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ABSTRACT

MEASUREMENT OF MICROCARRIER WEIGHTED FLOC USING THE
ENVIRONMENTAL ELECTRON MICROSCOPE

by
Viriya Vithayaveroj

Utilizing the concept of coagulation in conjunction with the sediment enhancement by

microcarrier, the microcarrier process has been demonstrated in a laboratory investigation

as an effective and economic operation in removing colloidal particles in an aquatic

system. The microcarrier, an inert aluminum silicate particulate (Ottawa Sand) of 53 to

75 micrometers in diameter was used in this study. The interaction between the flocs and

the microcarriers plays an important role in the mixing process. The principal objective of

this study is to examine the structural interaction between the flocs and the microcarrier.

The study was designed into two stages, the prescreening stage and the

observation under the ESEM stage. In the first stage, a series of jar test using microcarrier

along with electrolyte and polyelectrolyte were carried out in which the turbidity was the

control parameter. On the second stage, the Environmental Scanning Electron

Microscope (ESEM) was used to investigate the structural relationship between the

microcarrier and flocs. The visual structural information was achieved under this

microscope technique. A 99.6% of turbidity removal could be achieved by the

microcarrier process.
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CHAPTER 1

INTRODUCTION

1.1 Background

Colloidal particles are ubiquitous in an aquatic system. Due to this large specific area,

colloidal particles carry a large amount of heavy metal and toxic organics. The removal

of toxic colloidal particles is of critical importance in any environmental remediation

work. The microcarrier process, a recent development which has been systematically

developed by Ding et al. (1999) at NJIT through a grant funded by the USEPA. This

process, in essence, applied the concept of flocculation with the sedimentation

enhancement by microcarrier. From the operational point of view, the structural

interaction between the flocs and the microcarrier plays an important role in controlling

the mixing process.

Flocculation is one of the most common physicochemical processes used in

water and wastewater treatment in order to remove impurities in particulate form. The

removal efficiency depends upon particle size and can be enhanced by aggregation of

fine particles. The various terms of aggregation process known as agglomeration,

agglutination, coagulation, or flocculation are used in different ways depending upon the

area of application and the aggregation mechanism. Because of the lack of agreement on

the differentiation between coagulation and flocculation, flocculation would be used here

to cover all aggregation process.

Flocculation can be considered as a two-step process: (a) the destabilization of

colloidal particles occurred by means of introducing appropriate chemical coagulants in

1
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rapid mixing stage, and (b) the slow mixing stage in which the destabilized particles must

be transported, collided, and formed into large stable clusters. These clusters, which form

as the products of the process, are called flocs or aggregates. Thus, the structure of these

flocs is of significant importance on the efficiency of the process. A review of the

currently available literature indicates that very little work has been performed or

reported. The objective of this thesis is to describe size and structure of microcarrier and

the flocs obtained from the weighted flocculation process by using the Environmental

Scanning Electron Microscope (ESEM). The following paragraphs present a literature

review of the analytical aspect of flocculation mechanisms.

1.2 Colloidal Interactions

When two colloidal particles approach each other, several types of interactions can occur

and they may have major effects on the flocculation process. Colloid interactions can

influence flocculation by collision efficiency and the strength of aggregates. The two

important kinds of colloidal interaction are van der Waals attraction and electrical

repulsion that form the basis of the DLVO theory of colloid stability, proposed

independently by Deryagin and Landau and Verwey and Overbeek. The stability of

colloids depends on the attractive force and repulsive force between particles. If the

attractive force is greater than the repulsive force, the particles will stick together and

aggregation does occur. However, the other types of interaction such as hydration effects,

hydrophobic interaction, steric interaction, polymer bridging, etc. are also important in

many cases.
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1.2.1 Van Der Waals Interaction

Van der Waals forces are the universal attractive forces between atoms and molecules

and also between macroscopic objects. These forces play an important role in colloidal

interaction. There are two approaches to calculate van der Waals force between

macroscopic bodies: the Hamaker approach and the Lifshitz approach.

The Hamaker approach is obtained by assumping the pairwise additivity of over

all interaction forces between two particles. Spontaneous electric and magnetic

polarizations are considered to produce these interactions and give a fluctuating

electromagnetic field within the media and in the gap between them. Lifshitz developed

an expression for the interaction between two semi-infinite media separated by a plane-

parallel gap [1]. According to the limitation of detailed information and the dielectric

responses of the interacting media, the Hamaker approach is still widely used.

For two spherical particles, radii al and a2, separated by a distance d, the

interaction energy is:

Where	 VA is the attraction energy between the two spheres.

Al2 is the Hamaker constant for interacting media.

In case of identical spheres of radius al , the interaction energy is:

Where	 A11 is the Hamaker constant for medium 1.
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In aqueous dispersions, Hamaker constants are in the range 0.3 to 10x10 -2° J. The

values of high-density materials are approximately the upper end of this range, while

low-density materials, especially biological, have quite low values. The Hamaker

expressions are employed only when the particles are at very close approach to each

other. There is an inaccuracy when the separation distance is greater than 10% of the

particle radius. For particle sizes larger than 1 pm, a correction for retardation is required.

The retardation effect results from the electromagnetic character of van der Waals

interaction. This effect is included in the Lifshitz approach and can be introduced into the

Hamaker expressions by a simple empirical factor such as 1/(1+12d/λ) for spherical

particles [2]. The retarded attraction between two identical spheres is given by

1.2.2 Electrical Interaction

In aqueous systems, all particles carry a surface charge that can be increased by various

reasons, such as ionization of surface groups and specific adsorption of ions. When the

particle surface is charged in an electrolyte solution, some of oppositely charged ions,

known as counter ions, become attached to the surface. They are held together by strong

electrostatic attraction and van der Waals forces that are sufficient to overwhelm thermal

agitation. This is known as the Stern layer. This fixed layer surrounded with the

remaining counter ions, which are distributed more broadly in a diffuse layer. The surface

charge on a particle and the associated counter ion charge together constitute the
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electrical double layer. A widely accepted double layer model is by virtue of Stern and

modified later by Graham [3].

Figure 1.1 Schematic Illustration of a Negatively Charged Colloid Particle with Its
Associated Electrical Double Layer [28].

Figure 1.2 shows the effect of electrolyte concentration on the distribution of

potential in the double layer for the case of (a) low, (b) high concentration of indifferent

electrolyte and (c) a salt with a specifically adsorbed counterions giving charge reversal.

The interaction between charged particles is conducted mainly by the overlap of diffuse

layers. The two major effects on electrical interaction between particles are the

magnitude of the effective surface potential and the extent of the diffuse layer; both of 

them depend on the ionic strength.



