

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AN EFFICIENT EXPRESSION OF THE TIM ESTAMP AND PERIOD IN
PACKET- AND CELL-BASED SCHEDULERS

by
Dong Wei

Scheduling algorithms are implemented in hardware in high-speed switches to provide

Quality-of-Service guarantees in both cell-based and packet-based networks. Being able

to guarantee end-to-end delay and fairness, timestamp-based fair queuing algorithms,

which include SCFQ, WFQ, WF2Q and WF2Q+, have received much attention in the

past few years. In timestamp-based fair queuing algorithms, the size of timestamp and

period determines the supportable rates in terms of the range and accuracy. Furthermore,

it also determines the scheduler's memory in terms of off-chip bandwidth and storage

space. An efficient expression can reduce the size of the timestamp and period without

compromising the accuracy. In this thesis, we propose a new expression for the

timestamp and period, which can be implemented in hardware for both high-speed

packet-based and cell-based switches. As compared to fixed-point and floating-point

number expressions, when the size is fixed, the proposed expression has a better

accuracy.

AN EFFICIENT EXPRESSION OF THE TIMESTAMP AND PERIOD IN
PACKET- AND CELL-BASED SCHEDULERS

by
Dong Wei

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 2001

APPROVAL PAGE

AN EFFICIENT EXPRESSION OF THE TIMESTAMP AND PERIOD IN
PACKET-BASED AND CELL-BASED SCHEDULER

Dong Wei

Dr. Nirwan Ansari, Thesis Advisor 	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Jianguo Chen, Thesis Co-Advisor 	 Date
Technical Staff of Bell Labs, Lucent Technologies

Dr. John Carpinelli, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Dong Wei

Degree:	 Master of Science in Electrical Engineering

Date:	 January 2001

Undergraduate and Graduate Education:

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2001

• Bachelor of Engineering in Electrical Engineering,
Tsinghua University, Beijing, PRC, 1991

Major:	 Electrical Engineering

iv

This work is dedicated to

my beloved family

V

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Prof. Nirwan Ansari, who not

only served as my research supervisor, providing valuable resources, insight and

intuition, but also constantly gave me technical support and encouragement. I would also

like to thank Dr. Jianguo Chen for his capital ideas and great support. Special thanks are

given to Prof John Carpinelli for participating in my committee.

In addition, I also wish to thank my wife for her encouragement and assistance over

the years.

vi

TABLE OF CONTENTS

Chapter 	 Page

PREFACE 	 1

1 BACKGROUND: THE EXPRESSIONS OF TIMESTAMP AND SERVICE

INTERVAL IN TIMESTAMP-BASED SCHEDULERS 	 3

1.1 Notation 	 3

1.2 PFQ Algorithms 	 4

1.3 The Ideal Model of the Timestamp-based Scheduler 	 5

1.4 Generalized Grouping Architecture for Cell- and Packet-based Schedulers 	 6

1.4.1 The Grouping Architecture for Cell-based Scheduler 	 6

1.4.2 The Grouping Architecture of Hierarchical Calendar Queue
for Packet-based Scheduler 	 7

1.5 Expression of the Timestamp and Period 	 9

1.5.1 The Period of Session 	 9

1.5.2 Modular Comparison 	 11

1.6 The Fixed-Point Expression 	 13

1.7 The Floating-Point Expression 	 16

2 THE PROPOSED EXPRESSION FOR PACKET SCHEDULERS 	 20

2.1 The Compressed Timestamp Expression 	 20

2.2 The Compressed Period Expression with Fixed-size 	 21

2.3 Range Number 	 23

2.4 Generating and Reconstructing the Expression 	 23

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.4.1 Truncating Operation 	 23

