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ABSTRACT

DEVELOPMENT AND APPLICATION OF A COMPUTER SIMULATION
TOOL FOR ECOLOGICAL RISK ASSESSMENTS

by
Haiyi Lu

In an effort to improve tools in ecological risk assessment (ERA), an ERA software tool

was developed and applied. Based on a preliminary evaluation of existing ecorisk

models, the relative deficiencies were identified and included the need for a user-friendly

interface, an interactive database management system (DBMS), and a comprehensive

evaluation of exposure pathways. In this research, Visual Basic (VB) 6.0 and Microsoft

SQL server were selected for developing the Windows-based interface and local DBMS,

respectively. For the exposure estimate, Yuma and Aberdeen Proving Grounds were

identified as baseline ecosystems. Terrestrial and aquatic plant and animal receptor

selection was based on the U.S. EPA Guidelines for ERA. All potential exposure

pathways were included. Overall, results of the case study of replacing electroplated

chromium coatings with sputtered tantalum showed that the most significant exposure

resulted from molybdenum and hexavalent chromium, which posed moderately high and

slight potential adverse risks to aquatic and terrestrial species at both sites. On the other

hand, tantalum (with vanadium as the surrogate) resulted in the least risk to the receptors

within the studied areas. However, a slight potential adverse risk was also observed for a

large faction of terrestrial mammals at both sites as a result of using sodium vanadate as

surrogate for Ta. An uncertainty analysis was included to address the data quality and

demonstrated that distribution coefficients have the most influence on the results.
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CHAPTER 1

INTRODUCTION

1.1 Objective

As part of the Department of Defense "Sustainable Green Manufacturing" initiative, an

ecological risk assessment was undertaken to assess the implications of replacing

chromium plating with tantalum coatings in artillery gun barrels. In an effort to improve

tools in ecological risk assessment (ERA), a comprehensive ERA model was developed

based on the case study. With a preliminary evaluation of existing ecorisk models, the

relative deficiencies were identified and included the need for a user-friendly interface,

an interactive database management system (DBMS), and a comprehensive evaluation of

exposure pathways. The developed ERA model includes these features and can be

modified for other site-specific applications. Yuma and Aberdeen Proving Grounds were

identified as baseline ecosystems and related terrestrial and aquatic receptors were

selected based on the U.S. EPA Guidelines for Ecological Risk Assessment. Potential

exposure of ecosystem to the gun coatings such as chromium can be a significant adverse

impact to the receptors. In this research, the potential risks associated with chromium,

tantalum and molybdenum for these two default site conditions were characterized and an

evaluation of the model was conducted based on the case study results.

1.2 Overview

An ecological risk assessment process requires a dynamic model that can adapt to

specific environmental conditions. In order to build such a model, ecosystem data are

required and based on guidance these have been compiled for the two baseline sites,

1
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Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) presented in

Chapter 2. The associated site-specific characteristics needed include site history,

topography, climate, surface water, soil, geology, and groundwater. As part of the

ecosystem characterization, concerned terrestrial and aquatic receptors were selected for

both sites. The ERA model development is discussed in Chapter 3 where potential

exposure pathways include ingestion, inhalation, and dermal absorption for terrestrial

animals; root and foliar uptake for plants; and direct absorption for aquatic species. The

ERA code has been integrated into the VB interface which is linked to the DBMS. The

potential risks associated with chromium and tantalum for the two default sites conditions

were subsequently characterized using the model, and the results are presented in Chapter

4. In addition, an overall evaluation of the software is presented with respect to how this

code addresses limitations of other models and what deficiencies exist and will be tackled

in future work. The last chapter reviews the conclusions from this research and

recommendations for the future work.



CHAPTER 2

SITE DATA IDENTIFICATION

2.1 Introduction

In this chapter, the needs of ecosystem data and guidance are presented for the two

military sites selected as default ones for the assessment: Yuma Proving Ground (YPG)

in Arizona and Aberdeen Proving Ground (APG) in Maryland. Based on U.S. EPA

Guidance (U.S. EPA, 1998), the required data include site-specific background and

characteristics such as climate, soils, geology, hydrology, and a complete listing of

potential animal and plant receptors. Subsequently, the impact of the chemical and

physical stressors on these ecosystems are evaluated in the improved dynamic, ecological

risk assessment model.

2.2 Guidance for Ecological Risk Assessment

Ecological risk assessment is used to systematically evaluate and organize data,

information, assumptions, and uncertainties in order to help understand and predict the

relationships between stressors and ecological effects in a way that is useful for

environmental decision-making. An assessment may involve chemical, physical or

biological stressors and one stressor or many stressors may be considered.

Based on U.S. EPA Guidelines for Ecological Risk Assessment (U.S. EPA,

1998), ERAs include three primary phases: problem formulation, analysis, and risk

characterization. The objective of problem formulation is to develop a conceptual model

that identifies assessment endpoints (i.e., animal and plant receptors in the ecosystem),

data needs (i.e., aquatic and terrestrial toxicity data, site characteristics), and analysis for

3
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characterizing exposure to the system stressors (Hoffman et al., 1995). The final

component, risk characterization, tests the conceptual model with toxicity benchmarks

resulting in a ranking of the stressor (Hoffman et al., 1995).

The material discussed in this section falls within the first phase, problem

formation. This first phase is a process for generating and evaluating preliminary

hypotheses about why ecological effects have occurred, or may occur, from human

activities. It provides the foundation for the entire ERA. Early in problem formulation,

the following questions must be addressed:

• What is the scale of the risk assessment?

• What are the major stressors of concern?

• What are the critical ecosystem and stressor characteristics?

• What is the nature of the problem: past, present, future?

• What data and data analyses are available and appropriate?

• What are the potential constraints (e.g., limits on expertise, time, availability of

methods and data)?

Based on these questions, information (actual, inferred, or estimated) is gathered

and synthesized on background information, site characteristics, and other associated

data, which provide the foundation for developing the problem formulation. Federal and

state agencies are recommended for such use; in this work, data were obtained from the

following departments and organizations:

• U.S. Environmental Protection Agency (U.S. EPA)

• U.S. Department of the Interior

• U.S. Department of Defense
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• U. S. Department of Energy

• U.S. Fish and Wildlife Service

• Arizona Fish and Game Department

• U.S. Geological Survey (USGS)

• U. S. Army Yuma Proving Ground, Environmental Division

• U.S. Army Garrison Aberdeen Proving Ground, Environmental Conservation &

Restoration Division

• U.S. Department of Agriculture, Soil Conservation Service

• Maryland Department of the Environment

• Maryland Department of Natural Resources

• Arizona Department of Environmental Quality

• Arizona Geological Survey

Background information provides general knowledge related to the risk

assessment (i.e., the characteristics of the stressors) and assists in identifying the scale

and nature of the problem as well as toxicity data needed in the model. Site

characteristics cover information about climate, surface water, soil, geology,

groundwater, and the ecosystem habitat from which model parameters are generated.

However, these parameters can be modified by the user to site-specific characteristics in

the code. The code will include the following categories for the parameters: contaminant

zone data, cover and contaminated zone hydrological data, saturated zone hydrological

data, unsaturated strata hydrological data, and partitioning coefficients. As the code is

applied to other ecosystems, site-characteristics should be reviewed thoroughly so that

the code parameters can be modified accordingly.
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Based on the literature, assessment endpoints are defined; these endpoints are

explicit expressions of the actual environmental value that is to be protected,

operationally defined by an ecological entity and its attributes (U. S. EPA, 1998). In order

to determine how to select and define the endpoints among a broad array of possibilities,

detailed information is needed on stressor sources and characteristics, exposure

opportunities, characteristics of the ecosystems potentially at risk, and ecological effects.

The following subjects and questions (U. S. EPA, 1998) must be considered during the

review of this information:

Source and Stressor Characteristics

• What is the source, and is it anthropogenic, natural, point, or diffuse

nonpo int?

• What is the type of stressor?

• What is the intensity of the stressor (i.e., the dose or concentration of a

chemical)?

• How does the stressor act on organisms or ecosystem function?

Exposure Characteristics

• With what frequency dose a stressor event occur (i.e., is it isolated,

episodic, or continuous)?

• What is the duration and how long does it persist in the environment?

• What is the spatial scale of exposure -- the extent or influence of the

stressor local, regional, global, habitat specific, or ecosystem wide?



7

• What is the distribution? How does the stressor move through the

environment (i.e., chemical fate and transport; physical movement;

biological or the life-history characteristics)?

Ecosystem Potentially at Risk

• What are the geographic boundaries?

• What are the key abiotic factors influencing the ecosystem (i.e., climatic

factors, geology, hydrology, soil type, water quality)?

• What are the structural characteristics of the ecosystem (i.e., species

number and abundance, trophic relationships)?

• What habitats are present?

• How do the site characteristics influence the susceptibility (sensitivity and

likelihood of exposure) of the ecosystem to the stressor(s)?

• What is the landscape context within which the ecosystem occurs?

Ecological Effects

• Given the nature of the stressor, which effects are expected to be elicited

by the stressor?

• Under what circumstances will effects occur?

Based on these information, endpoints for ERA should be established. Clearly

defined endpoints provide direction and boundaries for the risk assessment and can

minimize miscommunication and reduce uncertainty; where they are poorly defined,

inappropriate, or at the incorrect scale, the endpoints may be very problematic. Endpoints

may be too broad, vague, or narrow, or they may be inappropriate for the ecosystem

requiring protection. There are two different endpoints: assessment endpoint and
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measurement endpoints. Generally, the assessment endpoint identifies the desired

achievement; the measurement endpoints link the existing or predicted conditions on the

site to the goals expressed by the assessment endpoints (Maughan, 1992). Achievement

of the assessment endpoints is determined through measurement endpoints. Population

and community level endpoints are generally preferable but they are restricted to specific

site conditions and also limited by the availability of well-documented information.

Therefore, in most cases, measurement endpoints for individual organisms are applied.

However, it can be important indicators of population or even community endpoints, such

as endpoints related to the survival, growth, and reproduction of exposed organisms

(Maughan, 1992; U.S. EPA, 1993). Various endpoints may be used for predictive

assessments, but the final selection is often affected by the availability of toxicity data in

the literature and the quality of the data.

The environmental description for an ecological risk assessment is the ecosystem

of concern and its susceptible receptors inherent within specific boundaries. Usually, an

environmental description is based on a representative site where a potential release may

occur. For purposes of this study, criteria are identified to provide the guidance and basis

for defining the endpoint receptors. Besides a set of clear criteria, professional judgment

and an understanding of the characteristics and function of an ecosystem are also

important for the identification of the endpoints. The less information available, the more

critical it is to have informed professionals help in the selection.

In this chapter, the endpoint receptors are selected including the terrestrial and

aquatic animals and plants based on the data availability, social and ecological

significance, and specific site conditions. As the code is applied to other sites, the user
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needs to review the specific site conditions thoroughly, or if appropriate, apply the same

receptors housed for the default sites potentially using these as surrogates for their

receptors. The relation between receptors and the stressors will be described and analyzed

in the evaluation phase; these results are integrated in the risk characterization phase and

a risk description is generated (see Chapter 4).

2.3 Site Background

Based on site operations and representative ecosystems, Yuma Proving Ground (YPG)

and Aberdeen Proving Ground (APG) were selected as the baseline sites for typical arid

and coastal environmental conditions.

Aberdeen Proving Ground occupies more than 72,500 acres in Harford County,

MD. As the Army's oldest active proving ground, it was established on October 20, 1917,

six months after the United States entered World War I. It has since become one of the

Army's premier installation, internationally recognized for research and development, test

and evaluation, and soldier training.

The U. S. Army Yuma Proving Ground is located near the Arizona-California

border, in the southwest part of the western Range Complex, with 838,174 acres in Yuma

and La Paz Counties. Yuma Proving Ground has over 50 years experience testing weapon

systems of all types and sizes in a desert environment. The proving ground is regarded as

the entire infrastructure for fully and realistically testing all weapon systems in the

ground combat arena. They offer a large land area (1,300 square miles) and complete

ground combat support facilities. Most importantly, the proving ground has the necessary

facilities for a wide variety of commodity areas -- artillery, aviation, armor, tactical

vehicle, and air delivery (U.S. YPG, 1999). Because most of the gun barrels coated with
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sputtered tantalum will be test fired at Yuma, YPG will receive more attention and focus

in this assessment.

2.4 Aberdeen Proving Ground

2.4.1 Location

Aberdeen Proving Ground is located in the northeast portion of Maryland on the western

shore of the Chesapeake Bay in Harford County, Md. Its northernmost point is marked by

the confluence of the Susquehanna River and the Chesapeake Bay. To the south, it is

bordered by the Gunpowder River (Figure 1). The installation consists of approximately

79,000 acres of water and landmass characterized by low-lying marshes, flat meadows

and woodland, and gently rolling hills of open and wooded areas. The waters of the

Chesapeake Bay, Gunpowder and Bush Rivers, as well as numerous creeks and ponds

comprise nearly one half of the area owned or leased by the installation. Approximately

103 miles of unprotected shoreline fall within the installation boundaries (U.S. Army

Garrison APG, 1998).

The installation comprises two principal areas separated by the Bush River. The northern

area is known as the Aberdeen Area where the Aberdeen Test Center is located, and the

southern sector, formerly Edgewood Arsenal (established in November, 1917 - as a

chemical weapons research, development, and testing facility), is the Edgewood Area.

The two areas were administratively combined in 1971.



Figure 1 Map of APG Study Areas (U.S. Army APG. 1998)
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2.4.2 History

Aberdeen Proving Ground was established on October 20, 1917. Aberdeen's mission

included designing and testing ordnance materiel in close proximity to the nation's

industrial and shipping centers. The post officially opened on December 14, 1917, and

the first gun was fired on January 2, 1918.

Originally, the Aberdeen and Edgewood Areas were two separate facilities.

Aberdeen was used as a site for proof of concept and equipment test approval;

development has included munitions, firearms, vehicles, aircraft, and protective clothing.

The first artillery round was fired at Aberdeen on January 2, 1918. A total of 416,294

rounds were fired at Aberdeen during World War I. Edgewood was developed at the

same time to provide chemical production and artillery shell filling facilities to respond to

the need for chemical weapons. The main chemicals produced were phosgene,

chloropicrin, and mustard gas.

During World War II, Aberdeen became the Ordnance Research Center, a

research and development site for new armor, ammunition, rockets, aviation armament,

and other equipment. Aberdeen experienced an impressive increase in activity soon after

World War II; researchers at Aberdeen produced the world's first computer, Electronic

Numerical Integrator and Computer (ENIAC) to assist in research and in refining firing

tables (U.S. Army Garrison APG, 1998). Chemical production at Edgewood ceased, and

the facility's focus shifted to research and development, especially for chemical weapon

defensive measures. In 1971, the Aberdeen and Edgewood facilities were joined to form

one administrative unit, Aberdeen Proving Ground.
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2.4.3 Topography

Aberdeen Proving Ground is located within the Atlantic Coastal Plain, which is

characterized by low-laying wetlands, flat to gently rising knolls and hills, with little

change of elevation. These features were created as material eroded from the hills to the

West. The topography and surface features are characterized by these low hills, shallow

valleys, flat plains, and extensive marshes and wetlands (U.S. Army Garrison APG,

1998). Elevations within the proving ground range from 0-70 feet above sea level. Small

creeks drain the land surface erosion and discharge into the Chesapeake Bay or the Bush

and Gunpowder Rivers, tributaries of the Bay. The shoreline is typical of the Bay's

western shore, from low, marshy shorelines to steep, eroding bluffs 15-20 feet in height.

2.4.4 Climate

Aberdeen Proving Ground lies in the Coastal Plain region of the eastern seaboard of the

United States. The climate is influenced by continental and maritime air, which originates

over land and water, respectively. It is characteristically warm, temperate, rainy, and

moderately humid without a dry season. The mean annual precipitation is 40 inches and

is fairly uniformly distributed throughout the year. The heaviest rainfall usually occurs in

summer during thunderstorms, which are frequent in the area. Snowfalls occur on

average of 25 days each year with amounts in excess of one inch. The heaviest snowfalls

are in January, but accumulations may occur as late as March.

The mean annual temperature is 54° Fahrenheit (U.S. Army Garrison APG,

1998). The general flow of the atmospheric currents is from west to east. These tend to

bring cold, dry continental air masses into the area. However, the Appalachian Mountains
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to the west shelter the area from the severity of the cold continental air masses. The

moderating effects of the Atlantic Ocean and Chesapeake Bay combined with the

prevailing atmospheric currents tend to produce warmer, milder winters in the area than

are experienced by the inland regions at the same latitude. During the summer, the area is

influenced by a large semi-permanent high pressure system centered over the Atlantic

Ocean near 30 degrees north latitude in the vicinity of Bermuda. The associated flow of

warm, moist air from the south contributes to the high temperatures and humidity, and

provides moisture for frequent afternoon and evening thunderstorms.

The prevailing winds are from the west to northwest during the winter and south

to southwest during the summer. The annual average wind velocity is approximately 10

mph. The highest average wind speeds occur during spring and winter. Occasionally,

during thunderstorms, tropical storms, hurricanes, or intense winter storms, the wind can

reach velocities in excess of 50 mph.

2.4.5 Surface Water

Aberdeen Proving Ground is within the Upper Chesapeake Subregion of the Mid-Atlantic

Region. The Upper Chesapeake Subregion has a drainage area of approximately 7,400

mile2 in Maryland. This area comprises the major part of the Coastal Plain in Maryland

and one-third of the Piedmont province. Principal rivers in the subregion include the

Patuxent, Patapsco, Gunpowder, Chester, Choptank, Nanticoke, and Pocomoke. Major

storage is provided by Liberty Reservoir on the Patapsco River (completed in 1954 with

129,000 acre-ft or 42,100 Mgal of storage), and Prettyboy (completed in 1933) and Loch



15

Raven (completed in 1914) Reservoirs on Gunpowder Falls with a combined storage

capacity of 133,000 acre-ft or 43,300 Mgal (James, 1997).

The Gunpowder is in the upper western shore of Chesapeake Bay. It covers most

areas of the APG and is one of the main surface water resources of this area. The

dissolved oxygen (DO), water temperature, and pH of the Gunpowder are illustrated in

Figures 2-4, and the data were collected from the GUN0125 station by Maryland

Department of Natural Resource's (MD DNR) Tidewater Ecosystem Assessment

Division (MD DNR, 2000). The water temperature changes with seasons: the highest and

lowest ones occur in July and January, respectively (Figure 2). The change of

temperature also influences the DO concentrations at the greatest depths; generally,

during summer, the DO concentration decreases and reaches a minimum in July. On the

other hand, as temperature decreases, DO concentration increases and peaks in January

(Figure 3). Compared with the temperature and DO, the pH of the Gunpowder does not

vary and is typically 7.5 (Figure 4).

Runoff varies geographically and seasonally, depending on the geology and the

seasonal precipitation patterns. During the winter months of December through February,

precipitation falls primarily as snow, and runoff rates are relatively low. During the

spring months of March through April, snowmelt and rain saturate soils and along with

reduced evapotranspiration increase runoff. On the other hand, runoff during the summer

months of June through September is low because of large evapotranspiration losses.

During October and November, runoff increases as evapotranspiration declines at the end

of the growing season.