6

Figure 1.2 The Stern Model of the Electrical Double Layer, Showing the Variation in
Potential with Distance from a Plane Charged Interface [3].

The extent of the diffuse layer depends upon the ionic strength. The following

equation is obtained for fairly low potentials in which the linear form of the Poisson-

Boltzmann approach is appropriate [4].

Where	 y is the potential at a distance x from the Stern plane.

lc is the Debye-Huckel parameter, which is of great importance in colloid

stability.
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For aqueous solutions at 25°C, lc is given by

Where	 ci is the molar concentration.

zi is the valence of ion i. 	

The sum is taken over all ions present in solution.

When two identical charged particles in an electrolyte approach each other, their diffuse

layers overlap and repulsion does occur between them. This repulsive energy can be

computed in two methods. First method is by solving the Poisson-Boltzmann equation

but this method usually result in an unanalyzable solution. The second method is by

constructing the formula from known expressions for each of the surfaces involved.

For identical spheres, the Linear Superposition Approximation LSA result for the

interaction energy is [51:

Where	 6 is the permittivity of the charge.

e is the elementary charge.

z is the valence of the ions.

y is the dimensionless function of the surface function (zeta potential).
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Increasing ionic strength has two effects on electrical double layer interaction. As the

Debye-Huckel parameter (K) increases, the range of repulsion decreases. In effect,

particles may approach closer before they repel each other. The second effect is the

reduction of the repulsion at a given separation distance. This is resulted from the

decrease in the zeta potential of particles from the added salt. Generally, highly charged

counter ions have the greatest effect [6].

1.2.3 Hydration Effects

For various reasons, the nature of water adjacent to a particle surface can be very

different from the ordinary, bulk water. As most particles have surface charge, therefore

ionic groups, some hydration of these groups would be calculated. At closer approach of

two hydrated surface particles, an extra repulsive interaction, hydration force, becomes

important. This interaction will prevent the contact between those particles regarding to

the tendency to be dehydrated.

In the measurements of the force between mica sheets in various electrolyte

solutions [7], the repulsion would follow the expected exponential form for double layer

interaction until the salt concentration is above 1 mM; an extra short-range force

manifests. This force increases with the degree of hydration of the adsorbed hydrated

cations (Li+ = Na+ > K+ > Cs+) and decreases exponentially over the range 1.5 to 4 11M,

with a decay length of the order of 1 nm.

The range of hydration forces is greater than the range of double layer repulsion.

They might have significance on colloid stability, especially at high ionic strength.



9

1.2.4 Hydrophobic Interaction

In aqueous system, there are two broad kinds of material: hydrophilic and hydrophobic

colloids. Hydrophilic colloids are water-soluble materials, which are thermodynamically

stable. In the presence of chemical changes or changes in temperature, they can

agglomerate together. In contrast to hydrophilic colloids, the solubility of hydrophobic

colloids is low. The particles have kinetic stability due to repulsive force between

particles, although they are unstable thermodynamically. As a result, the formation of

permanent aggregates is hindered. However, hydrophobic particles may have a

hydrophilic surface by moistening with water [8].

Hydrophobic interaction arises from hydrogen bonding between the molecules,

which is responsible for a substantial degree of association between water molecules and

a significant structuring effect. A hydrophobic surface has no affinity for water because

of the lack of hydrogen-bonding sites. When this surface exists, the structuring tendency

of water will limit by preventing the hydrogen bond formation in certain directions. As a

result, water would escape from such surfaces. In aqueous solutions, hydrophobic

portions on the molecules will attach to each other to decrease interactions between water

and the hydrophobic regions. This is known as hydrophobic bonding. It was found that

this attraction was much stronger and broadly range than the van der Waals force [9-10].

1.2.5 Steric Interaction

Steric effects have significance in systems containing uncharged particles with adsorbed

macromolecules [11]. Large amount of absorbed polymer can give greatly enhanced

stability by a steric stabilization. In the case of small adsorbed amounts, a bridging
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mechanism takes place to promote flocculation. The most effective stabilizers are

polymers that have some affinity for the surface but can adsorb with some segments on

polymer chains and with loops and tails extending into solution. When particles

approach close enough, the adsorbed layers come into contact. Some overlap of the

hydrophilic chains is involved. As these chains are hydrated, the overlap causes some

dehydration and, therefore, the free energy and repulsion between particles increase. The

adsorbed layer can give hydrophobic particles some of the important properties of

hydrophilic colloids [12].

Figure 1.3 Steric Interaction of Particles with Adsorbed Polymer Chains [15].

The thickness of the adsorbed layer also plays an important role in determining

the stabilizing effect. The natural organic materials [13], such as humic substances, are

always present in the adsorbed layers of most particles in the aquatic system. These
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materials can have an important effect on their colloidal behavior. Humic substances are

known to enhance the stability of inorganic colloids [14] and can cause greatly increased

flocculent dosages.

1.2.6 Polymer Bridging

Several substances in nature, such as starch, cellulose, some types of sugar, and some

types of protein, including the organic polymer that is synthesized, can be used as

coagulants in a colloid removal process. These organic substances have quite high

molecular weights. The organic polymer can have positive charge, negative charge, or

neutral charge.

In polymer bridging, the molecules of polymer can attach to colloid in several

positions. The attachment may results from the different charges of polymer and colloid

or the attractive force from the chemical reaction, which occur between the same charges

of polymer and colloid. The polymer bridging can occur when polymer and vacant space

on the particle surface are present. The individual chain, which remains free of adsorbed

polymer, can stick with other particles by bridging them together.

An optimum dosage is required for effective flocculation for each solution. If the

adsorbed polymer is not enough, bridging links between particles can not be formed. On

the other hand, an excess absorption of polymer prevents the bridging links as there is

insufficient free particle surface for bridging contacts to occur and the adsorbed layer

may cause steric repulsion. Bridging flocculation gives much larger and stronger

aggregates than those produced by simply reducing electrical repulsion [151.



Figure 1.4 Schematic Illustration of (a) Bridging Flocculation and (b) Re-Stabilization by
Adsorbed Polymer Chains [151.

Since the reversal of local charge and unoccupied surface area are available on the

original charged particle, the polyelectrolyte which has a higher charge density than the

particle surface can adsorb on an oppositely charged particle in a manner of presence in

patches of excess charge. This mechanism is the so-called electrostatic patch effect [16].

Particles with polymer adsorbed in this patchwise manner can interact in such a way that

oppositely-charged areas of different particles are adjacent. Consequently, the strong

attraction is given. This can be considered as another form of bridging interaction.

1.2.7 Combined Interaction-Colloid Stability

Exclusively, Deryagin and Landau 117] and Verwey and Overbeek [181 developed the

DLVO theory of colloid stability. This is formed by means of Van der Waals attraction
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and electrical double layer repulsion, assuming that these interactions are additive and be

combined to give the total interaction energy between particles as a function of separation

distance.