2.4.2 The Size of the Virtual System Time 	 24

2.4.3 Generating the Range Number 	 24

2.4.4 Generating the Compressed Expression and Reconstructing the Complete
Expression of the Period 	 25

2.4.5 Generating the Compressed Expression and Reconstructing the Complete
Expression of the Timestamp 	 25

2.5 Example 	 27

3 THE PROPOSED EXPRESSION FOR CELL-BASED SCHEDULERS 	 31

4 PERFORMANCE ANALYSIS 	 35

5 IMPLEMENTATION ISSUES 	 40

6 CONCLUSION 	 41

APPENDIX PROOF OF THEOREM 1 	 42

REFERENCES 	 43

viii

LIST OF FIGURES

Figure 	 Page

1 The ideal model for the timestamp-based scheduler 	 5

2 The grouping architecture for cell-based schedulers 	 6

3 The grouping architecture of hierarchical calendar queue
for packet-based schedulers 	 7

4 The fixed-point expression 	 13

5 The relative error using the fixed-point expression 	 15

6 The floating-point expression 	 16

7 The binary equivalent of the floating-point expression 	 17

8 The binary equivalent of the floating-point expression
for the timestamp and period 	 17

9 The maximum relative error of the floating-point expression A 	 18

10 The maximum relative error of the floating-point expression B 	 19

11 The relationship of V(t), Si(t), Fi(t) and P i 	 21

12 Ranges of the proposed expression for packet-based scheduler S 	 28

13 The maximum relative error of the service rate with the proposed expression 	 30

14 Ranges of the proposed expression for cell-based scheduler S' 	 32

15 The maximum relative error of the service rate with the proposed expression
for cell-based scheduler S' 	 33

16 The normalized delay bound in the proposed expression
for packet-based scheduler S 	 37

ix

LIST OF FIGURES
(Continued)

Figure 	 Page

17 The normalized delay-jitter bound in the proposed expression
for packet-based scheduler S' 	 37

18 The normalized delay bound in the proposed expression
for cell-based scheduler S' 	 38

19 The normalized delay-jitter bound in the proposed expression
for cell-based scheduler S' 	 39

PREFACE

The current high-speed, service-integrated and packet-switched networks support many

kinds of services at the same time. Packet switches are required to support a large number

of sessions with diverse bandwidth requirements; for example, the supportable rate can

go as low as 4 Kbps and as high as 2.4Gbps (0C48) and 10Gbps (0C192). Packet

switches are also required to support a wide range of packet sizes, from 40 bytes to 64

Kbytes (such as IP). Three important issues should be considered in the design of a

scheduler: 1) end-to-end delay, 2) fairness, and 3) implementation complexity.

Based on the architecture of the schedulers, packet switches are classified into two

types [1]: 1) frame-based, and 2) sorted priority. Recently, sorted priority algorithms, also

known as packet fair queuing (PFQ), have received much attention because they can

approximate the idealized generalized processor-sharing (GPS) algorithm, which has

desirable properties in terms of end-to-end delay and fairness [2].

In a PFQ algorithm, there is a global variable called virtual time, associated with

outgoing sessions being scheduled. The virtual time is updated when a packet receives

service. Each packet has its own timestamp in the system. All packets are sorted by their

timestamps. Timestamp sorted algorithms [1]-[2] include weighted fair queuing (WFQ),

self-clocked fair queuing (SCFQ), and worst-case weighted fair queuing such as WF 2Q

and WF2Q+. The virtual start time and the virtual finish time are the typical timestamps

used in these algorithms Service interval is a function of the packet size and the required

session bandwidth. Given a virtual start time, the service interval is used to calculate the

virtual finish time, and vice versa.

2

The size of the timestamp and service interval determines the supportable rate in

terms of range and accuracy. In this sense, it seems to be tempting to use larger size to

represent them. However, the size of the timestamp and service interval determines the

system memory in terms of bandwidth required to access and space to store. In this

regard, the smaller size the better. To resolve this trade-off, we need to find the optimal

representation of the timestamp and service interval that can meet the required accuracy

in the smallest size. Note that it is very difficult to use normal fixed-point or floating-

point to represent the large range of both the packet size and service rate efficiently. To

simplify the implementation and obtain a satisfactory accuracy, we propose an alternative

expression. By shifting the decimal point to accommodate different ranges of service

rates, we can have a better representation in terms of accuracy and size of timestamp and

service interval. If the size of representation of timestamp and period is the bottleneck of

the granularity problem, the proposed expression can also improve the granularity of the

scheduler. This representation is generically applicable to any timestamp-based

scheduling algorithm.

The rest of the thesis is organized as follows. Chapter 1 presents the background of

the expression of timestamp and period of PFQ. Our proposed expression for packed-

based schedulers is discussed in Chapter 2. The proposed expression is extended for cell-

based (ATM) schedulers in Chapter 3. Chapter 4 presents the performance analysis of

delay and delay jitter induced by the proposed expression. The implementation issue is

discussed in Chapter 5.

CHAPTER 1

BACKGROUND: THE EXPRESSIONS OF TIMESTAMP AND SERVICE
INTERVAL IN TIMESTAMP-BASED SCHEDULERS

PFQ algorithms are used to approximate the idealized generalized processor-sharing

(GPS) algorithm. All PFQ algorithms have similar sorted-queue architecture. They differ

in two aspects [2]: virtual time function and packet-selection policy.