Figure 2 Gunpowder River - Water Temperature (Measuring Station: GUN0125) (MD
DNR's Tidewater Ecosystem Assessment Division, 2000.)
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Figure 3 Gunpowder River - Dissolved Oxygen (Measuring Station: GUN0125) (MD
DNR's Tidewater Ecosystem Assessment Division, 2000.)
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Figure 4 Gunpowder River — pH (Measuring Station: GUN0125) (MD DNR's Tidewater
Ecosystem Assessment Division, 1999)
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2.4.6 Soil

Aberdeen Proving Ground's soils are deep, nearly level to steep, moderately to well

drained, and are underlain by sandy, loamy, gravelly, or clayey sediments on smooth

uplands. Soils of the floodplains and low terraces are generally deep, nearly level,

moderately well drained to well drained, and are underlain by stratified alluvial

sediments. The dominant soils at the proving ground are the Sassafras, Elkton, and

Keyport series. All three series developed from the deposition of marine sediment. Along

most nontidal wetland areas, the Meadow series/Alluvial land series is dominant. In tidal

influenced wetlands, the Tidal Marsh series is dominant (U.S. Army Garrison APG,

1998.).

2.4.7 Geology

The Atlantic Coastal Plain at APG consists of deep layers of unconsolidated sediments.

These sediments include mixed layers of clays, silts, and sands with occasional gravel

lenses (bowl shaped formations). The sediments are underlain by crystalline igneous and

metamorphic rocks from the Precambrian to lower Paleozoic era. Schist, gneiss, gabbro,

granites, marble, and quartzite are some of the minerals found in this area. The northern

end of APG lies near a fault line, which marks the boundary between the Atlantic Coastal

Plain and the Appalachian Piedmont region. Sediment layers in this area are

approximately 200 feet deep. At the southern end of APG, Coastal Plain sediments

thicken to a depth of more than 900 ft (McGreevy et al., 1985).

The youngest sediments within the Coastal Plain were deposited in the

Quaternary or Pleistocene Series, which is dominated by the Talbot Formation,
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approximately 1 million years old. These are layers found in the bay and estuaries where

eroded material has been deposited. Next in the series is the Tertiary Formation, which is

mainly comprised of the Pliocene Formations from 2-5 million years ago. These

sediments were deposited during periods of changing sea level. The oldest type of

sediment is the Cretaceous Formations, which were formed 70-130 million years ago and

principally composed of the Potomac Group (McGreevy et al., 1985). These sediments

were deposited when the Atlantic Ocean was just beginning to form. The accumulation of

sediment resulted in the Coastal Plain (Figure 5).

2.4.8 Ground Water

Ground water is an abundant natural resource in this area. Aberdeen Proving Ground is

located in the Coastal Plain where the aquifers are characterized as unconsolidated ones.

Specifically, these consist for the most part of the Columbia and Potomac Groups (Figure

5) (McGreevy et al., 1985). The unconsolidated deposits underlying the Coastal Plain

form a thickening sequence that consists of sand and gravel aquifers interlayered with silt

and clay confining beds. These deposits are underlain by consolidated rock similar to that

of the Piedmont, at depths ranging from the surface at the Fault Line to about 8,000 feet

at Ocean City (McGreevy et al., 1985). With the exception of the Columbia aquifer, the

Coastal Plain aquifers generally are confmed except where exposed or overlain only by

permeable surficial sediments.

The Columbia aquifer, which is the uppermost hydrogeologic unit of the Coastal

Plain in most of Maryland, is used as a principal drinking water supply throughout that

area. The aquifer generally is unconfined, but deeper zones are confined locally by clay



21

Figure 5 Principal Aquifers in Maryland and the District of Columbia. A, Geographic
distribution. B, Physiographic and division. C, Generalized cross section (McGreevy, et
al., 1985)



22

lenses. Well yields of Coastal Plain aquifers depend on thickness and intergranular

permeability of the sand and gravel layers as well as well construction. Where permeable

layers are sufficiently thick, well fields may produce several million gallons per day.

Most Coastal Plain aquifers also contain saltwater in deep areas. The USGS has

conducted detailed hydrogeologic investigation at several areas within the Edgewood

area -- the major area of APG, the Canal Creek area, Graces Quarters, the 0-Field area,

Carroll Island, and the J-Field area (Figures 6 — 12) (Donnelly et al., 1998). The flow

directions marked with "?" in Figure 10-12 are still under study. From these figures, the

Chesapeake Bay could potentially be impacted by contaminant transport through

groundwater. However, the groundwater flow velocity is low as a result of the low

gradient in the APG aquifer, and a high water table is common at APG. These two factors

may hinder the contaminants transport in the groundwater.

Natural water quality is generally suitable for most uses; locally, however,

excessive concentrations of iron (0.3 milligrams per liter [mg/L]) may exist and the water

can be hard (120 mg/L as calcium carbonate) (Hansen, 1972). The water may also be

slightly acidic in some areas with pH as low as 5. In a few locations, aquifers have been

contaminated from surface sources (Donnelly et al., 1998).

2.4.9 Ecology

Aberdeen Proving Ground provides large areas of natural habitat for many species. The

post is composed of roughly 50% hardwood forest, 34% mowed/grassy areas, 13% marsh

or marsh shrub, 2% bare earth, and 1% shrub habitat (U.S. Army Garrison APG, 1998).
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Forested regions represent a transition zone between the oak-pine and oak-chestnut

regions of the eastern United States. APG contains large areas of wetland. These provide

habitat for plant species such as the slender blue flag, an endangered marsh plant.

Specifics on the animal and plant receptors are discussed in more detail in Section 2.6,

Ecosystem Animal and Plant Receptors.

Figure 6 Edgewood Area, APG (Donnelly et al., 1998)
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Figure 7 Geological Units and General Ground-water-flow direction in the upper
Chesapeake Bay area (Donnelly et al., 1998)

Figure 8 Hydrogeologic Units and General Ground-water-flow Direction in the Canal
Creek area (Donnelly et al., 1998)
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Figure 9 Hydrogeologic Units and General Ground-water-flow Direction at Graces
Quarters (Donnelly et al., 1998)
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Figure 10 Hydrogeologic Units and General Ground-water-flow Direction in the 0-Field
Area (Donnelly et al., 1998)
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Figure 11 Hydrogeologic Units and General Ground-water-flow Direction on Carroll
Island (Donnelly et al., 1998)
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Figure 12 Hydrogeologic Units and General Ground-water-flow Direction in the J-Field

Area (Donnelly et al., 1998)
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2.5 Yuma Proving Ground

Yuma Proving Ground (YPG) is a vast installation, over 837,000 acres. Closely matching

the terrain and weather conditions of the Persian Gulf, many units routinely train here to

take advantage of the real-world environment. Yuma Proving Ground conducts tests on

medium and long-range artillery, aircraft target acquisition equipment and armament,

armored and wheeled vehicles, a variety of munitions, and personnel and supply

parachute systems (Figures 13 and 14). Testing programs are conducted for all United

States military services, friendly foreign nations, and private industry.

2.5.1 Location and Size

The U.S. Army Yuma Proving Ground is near the Arizona-California border,

approximately 26 miles north of the city of Yuma, Arizona. The main area is located in

the southwest part of the Western Range Complex. At 1,300 square miles, it has the size

necessary to fully exercise army weapon systems without endangering the public, the

isolation to avoid encroachment, the climate and vegetation to potentially avoid

environmental issues, and the sea level altitude critical for a helicopter test center (Figure

15).

The U.S. Army YPG is in the Sonoran Desert, an area of great similarity in both

terrain and climate to the Middle East. For that reason, it's the Army's Desert

Environmental Test Center. Yuma Proving Ground holds the distinction of being one of

the largest military installations in the world (Figure 15).



Figure 13 Yuma. Proving Ground
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Figure 14 Cannon Tested in Yuma Proving Ground
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Figure 15 Map of USAYPG Study Area (U.S. Army YPG. 1998)
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2.5.2 History

Yuma Proving Ground is a general-purpose facility with over 50 years experience testing

weapon systems of all types and sizes. The U.S. Army Corps of Engineers opened the

Yuma Test Branch near the present site of. YPG in early 1943. Initial office and

dormitory buildings were obtained from the Bureau of Reclamation about 1 mile from the

test site. Additional facilities were constructed at the Colorado River test site by Italian

Prisoners of War who had been captured in North Africa (U.S. Army YPG, 1999).

The first major project undertaken at the test branch was the redesign of a portable

steel tread way bridge used by heavy armored vehicles in combat areas (U.S. Army YPG,

1999). Testing continued until the conclusion of the war in 1945. Though work at the test

branch declined after the war, it remained operational for several more years. Five years

after the war ended, the test branch closed, only to reopen -- with a greatly expanded

mission -- in 1951. It is from these beginnings, based on steel bridges and other river-

related improvements that the Yuma Proving Ground of today has grown.

The U.S. Army YPG of today features approximately 1,700 military and civilian

employees. Employed in a wide variety of occupations, the mission of YPG's workforce

is to use advanced technology to carry out sophisticated tests of aircraft armament

systems, air delivery systems, tank-automotive equipment, and much more (U.S. Army

YPG, 1999). Approximately 100 tests are ongoing at the proving ground at any single

time.
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2.5.3 Topography

The land area of the Yuma Proving Ground consists of a variety of desert terrain features.

Approximately 40% of the total area is covered by rugged, deeply dissected mountains in

linear ranges with maximum elevations of 2,822 feet (869 meters). These mountains are

predominantly composed of schist, granite, and other rock types. The remaining land

areas consist of well-developed alluvial fans and steep-sided washes (Figure 16).

2.5.4 Climate

As mentioned earlier, YPG is located in the Sonoran Desert, a low-elevation, hot, and

arid desert. The climate is characterized by clear skies, low relative humidity, slight

rainfall, and large daily temperature variations. According to meteorological records, the

average daily temperature ranges from 27°C (80°F) to more than 38°C (100°F) during

summer months, and from 4.3°C (40°F) to 19°C (65°F) during winter months. The all

time record high temperature is 51°C (124°F), which occurred on July 28, 1995. The all-

time record low temperature is —5°C (23°F) which occurred on January 8,1971. A 39-

year (1954 through 1995) Climatological Summary of YPG (Yuma Meteorological

Team, 1996) is shown in Table 1.

The wind speed averages three knots during September through February. From

March through August the average wind speed is four to five knots. The windiest time of

the year is in the spring and summer with normally more than 10 days per month having

wind gusts of over 10.29 meters/second (20 knots) (Woodcock, 1992). The prevailing

direction is from the north to northwest from late autumn until early spring. As

temperatures warm, winds shift to a more southerly direction. Winds associated
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Table 1 Climatology Summary 1954-1992 (Yuma Meteorological Team, 1996)

MONTH JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Extreme max T 89 94 100 106 117 121 118 118 115 112 95 84

Average max T 67 73 77 85 92 102 106 104 100 89 76 67

TMPERATURE Mean T 54 59 65 71 78 88 93 92 86 75 62 54

(°F) Average mint 42 46 50 56 64 73 80 79 73 61 49 42

Extreme mint 23 26 32 42 46 54 65 65 54 36 31 25

AVERAGE 0500 mountain standard
time

55 48 49 36 33 30 42 51 48 44 47 60

HUMIDTIES

(%)
1700 mountain
standard time

27 22 20 14 12 10 20 24 21 21 24 33

Average humidity 42 37 34 24 21 19 30 37 34 33 36 47
All hours

Average precip, INS .51 .28 .39 .10 .04 .06 .22 .63 .44 .34 .30 .37
PRECIPITATION
(inches) Max. monthly 2.26 1.36 2.50 .65 .26 1.31 1.39 2.55 2.63 3.78 1.73 2.16

Precip

Average wind speed 3 3 4 4 5 4 5 4 3 3 3 3
WINDS (knots)

Prevailing wind N N W W W W SSW SW SW W NNW NNW
Direction

Extreme peak wind 33 38 45 42 34 29 55 60 50 35 41 45
(knots)
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with the summer monsoons shift toward the southeast (Woodcock, 1992).

2.5.5 Surface Water

There is no permanent surface water at YPG, and only occasionally do the washes carry

runoff from rainstorms. During period of intense rainfall, ponding and flash flooding

occur. Natural rock tanks occur in the more mountainous regions, but dry out during long

periods without rainfall (U.S. Army YPG, 1999).

The Colorado River and Gila River are two major permanent water sources

existing outside YPG boundaries. The Colorado River traverses a generally north-south

direction to the west of the proving ground. The Gila River traverses east-west south of

YPG. Surface water drainage in the central and eastern parts of YPG flow into the Gila

River. Infrequent rainfall produces localized flash-flooding and temporary surface water,

especially during thunderstorms in August and September, Rainfall averages 3.5 inches

(8.9 cm) per year, and the evaporation rate is 107 inches (271.8 cm) per year. The

combination of low precipitation and high evaporation prevents surface water from

infiltrating deeply into the soil. Thus, most of the year, desert washes are dry, but during

heavy rainstorms, these washes drain surface water (Entech Engineers, Inc., 1988).

Washes vary in size, from less than a meter in width and depth, to more than a kilometer

in width and 10 meters in depth.

Yuma Proving Ground also has few natural year-round sources of water, which

occupy a small area at YPG. Some natural water tanks have been modified to provide

year-round water to wildlife. Four types of water sites used by wildlife included Tinajia,
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Enhanced Tinajia, Water Catchments, and other man-made water sources (Palmer, 1986).

Figure 17 illustrates the surface drainage around YPG.

2.5.6 Soil

The lower Sonoran desert environment at YPG is characterized as terrestrial ecosystem,

and soil is considered an important transport pathway in the ecological risk assessment.

All the soils on the Proving Ground are classified by the Soil Conservation Service,

Department of Agriculture, as hyperthermic aridisol (Entech Engineers, 1988). This soil

type occurs as a result of an environment that has a mean annual soil temperature of at

least 22°C (72°F) with more than 5°C (9°F) difference between mean summer and winter

temperatures. This topsoil has a depth of 50 centimeters (20 inches), under which lies

bedrock. It also lacks sufficient precipitation to produce crops without irrigation,

generally supporting only sparse strands of desert shrubs, a few trees, and perennial

grasses.

According to Chamberlin and Richardson (1974), the soils at YPG consist of four

series; these are (1) Gilman-Vent-Brios, (2) Harqua-Perryville-Gunsight, (3)

Coolidge-Wellton-Antho, and (4) Lomita-Rock Outcrop (Figure 18). Table 2 is a summary of the

characteristics and properties of the four series of soil.

Generally, Gilman-Vent-Brios Association soils are found only on the flood

plains of the Colorado and Gila Rivers, along the southwest and west portions of the

YPG. The soils consist mainly of sandy loam and fine sands. Soils of the

Coolidge-Wellton-Antho Association are found northeast of the Laguna Mountains, and in the

southwest corner of the YPG. These soils are similar to those the Harqua-Perryville



Figure 17 Surface Drainage of YPG (Entech Engineers, Inc., 1988)
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Figure 18 Soil of YPG (Entech Engineers, Inc., 1988)
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Table 2 Soil of YPG (Entech Engineers, Inc., 1988)

Series Association and Occurrence'
Elev.
Range

Thickness PH2 Permeability Water-
holding
Capacity

Infiltration
Rate

Runoff
Potential

Gilman -Vint-Brios. Deep, medium and coarse- 305 - 18m 7.4 - Moderate to High to Moderate Moderate
textured soils on flood plains; from mixed
igneous and sedimentary sources.

457m 8.4 Rapid Low

Margua-Perrvville-Gunsight. Deep, gravely 91 - 18m 7.4 - Moderate to Moderate Moderate Moderate
moderately fine and medium-textured soils high
in lime concretions, and very gravelly
calcareous soils on old alluvial fans: from
volcanic and calcareous, some granitic, and
sedimentary sources.

457m 9.4 Moderately
Slow

to Low

Coolidge-Wellton-Antho. Deep, moderately 61+ m 18m 7.4 - Moderately Moderate Moderate Moderate
coarse-textured soils on lower alluvial fans and
valley plains; from schist, granite volcanic, and
sedimentary sources

8.4 Rapid

Lomitas-Rock Outcrop. Shallow stony soils 91 - 30 — 51m 7.4 - Moderate Very Slow High
and rock outcrop; from various sources 884m 8.4 Low

1 Underlined soil series are generalized grouping of principal associated soils as they occur on the landscape; they include minor
soils. The classification is indented only for general planning use.
2 pH is the degree of acidity or alkalinity of a soil.
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-Gunsight Association (HPGA), except they are more sandy than the gravelly soils of the

HPGA. The most dominant soil type at the YPG is the HPGA; these soils cover most of

the Cibola and Kofa Firing Ranges and consist of deep, gravelly, moderately fme

textured soils high in lime concentrations, and very gravelly calcareous soils found on old

alluvial fans (Entech Engineers, Inc., 1988). The mountain areas consist generally of soils

noted as Lomitas-Rock-Outcrop Association, which are mostly of volcanic rocks,

including andesite, rhyolite and related tuffs, and some basalt (Entech Engineers, Inc.,

1988).

All of the soils within the YPG, with the exception of the Lomitas-Rock-Outcrop

Association, are considered to have moderate infiltration rates and runoff potential. The

Lomite-Rock-Outcrop Association soils have slow infiltration rates and high runoff

potential (Table 2); however, in the YPG area, the potential is generally poor because of

low precipitation.

Little information exists on the mineral resources of YPG. Existing information

pertains to approximately one-fourth of YPG that is not covered by alluvium (U.S. Corps

of Engineers, 1988). Relatively small deposits of gold, copper, silver, lead, manganese,

and tungsten have been located and mined in the region. Around the YPG area, the

following metals are noteworthy: antimony, beryllium, cadmium, copper, gold, lead,

manganese, mercury, silver, titanium, tungsten, uranium, vanadium, and zinc; non-metals

include only barite and fluorite. Regarding fuels, coal does not occur in southwest

Arizona. No occurrence of either oil or natural gas has been located (U.S. Corps of

Engineers, 1988).
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2.5.7 Geology

As stated earlier, YPG is situated in the basin and range of physiographic province

(Figure 16). The mountain ranges within and surrounding YPG are composed of igneous

rocks, including extrusive and intrusive ones; sedimentary rocks; and metamorphic rocks

(U.S. YPG, 1999). The Palomas and Tank mountains contain mostly extrusive igneous

rocks with smaller amounts of metamorphic. Intrusive igneous rocks are also found in the

southern part of the Palomas Mountains. The Muggins Mountains are made up of

metamorphic and extrusive igneous rocks with some sedimentary rocks; while the Middle

Mountains are composed of mostly extrusive igneous rocks with metamorphic and

sedimentary rocks. The Trigo and Chocolate Mountains are largely extrusive igneous

rocks with some metamorphic ones.

The basins of lowlands between mountain ranges are composed of alluvium,

which is typically sand, silt, and clay layers that were deposited during the Quaternary

Period (3 million years ago). The surface and subsurface geology at the YPG range from

consolidated rocks of hard, dense, crystalline ores, such as gneiss, schist, and granite to

volcanic rocks. The unconsolidated rocks consist of a younger and older alluvium,

separated by a marine deposit, to flood-plain deposits along the Colorado River (Entech

Engineers, Inc., 1988). Figure 19 illustrates a geologic stratigraphic column of YPG areas

showing the inferred stratigraphic relations of these units. Figure 20 presents the

generalized geology of the YPG, while Figure 21 highlights two generalized cross-

sections that transverse YPG from southwest to northeast.