The following equation describes the total interaction energy between two equal

particles:

When the repulsive force overcomes the attractive force, a potential energy barrier

occurs. This barrier would keep particles away from each other and also prevent

aggregation. However, the energy barrier would be lower and leading to aggregation as a

result of increasing of ionic strength or reduction of the zeta potential. As the barrier is

overwhelmed, the particles are held strongly by van der Waals force in an infinite

primary minimum depth.

At sufficiently large separation distances, the attractive force would be greater

than the repulsive force and hence aggregation could occur without the particles coming

into close contact. This is called a secondary minimum in the potential energy curve. The

relationship between interaction energy and separation distance is shown in figure 1.5.

The addition of salt brings about increasing the ionic strength and reducing the

zeta potential. At this point, the barrier height disappears and the following condition

applies:



Figure 1.5 Schematic Illustration of Electrical (VE), Van der Waals (VA), and Total (VT)
Interaction Energies between Equal Spherical Particles as a Function of Separation
Distance [15].

Under this condition, the critical flocculation concentration, cf, for a symmetrical

electrolyte becomes:

Where	 K is a constant which depends upon the properties of the dispersion

medium.
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A is the appropriate Hamaker constant.

It is found that when zeta potential is very high, the term y approximates unity and

cf becomes inversely proportional to the sixth power of the valency, z. This dependence

of cf on 1/z6 is known as the Schulze-Hardy rule, in which the counter ion charge has the

important effect [19]. However, there are a few evidences in which the inverse sixth

power law is observed.

The full destabilization can be accomplished at low ionic strength by having the

zeta potential decrease to the critical value. If the additive ionic strength is increased, the

zeta potential can be reversed and the particles turn to stable again. This process is known

as restabilization.

1.3 Flocculation Kinetics

The following equation is the Smoluchowski approach, the rectilinear model of the

aggregation of heterodisperse suspension, by assuming aggregates are coalesced spheres.

Where	 the subscripts 1,1, and k refer to different sizes of particles.

ni, of ,and nk are the number concentrations of particles of size i,1, and k,

respectively.

)6(0 and ß(i,k) are mass transport coefficients describing collisions

between particles of the size classes indicated.
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as is a stability factor, the ratio of the rate at which particles attach to the

rate at which particles collide.

The term on the left-hand side of equation represents the change in number concentration

of particles of size k with respect to time. The first term on the right-hand describes the

formation of particles of size k by collision between particles of sizes i and j. The second

term describes the losses of particles of size k by collision between any other size [20]

1.3.1 Collision Frequency Factor

Interparticle contacts can be carried out in 3 distinct particle transport mechanisms:

Brownian motion, velocity gradients, and differential settling 1211

When Brownian motion dominates particle transport, the mass transport depends

upon thermal and viscous effects only. The mass transport coefficient, ßbd(i,j), becomes:

Velocity gradients are present in all fluid flows, either laminar or turbulent.

Particle transport depends upon the mean velocity gradients in the fluid, G (s" 1 ). The mass

transport coefficient, ßvg(i j), becomes:
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Figure 1.6 Schematic Illustration of Rectilinear Models for the Transport of Suspended
Particles in Aquatic Systems [221.

Differential settling is influenced by gravity force, which brings about settling of

particles and depends on the buoyant weight of the particles. Large or dense particles can

contact smaller or less dense ones in a process. The mass transport coefficient, ßds (i,j),

becomes:

Assuming that the mechanisms of particle transport are independent, the mass

transport for submicron particles can be determined as the following equation.
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/3(i, A = A 4- 1&g(i, Sis(i J)

Regardless of the hydrodynamic interactions and short range forces between

approaching particles in the Smoluchowski approach, the aggregation rate would be

overpredicted. The coalesced sphere assumption underpredicts the actual collision rates

that take place [23] .

Figure 1.7 Schematic Illustration of the Difference between Rectilinear and Curvilinear
Trajectories in Particle Transport by Differential Settling [25].

The differences between the rectilinear and curvilinear approaches for transport

by differential settling are illustrated schematically in Figure 1.7 adapted from Han and

Lawler [24] . In the rectilinear model, all dj-size particles residing within the shaded area,

Ar, can come to attach the di-size particle. Under the curvilinear approach, all
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hydrodynamic interactions are considered. Only the small particles in the shaded area,

can come to attach to the large one. As a result, the actual collision rate is less than the

rectilinear rate. The actual mass transport coefficient becomes [(Ac/Ar) ßds(i,j)].

Figure 1.8 Effect of Particle Size on Mass Transport Coefficients in Brownian Motion
[25].

The effects of hydrodynamic interactions on particle transport by Brownian

motion are shown in Figure 1.8. In these calculations, van der Waals forces are included

as the separating distance between particles reduces. The reduction of the transport rate

relative to the rectilinear approach for monodisperse suspensions (di/dj ---> 1) is more than
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for heterodisperse suspensions (di/dj << 1). A dimensionless group, HA, characterizes the

effects of particle size, velocity gradient, and van der Waals interaction as follow:

Where	 A is the Hamaker constant.

dj is the diameter of the larger of two interacting particles.

Under the velocity gradient condition, hydrodynamic interactions are insignificant

for monodisperse suspensions and turn to be significant when the systems become

heterodisperse. Increasing the velocity gradient or the size of particles increases the

interaction and the deviation from the rectilinear approach. This yields HA with smaller

values as the hydrodynamic effects become more substantial.



Figure 1.9 Effect of Particle Size on Mass Transport Coefficients in Fluid Shear [251.

1.3.2 Collision Efficiency

Due to the presence of the potential energy barrier, only some collisions are successful.

The ratio of the experimental aggregation rate to fastest rate observed is known as the

collision efficiency factor, aa, defined as follows:

The colloidal stability of particles can also be described by a collision efficiency factor.
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In a completely stable suspension, repulsive interactions are significant. Hence all

collisions are unsuccessful and αa = 0. In contrast, for a completely unstable suspension,

repulsive interactions are insignificant, all collisions yield aggregation and a, = 1.

Based on the transport process, several investigators have used two kinds of

experimental studies. For particles larger than a micron, Brownian motion is

insignificant. The considerable-controlled velocity gradients are applied in the

experiments to yield the describable interparticle contact rates. For submicron particles,

Brownian motion controls interparticle contacts, and Smoluchowski's theory of

perikinetic flocculation or a suitable modification is used to describe interparticle

contacts for both monodisperse and heterodisperse suspensions [26].

