

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

A METHOD OF TRACKING EYE MOTION
FOR HUMAN-COMPUTER INTERFACE

by
Martin W. Maranski

It would be of value to create another device for interfacing with a computer besides the

commonly used handheld devices; one option is to determine where the user is looking

on the screen. The major obstacle to overcome in this task is to be able to reliably track

the motion of the iris and pupil in the eye. A method to do this is revealed here, using a

variation of the Hough transform to detect circular patterns in a close shot of the eye.

The algorithm was developed in Matlab and analyzed over a series of 20 sets of 6 frames

each; this analysis reveals that it is capable of producing 88.33 percent accuracy under

normal conditions. The other obstacles to be overcome are also specified, and possible

solutions outlined, with suggestions as to hardware implementation and applications for

the handicapped and for a convenient hands-free interface method.

A METHOD OF TRACKING EYE MOTION
FOR HUMAN-COMPUTER INTERFACE

By
Martin W. Maranski

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2000

APPROVAL PAGE

A METHOD OF TRACKING EYE MOTION
FOR HUMAN-COMPUTER INTERFACE

Martin W. Maranski

Dr. Raashid Malik, Graduate Advisor 	 Date
Visiting Professor of Electrical and Computer Engineering, NJIT

Dr. Yun-Qing Shi, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

rank Shih, Committee, Member 	 Date
Professor of Computer and Information Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Martin W. Maranski

Degree:	 Master of Science in Computer Engineering

Date:	 May 2000

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2000

• Bachelor of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 1999

Major:	 Computer Engineering

To my family for getting me here,

and to my friends for pushing me beyond

ACKNOWLEDGMENT

I would like to express my appreciation to Dr. Raashid Malik, my research supervisor,

who helped me find the right track in this project, as well as assisting me along my path

in my degree in other ways. Special thanks are also given to Dr. Yun-Qing Shi and Dr.

Frank Shih for participating in my committee.

I would also like to give thanks to Ms. Brenda Walker and Dean Ronald S. Kane for their

help in the final days of this endeavor, and to my fellow graduate students in the

Computer Engineering field.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.1.1 Approach 	 2

1.2 Background Information 	 2

2 OBTAINING THE IMAGE	 5

2.1 Camera and Capture Board 	 5

2.1.1 Finding the Eyes 	 6

3 IMAGE PREPROCESSING 	 7

3.1 Color Filtering 	 7

3.2 Edge Detection 	 8

3.2.1 Roberts, Prewitt, and Sobel Operators 	 9

3.2.2 Use of Vertical Filters 	 10

3.3 Other Manipulations 	 11.

4 FEATURE EXTRACTION 	 13

4.1 The Hough Transform 	 13

4.1.1 The Slope-Intercept Model 	 14

4.1.2 The Normal Model 	 .14

4.2 The Circular Hough Transform. 	 16

4.3 Application to the Eye Tracking Problem. 	 19

4.3.1 Refinements and Optimizations 	 20

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.3.2	 Statistical Analysis 	 21

5 POSTPROCESSING AND BEYOND ..24

5.1 Spatial Transforms 24

5.2 Speculation on Hardware Implementations 	 25

6 CONCLUSIONS 	 27

APPENDIX A DBS DFG/LC1 CAPTURE BOARD INFORMATION 	 28

APPENDIX B C++ AND MATLAB FUNCTIONS 41

REFERENCES 	 53

viii

LIST OF TABLES

Table	 Page

4.1	 Details of Statistical Analysis 	 23

A.1 Color formats of DFG/LC1/2 Video Capture card 	 32

A.2 Data structure of DFG/LC1 EEPROM 	 33

ix

LIST OF FIGURES

Figure Page

3.1 Color layers in the image 	 7

3.2 Different types of edge detection filters 	 9

3.3 Various edge-detection algorithms applied to the test image 	 10

3.4 Horizontal and vertical filtering using Prewitt and Sobel operators 	 11

4.1 xy plane and parameter space for Hough transform 	 15

4.2 The normal model Hough transform 	 16

4.3 Circular Hough transform in 2D and 3D 	 17

4.4 Results of Hough transform test on 2, 3, and 4 points 	 	 18

4.5 Test image processed with Hough transform 	 19

4.6 Sequence of processed images, right and left sides 20

5.1 Simplified diagram of eye for image-space conversion. 	 25

CHAPTER 1

INTRODUCTION

Output and input govern the world of computers. In general, output devices include

printers, speakers, and monitors; the input device takes many forms, but the majority of

them involve manually moving one item relative to another. There are other methods, of

course, such as voice recognition; but these, while useful, do not accomplish quite the

same goal as moving a mouse or joystick. In order to move the pointer across the screen,

something else has to move across something else, whether it be the mouse moving

across the pad or the stylus moving across the tablet. But what about the iris of the eye

moving across its surface? What about a where-you-look-is-where-you-point interface?

In order to accomplish this goal, the input device must have the means to track the

motion of the eye. This goal is worth pursuing, not only for the purposes of creating a

convenient way to interface with the computer, but more importantly to give more

computer access to the handicapped or injured who cannot operate any of the current

interface devices.

1.1 	 Objective

The purpose of this thesis is to discover a reliable method of tracking the motion of the

iris in a sequence of frames showing an eye. It is understood that tracking the iris is only

one step in the attainment of the goal stated above, but it is the key step. Specific

information will be given regarding a method to track the iris and its effectiveness, and

more general information will be provided regarding steps leading to and following this.

1

2

1.1.1 Approach

In order to accomplish the ultimate goal of transforming eye motion into motion of a

pointer on a computer screen, there are a number of things that must be done. First, the

position of the eye must be captured with a camera or other imaging device. Second, the

image must be manipulated with various filters to help the process of analyzing it. Third,

the information about the eye's position must be extracted from the still images and

analyzed. This is the step that will receive the most attention in the sections to follow.

Fourth, the position of the pointer must be inferred from the data gathered in the third

step. And fifth, this process must be performed fast enough to make this a useful

pointing device. As this is more of a proof of concept than the invention of a new

pointing device, this fifth part is left open to the assumption that the processes described

can be implemented in specialized hardware for the purposes of increasing the processing

speed. Some possible methods for implementing it will be discussed, however. Each of

the other steps will be described, along with simplifying assumptions and potential

problems, in the chapters that follow.

1.2 Background Information

There has been a good deal of research into image enhancement, manipulation, analysis,

and interpretation already. The methods used here are not new in themselves; their

application to this problem, however, has not turned up in a cursory literature search.

New developments are made constantly in improving the accuracy of the feature

extraction methods used here [I3]. Also, though all the testing done for these

experiments was done in Matlab for ease of use, there has been extensive use of other

3

languages for these purposes; functions to perform some of the basic manipulations

described here can be found written in C, which in an actual implementation might be

more easily assembled for use on which ever hardware platform would be used [11].

More complicated functions could be easily written or derived from basic ones already

provided.

The practice of using a passive preprocessing stage followed by an active feature

extraction stage is a tried and true method of image processing [1]. Many other methods

of performing each step exist; the arrangement described here was chosen primarily for

their simplicity and direct applicability to the specified problem. As an example, the

edge detection methods used here could have been replaced by others using the frequency

domain rather than the gradient method; however, these were not used because of the

additional steps and processing needed to switch back and forth between the two

domains.

Another approach that could have been explored is the use of artificial intelligence

technology to analyze the images. Bayesian or neural networks could be trained to

recognize certain features over time, but this is a much more complicated process than

that described here [9]. An approach using a hybrid of both the transform methods and

artificial intelligence technology is suggested in a later section, using the transforms to

gather the data and a neural net to interpret it.

In the area of hardware implementation, there has been much work in massively parallel

processing and DSPs which could be used for an efficient implementation of this

technology. One area which draws some attention, however, is the possibility of using

optical processors to perform the manipulations. These provide the capability of both

4

performing the Hough transform and housing an artificial neural network to interpret the

results [3]. Exciting new technologies with potential for use in this area are being

developed on a daily basis, so it is possible that this technology could be seen at any time.

CHAPTER 2

OBTAINING THE IMAGE

The first step towards analyzing an image or frame is to acquire it. In general, there are

not many options here; a camera and a capture board are needed, or a camera that can

interface directly with the computer. But specifically, there are many options; see [4] for

a detailed analysis. Setting aside the technical details, there are other questions. Should

the camera work in the visible spectrum? Using ultraviolet or infrared might yield better

results.

