line between two samples. This criteria ensures that zero

crossing.

3. Compare absolute of (A[n] -0) with absolute of (A[n-1] -0) and find the smaller one to

find the point close to the zero line.

4. Result will be A[n], if A[n] is smaller; otherwise, it's A[n-1].

where n is the index of the array element, m is the total size of the array and A[n] is nth

element of array A.

The Main view in figure 9 contains the block diagram of the program. To

implement this routine in VEE, an array of twenty elements has been generated such that

it crosses the zero line at least once. This array consists of four small arrays. They are

generated using four linear array allocation blocks shown in section A of figure 9. Each

block generates a linear array of five elements that makes a straight line with either

always positive slope or always negative slope. Concatenating these segments by putting
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positive slope segment followed by negative slope segment gives a definite zero crossing.

The concatenation block does the process of putting all four segments together and

generates an array of twenty elements. Section B in figure 9 shows the multiplication of

two consecutive array elements. If the result is negative, both elements are checked for

the proximity to zero line by taking their absolute value and deducting it from zero. The

index value of point nearest to zero is passed to the section C of figure 9. Formula blocks

in section C finds the corresponding value of selected index points and convert them into

coordinate form in order to display it on X-Y plot. Thus the whole block diagram works

in order to find zero crossing points and display them. Section D in figure 9 shows

different types of displays including alphanumeric display for whole array, expanded X-

Y plot with all zero crossing points and iconized X-Y plot. Appendix B describes the

properties of each block and the formula used for each block. Figure 8 shows the panel

view containing the zero crossing points and one of the zero crossing points is shown

more clearly in the expanded view in the bottom part of figure 8.

The main view helps understanding the sequence of data flow through the objects

that is an implementation of the psuedo code described above. Also, readily available

graphical display, alphanumeric display and other components makes the panel view

more user-friendly. Embedding a small routine in any large program is possible in VEE.

This feature enhances the reusability of any program created in VEE.



Figure 8: Panel view in VEE.
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Figure 9: Main view in VEE.
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2.2 Acquisition of Data

2.2.1 MIT-BIH Database

In the most emerging field of Medical Engineering, research subjects like Cardiac

Arrhythmia Detection, Heart Rate Variability, Electrocardiogram Data Compression,

Cardiovascular and Pulmonary Dynamics and Artificial Intelligence-Based Medical

Decision Support, etc. are of prime interest. The Massachusetts Institute of Technology

(MIT) supplies some valuable resources for such research projects. These resources

include databases containing recorded physiological signals and software for analyzing,

viewing and creating such recordings. MIT also developed standard software for

deriving performance statistics for automated electrocardiogram analyzers required by

the current American National Standard (ANSI/AAMI EC38: 1998) for ambulatory

electrocardiogram and (ANSI/AAMI EC 57:1998) for testing and respiratory

performance results of cardiac rhythm and ST segment measurement algorithms.

The MIT-BIH Database (http://ecg.mit.edu) is an extended collection of recorded

physiological signals.

Various efforts are made in order to prepare such resources for the research

community in the biomedical engineering field. This includes work such as developing a

very large (-50 GB) database of ICU recordings (the MIMIC Database) of typically 24 to

48 hours in length including 2 to 3 ECG signals, 2 to 4 pressure signals, respiration and

extensive clinical data on each subject is being carried out. Development of a long-term

ST Database from two-channel 24-hour ECG developments is done by participating in

international efforts including the participation of the developers of the European ST-T

database.
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Software has been developed to read and write digitized signals and annotations

using highly portable, flexible and efficient set of database interface functions called "the

DB Library". This software and supporting documentation are freely available from the

Internet at (http://ecg.mit.edu/dbinfo.html).

From the MIT website http://ecg.mit.edu/dbinfo.html,  the following items can be

downloaded:

• Samples of MIT-BIH Database

• The DB Library

• Software required by ANSI standards mentioned above

• The entire Database software package

• Software called WAVE (Demonstration version) in binary for Linux, Solaris and

SunOS

• WVIEW software for MS-Windows users, in binary form

• Documentation including ECG Database programmer's guide, ECG Database

application guide and WAVE user's guide in postscript and html format

• Updates of earlier versions of the software and Database.

Apart from support of more than 400 users in the last 21 years, organizations like

the National Center for Research Resources of the National Institute of Health allows

MIT to provide freely almost all data available on CD-ROMs and also helps reduce

significantly the cost of CD-ROMs to those who still need them. Currently available

databases, software and documentation in the CD-ROM are tabulated at

http://ecg.mit. edu/dbi nfo. html#CD-R OM s
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2.2.2 Method to View and Convert Records

The MIT-BIH database consists of mainly three file formats.

(1) .hea — Header file

(2) .atr — Attribute file

(3) .dat — Data file.

There are also other file formats. For example, .st - sleep stage annotations,

.ecg - beat annotations, .qrs - beat annotations, etc. The above listed three main file

formats are used to convert each record into text format.

The first thing is to download all sample files available from the page for ECG

samples (http://ecg.mit.edu/dbsamples.html)  and save them to a folder making sure that

each set consists of all three file formats with the same file name, e.g., x_100.hea,

x_100.atr, x_100.dat.

To convert the available records into the ASCII text format, the following

procedure has been used in this project.

1. Copy the rdsamp.exe file, a small program for conversion of the record

from its present format into the required ASCII text format, from

http://www.physionet.org/physiotools/binaries/msdos/windows/  into the

same folder where you have all sample file sets downloaded.