When particles undergo velocity gradient, the collision efficiency factor becomes:

Where	 no and nt are the number concentrations of particles at the beginning and at

time t of the experiment, respectively.

0 is the constant volume fraction of solid material in the suspension.

1.4 Flocculating Agents

1.4.1 Metal Ion Salts

The main reasons for selecting flocculating agents are cost, effectiveness,and its

capability of multicharged polynuclear complexes formation with enhanced adsorption

properties in aqueous systems [27]. According to the Schulze-Hardy rule, iron and

aluminum salts are two widely used flocculants in the water and wastewater treatment
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[28]. The commonly used iron and aluminum salts are ferric sulfate, ferrous sulfate, ferric

chloride, aluminium sulfate, aluminium chloride, polyalumimium chloride (PAC), and

sodium aluminate.

When iron or aluminum salts is introduced to the process, the trivalent ferric or

aluminum ion will hydrate to form coordination compounds Fe(H2O)6 ³+ and Al(H2O)6³ ³+ .

These compounds then undergo hydrolysis reactions yielding metal (M) hydroxo

complexes species [M(H2O)5OH]²+, [M(H2O)4(OH)2]+, [M6(OH)15] ³+, [M8(OH)20]4
+

,

M(OH)3 (s), [M(OH)4]-. The pH is the controlling factor of these hydrolysis products and

the precipitation of metal hydroxides.

1.4.2 Polymeric Flocculants

Most of the polymeric flocculants used are long chain synthetic organic compounds,

however, some natural products such as starches and extracts from various types of seed

can also used as flocculating agents. Polymeric flocculants are classified into three

groups, based on the local surface charge of flocculant: cationic, anionic, and nonionic

[29].

Cationic polymers are very effective to remove negatively charged colloids by

absorption and neutralization of local charge. Therefore, this kind of polymer is not

needed to have a high molecular weight. Flocs formed by charge neutralization are

stronger than those formed by simple salts.

On the other hand, anionic and nonionic polymers must have molecular weights

greater than one million in order to bridging the potential energy barrier between two

negatively charged colloids. The required molecular weight is dependent on the number
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of charged group, degree of branching of the polymer, charge on the colloid, and ionic

strength of solution [30]. Anion polymer is ineffective when it is used as a flocculating

agent alone to remove negative charged particles. It will be effective just after the

extraneous electrolytes such as divalent metal ions are added to the process. The divalent

metal ion, such as calcium and magnesium ions, help an anionic polymer to encourage its

ability to absorb negative colloids. It was found that charge density is another important

factor as well as molecular weight. Any change in ionic strength of solution will affect

the shape of polymer molecules and bridging formation of a charged polymer.

1.5 Weighted Flocculation

The settling rate of floc resulting from flocculation has been known to be rather slow in

wastewater treatment due to their low specific gravity. In order to remove these small

particles, a large detention tank would be required to accommodate the high discharge

rate, e.g. stormwater runoff. The weighted flocculation approach has been explored by a

number of industries, e.g. the Microsep ® (International water Solutions Corporation), the

Actiflo® (Omnium de Traitement et de Valorisation [OTV]), and DensaDeg ® (Infilco

Degremont, Inc.), aiming to enhance the sedimentation rate. Unfortunately, a review of

the current available literature indicates that there is a lack of systematic studies of this

subject. And, in fact, the conventional jar test was found to be deficient, if not impossible,

to evaluate the performance of the weighted flocculation. A modified jar test recently

developed by Ding et al. [33], was designed to maintain the integrity of the floc-

microcarrier structure by minimizing shear breakage. Details of the test device are

presented elsewhere by Ding et al. [33] .
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Microsand has been used as a weighted carrier of colloidal particles. This process

was developed and applied to drinking water supply. It is increasingly being used for

treating combined wet-, dry-weather flow (WWF/DWF), CSOs [35-36], and wastewater.

Guibelin et al. [37] developed the Actiflo ® process for stromwater treatment. This

process combined lamellae settling with the weighted flocculation. Microcarrier and

coagulants have been added into a mixing chamber that are followed by flocculation and

sedimentation tanks. The initial reaction of the flocculation process is improved by

presence of the microcarrier and polyelectrolyte, which increases the bonding of the floc

to the microcarrier, resulting in higher settling velocities. Above 80% of total suspended

solids was gained by using 60 g/m³  of ferric chloride and 0.8 g/m³  of polyelectrolyte at

the upflow velocity of 130 m³/h/m² .

De Dianous and Dernaucourt [38] compared conventional flocculation with

weighted flocculation using microsand in water treatment. This study has shown that the

weighted floc is more cohesive. Hence, it has a higher velocity gradient and less contact

time. The settling velocity is also 5 times higher than that of unweighted floc.

Furthermore, the microsand is recyclable. Because of the good results, the above

researchers had used this method on an industrial scale, which is characterized by a

contact time of 8 minutes and an upflow velocity of 40 m³/h/m² .

1.6 Fractal Geometry

The structure of a floc is described in term of fractal geometry because of its irregular and

disordered nature. The fractal theory was developed by Mandelbrot [39J providing a

complete approach to characterize many natural and engineering systems that have
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irregularity or indefinite form. The important characteristic of fractals is self-similarity,

which means their morphology is invariant to a change of length scale. The most

important numerical parameter in fractal theory is the fractal dimension, D1 [41-43]. The

fractal dimension can be defined in relation to changes in packing density, connectivity

between component particles, surface area, velocity distributions in turbulent fluids, and

other characteristics of an object that are observed to have special scaling properties [40].

For aggregates, the fractal dimension measures how the particles occupy the space

in the aggregate. The following equation shows the relationship between the mass, M(R),

and the size of aggregate, R:

In general, the fractal dimensions are in a range of 1.7-1.8 under diffusion limited

aggregation (DLA) conditions and 2.2-2.3 under reaction limited aggregation (RLA).

Under diffusion limited aggregation (DLA), there is no repulsion between

colliding particles. The particle transport in Brownian motion and that of each collision

leads to aggregation. In reaction limited aggregation (RLA), an inter-particle repulsion

occurs, the collision efficiency is reduced and all collisions do not subject to aggregation.

The particles have to collide many times before cluster. Greatly different aggregate

structures can be obtained under this condition.

There have been a number of experimental studies on the structure of various

kinds of floc through computer modeling [44-47], various scattering techniques [48-52],

dynamic scaling [52-53], and image analysis from microscopes [54-59].

An early work in the area of study in electron microscopy for small aggregated

particles was carried out by Forrest and Witten [54] . They examined smoke-particle
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aggregates through the micrograph. The results showed the existence of long-range

correlation, which follow a power law.