Figure 19 Stratigraphic Column of Yuma Area and YPG (Olmstead et al., 1973)



Figure 20 Cross Section of Yuma Proving Ground Generalized Geology (U.S.
Army YPG, 1999)
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Figure 21 Generalized Geologic Cross-Section across YPG Area (Entech Engineers,
Inc., 1988)
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2.5.8 Groundwater

The Army uses well water for domestic and industrial operations. The main water

yielding units are alluvial deposits (Click and Cooley, 1967), which are replenished by

the Colorado and Gila Rivers. Local precipitation and runoff are minor sources of

groundwater recharge. As a result, the recharge is affected by precipitation in the

mountain upstream from YPG.

During the period 1961-66, the USGS inventoried 936 wells in the Yuma area

(Olmsted, 1973). Most of the wells were in the Yuma valley and Mesa areas and along

the Gila River. Several wells are in the YPG and scattered from the Castle Dome Heliport

to the southwest toward the Gila and Colorado Rivers, and illustrated as characters "B-Y"

in Figure 22. These wells have provided most the useful data for the ground water

hydrology study in this area (Table 3). Among these wells, X and Y yield the most

ground water at rates of 800 — 100 gallons per minute (gpm). The rest of the wells each

yield between 50 — 200 gpm (Entech Engineers, Inc., 1988). Aquifer hydraulic

parameters including transmissivity and hydraulic conductivity were derived from

studying these wells (Table 4). The direction of ground water flow is southwest towards

the Colorado and Gila Rivers; the ground water gradient of the major pumping centers is

about 4-5 feet per mile, and less than 4 feet per mile near the Colorado and Gila Rivers.

The depth to ground water in the aquifer beneath the YPG, as measured in YPG wells,

ranges from 30-35 feet below land surface at wells X and Y, which are located adjacent

to the Colorado River, to 635 feet below land surface at well M on the Castle Dome

(Entech Engineers, Inc., 1988). Table 5 shows the depth to ground water and mean level

elevations as measured in the YPG wells from 1952 — 87.



Figure 22 Wells Around YPG: Well B, C, G, H, J, M, S, T, U, V, W, X and Y
(Entech Engineers, Inc., 1988)
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Table 3 Wells Information of YPG (See Figure 22 for well location) (Entech
Engineers, Inc., 1988)

DATE 	 DEPTH 	 SURFACE 	 OPERATION DISCHARGE
WELL DRILLED DEPTH TO WATER 	 ELEVATION 	 STATUS CAPACITY

( ft, ) 	 ( feet ) 	 (ft above msl ) 	 (gpm)

49



50

Table 4 Aquifer Parameters of YPG (Entech Engineers, Inc., 1988)

well Transmissivity
gpd/ft

(1) 	 (2)

Penetrated
Saturated
Thickness

(3)

Hydraulic
Conductivity

gpd/sq.ft

(4)

8 58,800 none 67 878

G 77,330 156,200 108 715

H 64,000 none 172 372

M 9,600 none 171 56

S 65,000 none 72 902

T 41,700 none 127 328

U 83,300 none 292 285

W 19,000 none 228 83

X 130,800 none 105 (5) 1,245

Notes:
(1) Empirical values obtained from specific capacity data
(2) Value obtained from pump test data
(3) Value obtained from YPG well records (no date)
(4) Values obtained by dividing empirical transmissivity by the

penetrated saturated thickness of permeable sediments.
(5) Using Well Y data.
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Table 5 The Depth to Ground Water and Mean Level Elevations as Measured in the YPG Wells from 1952 — 87 (Entech Engineers,
Inc., 1988)
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According to these measurements, the depth to ground water in the aquifer

beneath most areas of YPG is greater than 150 feet. This depth is an asset in preventing

contamination. As a result, the water quality of the ground water does not appear to be

influenced by the activity in the proving ground, based on chemical constituents analyzed

to date (Entech Engineers, Inc., 1988). The depth to water adjacent to the Colorado River

is less than 40 feet below land surface, but the high recharge capability of the Colorado

River may dilute potential degradation of the water quality. In addition, the low

precipitation and high evaporation prevents significant infiltration.

2.5.9 Ecology

Unlike the diverse ecosystems at Aberdeen Proving Ground, YPG located in the lower

Sonoran Desert, is characterized by a terrestrial ecosystem, which consists of desert

plants, wildlife, and habitats (Figure 23). The extreme aridity characterizing this regions

is reflected in open plains covered sparsely with drought-tolerant shrubs, grasses, and

cacti. Most common is the creosote bush. Sandy soil formations support large galleta

grass communities along with foothill paloverde trees, honey mesquite trees, or bursage.

Hillsides support brittlebush in various combinations with other plants such as cacti,

especially the saguaro cactus. Foothill and mountains provide habitat for mixed shrubs.

Desert washes support many trees, including the paloverde, ironwood, smoke tree,

mesquite, and catclaw acacia. Open terrain area used for testing is covered with the

creosote-bursage vegetation (Terner, 1994; Shreve, 1964).



Figure 23 Desert Environments Around Yuma Proving Ground
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There are also many typical desert animals living around the proving ground. The

most common types of wildlife include game mammals and birds, predatory and fur-

bearing mammals, and migratory and resident birds. Large game animals are desert

bighorn sheep and mule deer. Predatory and fur-bearing mammals includes the coyote,

kit fox, black-tailed jackrabbit and gray fox. Badger, striped skunk, mountain lion, and

bobcat can also be found randomly in this area. Moreover, at least 16 species of bats are

known to occur on post (Castner et al., 1995). Among these plants and animals identified,

selection of the characteristic receptors for the ERA will be discussed in the following

section.

2.6 Ecosystem Animal and Plant Receptors

Considering the large area of YPG and the great diversity of the APG ecosystem, a

significant amount of wildlife species live within the two sites. The following describes

the process to select the appropriate species to be assessed.

2.6.1 Criteria

The principal criteria used to select the appropriate animals and plant receptors for risk

assessments include the following (U. S. EPA, 1998):

• Ecological relevance, which means ensuring each major group of species is

represented.

• Susceptibility to known or potential stressors, those receptors most likely to be

exposed to contaminants.
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• Relevance to management goals, those receptors of high concern for cultural and

natural resource management reasons.

Based on these three general criteria, an initial list of species was assembled that

included terrestrial and aquatic plant and animal receptors known to occur in the habitats

of Yuma and Aberdeen Proving Grounds. This initial list was developed by selecting

species from databases and records maintained by the following federal and state

resource management agencies associated with the two proving grounds:

• U.S. Fish and Wildlife Service, Chesapeake Bay Field Office (U.S. Fish and

Wildlife Service, 1999)

• U.S. Fish and Wildlife Service, Division of Endangered Species (U.S. Fish and

Wildlife Service, 1991)

• U.S. Fish and Wildlife Service, Imperial National Wildlife Refuge (U.S.

Department of the Interior, 1994)

• U.S. Fish and Wildlife Service, Kofa National Wildlife Refuge (U.S. Department

of the Interior, 1996)

• Arizona Game and Fish Department (Arizona Game and Fish Department, 1988)

• U.S. Geological Survey, Activities in the Chesapeake Bay Region (U.S.

Geological Survey, 1999)

• U. S. Army Yuma Proving Ground, Environmental Division (U.S. Army YPG,

1999)

• U.S. Army Garrison Aberdeen Proving Ground, Environmental Conservation &

Restoration Division (U.S. Army Garrison APG, 1998)
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Species distribution and habitat preferences were also obtained from these agencies.

However, the majority of information was obtained from the U.S. Fish and Wildlife

Service and the two proving grounds environmental divisions.

One hundred and fourteen species at APG and 30 species at YPG were identified

for the study areas (Tables 6 and 7). As seen in Table 6, wildlife around APG includes 33

bird species, 11 mammal species, 9 aquatic animals, 6 reptile species, 7 amphibian

species, 17 grassy plants, 18 tree species, 4 shrub/scrub species, 6 herbaceous species,

and 3 woody species. On the other hand, in Table 7, the wildlife living in desert

environment at YPG includes 9 mammal species, 5 reptile and amphibian species, 7 bird

species, and 9 desert plants.

The rationale for a limited number of species in an ecological risk assessment is

that among the major taxonomic groups (amphibian, bird, fish, insect, mammal, plant,

reptile, etc.) presented in the tables, many have similar life styles (either fully aquatic,

semi-aquatic, or terrestrial) and belong in the same trophic levels (carnivore, herbivore,

omnivore, etc.). Where such similarities exist, these species likely contact contaminated

media in much the same way. Thus, their potential exposure to contaminant is expected

to be similar (Pacific Northwest National Laboratory [PNNL], 1998). Also, much of the

data required to estimate contaminant exposure and the resulting adverse effects for many

of the species on the initial lists are lacking, which would greatly increase uncertainty in

the risk assessment. Because of the redundancy in exposure and increased uncertainty for

which data are lacking, the study area species on the initial list were reduced further

through use of additional criteria recommended by the U.S. EPA and PNNL Columbia

River Comprehensive Impact Assessment (CRCIA) Management Team Representatives
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Table 6 Aberdeen Proving Ground Wildlife (I)

ANIMALS (66)

Birds
(33)

General species: mallard, ring-billed gull, morning dove, red-bellied woodpecker, downy
woodpecker, barn swallow, carolina chickadee, carolina wren, bluebird, American robin,
European starling, Northern cardinal, song sparrow, red-winged blackbird, common grackle,
wild turkey

Waterfowl: black duck, wood ducks, blue-winged teal, hooded mergansers, and Canada
geese (most abundant),American black duck, canvasback , and redhead
Birds of pray: American Kestrel, eastern screech owl, great horned owl, barred owl, turkey
vulture, and red-tailed hawk

Endangered species: peregrine falcon, bald eagle

Mammals
(11)

General species: white-tailed deer, cottontail rabbit, gray squirrel, beaver, striped skunk,
white-footed mouse, Norway rat, opossum, raccoon, woodchuck

Endangered species: delmarva fox squirrel, Indiana bat

Aquatic
Animals

(9)

Mayfly, mussels, clams, carp, rainbow, American eel, striped bass

Reptiles
(6)

Spotted turtle, eastern mud turtle, common snapping turtle, eastern box turtle, northern water
snake, eastern garter snake.

Amphibians
(7)

Bullfrog, green frog, northern cricket frog, northern spring peeper, southern leopard frog,
fowlers toad and red-backed salamander.

PLANTS (48)
Grassy
Plants
(17)

Cattails, soft rush, pickerel weed, sedges, bulrush, nuphar, switch grass, common boneset,
spikerush, wool-grass, asters, swamp milk reed, and stiff marsh bedstraw, redhead grass,
eelgrass, widgeon grass, musk grass

Tree
Species

(18)

Red maple, sweet gum, willow, American elm, ashes, pin oak, and swamp chestnut oak,
white oak, southern red oak, black oak, northern red oak, beech, sweet gum, yellow poplar,
sycamore, black cherry, and black locust
Endangered Species: slender blue flag

Shrub/
Scrub

Species
(4)

Groundsel bush, wax myrtle, dewberry, and Japanese honeysuckle

Herbaceous
Species

(6)

Bluegrass, timothy, yarrow, goldenrod, plantain, and brome grass

Woody
Species

(3)

Blackberry, honeysuckle, and grape
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Table 7 Yuma Proving Ground Wildlife (I)

ANIMALS (30)
Mammals

(9)
Kit fox, wild horses, wild burros, black-tailed jackrabbit, cactus mouse, mule deer,
white-tailed deer, bighorn sheep, lesser long-nosed bat, coyote

Reptiles and
Amphibians

(4)

Western coral snake, desert tortoises, common king snake, desert spiny lizard,

Birds
(7)

Rail (Yuma clapper), Mexican spotted owl, loggerhead shrike, cactus wren, gambel's
quail, peregrine falcon, bald eagle

PLANTS (9)

Cactus
(2)

Nichol's Turk's head cactus, saguaro cactus

Shrub/
Scrub Species

(4)

Creosote bush, desert lily, crucifixion thorn, bursage

Tree Species

(3)
Paloverde trees, ironwood, catclaw acacia

(MTR) (PNNL, 1998). These criteria were developed for screening the study area

species and include the following:

1. Commercial or recreational importance.

2. Protection status under the Endangered Species Act or similar state legislation.

3. Critical component of ecosystem: key predator or prey.

4. High potential exposure to contaminants.

5. Availability of toxicological information for the species.

6. Representatives of a foraging guild.

The initial list of receptors was evaluated with these criteria based on their

cultural and ecological importance and the possibility that they virtually occur in study
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Table 8 Aberdeen Proving Ground Wildlife (II)

Criteria
1

4Criteria
2

Criteria
3

Criteria
4

Criteria
5

Criteria
6

Total
Positive
Marks

Final
Species

'Birds

'Mallard + - - + + + 4 *

Barn swallow - - + - + - 2

Red-winged
blackbird

- - + - + 2

Canada geese + - + + - 3 N

'Black duck + - - + + - 3 N

American
Kestrel

- + + - + + 4 *

Barred owl - - + + + + 4 *

American
robin

- - - + - + 2

Bald eagle + + + + - 4 *

Peregrine
falcon

- + + - - 2

Morning
dove

- - - + - - 1

European
starling

- + - + 2

3 Canvasback + - + + - + 4 N

Song sparrow - - - + - + 2

Wild turkey + - - - - + 2

Red-tailed
hawk

- + - - - + 2

Ring-billed
gull

- + - - 1

Mammals

Indiana Bat + + + - + 4 *

Delmarva fox
squirrel

- + - + - - 2

White-tailed
deer

- + + - + + 4 *

Cottontail
Rabbit

+ - - + + + 4 *
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Table 8 (Continued)

Criteria
1

4Criteria
2

Criteria
3

Criteria
4

Criteria
5

Criteria
6

Total
Positive
Marks

Final
Species

Mammals

Norway rat + - + + + + 5 N

Striped skunk - - + - - - 1

White-footed
mouse

+ - + + + + 5 *

Beaver - - + + + + 4 *

Raccoon + - - + - - 2

Woodchuck + - + - - 2

Aquatic
animals
Clams + - - + - - 2

Mountain
whitefish

+ - + + - 3 *

Pacific
Lamprey,
juvenile

+ - + + - 3 *

Carp + + + - + 4 N

American eel - - - + - + 2

White
sturgeon

+ - + + + + 4 *

Rainbow + - + + + - 4 *

Reptiles

Common
snapping turtle

- - + + - 2

Black	 rat
snake

- - + + + + 4 N

Eastern	 garter
snake

- + + + + + 5 *

Lizards + - - + + - 3 *

Amphibians

Bullfrog + - - + + + 4 N

Fowlers toad - - + + - - 2

Green frog - + + + - 3 N
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Table 8 (Continued)

Criteria
1

4Criteria
2

Criteria
3

Criteria
4

Criteria
5

Criteria
6

Total
Positive
Marks

Final
Species

Amphibians

Red-backed
salamander

- + - - - + 2

Woodhouse's
toad

- - - + + + 3 *

lAquatic
plants
Water
millfoil

+ - - + + + 4 *

Eelgrass - - - + - + 2

Phytoplankto

n

+ - + + + + 5 *

Periphyton - - + + + + 4 *

Stiff marsh
bedstraw

- - - + + 2

Terrestrial
plants
Red maple + - + - - - 2

Fern - - + + + + 4 *

Rushes - - + + + + 4 *

Slender Blue
Flag

- + - + + 3 *

Cattail - - + + - + 3 N

Sweet gum - - + + - + 3 N

Note:
+	 positive respond to the criteria
-	 negative respond to the criteria
*	 Species in the Final list
N	 Species with a life style and exposure scenario similar to that of another List II species:
References:
1 Munro, et al. 1982 ; Robbins et al., 1968
2 Krementz et al, 1991, 1992
3 Haramis et al,.1994 ; Perry et al., 1988
4 Arizona Game and Fish Department, 1988; Martin et al., 2000; U.S. Fish and Wildlife Service, 1991
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Table 9 Yuma Proving Ground Wildlife (II)

Criteria
1

6Criteria
2

Criteria
3

Criteria
4

Criteria
5

Criteria
6

Total
Positive
Marks

Final
Species

'Mammals

2Lesser long-
nosed bat

_ + + + - + 4 *

Cactus mouse - - + + + + 4 *

Kit fox - - + - + + 3 *

Black-tailed
jackrabbit

+ - + + + + 5 *

Wild horses - - + + + + 4 N

Wild burros - - + + - - 2

Mule deer - + + - + + 4 *

White-tailed
deer

- + + - + + 4 N

'Bighorn
sheep

- + + + - + 4 N

Birds

Rail - + - - + 2

Peregrine
falcon

- + - - - - 1

Bald eagle - + - + - 2

Mexican
spotted owl

- - + + + + 4 *

Loggerhead
shrike

+ - - + + + 4 *

Gamble's
quail

+ - + + + 4 *

Cactus wren - - + - + 2

4Reptile &
amphibian
Desert
tortoise

- + + + - - 3 *

Sonora
whipsnake

- - + + + + 4 *

Western coral
snake,

- - + + - + 3 N

Desert spiny
lizard

- - + + + - 3 *
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Table 9 (Continued)

Criteria
1

6Criteria
2

Criteria
3

Criteria
4

Criteria
5

Criteria
6

Total
Positive
Marks

Final
Species

5Plants

Nichol's
Turk's head
cactus

+ - + - - + 3 N

Saguaro - - + + + + 4 *
Cactus
Creosote
bush

- + + + + 4 *

Desert Lily - + + - 2

Crucifixion - - + + - - 2
Thorn
Foothill
paloverde
trees

- + + + + 4 *

Note:
+	 positive respond to the criteria
-	 negative respond to the criteria
*	 Species in the Final list
N	 Species with a life style and exposure scenario similar to that of another List II species
References:

1Hoffmeister, 1986
2 Caster et al., 1995
3 Monson et al., 1990
4 Stebbins, 1985
5 Benson et al, 1981 ; Jaeger, 1969 ; Shreve et al, 1964 ; Terner et al. 1994
6 Arizona Game and Fish Department, 1988; Martin et al., 2000; U.S. Fish and Wildlife Service, 1991

area. Results from the analysis are presented in Tables 8 and 9, where a positive (+) or

negative (-) response is illustrated. With three or more positive responses, a species was

short-listed as a final target receptor with a (*) in the right-hand column. For an indicator

(N) in the right-hand column, the species was not selected for the reasons that their life

styles are close to another species selected. Among the wildlife of APG, Canadian geese,

black duck and canvasback are similar to the mallard; Norway rat is similar to white-

footed mouse; carp is similar to white sturgeon; back rat snake is similar to eastern garter

snake; green frog and bullfrog are similar to woodlouse's toad; and, cattail and sweet
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gum are similar to the other selected terrestrial plants. Among the wild life of YPG,

white-tailed deer, wild horse, and bighorn sheep are similar to mule deer; western coral

snake is similar to Sonora whipsnake; and, the Nichol's Turk's head cactus is similar to

saguaro cactus. For undesignated species, the positive responses are less than three and

they are not included in the model.