1.1 Notation

— the number of bits

the idealized period with infinite bit expression

actual period representation with finite bit expression

- the idealized service rate with infinite bit expression

actual service rate with finite bit expression

— maximum supportable service rate

— minimum supportable service rate

required service rate for session i

— link capacity of the scheduling system

) — the relative error of a

timestamp

- integer part of a

— fractional part of a

— mantissa part of a

— exponent part of a

3

4

L — the packet size

N — total number of bits of timestamp and period

it — total number of sessions of the scheduler

1.2 PFQ Algorithms

PFQ algorithms have a global variable — system virtual time V(.), which is defined

differently for different PFQ algorithms. They also maintain a virtual start time and a

virtual finish time for each session. When the k th packet of session i arrives, the virtual

start time S i(.) and virtual finish time F i(.) of this packet are given as follows:

The worst-case fair index (WFI) [3] was introduced to characterize the fairness

performance of PFQ algorithms. It was shown that PFQ algorithms with two tags (the

virtual start time and the virtual finish time) can achieve better fairness performance than

those with only a single tag. From Equations (1) and (2), the virtual finish time can be

derived from the virtual start time and the packet service interval.

1.3 The Ideal lVlodel of the Timestamp-based Scheduler

The ideal model of the tilnestmnp-based scheduler is shown in Figure 1.

5

The switch creates a priority queue (FIFO) for each session. The tinlestamp of each

packet is updated according to Equation (1) and (2). Before the packet enters the

scheduler, its tilnestanlp is the viliual start tinle. Only when the virtual systeln time is

larger than the virtual start tinle, the packet is allowed to enter the scheduler. When it

enters the scheduler, the conesponding virtual finish time is assigned as the timestmnp.

The scheduler services the packet with the snlallest virtual finish tilne.

Figure 1 The ideal model for the timestamp-based scheduler

However, in this architecture, the algorithm complexity Increases with the total

nunlber of sessioll, i.e., O(n). In order to reduce the cOll1plexity, two grouping ll10dels are

developed to replace the ideal model.

6

1.4 Generalized Grouping Architecture for Cell- and Packet-based Schedulers

The grouping architecture is employed to reduce the overall cOlnplexity of priority-

queue nlanagenlent fronl the number of sessions to the number of groups. However, the

downside is that this architecture has a granularity problem, which means that the

scheduler can support only fixed service rate or fixed service interval service.

1.4.1 The Grouping Architecture for Cell-based Scheduler

Group 0

Group 1
• • • • • • • • • • •

Group N-l

Figure 2 The grouping architecture for cell-based schedulers

The nl0st difficult thing of ilnplementing PFQ algorithnls is that the cOlnplexity of

nlaintaining the priority queue and conlputing the virtual tinle function grows as a

function of the nunlber of sessions sharing the link. To reduce the complexity of fronl the

7

number of sessions, the following restriction is introduced: at any time, only a fixed

number of service rates are supported by the scheduler. All sessions with the same

service rate are stored in one group. In each group, the session with the smallest virtual

start time is placed in the scheduler.

1.4.2 The Grouping Architecture of Hierarchical Calendar Queue for Packet-based
Scheduler

For a packet-based scheduler, a hierarchical calendar queue is introduced. First, when

a packet comes, it is located in a group according to its service interval. Then it is put in a

priority queue according to its service rate. At any time, only a fixed number of service

intervals and service rates are supported by the scheduler.

Figure 3 The grouping architecture of hierarchical calendar queue for packet-based schedulers

8

Note that by employing the grouping architecture, we reduce the algorithm

complexity from the number of sessions 000 to the number of groups O(/), where the

number of groups is fixed for each scheduler at any time. However, the compromise is

that the supportable service intervals and service rates are constrained.

9

1.5 Expression of the Timestamp and Period

1.5.1 The Period of Session

In a packet scheduling system, owing to the size limit of the outgoing buffer, each packet

is split into fixed-size fragments, and the size of each fragment normally equals to the

minimum supportable packet size Lmin The concept of time slot is introduced to

normalize the time interval. One time slot r equals to the time interval required to

transmit a fragment at link rate rLC:

Usually, the maximum supportable service rate is the same as the link rate of the

scheduling system:

The system virtual time V(t) is defined differently from one scheduling algorithm to

another. V(t) is expressed in the unit of time slot; for example, V(t) is nothing but a

counter in the virtual clock scheduling scheme, and it is incremented by one when a

single fragment is sent out; in WFQ scheme, V(t) is a piecewise linear function of the real

time, and its slope of each time interval depends on the number of sessions receiving

service and their service rates [1]. Modular comparison is used to select 1) packets

eligible to enter the scheduler; 2) fragments which should get service. The period of

session i is defined as follows:

10

denote the service interval for the kth packet of session

normalized value of (D i ' . That is,

where L i k is the size of the kth packet of session i.