Tence et al. [551 used the digital annual dark-field imaging in a Scanning

Transmission Electron Microscope (STEM) to measure the fractal dimension of

aggregated iron polydisperse particles and compared the results with those obtained

through computer modeling of a polydispersed system in a cluster-cluster aggregation

process. The results showed strong visual similarity between the experimental and

simulated images for the Gaussian-like size distribution and cluster-cluster aggregation

with linear trajectories. This is confirmed by the value of fractal dimension (Df = 1.9±

0.1). In addition, it was found that polydispersity does not affect the fractal dimension.

As the Confocal Scanning Laser Microscopy (CSLM) appeared to be rather

powerful since it provides direct information, Bremer et al. [561 used this technique to

analyze the structure of particle gels. The fractal dimensions of casein and polystyrene

obtained from various techniques were similar comparing to the experimental results (Df

= 2.35). In order to diminish the disturbing effect of sedimentation to the gel formation,

the microgravity should be reduced.

Pierre et al. [57] studied the structure evolution of kaolinite flocs during their

formation in aqueous medium under a Scanning Electron Microscope (SEM) by

hypercritical drying with liquid CO², as a function of Fe electrolyte content. The results

showed that particles consistently formed the floc with diffusion limited aggregation

(DLA) in the presence of Fe electrolytes. On the other hand, a uniformly porous

accumulated sediment was formed under gravity force in the absence of Fe electrolytes.
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Zhang and Buffle [58] determined the fractal dimension of KC1-induced hematite

aggregates using three different approaches: dynamic scaling, Transmission Electron

Microscopy (TEM) image analysis, and static light scattering (SLS). Under the diffusion

limited aggregation (DLA) condition ([KC1] > 100 mM), the value of fractal dimension

obtained from dynamic scaling, analysis of TEM images, and static light scattering were

1.87 ± 0.07, 1.68 ± 0.04, and 1.83 ± 0.07, respectively. In the regime of reaction limited

aggregation (RLA), the aggregates are more compact. The compactness makes a difficult

to determine the fractal dimension under TEM image analysis. The static light scattering

analysis yields a fractal dimension of 2.20 ± 0.09 in this regime.

Cornelissen et al. [59] employed four types of microscopy techniques: Light

Microscope (LM), Scanning Electron Microscope (SEM), Transmission Electron

Microscope (TEM), and Atomic Force Microscope (AFM), to investigate the visual

structural information of hydrous floc particles. These flocs were prepared by 2 different

methods. The first method is a batch preparation that was performed by using a Jar test

system. The second method is a continuous preparation, which was carried out by using a

micro-scale flocculation system. It was found that hydrous flocs are fractal in nature but

they will lose this property and become amorphous when their sizes are approximately

0.1-1 µm. The growth of the aggregates is difficult to control. The large (1-100 µm) flocs

could be damaged without losing structural information, which is usually caused by

drying the sample, when they were prepared by cryogenic freezing before observation

under the SEM. Damage caused by drying was not apparent with the TEM technique

used. It was shown that the various microscope techniques brought about compatible
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results in the size range of 10 nm-5mm. The floc structure is more reproducible when

using a micro-scale continuous flow system.

Snidaro et al. [60] described activated floc structure using four investigation

methods: size distribution analysis associated with sonication, Transmission Electron

Microscopy (TEM), Confocal Scanning Laser Microscopy (CSLM) and fractal dimension

analysis, and three dimensional modeling. Under Confocal Scanning Laser Microscopy, a

13 pm aggregate was observed. It appeared that this aggregate is a fractal object and the

total number of cells in the cluster was about 2' number. These explained that the

formation of 13 p.m units were microcolonies. The predominant microflocs (125 pm)

were the aggregates of microcolonies. Investigation by Transmission Electron

Microscope showed that 2.5 p.m units were bacteria, which formed 13 pm microcolonies.

A gel-like matrix of exopolymer provides the cohesion of these aggregates. The mass

fractal dimensions of microcolonies and microflocs are 3 and 2.5, respectively. These

values showed that aggregation mechanisms are different: cell division for microcolonies

and diffusion limited particle-cluster for microflocs.

Liang and Kendall [61] studied the aggregate formation of polystyrene latex (0.92

and 1.9 p.m in diameter), concentrated cyclohexane in water emulsion (2.5 pm in

diameter), and human red blood cells (5.7 pm in diameter) under conductivity counting

method and microscopy method. The results showed that the aggregate size and volume

increased with increase in particle volume fraction. The force that forms aggregates is a

weak interparticle attraction. The adhesion energy is low and can be estimated from the

aggregates peak size using a theoretical equation.
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1.7 Objective

The objective of this thesis is to examine the structural interaction between the flocs

obtained from the weighted flocculation process and the microcarrier by using the

Environmental Scanning Electron Microscope (ESEM).

The experimental study includes the prescreening stage and the observation under

the ESEM stage. The experiments in the first stage were carried out using electrolyte,

polyelectrolyte, and microcarrier. The controlling parameter of the process was the

turbidity. The structural relationship between microcarrier and flocs was observed under

the Environmental Scanning Electron Microscope (ESEM) in the second stage.



CHAPTER 2

EXPERIMENTAL

2.1 Sample Preparation

The dry residual material was collected from the MIT parking lot # 6 and used to prepare

the synthetic sample. The material was sieved and divided into seven different size

ranges. It was found that particles with grain size larger than 106 micrometers would

settle too fast to make a uniform sample while particles with grain size smaller than that

would remain suspended. It was concluded that particles smaller than 106 micrometers

were more suitable for suspension.

2.2 Types of Coagulants

2.2.1 Electrolyte

Ferric chloride is one of the most widely use coagulants in the removal of colloid

particles. The advantages of ferric chloride are its use in a broad pH range and it forms a

heavy floc. Ferric chloride was used as an electrolyte in this study. Fe ³+ solution was

prepared by dissolving FeCl36H2 O  crystal in deionized water.

2.2.2 Polyelectrolyte

A 309C cationic polymer was selected to use as a polyelectrolyte. 309C (49%) from

Polydyne Inc., Riceboro, Georgia, was dissolved in deionized water.

31
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2.2.3 Microcarrier

Ottawa sand was used as a microcarrier in the weighted flocculation process. The size

range of Ottawa sand used was between 53-75 micrometers by sieve analysis. All

containers and the microcarrier were first washed thoroughly with a detergent and tap

water, then rinsed 3 times with tap water to remove all traces of residual washing

compound. Finally, the sand was rinsed with deionized water to ensure that no other

particles were attached to the sand and involved in the process.