2.6.2 Final Receptors

The 57 species of APG were reduced to 23. For YPG, the 23 species were reduced to 14

excluding 1) those with low score, and 2) those with a life style similar to that of another

species selected. Among these receptors, Indiana bat at APG, and the lesser long-nosed

bat, desert tortoise, and Mexican spotted owl at YPG are species designated as

threatened, endangered, and sensitive species by U.S. Army (Martin et al., 2000). The

final selected receptors for the two sites are shown in Table 10.

2.7 Summary

In this chapter, guidance for identifying and selecting parameters for an ERA has been

presented and the site specific characteristics and associated receptors for the assessment

have been reviewed. Because of the diverse ecosystem around Aberdeen Proving

Ground, both terrestrial and aquatic species will be considered in the future ecological

risk assessment. YPG is characterized by a typical desert ecosystem. Accordingly, the

receptors for the assessment are focused on the terrestrial species. These site data provide

the means for assessing transport and potential exposure pathways for the concerned

sites.
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Table 10 Final Receptors of Aberdeen Proving Ground & Yuma Proving Ground

APG YPG

Receptors Amount Receptors Amount

Birds Mallard, American
kestrel, barred owl,
bald eagle

4 Mexican spotted owl,
loggerhead shrike,
gamble's quail

3

Mammals White-tailed deer,
beaver, white-footed
mouse, cottontail
rabbit, Indiana bat

5 Kit fox, cactus mouse,
black-tailed jackrabbit,
mule deer, lesser long-
nosed bat

5

Reptiles
&
Amphibians

Eastern garter snake,
lizards, woodhouse's
toad

4 Desert tortoises,
sonoran whipsnake,
desert spiny lizard

3

Aquatic
Animals

Mountain whitefish,
pacific lamprey, white
sturgeon, rainbow

4

Aquatic
Plants

Water millfoil,
phytoplankton,
periphyton

3

Terrestrial
Plants

Fern, rushes, slender
blue flag

3 Creosote bush, foothill
paloverde trees,
saguaro cactus

3



CHAPTER 3

ERA MODEL DEVELPOMENT

3.1 Introduction

Assessing the potential for adverse effects in ecological receptors due to contact with

environmental contaminants at concerned areas requires the estimation of exposure. Such

exposure characterization is a critical step in the ecological risk assessment (ERA)

process; it can be used to (Hope, 1995):

• Provide an initial estimate of ecological receptor exposure to site related

contaminants present in surface water, groundwater, sediment, soil, and air media.

Results may be used to guide future sampling efforts that would contribute to a

baseline assessment.

• Estimate dose to, and tissue concentrations in, higher trophic level or protected

species, which cannot or should not be sacrificed to obtain tissue samples for

chemical analysis.

• Support development of data quality objectives by indicating whether proposed

detection limits are low enough to encompass media and tissue concentrations of

ecotoxico logical interest.

In an effort to create a more generalized model that can be easily adapted to

varying ecosystems, all potential exposure pathways are included and options to modify

site-specific conditions will be provided. This chapter presents the quantitative exposure

estimations considered in the ERA model that, given a specified set of possible exposure

pathways and routes, can be combined to produce site- and species- specific estimation of

contaminant uptake from abiotic as well as biotic media. First, a literature review is

66
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presented on exposure assessments based on laboratory and field studies. Results from

these studies help elicit mechanisms responsible for contaminant uptake. Following that,

quantitative measurements are identified for estimating potential exposure and associated

algorithms and parameters are defined. Risk is characterized for the exposure estimate

results. Subsequently, these algorithms were written in Visual Basic (VB) and integrated

into the VB interface that is linked to an interactive DBMS. The ERA model is verified

with a range of contaminants concentrations.

3.2 Uptake of Contaminants

Contaminant uptake mechanisms involve complex processes and are influenced by

receptors, chemical speciation, and environmental conditions. To better understand

exposure pathways, the fundamental uptake mechanisms for plants and animals based on

laboratory and field studies are reviewed.

3.2.1 Contaminants Uptake by Plants

Uptake of contaminants by plants is a very complex process affected by contaminant

physiochemical properties, environmental conditions, and plant characteristics. Elements

occur in the soil in a variety of forms that are more or less available for uptake by plants

(Efroymson et al., 1997). Many contaminants of concern at waste sites are metals or

metalloids (Efroymson et al., 1997; Ross, 1994). Bioavailability is a function of chemical

speciation, which affects the species mobility in the soil environment. Soil characteristics

(e.g., pH, mineralogy, organic matter, and moisture content) affect metal speciation or

availability to plants, which may involve temporary immobilization through interactions

with mineral surfaces (e.g., adsorption-desorption processes), precipitation, and solid
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solution formation (Efroymson et al., 1997). Particulate soil organic matter may serve to

temporarily remove dissolved metals from the bulk aqueous phase, however, soluble

organic matter may enhance mobility resulting in increased exposure to receptors like

plants (Efroymson et al., 1997). Although metal contaminants may bind to exterior

exchange sites on the root and not then be taken up, extensive studies have revealed that

select plants uptake and translocate metals as well (Farago, 1994; Ross, 1994; Greger,

1999; Kelly et al., 1999; Sun et al., 1999; Zhang et al., 1999). Metals may enter the root

passively in complexes or actively by way of metabolically controlled membrane

transport processes where the contaminant mimics a nutrient (Efroymson et al., 1997). At

different soil solute concentrations, both processes may play a part in metal uptake.

Absorption mechanisms including the quantity absorbed are a function of the plant

species (and cultivars), growth stage, physiological state, and the presence of other

elements. Terrestrial plants uptake contaminants through the following routes:

1) Root uptake - transfer from the root to the above ground portions of the plant

2) Deposition of particle-bound contaminants on the leaves and fruits of plants

3) Vapor transfer - the vapor phase uptake of contaminants through their foliage.

Contaminants can be bound to particles and deposited on plant surfaces. Deposition

includes sedimentation under the influence of gravity, impact under the influence of eddy

currents, and deposition under the influence of precipitation (Treshow, 1984). Besides

being bound to particles, contaminant absorption on foliage may also occur through

vapor transfer via diffusion and advection. Subsequently, contaminant uptake is through

the stomatal pores. These pores are present in the epidermal surface of leaves through

which plants naturally exchange carbon dioxide, oxygen, and water vapor with the
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atmosphere. The waxy cuticle of leaf surfaces restricts diffusion in that all gas exchange

is via the stomatal opening. Even though these openings make up only approximately 1%

of the leaf's surface area, their orientation and mechanics prove to be adequate for

permeability.

Nevertheless, root uptake is the most important route by which most

contaminants, especially metals, transfer to the aboveground portion of the plants

(Farago, 1994). Many researchers (Bowling, 1976; Farago, 1986, 1994; Streit and

Stumm, 1993) have discussed theories of mineral uptake by plant roots and identified

four links in the uptake chain: movements of ions or complexes in the soil to the root

surfaces; uptake into the roots; transfer across the root to the vascular system; and

translocation to the above ground parts. The epidermis of the root has extensions in the

form of root hairs, with a pectic coating, which allows them to adhere to soil particles.

The hairs also greatly enhance the area of contact with the soil. Figure 24 shows a

transverse section of a typical root. A large part of the root consists of relatively large and

loosely arranged parenchyma cells, with air spaces, collectively known as cortex. The

central portion of the root, the stele, contains the vascular system, which is responsible

for the transport of food, water, and minerals throughout the plant. These tissues contain

the xylem, which conducts water and nutrients up to the aerial parts, and the phloem,

which functions as a conductor of organic material. The stellar portion of the root is

surrounded by a layer of cells, the endodermis, which separates the stele from the cortex.

The chief feature of the endodermis is the Casparian strip or band, which surrounds the



Figure 24 Transverse Section of a Typical Root (Farago, 1986)

Figure 25 Typical Plant Cells (Farago, 1986)



71

walls of each cell. In order to reach the xylem, water and dissolved salts must pass

through the living portions of the cells by diffusing through a membrane, the

plasmalemma (Figure 25) (Farago, 1994).

The absorption of a species through the roots can be active (metabolic) and

passive (non-metabolic). A number of metal ions diffuse passively in and out of the root

to the Casparian band although uptake in some cases, such as IC and Na t, by epidermal

and cortex cells seems to be by active transport (Farago, 1994). Ions cross the root by two

general pathways:

1. Cell wall pathway: ions cross the cortex by means of the cell walls.

2. Symplasm pathway: ions cross the cortex by cytoplasmic drift through the

continuum of cytoplasm that extends from the cell through the plasmodesmata,

and is known as the symplasm.

It is generally accepted that the xylem is the main path for transport of water and

ions from the roots to the leaves. Most of the essential major elements are transported in

the xylem as inorganic ions. Nitrogen may be transported along the xylem if it is present

in the external solution as nitrate or ammonium (Farago, 1994). In the xylem, heavy

metals are usually mobilized if chelates are formed, for example, with citrate (Streit and

Stumm, 1993). However, further research is needed to verify contaminant fixation,

translocation, and mobilization. Central to the goal is understanding chemical speciation,

which is critical for modeling contaminant transport within a plant as well as an

ecosystem. Since root uptake and translocation involves multiple processes including

adsorption, precipitation, and complexation (Farago, 1994; Ross, 1994; Kelly et al.,

1999), studies require noninvasive methods to evaluate contaminant speciation. For
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example, Kelly et al. (1999) studied the mechanism of Eu(III) uptake by Water Hyacinth.

They observed that as much as 8.7x 10-4 mol Eu(III)/g dry root material was taken up

from an initial solution of 3.3x10 -4 M of Eu (III). Using scanning electron microscopy

(SEM), they found that Eu (III) adsorbed on the root surfaces where the highest

concentrations appeared to be on the root hairs. In this same study, X-ray absorption

spectroscopy (XAS) was also used to look at Eu (III) speciation on the Water Hyacinth.

Results suggested a Eu-oxygen environment, which likely involves binding of Eu (III) to

the root via carboxylate groups and hydration of Eu (III) at the root surface (Kelly et al.,

1999).

Research was also conducted to understand how contaminants affect plants after

uptake. Metal accumulation by aquacultured seedlings of Indian mustard was studied

using XAS (Salt et al., 1998). The research showed that compared with shoots, roots of

Indian mustard (B. juncea) seedlings had a greater capacity to accumulate Cd. While

shoots have limited capacity to adsorb Cd onto their cell walls, the function of the shoot

in Cd uptake was not elicited. Lytle et al. (1998) also used XAS to study the reduction of

Cr(VI) to Cr(III) by Eichhornia crassipes (water hyacinth). The study revealed that

Cr(VI) supplied in the nutrient solution was rapidly reduced during uptake by the fine

lateral roots. Subsequently, Cr(III) was translocated at a slower rate through the main

roots than the leaves, however, further studies are needed to probe the associated

mechanisms.

In addition, contaminant uptake by roots has been investigated as a function of

their physical-chemical properties (benzene, toluene, ethylbenzene, m-xylene,

nitrobenzene, 1,2,4-trichlorobenzene, aniline, phenol, pentachlorophenol, atrazine,
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hexahydro-1,3,5-trinitro-1,3,5-triazine, and trichloroethylene ) (Burken et al., 1998).

Using hybrid poplar trees, Burken et al. found that root uptake was related to the

logarithm of the compound's octanol-water partition coefficient (log K ow). The

interaction between the species and the root surface is a critical mechanism in

translocation, for the chemical must pass the sumplast of the endodermis in order to

translocate to the above ground parts of the plant. Compounds exhibiting lower

hydrophobicity (log Kow < 1.8) are not expected to pass through the lipid membranes

associated with the epidermal layers of the roots. However, the more hydrophobic

compounds with a log Kow > 1.8, can enter the roots tissues, but do not enter the xylem

for translocation from the roots to the shoots and the leaves. These compounds become

bound to both the mucigel associated with the root surface and the lipid membranes of

the root's epidermis. Hydrophobic compounds such as 1,2,4-trichlorobenzene (TCB) and

pentachlorophenol (PCP), tend to absorb into the root tissues and were occluded from

entering the translocation stream (Burken et al., 1998). On the other hand, compounds

like aniline, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and phenol, which are less

hydrophobic, apparently did not pass through the organic membranes, and remained

adsorbed on the external surfaces of the root.

Besides terrestrial, aquatic plants also provide a route for contaminants to enter

the food chain due to their limited mobility, abundance in many aquatic systems, and

high potential to sorb organic substances (Gobas et al., 1991). However, in contrast to

terrestrial, most aquatic plants are non-rooted, free-floating macrophytes; therefore,

contaminant uptake is represented by partitioning (Hope, 1995). As a result, exposure is

often evaluated based on equilibrium (Davis et al., 1994). To estimate the aquatic plant
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exposure, contaminant partitioning between surface waters and aquatic macrophytes is

defined with contaminant-specific bioconcentration factors (BCF) (Davis et al., 1994,

1997).

As a product of the food chain, plants are also a major source of food for most

animals, especially for herbivores. Therefore, ingestion of various media like plants is

discussed in the following section on contaminant uptake by animals.

3.2.2 Contaminant Uptake by Animals and Human Beings

For terrestrial animals, contaminant uptake through ingestion is the most important

exposure route and has been studied extensively (Brueske et al., 1991; Brummelen and

Straalen, 1996; Hunder et al., 1991; Tillitt et al., 1995). Besides oral uptake, dermal and

inhalation pathways are also a concern for animal receptors. Recently, contaminant

uptake by aquatic animals has received more attention (Hellou et al., 1998; VanVeld,

1998) because contaminants can bioaccumulate in aquatic species, especially in fish

resulting in risk to human health by ingestion. Studies have focused for the most part on

the uptake mechanisms through direct absorption and oral uptake. Subsequent to uptake,

contaminants may undergo absorption, distribution, or excretion. Absorption can occur

through the gastrointestinal tract by ingestion, the skin by dermal absorption, and the

lungs by inhalation pathways.

Gastrointestinal (GI) Tract (Ingestion)

Toxicants can enter the GI along with food and water by ingestion. The stomach

and intestine are the major sites for the absorption and translocation of contaminants in

the GI tract. To date, a number of studies have been conducted to help understand the
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contaminant uptake mechanisms by ingestion: uptake of planar halogenated

hydrocarbons (PHHs) by mink and carp (Tillitt et al., 1995); influence of subchronic

exposure to deoxynivalenol (DON), a trichothecene mycotoxin, on intestinal absorption

in mice (Hunder et al., 1991); heavy metal uptake by shrews (Brueske et al., 1991); and

uptake and elimination of benzo[a]pyrene in the terrestrial Isopod Porcellio Scaber

(Brummelen and Straalen, 1996). These studies show that numerous factors may be

involved with the absorption, which include the nature of the chemical and its matrix, the

subject exposed, and the condition of exposure. Among these factors, chemical speciation

is critical for understanding absorption and translocation in GI tract. Firstly, pH greatly

affects its absorption and, therefore, its toxicity. An example of this phenomenon is

provided by aspirin, one of the most common causes of poisoning in humans (Lu, 1996;

Manahan, 1989). The chemical name of aspirin is sodium acetylsalicylate. With a pKa of

3.2, acetylsalicylic acid (HAsc) dominates at a pH substantially below 3.2. This form is

easily absorbed by the body, especially in the stomach, where the pH can be as low as 1.

Many other contaminants exhibit acid-base behavior and therefore pH is a key factor in

their uptake. In addition, pH also affects metal solubility. Typically, to obtain a toxic

response, a chemical must be soluble in body fluids or converted to a soluble form in the

organ or system through which it is introduced into the body. Insoluble substances are

often ingested through the gastrointestinal (GI) tract without doing harm (Lu, 1996),

whereas they may be quite toxic if dissolved. For example, barium ion, Ba2+, in the form

of insoluble barium sulfate, BaSO4, is routinely used as X-ray-opaque agent in the GI

tract for diagnostic purposes. This is a safe procedure; however, soluble barium salts such
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as BaCl2 are deadly poisons when introduced into the GI tract (Lu, 1996; Manahan,

1989).

Besides wildlife, humans have been subjects in a number of studies as well.

Schlummer et al. (1998) investigated gastrointestinal absorption of polychlorinated

dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated

biphenyls (PCBs), and hexachlorobenzene (HCB) from food ingested by seven

individuals aged 24 to 81 with varying contaminant exposures. They found that blood

lipid levels predominantly controlled the absorption behavior and a good correlation was

obtained between the net absorption and the lipid-based concentrations in the blood for

almost all of the persistent compounds studied.

As mentioned earlier, the uptake process is influenced by many factors related to

contaminants, target receptors, and the environment. Henning et al. (1999) identified

exposure factors controlling the uptake of xenobiotic chemicals by colonial piscivorous

birds, such as herons and egrets, through the ingestion of fish. These factors, which

included feeding rate for various food sources, feeding territory size, and body weight,

are critical to the implementation of models commonly used to predict ecological risks.

Another important factor influencing dietary uptake is the bioavailability of a chemical in

the contaminated matrix such as soil. Ruby et al. (1999) found that the bioavailability of

metals like lead and arsenic was mainly controlled by mineralogic soil factors. These

factors included contaminant speciation, the relative stability of the compound released to

soil, the potential for chemical or physical alteration of this compound, the likely reaction

products (based on soil chemistry), and the likelihood of disturbances that may alter soil

chemistry.
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Skin (Dermal Absorption)

In general, the skin is relatively impermeable, therefore, it constitutes a good barrier,

separating the organism from its environment. However, some chemicals can be absorbed

through the skin in sufficient quantities to produce systemic effects. Toxicants can enter

the skin through epidermal cells, sebaceous gland cells, or hair follicles (Lu, 1996). As a

function of both the substance and the skin, permeability also varies with location,

temperature, and chemical speciation. In order to penetrate the skin significantly, a

substance must be a liquid or gas or significantly soluble in water or organic solvents. In

general, nonpolar, lipid-soluble substances traverse the skin more readily than do ionic

species. Substances that penetrate the skin easily include lipid-soluble endogenous ones

as well as a number of xenobiotic compounds. Breaks in epidermis due to laceration,

abrasion, or irritation increase the permeability, as do inflammation and higher degrees of

skin hydration.

As a highly lipophilic compound, dermal uptake of benzo[a]pyrene (BaP) was

studied by Yang et al. (1989) and Wester et al. (1990). Yang et al. investigated BaP

absorption by rats from soil contaminated with crude oil at a concentration of 1% and a

BaP concentration of approximately 1 ppm. The study was conducted using rat skin in a

diffusion chamber. The average concentrations of BaP absorbed after 96 hours of

exposure were 8.4% and 1.3% of the initial applied dose at exposure levels of 9 mg

soil/cm2 of skin and 56 mg soil/cm2 of skin, respectively.