The service interval of one packet is the time in seconds required to transmit this

packet. The period of a session is the ratio of the system maximum supportable rate to the

bandwidth requirement of this session, and it is a unitless parameter. A session with P=3

means that the session needs to receive service of one time slot in every three time slots.

The service interval and period are related as follows:

The normalized service interval is used in the system, which is:

The period is stored in a processing table for each session and the timestamp is

assigned for each packet. Using the virtual start time as the timestamp, the normalized

service interval can be calculated from Equation (3), and thus we can derive the virtual

finish time from Equation (2); using the virtual finish time as the timestamp, the virtual

start time can be similarly computed. Cells are allowed to enter the sorted-queue of the

scheduler by comparing the system virtual time and their virtual start time. Cells are

11

scheduled for transmission based on the virtual finish time (the smallest virtual finish

time first):

1.5.2 Modular Comparison

By employing modular comparison, two binary numbers represented by n+1 bits can

be compared without ambiguity if the difference between them is less than 2 n : Using the

notation X[i:j] to represent the binary number extracted from the through t bits of X,

with the convention that the LSB bit is the O bit. For example, given X=1011101,

X[5:2]=0111: A modular arithmetic comparison X>Y can be computed by the following

pseudo code:

Boolean Modular_Comparison (X, Y)

1. if X[n-1:0] > Y[n-1:0]

2. then result = TRUE

3. else result = FALSE

4. if X[n]=Y[n]

5. then return result

6. else return NOT result

X[n-1:0] represents the binary number, and X[n] is used to discern wraparound ambiguity

[2][5]. The following condition must be satisfied:

For example, when X=110 and Y=001, which represent 6 and 1, respectively: Since the

above condition must be met, Y=X+011 rather than. X=Y+101; in other words, Y>X: Thus,

12

the result of Modular Comparison(X, Y) is FALSE, implying that X is not greater than Y

because of wraparound:

With this property, Reference [4] suggests that the size of timestamps has to be at

least one bit larger than the largest normalized service interval 	 .

Therefore, the number of bits to represent the integer

part of the period must satisfy the following inequality:

In a cell-based scheduling system, it is tempting to use an integer representation of

the timestamp, so that the system virtual time is simply increased by one each time a cell

is transmitted. However, this would adversely affect the provisioning of those sessions

with high bandwidth requirement. In a scheduling system with integer representation of

virtual time, the period of 1,2,3 ::: represents service rate of 1, 1/2, and 1/3::: times the

link capacity: As a result, session rates between 1 and 1/2, 1/2 and 1/3 of the link capacity

cannot be represented: Therefore, we need more bits after the decimal point to represent

the timestamp and period of high-rate sessions.

Theorem 1. The approximation of the relative error of the period equals the relative error

of the service rate.

13

The proof may be found in Appendix A.

The timestamp and period are stored and used together for each packet in the system.

The accuracy of both of them determines the accuracy of the service rate. Usually, the

number of bits of the timestamp is determined by a 1771, , and the accuracy of the period is

determined by both of the number of bits of the period and the accuracy of the timestamp.

1.6 The Fixed-Point Expression

Using the fixed-point expression, the minimal number of bits to represent (from

Inequalities (4) and (5)) the timestamp and period are:

Figure 4 The fixed-point expression

14

Figure 4 illustrates the fixed-point expression of an example: The accuracy of the

period is determined by both of the number of bits used to represent the period and the

accuracy of the timestamp. p has more fractional bits than the timestamp, while pi has

less fractional bits than the timestamp. In this example, the relative errors of p and Pi

are:

Since scheduling involves arithmetic operations on both timestamp and period, they

should maintain the same accuracy. That is, they should have the same number of

fractional bits.

in which case we will not waste any bit in the expression: Thus, the generalized accuracy

of the fixed-point expression is:

The total number of bits to represent the timestamp and period is:

With the fixed-point expression, the representation of P includes the integer part and

fractional part: The value of P can be obtained as follows:

15

Consider a packet scheduling system S which is required to support service rates from

4 Kbits/s to 622 Mbits/s, and the packet size ranged from 40 bytes to 64 Kbytes: Then,

respectively (i.e., N = 47, 51, 55, 59 and 63), the

relative error of the service rate is shown in Figure 5.