2.1 Camera and Capture Board

In an ideal situation, a high-resolution capture device would be used, dynamically

positioned in such a way as to continually monitor one or both eyes alone, perhaps even

another spectrum besides the visible light range. For the purposes of this experiment,

however, the capture device used is a simple CCD color camera with a maximum

resolution of 640x480 pixels, mounted near a monitor. Focus and zoom are manual, with

a minimum focal length somewhat inferior to the true requirements of this problem. On

the computer end of the input, a DBS DFG/LC1 video capture card was selected. This

device offers all the features required by the application, particularly an analog input for

the camera and a relatively simple IDE programming interface and libraries provided by

the manufacturer. It has a number of additional features, such as DirectX buffering and

overlay capabilities, which were not used but could possibly be of use in future

incarnations of this project. For ease of testing purposes, the slower, memory-direct

5

6

capture method was used for more direct importation to Matlab. A summary description

of the capture board, along with relevant functions from the provided libraries is included

in Appendix A. Procedures written in C-H- and Matlab to interface with the camera are

presented with other custom functions in Appendix B. These procedures are not

complicated; they merely make use of the provided libraries to prepare and shut down the

camera, as well as capture images into memory. With the function descriptions of

Appendix A and the code for the custom procedures the methods for doing so should be

self-explanatory.

2.1.1 Finding the Eyes

In the scope of this investigation it was assumed that the position of the camera relative to

the target's head would remain constant. This is not an unreasonable assumption as two

very likely applications of this technology would involve the target being stationary due

to injury or wearing a lightweight headset containing the camera. For this reason the

general location of the eyes in the captured picture was ignored. In the cases presented,

the image was manually cropped to a reasonable area both for improved speed and for

focus reasons; the manual focus on the camera would not allow it to be placed any closer

or zoom in any further towards the target. Cropping was not purposely done in such a

way as to throw off the algorithm's results one way or another. For the single test image

used the cropping was done to best display the eye; each subsequent set of frames used

for statistical analysis was cut to a specified size, from coordinates visually selected from

the first frame in the set.

CHAPTER 3

IMAGE PREPROCESSING

Once the image of the eye has been captured and ported to Matlab for processing, the true

work of the algorithm begins. There are a number of different processing techniques that

can be applied to the image prior to attempting the feature extraction essential to the

algorithm. Several of these are examined here and discussed with regards to their relative

values to the test images to which the algorithm was applied. While this stage of the

algorithm is not particularly processor-intensive, it is nevertheless important.

3.1 	 Color filtering

The first available method of simplifying the image for feature extraction is the use of

color filtering. This is perhaps the simplest method, but can possibly yield useful results.

Figure 3.1 shows the effects of color filtering on the first test image.

Figure 3.1: Color layers in the image.

Color filtering is achieved by simply separating the color planes in Matlab's RGB image

format, which the capture function produces. Removing hue and saturation values from

the image information using the Matlab function rgb 2 gray flattens the three layers to

7

8

get the gray-scale version of the image. As can be seen from the figure, some color

layers give better definition than others; an attempt was made using this to locate the

general area to be processed by looking for the whites of the eye, but was unsuccessful.

3.2 Edge Detection

The first major step towards feature extraction is the use of edge detection to eliminate

useless information from the image. Unfortunately, some algorithms eliminate too much

while others leave behind too much. Therefore, selecting the correct edge detection

algorithm is essential to producing good final results.

Most simple edge-detectors work by applying a small filtering matrix to a gray-level

image, which is meant to approximate the 2-dimensional derivative, or gradient, of the

image [2]. In general, this is the way they are derived. First, we want to approximate the

magnitude of the gradient of the picture, or

where f(x,y) is the 2D image function. The simplest way to do this is by just taking the

difference between pixels in the surrounding areas, as in figure 3.2a, hence the use of a

small filter. Using that assumption, the above equation can be simplified to the much

more manageable

But since the filter is to be applied to each pixel in the image, having to constantly take

the square and square root of values in the image is not acceptable if the processing is to

be reasonably fast. Therefore, another approximation can be made.

9

This is now much more reasonable in terms of computational speed. This is not the only

way of doing things, of course; the next section deals with three standard sets of operators

that are often used as approximations to the gradient.

3.2.1 Roberts, Prewitt, and Sobel Operators

The Roberts operators are a set of similar 2x2 filters that, when used in conjunction, can

produce fairly good results. The only difference between the above equations and those

for the Roberts operators is that the operators use a cross-gradient, finding 4 — z9 and z6 —

z8 instead [8].

However, even-sized filters are awkward; it is much easier to use an odd-sized filter so

that it has a center pixel which is being affected. A 3x3 extension to the above

approximation to the gradient, centered on 4, is

Figure 3.2: Different types of edge detection filters [6].

10

These are known as the Prewitt operators, and the filters can be seen in figure 3.2c. The

Sobel operators are similar to the Prewitt ones, differing in that they try to approximate a

slightly different pattern, placing more emphasis on 4-connected neighbors [6].

As a test of effectiveness, these sets were applied to the test image shown above. The

results are shown in figure 3.3.

Figure 3.3: Various edge-detection algorithms applied to the test image.

32.2 Use of Vertical Filters

It can be fairly easily seen that the resulting binary images are a bit too confused for any

practical use. Luckily, there are alternatives. Rather than applying the full operators, it is

possible to apply only one from each set, as shown in figure 3.4. The reason for the

improved appearance is that most of the clutter in the above images is from various

horizontal edges. By using only half of the Sobel or Prewitt operators, only horizontal or

vertical edges are detected. This results in a pair of images for each set of operators, one

11

with the horizontal clutter and little useful information, and the other showing quite

clearly the outline of the iris and eyelid, which are useful to further steps.

The blue-filtered version is obviously too noisy to be of any real value, but the other three

show promise. Also, in general, the vertical Prewitt operator seems to yield better results

than the vertical Sobel operator. Therefore, future operations will be limited, for the most

part, to using only the vertical Prewitt operator with the green layer of the image.

Figure 3.4: Horizontal and vertical filtering using Prewitt and Sobel operators.

3.3 	 Other Manipulations

There are other things that can be done to further enhance the visibility of the contours in

these images, such as dilation and thinning to yield a skeletonized version of the above

images. While these manipulations are of some use at times, in this particular situation

the increase in quality of the output information does not merit the time spent on the

operations. Also, some of the enhancements might possibly even hinder the use of the

Hough transform during feature extraction due to the thinning not resulting in circular

forms. Though some testing was done in this area, it was discarded for that reason.

12

CHAPTER 4

FEATURE EXTRACTION

The key to properly following the motion of the eye is to identify certain features of the

eye and make use of their coordinates in the image space. This is, of course, the most

complicated part of the process. The image is no longer being merely filtered to make

certain information more prominent, but rather being actively searched for patterns that

fit the specified requirements; this is, of course, the next logical step after edge detection

[12]. This process is by nature time-consuming, and is the part of the algorithm for

which hardware acceleration is most needed. There are a number of different methods

that can be used for feature extraction. The first method considered was object labeling,

which searches through a binary image for connected regions and assigns a label to each.

This would be more useful in a stricter environment, but in this situation there are too

many irregularities in the image. Lighting problems, especially, contribute to the loss of

information about separate objects. For this reason, a more geometric approach was

taken, the use of the Hough transform.

4.1 The Hough Transform

The Hough transform is a relatively easy concept to grasp. It starts by taking the

geometrical equation of the feature to be found and then inverts it so that x and y are

constants in the equation. In this way an inverse function space can be found, and

intersections in this space reveal the constants associated with the equation of the features

13

14

discovered in the original image. A generalized version of this could hypothetically be

the way in which the brain interprets what it sees [10].

4.1.1 The Slope-Intercept Model

Perhaps the easiest form, the slope-intercept Hough transform is a transformation from

the (x,y) coordinate system to an (a,b) system. Basically, given that the standard slope-

intercept equation of a line is given by:

the basic Hough transform is just (4.1) rewritten as

In this way, the Hough transform creates a second image, an array of accumulator cells,

in which each point on the original image becomes a line. The lines are added to the

transform one at a time, and anytime there is an overlap the value of that cell is

incremented. By looking at the values of the cells of the transform we can determine

through which points the most lines cross; the a and b values of these points are the

slopes and intercepts of the lines detected by the transforms. This approach is shown in

figure 4.1 [6].

4.1.2 The Normal Model

Unfortunately, it is not quite that simple. Both the slope and intercept of the line

approach infinity as the line approaches the vertical. The way this is commonly solved is

by using the normal representation of a line, which gives the shortest distance from the

15

Figure 4.1: xy plane and parameter space for Hough transform.

origin to the line and the angle at which this distance is measured. The standard normal

representation is given in (4.3).