Roy et al. (1998) studied dermal bioavailability by using polynuclear aromatic

hydrocarbon (PAH) contaminated soils. In vitro percutaneous absorption studies were

performed with contaminated soils or organic extracts of contaminated soils collected
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from a site at a manufactured gas plant (MGP). The PAH concentration in the MGP tar

contaminated soils ranged from 10 to 2400 mg/kg, while the concentration in the extracts

ranged from 12000 to 34000 mg/kg. Roy et al. measured a 2-3 order of magnitude

reduction in PAH absorption through human skin going from the extracts to the most

contaminated soil. The results suggested that PAH (or contaminant) sorption on soil

could significantly impede their bioavailability to the skin. Unlike the effect of direct

contact of PAHs with skin, soil-sorbed PAH must desorb from the solid matrix to the

outer layer of the skin prior to penetration and diffusion.

Lungs (Inhalation)

The major function of the lungs is to exchange gases between the blood stream

and air in the lungs. Gas exchange occurs in a vast number of alveoli in the lungs, which

is the main site of absorption in the respiratory tract. In the alveoli, only one cell

separates blood from air. The thin, fragile nature of this tissue makes the lungs especially

susceptible to absorption of toxicants and to direct damage from these substances.

Furthermore, the respiratory route enables toxicants entering the body to bypass organs

that have a screening effect (i.e., the liver). Therefore, these toxicants can enter the

bloodstream directly and be transported quickly to receptor sites with minimum

intervention by the body's defense mechanisms.

Uptake mechanisms through inhalation have been studied with particle deposition

(Harch and Gross, 1964; Hinds, 1982; Lippmann and Schlesinger, 1984; Raabe, 1979;

U.S. EPA, 1986) and gas absorption (Fiserova-Bergerova, 1983; Overton and Miller,

1988; U.S. EPA, 1993b). These studies illustrated that for particles, deposition

mechanisms include inertial impaction, sedimentation (gravitational), diffusion,
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interception, and electrostatic precipitation, whereas mechanisms important for gases

include convection, diffusion, chemical reaction (including metabolism), and dissolution.

Examples of this type of research include that of Mast et al. (1995), who observed

chronic toxicity through inhalation of four types of refractory ceramic fibers in male

Fischer rats. Yoshida et al. (1998) considered pharmacokinetics of inhaling 1,1,1-

trichloroethane, tetrachloroethylene, trichloroethylene, benzene, and p-dichlorobenzene

by male Sprague-Dawley rats. Their research provided relative toxicity data for risk

assessment of chronic low-level exposure to chemicals by inhalation.

After uptake through any of the potential pathways, toxicants will undergo

distribution and excretion and may cause varying impacts on different tissues as

illustrated by Wayland et al. (1999). They evaluated lead concentrations in the liver,

kidney, and bone for dead Bald and Golden eagles; results showed that the liver had the

greatest body burden among all the tested tissues. Overall, the total contaminant body

burdens within the studied terrestrial animals are from ingestion, dermal absorption, and

inhalation through the GI tract, skin, and lungs, respectively. Besides terrestrial animals,

aquatic animals are important receptors in ecological risk assessment, and they undergo

different uptake mechanisms due to their unique aquatic environment.

Direct Absorption for Aquatic Animals

For most aquatic animals such as fish, direct absorption is a major route for the

toxicant uptake (Moriaty, 1988; Thomann, 1989). But recent research has shown that in

some cases, dietary uptake also plays an important role in the overall exposure of aquatic

animals. Van Veld and Vogelbein (1998) studied mummichog (fundulus heteroclitus)

exposure to aqueous and dietary contaminated BaP. Using immunohistochemical
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detection of hydrocarbon-inducible cytochrome P4501A (CYP1A), results showed that

both aqueous- and dietary-borne contaminants contribute towards overall exposure.

However, they also noted that these processes are strongly influenced by the complexity

of biogeochemical cycling of toxicants, species differences, temporal factors, trophic

levels, feeding strategies, composition of food, lipid content of fish, sex, season, binding

of toxicant to dissolved organic matter in water, complex mixtures of toxicants, and

multiple synergistic and antagonistic effects.

Hellou et al. (1998) compared the dietary and aqueous exposure of yellowtail

flounder to organochlorine compounds. They found that levels of contaminants were

three to 20 times greater from the aqueous partitioning as compared to the dietary uptake

for inshore flounder that fed on organochlorine compounds contaminated capelin,

mallotus villosus, for 2 years. This comparison suggests a major influence of inshore

water on the bioaccumulation of contaminants, although the effect of altering the diet of

flounder cannot be disregarded. Kraal et al. (1995), however, found different results from

studying the uptake and tissue distribution of dietary versus aqueous exposure to

cadmium by carp. In their laboratory experiments, the fish were exposed to

Cd-contaminated food or water for 4 weeks. The Cd accumulation in the tissues of fish fed

contaminated larvae was observed to follow the order of gut > kidney > liver = gill >

muscle, while exposure to contaminated water resulted in gut>gill>kidney>liver>muscle.

In almost all tissues, the Cd concentrations were similar regardless of the route of

exposure; only the gill had accumulated more Cd from contaminated water than from

food. These findings suggested that uptake of Cd from contaminated prey (or food) plays

an important role in aquatic ecotoxicology. Thomann et al. (1992) found that dietary
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uptake of organic contaminants is the most significant route of exposure and

bioaccumulation for contaminants with I( greater than approximately 10 5-106. On the

other hand, for chemicals with a Kow less than 10 5 , chemical uptake from the water is

usually the most significant pathway (Clark et al., 1990)

Since biomagnification of organic contaminants in food chains has been observed

in laboratory and field studies, it is important to understand the mechanism by which

contaminants are absorbed and concentrated in assessing environmental risk. One of the

first mechanistic explanations for bioaccumulation was based on biomass-to-energy

conversion (Woodwell, 1967). Unable to reproduce the observations of Woodwell,

Hamelink (1971) proposed that bioaccumulation in aquatic food chains is due to a

physical-chemical partitioning (or bioconcentration) of the chemical between the water

and the organism. Gobas et al. (1999) further investigated fugacity of hydrophobic

organic contaminants in the GI tract of fish under controlled laboratory and field

conditions. The fmdings indicated that food digestibility and absorption are critical

factors controlling biomagnification. Although their study was conducted with fish, it is

expected that the dietary uptake process applies to many organisms.

3.2.3 Summary

The discussed studies illustrated the uptake mechanisms for plants and animals. The

uptake process can be very complicated and may involve numerous factors associated

with the chemical and the receptors. However, potential limitations are associated with

laboratory studies. For example, only single stressor is concerned and multiple stressors

study can be limited by cost and logistical considerations; non-measurable effects (i.e.
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weather effect) are not included under the fixed laboratory condition. Those limitations

can bring big gap between approach in the lab and the approach to exposure in the fields.

Therefore, the extrapolation of laboratory data to the field study has to be addressed with

uncertainty analysis.

Compared with empirical measurements in the discussed studies above, exposure

models for estimating uptake of chemical contaminants through direct exposure to

contaminated media and secondary exposure to contaminants present in the food web can

be a cost effective method to identify concerned areas. However, considering that some

critical factors influencing chemical uptake, for example, speciation, are complex and not

necessarily reflected in the mathematical models, an ecological risk assessment cannot

produce absolute answers regarding exposure where uncertainty must be addressed.

3.3 Exposure Model

Based on the literature reviewed (Hope, 1995; U.S.EPA, 1993; Cheng, 1998; PNNL,

1998), quantitative exposure estimations to predict contaminant uptake were identified

for the ERA model. Each mathematical equation for exposure incorporates species-

specific information on diet composition, body weight, home range, food and water

ingestion rates, and incidental ingestion rates of environmental media, as available

(Appendix A).

3.3.1 Exposure Pathways and Food Web

The general exposure pathways are listed in Table 11; given these, the equations can be

combined to produce site- and species- specific estimation of chemical uptake from
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abiotic and biotic media. These various routes of exposure and the key information

required to estimate these exposures are shown in Figure 26. The hierarchical nature of

exposure is depicted in Figure 26 by three levels of foraging life styles. The body burden

of plants is based on uptake of contaminants from air, soil, pore water, and groundwater.

Uptake may be either through the roots or through transport across above ground

membranes containing aerial deposits of vapor-phase contaminants. Herbivores and

omnivores consume this plant material along with the contaminants that have been

deposited on the plant tissues as particulate matter. They may also ingest soil directly,

and all consume water, which may itself contain contaminants. Omnivores and carnivores

consume animal prey that has also received some degree of exposure. Besides the level of

contamination present in the various pathways of exposure, the fractional absorption of

these contaminants controls both the resulting concentrations in the organism and its

toxicological response to those absorbed concentrations. The predator-prey food web is

relationally imbedded within the database structure. This method allows any number of

organisms to be included without increasing the mathematical complexity. The approach

involves deriving a general expression for uptake and clearance of a chemical by a single

organism, and applying a set of such expressions that can be easily manipulated in a

relational database. Compared with a matrix structure method introduced by Steven et al

(2000), the trophic levels expressed in a relational database are more flexible and easily

modified for a specific food web. Furthermore, a DBMS approach is not restricted to one
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Table 11 Exposure Routes for Different Receptors

Target
Receptor

Exposure
Route

Exposure Point

Terrestrial
Plants

Root Uptake

Foliar Uptake
(dust)

Foliar Uptake
(vapor)

roots in contact with root-zone soil (-1m depth)

roots in contact with soil solution (surface water or
ground water)

translocation to above-ground plant parts from roots in
contact with root-zone soil (-1m depth)

foliar or stem contact with gas-phase contaminant
volatilized from soil

deposition of particulate-bound contaminants on plant
surfaces (leaves and stems)

Terrestrial
Animals

Dermal
Contact

Inhalation
(dust)

Inhalation
(vapor)

Ingestion

direct exposure to surface water, soil and /or exposed
sediments

inhalation of particulate-bound contaminants while
foraging in soil and/or exposed sediment

inhalation while in burrow of gas-phase contaminants
released from soil and /or exposed sediment

incidental ingestion of soil and /or exposed sediment;
ingestion of surface water; ingestion of contaminated
forage/prey

Aquatic
Plants

Direct Contact osmotic equilibrium with surrounding surface waters

Aquatic
Animals

Direct Contact

Ingestion

respiration, ventilation, or osmotic equilibrium with
surrounding surface or pore waters

regular or incidental ingestion of sediment; ingestion of
contaminated forage/prey
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Figure 26 Conceptual Model (PNNL, 1998)
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receptor per species. The exposure algorithms applied to the ERA model are described in

the following sections.

3.3.2 Terrestrial Plants Exposure

Plants are receptors for contaminants and subsequently stressors in the food chain.

Therefore, calculating contaminant concentration in plant tissue is a necessity. Uptake of

contaminants by plants is a complex process that involves processes such as adsorption,

complexation, and precipitation (Farago, 1994; Ross, 1994). However, an approach based

on plant-soil (Kps), plant-soil solution (Kpw), and plant-air (Kpa) partition coefficients can

provide a simple and useful method for assessing uptake and risk. For the three exposure

pathways, Equation (3.1) is applied:

where

= contaminant concentration in receptor from the ith pathway (mg/kg)

= total contaminant concentration in receptor from exposure to soil, water

and air (mg/kg)

= contaminant concentration in medium (mg/kg for soil EC s, mg/L for water

EC,,„ and mg/ m3 for air ECa)

= plant-medium partition coefficient ([mg/kg] soil / [mg/kg] roots for plant-

soil — Kps, L/kg for plant-solution -- Kpw, and m3/kg for plant-air Kpa)
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In the event a partition coefficient is not available, it can be estimated. For organics, the

coefficient is determined from the octanol-water partition coefficient (K ow) (Lyman et al.,

1990). For inorganics, the geometric mean of bioconcentration factors for leafy and root

vegetables can be applied to represent above ground and below ground plants,

respectively (Hope, 1995; Strenge and Peterson, 1989). As a result of these estimation

methods, this approach may under estimate the final risk to the plants. In model

validation (chapter 5), the effect of these estimation methods will be addressed.

3.3.3 Terrestrial Animals Exposure

Ingestion, inhalation, and dermal absorption present the principal means by which

terrestrial wildlife receptors are exposed to contamination. As mentioned above, these

receptors may receive exposure through direct contact (primary pathway) with abiotic

media and consumption (secondary pathway) of contaminated food. Exposure estimation

for these species must, therefore, include consideration of contaminant body burdens in

the lower trophic level forage or prey based on the food web. Because using a food web

model requires ecological information with respect to historical data and site-specific

feeding relationships, the process introduces a crucial ecological perspective into what

might otherwise be a purely toxicological exercise (Hope, 1995).

Dermal exposure could be a significant exposure route for animals that are in

frequent contact with contaminated water, sediment, or soil. But the estimation of

contaminant uptake via dermal absorption is also problematic for ecological resources,

primarily because many of the required parameters have not been measured for terrestrial

biota (U.S. EPA, 1993). The following model (U.S. EPA, 1993) is developed to estimate
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exposure based on an approximation of the mass of soil or sediment adhering to an area

of an animal's skin surface.

Ili11 tarp.

= applied daily dose to the receptor through the ith exposure pathway (mg

contaminant/kg of receptor body weight)

= surface area of ecological receptor (cm2)

= soil-to-skin adherence factor (mg/ cm2)

= fraction of receptor surface area in contact with soil per day (d -1 )

= contaminant-specific absorption factor (mg/kg contaminant body burden /

mg/kg absorbed daily dose)

= contaminant-specific depuration rate (d-1)

= body weight of receptor (kg)

= conversion factor (lx 10 -6 kg/mg)

= site use factor

= seasonality factor; percentage of time per year receptor dwells at site

Exposure via inhalation of volatilized contaminants and fugitive dust is evaluated

with the following equation (U.S. EPA, 1993):
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where

IRa = inhalation rate (m3/day)

Ingestion of contaminants is typically the most significant route of exposure in

assessing risks to terrestrial animals. In terms of both frequency and magnitude, for

receptors above the primary producer trophic level, ingestion can include both secondary

exposure, where contaminated forage or prey is consumed, and primary exposure, where

contaminated water, sediments, or soil are consumed. The associated algorithms are

where

FS = mass fraction of soil or sediment in the diet (as percentage of diet on dry

weight basis)

IRi = ingestion rate on dry-weight basis (kg/day)

IRiw = ingestion rate of drinking water (mg/day)

FRfk = wet weight fraction of the k th food item in receptor diet (kg food/kg diet)

For the total applied daily dose per terrestrial animal from all the above exposure

pathways:
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where:

ADDtotai = applied daily dose through all the concerned exposure pathways

(dermal absorption, ingestion and inhalation) (mg contaminant/kg of receptor

body weight)

Equations (3.7 — 3.10) are derived from the Wildlife Exposure Factors Handbook

(U.S. EPA, 1993) and Hope (1995) and are applied to wildlife ingestion of contaminated

soil, water, and food. The exposure parameters were obtained from literature (Owen,

1990; Maughan, 1993;) and government databases, for example, ECOTOX (U.S. EPA,

2000) and MEPAS (Strenge et al., 1989), or estimated with empirical equations

recommended by for example, the U.S. EPA (1993). Appendix A illustrates the detailed

derivation of the equations and parameters.

3.3.4 Aquatic Species Exposure

Aquatic species are the target receptors exposed to the contaminants in the aquatic

systems such as surface water. In the ERA model, they are defined as non-rooted, free-

floating aquatic macrophytes and free-swimming aquatic animals. Total uptake for these

species is represented by partitioning from surface water (Hope, 1995).

where

Caq = contaminant body burden in aquatic receptor (mg/kg)
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BCF = contaminant-specific bioconcentration factor (L/kg)

The contaminant-specific BCF can be obtained from the literature (Lyman, 1993; U.S.

EPA, 2000). Factors not available for inorganic contaminants (e.g., metals) may be

estimated from empirical equations using the species solubility constant (K so mg/L)

(Sample et al., 1996) (see appendix A and B).

As indicated in the previous section, generally, exposure for aquatic receptors will

be dominated by bioconcentration (direct uptake from water) mechanisms as opposed to

bioaccumulation (uptake through food and water assumption) mechanisms unless the

contaminant has a log (BCF) greater than 5 (Thomann, 1989; Moriaty, 1988).

Considering the lack of data on aquatic animal uptake through ingestion, this model only

includes direct absorption for aquatic animals.

Generated from literature review (Hope, 1995) and U.S. EPA recommendations

(U.S. EPA, 1993), the exposure models cover potential exposure pathways for terrestrial

and aquatic animals and plants. They have been adopted or modified to implement

ecological risk assessment case studies (Sample et al., 1994; PNNL, 1998; Kester et al.,

1998; Hope 1999; Pascoe et al., 1999; Dwayne et al., 1999). In the East Fork Poplar

Creek case study, Dwayne et al. (1999) modified the ingestion exposure model by using

an exposure-reduction factor to address the mercury and PCBs exposure to mink and

kingfishers. To address the influence of surface water concentration reduction on the risk

evaluation, the assessors assumed that these reduction would lead to a proportional

decrease in the body burden concentrations of aquatic prey. However, this assumption

may be quite suspect if the environmental conditions controlling methylation rates,
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bioaccumulation of mercury (i.e., pH, redox potential and temperature) and

bioavailabiltiy and bioaccumulation of PCBs (i.e., levels of dissolved organic matter)

changes. Furthermore, this approach is applied only to surface water concentrations and

tissue levels in aquatic prey (fish and invertebrates) because reductions in mercury or

PCBs aquatic concentrations would not affect other exposure pathways. Therefore, the

specific case study condition has to be reviewed for modification of these exposure

models.

The estimate methods and conditions associated with the applied parameters have

been discussed in detail in Section 3.4 of the Wildlife Exposure Factors Handbook

(USEPA, 1993). Among them, estimate of seasonality factor and site use factor can vary

significantly based on different site conditions and receptor's life history. Therefore, the

availability of comprehensive information on sites and receptors can be critical factor for

reducing the uncertainty associated with such parameters.

These exposure models for terrestrial and aquatic plants and animals are applied

in software developed using Visual Basic 6.0 with associated parameters stored in the

Microsoft SQL Server DBMS. A detailed description of the model and parameters is

provided in Appendices A and B.

3.4 Risk Characterization

Once the ecosystem and site characteristics are fully understood and the applied daily

dose (ADD) or body burden can be estimated for an individual receptor, an ecological

hazard quotient (EHQ) is calculated by dividing the ADD (or body burden) by the

reference values (Weiss, 1999):
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EHQ = ADDTotal ÷ Reference Value (3.12)

Reference value recommended in this model is the no observed adverse effect level

(NOAEL) or no observed adverse effect concentration (NOAEC) for terrestrial and

aquatic species, respectively. NOAEL and NOAEC are derived from experiments

conducted on laboratory animals, and are the highest dose applied or contaminant

concentration that did not result in a measurable adverse effect (Cockerham et al., 1994).

This is the most conservative approach (Bascietto et al., 1990), and is the one used in the

RESRAD Ecorisk model (Cheng, 1998) and CRCIA (PNNL, 1998). However,

disagreements exist on the NOAEL (or NOAEC) application partly because of its

estimator of "safe" chemical concentrations (Crane et al., 2000). Moreover, toxicity data

are limited for wildlife; consequently, NOAELs are often estimated from laboratory

studies and by extrapolating toxicity data such as LD50 values for domestic or laboratory

animals to wildlife (Sample et al., 1996).

Extrapolation of toxicity data immediately introduces uncertainty into any model.