The Relative Error of the Service Rate with Fixed-Point Expression

Figure 5 The relative error using the fixed-point expression

1.7 The Floating-Point Expression

Similarly, in order to achieve unambiguous modular comparison, the following

inequality must be satisfied:

Let δbe the number of additional bits:

To maintain the same degree of accuracy of the timestamp,

Thus,

The exponent part of the timestamp and period of an example is illustrated in Figure 6,

where

16

Figure 6 The floating-point expression

Including the hidden '1' (default of the IEEE expression), the binary equivalent of the

expression is shown in Figure 7:

Figure 7 The binary equivalent of the floating-point expression

With preference to the accuracy of the timestamp, Pis 2-bit short in acquiring the same

accuracy of the timestamp, while p i has two extra redundant bits:

Again, the total number of bits to represent the timestamp and period is

17

Figure 8 The binary equivalent of the floating-point expression for the timestamp and period

Figure 8 illustrates how to fix the position of the decimal point in the binary equivalent

of the timestamp and period. The size of the binary equivalent of the timestamp and

period are Z(MT)+1 and Z(MT)+1, respectively. The values of ET and EFL determine how

many bits the decimal point : should shift from the position just after the most significant

bit: Let λ(P)=Z(Mp)-Ep and λ(T)=Z(MT)-ET : λ(P) and λ(T) are the number of bits after

the decimal point in the period and timestamp, respectively: Thus, the relative error can

be expressed as:

Intuitively, with A,(1)< /1(P), if the timestamp has more bits after the decimal point, the

accuracy of the period is higher: The value of the timestamp ranges from 0 to on., ,

implying that //(T) ranges from g to Z(MT): The worst case, corresponding to 4T) =

yields the following maximum relative error:

Consider the same packet scheduling system S as before:

The Relative Error of Service Rate with Floating-Point Expression

Figure 9 The maximum relative error of the floating-point expression A

19

Using Equations (15) and (16), we have

relative error of the service rate using the floating-point expression is shown in Figure 9.

Note that in Figure 9, when Log2(Period) 5, the maximum relative error is a

horizontal line, implying that the relative error is independent with the period, which is

desirable in a scheduler: Now we reallocate the number of bits, with N=39, 6=0; N=43,

the maximum relative error of the service

rate is shown in. Figure 10:

Figure 10 The maximum relative error of the floating-point expression B

CHAPTER 2

THE PROPOSED EXPRESSION FOR PACKET SCHEDULERS

As shown in Figure 10, using the floating-point expression, the maximum relative error is

consistent in the whole range of period, i.e:, it is independent of the service rate: This is a

desirable property for a scheduling system. However, the total number to represent the

period and timestamp N and the implementation complexity of floating-point operation

are still not good enough. By employing the modular comparison, we propose a new

expression by locating the decimal point according to the range number C of a session:

Each range number C determines the decimal point, and thus the range of the period. Let

Ci_denote the category number for session i:

2.1 The Compressed Timestamp Expression

For session i, the timestamp-based algorithms have the globally bounded timestamp

(GBT) [2]:

For example, consider session i which requires period P1=12:5. If	 = 2L„ t;,,, then, Oil=

2P,-25. Assume at the moment of V(t)= 200:75, this packet is allowed to enter the

queue. Then Si(t)=200.75 and Fi(t)=225.75:

Note that only those bits marked 'x' (bit 4 to bit —1) in Si(t) and Fi(t) are different

from those in. V(t). The number of 'x' depends on the number of significant bits of Pi and

packet size L ik as well: Intuitively, we only need to save those bits marked 'x' as the

20

21

timestamp, and compare this timestamp with those corresponding bits of the virtual

system time.

Figure 11 The relationship of V(t), Si(t), Fi(t) and Pi

The compressed timestamp expression is defined as follows:

If the period of session i is Pi and it is expressed with bits from bit m to n, the

timestamp of packet k of this session can be expressed with bits from bit m+1+1 to .11+1,

One extra bit in the timestamp is use to discern the wraparound

ambiguity.

By using the compressed timestamp expression, the size of the timestamp can be

reduced dramatically, especially for those sessions requiring higher service rates. This is

shown in the following example.

2.2 The Compressed Period Expression with Fixed-size

From Figure 10 in Section 1.5, we see that a consistent maximum relative error of the

service rate could be achieved. If all bits of the period can determine the accuracy,

implying that the timestamp maintains the same degree of the accuracy, then the

maximum relative error of this expression is

22

Let s * (r) denote the acceptable relative error of the service rate. Select the number of

bits of the period Z(P) such that the maximum relative error is less than c.* (r) , then the

relationship between Z(P) and c (r) is as follows:

To reduce the relative error of the expression, we generate P by rounding off P .