This maintains the advantage of only needing a two-dimensional Hough transform, but

does not tend towards infinity at any time. By simply stepping through values of 0 from

-it to it a number of sinusoidal curves can be derived in the p 13 plane. This can be seen

roughly in figure 4.2b. Once again, the accumulator cell with the highest value indicates

the appropriate p and 0 for the detected line. If multiple lines are to be found, a threshold

can be established in the Hough transform to allow any feature with more than a certain

number of points comprising its shape to be detected [14].

Due to the digital nature of the transform, some allowance must be given for rounding

errors resulting in cells not reaching as high a value as they should, and therefore a

feature not being detected. There are several ways to prevent this; one is to simply apply

16

Figure 4.2: The normal model Hough transform.

an averaging blur filter on the transform as if it were an image. Another method when

rounding the transform's values to fit them into cells is to round both up and down to

cover a width of two cells with each point.

This shows that the Hough transform is useful in detecting lines in an image, a very

useful function when dealing with assembling mechanical parts, following lines on a

road, or other applications which often provide many hard, straight edges. However, in

order to track the motion of the human eye, a more organic shape is needed.

4.2 The Circular Hough Transform

The most logical geometric figure to look for in the eye is a circle. Both the iris and pupil

are roughly circular and shift when the eye swivels. Also, a circle is typically specified

by (4.4), where a and b are the center of the circle and r is the radius.

The fact that the equation of a circle includes the center is important, as the center of the

iris or pupil is what the feature extraction step is meant to find.

17

The first step in creating a circular Hough transform is, as in previous cases, to invert the

equation to make x and y constants. This is fairly easy with the equation of a circle, as

the (x-a) and (y-b) terms are being squared so sign doesn't matter. The resulting equation

is shown in (4.5).

It is easy to see from this equation that the Hough transform will result in intersecting

circles, but this is not an easy equation to use in an algorithm. There are three variables,

for one thing; in order to use this equation we would need to step through each variable

one at a time to fill the three-dimensional array for the transform. Instead, using the fact

that the transform itself takes the form of circles, it is best to alter the equation [7]:

Using 0 as a parameter, we can step through it from 0 to 27t, and through r from 0 to its

maximum. The resulting transform will be a three-dimensional array containing cones,

Figure 4.3: Circular Hough transform in 2D and 3D. Note intersection point.

18

which at the r=0 plane each originate with its point on one of the initial pixels from the

image. The intersections of the cones show where circles can be placed that touch the

various points.

As a test of this theory, a short routine was written in Matlab to discover the accuracy of

the transform. Code for the final test routine can be found in Appendix B. The results

were good. For two points and a threshold of 2, a line of possible circle centers bisected

the line between the two points. Three points with a threshold of 3 yields a good match.

For four points, however, rounding problems were encountered. These were solved by

rounding both up and down in the transform space, as is seen in the code provided in

Appendix B. After this, the transform functioned properly. Results from the test routine

can be seen in figure 4.4.

Figure 4.4: Results of Hough transform test on 2, 3, and 4 points.

Of course, the fact that the Hough transform for a circle is a three-dimensional causes

some difficulties with the speed of the process; an even more accurate version could be

used which would detect ellipses rather than circles, but this would require an array with

an even higher dimensionality [13]. There are, however, a number of methods to

decrease the processing time of the circular function defined here, which will be covered

in a later section.

19

4.3 Application to the Eye Tracking Problem

These tests show that the Hough transform is fully capable of fitting a circle to pixels in

an image. But in order to analyze properly the motion of the human eye, the algorithm

needed to be tested on a more complex image than just a few pixels. To test it further,

the transform was run on the same test image of an eye used previously. The results

looked promising; although with a threshold of 20 multiple circles were found, the

majority of them were clustered around the location of the iris. Figure 4.5b shows this

clustering; the green circle is the average of those found. Next, the range of radii over

which the procedure searched was reduced in an attempt to cut down on unnecessary

data. By reducing the range from a 0-20 pixel radius down to a 10-20 pixel radius, the

processing time is reduced and potential erroneous data is removed. The results of this

are not shown in the figure, as there is no real improvement in clustering. This is because

the maximum radius was not reduced and circles smaller than 10/π cannot be detected

with a threshold of 20 even if all points on the circle are shown. Another method of

improving the output of the algorithm is to raise the threshold to the maximum

encountered in the transform. This was done, and gives a definite improvement over the

previous tests. The results of this are shown in figure 4.5c.

Figure 4.5: Test image processed with Hough transform

20

But this is not enough to claim to successfully track the motion of the eye. The next step

in the development of the method was to capture a sequence of images with the eye in

different positions to see if the algorithm could successfully report the position of the iris

with a reasonable margin of error. The results are good given certain conditions. If the

camera angle is correct and the range of motion required by the eye is not too great, the

method will deliver results most of the time. However, if the angle is off, or if too much

of the iris is obscured by the eyelid, the results vary wildly. Test results yielded a fairly

good accuracy if the camera was aligned nearly perpendicular to the eye. Figure 4.6

shows an excellent test set, with the camera located approximately two feet from the

target, offset by about half a foot. Both right and left eyes are included for comparison of

accuracy at different viewing angles; note that the algorithm can also be confused by

extraneous contours from the background and other sources.

Figure 4.6: Sequence of processed images, right and left sides

4.3.1 Refinements and Optimizations

The method was improved over the test algorithm in a number of ways, some relating to

time, some to accuracy, and some to both. Several of these were already discussed.

First, as mentioned previously, the range of the radius sought by the algorithm need not

be so vague. By assuming that the radius of the iris is not going to change drastically

from frame to frame, it is only needed to search a wide area for the first of a sequence of

21

frames, then narrow the search space to a narrow band centered at the previous radius.

This cuts down the chance that some other circular pattern will emerge during the

sequence, since the probability that a random feature would be the same size as the iris is

much less than that it falls within a range from 20 to 0. It also reduces the processing

time needed, since the depth of the Hough transform can be reduced so drastically.

Memory usage is not reduced, however, since the first in a series of frames still needs to

be processed by the complete transform.

Second, only the maximum value of the Hough transform is needed; if this yields more

than one answer, then an average of these produces a reasonable response. This method

was already discussed in the previous section.

Third, the angle between the camera's line of sight and the normal to the plane of the eye

should be as small as possible. Since the human face is not flat, the camera does not need

to be sitting inside the monitor for this to work; next to it seems to work best; above it

works also, but results in the eyelashes obscuring the iris in some cases.

Fourth, the lighting conditions cannot be such as to obscure details. The test sets were

generated under an overhead fluorescent light with a 60W desk lamp illuminating the

camera's field of view. These conditions were chosen arbitrarily for two reasons; it is not

far off from what can normally be found at a computer desk, and it was what was readily

available.

4.3.2 Statistical Analysis

A statistical analysis of a sample set of 120 images processed yielded 106 hits, 6 misses,

and 8 cases where the guess was close, but off. This results in an average true accuracy

22

of 88.3%. The data comprising this statistical figure was accumulated using the

optimizations described in the previous section. The code used in the tests is found in

Appendix B. Here there are two versions of the Hough transform function besides the

routine to generate a test pattern and measure it. The first function is the initial frame

function, which searches a radius space of 10 to 20 pixels. Additional calls to the Hough

transform used the second function, which searches a much narrower band of radius

values. The data was collected in sets of six images, each 140x100 pixels, captured under

identical lighting and camera conditions. The only major change from frame to frame

was the direction of the target's attention, which varied either randomly around the

computer screen or following the borders of the monitor. The criteria for success were

that visually, the iris in the image shared the majority of its visible circumference and its

center with that plotted by the algorithm. If the plot did not trace the outlines of at least

50% of the visible iris, or if the center was skewed, but still close, or if the average was

off because of background information, the image was counted as a close miss. If the

plot was completely off, having latched on to some other feature, the image was counted

as a complete miss. Table 4.1 gives a more detailed breakdown of each of the twenty sets

of six images each. The average was calculated as:

Set Hit Close Miss
1 6 0 0
2 4 1 1
3 6 0 0
4 6 0 0
5 4 1 1
6 6 0 0
7 6 0 0
8 6 0 0
9 6 0 0
10 4 1 1
11 6 0 0
12 4 0 2
13 6 0 0
14 6 0 0
15 6 0 0
16 5 1 0
17 6 0 0
18 4 1 1
19 6 0 0
20 3 3 0

Total 106 8 6
Table 4.1: Details of Statistical Analysis

23

CHAPTER 5

POSTPROCESSING AND BEYOND

After the coordinates of the center of the iris have been successfully computed, the work

of the Hough transform is done. But in order to develop useful information from this

data, more computations have to be made. And these computations are useless if they

cannot be implemented in hardware. This section deals with the nature, if not the

specifics, of the calculations to be made, as well as a look ahead at the nature of the

devices that could utilize this data.