As a general rule, organisms with smaller bodies have a tendency to detoxify faster than

larger ones, because of their higher metabolisms; however, there are exceptions (Sample

et al., 1996). If for example, the toxic effect is produced by a primary metabolite, the

detoxification process may be disrupted (Sample et al., 1996). Generally, because

smaller animals have a tendency to detoxify quicker (i.e., mice), application of data to

larger animals (i.e., deer) may significantly underestimate a risk. Correcting for body

weight and varying metabolic rates, wildlife NOAELs can be estimated for an untested

species by the following equation (Sample et al., 1996):
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where the NOAELwildlife represents the ecosystem receptor of concern, the NOAELtest  is the

surrogate test species for which the NOAEL is available, and bw represents their

respective body weights (Sample et al.,1996; EPA,1993). The (0.25) exponent is a

scaling factor used to account for the physiological functions of different species'

metabolic rates, and was obtained empirically by Sample et al. (1996). The algorithm that

Sample et al. (1996) apply to calculate the NOAELs for wildlife avian species defaults to

a body weight ratio raised to a zero exponent, based on empirical relationships resulting

from tests conducted on birds using LC50 data for 37 pesticides. Avian body weights did

not vary significantly, therefore, Sample et al. (1996) concluded that zero is the most

appropriate scaling factor for interspecies extrapolation between birds.

When NOAELs (or NOAECs) are not available for the target or laboratory

receptors, they can be estimated based on the lowest observed adverse effect level

(LOAEL or LOAEC) or Lethal dose (LD50 or LC50) by applying an uncertainty factor

(Sample et al., 1996 and 1998):

The application of uncertainty factor s of 10 and 15 are demonstrated by Sample et al.

(1996) and consistent with U.S. EPA guidance (EPA, 1997).

NOAEL (or NOAEC) stored in the Microsoft SQL Server DBMS of the model are

gathered from the toxicological benchmarks database for terrestrial animals and plants

prepared by Oak Ridge National Laboratory (Sample et al., 1996; Efroymson, 1997), the
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Ecotox database of U.S. EPA (2000), and MEPAS database of PNNL (1998). Toxicity

studies were conducted on a variety of chemical species to obtain these data (Sample et

al., 1996; Efroymson, 1997). Particular endpoints are associated with the benchmark

measurements. In this model, morality was evaluated for aquatic receptors and plant

growth or yield for terrestrial plants. As terrestrial animals concerned, available studies

on wildlife or laboratory species may not include evaluations of all significant endpoints

for determining long-term effects on natural population. Important endpoints such as

reproductive and developmental toxicity and reduced survival were used whenever

possible in the model; however, for some contaminants, limitations on the available data

necessitated the use of endpoints such as organ-specific effects. It should be emphasized

that in such case the resulting NOAELs (or NOAECs) represent conservation values

whose relationships to potential population level effects are uncertain. These values need

to be recalculated if and when more appropriate toxicity data become available (Sample

et al., 1996 and 1997).

Based on the selected reference values, the different range of EHQ values present

different level of risk. To be ecologically protective, the ratio of the exposure to the

NOAEL (or NOAEC) should be less than 1, because this provides a reasonable level of

assurance that an adverse effect would not occur as a result of exposure (U.S. EPA, 1993;

Kubiak et al., 1991). An EHQ greater than 1 indicates an adverse risk and less than 1

indicates a potential but non-adverse risk (Table 12). The risk is involved with the

potential endpoints for the evaluated ecological system, including effects on
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Table 12 EHQ Risk Characterization

EHQ Value Range Risk Characterization

<1.0 Potential risk to receptor

1.0 - 10.0 Slight potential adverse risk to receptor

10.0 - 100.0 Moderately high potential adverse risk to receptor

> 100.0 Extreme adverse risk to receptor

reproduction, development, and organ-specific toxic effects (i.e., liver or kidney damage)

(Sample et al., 1996). As discussed earlier in this section, 10 x the NOAEL (or NOAEC)

is approximately the LOAEL (or LOAEC), which means the lowest dose applied (or

contaminant concentration) that will result in a measurable adverse effect. Therefore, for

reasonable maximum exposure scenarios, EHQ values between 1 and 10 suggest that the

ADD (or body burden) is greater than the NOAEL (or NOAEC) but less than the LOAEL

(or LOAEC). However, for most exposure scenarios, if an EHQ greater than 10, the

ADD (body burden) is greater than the LOAEL (or LOAEC), and the exposure to the

contaminants could result in an adverse effect on the receptor's reproduction,

development, natural population, or organ-specific responses. Consequently, the range of

10-100 is generally considered to represent a significant ecological risk (U.S. EPA,

1993). Also, based on the previous extrapolation of NOAEL (or NOAEC) from LD50 (or

LC50), an EHQ value greater than 100 indicates that the contaminant uptake is generally

greater than the lethal dose which represents death of 50% of a test population. The

associated risk is recognized as the extreme adverse one. Based on such a categorization,

the adverse risk is divided into three levels in this model (U.S. EPA, 1993; Cheng, 1998):
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between 1 and 10, a slight potential adverse risk exists; greater than 10 but less than 100

indicates a moderately high potential risk; and greater than 100 is an extreme adverse risk

(Table 12).

As discussed in Chapter 3, contaminant speciation determines how it will be

absorbed and excreted. For example, organometalic compounds because of their lipid

solubility have a tendency to remain in the body longer than inorganic ones. The resulting

EHQ may not accurately represent the actual contaminant behavior.

3.5 ERA Software Development and Testing

These exposure models for terrestrial and aquatic plants and animals with respect to the

application of EHQ for the risk characterization are integrated into the ERA software

developed using Visual Basic 6.0 with associated parameters stored in the Microsoft SQL

Server DBMS. Based on criteria that included using personal computers, programming

language compatibility, user-friendliness, and storage volume for data, Visual Basic 6.0

and Microsoft SQL Server were selected for developing the interface and local DBMS.

The DBMS stores data required for conducting ecological risk assessments. These

data include inorganic and organic contaminants, site characteristics, chemical properties,

receptors, algorithm parameters, and reference values (Strenge, 1989; Owen, 1990;

Lyman, 1990; Hope, 1995; Sample, 1996; U.S. EPA, 1993, 1998; Cheng, 1998). With

guidance included in the software, these data can be modified to satisfy site-specific

conditions. Furthermore, the local DBMS will be linked with external ones including the

U.S. EPA Ecotox (U.S. EPA, 2000) to resolve timely data needs. The structure of the

ERA software is illustrated by Figure 27.
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Figure 27 ERA Software Structure

Prior to implementing the case study, the model was tested for logic and meaningfulness.

A range of hexavalent chromium concentrations in different media (1-10 mg/L for

surface water; 100-1000 mg/kg for soil; 0.1-1 mg/m 3 for air) was selected to assess

exposure to terrestrial and aquatic receptors. The contaminant uptake (ADDs or body

burden) as functions of concentration is plotted in Figures 28-33. Figures 28 and 29

illustrate the linear relationship between chromium concentration in surface water

(environmental concentration -- EC,„,) and in aquatic receptors, mountain whitefish and

the periphery plant. Similarly, for the terrestrial red fox receptor, the change in ADDs

with the increase of chromium concentration in air (EC a), soil (EC,), and drinking water

(ECw) are presented in Figures 30 - 32. Figure 33 illustrates the relationship between the

body burden and EC s for the terrestrial plant rushes. From these figures (28-33), we can

see that with an increase in concentration, the chromium uptake (ADDs or body burden)

increase linearly with no outliers. Such results demonstrate that as contaminant
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concentration in a medium increases, the body burden or applied daily dose increases

proportionally as would be expected given the associated algorithms shown in Chapter

3.3. Therefore, as the media concentration increases, the risk to the ecosystem rises.

3.6 Summary

Based on ecosystems defmed in Chapter 2, the potential exposure pathways were

identified to include ingestion, inhalation, and dermal absorption for terrestrial animals;

root and foliar uptake for plants; and direct absorption for aquatic species. From the

laboratory and field studies, numerous factors associated with the properties of chemicals

and receptors and the exposure conditions are involved in the uptake mechanisms for

plants and animal. Since uptake and exposure are complicated, simplifications in the

analyses are conservative and cost-effective. Therefore, the exposure can be estimated

from the available data by an ecorisk model if it is carefully applied. In the model

developed, the ecorisk algorithms cover all exposure pathways and risk is characterized

by comparing the estimated contaminant uptake by a receptor to the NOAEL or NOAEC,

which is defined as EHQ. To apply a complex food web, the trophic levels are considered

and evaluated through the relational DBMS to express predator-prey food relationships in

the model. The ERA code is written in Visual Basic and integrated into the software by

linking it with a Windows-based interface and the DBMS. The developed ERA software

was subsequently verified. However, as a simulation tool, ecorisk models cannot reflect

natural uptake processes. For example, these models do not account for the influence of

synergistic effects from multiple stressors. Such a limitation introduces additional

uncertainty to the final result and needs to be further addressed.



100

Figure 28 Cr[VI] Body Burden vs.ECsw for Mountain Whitefish

Figure 29 Cr[VI] Body Burden vs. ECsw for Periphyton
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Figure 30 Cr[VI] ADDs vs. ECa for Red Fox

Figure 31 Cr[VI] ADDs vs. Ecs for Red Fox



Figure 32 Cr[VI] ADDs vs. ECw for Red Fox

figure 33 Li_ vii Body Burden vs. ECs 'or Rushes



CHAPTER 4

CASE STUDY

4.1 Introduction

In the first stage of the research, Yuma and Aberdeen Proving Grounds were selected as

baseline ecosystems for the case study representing an arid desert system and a coastal

environment, respectively. Terrestrial and aquatic plant and animal receptors and site

characteristics were assembled based on guidelines for conducting an ecological risk

assessment (ERA) (U.S. EPA, 1998). The most important routes of exposure at YPG are

root uptake for terrestrial plants and ingestion, inhalation, and dermal absorption for the

terrestrial animals. All potential routes of exposure are considered for terrestrial and

aquatic species at APG, which includes root uptake for terrestrial plants; ingestion,

inhalation, and dermal absorption for terrestrial animals; and direct contact for aquatic

species. In applying the case study of evaluating the effect of replacing hexavalent

chromium with sputtered tantalum, hexavalent chromium and tantalum concentrations in

the media must be defined based on use, release, storage, and transport of the processed

gun barrels. Other than tantalum, molybdenum is also another alternative coating to

replace chromium and is evaluated in the case study.

In this chapter, the case study is implemented based on the developed ERA

model. The input data are discussed, which includes the rationale for selected

contaminant concentrations, distribution coefficients, and bioconcentration factors. Risk

characterization is conducted for the case study examining the two ecosystems, and

results are analyzed.

103
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4.2 Exposure Point Concentration

The 95% upper confidence limit (UCL) is calculated as the exposure point concentration

based on the mean of the actual, modeled, or estimated contaminant concentration in each

medium.

where:

X	 arithmetic mean;

one-tailed t-statistic value with n-1 degrees of freedom and a

significance level of P < 0.05;

arithmetic standard deviation of the characterization data; and

is the sample size.

The use of the 95% UCL as the exposure point concentration is consistent with

U.S.EPA Region III guidance for conducting ecological risk assessments (Davis, 1994).

This concentration serves as an estimate of the reasonable maximum exposure (RME),

which is defined as potentially the maximum exposure that is expected to occur at a site

(U.S. EPA, 1989). The calculated 95% UCL value has been used as the RME exposure

point concentration for modeling contaminant uptake with the following exception. If the

value is less than the maximum concentration, then the maximum reported concentration

is used.

Compared with hexavalent chromium, trivalent chromium is sparingly soluble

and less toxic, and long term studies of exposures to low levels of chromium in animals

have not resulted in any adverse health effects (Sullivan et al., 1992; Finley et al., 1996;
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Vajpayee et al., 2000). Therefore, trivalent chromium is not included in the case study.

The maximum reported concentrations ( > 95% UCL value) for chromium are used for

hexavalent chromium based on soil and air sampling data conducted at YPG (U.S. Army

YPG, 1999). Therefore, assuming test firing continues at the same rate and the loss of a

replacement metal is equivalent to that of the chromium, equivalent concentrations have

been used for the alternative metal coating Ta and Mo as well (Appendix D). For APG,

no data were available. However, as YPG has a greater gun barrel testing capability and

longer testing history than APG and considering a worst-case scenario, the concentrations

observed at YPG have been applied to APG. Contaminant speciation used in this effort is

listed in Appendix D. The resulting chromium concentrations in each medium for both

sites are listed in Table 13. Based on the contaminant concentration in soil, the

concentration in surface water of APG was estimated using soil-water distribution

coefficients, which is a function of the type of soil as well as solution conditions. Soil

water distribution coefficients are discussed in the following section.

Table 13 Chromium (VI) Media Concentrations in APG and YPG

Sites Soil—phase
concentration
ECs (mg/kg)

Soil to water
distribution
coefficient"
Kd (cm3/g)

Surface water
concentration
Esw(mg/L)

Particulate air

concentration

EC. (mg/m3)

YPG 7.5a 70 0.107 1.9E-6a

APG 7.5 1500 0.005 1.9E-6

a Data from Field Investigation Report of YPG (U.S. Army YPG, 1999)
b Source: Yu et al. (1993)
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4.3 Soil-water Distribution Coefficients

As discussed in the last section, when no data on contaminant concentrations in surface

water are available, soil water distribution coefficients (IQ) can be used for estimating

these. In the future, however, when the ERA model is linked to a transport model, the

ability to describe contaminant distribution mechanisms will be important for assessing

long-term risks. As a result, parameters, like that of the IQ, will have a potentially

significant role in the model development. The distribution coefficient represents the

partitioning behavior of the solute between the soil and bulk aqueous phase, assuming

equilibrium. The IQ values strongly depend on the physical and chemical characteristics

of the soil, which in themselves, do not necessarily remain constant over the long-term

because soils are dynamic systems. Soil properties that affect distribution mechanisms

include mineralogy, the organic matter, pH, and the presence of competing species for the

soil surfaces and complexing agents. Applying distribution coefficients assumes that

kinetically limited processes are insignificant, which is not true (Bethke and Brady, 2000;

Trivedi and Axe, 1999, 2000). Such processes include but are not limited to slow sorption

observed as surface precipitation, solid solution formation, and surface diffusion in

microporous minerals.

The distribution coefficient can range over several orders of magnitude under

varying conditions (e.g., pH) and may result in significant uncertainty when for example,

equilibrium does not exist and values are assumed constant throughout the site and as a

function of time. In this case study, the soils at YPG are characterized as sandy soil with

slow infiltration rates and high runoff potential; however, this potential is generally poor

because of low precipitation. The soil pH ranges form 7.4 to 8.4. A Kd of 70 cm3/g for
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sandy soil has been selected for YPG (Table 13) (Yu et al., 1993). Soils in APG are

underlain by loamy, gravelly, or clayey sediments on smooth uplands and the soil pH

ranges from 3.5 to 6.5. Therefore, a Kd of 1500 cm3/g for loamy soil is selected for APG

(Table 13) (Yu et al., 1993). But as discussed above, Kd can vary over many orders of

magnitude depending on the soil type, pH, redox potential, presence of other ions, and

soil organic content, which may bring significant uncertainty to the risk. This uncertainty

is further discussed in the following section on analysis of the results.

4.4 Bioconcentration Factor (BCF)

As discussed in the exposure algorithm section, the contaminant body burdens for aquatic

receptors depend exclusively on the BCF in the model. As a result, the BCF can influence

the result significantly. The BCF as defined by Swanson et al. (1997) is the ratio of the

chemical concentration in an aquatic organism to its concentration in water at equilibrium

and is designed to reflect an aquatic organism's assimilation of pollutants. The

bioavailability of the contaminant can vary as a function of the physical characteristics of

the element, the aqueous phase composition, soil and/or sediment characteristics, and an

organism's taxon, biochemistry, and lipid content (Hoffman, 1995; Weiss, 1999).

Organism biochemistry can influence the BCF as demonstrated by Walker et al.

(1996). They found that organisms with calcareous skeletons, exoskeletons, or shells

accumulated higher concentrations of lead and strontium than organisms without,

because these metals follow similar chemical pathways as calcium. Additionally, methyl

mercury, which is hydrophobic, has a much greater tendency to be bioaccumulated than

inorganic mercury, because the organic form more readily accumulates in aquatic
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organisms with higher lipid contents (Newman et al., 1991). Furthermore, water

characteristics such as pH and organic content can have a direct effect on the solubility

of metals; as the pH decreases cations become more soluble, and as a result more

bioavailable (Lithner et al., 1995; Newman et al., 1991). Table 14 shows the BCF values

applied for APG aquatic plants and animals in the case study.

Table 14 BCF (L/kg) for APG Aquatic Plants and Animals (PNNL, 1998; Jøregensen,
1991; ECOTOX, 2000)

Receptor
Ta, V Moc Cr

Phytoplankton

620

16000

20000

23000

Periphyton 16000

Water millfoil

Mountain whitefisha

10b

1000 1000

White sturgeons 1000 1000

Pacific lamprey (juvenile) a 1000 1000

Rainbow trout (adults) 1000 1000

Rainbow trout (eggs) 1300 1300

Rainbow trout (larvae) 1000 1000

a Rainbow trout was applied as surrogate
b Aquatic BCF value was estimated based on the empirical equation (Sample et al.,1996).

For the BCF value of aquatic animals, Cr was applied as surrogate for Mo

For the three concerned metals in the case study, aquatic BCF data were only

available for experiments conducted with chromium compounds on Rainbow trout, the

value was also applied to other fish. No additional BCF data were available for any other

inorganics of interest or fish species. Because chromium and molybdenum are within the
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same group of the Periodic Table, they possess similar physicochemical properties

(Clements et al., 1993). Therefore, chromium data were used as the surrogate species for

molybdenum. For tantalum, vanadium surrogates have been used. The associated BCF

values for other organisms were estimated based on the empirical equation derived by

Sample et al. (1996) using the water solubility (Ks0 mg/L) (Appendix A).