In a scheduler, period P must be larger than I. Therefore, by using the hidden '1',

which is used in IEEE floating-point expression, one more bit can be saved. P' denotes

the compressed period expression. Then Equation (23) can be rewritten as:

For example, if c * (r) =1%, 5 bits are needed to represent the period. The relative

error with 6 bits (including the hidden '1') expression < 2 -7 = 0.78%. Note that in order to

discern the wraparound ambiguity, Z(T) should be one bit larger than Z(P). To take the

hidden '1' into consideration, the number of bits to represent the timestamp can also be

calculated as

23

2.3 Range Number

Note that if the timestamp and the period maintain the same degree of accuracy, thus

the maximum relative error can be consistent over the whole range of service rates. In

order to generate the compressed timestamp, a range number is also needed to locate the

decimal point of the timestamp and period. For example, when C i=4, then 2 4 < .

Thus the maximum range number can be computed as

Thus, the number of bits to represent the range number

P, can be obtained from P; ' by right shifting the decimal point Ci bits. The

timestamp can be similarly obtained with its compressed form and packet size. With

these properties, 1) we calculate the period for each session and save it in the compressed

form, 2) calculate the timestamp and save it in the compressed expression, 3) reconstruct

the timestamp to the complete form from the compressed expression, and 4) the scheduler

sorts packets by comparing their complete timestamps.

2.4 Generating and Reconstructing the Expression

2.4.1 Truncating Operation

The truncating operation is used to generate the proposed expression of the

timestamp and period. The decimal point is not saved.

1. Integer A= Truncating (W, x+y, x)

For example, W = 100111000.001101

A= Truncating (W, 6, 1) = (011101),

24

B= Truncating (W, 4, -2) = (1100000)2

2. Integer A= Truncating (W, x)

For example, W = 1 0 0 1 1 1 0 0 0 .0 0 1 1 01

A= Truncating (W, 6) = (100111)2

B= Truncating (W, 12) = (100111000001)2

2.4.2 The Size of the Virtual System Time

In order to discern the wraparound ambiguity, Inequality (4) still must hold. Let

To maintain the same degree of accuracy as the when the service rate is high, we

need to add Z(P)-1 bits after the decimal point, i.e.,

2.4.3 Generating the Range Number

Ci determines the position of the decimal point. Define Ci as the number of bits

between the decimal point and ' I '.

2.4.4 Generating the Compressed Expression and Reconstructing the Complete

Expression of the Period

The compressed period expression is saved as an integer and the range number

determines the position of the decimal point, just like the mantissa part and exponent part

in IEEE floating-point expression.

For example, let Z(P')= 5 and session i p, =1101.10 , then C, = 3 and P,'=10110;

for session j, C 1 = 9 and P,'=01101, then P, =1011010000.000.

2.4.5 Generating the Compressed Expression and Reconstructing the Complete

Expression of the Timestamp

Without loss of generality, define the virtual finish time as the timestamp and let

25

Thus, the compressed virtual finish time can be calculated as

The compressed timestamp is assigned to each packet and stored in the system.

When packets are selected to enter the scheduler, we need to compare the timestamp with

26

the corresponding part of the virtual system time. In order to avoid some problems that

could be caused by truncating the low-order bits, we add '1 ' to the compressed

timestamp.

When packets are in the scheduler, the scheduler compares their timestamp, and the

packet with the smallest timestamp will receive service. In order to compare the

timestamp among packets with different service rate, we need to reconstruct the

timestamp — from the compressed one to the complete form. We fill '1' in the low-order

bits and copy high-order bits from the virtual system.

We shall explain this method in detail in the following example.

Note:

1. To select an eligible packet to enter the scheduler, its timestamp needs to

be compared with the virtual system time. By employing modular

comparison, we only need to compare the compressed timestamp with the

corresponding parts in the virtual system time.

2. To schedule the packet with the smallest timestamp, all timestamps of

those packets in the scheduler need to be compared. The compressed

timestamps need to be reconstructed before this comparison.

27

2.5 Example

For example, suppose that the service rate of the packet-based scheduling system S

ranges from 4kbps to 622Mbps and the packet size is in the range of 40 bytes to 64

Kbytes. 1% relative error of service rate is considered acceptable.

With Equation (23) and (25), we can get Z(P') = 5 and Z(T') = 7.

= 34.