2. Then run the command rdsamp -r x_100 -p -v >x_100.txt to convert the

record name x_100 into the ASCII text file format. The output file will

be saved in the same folder as x_100.txt.

For more commands on rdsamp application, the general syntax is rdsamp -r

record [options...] and options can be viewed at manual page for rdsamp
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(http://ecg.mit.edu/dbag/rdsamp- 1 .htm). It is required to execute the above command

each time to obtain the ASCII text file from every sample record. Likewise, there are

other applications also available for various purposes with their manuals and user's

guide.

To view these samples in their original form with annotation, the user may

download the software related to the appropriate operating system from the software page

(http://ecg.mitedu/dbinfo.html#DB%20Software%20Package) . The documentation and

tutorials for these software packages are available at the documentation page

(http://www.physionet.org/physiotools/wfdb-books.shtml) . The easiest way is to refer to

the ECG Database Application Guide at http://ecg.mit.edu/dbag/dbag.htm  and check their

manuals for each command (application) to do various operations on available samples.

2.3 Selection of Samples

The tables below list all the selected samples from the MIT-BIH Database and the QT

Database that are considered to validate the algorithms described in this thesis. These

samples are carefully chosen such that it includes various events, like motion artifacts,

various types of noise signals and noise spikes, PVC events, negative leads, etc.

Moreover, these samples are easily available through the Internet. Events in detail for a

few samples are available at the MIT-BIH Arrhythmia Database Directory

(http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm).

The first set of samples includes 9 samples from the MIT-BIH Arrhythmia

Database (http://www.physionet.org/physiobank/database/mitdb/) . These samples are

chosen specifically to validate the R peak detection algorithm. The results given on the
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website 	 of 	 MIT-BIH 	 Arrhythmia 	 Database 	 Directory

(http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm) are used for

comparison to validate the analysis process. Each sample in this set is digitized at 360

samples/second and has duration of 30 minutes and 10 seconds. These samples are listed

in table 1 with other details.

Table 1: List of samples from MIT-BIH arrhythmia database.

Sr.

No

Name of

Sample*

Sampling

Frequency

(Hz)

Age Sex

No.

of

Leads

No. of

Records

in each

Lead

No. of R

peaks

detected

by MIT

Length

of

Sample

(min:sec)

1 102 360 84 F 2 650000 2187 30:10

2 105 360 73 F 2 650000 2572 30:10

3 107 360 63 M 2 650000 2137 30:10

4 118 360 69 M 2 650000 2288 30:10

5 119 360 51 F 2 650000 1987 30:10

6 205 360 59 M 2 650000 2656 30:10

7 209 360 62 M 2 650000 3004 30:10

8 214 360 53 M 2 650000 2261 30:10

9 217 360 65 M 2 650000 2208 30:10

The second set of samples is taken from the European ST-T database

(http://www.physionet.org/physiobank/database/edb/) . These samples are chosen such

* Name of sample has been maintained same as the file name of the record in original database.
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that all of them have Coronary Artery Disease (CAD) and they are likely to have

significant ST-T variation. These characteristics may be useful in measuring significant

variance in QT interval. Each signal in this set is sampled at 250 samples/second and is

of 15 minutes length. Other details are mentioned in table 2 for this set of samples.

Table 2: Samples from European ST-T database.

Sr.

No

Name of

Sample*

Sampling

Frequency

(Hz)

Age Sex

No.

of

Leads

No. of

Records

in each

Lead

Length

of

Sample

(min:sec)

1 Sele0104 250 47 M 2 225000 15:00

2 Se1e0124 250 58 M 2 225000 15:00

3 Sele0303 250 55 M 2 225000 15:00

4 Sele0406 250 45 M 2 225000 15:00

5 Sele0509 250 34 M 2 225000 15:00

6 Sele0604 250 49 M 2 225000 15:00

7 Sele0606 250 30 M 2 225000 15:00

8 Sele0609 250 46 M 2 225000 15:00

The last set of samples includes all normal patients. These samples are chosen

from the Normal Sinus Rhythm database available at

(http://www.physionet.org/physiobank/database/nsrdb/) . This set is particularly useful

while doing comparative analysis of the QT interval variability and heart rate variability

Name of sample has been maintained same as the file name of the record in original
database.
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between CAD patients and healthy (normal) patients. These samples are digitized at 128

samples/second and other details are given in table 3.

Table 3: Samples from normal sinus rhythm database.

Sr.

No

Name of

Sample*

Sampling

Frequency

(Hz)

Age Sex

No.

of

Leads

No. of

Records

in each

Lead

Length

of

Sample

(min:sec)

1 16272 128 20 F 2 115200 15:00

2 16420 128 38 F 2 115200 15:00

3 16539 128 35 F 2 115200 15:00

4 16786 128 32 F 2 115200 15:00

5 16795 128 20 F 2 115200 15:00

6 17052 128 45 F 2 115200 15:00

7 18184 128 34 F 2 115200 15:00

8 19093 128 34 M 2 115200 15:00

* Name of sample has been maintained same as the file name of the record in original
database.



CHAPTER 3

THE ALGORITHM

The whole algorithm is divided into six different processes:

1. Obtaining the proper inputs

2. Filtering the data

3. Detection of R waves

4. Detection of Q peaks and Q onset

5. Detection of S peaks, T peaks and T wave end

6. Calculating statistical results and construction of the Inter Beat Interval (IBI) and

Power Spectrum for QT interval variability and heart rate variability.