2.3 Instruments and Experimental Procedure

2.3.1 Jar Test Apparatus

The Jar Test has been widely used to determine the dosage and the effectiveness of

various coagulants in water and wastewater treatment processes. In the conventional jar

test, a series of six beakers are stirred simultaneously by paddle stirring after the addition

of flocculant doses. A new jar test technology is using microcarrier to enhance the jar test

efficiency due to its different physical conditions. A microcarrier weighted jar test that

had been adopted in this study was developed by Dr. Yuan Ding, Department of Civil

and Environmental Engineering, NJIT. The Jar Test apparatus consists of six 2000-mL

square beakers and a laboratory stirrer with a speed drive range of 0-300 rpm (PB-700TM

Jar tester, Phipps & Bird, Richmond, Virginia).
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Figure 2.1 Jar Test Apparatus 

The microcarrier weighted jar test procedures are as follows [33]: 

1. Prepare a synthetic sample and analyze its turbidity. 

2. Place 1000 mL of the synthetic sample into a 2000-mL jar on the six-jar laboratory 

stirrer and check the stirrer operation. A light table facilitates viewing of the contents 

of the beakers. 

3. Dose the sample tn each jar with predetermined amount of ferric chloride, 

polyelectrolyte, microcarrier, and sodium bentonite. 

4. Operate at a rapid mixing rate of 150 rpm for 10 seconds. 
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5. Reduce the stirring rate to 100 rpm for 20 seconds and then to 60 rpm for 30 seconds

for flocculating.

6. Remove the paddle and allow the solutions to settle for 3 minutes after flocculation.

7. Take the supernatant one inch below the surface of water in each jar to measure the

turbidity and follow by taking sludge to investigate floc structure. Select the optimum

dosage on the basis of supernatant clarity and settling of flocs.

2.3.2 Turbidimeter

Turbidity was measured by a HF Scientific DRT-15CE turbidimeter (RE Scientific Inc.,

Fort Myers, Florida). The measurement range is 0-1000 NTU (Nephelometric Turbidity

Unit). This turbidimeter employs the principle of nephelometry. This method is based on

a comparison of the intensity of light scattered by the sample with the intensity of light

scattered by a standard reference suspension, formazin polymer, under the same

conditions.

In the turbidimeter, a light source illuminates the sample and then one or more

photoelectric detectors with the instrument meter will measure the intensity of scattered

light at the right angle of the path of the incident light. The standard procedures to

measure turbidity are as follows [62].

1. Turbidity calibration: Formazin as a HF scientific factory certified secondary standard

is used to calibrated HF turbidimeter. The available standard suspensions are 10, 100,

and 1000 NTU. The reference standard is the standard suspension of 0.02 NTU,

which is contained in the pre-selected cuvettes with light shield caps. The instrument

should be calibrated using all the secondary standard solutions.
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2. Measurement of turbidities less than 40 NTU: Shake the sample thoroughly . Wait 

until air bubbles disappear and pour the sample into the turbidimeter tube. Read the 

turbidity directly from the readout device or from the appropriate calibration curve. 

3. Measurement of turbidities above 40 NTU: Dilute sample with one or more volumes 

of turbidity-free water until the turbidity falls between 30 and 40 NTU. Calculate the 

turbidity of original sample from the turbidity of the diluted sample and the dilution 

factor. 

Figure 2.2 Turbidimeter 
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2.3.3 Environmental Scanning Electron Microscope 

The images of dry residual material, microcarrier, and floc have been observed under the 

Environmental Scanning Electron Microscope (ESEM) Model 2020, LaB6, 0-50 Torr, 

ElectroScan Corporation. The ESEM was developed in order to transcend the limitations 

of the conventional SEM. It can use to investigate the sample material that are impossible 

to measure under the conventional SEM. Moreover, it has diminished the requirement for 

sample preparation. The important characteristics of ESEM are the multiple pressure 

limiting apertures, the graduated vacuum system, and the Environmental or Gases 

Secondary Electron Detectors (GSED). 

Figure 2.3 The Environmental Scanning Electron Microscope (ESEM) 
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The basic theory of ESEM is divided into three parts: Vacuum Basics, Detector

Basics, and Gun Basics. In vacuum basics, the chamber pressure control is the main

characteristic that shows the difference between the ESEM and the traditional SEM. The

ESEM can operate in a wide range of pressure. Varying either chamber pressure or

specimen temperature can control phase transitions. The significance processes, which

have direct relation with the pressure in the chamber, are beam scattering, charge

neutralization, and gaseous signal amplification. Beam scattering is desirable to decrease

the path length of the incident beam. The scattered fraction of the beam creates an

extended skirt around the unscattered fraction. The latter will contribute to a dc

component to the imaging signal but carries no spatial information [631. Beam scattering

decreases with lower pressure and higher beam voltage.

The collision between moving electrons and neutral gas molecule will produce the

density of free ions in the gas. At pressure greater than 1 Torr, the density is adequate to

contribute a conductive path for beam-deposited surface charge yielding a smooth self-

regulating equilibration of charge on insulating surfaces. However, at pressure above 5

Torr, this process always assume a stable equilibrium condition in response to changes in

beam voltage, beam current, scanning speed, or surface characteristics.
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Figure 2.4 Beam Profiles as a Function of Pressure [63].

The Gaseous Secondary Electron Detector (GSED) plays an important role in

detector basics of the ESEM. The GSED utilizes gas ionization principles to collect and

amplify the picoampere-level imaging signals generating from beam-specimen

interaction. The gaseous detector contains one or more electrodes, which are united with

the final pressure-limiting aperture. The action of charge between the electrode and the

specimen holder generates a signal in the electronic circuit connected to the electrode.
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Figure 2.5 Signal Collection in the ESEM [631.

Figure 2.5 illustrates the surface secondary electrons that emit from the sample

are accelerated by the electric field until their velocity reach 20 eV the gas molecules will

be ionized and produce more electrons. The efficiency of ionization is the function of

pressure, working distance, and electrode voltage.

The free positive charge electrons are always brought about by ionization. The

positives are gradually moved because of their large masses by the electric field in the

opposite direction of cascaded electrons. These positives are not involved with imaging

signal but carry out an important function by neutralizing surface buildup of electron

charge.
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Since the mean free path of high speed electrons is long, the collisions of

backscatter electron flux from the specimen will not commonly occur in the detection

volume. The pressure is the controlling factor for the relative proportions of secondary-

and backscatter- initiated components in the imaging signal.

According to the interaction between focus beam of electron and the specimen,

the information of sample material is obtained under the ESEM. An electron gun is used

as a source of the electron beam. This gun consists of a heated cathode and other

electrodes and performs at a high vacuum condition. An axially symmetric beam of

electrons is extracted, controlled, and focused by the electron gun and then is

demagnified and deflected by the optics in the lower column.