The form of WO is as follows:

The number of bits to represent range number C can be calculated as

The total number of bits to represent period and timestamp is

The relationship between the range number and corresponding range of the period and

the maximum relative error are shown in Figure 12.

For example, session i requires the service rate of 100Mbps. Thus the period

With Equation (30) and (31), we can have

28

Figure 12 Ranges of the proposed expression for packet-based scheduler S

Suppose the kth packet of session i, whose size is 1 kbytes, enters the scheduler

The ideal normalized service

interval of this packet is

Thus the complete virtual finish time of this packet is

With 5-bit period and 7-bit timestamp compressed expression

29

Before its can be compared with other timestamps, it has to be reconstructed to the

complete form.

After positioning the decimal point with C i, the complete timestamp is

Compared with the ideal timestamp 1000000000 1000011011 111110110 .00011 , the

reconstructed is always a bit larger, implying an extra latency induced by the compressed

expression. To do the modular comparison with the system virtual, we only need to

compare the marked 7 bits with the corresponding bits in the system virtual time.

relative error of the service rate with the compressed expression is shown in Figure 13.

Figure 13 The maximum relative error of the service rate with the proposed expression

30

CHAPTER 3

THE PROPOSED EXPRESSION FOR CELL-BASED SCHEDULERS

The cell-based scheduler can be considered as a special case of the packet-based

Equations derived for the fixed-point, floating-point

and our proposed shifting fixed-point representations still hold. Note that in this case

Therefore, Equation (28) can be rewritten as

Equation (23)-(27) and (29)-(35) still hold, and ,8 = C, .

Suppose that the service rate of the cell-based scheduling system S' ranges from

4kbps to 622Mbps and the cell size is 40 bytes. Again, 1% relative error of service rate is

considered acceptable.

With Equation (23) and (25), we can get Z(P') = 5 and Z(T') = 7.

To maintain the same degree of the accuracy as the period when P is small, say

P=(1.10101)2, 5 bits have to be added after the decimal point. Thus Z (V(t)) =24. The

form of V(t) is as follows:

The number of bits to represent range number C can be calculated as

31

The total number of bits to represent period and timestamp is

The relationship between the range number and the corresponding range of the

period and maximum relative error are shown in Figure 14.

32

Figure 14 Ranges of the proposed expression for cell-based scheduler S'

For example, session i requires the service rate of 100Mbps. Thus the period

With Equation (29), the range number Ci=(00010)2—(2)10.

With Equation (30) and (31), we can have

packet of session i, enters the scheduler when V(t)=

Thus the complete virtual finish time of this packet is

With 5-bit period and 7-bit timestamp compressed expression

33

With Equation (34 the complete form of the timestamn can be reconstructed

Figure 15 The maximum relative error of the service rate with the proposed expression for
cell-based scheduler S'

34

After positioning the decimal point with C„ the complete timestamp is

By modular comparison, the reconstructed 0000.110 is always a bit larger than the

corresponding 7 bits in the ideal timestamp 1000011011 111110110 .00011 , implying an

extra latency induced by the compressed expression.

relative error of the service rate in compressed expression is shown in Figure 15.

CHAPTER 4

PERFORMANCE ANALYSIS

The proposed expression of the timestamp and period is explained in. Chapter 2 and 3. It

is shown that two kinds of latency could be caused by the proposed expression:

1) When a packet gets virtual system time as a timestamp, the compressed

timestamp is added by '1' before it is saved. This will delay its entrance

into the scheduler. W(1) denotes the maximum value of this kind of

latency for packet k of session i. The normalized value is defined as

2) When a packet enters the scheduler, in order to compare its timestamp

with other packets, the compressed timestamp needs to be reconstructed

by filling '1' in the low-order bits. This could cause packet transmission

delay. Dik(2) denotes the maximum value of this kind of delay.

Similarly, the normalized value is defined as

Thus, the overall latency caused by the proposed expression is

and

35

36

For in-bit expression of the period, the number of significant bits of the normalized

Therefore, it can be

computed as

Define delay-jitter as the difference between the maximum delay and the minimum

Thus, from Equation (41),

we have

Note that the delay and delay-jitter over the service interval are constant, implying

that the delay and delay-jitter are proportional to the service interval. It seems reasonable.

For the example in section 2.5, Lik =1 kbytes and required service rate is 100Mbps,

Thus, the service interval (D i ' is 8 ms. The maximum delay and delay-jitter

can be calculated by Equation (43)

37

delay and delay-jitter in the compressed expression are shown in Figure 16 and 17

respectively.