This algorithm defines some important variables after every significant step of the

analysis process in order to make those values available easily to the next phase of the

algorithm.

23



Figure 10: Functional blocks in the program.
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3.1 Getting the Proper Inputs

The first step of this algorithm is to read the input data and obtain the sampling frequency

from the user. This part of the algorithm gets the input signal, sampling frequency and

calculates several variables such as number of records in each lead and number of leads.

The module reads the data in ASCII format. The input data must be in a text file with

`tab' delimited, two-dimensional array. The program reads the input array and

determines the number of columns which is same as number of leads in the ECG signal.

The algorithm works well from any number of leads up to 12. The next step is to prompt

for the sampling frequency. The program accepts sampling frequency as integer input

between 125 and 1000. The module also checks the length of the sample after getting the

sampling frequency value. The ECG record should be of at least two minutes long to

obtain maximum resolution for power spectral calculations. If the data is not of required

length, then the program terminates automatically. The process also defines various

variables, like SF for sampling frequency and NL for number of leads. The screen shot

of this routine is available in Appendix A, figure 21.

3.2 Filtering

Filtering is required to avoid errors in the detection of peaks in the ECG signal. There are

various kinds of noise signals that can be present in a recorded ECG, viz., power line

interference, baseline wander, motion artifact due to electrodes and muscle movements.

There can be potential errors in recording caused by even a little carelessness during

recording. A special sequence of signal processing algorithm reduces the influence of

such noise sources, increases the detection sensitivity, reduces the false detection and
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improves the signal-to-noise ratio. The sequence of filtering shown in figure 11 has been

implemented to obtain the most suitable filtered signal to process the peak detection

analysis accurately.

Figure 11: Filtering Process.

The result shown in circle A is data from an individual lead after filtering and

circle B is a composite ECG signal, generated by taking the RMS value of each record

for all leads.

Traditionally the lead with most positive R peaks is used to count the R peaks. In

this project, the Root Mean Square (RMS) value combining all leads is used. The RMS

value provides a good positive signal reducing most of the noise and baseline wandering.

The process of taking the RMS value and generating a composite signal for R peak

detection eliminates the requirement of manual determination of the best positive lead

and makes the analysis more automated.

Mean smoothing was accomplished using a span of 10 points and the bandpass

filter has the frequency range of 0.5 Hz to 55 Hz, a second order Butterworth filter. After

the filtering process, information about the slope at each point in the waveform is

required. The first derivative is taken to obtain information about the slopes and peaks.
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All processed signals, such as the filtered original signal and its derivative are stored as

variables in order to access them easily in the later part of the algorithm.

The R peaks detected from this composite signal are being considered as fiduciary

points for further detection of the Q and T waves. The screen shot of this routine is

available in Appendix A, figure 22.

3.3 R Wave Detection

The R wave detection has three subroutines. This detection is done on the composite

signal.

1. Adaptive threshold

2. Peak detection from derivative of original signal

3. R peak detection

The QRS complex contains signal components in a relatively wide frequency

range from about 2 Hz to 100 Hz with a peak at 10-15 Hz [12]. The R peaks are

necessary to be detected accurately for the further detection of the Q and T peaks. In this

thesis, the R peak works as a fiduciary point during the detection of the Q and T peaks.

The R peak detection is difficult because of physiological variability of QRS complexes

and various types of noise that can generate errors in the detection. Sometimes the

polarity of the QRS complex and high frequency T waves having similar characteristic as

a QRS complex can be a cause of error in the detection. A refractory period of 200 ms

following the QRS complex has been set in this project to avoid false detection of T

waves or noise spikes.
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3.3.1 Adaptive Threshold

This algorithm automatically adjusts the threshold periodically to adapt to QRS

morphology and heart rate changes.

Once the original signal (raw data) is filtered and differentiated, this process of

adjusting the threshold is implemented. This formula of adaptive threshold is described

by P. Laguna et. al. [13]. The formula is implemented in the algorithm and can be

explained as follows:

Define a threshold at the nth beat as Tn. The threshold is generally some

percentage of the maximum value in the predefined time interval of the signal. For

example, in this algorithm, sections of 1.5 seconds in duration were used to detect the

threshold value for that particular segment. For the first beat, the threshold is 80% of the

highest value of that section of signal. For consecutive beats, the threshold is Tn+1, which

is calculated as,

This formula will set a defined threshold for each 1.5 seconds of the derivative of the

original signal and make detection of peaks from the derivative signal easier. The value

of the threshold is different for each piece of the signal and the value also depends on the

maximum value in that piece. The threshold value will adjust itself even if there is some

noise or abnormalities present in the signal. This is called 'Adaptive Threshold'

algorithm. The screen shot of this routine is also available in Appendix A, figure 23.
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3.3.2 Peak Detection from Derivative Signal

Once the threshold has been detected for each section of the derivative signal, the next

task is to detect the peaks of the derivative signal because the zero crossing after the

peaks of the derivative signal correspond to R peaks in the original signal. The process

of detecting peaks can be described as below:

1. Compare each point with corresponding threshold value. If the value is higher than

the threshold, save that point in a temporary array.

2. From the array of all points above the threshold, separate the groups of consecutive

points above threshold value and store them as temporary variables. If two points are

not consecutive, they belong to different QRS complexes and cannot be member of

same group. This process will give us number of groups same as number of . QRS

complexes and each group consisting of few points from one particular QRS complex

with value higher than threshold level.