Figure 2.6 Basic Electron Gun [63].
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The cathode, a negatively-biased surface, resists to heat in a high vacuum

circumstances. When heating the cathode, electrons will have enough energy to break

through the surface barrier energy of the material. After that, electrons will be accelerated

from the potential of the gun headed for the more positive potential of the anode.

The emission current, the free electrons flow, is arranged by the stable heating

current of cathode and becomes important by the action of the bias voltage, a repulsive

field from the Wehnelt cylinder. The application of bias voltage has a tendency to

decrease the emission current by limiting the electron emitting area on the cathode

surface. The higher the temperature of the cathode and the more restricted the emitting

surface area, the brighter the electron source will be.

Lanthanum hexaboride (LaB6) had been used as a cathode in this study. The

electrons discharged from a LaB6 cathode are greater than those from a tungsten cathode

because a LaB6 has a smaller emitting area than tungsten. When more electrons are

focused down to strike the sample, a brighter image is given. Hence, it contributes better

resolution under high magnification. The disadvantages of using the LaB6 cathode are

high cost and extra care requirements when operating the equipment.
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Figure 2.7 Different Types of LaB6 Cathodes [63].

Procedure followed for sample observation using ESEM:

1. The computer and column console of the ESEM are first turned on to ramp the

filament to an operating current of 2.25A and bringing up the operating beam voltage

to 20kv and maintain a pressure of 5.0Torr in the specimen chamber.

2. The sample to be observed is adhered to a specimen holder by using a conductive

carbon paste and inserted into the specimen chamber by first bringing up the pressure

in the specimen chamber to 100 Torr.

3. Once the sample is inserted the chamber door is closed and once again the pressure

lowered to an operating pressure of 5 Torr. The chamber is then flooded with water

vapor as it is a good imaging gas and it remove traces of air.
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4. The stage on which the sample rests can move in the X, Y and Z axis. These

parameters are adjusted to bring the sample closer to the detector tip. Then the

contrast, and brightness and focus, condenser current etc are manually adjusted to

obtain the best possible image for the required magnification.

2.4 Experiment

A synthetic sample was first prepared and measured the basic characteristic such as

turbidity. Flocculation was carried out by using the jar test procedure. The lowest

turbidity was achieved with a Fe+³ concentration of 10 mg/1 and a cationic polyelectrolyte

concentration of 4 mg/l. As a result of this jar test study, all the flocculation experiments

were conducted with this Fe "³ concentration and polyelectrolyte concentration. Take the

sample floc out and let it dry at room temperature. The floc is then investigate by using

the Environmental Scanning Electron Microscope (ESEM).

The basic operating conditions for a jar test such as rapid mixing rate and

duration, flocculation mixing rate and duration, size and type of microcarrier etc. are

adopted from a process developed by Dr. Yuan Ding [33].



CHAPTER 3

RESULTS AND DISCUSSION

This chapter discusses the experimental results from 2 stages of the experiment: the

prescreening test and observation under the ESEM. The prescreening test was done in

order to determine the optimal dosages of electrolyte and polyelectrolyte in the weighted

flocculation process. The ESEM was employed to investigate the structure of the flocs

from weighted flocculation.

3.1 Prescreening Test

In the prescreening test, flocculation was carried out by the jar test procedure. A known

amount of microcarrier, various concentrations of electrolyte and polyelectrolyte were

used. The turbidity of the raw sample was measured before performing the tests. It was

44.0 NTU. In the rapid mixing stage, a rate of 150 rpm for 10 seconds was required to lift

microcarriers from the bottom of the jar into suspension. When the mixing rate was

reduced to 100 rpm for 20 seconds, the beginning of floc growth was observed. During

flocculation mixing, it was observed that flocs grow gradually and both microcarriers and

flocs would settle within 30 seconds after the process completed. The supernatants were

taken after 3 minutes settling time. Then the solutions were analyzed for turbidity. On the

basis of turbidity, the optimal dosages of electrolyte and polyelectrolyte were achieved.

Table 3-1, 3-2, and 3-3 show the experimental conditions, the remaining turbidity after

flocculation, and the percent turbidity removal at different concentrations of electrolyte

and polyelectrolyte.

44
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Table 3.1 Observation at the Concentration of Fe +³ 10 mg/L

PARAMETER Jar 1 Jar 2 Jar 3 Jar 4 Jar 5 Jar 6 Jar 7

Microcarrier Type Ottawa Sand

Microcarrier Size 53-75 micrometer

Microcarrier Concentration 3 gm.

Settling Time 3 minutes

Fe+3 Concentration (mg/L) 10

309C Concentration (mg/L) 0 1 2 3 4 5 6

Turbidity 154,00 2.87 0.62 0.22 0.16 0.19 0.17

% Turbidity Removal 0 93.48 98.59 99.50 99.64 99.57 99.61

Table 3.2 Observation at the concentration of Fe+³ 20 mg/L

PARAMETER Jar 1 Jar 2 Jar 3 Jar 4 Jar 5 Jar 6 Jar 7

Microcarrier Type Ottawa Sail d

Microcarrier Size 53-75 micrometer

Microcarrier Concentration 3 gm.

Settling Time 3 minutes

Fe+3 Concentration (mg/L) 20

309C Concentration (mg/L) 0 1 2 3 4 5 6

Turbidity 48.00 1.20 0.52 0.35 0.28 0.30 0.51

% Turbidity Removal 0 97.27 98.82 99.20 99,36 99.32 98,84
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Table 3.3 Observation at the concentration of Fe+3 30 mg/L

PARAMETER Jar 1 Jar 2 Jar 3 Jar 4 Jar 5 Jar 6 Jar 7

Microcarrier Type Ottawa Sand

Microcarrier Size 53-75 micrometer

Microcarrier Concentration 3 gm.

Settling Time 3 minutes

Fe+3 Concentration (mg/L) 30

309C Concentration (mg/L) 0 1 2 3 4 5 6

Turbidity 126.00 1.87 0.63 0.40 0.30 0.33 0.53

% Turbidity Removal 0 95.75 98.57 99.09 99.32 99.25 98.80

From Table 3.1, 3.2, and 3.3, the results show that in the absence of

polyelectrolyte in the solution, the residual turbidity increased appreciably. On the other

hand, with the additional of polyelectrolyte, the turbidity removals fall in the range of

93.48% to 99.64%.

Figure 3.1, 3.2, and 3.3 illustrate the turbidity distribution versus polyelectrolyte

concentration for the Fe +³ concentration of 10 mg/L, 20 mg/L, and 30 mg/L, respectively.

It can be seen that the lowest remaining turbidities for all Fe +³ concentrations are at 4

mg/L of the 309C concentration.