5.1 	 Spatial Transforms

The first items to consider is are the post-processing calculations. These could be as

simple as a matrix transformation or as complicated as a mathematical model of an

eyeball, depending on the required accuracy. In any case, other features on the face may

need to be located, much in the same way as the iris, merely to keep track of the

background for positioning. The corners of the eye are good points to search for, but any

feature that remains constant relative to the face will do for these purposes. In the

simplest case this information can be used to construct a simple spatial transformation

matrix based on a few calibration points. If the image space is considered to be two-

dimensional then all that needs to be done is to find the two corners of the eye and make

a few calculations. Observe the diagram in figure 5.1. It is assumed that the points

labeled A, B, and C have been found using feature extraction methods. D has been

computed by taking the x-coordinate of C and the y-coordinate of B. A set of polar

24

25

coordinates in the image space can be extrapolated by computing the angle ABD and the

distance AB and BC. These coordinates, once converted to rectangular space, give the

image-space coordinates of the pupil. If several calibration points are taken, it would be

no trouble to interpolate between screen-space and image-space, using a rubber-sheet

transform to align the image-space coordinates with those of the screen-space [15].

Figure 5.1: Simplified diagram of eye for image-space conversion

This simple assumption may work for some applications, but if more accuracy is

required, it becomes necessary to develop a better method of conversion. One way of

doing so would be to construct a mathematical model of the movement of a point on a

sphere and map the data from the Hough transform on to this. Another method would be

to train a neural network to perform the conversions; there have been a number of books

and papers written about the subject of using neural networks in image processing. For

more information, consultation of [3] or [9] would be beneficial.

5.2 Speculation on Hardware Implementations

The basic requirement of a hardware implementation of this algorithm would be the

ability to perform the Hough transform and spatial conversions quickly. An array of fast

DSPs could be programmed to do the job quickly and efficiently. If the camera is fixed

26

in relation to the computer and the user is immobile then the number crunching ability of

the DSP array is probably all that is required. But in order to make a more complicated

unit with a small camera mounted in a headset or glasses, more information is needed. In

addition to the data from the camera, at least three local GPS-style positioning devices

would be required, as well as at least three transmitters. In this fashion, the camera and

DSP array could calculate where the eye is looking relative to a frame of reference

defined by triangulation from the positioning devices.

To make the device more error free at the cost of more processing, two cameras could be

used, one trained on each eye. In this way if one should show erroneous data the other

could correct it. If the two cameras are mounted in a headset, only one set of three

positioning devices needs to be included, as both cameras could be working in the same

coordinate system.

CHAPTER 6

CONCLUSIONS

This method of tracking the motion of the iris is very promising, and represents a major

step in the process of creating a hands-free pointing device. It does pose several

problems, however. Although an accuracy of 88.3% is not bad, it is not nearly as

accurate as hand-held devices. Using an elliptical Hough transform rather than the

circular one demonstrated in this document could increase the accuracy of this figure, but

this would come at the cost of even more memory and processing power. Other options

might be to use a camera with a higher resolution, or one capable of focusing at a much

shorter distance. Using images taken in the infrared or ultraviolet ranges might also help,

though this has not been tested. In addition to this, there are other obstacles to be

overcome before such a device could be produced, mainly in the areas of locating the eye

and in performing spatial transformations to correlate the position of the iris to the

desired position of the pointer on the screen. Nevertheless, the method described in this

document overcomes the primary obstacle to realizing this goal.

27

APPENDIX A

DBS DFG/LCI VIDEO CAPTURE BOARD INFORMATION

Note: these are excerpts from 151, available at http://www.dbs-imaging.com

The DFG/LC1 and DFG/LC2 are great value 32 bit frame grabbers for industrial, medical

and multimedia applications in monochrome and color. Video sources with S-VHS (YC)

and CUBS outputs (composite video) are supported. The data transmission to the PC or

to the VGA board is carried out via a DMA transfer in burst mode and therefore places

only a very small load (if any) on the CPU. The images are available in 24-bit true color

quality.

In order to help you use the DFG/LC1 and DFG/LC2 in your own programs with

Windows 95/NT, a SDK (software development kit) is delivered with the product.

A.1 Features of the DFG/LCI

• Multi standard support (CCIR, PAL, NTSC, RS170, SECAM)

• Support for all VGA resolutions

• Color conversion from YC (YUV) to RGB in real-time

• RGB 24 bit and RGB 32 bit true color support

• Full video resolution of 768x576 at 50Hz (PAL/CCIR) and 640x480 at 60Hz

(NTSC/RS170)

• Non destructive overlay support with DirectDraw

• Support for color manipulation as well as image manipulation

• Real-time hardware scaling

28

29

o EEPROM to which data may be written

® Programmable interface for Windows NT and Windows 95 (DLL)

• Save images in BMP format

® Direct data transfer to VGA card and the PC's system memory

• PCI bus master DMA interface

A.2 Possible image output modes

A.2.1 Bitmap mode (BMP/DIB)

Once the DFGDEMO demonstration program has been started, as described in the last

chapter, the bitmap mode is activated. The image from the DFG/LC1 or DFG/LC2 is

stored in the main memory of the PC. The live video display has to be programmed by

the user. This should be done by using the CPU to generate a bitmap and then copying it

to the VGA board. This mode has the lowest refresh rate. The great advantage of this

mode is that it is compatible with all VGA cards and it is possible to access the image

data in the memory. Overlay functions have to be programmed by yourself. As Windows

takes over the control of the image display, the image can be completely or partly

overlapped by many other windows and dialog boxes.

A.2.2 DirectDraw back buffer mode

In this mode, the image data is written to the non-visible area of the VGA card. The

requirements for this are i) the DirectDraw driver, ii) sufficient memory on the VGA card

and iii) back buffer support from the VGA cards' manufacturer. If a back buffer is not

available on the VGA card, it will automatically be stored on the PC. Exactly the same

30

goes for overlay data. Under ideal circumstances there would be image memory as well

as overlay memory in the back buffer of the VGA card. Then the VGA chip does a bit

block transfer of both memory areas to the visible area of the VGA board during the

VSYNC period. The result is a live image display with overlaid text and graphics. With

Windows 95 and Windows 98 this mode runs with almost all VGA cards. With Windows

NT the background memory is not made available by the VGA card. The Revolution

graphics card from Number Nine allows the background memory to be accessed. The

image refresh frequency and the load on the CPU are dependant upon the color depth

setting and upon the location of the back buffer (i.e. either the main memory of the PC or

the image memory of the VGA card.) With the Revolution and Windows NT it is possible

to achieve a near real-time image display with an overlay.

A.2.3 DirectDraw primary surface mode

The video image is digitized straight in the visible area of the VGA card. In this mode the

highest image refresh rate and fast live image display are possible. It is not possible to

overlay images in this mode, as the image data is immediately overwritten by the next

image. Unlike many other frame grabber cards, dialog boxes and other windows can be

placed over the live image without affecting it. To achieve this, clipping lists are

transferred to the board on a second DMA channel and those areas of the video image are

left out while displaying.

31

k2.4 DirectDraw overlay surface mode

In this mode, a live image with an output speed of the primary surface mode and at the

same time display of the overlay can be achieved. One further advantage is that the VGA

cards which offer these hardware properties are cheaply available. The video image is

digitized to a non-visible area of the VGA board. This area always has to be on the VGA

board. By defining a key color and thawing with that color to the output window, the

video image will be displayed only in those parts where the key color is used. When the

window is filled with the key color, the video image is displayed completely. Graphics

and text elements which use a different color will not be destroyed (non-destructive

overlay). The fading is done by the VGA chip and requires hardly any CPU cycles. This

mode is not supported by all VGA chips and only in 8, 15, and 16 bit mode. The

following VGA chips are known to support this mode:

• S3 Virge VX (86C988)

• S3 Virge DX (86C375)

• S3 Virge GX

• S3 Virge GX2

• 3D Rage Pro

The best text and graphics overlay is achieved with the following video mode:

Mode = IS_SET_DM_DIRECTDRAW | IS_SET_DM_ALLOW_OVERLAY

If the video image should be scaled to the size of a window, the following can be used:

Mode = IS_SET_DM_DIRECTDRAW I IS_SET_DM_ALLOW_OVERLAY
IS_SET_DM_ALLOW_SCALING I IS SET DM ALLOW FIELDSKIP

32

So as to prevent the interlace effect with moving images, and extra mode can be

activated when scaling. This is achieved with:

Mode = IS_SET_DMDIRECTDRAW | IS_SET_ DM_ALLOW_OVERLAY|
IS_SET_DM_ALLOW_SCALING

A.3 Color and save formats

Each of the color formats which the DFG/LC2 supports uses a different format to save

images, as indicated in the following table:

Format DWORD
Pixel Data [31:0]

Byte 3 	
[31:24]

Byte 2
[23:16]

Byte 1
[15:8]

Byte 0
[7:0]

RGB32 dwO Dummy R G B

RGB24
dw0 B1 RO GO BO
dw1 G2 B2 RI G1
dw2 R3 G3 B3 R2

RGB16 dw0 {R1[15:11], G1[10:5], B1[4:0]1* {R0[15:11], G0[10:51 B0[4:0]}*
RGB15 dw0 {0, R1[15:11], G1110:5],

Cr0
B1[4:0]1*

Y1
{0, R0[15:11], G0[10:5],

Cb0
B0[4:0]}*

YO
YUV422

dwO
dw1 Cr2 Y3 Cb2 Y2

YUV411
dw0 Y I Cr0 Y0 Cb0
dw1 Y3 Cr4 Y2 Cb4
dw2 Y7 Y6 Y5 Y4

Y8 dw0 Y3 Y2 Y1 YO
* With the file formats RGB16 and RGB15, from the internal 8 bit R,G and B colors, the upper bits, instead
of using all of the available bits, are used.

Table Al : Color formats of DFG/LC1/2 Video Capture card

A.4 Description of driver library

The driver for the DFG/LC2 has been written with the Microsoft Visual C/C+ compiler.

For developers who work with Borland C/C++ a definition file (falconbc.def) is copied to

the \develop\bc directory when the driver is installed. This definition file has to be added

to your Borland project. For VisualBasic developers, an example project file is available

in the \develop\vb directory. Likewise for Delphi users there is a file with a choice of

function definitions in the \develop\delphi directory.

33

A.4.1 BOARDINFO data structure of the EEPROM

Using the is_GetBoardInfo() function the data which has been written to the DFG/LC 1

can be read out. The data structure is build up as follows:

char 	 SetN o I 12] 	 Card's serial number
char 11)1201 	 "DFG/LC1 DBS GmbH"
char 	 Version[10] 	 "V1.00" or later version
char 	 Date[12] 	 "11.11.1999" system date of end test
char 	 Reserved(1 0] 	 reserved

Table A.2: Data structure of DFG/LC1 EEPROM

A.4.2 Function list DFG/LC2

Initialization and termination
is_InitDFG/LC1

		

Hardware and image memory initialization
is_ExitDFG/LC1 	

	

Closes the card and de-allocates memory

Image acquisition and memory management
is_AllocImageMem 	 	 Allocates image memory

i s_CaptureVideo 	

	

Acquires live video
is_CopyImageMem 	

	

Copies image to memory as defined by programmer
is_FreeImageMem 	

	

Frees allocated image memory
is_FreezeVideo 	

	

Acquires image and writes to destination address

				

(a.k.a. Snap)
is_GetActiveImageMem

	

Returns number of active image memoryis
_GetImageMem 	

	

Returns pointer to image memory
is_GetImageMemPitch 	 Returns line offset (n) to (n+1)
is_HasVideoStarted 	 Has the image acquisition started?
is_InquireImageMem 	 Returns image memory's properties
is_IsVideoFinish 	 Has the image acquisition finished?
is_SetImageMem 	

	

Makes image memory active
is_StopLiveVideo 	 Stops live video

Double and multiple buffering

is

_AddToS equ enc e 	 Records image memory in sequence list
is_ClearSequence 	 Deletes sequence list
is_GetActSeqBuf 	

	

Determines the image memory which is currently

				

being used for the sequence.

34

is_LockSeqBuf 	

	

Protects image memory of the sequence from being

				

overwritten.
is_UnlockSeqBuf 	

	

Allows image memory of the sequence to be

				

overwritten.

Selection of operating mode and return of properties
is_BoardStatus 	

	

Gets event counter and counter value
is_GetBoardType 	

	

Gets type of board (DFG/LC1 or DFG/LC2)
is_GetColorDepth 	 	 Gets current color mode from VGA card

is_GetCurrentField 	 Returns currently active field (odd or even)
is_GetError 	

	

Calls error message
is_GetOsVersion 	

	

Calls operating system type
is_GetVsyncCount 	

	

Output of VSYNC counter
is_SetAGC

	

Turns on or off automatic gain control
is_SetBrightness 	

	

Sets brightness
is_SetCaptureMode 	 Sets acquisition mode
is_SetColorMode 	

	

Selects color mode
is_SetContrast 	

	

Sets contrast
is_SetDisplayMode 	 Selects image display mode
is_SetErrorReport

	

Activates or deactivates error output
is_SetGamma 	

	

Activates or deactivates gamma correction
is_SetHorFilter 	

	

Sets horizontal interpolation filter
is_Se tHue

	

Sets hue value
is_SetHwnd

	

Resets handle to output window
is_SetImagePos 	

	

Sets image position within image window
is_SetImageSize 	

	

Sets the size of the image
is_SetSaturation 	

	

Sets color saturation
is_SetScaler 	

	

Toggles scaler on and off; sets scaling ratio
is_SetSyncLevel 	

	

Sets sync level for critical video sources (VCR)
is_SetVertFilter 	

	

Sets vertical interpolation filter
is_SetVideoInput 	 Selection of video input signal
is_SetVideoMode 	

	

Selection of video standard
is_SetVideoSize 	

	

Sets the digital area of interest on the image

Reading from and writing to EEPROM
is_WriteEEPROM 	

	

Writes own data to EEPROM
is_ReadEEPROM 	

	

Reads own data from EEPROM
is_GetBoardInfo 	

	

Reads preprogrammed manufacturer's information

				

from board

Saving and loading images
is_SaveImage

	

Saves video image as a bitmap (BMP)
is_SaveImageMem

	

Saves image memory as a bitmap (BMP)
is_LoadImage

	

Loads a bitmap (BMP) image

Image output

is_

UpdateDisplay	

	

Displays refresh with DirectDraw

is_

ShowColorBars	

	

Displays color bars from pattern generator

is_

SetUpdateMode	

	

Sets the mode for the display refresh

Supplementary DirectDraw functions

is_

EnableDDOverlay	 Toggles DirectDraw overlay memory

is_

DisableDDOverlay	 Switches off DirectDraw overlay memory

is_

ShowDDOverlay	

	

Displays overlay memory

is_

HideDDOverlay	

	

Hides overlay memory

is_ GetDDOverlayMem	 Retrieves address of overlay memoryis_
GetDDOv1Surface	 Returns pointer to DirectDraw surface

is_

GetDC	

		

Retrieves the device context handle's overlay

				

memory

is_

ReleaseDC	

	

Releases the device context handle's overlay

				

memory

is_

SetDDUpdateTime	 Update cycle of image output with DirectDraw

is_

LockDDOve rl ayMem	 Enables access to overlay memory

is_

UnlockDDOverlayMem	 Disables access to overlay memory

is_

LockDDMem	

	

Enables VGA card to access the back buffer

is_

UnlockDDMem	

	

Disables VGA card to access the back buffer

is_

SetKeyColor	

	

Sets the keying color for the overlay display.

is_

Ov1SurfaceOffWhileMove	 Switches off overlay surface when the

				

window is moved
is PrepareStealVideo	 Initializes image stealing
is_StealVideo	

		

Steals image from a DirectDraw live mode

Event Handling (nur WinNT 4.0)
is_InitEvent	

		

Sets up event handler
is_ExitEvent	

		

Exits event handler
is_EnableEvent	

	

Enable object event
is_DisableEvent	

	

Disable object event

A.5 Description of functions

To aid the integration of the DFG/LC1 and DFG/LC2 into your own programs, the

functions from the driver library, which are shipped with the grabber, are described in

this chapter:

35

36

Function name: <name of function>
Syntax: Function prototype from the header file falcon.h
Description: Function description with cross reference to affected functions
Parameters: Description of the function parameters with range of values
Return value: Description and range of return value. If function returns
IS NO_SUCCESS (-1), the error can be called with the function is_GetError()