3. Find the maximum value in each group, which will be the tentative peaks.

4. Compare the distance (in terms of ms) between two consecutive tentative peaks.

Because two QRS complexes cannot be closer than 200 ms, if the distance between

two consecutive tentative peaks is less than 200 ms, ignore the later peak and redefine

the array. This concept is called 'Refractory period setting'. Mark those points that

have maximum value in each group as peaks.

Results from one of the samples for peak detection is shown in the figure 12. The

peaks are marked on the derivative signal.
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Figure 12: Peak detection using the first derivative of the signal.

3.3.3 Find Zero Crossing Points

The procedure to find the zero crossing point from an array is explained in chapter 2.

A similar procedure is used to detect zero crossing points in order to find R peaks.

The reason to detect the zero crossing point following each peak detected (peaks from .

derivative of composite signal) from the previous section is that the zero crossing points

(from the derivative of composite signal) are directly associated with R peaks in the

original signal. Hence, each peak (peaks from derivative of composite signal) is chosen

as a reference point and points following the peak are checked to find a zero crossing. In

most cases, unless very severe noise is present, there will be a zero crossing following

that particular peak. As most of the noise signal has been removed previously with

filtering, there will be a zero crossing following each peak.

These zero crossing points should represent the location for the R peaks in the

original data. Thus, by taking this array of zero crossing points, the coordinates of the R

peaks can be determined. The graph in figure 13 shows the detected R waves on a

composite signal from one of the samples. This routine has a 98% success rate in this

project.
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Figure 13: R peaks detection results.

Another sample is shown in figure 14 illustrating successful detection of R peaks

even during some abnormalities in the waveform.

Figure 14: R peaks detected in a noisy piece of signal.

3.4 Q Wave Detection

The Q wave detection process is divided into the following sections:

1. Defining windows

2. Detecting Q wave peak

3. Detecting beginning of Q wave (QRS onset)
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3.4.1 Defining Windows

Because the Q peak cannot occur more than 80 ms before the R peak [13], the first

window for the Q peak has been defined to 80 ms before the R peak. This window can

be easily defined by a taking number of points equal to the ((80*Sampling-

Frequency)/1000) and converting it to an integer value.

The second window is defined for the span of 40 ms before the end of Q wave

window. This window is used to detect the beginning of the QRS complex, also called

QRS onset. A similar formula can be used to consider the points for 40 ms as defined in

the description of the first window.

3.4.2 Detecting Q Peaks

In the first window of 80 ms of signal before the R peak, there should be a zero crossing

preceding the R wave in the derivative of the original signal and as well as a minimum

value in the original waveform. This criterion ensures the point as the Q peak. Also,

taking the absolute value of samples from the original signal and checking the maximum

value and its index can verify the Q peak. If there is no satisfactory detection of the Q

wave in this window of 80 ms, the Q wave was marked using the criteria of detecting the

minimum value from the windowed signal.

3.4.3 Detecting Q Wave Beginning

The point from where the Q wave begins is detected from the second window of QRS

onset. The point nearest to the zero line within this window is said to be the beginning of
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QRS complex and marked as the QRS onset point. Due to noise and abnormalities,

detection of this point is very difficult. If the point is not detected clearly in the first pass,

the QRS onset was marked as the point nearest to the baseline. This helps in maintaining

the number of QRS onset points the same as the number of Q peaks and later on in the

relevant calculations. This routine is has a 95% success rate in this project.

3.5 T Wave Operations

T wave operations include detection of the T wave peak, T wave end and S wave as an

additional point. Again, this process is divided into the following parts:

1. Separating windows

2. Detection of S waves

3. Detection of T peaks

4. Marking end of T waves

3.5.1 Separating Windows

Separating windows in this section is very similar to the previous section. The only

difference is the time duration of each window. In this section, we need three separate

windows, one for the S wave, one for the T peak and one for the end of the T wave.

The time interval is defined for each window. The first window for the S wave is

150 ms following the R peak. The second window is defined from one of the following:
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The formula above shows that the window for the T wave operation is dependent

on the previous R-R interval and detection of the S wave. Hence if previous R-R (RR)

interval is greater than 700 ms, the window range is from the S wave to 500 ms after the

R peak and otherwise it is from the S wave to 0.7*RR ms after the R peak. The R peak is

considered as a reference to define the end of the window. This ensures the correct

window regardless of the accuracy of the S wave detection or prolongation of the S wave.

The window size was decreased if the RR decreases in order to avoid false detection of

the next P wave. Since the second window can include the T peak as well as the end of

the T wave, the algorithm primarily detects only the T peaks.

The window for the end of the T wave is defined from the T peak to the end of

second window. This window is physically overlapping the second window but makes

the detection of the end of the T wave easier since the T peak is not being considered in

this window. Avoiding the T peak in the second window helps avoid confusion in

detection of the end of the T wave.

The algorithm is also capable of determining the T wave morphology. The

program can detect four different types of T waves, upward-downward T wave, only

upward T wave, only downward T wave and downward-upward T wave. The T wave

morphology detection is obtained considering slopes at the T peak and the end of T wave.

The morphology detection for the T wave is implemented assuming that changes in the T

wave morphology might be an indicative of other cardiac abnormalities and future

researchers may look into this parameter.