Figure 3.4 illustrates the turbidity of raw sample, 44.00 NTU, compared to the

lowest remaining turbidity of each electrolyte concentration, 0.16 NTU at 10 mg/L of

Fe+³ , 0.28 NTU at 20 mg/L of Fe+³ , and 0.30 NTU at 30 mg/L of Fe +³ . The best

electrolyte concentration is the one that has the lowest remaining turbidity, which is at 10
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mg/L. The turbidity removal was about 99.64%. The 10 mg/L of Fe +³ and 4 mg/L of

309C can be considered as the optimal coagulant concentrations. They had been chosen

to conduct all the tests.

According to the experimental results of Dr. Yuan Ding 133] for the

combined sewer overflows (CSO) treatment, the utilization of microcarrier in a size range

of 53 to 75 micrometers at a dosage of 3 g/L, Fe+³ concentration of 40 mg/L, 309C

concentration of 6 mg/L, and settling time of 3 minutes was found to yield the best

turbidity removal. The turbidity was removed about 98%. Figure 3.5 compares the

turbidity of CSO sample between raw sample and after treatment.

It can be concluded that the effectiveness of weighted flocculation in the synthetic

sample treatment is as well as in the CSO treatment on the turbidity basis.



Figure 3.1 Turbidity Versus Polyelectrolyte Concentration for 10 mg/L of Fe+3.



Figure 3.2 Turbidity Versus Polyelectrolyte Concentration for 20 mgIL of Fe+³.



Figure 3.3 Turbidity Versus Polyelectrolyte Concentration for 30 mg/L of Fe+3.



Figure 3.4 Effectiveness of the Weighted Flocculation Process.



Figure 3.5 Effectiveness of the Weighted Flocculation Process in CSO Treatment.
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3.2 Observation Results from the ESEM

3.2.1 Microcarrier

After grinding, sieving, washing, and drying the microcarriers, it was observed under the

ESEM that they are not spherical in shape but amorphous as shown in Figure 3.6. Most of

the surface areas are clear and smooth. They are also different in size. Although the size

of microcarrier used in the experiments were in the range of 53 to 75 micrometers, some

of the microcarriers were greater than 75 micrometers. Figure 3.6 also shows that the

length of some microcarriers falls in the range of 53 to 75 micrometers. As a result, they

could pass the sieve. This picture was obtained under the conditions of 3.7 Torr of

pressure, 20.5 mm of the focus length, and magnification of 380x.

Figure 3.7 was completed under the conditions of 3.8 Torr of pressure, 20.6 mm

of the focus length, and magnification of 2000x. It shows the closer view of the

microcarrier surface. There is nothing attaching to their surfaces and edges.

3.2.2 Dry Sample

The dry sample was collected from NET parking lot #6. These samples were sieved,

washed, and dried. Figure 3.8 presents the overview of dry sample. They were observed

that their shapes are amorphous. The surface is not smooth. They are different in size.

This investigation was done under the conditions of 5.0 Torr of pressure, 18.6 mm of the

focus length, and magnification of 300x.

Figure 3.9 was acquired under the conditions of 5.2 Ton of pressure, 18.7 mm of

the focus length, and magnification of 900x. It can be seen that there are a lot of small

particles attached to its surface.
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3.2.3 Weighted Flocs

These flocs were taken after settling for 3 minutes and dried at room temperature. Figure

3.10 displays that the surface of the microcarrier is not clean and smooth but there are

some small particles sticking on and coating it. This examination was performed under

the conditions of 5.2 Torr of pressure, 18.9 mm of the focus length, and magnification of

850x.

Figure 3.11 reveals the closer view of the previous figure showing that there are

some substances coating the surface compared to the picture of microcarrier in Figure

3.6. This picture was accomplished under the conditions of 5.1 Torr of pressure, 18.9 mm

of the focus length, and magnification of 4950x.

From the figure 3.12 and 3.13, there are some vacant spaces on the surfaces of

microcarriers for sample to stick on. It can be presumed to increase the efficiency of the

process by increasing the concentration of sample into the process. Figure 3.12 and 3.13

were accomplished under the conditions of 5.2 Torr of pressure, 19.6 mm of the focus

length, and magnification of 500x.

It can be seen that microcarrier does play a significant role in the removal of

colloidal particles. On conducting the tests, colloidal particles attached to microcarriers

with the presence of electrolyte and polyelectrolyte in the solutions. These coagulants

initiate charge neutralization and polymer bridging that play an important role in the

destabilization of colloidal particles.

Some experimental studies had shown that partially structural information of flocs

might lose during the drying process. The sample preparation of ESEM analysis involves

evacuation of moisture under high vacuum, therefore it might change the arrangement of



5 5

the particles in the aggregates and its structure. The freeze fracture technique is

recommended by some researchers to use in order to ensure that the floc structure is not

altered to a notable extent during a stage of sample preparation.
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Figure 3.6 Microcarrier Obtained Under Magnification of 380x. 
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Figure 3.7 Microcarrier Obtained Under Magnification of 2000x. 
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Figure 3.8 Dry Sample Obtained Under Magnification of 300x 
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Figure 3.9 Dry Sample Obtained Under Magnification of 900x. 
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Figure 3.10 Weighted Floc Obtained Under Magnification of 850x. 
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Figure 3.11 Weighted Floc Obtained Under Magnification of 4950x. 
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Figure 3.12 Weighted Floc Obtained Under Magnification of 500x (1). 
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Figure 3.13 Weighted Floc Obtained Under Magnification of 500x (2). 



CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

On the basis of the results of this study, the principal conclusions can be summarized as

follows:

1. Microcarrier did play a significant role in the removal of colloidal particles.

Electrolyte and polyelectrolyte needed to add into the process in order to induce the

charge neutralization and polymer bridging process.

2. In the presence of electrolyte and polyelectrolyte, the turbidity removal fell in the

range of 93.5% to 99.6%, while the removal turbidity in CSO treatment was about

98%. As a result, the effectiveness in turbidity removal of the weighted flocculation

process for synthetic sample treatment was as well as that of for CSO treatment.

3. The observations under the ESEM showed that the microcarrier was amorphous and

different in size. The surfaces were smooth and clear.

4. For the dry sample, the photographs showed that they were also amorphous and

consisted of a lot of colloidal particles.

5. It was clear that the flocs from weighted flocculation consisted of a population of

amorphous particles.
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4.2 Recommendations

To further study in this area, the following investigations are recommended:

1. Elemental analysis should be performed in order to identify the elements in the floc.

2. To minimize the destruction of floc structure that might occur during the drying

process and to achieve a good image of floc structure, the freeze fracture technique

should be employed.

3. The ESEM observations using a drying process might not be suitable for weighted

floc. Therefore other techniques such as the light scattering, Transmission Electron

Microscopy (TEM), etc., which do not need to dry sample, should be employed.
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