Function name: is_AllocImageMem
Syntax: INT is_AllocImageMem(HIDS hf, INT width, INT height, INT
bitspixel, char** ppclmgMem, INT* pid)
Description: is AlloclmageMem allocates image memory for an image with width,
width and height, height and color depth bitspixel. Memory size is at least:
size =[width * ((bitspixel + 1) / 8) + adjust] * height (for adjust see below)
Line increments are calculated with:

line = width * [(bitspixel + 1) / 8]
lineinc = line + adjust.
adjust = 0 when line without rest is devisable by 4
adjust = 4 - rest(line / 4) when line without rest is not devisable by 4

The line increment can be read with the is_GetlmgMemPitch 0 function. The start address
in the image memory is returned with ppcImgMem. pid contains an identification number
of the allocated memory. A newly activated memory location is not directly activated.
In other words, images are not directly digitized to this new memory location. Before this
can happen, the new memory location has to be activated with is_SetImageMem
After is_SetImageMem() a is_SetImageSize() must follow so that the image conditions
can be transferred to the newly activated memory location. The returned pointer has to be
saved and may not be used, as it is required for all further lmageMem functions. The
freeing of the memory is achieved with is FreeImageMem (). In the DirectDraw modes,
the allocation of an image memory is not required!
Parameters:
hf 	 Frame gabber handle
width 	 Width of image
height 	 Height of image
bitspixel 	 Width of image
ppcImgMem Contains pointer to start of memory location
pid 	 Contains the ID for this memory location
Return value: IS_SUCCESS, IS_NO_SUCCESS

Function name: is_ExitBoard
Syntax: INT is_ExitBoard (HFALC hf)

Description: is ExitBoard() cancels the active device handle hf and deallocates the data
structures and memory areas currently associated with the DFG/LC2. The image memory
which has been allocated by the user and which has not been released, is released with
is_ExitBoard.
Parameters:
hf 	 Frame grabber handle
Return value: IS_SUCCESS, IS_NO_SUCCESS

37

Function name: is_FreelmageMem
Syntax: INT is_FreeImageMem(HFALC hf, char* pcImgMem, INT id)
Description: is_FreeImageMem() deallocates previously allocated image memory. For
pcImgMem one of the pointers from is_AllocImgMem() has to be used. All other pointers
lead to an error message! The repeated handing over of the same pointers also leads to an
error message!
Parameters:
hf 	 Frame grabber handle
pclmgMem Pointer to the beginning of the memory
id 	 ID for this memory
Return value: IS_SUCCESS, IS_NO_SUCCESS

Function name: is_FreezeVideo
Syntax: INT is_FreezeVideo (HFALC hf, INT Wait)
Description: is 	 0 digitizes an image and transfers it to the active image
memory. In DirectDraw mode the image is digitized in the DirectDraw buffer (either on
the VGA card or in a back buffer). When working with ring buffering, image acquisition
only takes place in the first image memory of the sequence.
Parameters:
hf 	 Frame grabber handle
Wait 	 IS_DONT_WAIT 	 The function returns straight away

IS_WAIT 	 The function waits until an image is grabbed
10 < Wait < 32768: wait time in 10 ms steps (Wait = 100>1 sec) A

maximum of 328,68 seconds can be waited. This is
approx. 5 mins. and 20 secs). For 1 < Wait < 10
Wait becomes equal to 10.

Return value: S_SUCCESS, IS NO_SUCCESS or IS_TIMED_OUT if a time out takes
place.

Function name: is_InitBoard
Syntax:INT is_InitBoard (HFALC phf, HWND hWnd)
Description: is_initBoard() opens the driver and establishes contact to the hardware. If
the hardware is successfully initialized, this function allocates a handle to the frame
grabber. All of the following functions require this as their first parameter. If DirectDraw
is not used for image output, hWnd can be set to NULL. If several DFG/LC2 or DFG/LC1
frame grabbers are installed in one computer, each one is assigned its own, unique
handle.
Parameters:
phf 	 Pointer to the frame grabber handle
hWnd 	 Handle to the window in which the image is to be displayed
Return value: IS_SUCCESS, error code (see header file)

Function name: is_SetCaptureMode
Syntax: is_SetCaptureMode (HFALC hf, INT Mode)

Description: is_SetCaptureMode() sets the required digitizing mode. The acquisition of
even or uneven fields and totally interlaced video frames is supported. If the acquisition

38

3f half images is required and at the same time these images are to be displayed under
one another, the IS_SET_CM_NONINTERLACED paramater can be used.
Parameters:
Elf 	 Frame grabber handle

	

Mode 1 	 IS_SET_CM_ODD 	 Acquires odd half images

	

2 	 IS_SET_CM_EVEN 	 Acquires even half images

	

4 	 IS_SET_CM_FRAME 	 Acquires interlaced video images

	

8 	 IS_SET_CM_NONINTERLACED Acquires non-interlaced video
images

	

0x8000 	 IS_GET_CAPTURE_MODE 	 Retrieval of current setting
Return value: Current setting when called with IS_GET_CAPTURE_MODE else
IS_SUCCESS, IS_NO_SUCCESS.

Function name: is_SetColorMode
Syntax: INT is_SetColorMode (HFALC hf, INT Mode)
Description: is_SetColorMode() sets the required color mode with which the image data
is to be saved or displayed by the VGA board. For the first case it is important that,
depending upon the color mode which is used, the allocated image memory is large
enough. A 24 bit color image requires three times as much memory as an 8 bit
monochrome image. When accessing the image data, it is important to know how the
memory is arranged in each of the memory modes. Incorrect interpretation of the memory
contents leads to incorrect results. With the direct transfer to the VGA card's image
memory, it is important to ensure that the display settings correspond to those of the
DFG/LC1's color mode. Under certain circumstances the images can be displayed with
either the incorrect colors or they can become so distorted that it is impossible to
recognize what is actually being displayed.
Please note: The higher the pixel depth of the transferred images, the more load on the
PCI bus. It is always a good idea to select gray scale mode for monochrome images and
display the image at 256 colors.
Parameters:
hf 	 Frame grabber handle

	

Mode 0 	 IS_SET_CM_RGB32 	 32 bit true color mode; R-G-B-Dummy

	

1 	 IS_SET_CM_RGB24 	 24 bit true color mode; R-G-B

	

2 	 IS_SET_CM_RGB16 	 Hi color mode; 5 - 6 G- 5 B

	

3 	 IS_SET_CM_RGB15 	 Hi color mode; 5 R 5 G- 5 B

	

4 	 IS_SET_CM_YUV422 	 YUV4 :2:2 (no display possible with VGA
board)

	

5 	 IS_SET_CM_YUV411 	 YUV4 :1:1 (no display possible with VGA
board)

	

6 	 IS_SET_CM_Y8 	 8 bit monochrome image

	

7 	 IS_SET_CM_ 	 RGB8 8 bit color image; 2 R- 3 G- 2 B

	

0x8000 	 IS_GET_COLOR_MODE Retrieval of current setting
Return value: Current setting when called with IS_GET_CAPTURE_MODE, else
IS_SUCCESS, IS_NO_SUCCESS.

Function name: is_SetDisplayMode

39

Syntax:INT is_SetDisplayMode (RIDS hf, INT Mode)
Description: is_SetDisplayMode() defines the way in which images are displayed on the
screen. For real live video plus overlay, the DirectDraw overlay surface mode has been
introduced. The availability of this mode depends upon the type of VGA card used. Only
certain VGA controllers support this mode. The best known are the S3 Virge VX
(limitations apply) S3 Virge DX/GX/GX2 and the 3D RagePro Chip. This overlay mode
can be used with these VGA chips in 8, 15 and 16 bit VGA mode. True color (24 bit) is
not supported. In 8 bit VGA mode, the color mode has to be set to RGB15! The VGA
card should have at least 4MB on-board, as the overlay mode requires memory up to the
size of the current VGA resolution. For example: VGA with 1024x768x16 = 1.5 MB ->
OverlayBuffer with up to 1.5 MB required: VGA card with 4MB recommended
Example: is_SetDisplayMode (hf , Mode) ;
Bitmap mode (digitized in system memory):Mode=IS_SET_DM_DIB

DirectDraw back buffer mode (Overlay possible. See is_EnableDDOverlay)
Mode=IS_SET_DM_DIRECTDRAW

Allows memory storage in system memory:
Mode=IS_SET_DM_DIRECTDRAW |
IS_SET_DM_ALLOW_SYSMEM

DirectDraw primary surface modus (no overlay possible):
Mode=IS_SET_DM_DIRECTDRAW |
IS_SET_DM_ALLOW_PRIMARY

DirectDraw overlay surface mode (best live overlay):
Mode=IS_SET_DM_DIRECTDRAW |

IS_SET_DM_ALLOW_OVERLAY
Allows automatic scaling to the size of window:

Mode=IS_SET_DM_DIRECTDRAW |
IS_SET_DM_ALLOW_OVERLAY |
IS_SET_DM_ALLOW_SCALING

Avoid interlaced effect at y<288:
Mode=IS_SET_DM_DIRECTDRAW |
IS_SET_DM_ALLOW_OVERLAY

| IS_SET_DM_ALLOW_SCALING |
IS_SET_DM_ALLOW_FIELDSKIP

All other mode combinations are not valid!
Parameters:
hf	 Frame grabber handle
Basic mode
Mode 1	 IS_SET_DM_DIB	 Acquire image in image memory

2	 IS_SET_DM_DIRECTDRAW 	 DirectDraw mode (back buffer
modus)

DirectDraw back buffer extension
0x40 	 IS_SET_DM_ALLOW_SYSMEM DirectDraw Buffer can be set in PC,

if the VGA memory is not large
enough.