Figure 16 The normalized delay bound in the proposed expression for packet-based
scheduler S

Figure 17 The normalized delay-jitter bound in the proposed expression for packet-based
scheduler S'

38

For a cell-based scheduler, since each packet has the same size, then

Equation (37)-(42) still hold, Equation (43) can be rewritten as

For the example in Chapter 3, session i requires service rate 100Mbps. Then Pi=

Thus the maximum delay and delay-jitter can be calculated by

Equation (44)

normalized delay and delay-jitter in the compressed expression are shown in Figure 18

and 19 respectively.

Figure 18 The normalized delay bound in the proposed expression for cell-based scheduler S'

39

Figure 19 The normalized delay-jitter bound in the proposed expression for cell-based scheduler S'

CHAPTER 5

IMPLEMENTATION ISSUES

We have proved that the proposed expression uses fewer bits than the fixed-point and

floating-point expression to represent the timestamp and period with the same accuracy

of the service rate, thus saves memory in terms of off-chip bandwidth and storage space.

In timestamp-based schedulers, there are always three operations: 1) addition; 2)

modular comparison; and 3) multiplication and division. We introduce two more

operation in the proposed method: 1) generating the compressed timestamp; and 2)

reconstructing the timestamp. With the fixed-point representation, it is very easy to

perform operations such as addition and comparison. With the floating-point expression,

we need to first shift mantissa of both timestamp and period, and then perform addition or

comparison. The computational complexity of the proposed expression lies between

them. The proposed expression uses two additional operations to adjust the decimal point

by category number as compared to the fixed-point expression. This can be readily

realized by hardware with some extra logic operations.

40

CHAPTER 6

CONCLUSION

In this thesis, we have developed a new expression, which can be implemented in

hardware for high-speed switches, to represent timestamp and period in packet-based and

cell-based scheduling system. It is applicable to any timestamp-based scheduler.

In comparison with the normal fixed-point and floating-point representation, the

proposed expression can achieve better performance in terms of size and accuracy. If the

number of bits for all expressions is kept the same, the proposed representation has a

smaller relative error than those of the other two. In other words, if the relative error is

kept the same for all expressions, our representation uses fewer bits than others, thus

saving system memory and indirectly reducing latency. We have also derived the formula

to calculate the minimum number of bits to represent the timestamp and period that meets

the system requirement (i.e. P. r)—max (,, —max, Lmin, rmax and rmin). Furthermore, if the size of

representation of timestamp and period is the bottleneck of the granularity problem, the

proposed expression can also improve the granularity of the scheduler.

41

APPENDIX

PROOF OF THEOREM 1

Proof:

The relative error of the service rate can be expressed in terms of the period

representation with finite bits as follows:

re

ideal period of session i with infinite bit expression

- actual period representation of session i with finite bit expression

ideal service rate of session i with infinite bit expression

service rate of session i with finite bit expression

— maximum supportable service rate of the scheduling system

Define ε(Pi) as the approximation of relative error of Pi

P,
4P,) =

Note that the relative error of the service rate is independent of the packet size.

Therefore, the following equation always holds for both packet-based and cell-based

scheduling system.

42

REFERENCES

[1] A. Varma and D. Stiliadis, "Hardware Implementation of Fair Queuing Algorithms
for Asynchronous Transfer Mode Networks" IEEE Communications Magazine,
December 1997, pp. 54-68.

[2] D.C. Stephens, J.C.R. Bennett and Hui Zhang, "Implementing Scheduling Algorithms
in. High-Speed Networks" IEEE Journal on Selected Areas in Communications,
Vol.17, No.6, June 1999, pp. 1145-1158.

[3] J.C.R. Bennett and Hui Zhang,"WF 2Q: Worst-case fair weighted queuing", Proc.
IEEE INFOCOM'96, San Francisco, CA, pp. 120-128.

[4] J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, "Hardware-efficient fair queuing
architecture for high-speed networks", IEEE INFOCOM'96, San Francisco, CA, pp.
638-646.

[5] G.R. Wright and W.R. Stevens, TCP/IP Illustrated Volume 2: The Implementation,
Reading, MA: Addison-Wesley, 1995, pp. 807-812.

43

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Preface
	Chapter 1: Background: The Expression of Timestamp and Service Interval in Timestamp-Based Schedulers
	Chapter 2: The Proposed Expression for Packet Schedulers
	Chapter 3: The Proposed Expression for Cell-Based Schedulers
	Chapter 4: Performance Analysis
	Chapter 5: Implementation Issues
	Chapter 6: Conclusion
	Appendix: Proof of Theorem 1
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