35

3.5.2 Detection of S Wave

The S wave detection is also implemented as it may help in some future analysis such as

ST interval measurements. After the R peak, the window for the S wave has been defined

as described in the previous section. Now, the minimum value or the point nearest to the

baseline is marked as the S wave. It is also verified using the zero crossing of the

derivative of original signal at that point.

3.5.3 Detection of T Peaks

This measurement is very similar to the detection of R peaks. The T wave in most of the

ECGs is clear and either positive or negative. The algorithm successfully detects the

T wave peak regardless of its polarity.

The window for the T wave was explained in the previous section. In this range

of points, the maximum value is the T peak. Since the T wave can be positive or

negative, we need to take the absolute value of each point first and redefine each point in

the window by taking its absolute value. The absolute value ensures the detection of the

correct peak even if the T wave is negative. The detected T wave is also verified by

checking the derivative of the signal at that point. The derivative should be a zero

crossing point at the point where algorithm determines a T peak. If both criteria are not

matching, there is an error message generated and the T peak is considered as a

`doubtful' T peak.

The T wave algorithm also helps to determine the nature of the T wave. It can

identify various types of T waves, like, upward, upward-downward, downward and

downward-upward T waves. This special feature takes the slope at the T peak and the
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end of T wave into consideration to determine the nature of the T wave. The nature of

the T wave may be useful in future analysis by comparing morphological changes in the

T wave to related physiological or autonomic nervous system changes.

3.5.4 End of T Wave Detection

There is much confusion regarding the end of the T wave. The point where the T wave is

assumed to end is very difficult to detect. At the point where T wave ends, the derivative

should be zero or close to the baseline. The original signal should also have a zero value

or close to the baseline. This criterion ensures the correct detection of the end of the T

wave point. This process also works well regardless of the nature of T wave.

The graph shown in figure 15 illustrates the correctly marked S wave, T peak and

end of T waves. This subroutine has a 96.7% success rate in this project.

Figure 15: S wave, T peaks and end of T wave results.

3.6 QT Interval Measurements

These measurements are the final stage of the algorithm. The QT interval definition can

be stated in several ways. This interval can be from Q wave beginning to the end of the T

wave or from the Q peak to the end of the T wave. It can also be from the Q peak to the T
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peak or the Q peak to the end of the T wave. The interval is defined from the Q peak to

the T peak in this project. Studies showed that defining the end of the QT interval at the

maximum of the T wave gave the most precise measurements [6]. Measuring the QT

interval from the Q peak to the T peak also reduces the possibility of deviation in the

interval calculations due to errors in detection or particular boundary.

The QT interval can have some dependence on the heart rate variability and it is

presumed to follow the preceding RR interval [14]. There are formulas to calculate the

QTc (QT corrected) that should reduce the influence of the heart rate variability on QT

interval variability. Following is the list of formula to calculate QTc [15]:

In this project, Bazett's formula is used to correct the QT interval as it is the most

conventionally used formula. This formula gives QTc (QT corrected) and is defined as,

QTc = QT/(RR) 1/2 , where RR is the time interval between the R peak and the previous R

peak. This formula is used to reduce the influence due to heart rate variability on QTc,

since the measurement of the QT interval variability should be independent of heart rate

variability.

The resulting QTc interval calculated by Bazett's formula could still have some

dependence on heart rate variability because the calculations and frequency analysis

curves are built using the position of the R peaks as reference. To remove the influence of

heart rate variability on QT interval variability, a new corrective method is also
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introduced in this thesis. It is called QTcc (QT corrected of QTc). Further description

about this parameter and construction of the frequency signal using it is given in the next

section.

3.7 Obtaining IBI and Power Spectrum

The interbeat interval (IBI) represents the distance between two consecutive R wave

peaks in the given ECG signal and spectral analysis is used to provide estimates of

sympathetic and parasympathetic influences for the interval variability measurement [16].

The basic purpose of calculating these signals is to observe the amount of influence of the

sympathetic and parasympathetic branches of the autonomic nervous system on the QT

interval and to compare it with the amount of influence on the hear rate variability.

In order to obtain equidistant IBI samples suitable for frequency analysis and

comparison, interpolation is required [16]. In this project, backward interpolation is used

to obtain the Interpolated IBI (IIBI). For example, as shown in figure 16, the amplitude

represents the RR interval in milliseconds minus the mean at a particular beat and the

same value has been interpolated until the previous beat, using a backward step function.

Figure 16: Sample BB' plot.



39

Before conducting spectral analysis, the IIBI signal was decimated (by a factor of

ten). In this process, every tenth point of the signal is considered for the spectral

analysis. The process of decimating the IIBI signal is similar to down sampling.

The process of decimation increases the analysis speed and there is no information lost,

as the IIBI signal does not contain any frequency component above 6 Hz.

A factor called QTcc (corrected QTc) is considered during the process of

construction of the IIBI signal. It is hypothesized in this project that this parameter

further eliminates the influence of the heart rate variability on the QT interval. Hence,

the IIBI signal for this parameter has been constructed using a constant interval instead

using the RR interval. The constant selected in this thesis is 250. Hence, the first beat is

plotted at 250; the second beat is at 500 and so on. Power spectral calculations have also

been done for QTcc. Results are discussed in the end of this document providing further

insight on this hypothesis.