DirectDraw primary surface extension

40

0x80 	 IS_SET_DM_ALLOW_PRIMARY Primary Surface mode (no overlay
possible) DirectDraw back buffer
extension

Ox100 	 IS_SET_DM_ALLOW_OVERLAY Overlay surface mode
0x200 	 IS_SET_DM_ALLOW_SCALING Real time scaling in overlay mode.

Field display when
ysize < PAL/2 (288)

0x400 	 IS_SET_DM_ALLOW_FIELDSKIP
Return mode
0x8000 	 IS_GET_DISPLAY_MODE 	 Returns current settings
Return value: IS_SUCCESS, IS_NO_SUCCESS or current setting with
IS_GET_DISPLAY_MODE

Function name: is_SetlmageSize
Syntax: INT is_SetImageSize (HFALC hf, INT x, INT y)
Description: is_SetImageSize() determines the image size when used with the setting
from is_SetImagePos() .
Parameters:
hf 	 Frame grabber handle
x 	 Width oft he image: range 0.368

IS_GET_IMAGE_SIZE_X
IS_GET_IMAGE_SIZE_Y

y 	 Height of image: range 0..576
Return value: When used with IS_GET_IMAGE_SIZE_X and
IS_GET_IMAGE_SIZE_Y the current settings are read, when not IS_SUCCESS or
IS_NO_SUCCESS.

Function name: is_SetVideoMode
Syntax: INT is_SetVideoMode (HFALC hf, INT Mode)
Description: is_SetVideoMode () selects the video standard for the connected video
source. Color and monochrome signal standards with 50 Hz and 60 Hz are supported.
With the IS_SET_VM_AUTO parameter, the video standard of the connected video
source can automatically be set. All the other required settings can be carried out with the
driver.
Parameters:
hf 	 Frame grabber handle
Mode 0 	 IS_SET_VM_PAL 	 PAL standard color 50 Hz

1 	 IS_SET_VM_NTSC 	 NTSC standard color 60 Hz
2 	 IS_SET_VM_SECAM 	 SECAM standard 50 Hz
3 	 IS_SET_VM_AUTO 	 Automatic video standard detection

0x8000 	 IS_GET_VIDEO_MODE Retrieval of current setting
Return value: With IS_GET_VIDEO_MODE, the current settings are read, else
IS SUCCESS or IS NO SUCCESS.

APPENDIX B

SOURCE CODE SAMPLES

B.1 	 Capinit.cpp: initialization Code for Capture Board

// These files are required by Matlab and by the Capture
// card libraries. Falcon.h is the header for the card.
*include <afxwin.h>
#include <afxext.h>
#include "mex.h"
#include "falcon.h"

// Make the function useful for different camera sizes.
#define WIDTH 640
#define HEIGHT 480

// These variables are required by the card libraries,
// and are simply easier to use as global variables.
HFALC board;
char* image;
int id;

// The initialization function.
void initialize()

{
int error;
error = is InitBoard(&board, NULL);
error = is_SetVideoMode(board, IS_SET_VM_NTSC);
error = is SetCaptureMode(board, IS SET_CM_FRAME);
error = is SetColorMode(board, IS SET CM RGB32);
error = is_SetDisplayMode(board, IS_SET_DM_DIB);
error = is_AllocImageMem(board, WIDTH, HEIGHT, 32,

&image, &id);
error = is_SetImageMem(board, image, id);
error = is_SetImageSize(board, WIDTH, HEIGHT);

// The format of this function is specified by Matlab.
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[])

{

int *caphandle, *capmem, *capnum;

if (nrhs)

{

41

mexErrMsgTxt("No inputs required");
}

else if (nlhs != 3)
{

mexErrMsgTxt("Wrong number of outputs");
1

// Call to the function defined above.
initialize();

// Convert values returned to something useable by Matlab
const int dims[] 	 {1};
plhs[0] = mxCreateNumericArray(1, dims, mxUINT32_CLASS,

mxREAL);
caphandle 	 (int*)mxGetPr(plhs[0]);
caphandle[0] 	 (int)board;
plhs [1] = mxCreateNumericArray(1, dims, mxUINT32_CLASS,

mxREAL);
capmem 	 (int*)mxGetPr(plhs[1]);
capmem[0] 	 (int)image;
plhs[2] 	 mxCreateNumericArray(1, dims, mxUINT32_CLASS,

mxREAL);
capnum 	 (int*)mxGetPr(plhs[2]);
capnum[0] 	 (int)id;

return;

}

42

B.2 CapSnap.cpp: Activation Code for Capture Board

// These files are required by Matlab and by the Capture
// card libraries. Falcon.h is the header for the card.
#include <afxwin.h>
#include <afxext.h>
#include "mex.h"
#include "falcon.h"

// Make the function useful for different camera sizes.
#define WIDTH 640
#define HEIGHT 480

// These variables are required by the card libraries,
// and are simply easier to use as global variables.
HFALC board;
char* image;
int id;

// The capture function. FreezeVideo must be run twice
// because of the interlacing used during capture.
void capture()

int error;
error 	 is_FreezeVideo(board, IS WAIT);
error = is FreezeVideo(board, IS WAIT);

// The format of this function is specified by Matlab.
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,

const mxArray *prhs[))

char *img;
int *temp;

if (nrhs != 3)

mexErrMsgTxt("Wrong number of inputs");

else if (nlhs != 1)
{

mexErrMsgTxt ("Wrong number of outputs");

// Convert values passed from Matlab into values useful
// to the capture card.

const int dims[] = {HEIGHT, WIDTH, 3};

43

44

plhs [0] = mxCreateNumericArray(3, dims, mxUINT8_CLASS,
mxREAL);

img = (char*)mxGetPr(plhs[0]);
temp = (int*)mxGetData(prhs[0]);
board = (HFALC)temp[0];
temp = (int*)mxGetData(prhs[1]);
image = (char*)temp[0];
temp = (int*)mxGetData(prhs[2]);
id = (int)temp[O];

// Call the capture function defined above.
capture();

// Rearrange the pixels of the image from the format
// delivered by the board to that needed by Matlab.

for (int color=0; color<3; color++)

{
for (int column=0; column<WIDTH; column++)

for (int row=0; row<HEIGHT; row++)

img[WIDTH*HEIGHT*color + HEIGHT*column + row] =
image [WIDTH*row*4 + 4*column + 2-color];

return;

B.3 CapQuit.cpp: Deactivation Code for Capture Board

// These files are required by Matlab and by the Capture
// card libraries. Falcon.h is the header for the card.
#include <afxwin.h>
#include <afxext.h>
#include "mex.h"
#include "falcon.h"

// These variables are required by the card libraries,
// and are simply easier to use as global variables.
HFALC board;
char* image;
int id;

// The shutdown function
void shutdown()

int error;
error = is FreeImageMem(board, image, id);
error 	 is ExitBoard(board);

// The format of this function is specified by Matlab.
void mexFunction(int nlhs, mxArray *plhs[], int nrhs,
const mxArray *prhs[])

1
char *img;
int *temp;

if (nrhs 1= 3)

mexErrMsgTxt("Wrong number of inputs");

else if (nlhs)

mexErrMsgTxt("No outputs required");

// Convert values passed from Matlab into values useful
// to the capture card.

temp 	 (int*)mxGetData(prhs[0]);
board = (HFALC)temp[0];
temp = (int*)mxGetData(prhs[1]);
image = (char*)temp[0];
temp 	 (int*)mxGetData(prhs[2]);
id 	 (int)temp[0];

45

// Call the shutdown function defined above.
shutdown();

return;
}

46

BA HoughTest.m: Test routine for Circular Hough Transform.