4.5 Reference Values

The relative NOAEL and NOAEC data were identified from multiple sources for

the terrestrial and aquatic receptors of the case study (Sample et al., 1996; Efroymson,

1997; PNNL, 1998; ECOTOX, 2000). In instances where data for a particular receptor

were unavailable, surrogates were selected based on taxonomy, life style, and/or

toxicological response similarity (PNNL, 1998). The surrogates selected in the case study

are shown in Table 15a and applied to the model with the body conversion method as

discussed in Chapter 3. The reference values for the case study are shown in Tables 16-

19. The associated endpoints are shown in Table 15b.

Likewise, when chemical information is lacking, other surrogates are used. A

literature survey revealed that neither NOAELs nor LOAELs have been established for

any tantalum compounds. However, because vanadium and tantalum are within the same

group of the Periodic Table, they possess similar physicochemical properties (Clements

et al., 1993). Therefore, vanadium data were used as the surrogate species for tantalum in

addressing any modeling endpoint gaps.
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Table 15a Surrogates and Receptors for APG and YPG

Sites	 Receptor	 Surrogates^a 	 Contaminantsb

APG Beaver

Indiana bat

River otter

Little brown bat

Black Duck

Mallard, American
kestrel, barred owl, bald Chicken
eagle

Mallard duck

Cr203
CrK(SO4)2, K2CrO4,
Cr+6, MoO4,MoNa2O4,NaVO3

VSO4

CrK(SO4)2

MoO4

VSO4

Fern, rush, slender blue
flag

Periphyton,
phytoplankton, water
millfoil

Mountain whitefish,
pacific lamprey white
sturgeon

General terrestrial pants 	 K2Cr2O7,
(lettuce, oats, tomato)	 Mo, V

Algea and phytoplankton CrK2O7

Dinoflagellate	 Mo, V

Rainbow trout, Carp 	 CrO3

MoO3, V2O5Fathead minnow,

YPG Black tailed rabbit

Cactus mouse

Kit fox

Mexican spotted owl,
loggerhead shrike,
gamble's quail

Cottontail rabbit

White-footed mouse

Red fox

Black Duck

Chicken

Mallard duck

Cr2O3 , CrK(SO4)2,
K2CrO4, Cr+ , MoO4,
MoNa2O4,NaVO3
VSO4

CrK(SO4)2

MoO4

VSO4

Creosote bush, foothill General terrestrial pants 	 K2Cr2O7,
paloverde trees, saguaro (lettuce, oats, tomato) 	 Mo, V
cactus

a Sample et al., 1996, PNNL, 1998

b Vanadium applied as surrogates for tantalum
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Table 15b Evaluated Endpoints of NOAEL (or NOAEC) (Sample et al., 1996)

Receptors Chromium
(K2CrO4, Cr+6)

Molybdenum
((Mo O4 and
MoNa2O4)

Vanadiuma
(VSO4 and

NaVO3)

Terrestrial Animal Body weight and
mortality

Reproduction Reproduction,
mortality, body
weight, and blood
chemistry

Terrestrial Plants Plant growth or
yield

Plant growth or
yield

Plant growth or
yield

Aquatic Receptors Mortality Mortality Mortality

a Vanadium applied as a surrogate for tantalum

Table 16 Terrestrial Plant Receptors and NOECs (Efroymson, 1997)

Terrestrial Plant Chromium a (VI)
(mg/kg/day)

Molybdenum
(mg/kg/day)

Vanadium"
(mg/kg,/day)

Fern 1.8 2.0 2.5

Rushes 6.8 2.0 2.5

Slender blue flag 7.4 2.0 2.5

Creosote bush 11.0 2.0 2.5

Foothill paloverde trees 31.0 2.0 2.5

Saguaro cactus 21.0 2.0 2.5

a Analyte tested was K2Cr2O7

b Vanadium applied as a surrogate for tantalum
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Table 17 Terrestrial Animal Receptors and NOAELs (Sample et al., 1996; PNNL, 1998)

Terrestrial Animal
Chromium (VI)

(K2CrO4)

(mg/kg/day)

Molybdenum
(Mo O4 and
MoNa2O4)

(mg/kg/day)

Vanadiuma
(VSO4 and

NaVO3)
(mg/kg/day)

bEastern garter snake 1.33E-01 3.53 1.14E+01

Lizards 1.33E-01 3.53 1.14E+01

Woodhouse's toad 1.33E-01 3.53 1.14E+01

Beaver 1.5 6E-02 8.9E-02

White-tailed deer 9.2E-01 4E-02 5.5E-02

Cactus mouse 6.55 2.8E-01 3.89E-01

White-footed mouse 6.55 2.8E-01 3.89E-01

Mallard 1.33E-01 3.53 1.14E+01

Bald eagle 1.33E-01 3.53 1.14E+01

American kestrel 1.33E-01 3.53 1.14E+01

Cottontail rabbit 2.41 1E-01 1.43E-01

Black-tailed jackrabbit 2.41 1E-01 1.43E-01

Indiana bat 8.57 3.7E-01 5.1E-01

Lesser long-nosed bat 8.57 3.7E-01 5.1E-01

Kit fox 1.73 7E-02 1.03E-01

Gambel's quail 1.33E-01 3.53 1.14E+01

Loggerhead shrike 1.33E-01 3.53 1.14E+01

Barred owl 1.33E-01 3.53 1.14E+01

Mexican spotted owl 1.33E-01 3.53 1.14E+01

Sonora whipsnake 1.33E-01 3.53 1.14E+01

Desert tortoises 1.33E-01 3.53 1.14E+01

Desert spiny Lizards 1.33E-01 3.53 1.14E+01

a Vanadium applied as a surrogate for tantalum.
b For reptiles and amphibians (eastern garter snake, lizards, woodhouse's toad, sonora whipsnake, desert
tortoises and desert spiny Lizards), NOAELs are derived from LOAELs (PNNL, 1998).
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Table 18 Aquatic Animal Receptors and NOAECs (ECOTOX, 2000)

Aquatic Animal Chromium (VI)
(CrO3)

(μg/L/day)

1.2

Molybdenum
(MoO3)

(μg/L/day)

4.19E+03

Vanadium
(V205)

(μg/L/day)

1.13

Tantaluma

(μg/L/day)

1.13
Mountain
whitefish
Pacific
lamprey,
juvenile

1.2 4.19E+03 1.13 1.13

Rainbow trout:
adult, eggs,
larvae

1.2 4.87E+03 1.07 2.89E+01

White sturgeon
(common,
mirror, colored,
carp)

6.53E+01 4.19E+03 1.13 1.13

a For Mountain whitefish, pacific lamprey and white sturgeon, vanadium was applied as a surrogate for
tantalum; for rainbow trout, data available for Ta 2O 5

Table 19 Aquatic Plant Receptors and NOAECs (ECOTOX, 2000)

Aquatic Plant Chromiuma (VI)

(μg/L/day)

2.3

Molybdenum"

(μg/L/day)

3.0E+01

Vanadium"'

(μg/L/day)

1.2E+01Periphyton

Phytoplankton 2.3 3.0E+01 1.2E+01

Water millfoil 2.3E+01 3.0E+01 1.2E+01

a Analyte tested was K 2CrO7 surrogate aquatic plants are algae and phytoplankton
bSurrogate aquatic plant is Dinoflagellate
`Vanadium applied as a surrogate for Tantalum.
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4.6 Results of Case Study

Risks to the receptors of APG and YPG are illustrated by Figures 34-36. Error bars are

applied in the figures to address the uncertainty resulting from the variability of the

distribution coefficient, Kd. As discussed earlier, this coefficient is a function of

mineralogy, pH, redox potential, and the presence of competing ions and complexing

ligands. In addition, applying this coefficient infers equilibrium, which is a grossly

inaccurate assumption. One recommendation will be to include speciation and transport

codes in the ERA model to improve depiction of mobility and bioavailability. In the case

study, an uncertainty factor was applied to Kd and its influence on the risk

characterization is illustrated by error bars. The following equation was defined for the

uncertainty factor (Cheng, 1998):

The 900% range used results in a factor of 10. The code runs three iterations applying

the following guidelines:

■ iteration one is application of the code with the original parameter value;

■ iteration two repeats iteration one and then multiplies the selected parameter by

the uncertainty factor; and

■ iteration three again repeats the first iteration and then divides the parameter by

the uncertainty factor.

As illustrated in Figures 34 and 35, for both YPG and APG terrestrial plants,

overall risk posed by the metals followed the order of Mo>Cr (VI)>Ta (with vanadium as

surrogate) (Table 20). A slightly high potential adverse risk exists from molybdenum

exposure, while hexavalent chromium and tantalum posed minimal potential risk. These
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results are attributed to the greater soil-to-plant transfer factor for molybdenum as

compared to chromium and tantalum (with vanadium as surrogate); the greater transfer

factor results in an increase in contaminant uptake in the plant. Subsequently, the risk

increases for animals with a high vegetation diet.

For terrestrial animals at YPG and APG (Figures 34 and 35a), a moderately high

and slight potential adverse risk exist for mammals from exposure to molybdenum;

overall risk from chromium and tantalum (again with vanadium as surrogate) fall into the

potential risk category (Table 20). Because of the greater risk to terrestrial plants,

molybdenum poses the greatest risk to herbivores. However, for avian species, exposure

from any of the metals results in the least risk category -- potential; nevertheless,

hexavalent chromium exposure presents a greater potential risk than molybdenum, with

tantalum resulting in the least. Similar results are observed for other animals except for

the beaver at APG, which exhibited a significantly greater risk than other terrestrial

animals. This result is most likely attributed to the beaver's foraging habits of high

aquatic and terrestrial vegetation consumption (Figure 35b). According to the model

output of the beaver's ADDs distribution, Figure 35b is plotted and it shows that among

the five concerned exposure pathways for beaver, ingestion of aquatic and terrestrial

plants contribute a significant part of the resulted risk.

In contrast to terrestrial plants at APG, because of the higher bioconcentration of

hexavalent chromium to aquatic plants, it poses a greater risk to aquatic plants than

molybdenum, with again tantalum exposure resulting in the least risk (Figure 36 and

Table 20). As a result of Cr(VI) exposure, a moderately high potential adverse risk exists
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Figure 34 YPG Terrestrial Receptors EHQs (UF of 10 is applied to generate the error bars for Kd)



Figure 35a APG Terrestrial Receptors EHQs (UF of 10 is applied to generate the error bars for Kd)

117
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Figure 35b Beaver ADDS Distribution among Different Exposure Pathways (Ingestion of Aquatic and Terrestrial Plants and Animals,
Ingestion of Water and Soil, Dermal Absorption and Inhalation)
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Figure 36 APG Aquatic Receptors EHQs (UF of 10 is applied to generate the error bars for Kd)
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Table 20 Analysis of Case Study Results

Receptors	 Moderately	 Slight	 Potential risk
high potential	 potential
adverse risk	 adverse risk

YPG Terrestrial	 Mo	 Cr(VI), Ta
Herbivores

Avian,	 Mo, Cr(VI), Ta
Reptile & amphibian

Plants	 Mo	 Cr(VI), Ta

APG Terrestrial	 Mo	 Mo	 Cr(VI), Ta
Herbivores

Avian,	 Mo, Cr(VI), Ta
Reptile & amphibian

Plants	 Cr(VI), Ta

Aquatic	 Cr(VI)	 Cr(VI), Mo	 Mo, Ta
Animals

Plants	 Mo, Cr(VI)	 Ta

* Al! Ta data expect benchmark for rainbow trout are based on V surrogate

for periphyton and phytoplankton, and a slight potential adverse risk was observed for

water millfoil. All the three aquatic plants are at a slight potential adverse risk from

molybdenum exposure and a minimal potential risk from uptake of tantalum.

For APG aquatic animals, hexavalent chromium shows the greatest risk while

tantalum poses the least. Chromium exposure results in a slight potential adverse risk to

mountain whitefish, pacific lamprey, and rainbow trout (adults, eggs and larvae) and a

potential risk to white sturgeon, while molybdenum poses a slight potential adverse risk

to rainbow trout (adults, eggs and larvae), but potential risk to mountain whitefish, pacific
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lamprey, and white sturgeon. Tantalum exposure resulted in a potential risk for all the

studied aquatic animals. Compared to terrestrial animals, aquatic animals in APG are at

significantly greater potential risk. This result may be attributed to their aqueous habitat,

where they are continually in contact with the dissolved contaminant via direct

absorption.

The different ranges of the error bars show how the variability of Kd influences the

risk to the concerned receptors. Because of the coastal ecosystem, surface water is an

important exposure pathway for receptors of APG. As a result from Figures 35 and 36,

the change in Kd introduced great uncertainty to the risks posed to aquatic receptors and

those for terrestrial animals which rely on aquatic species as their diet (e.g., beaver and

mallard). In contrast, YPG has a typical desert environment where surface water is not an

important exposure pathway for most receptors. As a result, the variability of Kd does not

have as significant an effect on terrestrial animals as it did at APG, however,

contaminated drinking water does impact the risk. Moreover, the applied OF can also

affect the risks as different values are used.

Furthermore, selection of a proper surrogate is essential; if the surrogate is

inappropriate it can be misleading. A surrogate should have similar physical and

chemical characteristics so that when it is applied it can be expected to behave similarly

to the contaminant of interest. However, a limitation is that even if a surrogate is closely

related to the contaminant of concern, accuracy is nevertheless questionable. For

example, based on toxicological studies, the LC 50 for Ta was more than two orders of

magnitude greater than that of V conducted on rats ingesting Ta2O5 vs. V2O5 (Gehartz,
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1985; Lewis, 1996). Therefore, using vanadium as surrogates can overestimate the

hazards associated with tantalum.

4.7 Uncertainty

As with any risk assessment, this ERA analysis has an uncertainty associated with it,

which is attributable to the following factors:

1. Insufficient data on some model inputs such as BCF, necessitated assumptions

that could not be tested. Since, where possible, conservative assumptions were

made, this may possibly lead to overstatement of the potential risks to ecological

receptors.

2. Insufficient data on exposure frequencies and synergistic effects from multiple

stressors, resulting in a possible understatement of the risk to the receptors.

3. Employing surrogates for data not available with respect to certain receptors and

chemicals may be questionable, misleading the ecological risk characterization

process.

A comprehensive uncertainty analysis is currently being developed to address these

factors and will be presented in the future.

4.8 Summary

Overall, as compared to hexavalent chromium and molybdenum, tantalum (with

vanadium as surrogate) exposure presents the least risk (potential risk) to most of the

receptors within APG and YPG. For all studies, a moderately high potential adverse risk

exists for terrestrial plants exposure to molybdenum, while hexavalent chromium and
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tantalum (with vanadium as surrogate) exposure resulted in a potential risk. The

differences in these exposures can be attributed to the greater soil-to-plant transfer factor

for molybdenum. As a result, the greatest risk occurred from molybdenum exposure to

herbivores at both sites. Aquatic plants and animals exposure to hexavalent chromium

resulted in a moderately potential adverse risk, which is significantly greater than

exposure to tantalum (with vanadium as surrogate). The differences can be attributed to

the hexavalent chromium BCF for aquatic receptors.

Considering that toxicity studies are conducted on a variety of species (Weiss,

1999), the resulting EHQ may not accurately represent true contaminant behavior; using

surrogates, when data are not available, also introduces uncertainty into the risk

characterization. In addition, applying soil-water distribution coefficients and

bioconcentration factors can influence the risk significantly since there is great variability

in these types of parameters. As a result, an uncertainty analysis will be included in the

future.



CHAPTER 5

MODEL EVALUATION

5.1 Model Validation

Validating a model is a critical step in the development phase. Because of the extensive

work at YPG, the modeling results have been compared to field studies as well as to other

earlier modeling efforts (Table 21) (U.S. YPG, 1999).

Table 21 Cr Body Burden Concentrations for Selected Receptors of YPG

Receptors Field study data'
(mg/kg)

CSM 2(only
ingestion of food

and soil)
(mg/kg)

ERA model
(mg/kg)

(range with error)

Small rodents (mouse or 0.55 0.135894 0.224
rabbits) (0.211- 0.3 54)

Kit fox - 0.05204 0.0682
(0.0539 -0.0973)

Gambel's quail - 0.35316 0.479
(0.412 -1.251)

Loggerhead shrike - 0.24485 0.502
(0.374 -1.040)

Great-homed owl - 0.04914 -

Mexican spotted owl - - 0.1956
(0.1591 - 0.3884)

Field investigation conducted by the U. S. Army Center for Health Promotion and Preventive Medicine (USACPPM), 1999; 102.4%
recovery is associated with the laboratory control sampling with EPA 200.7 method
2 Conceptual Site Model developed by USACHPPM in September 1998

In the field study, the U. S. Army Center for Health Promotion and Preventive

Medicine (USACHPPM) (U.S. YPG, 1999) collected ten rodents (i.e., pocket mice,

kangroo rats, etc.) from two impact sites on the Kofa Range area. Chromium was

detected in nine rodent samples with detection limit of 0.5 mg/kg. Vegetation sampling
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was also conducted and no chromium was detected in any of these samples where the

detection limit was 0.2 mg/kg (U.S. YPG, 1999). Compared to field data, the chromium

body burdens for rodents were estimated to be lower through this model. However, it

must be noted that the collected rodents may have lived within the impact area for an

extended period. Through the life history of the receptors, the contaminant absorption,

transportation, bioaccumulation, and excretion can be a very complicated process

influenced by the variations of ecosystem conditions, contaminant characteristics, and

receptor's physiological properties. In the ERA model, exposure parameters were derived

based on the receptor's life history (i.e., absorption and depuration factors). However, the

natural variations are difficult to reflect in any mathematical model where uncertainty and

variability exist. Furthermore, the uncertainty associated with the sampling and

laboratory studies cannot be neglected. In another risk assessment, the Conceptual Site

Model developed by USACHPPM was used (U.S. YPG, 1999). In this model, only

ingestion of soil and food was considered; therefore inhalation and dermal absorption

were not included. As a result, the body burden for the evaluated rodents was even lower

than the estimated ones in this research.

5.2 Model Evaluation

In the first phase of this research, a critical review and application of three ERA models,

CHEMS-1, RESRAD-ECORISK and CRCIA, were conducted (Table 22). Developed by

the University of Tennessee, CHEMS-1 model is used to rank and score contaminant

toxicity and exposure potential, based exclusively on the toxicity data. However, due to

multiple toxicity data sources and therefore uncertainty, many hazard values overlapped



126

in the case study. Therefore, CHEMS-1 is not effective in distinguishing contaminant

exposure and risk as a scoring tool. Furthermore, this model is also limited where only

two animals are used to assess ecosystem toxicity. Overall, CHEMS-1 is not

recommended as a tool for ecological risk assessment. The other two models, RESRAD-

ECORISK and CRCIA were developed for ecological risk assessment, and overall there

are limitations associated their application (Weiss, 1999). The RESRAD-ECORISK

model developed by Argonne National Laboratory (ANL) features a transport model and

a sensitivity analysis for the site characteristic parameters. This model, however, is

designed only for soil contamination by using five terrestrial animals where the databases

are not modifiable, limiting the model application. Developed by PNNL, CRCIA is

designed to address how exposure to organic, inorganic, and radiological contaminants

can affect a coastal habitat. This ecological risk assessment included the most

comprehensive ecosystem of the models evaluated. However, some limitations associated

with the model development need to be addressed: it is not user friendly as a spreadsheet;

there is no receptor and chemical database; it requires estimation of numerous exposure

parameters, increasing the uncertainty; and, there is no sensitivity analysis to address the

uncertainty.

In this research, the recommended features of RESRAD and CRCIA were

combined and limitations were addressed. Specifically, as seen in Table 22, the model

developed in this work includes algorithms for assessing potential risks to aquatic and

terrestrial animal and plant receptors; expansion of the receptor and contaminant

databases; a DBMS for housing receptor, contaminant, and benchmark data;



Target
Receptors

Exposure
Pathways

Five terrestrial animals
(Robin, mallard, rabbit,
mouse, and deer)

Ingestion for terrestrial
animals

Non-modifiable, data are
limited

MS-DOS program, and
reformatting of the
reports required to view
text and tables

Database

Interface
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Table 22 Model Evaluation

Features	 RESRAD	 CRCIA	 ERA Software

Application	 Assess contaminated soil Assess a coastal habitat 	 Assess site specific
ecosystem with default arid
or coastal environments

Food Web	 Simple food web for
lower trophic levels

Terrestrial and aquatic
animals and plants from the
coastal habitat

Root uptake, particle
deposition, and vapor
transfer for terrestrial plants;
ingestion, inhalation, and
dermal absorption for
terrestrial animals; and
direct absorption for aquatic
species

Specific food web
relationship based on single
receptor and one application
limited to the studied site

Excel spreadsheet, no
database

Excel spreadsheet, not an
integrated software package
for general use

Terrestrial and aquatic
animals and plants living in
arid or coastal ecosystem,
including the U.S. Army's
most concerned species.