Power spectral analysis of the heart rate variability evaluates activities of the

autonomic nervous system noninvasively [17]. The IBI is used as the time domain signal

to calculate the power spectrum. Some of the past researchers have associated various

peaks from the power spectral analysis with certain physiological parameters [18]. For

example, the very low frequency band (0.02 to 0.06 Hz) is associated with vasomotor

control and temperature control. The low frequency band (0.06 to 0.15 Hz) correlates

baroreceptor-mediated blood pressure control and the high frequency band (0.15 to 0.4

Hz) has been linked with respiration. It has been hypothesized that the low frequency

region is representing mixture of both parasympathetic activity and sympathetic activity,

whereas the high frequency region corresponds to only parasympathetic activity. One of
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the drawbacks of the power spectral analysis of the heart rate variability is that it cannot

indicate rapid changes in the heart rate variability over time and joint time-frequency

analysis is useful to overcome this drawback [17]. While this thesis does not address this

topic, future work can be done using this technique for both heart rate variability and QT

variability. Figure 17 shows a sample power spectrum from a healthy patient with clear

peaks in very low frequency, low frequency and high frequency regions.

Figure 17: Sample power spectrum from a healthy patient.

Figure 18 and 19 gives a better visual comparison for QTc and QTcc. These

diagrams indicate that by calculating power spectrum of QTcc we attenuated one large

peak in the high frequency region. This indicates that the measurement and calculation of

QTcc parameter reduces the effect of respiration on QT interval variability calculations.

Figure 18: Sample power spectrum for QTc.



Figure 19: Sample power spectrum for QTcc.
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CHAPTER 4

RESULTS AND CONCLUSIONS

As described in Chapter 2, the samples of ECG were selected from the MIT-BIH

databases. A total of about 510 minutes in length of data consisting of 56100 heart beats

has been analyzed successfully for validation purpose (as shown in Appendix A, table 8).

There are main four parts of the results:

1. R wave validation

2. Q and T wave validation

3. Frequency analysis

4. Comparative analysis

4.1 R Wave Validation

In this research project, an accurate determination of the R peak is an absolutely

necessary condition for a reliable Q wave and T wave detection The information

available on MIT's website is used for this validation. The website

http://www.physionet.org/physiobank/database/html/mitdbdir/records.htm  has tabulated

information regarding the number of R peaks detected by MIT's algorithm. Comparing

the results with MIT's results demonstrate a success ratio of this automated approach.

Table 4 shows the comparison between the results of both algorithms'

R peak detection:

42
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Table 4: Validation of R wave detection algorithm.

File

Name

Sampling

Frequency

(Hz)

Length

(min:sec)

Age

(Years)
Sex

Detected R

peaks by my

algorithm

R peaks

by MIT

Success

Ratio

(%)

102 360 30:10 84 F 2166 2187 99.04

105 360 30:10 73 F 2517 2572 97.86

107 360 30:10 63 M 2136 2137 99.95

118 360 30:10 69 M 2277 2288 99.52

119 360 30:10 51 F 1977 1987 99.50

205 360 30:10 59 M 2622 2656 98.72

209 360 30:10 62 M 2910 3004 96.87

214 360
—

30:10 53 M 2241 2261 99.12

217 360 30:10 65 M 2144 2208 97.10

The above table shows a 98.63% success ratio in the selected samples for the R

wave detection.

4.2 Q and T Wave Results

For the Q and T wave detections, the author has done manual observation. The results

are manually observed using features available in the VEE software for scrolling and
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zooming the graphical results. Two minutes of signal from three randomly selected

samples has been analyzed. These selected samples are 19093, sele0303 and sele0606.

A total of 460 beats were observed manually with the Q peak marked by the algorithm.

Only 23 peaks were falsely detected or offset (95% success). This indicates a good

success ratio for the algorithm implemented. An example of Q wave results from sample

19093 is shown in figure 20 below:

Figure 20: Q wave results.

A similar analysis as used in the Q wave validation was performed for T wave

algorithm validation. In the same set of samples for the manual analysis, only 15 T peaks

were falsely detected or not accurately detected (96.74% success).

Two types of results are obtained by frequency analysis. As described in the

previous chapter, the IIBI plot is obtained for all four parameters, HRV, QT, QTc and

QTcc. After calculating the IIBI values, calculations for the Power Spectrum have been

done and the spectrum was observed mainly in the 0 to 1 Hz frequency range.

T-test results in table 7 shows that the influence of heart rate variability is not

completely removed by calculating QTcc for normal patients.
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4.3 Comparative Analysis

To compare HRV with QT interval variability, parameters like area under the low

frequency region (LF area), area under the high frequency region (HF area) and ratio of

low frequency area and the high frequency area (LF/HF) are compared. A student's t-test

for pair of arrays has been done for this analysis. The results are calculated for both

groups of patients as shown in the following tables:

Table 5: T-test results comparing each parameter between normal and CAD patients.

HRV QT QTc QTcc

Std. Dev. p < 0.0011 p < 0.0015 p < 0.0003 p < 0.0004

HF Area p < 0.0290 p < 0.2893 p < 0.0233 p < 0.02409

LF Area p < 0.0270 p < 0.2837 - p < 0.0122 p < 0.0075

LF/HF p < 0.5818 p < 0.5147 p < 0.2848 p < 0.33'79

Table 6: T-test results for parameter comparison for CAD patients.

HRV & QT HRV &QTc HRV & QTcc

Std. Dev. p < 0.0041 p < 0.0014 p < 0.0000005

HF Area p < 0.3088 p < 0.8745 p < 0.9524

LF Area p < 0.2172 p < 0.2172 p< 0.9281

LF/HF p < 0.1769 p < 0.2260 p < 0.2308

Table 7: T-test results for parameter comparison for normal patients.