% Set up test matrix (25x25, 4 hot points)
A = zeros(25,25);
A(7,7) = 1;
A(18,18) = 1;
A(7,18) = 1;
A(18,7) = 1;

% only look for enough circles to catch all points
thresh = 4;

% initial variable set up.
C = [];
X = 25;
Y = 25;
R = 25;
B = zeros(X,Y);
H = zeros(X,Y,R);
a = 0;
b = 0;

% Loop through image to create transform.
Commented section is part removed in later versions
and replaced by following section to cover

% rounding errors.
for i = 1:X

for j = 1:Y
if A(i,j) > 0

for r = 1:R
T = zeros(X,Y);
for theta = 0:.01:2*pi

a = round(i + r*cos(theta));
b = round(j + r*sin(theta));
if (a>=1) & (a<=X) & (b>=1) & (b<=Y)

T(a,b) = 1;
end

a = ceil (i + r*cos(theta));

	

b 	 ceil (j + r*sin(theta));
if (a>=1) & (a<=X) & (b>=1) & (b<=Y)

T(a,b) = 1;
end

47

a = a-1;
b = b-1;
if (a>=1) & (a<=X) & (b>=1) & (b<=Y)

T(a,b) 	 1;
end

end
H(:,:,r) 	 H(:,:,r) + T(:,:,1);

end
end

end
end

% Loop through transform to acquire data on cells
% beyond the threshold.
for i = 1:X

for j 	 1:Y
for r 	 1:R

if H(i,j,r) >= thresh
C 	 [C; 1, j, r, H(i,j,r)];

end
end

end
end

% Display the data on screen and in the image.
C
figure;
imshow(A);
hold on;
ti 	 0:0.01:2*pi;
plot(C(:,2), C(:,1), 'r+');
t2 = size(C);
for i 	 1:t2(1)

plot(C(i,2)+C(i,3)*sin(t1),
C(i,1)+C(1,3)*cos(t1), 'r--');

end

48

49

B.5 Hough2.m: Circular Hough Transform function

function [xc, yc, rl] = hough(A,AA)

% Set up initial min and max values for R.
Rn = 10;
Rx = 20;

% Get the X and Y dimensions of the image
temp = size(A);
X = temp(1);
Y = temp(2);

% Set up other variables.
C = [];
B = zeros(X,Y);
H = zeros (X,Y, (Rx - Rn)) ;
a = 0;
b = 0;

% Loop through the image and create the Hough transform
array.
for i = 	 1:X

for j = 1:Y
if A(i,j) > 0

for r = Rn+1:Rx
T = zeros(X,Y);
for theta = 0:.01:2*pi

a = round(i + r*cos(theta));
b = round(j + r*sin(theta));
if (a >= 1) & (a <= X) & (b >= 1) & (b <= Y)

T(a,b) = 1;
end

end
H (: , : (r-Rn)) = 	 H(:, 	 (r-Rn.)) + T(:, : ,1) ;

end
end

end
end

% Set the threshold to be the maximum value of the
transform.
thresh = max(max(max(H)));

50

% Loop through the transform to find data on circles
encountered.
for i = 	 1:X

for j 	 1:Y
for r = Rn+1:Rx

if H(i,j,(r-Rn)) >= thresh
C = [C; i, j, r, H(i,j,(r-Rn))];

end
end

end
end

% Compute average circle for final results
temp 	 [(sum(C(:,1).*C(:,4))/sum(C(:,4))),

(sum(C(:,2).*C(:,4))/sum(C(:,4))),
(sum(C(:,3).*C(:,4))/sum(C(:,4))))

% Display the circle(s) overlaid on the grayscale image.
figure;
imshow(AA);
hold on;
t1 	 0:0.01:2*pi;
plot(C(:,2), C(:,1), 'r+');
t2 	 size(C);
for i = 1:t2(1)

plot(C(i,2)+C(1,3)*sin(t1),C(i,1)+C(i,3)*cos(t1),cr--');
end
plot(temp(2), temp(1), 1 g*');
plot(temp(2)+temp(3)*sin(t1),temp(1)+temp(3)*cos(t1),'g-');

% Return a the average center point and radius.
C
xc 	 temp(1) ;
yc = temp(2);
r1 	 temp(3);

51

B.6 Hough3.m: Hough Transform with initial radius input

function [xc, yc, r1] 	 hough(A,AA,Rpass)

% this is only difference between hough3.m and hough2.m
Rn 	 floor(Rpass-1);
Rx = ceil(Rpass+1);

temp 	 size(A);
X = temp(1);
Y 	 temp(2);

C 	 [];
B 	 zeros(X,Y);
H	 zeros(X,Y,(Rx - Rn));
a = 0;
b = 0;

for i = 	 1:X
for j 	 1:Y

if A(i,j) > 0
for r Rn+1:Rx

T 	 zeros(X,Y);
for theta 	 0:.01:2*pi

a 	 round(i + r*cos (theta)) ;
b 	 round(j + r*sin(theta));
if (a >= 1) & (a <= X) & (b 	 1) & (b <= Y)

T(a,b) 	 1;
end

end
H (, : , (r-Rn)) 	 H(: , 	 (r-Rn)) + T(, :,1);

end
end

end
end

thresh 	 max(max(max(H)));
for i 	 1:X

for j 	 1:Y
for r Rn+1:Rx

if H(i,j,(r-Rn)) >= thresh
C 	 [C; 1, j, r, H(i,j,(r-Rn))];

end
end

end
end

52

temp 	 [(sum(C(:,1).*C(:,4))/sum(C(:,4))),
(sum(C(:,2).*C(:,4))/sum(C(:,4))),
(sum(C(:,3).*C(:,4))/sum(C(:,4)))]

figure;
imshow(AA);
hold on;
t1 	 0:0.01:2*pi;
plot(C(:,2), C(:,1), 'r+');
t2 	 size(C);

for i = 1:t2(1)
plot(C(i,2)+C(i,3)*sin(t1),C(i,1)+C(1,3)*cos(t1),'r--');

end
plot(temp(2), temp(1), ‘g*');
plot(temp(2)+temp(3)*sin(t1),temp(1)+temp(3)*cos(t1),'g-');

C
xc 	 temp(1);
yc 	 temp(2);
r1 	 temp(3);

REFERENCES

1. G. Baxes, Digital Image Processing: Principles and Applications, John Wiley &
Sons, New York, NY, 1994.

2. S. Bow, Pattern Recognition and Image Preprocessing, Marcel Dekker, New York,
NY, 1992.

3. D. Casasent, "Optics and Neural Nets", in Neural Networks for Vision and Image
Processing, MIT Press, Cambridge, MA, 1992.

4. K. Castleman, Digital Image Processing, Prentice Hall, Englewood Cliffs, NJ, 1979.

5. DBS, DFG/LC 1+2 Frame Grabber User Manual, DBS Digitale Bildverarbeitung
and Systementwicklung GmbH, Bremen, Germany, 1999.

6. R. Gonzales and R. Woods, Digital Image Processing, Addison-Wesley, New York,
NY, 1993.

7. R. Haralick and L. Shapiro, Computer and Robot Vision, Vol. 1, Addison-Wesley,
Reading, MA, 1992.

8. B. Jähne, Digital Image Processing: Concepts, Algorithms, and Scientific
Applications, Springer-Verlag, Berlin, Germany, 1997.

9. J. Lampinen, J. Laaksonen, and E. Oja, "Pattern Recognition," in Image Processing
and Pattern Recognition, Academic Press, San Diego, CA, 1998.

10. M. Levine, Vision in Man and Machine, McGraw-Hill, New York, NY, 1985.

11. C. Lindley, Practical Image Processing in C, John Wiley & Sons, New York, NY,
1991.

12. R. Nevatia, "Image Segmentation" in Handbook of Pattern Recognition and Image
Processing, Academic Press, Orlando, FL, 1986.

13. C. Olson, "Constrained Hough Transforms for Curve Detection," Computer Vision
and Image Understanding, vol. 73, no. 3, pp. 329-345, Academic Press, Orlando,
FL, 1999.

14. J. Ramesh, R. Kasturi, and B. Schunck, Machine Vision, McGraw-Hill, New York,
NY, 1995.

53

15. S. Umbaugh, Computer Vision and Image Processing, Prentice Hall PTR,
Upper Saddle River, NJ, 1998.

54

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Intorduction
	Chapter 2: Obtaining the Image
	Chapter 3: Image Preprocessing
	Chapter 4: Feature Extraction
	Chapter 5: Postprocessing and Beyond
	Chapter 6: Conclusions
	Appendix A: DBS DFG/LC1 Video Capture Board Information
	Appendix B: Source Code Samples
	References

	List of Tables
	List of Figures