Root uptake, particle
deposition, and vapor
transfer for terrestrial plants;
ingestion, inhalation, and
dermal absorption for
terrestrial animals; and
direct absorption for aquatic
species

General and effective food
web expression within a
relational database including
higher trophic levels

Modifiable database,
physically linking to
external databases

Windows-based interface,
clear and user friendly;
integrated with ERA code
and database

Transport	 Includes a fate and
Model	 transport model to

account for chemical
mobility

Data Quality	 Include sensitivity
analysis for site specific
data

No transport model linked

No uncertainty analysis to
address the data quality

Currently no transport
model linked

A comprehensive
uncertainty analysis
currently being developed
for all the important
parameters within this
model
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a relational database approach to express food web relationship within the DBMS; links

to external DBMSs; and a Windows-based interface.

However, this model currently is still under development, as there are some

potential limitations currently being addressed:

• First, data stored in the DBMS are not sufficient, and need to be amended as

required by a user-specific application. Currently, the local DBMS is physically

linked to two external databases (ECOTOX and RTECS). However, the system

has not yet been developed to handle temporary and modified data from external

sources.

• Second, before employing this model, users need to identify the contaminant

concentrations in the concerned media, either real or estimated. To address this

limitation, accurate depiction of contaminant distribution mechanisms need to be

included in the model. As mentioned earlier, there are many problems in applying

simplified descriptions of contaminant interactions like that of the distribution

coefficient (Yu et al., 1993). Therefore, future efforts will include mechanistic

models with thermodynamic and transport parameters. Furthermore, a

comprehensive uncertainty analysis is needed to address data quality of other

parameters or surrogates used in the model.

• Third, based on the case study, only direct absorption was considered for aquatic

animals. As discussed in Chapter 3, exposure through ingestion may also exert

considerable risk for certain receptors. As a result, the exposure algorithm may

need to be refined to include bioaccumulation via ingestion once the associated

data become available.
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• Fourth, currently the assessment is static, and transient effects are not included. In

the future, contaminant mobility and transport will be integrated into the software.

Moreover, as discussed in Chapter 3, speciation can influence the contaminant

uptake, and therefore the chemical toxicity to the receptor.

• Fifth, chemical distribution within the organism cannot be characterized and

treated as a homogeneous volume. Furthermore, the changes in organism function

resulting from the presence of the chemical are not included. This limitation

cannot be resolved until associated data are available.

• Lastly, the risk characterization is based on the potential effect a release has on an

ecosystem, and does not yet include a life-cycle evaluation.

5.3 Discussion

Ecological risk assessment remains a dynamic and evolving discipline. Innovative

approaches are being studied to address the limitation associated with the endpoints

application and extend the ERA applications by including such aspects as temperature

and life-time exposure.

Dose-response data applied to ecological risk assessment usually comes from

single-species toxicity tests measured in the lab. However, populations, communities, and

ecosystems are generally the entities to be protected. One method to resolve this

incongruity between individual-based data and the complex biological entities in

ecological risk assessments is applying species-sensitivity distributions as studied by

Newman et al. (2000). They used a bootstrap method to address the ambiguity of

selecting a specific distribution and estimation of the approximate number of species,

which are usually handled with simple lognormal model. The simplicity of this bootstrap
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method made it easy to integrate into other ERA models. However, whether any species

loss is acceptable is equivocal, using this method could discount the importance of

maintaining dominant and keystone species, and the influence of species interaction if not

properly applied.

The "single stressor-single endpoint" issue considered in a case study of the St.

Croix National Scenic Riverway involved the application of fuzzy set theory (Wenger et

al., 2000). Wenger et al. applied a stressor/value matrix, which enables the analyst to

formulate ranking of ecosystem stressors by aggregating the ecosystem data. Results

from the case study demonstrated this to be a useful tool for identifying the most

important anthropogenic stressors affecting the current state of the ecosystem, which is

beyond the "single stressor-single endpoint" paradigm. However, it also showed that

when compared with mathematical models, this analytic methodology yields results with

significant levels of uncertainty as it is influenced by the data availability.

Besides endpoints, weather and time effects on the exposure need to be addressed

in ERAs. A model was developed to account for the pesticide effects on growing

herbivorous arthropods as a function of temperature and time (Akkerhuis et al., 1999).

Designed for the life time exposure of a marine mammal to hydrophobic contaminants, a

pharmacokinetic model was developed to include the mass balance expressions for

partitioning, transport, and transformation in various organs and blood (Hickie et al.,

1999). However, these approaches currently are just utilized based on site-specific

studies and the applications are therefore limited. Further studies of using these

approaches are needed for combining them with ERA modeling.



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Conclusions

The ecorisk model algorithms apply potential exposure pathways and are written in VB

with a Windows-based interface that is linked to the DBMS. Based on the developed

model, a case study was implemented to assess the implications of replacing electroplated

chromium with alternative coatings, tantalum and molybdenum. For the exposure

estimate, Yuma and Aberdeen Proving Grounds were identified as baseline ecosystems,

which involve an arid desert system and a coastal environment. As two important proving

grounds for gun barrel testing, it is critical to assess potential risks resulting from the

chromium contamination in the ecosystem (U.S. Army YPG, 1999). Selection of

terrestrial and aquatic plant and animal receptors was based on the U.S. EPA Guidelines

(U.S. EPA, 1998), and they are summarized in Chapter 2. In addition, based on the two

sites, the U.S. Army's most concerned species have been included. Potential exposure

pathways included in the software are ingestion, inhalation, and dermal absorption for

terrestrial animals; root and foliar uptake for plants; and direct absorption for aquatic

species.

To accomplish this ecological risk assessment, surrogate use was essential. For

chemicals, a surrogate should not only have similar physical and chemical properties to

the species of interest, but they should also behave alike. For receptors, surrogates were

selected based on taxonomy, life style, and/or toxicological response similarity (PNNL,

1998).
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Results from this case study show that as compared to hexavalent chromium and

molybdenum, tantalum (with vanadium as surrogate) exposure presents the least risk

(potential risk) to most receptors within APG and YPG. For all studied terrestrial plants

in APG and YPG, a moderately high potential adverse risk exists from molybdenum

exposure, while hexavalent chromium and tantalum (with vanadium as surrogate)

exposure resulted in a potential risk. This difference is attributed to the greater soil-to-

plant transfer factor of molybdenum as compared to Cr and Ta. Because of the increased

exposure to plants, Mo posed the greatest risk to herbivores at both sites. As the Cr(VI)

BCF is much greater than that for Ta (with vanadium as surrogate), aquatic plants and

animals exposure resulted in moderately potential adverse risk, while Ta and Mo

exposure resulted in potential risk. Through the risk characterization process, it is

recognized that employing surrogates when chemical and toxicity data are lacking is

questionable and may mislead the model result. As in the case of tantalum compounds,

the use of vanadium may increase resulting EHQs. Therefore, an additional area of

concern within ecological risk assessment is the use of surrogates and proper selection of

ones similar in terms of properties as well as speciation.

According to the risk characterization results, conservative approaches are

recommended when EHQs are greater than 1. Only Mo and Cr(VI) resulted in EHQs

exceeding 1. As moderately adverse risk, the greatest, is observed in the studies, a

potentially significant impact on terrestrial receptors population exists since reproductive

and mortality endpoints are evaluated for Mo and Cr(VI) respectively. Such adverse

effects can also bring potential risk to the human health through the food chain.

Therefore, Using of molybdenum or chromium as a coating in gun barrels is not
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recommended, and further study would be essential to address any affected area when

either was used. Subsequently, investigative actions would be recommended to reduce

the effects. For those species receiving a slight adverse risk, field investigations that

include receptors sampling are recommended However, with a well-defined management

system, other considerations have to be integrated with the risk characterization results to

make and justify risk management decisions. These considerations should include

existing background levels of contamination, available technologies, costs of alternative

actions, and remedy selections (U.S. EPA, 1997).

This work only addresses the potential affect chromium and tantalum may have

on an ecosystem as a result of test firing guns. While this study does not address the

entire life-cycle effect on ecology, based on the conservative exposures considered, Ta

does not appear to pose a threat to either ecosystem. On the other hand, in addressing an

ERA for other replacements in "green manufacturing", future work should address

ecological impact and risk during each phase of the life-cycle processes.

6.2 Recommendations for Future Work

Based on the case study and model evaluation, the following are recommended for

improving the ERA software:

1. Modifying the local database and linking it to external databases (ECOTOX,

RTECS) for data use.

2. Including uncertainty analysis to address data quality.

3. Linking the ecological risk model with speciation and transport models to account

for time, location, and contaminant mobility and bioavailability.
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4. Addressing portability of the current version, for example, client/server system.

Furthermore, combining the ecological risk assessment with a life-cycle approach will

take into account the overall cradle-to-grave perspective for sustainable development. As

such, the next phase of research will include collecting information related within the

stressors' life cycle.



APPENDIX A

EXPOSURE MODEL AND PARAMETERS

The following description represents a compilation of exposure formulas that were
primarily derived from U .S. EPA's wildlife exposure factors handbook (U .S. EPA,
1993). Each mathematical equation for exposure incorporates species-specific
information on diet composition, body weight, home range, food and water ingestion
rates, and incidental ingestion rates of environmental media, as available.

Terrestrial Plants
Root Uptake from Root-zone Soil to Roots 

Cpr = EC izS x Kpsl 	(Hope, 1995)
Where:

Cpr = contaminant concentration in plant roots, mg/kg
ECrzS = contaminant concentration in root-zone soil, mg/kg

Kps1 = plant-soil partition coefficient for root-zone soil to roots,
mg/kg(soil)/mg/kg(roots)

Submodel: 
Kps1 = 270 x Kow-0.58 (McKone, 1993)

where:
Kow = contaminant-specific octanol-water partition coefficient,

mol/L(water)/mol/L(octanol)

Calibration: 

K0  lookup from MEPAS chemical database or estimate from the equations in Appendix
B.

Root Uptake from Root-zone Soil Solution to Roots 
Cpr = ECsw x RCF	 (Hope, 1995)

Where:
EC,= contaminant concentration in surface water in contact with roots, mg/L
RCF = root concentration factor, L/kg

Submodel:
RCF = 0.82 + 0.03 x Kow0.77 (Briggs et al., 1982; 1983)

Root Uptake from Root-zone Soil to Above-ground Plant Parts 
Cpa = ECrzs x (Kps2, Br, BO (Note that one or the other of the terms in brackets
would be used depending on whether the contaminant was organic (K ps2) or
inorganic (B r, By). Equation modified from Hope (1995))

where:
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Cpa = Contaminant concentration in above-ground plant parts, mg/kg
Kps2= plant-soil partition coefficient for root-zone soil to above-ground plant

parts, mg/kg(soil)/mg/kg(above-ground plant)
Br = Bioconcentration factor for vegetative plant parts,

mg/kg(soil)/mg/kg(vegetative plant)
By = Bioconcentration factor for nonvegetative plant parts,

mg/kg(soil)/mg/kg(nonvegetative plant)

Submodel:

Calibration: 

Br, By lookup from U.S. Department of Energy (1996) and Base et al. (1984)

Foliar Uptake (vapor) 

where:
Kpa = plant-air partition coefficient for air to above-ground plant parts, m 3/kg

Submodel: 

R = universal gas constant, 8.314 Pa-m 3/mol/K
T = temperature, K
H = contaminant-specific Henry's law constant, Pa-m3/mol

Foliar Uptake (particulates) 

Terrestrial Animals
Direct Absorption from Dermal Exposure

where
ADDdc = absorbed daily dose from dermal contact, mg/kg

Cdc = contaminant body burden in receptor from dermal contact, mg/kg
EC, = contaminant concentration in soil, mg/kg
SA = surface area of ecological receptor, cm2

AF = soil-to-skin adherence factor, mg/ cm2

Pc = fraction of receptor surface area in contact with soil per day, d -1

ad = contaminant-specific dermal absorption factor, mg/kg (contaminant body
burden) / mg/kg (absorbed daily dose)

ke = contaminant-specific depuration rate, c1-1
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= See MEPAS chemical database and U. S. EPA (1995,;1989)
See CRCIA (PNNL,1995)
mammal: 0.22, other vertebrates: 0.25, arthropods: 1 (Maughan, 1993)

= lookup for species using U. S. EPA (1993), Dunning (1993), Silva and Downing
(1995), Nagy (1983)

1 for all species except common snipe (0.33), bufflehead (0.5), Forster's tern (0.5),
cliff swallow (0.5), and bald eagle (0.5) (Ennor, 1991).

Inhalation of Volatilized Contaminants
ADD,,, = [(IRi x ECva)/BW] x 0 x Ψ x Bt (modified from Hope (1995))
Civ = ADDiv x (αv/k e ) (Hope, 1995)

where:
ADDiv = applied daily dose from inhalation of volatilized contaminants, mg/kg
Ch, = contaminant body burden in receptor from vapor inhalation, mg/kg
IRi = inhalation rate, m3/day
Bt = fraction of day spent in burrow, hr/24hr
ECvap = concentration of volatilized contaminant in air, mg/ m3

ay = inhalation absorption factor, mg/kg (contaminant body burden) / mg/kg
(applied daily dose)

Submodel: 
IRi U.S.EPA (1993) and CRCIA (PNNL,1998):

Species IR;
Mammals 2 x 0.5458 x BW 0.80

Birds 2 x 0.4089 x BW 0.77

Woodhouse's toad 5.8 x 104

Lizards and western aquatic garter snake 0.00045 x (BW x 1000)"
Terrestrial arthropods 0.00045 x (BW x 1000) 0.8



Calibration: 
a, lookup from CRCIA (PNNL,1998) and Owen (1990)
IRi lookup for species using U. S. EPA (1993) or estimate from submodel

Inhalation of Fugitive Dust

αp lookup from CRCIA (PNNL,1998) and Owen (1990)

Incidental Ingestion of Soil or Sediment
ADD si = (EC, x FS x IRf) / BWx 0 x Ψ (modified from U. S. EPA (1993)
using site use fractions as above)

where:
ADD si = applied daily dose from incidental ingestion of soil or sediment,

mg/kg,
EC, = contaminant concentration in surficial soil or sediment, mg/kg
FS = mass fraction of soil or sediment in the diet, as percentage of diet on dry

weight basis
IRf = food ingestion rate on dry-weight basis, kg/day

Submodel: 
IRf (U .S. EPA, 1993)
Species IRf
Mammals = 0.235 BW0.822

Birds = 0.0582 BW0.651

Woodhouse's toad = 0.013( BWx 1000)°173

Lizards and western aquatic garter snake = 0.013( BWx 1000)°373

Calibration: 
FS lookup for species using U. S. EPA (1993)
IRf lookup for species using U. S. EPA (1993) or estimate from submodel

Ingestion of Water

using site use fractions as above)

= applied daily dose from drinking water, mg/L-day

138



139

ECdw = average contaminant concentration at drinking water supply, mg/L
IRdw = ingestion rate of drinking water, mg/day

Submodel: 
IRdw (U .S. EPA, 1993)
Species Maw
Mammals = 0.099 x BW 0.90

Birds = 0.059 x BW 0.67

Woodhouse's toad 0
Lizards and western aquatic garter snake 0
Ten. arthropods 0

Calibration: 
IRdw lookup for species using U .S. EPA (1993) or estimate from submodel

Ingestion of Food 

where:
ADDfi = applied daily dose from ingestion of contaminated food, mg/kg
m = number of food items in the diet of the receptor species
Ck = contaminant concentration in the k th food item, mg/kg
FRS = wet weight fraction of the k th food item in receptor diet, kg (food)/kg (diet)

Submodel

where:
Ck = contaminant concentration in food item k resulting from all appropriate

uptake pathways (ingestion, inhalation, dermal absorption and etc.), mg/kg
Cotner = contaminant concentration in food item k resulting from exposure

pathways other than ingestion (inhalation, dermal absorption, direct
absorption, plant root uptake and etc.) mg/kg

αing = ingestion absorption factor, mg/kg (contaminant body burden) / mg/kg
(applied daily dose)

Calibration: 
FRfk lookup for species using U .S. EPA (1993)

αing Lookup from Owen (1990) and MEPAS chemical database

Aquatic Species
Direct Contact

where:
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Caq = contaminant body burden in aquatic receptor, mg/kg
BCF = contaminant-specific bioconcentration factor, L/kg

Calibration: 
BCF = lookup from MEPAS and ECOTOX databases

Values for inorganic contaminants (metal) may also be obtained from the literature
(Maughan, 1993) and database (U.S. EPA, 2000) or estimated from empirical equation
derived by Sample et al. (1996) using the water solubility (K so mg/L) of a contaminant:

Log BCF = 2.791 — 0.564 log K s.



APPENDIX B

OCTANOL/WATER PARTITION COEFFICIENT

This appendix shows the regression equation for the relation of aqueous solubility and

octanol/water partition coefficient.

Regression Equation for the Estimation of S (Lyman et al, 1990)

a. S = aqueous solubility; K0  = octanol/water partition coefficient; tm = melting point (°C),
tm >= 25°C; N = number of carbon atoms in molecule.

b. No. = number of compounds in data set used to obtain equation.
c. r

2 = square of correlation coefficient
d. Actually, moles/ 1000 g of water (i.e., molar solubility). For most chemicals this is very close to

the molar solubility (moles/liter of solution), and no correction need be applied.
e. All chemicals used were liquids. Values of K ow for many of these chemicals were estimated.
f. If t„, is less than 25 °C, a value of 25 °C should be used for tm in Eqs.16-17
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APPENDIX C

EXPOSURE PARAMETERS IN DBMS

In this appendix, the terrestrial animals exposure parameters stored in the DBMS are

displayed, which include surface area, body weight, inhalation rate, ingestion rate and P cs .

Similar ones are developed for terrestrial plants and aquatic receptors.
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Terrestrial Animals Exposure Parameters Stored in the DBMS
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APPENDIX D

CONTAMINANTS SPECIATION AND DISTRIBUTION

In this appendix, the dominant distribution and speciation of contaminant for the case

study is presented.

Dominant Distribution and Speciation of Contaminant

Cr(VI) Mo Ta Vi

EC s (mg/kg) 7.5 13.84 31.32 -

APG Kd (cm3/g) 1500 90 1200 -
(pH :---:: 5.5)

Esw(μg/L) 5 150 26 7

Speciation HCrO4 MoO4^2- HTaO3 VO2(OH)2-

YPG Kd (cm3/g) 70 10 220 -
(pH 7,- 8.0)

Esw(μg a-) 107 1380 140 39

Speciation CrO4^2- MoO4^2- HTaO3 V03(OH)2-

'V is applied as surrogate for Ta where E sw was converted directly.
*Reference: Baes and Mesmer, 1986; Betrabet et al., 1984
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