HRV & QT HRV &QTc HRV & QTcc

Std. Dev. p < 0.0037 p < 0.00004 p < 0.00003

HF Area p < 0.0292 p < 0.0363 p < 0.0402

LF Area p < 0.0270 p < 0.0311 p < 0.03287

LF/HF p < 0.0007 p < 0.0007 p < 0.0215
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The students' t-test is used to check the comparison between parameters. Table 5

compares each parameter, HRV, QT, QTc and QTcc for normal and CAD patients. Table

6 shows the comparison between parameters for CAD patients and table 7 shows the

comparison between parameters for normal patients. Parameter comparison has been

done by taking HRV & QT, HRV & QTc and HRV & QTCC as pairs for calculations. In

table 5, 6 and 7 comparisons have been done for frequency analysis parameters such as

LF area, HF area and ratio of LF/HF.

Starting from table 5, the major change in the p value for HF area from HRV to

QT indicates that parasympathetic activity is not an influence on heart rate in either

normal or CAD patients, but the parasympathetic activity is responsible for major change

in QT interval variability for CAD patients. Another observation from table 6 indicates

that the parasympathetic nervous system behavior has different mechanism for CAD

patients in the case of QT measurements rather than HRV. This makes the dominance of

parasympathetic influence on QT for CAD patients very clear. The last observation from

table 7 indicates that the parasympathetic and sympathetic activities are not influencing

differently for HRV and QT interval variability in the case of normal patients.

The expectation from the parameter comparisons in table 6 or table 7 was that for

the values from HRV & QT, HRV & QTc, HRV & QTcc, the statistical significance

should change. However, the results indicate no significant difference. This could imply

that the effort to remove effect of heart rate change on QT by introducing QTcc is not a

better solution, and there is still some influence of heart rate change in QTcc.

Combining all of the above, for CAD patients, the parasympathetic nervous

system behaves differently compared to sympathetic nervous system and also compared
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to parasympathetic activities in normal patients. Also, the parasympathetic activity

influences QT interval variability in a noticeable amount for CAD patients. The activities

and influence of the sympathetic nervous system on each index changes in similar

fashion as the parasympathetic nervous system influence in both, normal and CAD

patient cases. The only difference in the amount of influence of sympathetic activity on

each index is low compared to the parasympathetic influence.

4.4 Discussions and Future Work

The analyses of the dynamics of RR or QT time series can only be perform by observing

the beat-to-beat variability. There is no 'absolute' unbiased measurement of ventricular

repolarization duration due to precision limitations of the tool used. All automatic

measurement systems and algorithms produce some error in interval measurement as

well. The effort here has been to make the system as much error free as possible using

the latest available signal processing software tools. The advantage of this system is that

this automatic algorithm rapidly analyses an ECG and is capable of producing a wide

range of results. These results can be stored for future work. The performance and

reproducibility of the system is comparable between different automatic measurement

systems and manual measurement as well. This newly developed system precisely

measures the QT interval beat-by-beat over a relatively long period of time with precision

of milliseconds. All analyses are performed on the filtered ECG signal and the results are

consistent and reliable.

Discussing some of the limitations of the system, the processing time can be

reduced using some advanced techniques after significant experience of programming
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with VEE. Reducing the number of variables required is one of the key to reduce

processing time and virtual memory requirement while analysis. The present system is

optimized for 2 lead to 12 lead ECG and sampling frequency range from 125

samples/second to 1000 samples/second. Normally increase in sampling frequency or the

length of the ECG signal increases the processing time. Some modifications are

necessary to embed the existing system into any real time diagnostic device. Also, the

software has wide range of features that makes other calculations of related research very

convenient. This whole project serves as a significant step towards the automation of the

process and comparative analysis for the two important parameters, the heart rate

variability and QT interval for an ECG signal.

The program developed during this thesis is ready for other measurements like

QT dispersion and is also ready for analysis of a 12 lead ECG. During the development

of the system, the sample data set from the MIT database was also converted into text

format and is ready for any kind of future analysis. Future projects can consists of

analysis of data with some other hypothesis using the same available program and data

set. Also, in the future, researchers may take initiatives to optimize the algorithm,

increase the success ratio and reduce the processing time.



APPENDIX A

SCREENSHOTS AND OTHER RESULTS

Figure 21: Screenshot of input module.
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Figure 22: Screenshot of filtering module.
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Figure 23: Screenshot of threshold calculation routine.
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Figure 24: R peak detection routine.
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Table 8: Results for number of total beats analyzed.

Sample No. of R peaks HR

102 2166 72.2

105 2517 83.9

107 2136 72.2

118 2277 75.9

119 1977 65.9

205 2622 87.4

209 2910 97

214 2241 74.4

217 2144 71.5

Sele0104 1608 53.8

Sele0124 2242 74.9
_

Sele0303 2088 69.9

Sele0406 1918 64.2

Sele0509 2058 70

Sele0604 2062 70.4

Sele0606 2880 96.8

Sele0609 2252 75.7

16272 2138 77.1

16420 2566 88.8

16539 2492 87.9

16786 2162 74.2

16795 2052 74.1

17052 2372 83.6

18184 2228 87.1

19093 1992 69.3
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APPENDIX B

AN EXAMPLE OF PROGRAM DOCUMENTATION

VEE revision: 6.0
Execution Mode: VEE 6
Convert Infinity on Binary Read: no

I/O Configuration
Embedded Configuration

GPIB0

dmm(@(NOT LIVE))
Panel Driver: hp34401a.cid
Timeout (sec): 1.000000
Byte ordering: MSB

dvm(@(NOT LIVE))
Panel Driver: hp3478a.cid
Timeout (sec): 5.000000
Byte ordering: MSB

fgen(@(NOT LIVE))
Panel Driver: hp3325b.cid
Timeout (sec): 5.000000
Byte ordering: MSB

M: Main
Device Type	 : Main
Context is secured	 : off
Trig mode	 : Degrees
Popup Panel Title Text	 : Untitled
Show Popup Panel Title	 : on
Show Popup Panel Border : on
Popup Moveable : on
Popup Panel Title Text Color : Object Title Text
Popup Panel Title Background Color : Object Title
Popup Panel Title Text Font : Object Title Text
Delete Globals at Prerun	 : on

M.0: Main/Alloc Rea164
Device Type	 : Allocate Array
Output pin 1	 : Array

M.1: Main/Alloc Rea164
Device Type	 : Allocate Array
Output pin 1	 : Array
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M.2: Main/Alloc Rea164
Device Type 	 : Allocate Array
Output pin 1 	 : Array

M.3: Main/Alloc Rea164
Device Type 	 : Allocate Array
Output pin 1 	 : Array

M.4: Main/Concatenator
Device Type 	 : Concatenator
Input pin 1 	 : A (Any, Any)
Input pin 2 	 : B (Any, Any)
Input pin 3 	 : C (Any, Any)
Input pin 4 	 : D (Any, Any)
Output pin 1 	 : Array

M.5: Main/totSize(x)
Device Type 	 : Formula
Input pin 1 	 : x (Any, Any)
Output pin 1 	 : Result
Formula 	 : totSize(x)-1

M.6: Main/If/Then/Else
Device Type 	 : If/Then/Else
Input pin 1 	 : A (Any, Any)
Input pin 2 	 : B (Any, Any)
Output pin 1 	 : Then
Output pin 2 	 : Else
If/Else cases 	 : A[B]*A[B-1]<=0

M.7: Main/For Range
Device Type 	 : For Range
Input pin 1 	 : Thru (Rea164, Scalar)
Output pin 1 	 : Data
From Value 	 : 1
Thru Value 	 : 19
Step Value 	 : 1

M.8: Main/Collector
Device Type 	 : Collector
Input pin 1 	 : Data (Any, Any)
Input pin 2 	 : XEQ (Any, Any)
Output pin 1 	 : Array
Clear At Prerun 	 : on
Clear at Activate 	 : on
Output shape 1 d 	 : off
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M.9: Main/(a ? b : c)
Device Type 	 : Formula
Input pin 1 	 : a (Any, Any)
Input pin 2 	 : b (Any, Any)
Output pin 1 	 : Result
Formula 	 : ((abs(a[b]))<(abs(a[b-1])) ? b : b-l)

M.10: Main/Graphical Representation
Device Type 	 : Y Plot
Input pin 1 	 : Main Array (Any, Any)
Input pin 2 	 : Zero Crossings (Any, Any)
Clear At Prerun 	 : on
Clear at Activate 	 : on

M.11: Main/Concatenator
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Device Type
Input pin 1
Input pin 2
Input pin 3
Output pin 1

: Concatenator
: A (Any, Any)
: B (Any, Any)
: C (Any, Any)
: Array

M.12: Main/Build Coord
Device Type 	 : Build Coord
Input pin 1 	 : X Data (Rea164, Any)
Input pin 2 	 : Y Data (Real64, Any)
Output pin 1 	 : Coord

M.13: Main/Build Coord
Device Type 	 : Build Coord
Input pin 1 	 : X Data (Real64, Any)
Input pin 2 	 : Y Data (Real64, Any)
Output pin 1 	 : Coord

M.14: Main/Build Coord
Device Type 	 : Build Coord
Input pin 1 	 : X Data (Real64, Any)
Input pin 2 	 : Y Data (Real64, Any)
Output pin 1 	 : Coord

M.15: Main/Formula
Device Type 	 : Formula
Input pin 1 	 : A (Any, Any)
Input pin 2 	 : B (Any, Any)
Output pin 1 	 : Result
Formula 	 : A[B]
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M.16: Main/Formula
Device Type 	 : Formula
Input pin 1 	 : A (Any, Any)
Input pin 2 	 : B (Any, Any)
Output pin 1 	 : Result
Formula 	 : A[B]

M.17: Main/Formula
Device Type 	 : Formula
Input pin 1
Input pin 2
Output pin 1
Formula

: A (Any, Any)
: B (Any, Any)
: Result
: A[B]

M.18: Main/Formula
Device Type 	 : Formula
Input pin 1 	 : A (Any, Any)
Output pin 1 	 : Result
Formula 	 : A[2]

M.19: Main/Formula
Device Type 	 : Formula
Input pin 1 	 : A (Any, Any)
Output pin 1 	 : Result
Formula 	 : A[1]

M.20: Main/Formula
Device Type 	 : Formula
Input pin 1 	 : A (Any, Any)
Output pin 1 	 : Result
Formula 	 : A[0]

M.21: Main/Main Array
Device Type 	 : AlphaNumeric
Input pin 1 	 : Data (Any, Any)
Clear At Prerun 	 : on
Clear at Activate 	 : on
Indices Enabled 	 : on
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